1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2022 Qualcomm Innovation Center. All rights reserved. 4 * 5 * Authors: 6 * Asutosh Das <quic_asutoshd@quicinc.com> 7 * Can Guo <quic_cang@quicinc.com> 8 */ 9 10 #include <asm/unaligned.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/module.h> 13 #include <linux/platform_device.h> 14 #include "ufshcd-priv.h" 15 #include <linux/delay.h> 16 #include <scsi/scsi_cmnd.h> 17 #include <linux/bitfield.h> 18 #include <linux/iopoll.h> 19 20 #define MAX_QUEUE_SUP GENMASK(7, 0) 21 #define UFS_MCQ_MIN_RW_QUEUES 2 22 #define UFS_MCQ_MIN_READ_QUEUES 0 23 #define UFS_MCQ_MIN_POLL_QUEUES 0 24 #define QUEUE_EN_OFFSET 31 25 #define QUEUE_ID_OFFSET 16 26 27 #define MCQ_CFG_MAC_MASK GENMASK(16, 8) 28 #define MCQ_QCFG_SIZE 0x40 29 #define MCQ_ENTRY_SIZE_IN_DWORD 8 30 #define CQE_UCD_BA GENMASK_ULL(63, 7) 31 32 /* Max mcq register polling time in microseconds */ 33 #define MCQ_POLL_US 500000 34 35 static int rw_queue_count_set(const char *val, const struct kernel_param *kp) 36 { 37 return param_set_uint_minmax(val, kp, UFS_MCQ_MIN_RW_QUEUES, 38 num_possible_cpus()); 39 } 40 41 static const struct kernel_param_ops rw_queue_count_ops = { 42 .set = rw_queue_count_set, 43 .get = param_get_uint, 44 }; 45 46 static unsigned int rw_queues; 47 module_param_cb(rw_queues, &rw_queue_count_ops, &rw_queues, 0644); 48 MODULE_PARM_DESC(rw_queues, 49 "Number of interrupt driven I/O queues used for rw. Default value is nr_cpus"); 50 51 static int read_queue_count_set(const char *val, const struct kernel_param *kp) 52 { 53 return param_set_uint_minmax(val, kp, UFS_MCQ_MIN_READ_QUEUES, 54 num_possible_cpus()); 55 } 56 57 static const struct kernel_param_ops read_queue_count_ops = { 58 .set = read_queue_count_set, 59 .get = param_get_uint, 60 }; 61 62 static unsigned int read_queues; 63 module_param_cb(read_queues, &read_queue_count_ops, &read_queues, 0644); 64 MODULE_PARM_DESC(read_queues, 65 "Number of interrupt driven read queues used for read. Default value is 0"); 66 67 static int poll_queue_count_set(const char *val, const struct kernel_param *kp) 68 { 69 return param_set_uint_minmax(val, kp, UFS_MCQ_MIN_POLL_QUEUES, 70 num_possible_cpus()); 71 } 72 73 static const struct kernel_param_ops poll_queue_count_ops = { 74 .set = poll_queue_count_set, 75 .get = param_get_uint, 76 }; 77 78 static unsigned int poll_queues = 1; 79 module_param_cb(poll_queues, &poll_queue_count_ops, &poll_queues, 0644); 80 MODULE_PARM_DESC(poll_queues, 81 "Number of poll queues used for r/w. Default value is 1"); 82 83 /** 84 * ufshcd_mcq_config_mac - Set the #Max Activ Cmds. 85 * @hba: per adapter instance 86 * @max_active_cmds: maximum # of active commands to the device at any time. 87 * 88 * The controller won't send more than the max_active_cmds to the device at 89 * any time. 90 */ 91 void ufshcd_mcq_config_mac(struct ufs_hba *hba, u32 max_active_cmds) 92 { 93 u32 val; 94 95 val = ufshcd_readl(hba, REG_UFS_MCQ_CFG); 96 val &= ~MCQ_CFG_MAC_MASK; 97 val |= FIELD_PREP(MCQ_CFG_MAC_MASK, max_active_cmds); 98 ufshcd_writel(hba, val, REG_UFS_MCQ_CFG); 99 } 100 101 /** 102 * ufshcd_mcq_req_to_hwq - find the hardware queue on which the 103 * request would be issued. 