1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2022 Qualcomm Innovation Center. All rights reserved. 4 * 5 * Authors: 6 * Asutosh Das <quic_asutoshd@quicinc.com> 7 * Can Guo <quic_cang@quicinc.com> 8 */ 9 10 #include <asm/unaligned.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/module.h> 13 #include <linux/platform_device.h> 14 #include "ufshcd-priv.h" 15 16 #define MAX_QUEUE_SUP GENMASK(7, 0) 17 #define UFS_MCQ_MIN_RW_QUEUES 2 18 #define UFS_MCQ_MIN_READ_QUEUES 0 19 #define UFS_MCQ_NUM_DEV_CMD_QUEUES 1 20 #define UFS_MCQ_MIN_POLL_QUEUES 0 21 #define QUEUE_EN_OFFSET 31 22 #define QUEUE_ID_OFFSET 16 23 24 #define MAX_DEV_CMD_ENTRIES 2 25 #define MCQ_CFG_MAC_MASK GENMASK(16, 8) 26 #define MCQ_QCFG_SIZE 0x40 27 #define MCQ_ENTRY_SIZE_IN_DWORD 8 28 #define CQE_UCD_BA GENMASK_ULL(63, 7) 29 30 static int rw_queue_count_set(const char *val, const struct kernel_param *kp) 31 { 32 return param_set_uint_minmax(val, kp, UFS_MCQ_MIN_RW_QUEUES, 33 num_possible_cpus()); 34 } 35 36 static const struct kernel_param_ops rw_queue_count_ops = { 37 .set = rw_queue_count_set, 38 .get = param_get_uint, 39 }; 40 41 static unsigned int rw_queues; 42 module_param_cb(rw_queues, &rw_queue_count_ops, &rw_queues, 0644); 43 MODULE_PARM_DESC(rw_queues, 44 "Number of interrupt driven I/O queues used for rw. Default value is nr_cpus"); 45 46 static int read_queue_count_set(const char *val, const struct kernel_param *kp) 47 { 48 return param_set_uint_minmax(val, kp, UFS_MCQ_MIN_READ_QUEUES, 49 num_possible_cpus()); 50 } 51 52 static const struct kernel_param_ops read_queue_count_ops = { 53 .set = read_queue_count_set, 54 .get = param_get_uint, 55 }; 56 57 static unsigned int read_queues; 58 module_param_cb(read_queues, &read_queue_count_ops, &read_queues, 0644); 59 MODULE_PARM_DESC(read_queues, 60 "Number of interrupt driven read queues used for read. Default value is 0"); 61 62 static int poll_queue_count_set(const char *val, const struct kernel_param *kp) 63 { 64 return param_set_uint_minmax(val, kp, UFS_MCQ_MIN_POLL_QUEUES, 65 num_possible_cpus()); 66 } 67 68 static const struct kernel_param_ops poll_queue_count_ops = { 69 .set = poll_queue_count_set, 70 .get = param_get_uint, 71 }; 72 73 static unsigned int poll_queues = 1; 74 module_param_cb(poll_queues, &poll_queue_count_ops, &poll_queues, 0644); 75 MODULE_PARM_DESC(poll_queues, 76 "Number of poll queues used for r/w. Default value is 1"); 77 78 /** 79 * ufshcd_mcq_config_mac - Set the #Max Activ Cmds. 80 * @hba: per adapter instance 81 * @max_active_cmds: maximum # of active commands to the device at any time. 82 * 83 * The controller won't send more than the max_active_cmds to the device at 84 * any time. 85 */ 86 void ufshcd_mcq_config_mac(struct ufs_hba *hba, u32 max_active_cmds) 87 { 88 u32 val; 89 90 val = ufshcd_readl(hba, REG_UFS_MCQ_CFG); 91 val &= ~MCQ_CFG_MAC_MASK; 92 val |= FIELD_PREP(MCQ_CFG_MAC_MASK, max_active_cmds); 93 ufshcd_writel(hba, val, REG_UFS_MCQ_CFG); 94 } 95 96 /** 97 * ufshcd_mcq_req_to_hwq - find the hardware queue on which the 98 * request would be issued. 99 * @hba: per adapter instance 100 * @req: pointer to the request to be issued 101 * 102 * Returns the hardware queue instance on which the request would 103 * be queued. 