xref: /openbmc/linux/drivers/tty/vt/vt_ioctl.c (revision f39650de)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1992 obz under the linux copyright
4  *
5  *  Dynamic diacritical handling - aeb@cwi.nl - Dec 1993
6  *  Dynamic keymap and string allocation - aeb@cwi.nl - May 1994
7  *  Restrict VT switching via ioctl() - grif@cs.ucr.edu - Dec 1995
8  *  Some code moved for less code duplication - Andi Kleen - Mar 1997
9  *  Check put/get_user, cleanups - acme@conectiva.com.br - Jun 2001
10  */
11 
12 #include <linux/types.h>
13 #include <linux/errno.h>
14 #include <linux/sched/signal.h>
15 #include <linux/tty.h>
16 #include <linux/timer.h>
17 #include <linux/kernel.h>
18 #include <linux/compat.h>
19 #include <linux/module.h>
20 #include <linux/kd.h>
21 #include <linux/vt.h>
22 #include <linux/string.h>
23 #include <linux/slab.h>
24 #include <linux/major.h>
25 #include <linux/fs.h>
26 #include <linux/console.h>
27 #include <linux/consolemap.h>
28 #include <linux/signal.h>
29 #include <linux/suspend.h>
30 #include <linux/timex.h>
31 
32 #include <asm/io.h>
33 #include <linux/uaccess.h>
34 
35 #include <linux/nospec.h>
36 
37 #include <linux/kbd_kern.h>
38 #include <linux/vt_kern.h>
39 #include <linux/kbd_diacr.h>
40 #include <linux/selection.h>
41 
42 bool vt_dont_switch;
43 
44 static inline bool vt_in_use(unsigned int i)
45 {
46 	const struct vc_data *vc = vc_cons[i].d;
47 
48 	/*
49 	 * console_lock must be held to prevent the vc from being deallocated
50 	 * while we're checking whether it's in-use.
51 	 */
52 	WARN_CONSOLE_UNLOCKED();
53 
54 	return vc && kref_read(&vc->port.kref) > 1;
55 }
56 
57 static inline bool vt_busy(int i)
58 {
59 	if (vt_in_use(i))
60 		return true;
61 	if (i == fg_console)
62 		return true;
63 	if (vc_is_sel(vc_cons[i].d))
64 		return true;
65 
66 	return false;
67 }
68 
69 /*
70  * Console (vt and kd) routines, as defined by USL SVR4 manual, and by
71  * experimentation and study of X386 SYSV handling.
72  *
73  * One point of difference: SYSV vt's are /dev/vtX, which X >= 0, and
74  * /dev/console is a separate ttyp. Under Linux, /dev/tty0 is /dev/console,
75  * and the vc start at /dev/ttyX, X >= 1. We maintain that here, so we will
76  * always treat our set of vt as numbered 1..MAX_NR_CONSOLES (corresponding to
77  * ttys 0..MAX_NR_CONSOLES-1). Explicitly naming VT 0 is illegal, but using
78  * /dev/tty0 (fg_console) as a target is legal, since an implicit aliasing
79  * to the current console is done by the main ioctl code.
80  */
81 
82 #ifdef CONFIG_X86
83 #include <asm/syscalls.h>
84 #endif
85 
86 static void complete_change_console(struct vc_data *vc);
87 
88 /*
89  *	User space VT_EVENT handlers
90  */
91 
92 struct vt_event_wait {
93 	struct list_head list;
94 	struct vt_event event;
95 	int done;
96 };
97 
98 static LIST_HEAD(vt_events);
99 static DEFINE_SPINLOCK(vt_event_lock);
100 static DECLARE_WAIT_QUEUE_HEAD(vt_event_waitqueue);
101 
102 /**
103  *	vt_event_post
104  *	@event: the event that occurred
105  *	@old: old console
106  *	@new: new console
107  *
108  *	Post an VT event to interested VT handlers
109  */
110 
111 void vt_event_post(unsigned int event, unsigned int old, unsigned int new)
112 {
113 	struct list_head *pos, *head;
114 	unsigned long flags;
115 	int wake = 0;
116 
117 	spin_lock_irqsave(&vt_event_lock, flags);
118 	head = &vt_events;
119 
120 	list_for_each(pos, head) {
121 		struct vt_event_wait *ve = list_entry(pos,
122 						struct vt_event_wait, list);
123 		if (!(ve->event.event & event))
124 			continue;
125 		ve->event.event = event;
126 		/* kernel view is consoles 0..n-1, user space view is
127 		   console 1..n with 0 meaning current, so we must bias */
128 		ve->event.oldev = old + 1;
129 		ve->event.newev = new + 1;
130 		wake = 1;
131 		ve->done = 1;
132 	}
133 	spin_unlock_irqrestore(&vt_event_lock, flags);
134 	if (wake)
135 		wake_up_interruptible(&vt_event_waitqueue);
136 }
137 
138 static void __vt_event_queue(struct vt_event_wait *vw)
139 {
140 	unsigned long flags;
141 	/* Prepare the event */
142 	INIT_LIST_HEAD(&vw->list);
143 	vw->done = 0;
144 	/* Queue our event */
145 	spin_lock_irqsave(&vt_event_lock, flags);
146 	list_add(&vw->list, &vt_events);
147 	spin_unlock_irqrestore(&vt_event_lock, flags);
148 }
149 
150 static void __vt_event_wait(struct vt_event_wait *vw)
151 {
152 	/* Wait for it to pass */
153 	wait_event_interruptible(vt_event_waitqueue, vw->done);
154 }
155 
156 static void __vt_event_dequeue(struct vt_event_wait *vw)
157 {
158 	unsigned long flags;
159 
160 	/* Dequeue it */
161 	spin_lock_irqsave(&vt_event_lock, flags);
162 	list_del(&vw->list);
163 	spin_unlock_irqrestore(&vt_event_lock, flags);
164 }
165 
166 /**
167  *	vt_event_wait		-	wait for an event
168  *	@vw: our event
169  *
170  *	Waits for an event to occur which completes our vt_event_wait
171  *	structure. On return the structure has wv->done set to 1 for success
172  *	or 0 if some event such as a signal ended the wait.