104 * @hba: per adapter instance 105 * @req: pointer to the request to be issued 106 * 107 * Returns the hardware queue instance on which the request would 108 * be queued. 109 */ 110 struct ufs_hw_queue *ufshcd_mcq_req_to_hwq(struct ufs_hba *hba, 111 struct request *req) 112 { 113 u32 utag = blk_mq_unique_tag(req); 114 u32 hwq = blk_mq_unique_tag_to_hwq(utag); 115 116 return &hba->uhq[hwq]; 117 } 118 119 /** 120 * ufshcd_mcq_decide_queue_depth - decide the queue depth 121 * @hba: per adapter instance 122 * 123 * Returns queue-depth on success, non-zero on error 124 * 125 * MAC - Max. Active Command of the Host Controller (HC) 126 * HC wouldn't send more than this commands to the device. 127 * It is mandatory to implement get_hba_mac() to enable MCQ mode. 128 * Calculates and adjusts the queue depth based on the depth 129 * supported by the HC and ufs device. 130 */ 131 int ufshcd_mcq_decide_queue_depth(struct ufs_hba *hba) 132 { 133 int mac; 134 135 /* Mandatory to implement get_hba_mac() */ 136 mac = ufshcd_mcq_vops_get_hba_mac(hba); 137 if (mac < 0) { 138 dev_err(hba->dev, "Failed to get mac, err=%d\n", mac); 139 return mac; 140 } 141 142 WARN_ON_ONCE(!hba->dev_info.bqueuedepth); 143 /* 144 * max. value of bqueuedepth = 256, mac is host dependent. 145 * It is mandatory for UFS device to define bQueueDepth if 146 * shared queuing architecture is enabled. 147 */ 148 return min_t(int, mac, hba->dev_info.bqueuedepth); 149 } 150 151 static int ufshcd_mcq_config_nr_queues(struct ufs_hba *hba) 152 { 153 int i; 154 u32 hba_maxq, rem, tot_queues; 155 struct Scsi_Host *host = hba->host; 156 157 /* maxq is 0 based value */ 158 hba_maxq = FIELD_GET(MAX_QUEUE_SUP, hba->mcq_capabilities) + 1; 159 160 tot_queues = read_queues + poll_queues + rw_queues; 161 162 if (hba_maxq < tot_queues) { 163 dev_err(hba->dev, "Total queues (%d) exceeds HC capacity (%d)\n", 164 tot_queues, hba_maxq); 165 return -EOPNOTSUPP; 166 } 167 168 rem = hba_maxq; 169 170 if (rw_queues) { 171 hba->nr_queues[HCTX_TYPE_DEFAULT] = rw_queues; 172 rem -= hba->nr_queues[HCTX_TYPE_DEFAULT]; 173 } else { 174 rw_queues = num_possible_cpus(); 175 } 176 177 if (poll_queues) { 178 hba->nr_queues[HCTX_TYPE_POLL] = poll_queues; 179 rem -= hba->nr_queues[HCTX_TYPE_POLL]; 180 } 181 182 if (read_queues) { 183 hba->nr_queues[HCTX_TYPE_READ] = read_queues; 184 rem -= hba->nr_queues[HCTX_TYPE_READ]; 185 } 186 187 if (!hba->nr_queues[HCTX_TYPE_DEFAULT]) 188 hba->nr_queues[HCTX_TYPE_DEFAULT] = min3(rem, rw_queues, 189 num_possible_cpus()); 190 191 for (i = 0; i < HCTX_MAX_TYPES; i++) 192 host->nr_hw_queues += hba->nr_queues[i]; 193 194 hba->nr_hw_queues = host->nr_hw_queues; 195 return 0; 196 } 197 198 int ufshcd_mcq_memory_alloc(struct ufs_hba *hba) 199 { 200 struct ufs_hw_queue *hwq; 201 size_t utrdl_size, cqe_size; 202 int i; 203 204 for (i = 0; i < hba->nr_hw_queues; i++) { 205 hwq = &hba->uhq[i]; 206 207 utrdl_size = sizeof(struct utp_transfer_req_desc) * 208 hwq->max_entries; 209 hwq->sqe_base_addr = dmam_alloc_coherent(hba->dev, utrdl_size, 210 &hwq->sqe_dma_addr, 211 GFP_KERNEL); 212 if (!hwq->sqe_dma_addr) { 213 dev_err(hba->dev, "SQE allocation failed\n"); 214 return -ENOMEM; 215 } 216 217 cqe_size = sizeof(struct cq_entry) * hwq->max_entries; 218 hwq->cqe_base_addr = dmam_alloc_coherent(hba->dev, cqe_size, 219 &hwq->cqe_dma_addr, 220 GFP_KERNEL); 221 if (!hwq->cqe_dma_addr) { 222 dev_err(hba->dev, "CQE allocation failed\n"); 223 return -ENOMEM; 224 } 225 } 226 227 return 0; 228 } 229 230 231 /* Operation and runtime registers configuration */ 232 #define MCQ_CFG_n(r, i) ((r) + MCQ_QCFG_SIZE * (i)) 233 #define MCQ_OPR_OFFSET_n(p, i) \ 234 (hba->mcq_opr[(p)].offset + hba->mcq_opr[(p)].stride * (i)) 235 236 static void __iomem *mcq_opr_base(struct ufs_hba *hba, 237 enum ufshcd_mcq_opr n, int i) 238 { 239 struct ufshcd_mcq_opr_info_t *opr = &hba->mcq_opr[n]; 240 241 return opr->base + opr->stride * i; 242 } 243 244 u32 ufshcd_mcq_read_cqis(struct ufs_hba *hba, int i) 245 { 246 return readl(mcq_opr_base(hba, OPR_CQIS, i) + REG_CQIS); 247 } 248 249 void ufshcd_mcq_write_cqis(struct ufs_hba *hba, u32 val, int i) 250 { 251 writel(val, mcq_opr_base(hba, OPR_CQIS, i) + REG_CQIS); 252 } 253 EXPORT_SYMBOL_GPL(ufshcd_mcq_write_cqis); 254 255 /* 256 * Current MCQ specification doesn't provide a Task Tag or its equivalent in 257 * the Completion Queue Entry. Find the Task Tag using an indirect method. 258 */ 259 static int ufshcd_mcq_get_tag(struct ufs_hba *hba, 260 struct ufs_hw_queue *hwq, 261 struct cq_entry *cqe) 262 { 263 u64 addr; 264 265 /* sizeof(struct utp_transfer_cmd_desc) must be a multiple of 128 */ 266 BUILD_BUG_ON(sizeof(struct utp_transfer_cmd_desc) & GENMASK(6, 0)); 267 268 /* Bits 63:7 UCD base address, 6:5 are reserved, 4:0 is SQ ID */ 269 addr = (le64_to_cpu(cqe->command_desc_base_addr) & CQE_UCD_BA) - 270 hba->ucdl_dma_addr; 271 272 return div_u64(addr, ufshcd_get_ucd_size(hba)); 273 } 274 275 static void ufshcd_mcq_process_cqe(struct ufs_hba *hba, 276 struct ufs_hw_queue *hwq) 277 { 278 struct cq_entry *cqe = ufshcd_mcq_cur_cqe(hwq); 279 int tag = ufshcd_mcq_get_tag(hba, hwq, cqe); 280 281 if (cqe->command_desc_base_addr) { 282 ufshcd_compl_one_cqe(hba, tag, cqe); 283 /* After processed the cqe, mark it empty (invalid) entry */ 284 cqe->command_desc_base_addr = 0; 285 } 286 } 287 288 void ufshcd_mcq_compl_all_cqes_lock(struct ufs_hba *hba, 289 struct ufs_hw_queue *hwq) 290 { 291 unsigned long flags; 292 u32 entries = hwq->max_entries; 293 294 spin_lock_irqsave(&hwq->cq_lock, flags); 295 while (entries > 0) { 