1 /* 2 * linux/drivers/char/vt_ioctl.c 3 * 4 * Copyright (C) 1992 obz under the linux copyright 5 * 6 * Dynamic diacritical handling - aeb@cwi.nl - Dec 1993 7 * Dynamic keymap and string allocation - aeb@cwi.nl - May 1994 8 * Restrict VT switching via ioctl() - grif@cs.ucr.edu - Dec 1995 9 * Some code moved for less code duplication - Andi Kleen - Mar 1997 10 * Check put/get_user, cleanups - acme@conectiva.com.br - Jun 2001 11 */ 12 13 #include <linux/types.h> 14 #include <linux/errno.h> 15 #include <linux/sched.h> 16 #include <linux/tty.h> 17 #include <linux/timer.h> 18 #include <linux/kernel.h> 19 #include <linux/compat.h> 20 #include <linux/module.h> 21 #include <linux/kd.h> 22 #include <linux/vt.h> 23 #include <linux/string.h> 24 #include <linux/slab.h> 25 #include <linux/major.h> 26 #include <linux/fs.h> 27 #include <linux/console.h> 28 #include <linux/consolemap.h> 29 #include <linux/signal.h> 30 #include <linux/timex.h> 31 32 #include <asm/io.h> 33 #include <asm/uaccess.h> 34 35 #include <linux/kbd_kern.h> 36 #include <linux/vt_kern.h> 37 #include <linux/kbd_diacr.h> 38 #include <linux/selection.h> 39 40 char vt_dont_switch; 41 extern struct tty_driver *console_driver; 42 43 #define VT_IS_IN_USE(i) (console_driver->ttys[i] && console_driver->ttys[i]->count) 44 #define VT_BUSY(i) (VT_IS_IN_USE(i) || i == fg_console || vc_cons[i].d == sel_cons) 45 46 /* 47 * Console (vt and kd) routines, as defined by USL SVR4 manual, and by 48 * experimentation and study of X386 SYSV handling. 49 * 50 * One point of difference: SYSV vt's are /dev/vtX, which X >= 0, and 51 * /dev/console is a separate ttyp. Under Linux, /dev/tty0 is /dev/console, 52 * and the vc start at /dev/ttyX, X >= 1. We maintain that here, so we will 53 * always treat our set of vt as numbered 1..MAX_NR_CONSOLES (corresponding to 54 * ttys 0..MAX_NR_CONSOLES-1). Explicitly naming VT 0 is illegal, but using 55 * /dev/tty0 (fg_console) as a target is legal, since an implicit aliasing 56 * to the current console is done by the main ioctl code. 57 */ 58 59 #ifdef CONFIG_X86 60 #include <linux/syscalls.h> 61 #endif 62 63 static void complete_change_console(struct vc_data *vc); 64 65 /* 66 * User space VT_EVENT handlers 67 */ 68 69 struct vt_event_wait { 70 struct list_head list; 71 struct vt_event event; 72 int done; 73 }; 74 75 static LIST_HEAD(vt_events); 76 static DEFINE_SPINLOCK(vt_event_lock); 77 static DECLARE_WAIT_QUEUE_HEAD(vt_event_waitqueue); 78 79 /** 80 * vt_event_post 81 * @event: the event that occurred 82 * @old: old console 83 * @new: new console 84 * 85 * Post an VT event to interested VT handlers 86 */ 87 88 void vt_event_post(unsigned int event, unsigned int old, unsigned int new) 89 { 90 struct list_head *pos, *head; 91 unsigned long flags; 92 int wake = 0; 93 94 spin_lock_irqsave(&vt_event_lock, flags); 95 head = &vt_events; 96 97 list_for_each(pos, head) { 98 struct vt_event_wait *ve = list_entry(pos, 99 struct vt_event_wait, list); 100 if (!