173  */
174 
175 static void vt_event_wait(struct vt_event_wait *vw)
176 {
177 	__vt_event_queue(vw);
178 	__vt_event_wait(vw);
179 	__vt_event_dequeue(vw);
180 }
181 
182 /**
183  *	vt_event_wait_ioctl	-	event ioctl handler
184  *	@event: argument to ioctl (the event)
185  *
186  *	Implement the VT_WAITEVENT ioctl using the VT event interface
187  */
188 
189 static int vt_event_wait_ioctl(struct vt_event __user *event)
190 {
191 	struct vt_event_wait vw;
192 
193 	if (copy_from_user(&vw.event, event, sizeof(struct vt_event)))
194 		return -EFAULT;
195 	/* Highest supported event for now */
196 	if (vw.event.event & ~VT_MAX_EVENT)
197 		return -EINVAL;
198 
199 	vt_event_wait(&vw);
200 	/* If it occurred report it */
201 	if (vw.done) {
202 		if (copy_to_user(event, &vw.event, sizeof(struct vt_event)))
203 			return -EFAULT;
204 		return 0;
205 	}
206 	return -EINTR;
207 }
208 
209 /**
210  *	vt_waitactive	-	active console wait
211  *	@n: new console
212  *
213  *	Helper for event waits. Used to implement the legacy
214  *	event waiting ioctls in terms of events
215  */
216 
217 int vt_waitactive(int n)
218 {
219 	struct vt_event_wait vw;
220 	do {
221 		vw.event.event = VT_EVENT_SWITCH;
222 		__vt_event_queue(&vw);
223 		if (n == fg_console + 1) {
224 			__vt_event_dequeue(&vw);
225 			break;
226 		}
227 		__vt_event_wait(&vw);
228 		__vt_event_dequeue(&vw);
229 		if (vw.done == 0)
230 			return -EINTR;
231 	} while (vw.event.newev != n);
232 	return 0;
233 }
234 
235 /*
236  * these are the valid i/o ports we're allowed to change. they map all the
237  * video ports
238  */
239 #define GPFIRST 0x3b4
240 #define GPLAST 0x3df
241 #define GPNUM (GPLAST - GPFIRST + 1)
242 
243 /*
244  * currently, setting the mode from KD_TEXT to KD_GRAPHICS doesn't do a whole
245  * lot. i'm not sure if it should do any restoration of modes or what...
246  *
247  * XXX It should at least call into the driver, fbdev's definitely need to
248  * restore their engine state. --BenH
249  */
250 static int vt_kdsetmode(struct vc_data *vc, unsigned long mode)
251 {
252 	switch (mode) {
253 	case KD_GRAPHICS:
254 		break;
255 	case KD_TEXT0:
256 	case KD_TEXT1:
257 		mode = KD_TEXT;
258 		fallthrough;
259 	case KD_TEXT:
260 		break;
261 	default:
262 		return -EINVAL;
263 	}
264 
265 	/* FIXME: this needs the console lock extending */
266 	if (vc->vc_mode == mode)
267 		return 0;
268 
269 	vc->vc_mode = mode;
270 	if (vc->vc_num != fg_console)
271 		return 0;
272 
273 	/* explicitly blank/unblank the screen if switching modes */
274 	console_lock();
275 	if (mode == KD_TEXT)
276 		do_unblank_screen(1);
277 	else
278 		do_blank_screen(1);
279 	console_unlock();
280 
281 	return 0;
282 }
283 
284 static int vt_k_ioctl(struct tty_struct *tty, unsigned int cmd,
285 		unsigned long arg, bool perm)
286 {
287 	struct vc_data *vc = tty->driver_data;
288 	void __user *up = (void __user *)arg;
289 	unsigned int console = vc->vc_num;
290 	int ret;
291 
292 	switch (cmd) {
293 	case KIOCSOUND:
294 		if (!perm)
295 			return -EPERM;
296 		/*
297 		 * The use of PIT_TICK_RATE is historic, it used to be
298 		 * the platform-dependent CLOCK_TICK_RATE between 2.6.12
299 		 * and 2.6.36, which was a minor but unfortunate ABI
300 		 * change. kd_mksound is locked by the input layer.
301 		 */
302 		if (arg)
303 			arg = PIT_TICK_RATE / arg;
304 		kd_mksound(arg, 0);
305 		break;
306 
307 	case KDMKTONE:
308 		if (!perm)
309 			return -EPERM;
310 	{
311 		unsigned int ticks, count;
312 
313 		/*
314 		 * Generate the tone for the appropriate number of ticks.
315 		 * If the time is zero, turn off sound ourselves.
316 		 */
317 		ticks = msecs_to_jiffies((arg >> 16) & 0xffff);
318 		count = ticks ? (arg & 0xffff) : 0;
319 		if (count)
320 			count = PIT_TICK_RATE / count;
321 		kd_mksound(count, ticks);
322 		break;
323 	}
324 
325 	case KDGKBTYPE:
326 		/*
327 		 * this is naïve.
328 		 */
329 		return put_user(KB_101, (char __user *)arg);
330 
331 		/*
332 		 * These cannot be implemented on any machine that implements
333 		 * ioperm() in user level (such as Alpha PCs) or not at all.
334 		 *
335 		 * XXX: you should never use these, just call ioperm directly..