296 ufshcd_mcq_process_cqe(hba, hwq); 297 ufshcd_mcq_inc_cq_head_slot(hwq); 298 entries--; 299 } 300 301 ufshcd_mcq_update_cq_tail_slot(hwq); 302 hwq->cq_head_slot = hwq->cq_tail_slot; 303 spin_unlock_irqrestore(&hwq->cq_lock, flags); 304 } 305 306 unsigned long ufshcd_mcq_poll_cqe_lock(struct ufs_hba *hba, 307 struct ufs_hw_queue *hwq) 308 { 309 unsigned long completed_reqs = 0; 310 unsigned long flags; 311 312 spin_lock_irqsave(&hwq->cq_lock, flags); 313 ufshcd_mcq_update_cq_tail_slot(hwq); 314 while (!ufshcd_mcq_is_cq_empty(hwq)) { 315 ufshcd_mcq_process_cqe(hba, hwq); 316 ufshcd_mcq_inc_cq_head_slot(hwq); 317 completed_reqs++; 318 } 319 320 if (completed_reqs) 321 ufshcd_mcq_update_cq_head(hwq); 322 spin_unlock_irqrestore(&hwq->cq_lock, flags); 323 324 return completed_reqs; 325 } 326 EXPORT_SYMBOL_GPL(ufshcd_mcq_poll_cqe_lock); 327 328 void ufshcd_mcq_make_queues_operational(struct ufs_hba *hba) 329 { 330 struct ufs_hw_queue *hwq; 331 u16 qsize; 332 int i; 333 334 for (i = 0; i < hba->nr_hw_queues; i++) { 335 hwq = &hba->uhq[i]; 336 hwq->id = i; 337 qsize = hwq->max_entries * MCQ_ENTRY_SIZE_IN_DWORD - 1; 338 339 /* Submission Queue Lower Base Address */ 340 ufsmcq_writelx(hba, lower_32_bits(hwq->sqe_dma_addr), 341 MCQ_CFG_n(REG_SQLBA, i)); 342 /* Submission Queue Upper Base Address */ 343 ufsmcq_writelx(hba, upper_32_bits(hwq->sqe_dma_addr), 344 MCQ_CFG_n(REG_SQUBA, i)); 345 /* Submission Queue Doorbell Address Offset */ 346 ufsmcq_writelx(hba, MCQ_OPR_OFFSET_n(OPR_SQD, i), 347 MCQ_CFG_n(REG_SQDAO, i)); 348 /* Submission Queue Interrupt Status Address Offset */ 349 ufsmcq_writelx(hba, MCQ_OPR_OFFSET_n(OPR_SQIS, i), 350 MCQ_CFG_n(REG_SQISAO, i)); 351 352 /* Completion Queue Lower Base Address */ 353 ufsmcq_writelx(hba, lower_32_bits(hwq->cqe_dma_addr), 354 MCQ_CFG_n(REG_CQLBA, i)); 355 /* Completion Queue Upper Base Address */ 356 ufsmcq_writelx(hba, upper_32_bits(hwq->cqe_dma_addr), 357 MCQ_CFG_n(REG_CQUBA, i)); 358 /* Completion Queue Doorbell Address Offset */ 359 ufsmcq_writelx(hba, MCQ_OPR_OFFSET_n(OPR_CQD, i), 360 MCQ_CFG_n(REG_CQDAO, i)); 361 /* Completion Queue Interrupt Status Address Offset */ 362 ufsmcq_writelx(hba, MCQ_OPR_OFFSET_n(OPR_CQIS, i), 363 MCQ_CFG_n(REG_CQISAO, i)); 364 365 /* Save the base addresses for quicker access */ 366 hwq->mcq_sq_head = mcq_opr_base(hba, OPR_SQD, i) + REG_SQHP; 367 hwq->mcq_sq_tail = mcq_opr_base(hba, OPR_SQD, i) + REG_SQTP; 368 hwq->mcq_cq_head = mcq_opr_base(hba, OPR_CQD, i) + REG_CQHP; 369 hwq->mcq_cq_tail = mcq_opr_base(hba, OPR_CQD, i) + REG_CQTP; 370 371 /* Reinitializing is needed upon HC reset */ 372 hwq->sq_tail_slot = hwq->cq_tail_slot = hwq->cq_head_slot = 0; 373 374 /* Enable Tail Entry Push Status interrupt only for non-poll queues */ 375 if (i < hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL]) 376 writel(1, mcq_opr_base(hba, OPR_CQIS, i) + REG_CQIE); 377 378 /* Completion Queue Enable|Size to Completion