104 */ 105 struct ufs_hw_queue *ufshcd_mcq_req_to_hwq(struct ufs_hba *hba, 106 struct request *req) 107 { 108 u32 utag = blk_mq_unique_tag(req); 109 u32 hwq = blk_mq_unique_tag_to_hwq(utag); 110 111 /* uhq[0] is used to serve device commands */ 112 return &hba->uhq[hwq + UFSHCD_MCQ_IO_QUEUE_OFFSET]; 113 } 114 115 /** 116 * ufshcd_mcq_decide_queue_depth - decide the queue depth 117 * @hba: per adapter instance 118 * 119 * Returns queue-depth on success, non-zero on error 120 * 121 * MAC - Max. Active Command of the Host Controller (HC) 122 * HC wouldn't send more than this commands to the device. 123 * It is mandatory to implement get_hba_mac() to enable MCQ mode. 124 * Calculates and adjusts the queue depth based on the depth 125 * supported by the HC and ufs device. 126 */ 127 int ufshcd_mcq_decide_queue_depth(struct ufs_hba *hba) 128 { 129 int mac; 130 131 /* Mandatory to implement get_hba_mac() */ 132 mac = ufshcd_mcq_vops_get_hba_mac(hba); 133 if (mac < 0) { 134 dev_err(hba->dev, "Failed to get mac, err=%d\n", mac); 135 return mac; 136 } 137 138 WARN_ON_ONCE(!hba->dev_info.bqueuedepth); 139 /* 140 * max. value of bqueuedepth = 256, mac is host dependent. 141 * It is mandatory for UFS device to define bQueueDepth if 142 * shared queuing architecture is enabled. 143 */ 144 return min_t(int, mac, hba->dev_info.bqueuedepth); 145 } 146 147 static int ufshcd_mcq_config_nr_queues(struct ufs_hba *hba) 148 { 149 int i; 150 u32 hba_maxq, rem, tot_queues; 151 struct Scsi_Host *host = hba->host; 152 153 hba_maxq = FIELD_GET(MAX_QUEUE_SUP, hba->mcq_capabilities); 154 155 tot_queues = UFS_MCQ_NUM_DEV_CMD_QUEUES + read_queues + poll_queues + 156 rw_queues; 157 158 if (hba_maxq < tot_queues) { 159 dev_err(hba->dev, "Total queues (%d) exceeds HC capacity (%d)\n", 160 tot_queues, hba_maxq); 161 return -EOPNOTSUPP; 162 } 163 164 rem = hba_maxq - UFS_MCQ_NUM_DEV_CMD_QUEUES; 165 166 if (rw_queues) { 167 hba->nr_queues[HCTX_TYPE_DEFAULT] = rw_queues; 168 rem -= hba->nr_queues[HCTX_TYPE_DEFAULT]; 169 } else { 170 rw_queues = num_possible_cpus(); 171 } 172 173 if (poll_queues) { 174 hba->nr_queues[HCTX_TYPE_POLL] = poll_queues; 175 rem -= hba->nr_queues[HCTX_TYPE_POLL]; 176 } 177 178 if (read_queues) { 179 hba->nr_queues[HCTX_TYPE_READ] = read_queues; 180 rem -= hba->nr_queues[HCTX_TYPE_READ]; 181 } 182 183 if (!hba->nr_queues[HCTX_TYPE_DEFAULT]) 184 hba->nr_queues[HCTX_TYPE_DEFAULT] = min3(rem, rw_queues, 185 num_possible_cpus()); 186 187 for (i = 0; i < HCTX_MAX_TYPES; i++) 188 host->nr_hw_queues += hba->nr_queues[i]; 189 190 hba->nr_hw_queues = host->nr_hw_queues + UFS_MCQ_NUM_DEV_CMD_QUEUES; 191 return 0; 192 } 193 194 int ufshcd_mcq_memory_alloc(struct ufs_hba *hba) 195 { 196 struct ufs_hw_queue *hwq; 197 size_t utrdl_size, cqe_size; 198 int i; 199 200 for (i = 0; i < hba->nr_hw_queues; i++) { 201 hwq = &hba->uhq[i]; 202 203 utrdl_size = sizeof(struct utp_transfer_req_desc) * 204 hwq->max_entries; 205 hwq->sqe_base_addr = dmam_alloc_coherent(hba->dev, utrdl_size, 206 &hwq->sqe_dma_addr, 207 GFP_KERNEL); 208 if (!hwq->sqe_dma_addr) { 209 dev_err(hba->dev, "SQE allocation failed\n"); 210 return -ENOMEM; 211 } 212 213 cqe_size = sizeof(struct cq_entry) * hwq->max_entries; 214 hwq->cqe_base_addr = dmam_alloc_coherent(hba->dev, cqe_size, 215 &hwq->cqe_dma_addr, 216 GFP_KERNEL); 217 if (!hwq->cqe_dma_addr) { 218 