336 		 */
337 #ifdef CONFIG_X86
338 	case KDADDIO:
339 	case KDDELIO:
340 		/*
341 		 * KDADDIO and KDDELIO may be able to add ports beyond what
342 		 * we reject here, but to be safe...
343 		 *
344 		 * These are locked internally via sys_ioperm
345 		 */
346 		if (arg < GPFIRST || arg > GPLAST)
347 			return -EINVAL;
348 
349 		return ksys_ioperm(arg, 1, (cmd == KDADDIO)) ? -ENXIO : 0;
350 
351 	case KDENABIO:
352 	case KDDISABIO:
353 		return ksys_ioperm(GPFIRST, GPNUM,
354 				  (cmd == KDENABIO)) ? -ENXIO : 0;
355 #endif
356 
357 	/* Linux m68k/i386 interface for setting the keyboard delay/repeat rate */
358 
359 	case KDKBDREP:
360 	{
361 		struct kbd_repeat kbrep;
362 
363 		if (!capable(CAP_SYS_TTY_CONFIG))
364 			return -EPERM;
365 
366 		if (copy_from_user(&kbrep, up, sizeof(struct kbd_repeat)))
367 			return -EFAULT;
368 
369 		ret = kbd_rate(&kbrep);
370 		if (ret)
371 			return ret;
372 		if (copy_to_user(up, &kbrep, sizeof(struct kbd_repeat)))
373 			return -EFAULT;
374 		break;
375 	}
376 
377 	case KDSETMODE:
378 		if (!perm)
379 			return -EPERM;
380 
381 		return vt_kdsetmode(vc, arg);
382 
383 	case KDGETMODE:
384 		return put_user(vc->vc_mode, (int __user *)arg);
385 
386 	case KDMAPDISP:
387 	case KDUNMAPDISP:
388 		/*
389 		 * these work like a combination of mmap and KDENABIO.
390 		 * this could be easily finished.
391 		 */
392 		return -EINVAL;
393 
394 	case KDSKBMODE:
395 		if (!perm)
396 			return -EPERM;
397 		ret = vt_do_kdskbmode(console, arg);
398 		if (ret)
399 			return ret;
400 		tty_ldisc_flush(tty);
401 		break;
402 
403 	case KDGKBMODE:
404 		return put_user(vt_do_kdgkbmode(console), (int __user *)arg);
405 
406 	/* this could be folded into KDSKBMODE, but for compatibility
407 	   reasons it is not so easy to fold KDGKBMETA into KDGKBMODE */
408 	case KDSKBMETA:
409 		return vt_do_kdskbmeta(console, arg);
410 
411 	case KDGKBMETA:
412 		/* FIXME: should review whether this is worth locking */
413 		return put_user(vt_do_kdgkbmeta(console), (int __user *)arg);
414 
415 	case KDGETKEYCODE:
416 	case KDSETKEYCODE:
417 		if(!capable(CAP_SYS_TTY_CONFIG))
418 			perm = 0;
419 		return vt_do_kbkeycode_ioctl(cmd, up, perm);
420 
421 	case KDGKBENT:
422 	case KDSKBENT:
423 		return vt_do_kdsk_ioctl(cmd, up, perm, console);
424 
425 	case KDGKBSENT:
426 	case KDSKBSENT:
427 		return vt_do_kdgkb_ioctl(cmd, up, perm);
428 
429 	/* Diacritical processing. Handled in keyboard.c as it has
430 	   to operate on the keyboard locks and structures */
431 	case KDGKBDIACR:
432 	case KDGKBDIACRUC:
433 	case KDSKBDIACR:
434 	case KDSKBDIACRUC:
435 		return vt_do_diacrit(cmd, up, perm);
436 
437 	/* the ioctls below read/set the flags usually shown in the leds */
438 	/* don't use them - they will go away without warning */
439 	case KDGKBLED:
440 	case KDSKBLED:
441 	case KDGETLED:
442 	case KDSETLED:
443 		return vt_do_kdskled(console, cmd, arg, perm);
444 
445 	/*
446 	 * A process can indicate its willingness to accept signals
447 	 * generated by pressing an appropriate key combination.
448 	 * Thus, one can have a daemon that e.g. spawns a new console
449 	 * upon a keypress and then changes to it.
450 	 * See also the kbrequest field of inittab(5).