Queue Attribute */ 379 ufsmcq_writel(hba, (1 << QUEUE_EN_OFFSET) | qsize, 380 MCQ_CFG_n(REG_CQATTR, i)); 381 382 /* 383 * Submission Qeueue Enable|Size|Completion Queue ID to 384 * Submission Queue Attribute 385 */ 386 ufsmcq_writel(hba, (1 << QUEUE_EN_OFFSET) | qsize | 387 (i << QUEUE_ID_OFFSET), 388 MCQ_CFG_n(REG_SQATTR, i)); 389 } 390 } 391 392 void ufshcd_mcq_enable_esi(struct ufs_hba *hba) 393 { 394 ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x2, 395 REG_UFS_MEM_CFG); 396 } 397 EXPORT_SYMBOL_GPL(ufshcd_mcq_enable_esi); 398 399 void ufshcd_mcq_config_esi(struct ufs_hba *hba, struct msi_msg *msg) 400 { 401 ufshcd_writel(hba, msg->address_lo, REG_UFS_ESILBA); 402 ufshcd_writel(hba, msg->address_hi, REG_UFS_ESIUBA); 403 } 404 EXPORT_SYMBOL_GPL(ufshcd_mcq_config_esi); 405 406 int ufshcd_mcq_init(struct ufs_hba *hba) 407 { 408 struct Scsi_Host *host = hba->host; 409 struct ufs_hw_queue *hwq; 410 int ret, i; 411 412 ret = ufshcd_mcq_config_nr_queues(hba); 413 if (ret) 414 return ret; 415 416 ret = ufshcd_vops_mcq_config_resource(hba); 417 if (ret) 418 return ret; 419 420 ret = ufshcd_mcq_vops_op_runtime_config(hba); 421 if (ret) { 422 dev_err(hba->dev, "Operation runtime config failed, ret=%d\n", 423 ret); 424 return ret; 425 } 426 hba->uhq = devm_kzalloc(hba->dev, 427 hba->nr_hw_queues * sizeof(struct ufs_hw_queue), 428 GFP_KERNEL); 429 if (!hba->uhq) { 430 dev_err(hba->dev, "ufs hw queue memory allocation failed\n"); 431 return -ENOMEM; 432 } 433 434 for (i = 0; i < hba->nr_hw_queues; i++) { 435 hwq = &hba->uhq[i]; 436 hwq->max_entries = hba->nutrs; 437 spin_lock_init(&hwq->sq_lock); 438 spin_lock_init(&hwq->cq_lock); 439 mutex_init(&hwq->sq_mutex); 440 } 441 442 /* The very first HW queue serves device commands */ 443 hba->dev_cmd_queue = &hba->uhq[0]; 444 445 host->host_tagset = 1; 446 return 0; 447 } 448 449 static int ufshcd_mcq_sq_stop(struct ufs_hba *hba, struct ufs_hw_queue *hwq) 450 { 451 void __iomem *reg; 452 u32 id = hwq->id, val; 453 int err; 454 455 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_RTC) 456 return -ETIMEDOUT; 457 458 writel(SQ_STOP, mcq_opr_base(hba, OPR_SQD, id) + REG_SQRTC); 459 reg = mcq_opr_base(hba, OPR_SQD, id) + REG_SQRTS; 460 err = read_poll_timeout(readl, val, val & SQ_STS, 20, 461 MCQ_POLL_US, false, reg); 462 if (err) 463 dev_err(hba->dev, "%s: failed. hwq-id=%d, err=%d\n", 464 __func__, id, err); 465 return err; 466 } 467 468 static int ufshcd_mcq_sq_start(struct ufs_hba *hba, struct ufs_hw_queue *hwq) 469 { 470 void __iomem *reg; 471 u32 id = hwq->id, val; 472 int err; 473 474 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_RTC) 475 return -ETIMEDOUT; 476 477 writel(SQ_START, mcq_opr_base(hba, OPR_SQD, id) + REG_SQRTC); 478 reg = mcq_opr_base(hba, OPR_SQD, id) + REG_SQRTS; 479 err = read_poll_timeout(readl, val, !