dev_err(hba->dev, "CQE allocation failed\n"); 219 return -ENOMEM; 220 } 221 } 222 223 return 0; 224 } 225 226 227 /* Operation and runtime registers configuration */ 228 #define MCQ_CFG_n(r, i) ((r) + MCQ_QCFG_SIZE * (i)) 229 #define MCQ_OPR_OFFSET_n(p, i) \ 230 (hba->mcq_opr[(p)].offset + hba->mcq_opr[(p)].stride * (i)) 231 232 static void __iomem *mcq_opr_base(struct ufs_hba *hba, 233 enum ufshcd_mcq_opr n, int i) 234 { 235 struct ufshcd_mcq_opr_info_t *opr = &hba->mcq_opr[n]; 236 237 return opr->base + opr->stride * i; 238 } 239 240 u32 ufshcd_mcq_read_cqis(struct ufs_hba *hba, int i) 241 { 242 return readl(mcq_opr_base(hba, OPR_CQIS, i) + REG_CQIS); 243 } 244 245 void ufshcd_mcq_write_cqis(struct ufs_hba *hba, u32 val, int i) 246 { 247 writel(val, mcq_opr_base(hba, OPR_CQIS, i) + REG_CQIS); 248 } 249 EXPORT_SYMBOL_GPL(ufshcd_mcq_write_cqis); 250 251 /* 252 * Current MCQ specification doesn't provide a Task Tag or its equivalent in 253 * the Completion Queue Entry. Find the Task Tag using an indirect method. 254 */ 255 static int ufshcd_mcq_get_tag(struct ufs_hba *hba, 256 struct ufs_hw_queue *hwq, 257 struct cq_entry *cqe) 258 { 259 u64 addr; 260 261 /* sizeof(struct utp_transfer_cmd_desc) must be a multiple of 128 */ 262 BUILD_BUG_ON(sizeof(struct utp_transfer_cmd_desc) & GENMASK(6, 0)); 263 264 /* Bits 63:7 UCD base address, 6:5 are reserved, 4:0 is SQ ID */ 265 addr = (le64_to_cpu(cqe->command_desc_base_addr) & CQE_UCD_BA) - 266 hba->ucdl_dma_addr; 267 268 return div_u64(addr, sizeof(struct utp_transfer_cmd_desc)); 269 } 270 271 static void ufshcd_mcq_process_cqe(struct ufs_hba *hba, 272 struct ufs_hw_queue *hwq) 273 { 274 struct cq_entry *cqe = ufshcd_mcq_cur_cqe(hwq); 275 int tag = ufshcd_mcq_get_tag(hba, hwq, cqe); 276 277 ufshcd_compl_one_cqe(hba, tag, cqe); 278 } 279 280 unsigned long ufshcd_mcq_poll_cqe_nolock(struct ufs_hba *hba, 281 struct ufs_hw_queue *hwq) 282 { 283 unsigned long completed_reqs = 0; 284 285 ufshcd_mcq_update_cq_tail_slot(hwq); 286 while (!ufshcd_mcq_is_cq_empty(hwq)) { 287 ufshcd_mcq_process_cqe(hba, hwq); 288 ufshcd_mcq_inc_cq_head_slot(hwq); 289 completed_reqs++; 290 } 291 292 if (completed_reqs) 293 ufshcd_mcq_update_cq_head(hwq); 294 295 return completed_reqs; 296 } 297 EXPORT_SYMBOL_GPL(ufshcd_mcq_poll_cqe_nolock); 298 299 unsigned long ufshcd_mcq_poll_cqe_lock(struct ufs_hba *hba, 300 struct ufs_hw_queue *hwq) 301 { 302 unsigned long completed_reqs; 303 304 spin_lock(&hwq->cq_lock); 305 completed_reqs = ufshcd_mcq_poll_cqe_nolock(hba, hwq); 306 spin_unlock(&hwq->cq_lock); 307 308 return completed_reqs; 309 } 310 311 void ufshcd_mcq_make_queues_operational(struct ufs_hba *hba) 312 { 313 struct ufs_hw_queue *hwq; 314 u16 qsize; 315 int i; 316 317 for (i = 0; i < hba->nr_hw_queues; i++) { 318 hwq = &hba->uhq[i]; 319 hwq->id = i; 320 qsize = hwq->max_entries * MCQ_ENTRY_SIZE_IN_DWORD - 1; 321 322 /* Submission Queue Lower Base Address */ 323 ufsmcq_writelx(hba, lower_32_bits(hwq->sqe_dma_addr), 324 MCQ_CFG_n(REG_SQLBA, i)); 325 /* Submission Queue Upper Base Address */ 326 ufsmcq_writelx(hba, upper_32_bits(hwq->sqe_dma_addr), 327 MCQ_CFG_n(REG_SQUBA, i)); 328 /* Submission Queue Doorbell Address Offset */ 329 ufsmcq_writelx(hba, MCQ_OPR_OFFSET_n(OPR_SQD, i), 330 MCQ_CFG_n(REG_SQDAO, i)); 331 /* Submission Queue