451 	 */
452 	case KDSIGACCEPT:
453 		if (!perm || !capable(CAP_KILL))
454 			return -EPERM;
455 		if (!valid_signal(arg) || arg < 1 || arg == SIGKILL)
456 			return -EINVAL;
457 
458 		spin_lock_irq(&vt_spawn_con.lock);
459 		put_pid(vt_spawn_con.pid);
460 		vt_spawn_con.pid = get_pid(task_pid(current));
461 		vt_spawn_con.sig = arg;
462 		spin_unlock_irq(&vt_spawn_con.lock);
463 		break;
464 
465 	case KDFONTOP: {
466 		struct console_font_op op;
467 
468 		if (copy_from_user(&op, up, sizeof(op)))
469 			return -EFAULT;
470 		if (!perm && op.op != KD_FONT_OP_GET)
471 			return -EPERM;
472 		ret = con_font_op(vc, &op);
473 		if (ret)
474 			return ret;
475 		if (copy_to_user(up, &op, sizeof(op)))
476 			return -EFAULT;
477 		break;
478 	}
479 
480 	default:
481 		return -ENOIOCTLCMD;
482 	}
483 
484 	return 0;
485 }
486 
487 static inline int do_unimap_ioctl(int cmd, struct unimapdesc __user *user_ud,
488 		bool perm, struct vc_data *vc)
489 {
490 	struct unimapdesc tmp;
491 
492 	if (copy_from_user(&tmp, user_ud, sizeof tmp))
493 		return -EFAULT;
494 	switch (cmd) {
495 	case PIO_UNIMAP:
496 		if (!perm)
497 			return -EPERM;
498 		return con_set_unimap(vc, tmp.entry_ct, tmp.entries);
499 	case GIO_UNIMAP:
500 		if (!perm && fg_console != vc->vc_num)
501 			return -EPERM;
502 		return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct),
503 				tmp.entries);
504 	}
505 	return 0;
506 }
507 
508 static int vt_io_ioctl(struct vc_data *vc, unsigned int cmd, void __user *up,
509 		bool perm)
510 {
511 	switch (cmd) {
512 	case PIO_CMAP:
513 		if (!perm)
514 			return -EPERM;
515 		return con_set_cmap(up);
516 
517 	case GIO_CMAP:
518 		return con_get_cmap(up);
519 
520 	case PIO_SCRNMAP:
521 		if (!perm)
522 			return -EPERM;
523 		return con_set_trans_old(up);
524 
525 	case GIO_SCRNMAP:
526 		return con_get_trans_old(up);
527 
528 	case PIO_UNISCRNMAP:
529 		if (!perm)
530 			return -EPERM;
531 		return con_set_trans_new(up);
532 
533 	case GIO_UNISCRNMAP:
534 		return con_get_trans_new(up);
535 
536 	case PIO_UNIMAPCLR:
537 		if (!perm)
538 			return -EPERM;
539 		con_clear_unimap(vc);
540 		break;
541 
542 	case PIO_UNIMAP:
543 	case GIO_UNIMAP:
544 		return do_unimap_ioctl(cmd, up, perm, vc);
545 
546 	default:
547 		return -ENOIOCTLCMD;
548 	}
549 
550 	return 0;
551 }
552 
553 static int vt_reldisp(struct vc_data *vc, unsigned int swtch)
554 {
555 	int newvt, ret;
556 
557 	if (vc->vt_mode.mode != VT_PROCESS)
558 		return -EINVAL;
559 
560 	/* Switched-to response */
561 	if (vc->vt_newvt < 0) {
562 		 /* If it's just an ACK, ignore it */
563 		return swtch == VT_ACKACQ ? 0 : -EINVAL;
564 	}
565 
566 	/* Switching-from response */
567 	if (swtch == 0) {
568 		/* Switch disallowed, so forget we were trying to do it. */
569 		vc->vt_newvt = -1;
570 		return 0;
571 	}
572 
573 	/* The current vt has been released, so complete the switch. */
574 	newvt = vc->vt_newvt;
575 	vc->vt_newvt = -1;
576 	ret = vc_allocate(newvt);
577 	if (ret)
578 		return ret;
579 
580 	/*
581 	 * When we actually do the console switch, make sure we are atomic with
582 	 * respect to other console switches..
583 	 */
584 	complete_change_console(vc_cons[newvt].d);
585 
586 	return 0;
587 }
588 
589 static int vt_setactivate(struct vt_setactivate __user *sa)
590 {
591 	struct vt_setactivate vsa;
592 	struct vc_data *nvc;
593 	int ret;
594 
595 	if (copy_from_user(&vsa, sa, sizeof(vsa)))
596 		return -EFAULT;
597 	if (vsa.console == 0 || vsa.console > MAX_NR_CONSOLES)
598 		return -ENXIO;
599 
600 	vsa.console = array_index_nospec(vsa.console, MAX_NR_CONSOLES + 1);
601 	vsa.console--;
602 	console_lock();
603 	ret = vc_allocate(vsa.console);
604 	if (ret) {
605 		console_unlock();
606 		return ret;
607 	}
608 
609 	/*
610 	 * This is safe providing we don't drop the console sem between
611 	 * vc_allocate and finishing referencing nvc.
612 	 */
613 	nvc = vc_cons[vsa.console].d;
614 	nvc->vt_mode = vsa.mode;
615 	nvc->vt_mode.frsig = 0;
616 	put_pid(nvc->vt_pid);
617 	nvc->vt_pid = get_pid(task_pid(current));
618 	console_unlock();
619 
620 	/* Commence switch and lock */
621 	/* Review set_console locks */
622 	set_console(vsa.console);
623 
624 	return 0;
625 }
626 
627 /* deallocate a single console, if possible (leave 0) */
628 static int vt_disallocate(unsigned int vc_num)
629 {
630 	struct vc_data *vc = NULL;
631 	int ret = 0;
632 
633 	console_lock();
634 	if (vt_busy(vc_num))
635 		ret = -EBUSY;
636 	else if (vc_num)
637 		vc = vc_deallocate(vc_num);
638 	console_unlock();
639 
640 	if (vc && vc_num >= MIN_NR_CONSOLES)
641 		tty_port_put(&vc->port);
642 
643 	return ret;
644 }
645 
646 /* deallocate all unused consoles, but leave 0 */
647 static void vt_disallocate_all(void)
648 {
649 	struct vc_data *vc[MAX_NR_CONSOLES];
650 	int i;
651 
652 	console_lock();