(val & SQ_STS), 20, 480 MCQ_POLL_US, false, reg); 481 if (err) 482 dev_err(hba->dev, "%s: failed. hwq-id=%d, err=%d\n", 483 __func__, id, err); 484 return err; 485 } 486 487 /** 488 * ufshcd_mcq_sq_cleanup - Clean up submission queue resources 489 * associated with the pending command. 490 * @hba - per adapter instance. 491 * @task_tag - The command's task tag. 492 * 493 * Returns 0 for success; error code otherwise. 494 */ 495 int ufshcd_mcq_sq_cleanup(struct ufs_hba *hba, int task_tag) 496 { 497 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag]; 498 struct scsi_cmnd *cmd = lrbp->cmd; 499 struct ufs_hw_queue *hwq; 500 void __iomem *reg, *opr_sqd_base; 501 u32 nexus, id, val; 502 int err; 503 504 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_RTC) 505 return -ETIMEDOUT; 506 507 if (task_tag != hba->nutrs - UFSHCD_NUM_RESERVED) { 508 if (!cmd) 509 return -EINVAL; 510 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd)); 511 } else { 512 hwq = hba->dev_cmd_queue; 513 } 514 515 id = hwq->id; 516 517 mutex_lock(&hwq->sq_mutex); 518 519 /* stop the SQ fetching before working on it */ 520 err = ufshcd_mcq_sq_stop(hba, hwq); 521 if (err) 522 goto unlock; 523 524 /* SQCTI = EXT_IID, IID, LUN, Task Tag */ 525 nexus = lrbp->lun << 8 | task_tag; 526 opr_sqd_base = mcq_opr_base(hba, OPR_SQD, id); 527 writel(nexus, opr_sqd_base + REG_SQCTI); 528 529 /* SQRTCy.ICU = 1 */ 530 writel(SQ_ICU, opr_sqd_base + REG_SQRTC); 531 532 /* Poll SQRTSy.CUS = 1. Return result from SQRTSy.RTC */ 533 reg = opr_sqd_base + REG_SQRTS; 534 err = read_poll_timeout(readl, val, val & SQ_CUS, 20, 535 MCQ_POLL_US, false, reg); 536 if (err) 537 dev_err(hba->dev, "%s: failed. hwq=%d, tag=%d err=%ld\n", 538 __func__, id, task_tag, 539 FIELD_GET(SQ_ICU_ERR_CODE_MASK, readl(reg))); 540 541 if (ufshcd_mcq_sq_start(hba, hwq)) 542 err = -ETIMEDOUT; 543 544 unlock: 545 mutex_unlock(&hwq->sq_mutex); 546 return err; 547 } 548 549 /** 550 * ufshcd_mcq_nullify_sqe - Nullify the submission queue entry. 551 * Write the sqe's Command Type to 0xF. The host controller will not 552 * fetch any sqe with Command Type = 0xF. 553 * 554 * @utrd - UTP Transfer Request Descriptor to be nullified. 555 */ 556 static void ufshcd_mcq_nullify_sqe(struct utp_transfer_req_desc *utrd) 557 { 558 u32 dword_0; 559 560 dword_0 = le32_to_cpu(utrd->header.dword_0); 561 dword_0 &= ~UPIU_COMMAND_TYPE_MASK; 562 dword_0 |= FIELD_PREP(UPIU_COMMAND_TYPE_MASK, 0xF); 563 utrd->header.dword_0 = cpu_to_le32(dword_0); 564 } 565 566 /** 567 * ufshcd_mcq_sqe_search - Search for the command in the submission queue 568 * If the command is in the submission queue and not issued to the device yet, 569 * nullify the sqe so the host controller will skip fetching the sqe. 570 * 571 * @hba - per adapter instance. 572 * @hwq - Hardware Queue to be searched. 