Interrupt Status Address Offset */ 332 ufsmcq_writelx(hba, MCQ_OPR_OFFSET_n(OPR_SQIS, i), 333 MCQ_CFG_n(REG_SQISAO, i)); 334 335 /* Completion Queue Lower Base Address */ 336 ufsmcq_writelx(hba, lower_32_bits(hwq->cqe_dma_addr), 337 MCQ_CFG_n(REG_CQLBA, i)); 338 /* Completion Queue Upper Base Address */ 339 ufsmcq_writelx(hba, upper_32_bits(hwq->cqe_dma_addr), 340 MCQ_CFG_n(REG_CQUBA, i)); 341 /* Completion Queue Doorbell Address Offset */ 342 ufsmcq_writelx(hba, MCQ_OPR_OFFSET_n(OPR_CQD, i), 343 MCQ_CFG_n(REG_CQDAO, i)); 344 /* Completion Queue Interrupt Status Address Offset */ 345 ufsmcq_writelx(hba, MCQ_OPR_OFFSET_n(OPR_CQIS, i), 346 MCQ_CFG_n(REG_CQISAO, i)); 347 348 /* Save the base addresses for quicker access */ 349 hwq->mcq_sq_head = mcq_opr_base(hba, OPR_SQD, i) + REG_SQHP; 350 hwq->mcq_sq_tail = mcq_opr_base(hba, OPR_SQD, i) + REG_SQTP; 351 hwq->mcq_cq_head = mcq_opr_base(hba, OPR_CQD, i) + REG_CQHP; 352 hwq->mcq_cq_tail = mcq_opr_base(hba, OPR_CQD, i) + REG_CQTP; 353 354 /* Reinitializing is needed upon HC reset */ 355 hwq->sq_tail_slot = hwq->cq_tail_slot = hwq->cq_head_slot = 0; 356 357 /* Enable Tail Entry Push Status interrupt only for non-poll queues */ 358 if (i < hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL]) 359 writel(1, mcq_opr_base(hba, OPR_CQIS, i) + REG_CQIE); 360 361 /* Completion Queue Enable|Size to Completion Queue Attribute */ 362 ufsmcq_writel(hba, (1 << QUEUE_EN_OFFSET) | qsize, 363 MCQ_CFG_n(REG_CQATTR, i)); 364 365 /* 366 * Submission Qeueue Enable|Size|Completion Queue ID to 367 * Submission Queue Attribute 368 */ 369 ufsmcq_writel(hba, (1 << QUEUE_EN_OFFSET) | qsize | 370 (i << QUEUE_ID_OFFSET), 371 MCQ_CFG_n(REG_SQATTR, i)); 372 } 373 } 374 375 void ufshcd_mcq_enable_esi(struct ufs_hba *hba) 376 { 377 ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x2, 378 REG_UFS_MEM_CFG); 379 } 380 EXPORT_SYMBOL_GPL(ufshcd_mcq_enable_esi); 381 382 void ufshcd_mcq_config_esi(struct ufs_hba *hba, struct msi_msg *msg) 383 { 384 ufshcd_writel(hba, msg->address_lo, REG_UFS_ESILBA); 385 ufshcd_writel(hba, msg->address_hi, REG_UFS_ESIUBA); 386 } 387 EXPORT_SYMBOL_GPL(ufshcd_mcq_config_esi); 388 389 int ufshcd_mcq_init(struct ufs_hba *hba) 390 { 391 struct Scsi_Host *host = hba->host; 392 struct ufs_hw_queue *hwq; 393 int ret, i; 394 395 ret = ufshcd_mcq_config_nr_queues(hba); 396 if (ret) 397 return ret; 398 399 ret = ufshcd_vops_mcq_config_resource(hba); 400 if (ret) 401 return ret; 402 403 ret = ufshcd_mcq_vops_op_runtime_config(hba); 404 if (ret) { 405 dev_err(hba->dev, "Operation runtime config failed, ret=%d\n", 406 ret); 407 return ret; 408 } 409 hba->uhq = devm_kzalloc(hba->dev, 410 hba->nr_hw_queues * sizeof(struct ufs_hw_queue), 411 GFP_KERNEL); 412 if (!hba->uhq) { 413 dev_err(hba->dev, "ufs hw queue memory allocation failed\n"); 414 return -ENOMEM; 415 } 416 417 for (i = 0; i < hba->nr_hw_queues; i++) { 418 hwq = &hba->uhq[i]; 419 hwq->max_entries = hba->nutrs; 420 spin_lock_init(&hwq->sq_lock); 421 spin_lock_init(&hwq->cq_lock); 422 } 423 424 /* The very first HW queue serves device commands */ 425 hba->dev_cmd_queue = &hba->uhq[0]; 426 /* Give dev_cmd_queue the minimal number of entries */ 427 hba->dev_cmd_queue->max_entries = MAX_DEV_CMD_ENTRIES; 428 429 host->host_tagset = 1; 430 return 0; 431 } 432