653 	for (i = 1; i < MAX_NR_CONSOLES; i++)
654 		if (!vt_busy(i))
655 			vc[i] = vc_deallocate(i);
656 		else
657 			vc[i] = NULL;
658 	console_unlock();
659 
660 	for (i = 1; i < MAX_NR_CONSOLES; i++) {
661 		if (vc[i] && i >= MIN_NR_CONSOLES)
662 			tty_port_put(&vc[i]->port);
663 	}
664 }
665 
666 static int vt_resizex(struct vc_data *vc, struct vt_consize __user *cs)
667 {
668 	struct vt_consize v;
669 	int i;
670 
671 	if (copy_from_user(&v, cs, sizeof(struct vt_consize)))
672 		return -EFAULT;
673 
674 	/* FIXME: Should check the copies properly */
675 	if (!v.v_vlin)
676 		v.v_vlin = vc->vc_scan_lines;
677 
678 	if (v.v_clin) {
679 		int rows = v.v_vlin / v.v_clin;
680 		if (v.v_rows != rows) {
681 			if (v.v_rows) /* Parameters don't add up */
682 				return -EINVAL;
683 			v.v_rows = rows;
684 		}
685 	}
686 
687 	if (v.v_vcol && v.v_ccol) {
688 		int cols = v.v_vcol / v.v_ccol;
689 		if (v.v_cols != cols) {
690 			if (v.v_cols)
691 				return -EINVAL;
692 			v.v_cols = cols;
693 		}
694 	}
695 
696 	if (v.v_clin > 32)
697 		return -EINVAL;
698 
699 	for (i = 0; i < MAX_NR_CONSOLES; i++) {
700 		struct vc_data *vcp;
701 
702 		if (!vc_cons[i].d)
703 			continue;
704 		console_lock();
705 		vcp = vc_cons[i].d;
706 		if (vcp) {
707 			int ret;
708 			int save_scan_lines = vcp->vc_scan_lines;
709 			int save_cell_height = vcp->vc_cell_height;
710 
711 			if (v.v_vlin)
712 				vcp->vc_scan_lines = v.v_vlin;
713 			if (v.v_clin)
714 				vcp->vc_cell_height = v.v_clin;
715 			vcp->vc_resize_user = 1;
716 			ret = vc_resize(vcp, v.v_cols, v.v_rows);
717 			if (ret) {
718 				vcp->vc_scan_lines = save_scan_lines;
719 				vcp->vc_cell_height = save_cell_height;
720 				console_unlock();
721 				return ret;
722 			}
723 		}
724 		console_unlock();
725 	}
726 
727 	return 0;
728 }
729 
730 /*
731  * We handle the console-specific ioctl's here.  We allow the
732  * capability to modify any console, not just the fg_console.
733  */
734 int vt_ioctl(struct tty_struct *tty,
735 	     unsigned int cmd, unsigned long arg)
736 {
737 	struct vc_data *vc = tty->driver_data;
738 	void __user *up = (void __user *)arg;
739 	int i, perm;
740 	int ret;
741 
742 	/*
743 	 * To have permissions to do most of the vt ioctls, we either have
744 	 * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
745 	 */
746 	perm = 0;
747 	if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG))
748 		perm = 1;
749 
750 	ret = vt_k_ioctl(tty, cmd, arg, perm);
751 	if (ret != -ENOIOCTLCMD)
752 		return ret;
753 
754 	ret = vt_io_ioctl(vc, cmd, up, perm);
755 	if (ret != -ENOIOCTLCMD)
756 		return ret;
757 
758 	switch (cmd) {
759 	case TIOCLINUX:
760 		return tioclinux(tty, arg);
761 	case VT_SETMODE:
762 	{
763 		struct vt_mode tmp;
764 
765 		if (!perm)
766 			return -EPERM;
767 		if (copy_from_user(&tmp, up, sizeof(struct vt_mode)))
768 			return -EFAULT;
769 		if (tmp.mode != VT_AUTO && tmp.mode != VT_PROCESS)
770 			return -EINVAL;
771 
772 		console_lock();
773 		vc->vt_mode = tmp;
774 		/* the frsig is ignored, so we set it to 0 */
775 		vc->vt_mode.frsig = 0;
776 		put_pid(vc->vt_pid);
777 		vc->vt_pid = get_pid(task_pid(current));
778 		/* no switch is required -- saw@shade.msu.ru */
779 		vc->vt_newvt = -1;
780 		console_unlock();
781 		break;
782 	}
783 
784 	case VT_GETMODE:
785 	{
786 		struct vt_mode tmp;
787 		int rc;
788 
789 		console_lock();
790 		memcpy(&tmp, &vc->vt_mode, sizeof(struct vt_mode));
791 		console_unlock();
792 
793 		rc = copy_to_user(up, &tmp, sizeof(struct vt_mode));
794 		if (rc)
795 			return -EFAULT;
796 		break;
797 	}
798 
799 	/*
800 	 * Returns global vt state. Note that VT 0 is always open, since
801 	 * it's an alias for the current VT, and people can't use it here.
802 	 * We cannot return state for more than 16 VTs, since v_state is short.
803 	 */
804 	case VT_GETSTATE:
805 	{
806 		struct vt_stat __user *vtstat = up;
807 		unsigned short state, mask;
808 
809 		if (put_user(fg_console + 1, &vtstat->v_active))
810 			return -EFAULT;
811 
812 		state = 1;	/* /dev/tty0 is always open */
813 		console_lock(); /* required by vt_in_use() */
814 		for (i = 0, mask = 2; i < MAX_NR_CONSOLES && mask;
815 				++i, mask <<= 1)
816 			if (vt_in_use(i))
817 				state |= mask;
818 		console_unlock();
819 		return put_user(state, &vtstat->v_state);
820 	}
821 
822 	/*
823 	 * Returns the first available (non-opened) console.
824 	 */
825 	case VT_OPENQRY:
826 		console_lock(); /* required by vt_in_use() */
827 		for (i = 0; i < MAX_NR_CONSOLES; ++i)
828 			if (!vt_in_use(i))
829 				break;
830 		console_unlock();
831 		i = i < MAX_NR_CONSOLES ? (i+1) : -1;
832 		return put_user(i, (int __user *)arg);
833 
834 	/*
835 	 * ioctl(fd, VT_ACTIVATE, num) will cause us to switch to vt # num,
836 	 * with num >= 1 (switches to vt 0, our console, are not allowed, just
837 	 * to preserve sanity).