573 * @task_tag - The command's task tag. 574 * 575 * Returns true if the SQE containing the command is present in the SQ 576 * (not fetched by the controller); returns false if the SQE is not in the SQ. 577 */ 578 static bool ufshcd_mcq_sqe_search(struct ufs_hba *hba, 579 struct ufs_hw_queue *hwq, int task_tag) 580 { 581 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag]; 582 struct utp_transfer_req_desc *utrd; 583 __le64 cmd_desc_base_addr; 584 bool ret = false; 585 u64 addr, match; 586 u32 sq_head_slot; 587 588 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_RTC) 589 return true; 590 591 mutex_lock(&hwq->sq_mutex); 592 593 ufshcd_mcq_sq_stop(hba, hwq); 594 sq_head_slot = ufshcd_mcq_get_sq_head_slot(hwq); 595 if (sq_head_slot == hwq->sq_tail_slot) 596 goto out; 597 598 cmd_desc_base_addr = lrbp->utr_descriptor_ptr->command_desc_base_addr; 599 addr = le64_to_cpu(cmd_desc_base_addr) & CQE_UCD_BA; 600 601 while (sq_head_slot != hwq->sq_tail_slot) { 602 utrd = hwq->sqe_base_addr + 603 sq_head_slot * sizeof(struct utp_transfer_req_desc); 604 match = le64_to_cpu(utrd->command_desc_base_addr) & CQE_UCD_BA; 605 if (addr == match) { 606 ufshcd_mcq_nullify_sqe(utrd); 607 ret = true; 608 goto out; 609 } 610 611 sq_head_slot++; 612 if (sq_head_slot == hwq->max_entries) 613 sq_head_slot = 0; 614 } 615 616 out: 617 ufshcd_mcq_sq_start(hba, hwq); 618 mutex_unlock(&hwq->sq_mutex); 619 return ret; 620 } 621 622 /** 623 * ufshcd_mcq_abort - Abort the command in MCQ. 624 * @cmd - The command to be aborted. 625 * 626 * Returns SUCCESS or FAILED error codes 627 */ 628 int ufshcd_mcq_abort(struct scsi_cmnd *cmd) 629 { 630 struct Scsi_Host *host = cmd->device->host; 631 struct ufs_hba *hba = shost_priv(host); 632 int tag = scsi_cmd_to_rq(cmd)->tag; 633 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 634 struct ufs_hw_queue *hwq; 635 int err = FAILED; 636 637 if (!ufshcd_cmd_inflight(lrbp->cmd)) { 638 dev_err(hba->dev, 639 "%s: skip abort. cmd at tag %d already completed.\n", 640 __func__, tag); 641 goto out; 642 } 643 644 /* Skip task abort in case previous aborts failed and report failure */ 645 if (lrbp->req_abort_skip) { 646 dev_err(hba->dev, "%s: skip abort. tag %d failed earlier\n", 647 __func__, tag); 648 goto out; 649 } 650 651 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd)); 652 653 if (ufshcd_mcq_sqe_search(hba, hwq, tag)) { 654 /* 655 * Failure. The command should not be "stuck" in SQ for 656 * a long time which resulted in command being aborted. 657 */ 658 dev_err(hba->dev, "%s: cmd found in sq. hwq=%d, tag=%d\n", 659 __func__, hwq->id, tag); 660 goto out; 661 } 662 663 /* 664 * The command is not in the submission queue, and it is not 665 * in the completion queue either. Query the device to see if 666 * the command is being processed in the device. 667 */ 668 if (ufshcd_try_to_abort_task(hba, tag)) { 669 dev_err(hba->dev, "%s: device abort failed %d\n", __func__, err); 670 lrbp->req_abort_skip = true; 671 goto out; 672 } 673 674 err = SUCCESS; 675 if (ufshcd_cmd_inflight(lrbp->cmd)) 676 ufshcd_release_scsi_cmd(hba, lrbp); 677 678 out: 679 return err; 680 } 681