838 	 */
839 	case VT_ACTIVATE:
840 		if (!perm)
841 			return -EPERM;
842 		if (arg == 0 || arg > MAX_NR_CONSOLES)
843 			return -ENXIO;
844 
845 		arg--;
846 		console_lock();
847 		ret = vc_allocate(arg);
848 		console_unlock();
849 		if (ret)
850 			return ret;
851 		set_console(arg);
852 		break;
853 
854 	case VT_SETACTIVATE:
855 		if (!perm)
856 			return -EPERM;
857 
858 		return vt_setactivate(up);
859 
860 	/*
861 	 * wait until the specified VT has been activated
862 	 */
863 	case VT_WAITACTIVE:
864 		if (!perm)
865 			return -EPERM;
866 		if (arg == 0 || arg > MAX_NR_CONSOLES)
867 			return -ENXIO;
868 		return vt_waitactive(arg);
869 
870 	/*
871 	 * If a vt is under process control, the kernel will not switch to it
872 	 * immediately, but postpone the operation until the process calls this
873 	 * ioctl, allowing the switch to complete.
874 	 *
875 	 * According to the X sources this is the behavior:
876 	 *	0:	pending switch-from not OK
877 	 *	1:	pending switch-from OK
878 	 *	2:	completed switch-to OK
879 	 */
880 	case VT_RELDISP:
881 		if (!perm)
882 			return -EPERM;
883 
884 		console_lock();
885 		ret = vt_reldisp(vc, arg);
886 		console_unlock();
887 
888 		return ret;
889 
890 
891 	 /*
892 	  * Disallocate memory associated to VT (but leave VT1)
893 	  */
894 	 case VT_DISALLOCATE:
895 		if (arg > MAX_NR_CONSOLES)
896 			return -ENXIO;
897 
898 		if (arg == 0)
899 			vt_disallocate_all();
900 		else
901 			return vt_disallocate(--arg);
902 		break;
903 
904 	case VT_RESIZE:
905 	{
906 		struct vt_sizes __user *vtsizes = up;
907 		struct vc_data *vc;
908 		ushort ll,cc;
909 
910 		if (!perm)
911 			return -EPERM;
912 		if (get_user(ll, &vtsizes->v_rows) ||
913 		    get_user(cc, &vtsizes->v_cols))
914 			return -EFAULT;
915 
916 		console_lock();
917 		for (i = 0; i < MAX_NR_CONSOLES; i++) {
918 			vc = vc_cons[i].d;
919 
920 			if (vc) {
921 				vc->vc_resize_user = 1;
922 				/* FIXME: review v tty lock */
923 				vc_resize(vc_cons[i].d, cc, ll);
924 			}
925 		}
926 		console_unlock();
927 		break;
928 	}
929 
930 	case VT_RESIZEX:
931 		if (!perm)
932 			return -EPERM;
933 
934 		return vt_resizex(vc, up);
935 
936 	case VT_LOCKSWITCH:
937 		if (!capable(CAP_SYS_TTY_CONFIG))
938 			return -EPERM;
939 		vt_dont_switch = true;
940 		break;
941 	case VT_UNLOCKSWITCH:
942 		if (!capable(CAP_SYS_TTY_CONFIG))
943 			return -EPERM;
944 		vt_dont_switch = false;
945 		break;
946 	case VT_GETHIFONTMASK:
947 		return put_user(vc->vc_hi_font_mask,
948 					(unsigned short __user *)arg);
949 	case VT_WAITEVENT:
950 		return vt_event_wait_ioctl((struct vt_event __user *)arg);
951 	default:
952 		return -ENOIOCTLCMD;
953 	}
954 
955 	return 0;
956 }
957 
958 void reset_vc(struct vc_data *vc)
959 {
960 	vc->vc_mode = KD_TEXT;
961 	vt_reset_unicode(vc->vc_num);
962 	vc->vt_mode.mode = VT_AUTO;
963 	vc->vt_mode.waitv = 0;
964 	vc->vt_mode.relsig = 0;
965 	vc->vt_mode.acqsig = 0;
966 	vc->vt_mode.frsig = 0;
967 	put_pid(vc->vt_pid);
968 	vc->vt_pid = NULL;
969 	vc->vt_newvt = -1;
970 	reset_palette(vc);
971 }
972 
973 void vc_SAK(struct work_struct *work)
974 {
975 	struct vc *vc_con =
976 		container_of(work, struct vc, SAK_work);
977 	struct vc_data *vc;
978 	struct tty_struct *tty;
979 
980 	console_lock();
981 	vc = vc_con->d;
982 	if (vc) {
983 		/* FIXME: review tty ref counting */
984 		tty = vc->port.tty;
985 		/*
986 		 * SAK should also work in all raw modes and reset
987 		 * them properly.
988 		 */
989 		if (tty)
990 			__do_SAK(tty);
991 		reset_vc(vc);
992 	}
993 	console_unlock();
994 }
995 
996 #ifdef CONFIG_COMPAT
997 
998 struct compat_console_font_op {
999 	compat_uint_t op;        /* operation code KD_FONT_OP_* */
1000 	compat_uint_t flags;     /* KD_FONT_FLAG_* */
1001 	compat_uint_t width, height;     /* font size */
1002 	compat_uint_t charcount;
1003 	compat_caddr_t data;    /* font data with height fixed to 32 */
1004 };
1005 
1006 static inline int
1007 compat_kdfontop_ioctl(struct compat_console_font_op __user *fontop,
1008 			 int perm, struct console_font_op *op, struct vc_data *vc)
1009 {
1010 	int i;
1011 
1012 	if (copy_from_user(op, fontop, sizeof(struct compat_console_font_op)))
1013 		return -EFAULT;
1014 	if (!perm && op->op != KD_FONT_OP_GET)
1015 		return -EPERM;
1016 	op->data = compat_ptr(((struct compat_console_font_op *)op)->data);
1017 	i = con_font_op(vc, op);
1018 	if (i)
1019 		return i;
1020 	((struct compat_console_font_op *)op)->data = (unsigned long)op->data;
1021 	if (copy_to_user(fontop, op, sizeof(struct compat_console_font_op)))
1022 		return -EFAULT;
1023 	return 0;
1024 }
1025 
1026 struct compat_unimapdesc {
1027 	unsigned short entry_ct;
1028 	compat_caddr_t entries;
1029 };
1030 
1031 static inline int
1032 compat_unimap_ioctl(unsigned int cmd, struct compat_unimapdesc __user *user_ud,
1033 			 int perm, struct vc_data *vc)
1034 {
1035 	struct compat_unimapdesc tmp;
1036 	struct unipair __user *tmp_entries;
1037 
1038 	if (copy_from_user(&tmp, user_ud, sizeof tmp))
1039 		return -EFAULT;
1040 	tmp_entries = compat_ptr(tmp.entries);
1041 	switch (cmd) {
1042 	case PIO_UNIMAP:
1043 		if (!perm)
1044 			return -EPERM;
1045 		return con_set_unimap(vc, tmp.entry_ct, tmp_entries);
1046 	case GIO_UNIMAP:
1047 		if (!perm && fg_console != vc->vc_num)
1048 			return -EPERM;
1049 		return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp_entries);
1050 	}
1051 	return 0;
1052 }
1053 
1054 long vt_compat_ioctl(struct tty_struct *tty,
1055 	     unsigned int cmd, unsigned long arg)
1056 {
1057 	struct vc_data *vc = tty->driver_data;
1058 	struct console_font_op op;	/* used in multiple places here */
1059 	void __user *up = compat_ptr(arg);
1060 	int perm;
1061 
1062 	/*
1063 	 * To have permissions to do most of the vt ioctls, we either have
1064 	 * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
1065 	 */
1066 	perm = 0;
1067 	if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG))
1068 		perm = 1;
1069 
1070 	switch (cmd) {
1071 	/*
1072 	 * these need special handlers for incompatible data structures
1073 	 */
1074 
1075 	case KDFONTOP:
1076 		return compat_kdfontop_ioctl(up, perm, &op, vc);
1077 
1078 	case PIO_UNIMAP:
1079 	case GIO_UNIMAP:
1080 		return compat_unimap_ioctl(cmd, up, perm, vc);
1081 
1082 	/*
1083 	 * all these treat 'arg' as an integer
1084 	 */
1085 	case KIOCSOUND:
1086 	case KDMKTONE:
1087 #ifdef CONFIG_X86
1088 	case KDADDIO:
1089 	case KDDELIO:
1090 #endif
1091 	case KDSETMODE:
1092 	case KDMAPDISP:
1093 	case KDUNMAPDISP:
1094 	case KDSKBMODE:
1095 	case KDSKBMETA:
1096 	case KDSKBLED:
1097 	case KDSETLED:
1098 	case KDSIGACCEPT:
1099 	case VT_ACTIVATE:
1100 	case VT_WAITACTIVE:
1101 	case VT_RELDISP:
1102 	case VT_DISALLOCATE:
1103 	case VT_RESIZE:
1104 	case VT_RESIZEX:
1105 		return vt_ioctl(tty, cmd, arg);
1106 
1107 	/*
1108 	 * the rest has a compatible data structure behind arg,
1109 	 * but we have to convert it to a proper 64 bit pointer.
1110 	 */
1111 	default:
1112 		return vt_ioctl(tty, cmd, (unsigned long)up);
1113 	}
1114 }
1115 
1116 
1117 #endif /* CONFIG_COMPAT */
1118 
1119 
1120 /*
1121  * Performs the back end of a vt switch. Called under the console
1122  * semaphore.
1123  */
1124 static void complete_change_console(struct vc_data *vc)
1125 {
1126 	unsigned char old_vc_mode;
1127 	int old = fg_console;
1128 
1129 	last_console = fg_console;
1130 
1131 	/*
1132 	 * If we're switching, we could be going from KD_GRAPHICS to
1133 	 * KD_TEXT mode or vice versa, which means we need to blank or
1134 	 * unblank the screen later.
1135 	 */
1136 	old_vc_mode = vc_cons[fg_console].d->vc_mode;
1137 	switch_screen(vc);
1138 
1139 	/*
1140 	 * This can't appear below a successful kill_pid().  If it did,
1141 	 * then the *blank_screen operation could occur while X, having
1142 	 * received acqsig, is waking up on another processor.  This
1143 	 * condition can lead to overlapping accesses to the VGA range
1144 	 * and the framebuffer (causing system lockups).
1145 	 *
1146 	 * To account for this we duplicate this code below only if the
1147 	 * controlling process is gone and we've called reset_vc.
1148 	 */
1149 	if (old_vc_mode != vc->vc_mode) {
1150 		if (vc->vc_mode == KD_TEXT)
1151 			do_unblank_screen(1);
1152 		else
1153 			do_blank_screen(1);
1154 	}
1155 
1156 	/*
1157 	 * If this new console is under process control, send it a signal
1158 	 * telling it that it has acquired. Also check if it has died and
1159 	 * clean up (similar to logic employed in change_console())
1160 	 */
1161 	if (vc->vt_mode.mode == VT_PROCESS) {
1162 		/*
1163 		 * Send the signal as privileged - kill_pid() will
1164 		 * tell us if the process has gone or something else
1165 		 * is awry
1166 		 */
1167 		if (kill_pid(vc->vt_pid, vc->vt_mode.acqsig, 1) != 0) {
1168 		/*
1169 		 * The controlling process has died, so we revert back to
1170 		 * normal operation. In this case, we'll also change back
1171 		 * to KD_TEXT mode. I'm not sure if this is strictly correct
1172 		 * but it saves the agony when the X server dies and the screen
1173 		 * remains blanked due to KD_GRAPHICS! It would be nice to do
1174 		 * this outside of VT_PROCESS but there is no single process
1175 		 * to account for and tracking tty count may be undesirable.
1176 		 */
1177 			reset_vc(vc);
1178 
1179 			if (old_vc_mode != vc->vc_mode) {
1180 				if (vc->vc_mode == KD_TEXT)
1181 					do_unblank_screen(1);
1182 				else
1183 					do_blank_screen(1);
1184 			}
1185 		}
1186 	}
1187 
1188 	/*
1189 	 * Wake anyone waiting for their VT to activate
1190 	 */
1191 	vt_event_post(VT_EVENT_SWITCH, old, vc->vc_num);
1192 	return;
1193 }
1194 
1195 /*
1196  * Performs the front-end of a vt switch
1197  */
1198 void change_console(struct vc_data *new_vc)
1199 {
1200 	struct vc_data *vc;
1201 
1202 	if (!new_vc || new_vc->vc_num == fg_console || vt_dont_switch)
1203 		return;
1204 
1205 	/*
1206 	 * If this vt is in process mode, then we need to handshake with
1207 	 * that process before switching. Essentially, we store where that
1208 	 * vt wants to switch to and wait for it to tell us when it's done
1209 	 * (via VT_RELDISP ioctl).
1210 	 *
1211 	 * We also check to see if the controlling process still exists.
1212 	 * If it doesn't, we reset this vt to auto mode and continue.
1213 	 * This is a cheap way to track process control. The worst thing
1214 	 * that can happen is: we send a signal to a process, it dies, and
1215 	 * the switch gets "lost" waiting for a response; hopefully, the
1216 	 * user will try again, we'll detect the process is gone (unless
1217 	 * the user waits just the right amount of time :-) and revert the
1218 	 * vt to auto control.
1219 	 */
1220 	vc = vc_cons[fg_console].d;
1221 	if (vc->vt_mode.mode == VT_PROCESS) {
1222 		/*
1223 		 * Send the signal as privileged - kill_pid() will
1224 		 * tell us if the process has gone or something else
1225 		 * is awry.
1226 		 *
1227 		 * We need to set vt_newvt *before* sending the signal or we
1228 		 * have a race.
1229 		 */
1230 		vc->vt_newvt = new_vc->vc_num;
1231 		if (kill_pid(vc->vt_pid, vc->vt_mode.relsig, 1) == 0) {
1232 			/*
1233 			 * It worked. Mark the vt to switch to and
1234 			 * return. The process needs to send us a
1235 			 * VT_RELDISP ioctl to complete the switch.
1236 			 */
1237 			return;
1238 		}
1239 
1240 		/*
1241 		 * The controlling process has died, so we revert back to
1242 		 * normal operation. In this case, we'll also change back
1243 		 * to KD_TEXT mode. I'm not sure if this is strictly correct
1244 		 * but it saves the agony when the X server dies and the screen
1245 		 * remains blanked due to KD_GRAPHICS! It would be nice to do
1246 		 * this outside of VT_PROCESS but there is no single process
1247 		 * to account for and tracking tty count may be undesirable.
1248 		 */
1249 		reset_vc(vc);
1250 
1251 		/*
1252 		 * Fall through to normal (VT_AUTO) handling of the switch...
1253 		 */
1254 	}
1255 
1256 	/*
1257 	 * Ignore all switches in KD_GRAPHICS+VT_AUTO mode
1258 	 */
1259 	if (vc->vc_mode == KD_GRAPHICS)
1260 		return;
1261 
1262 	complete_change_console(new_vc);
1263 }
1264 
1265 /* Perform a kernel triggered VT switch for suspend/resume */
1266 
1267 static int disable_vt_switch;
1268 
1269 int vt_move_to_console(unsigned int vt, int alloc)
1270 {
1271 	int prev;
1272 
1273 	console_lock();
1274 	/* Graphics mode - up to X */
1275 	if (disable_vt_switch) {
1276 		console_unlock();
1277 		return 0;
1278 	}
1279 	prev = fg_console;
1280 
1281 	if (alloc && vc_allocate(vt)) {
1282 		/* we can't have a free VC for now. Too bad,
1283 		 * we don't want to mess the screen for now. */
1284 		console_unlock();
1285 		return -ENOSPC;
1286 	}
1287 
1288 	if (set_console(vt)) {
1289 		/*
1290 		 * We're unable to switch to the SUSPEND_CONSOLE.
1291 		 * Let the calling function know so it can decide
1292 		 * what to do.
1293 		 */
1294 		console_unlock();
1295 		return -EIO;
1296 	}
1297 	console_unlock();
1298 	if (vt_waitactive(vt + 1)) {
1299 		pr_debug("Suspend: Can't switch VCs.");
1300 		return -EINTR;
1301 	}
1302 	return prev;
1303 }
1304 
1305 /*
1306  * Normally during a suspend, we allocate a new console and switch to it.
1307  * When we resume, we switch back to the original console.  This switch
1308  * can be slow, so on systems where the framebuffer can handle restoration
1309  * of video registers anyways, there's little point in doing the console
1310  * switch.  This function allows you to disable it by passing it '0'.
1311  */
1312 void pm_set_vt_switch(int do_switch)
1313 {
1314 	console_lock();
1315 	disable_vt_switch = !do_switch;
1316 	console_unlock();
1317 }
1318 EXPORT_SYMBOL(pm_set_vt_switch);
1319