(ve->event.event & event)) 101 continue; 102 ve->event.event = event; 103 /* kernel view is consoles 0..n-1, user space view is 104 console 1..n with 0 meaning current, so we must bias */ 105 ve->event.oldev = old + 1; 106 ve->event.newev = new + 1; 107 wake = 1; 108 ve->done = 1; 109 } 110 spin_unlock_irqrestore(&vt_event_lock, flags); 111 if (wake) 112 wake_up_interruptible(&vt_event_waitqueue); 113 } 114 115 /** 116 * vt_event_wait - wait for an event 117 * @vw: our event 118 * 119 * Waits for an event to occur which completes our vt_event_wait 120 * structure. On return the structure has wv->done set to 1 for success 121 * or 0 if some event such as a signal ended the wait. 122 */ 123 124 static void vt_event_wait(struct vt_event_wait *vw) 125 { 126 unsigned long flags; 127 /* Prepare the event */ 128 INIT_LIST_HEAD(&vw->list); 129 vw->done = 0; 130 /* Queue our event */ 131 spin_lock_irqsave(&vt_event_lock, flags); 132 list_add(&vw->list, &vt_events); 133 spin_unlock_irqrestore(&vt_event_lock, flags); 134 /* Wait for it to pass */ 135 wait_event_interruptible_tty(vt_event_waitqueue, vw->done); 136 /* Dequeue it */ 137 spin_lock_irqsave(&vt_event_lock, flags); 138 list_del(&vw->list); 139 spin_unlock_irqrestore(&vt_event_lock, flags); 140 } 141 142 /** 143 * vt_event_wait_ioctl - event ioctl handler 144 * @arg: argument to ioctl 145 * 146 * Implement the VT_WAITEVENT ioctl using the VT event interface 147 */ 148 149 static int vt_event_wait_ioctl(struct vt_event __user *event) 150 { 151 struct vt_event_wait vw; 152 153 if (copy_from_user(&vw.event, event, sizeof(struct vt_event))) 154 return -EFAULT; 155 /* Highest supported event for now */ 156 if (vw.event.event & ~VT_MAX_EVENT) 157 return -EINVAL; 158 159 vt_event_wait(&vw); 160 /* If it occurred report it */ 161 if (vw.done) { 162 if (copy_to_user(event, &vw.event, sizeof(struct vt_event))) 163 return -EFAULT; 164 return 0; 165 } 166 return -EINTR; 167 } 168 169 /** 170 * vt_waitactive - active console wait 171 * @event: event code 172 * @n: new console 173 * 174 * Helper for event waits. Used to implement the legacy 175 * event waiting ioctls in terms of events 176 */ 177 178 int vt_waitactive(int n) 179 { 180 struct vt_event_wait vw; 181 do { 182 if (n == fg_console + 1) 183 break; 184 vw.event.event = VT_EVENT_SWITCH; 185 vt_event_wait(&vw); 186 if (vw.done == 0) 187 return -EINTR; 188 } while (vw.event.newev != n); 189 return 0; 190 } 191 192 /* 193 * these are the valid i/o ports we're allowed to change. they map all the 194 * video ports 195 */ 196 #define GPFIRST 0x3b4 197 #define GPLAST 0x3df 198 #define GPNUM (GPLAST - GPFIRST + 1) 199 200 #define i (tmp.kb_index) 201 #define s (tmp.kb_table) 202 #define v (tmp.kb_value) 203 static inline int 204 do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm, struct kbd_struct *kbd) 205 { 206 struct kbentry tmp; 207 ushort *key_map, val, ov; 208 209 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry))) 210 return -EFAULT; 211 212 if (!capable(CAP_SYS_TTY_CONFIG)) 213 perm = 0; 214 215 switch (cmd) { 216 case KDGKBENT: 217 key_map = key_maps[s]; 218 if (key_map) { 219 val = U(key_map[i]); 220 if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES) 221 val = K_HOLE; 222 } else 223 val = (i ? K_HOLE : K_NOSUCHMAP); 224 return put_user(val, &user_kbe->kb_value); 225 case KDSKBENT: 226 if (!perm) 227 return -EPERM; 228 if (!i && v == K_NOSUCHMAP) { 229 /* deallocate map */ 230 key_map = key_maps[s]; 231 if (s && key_map) { 232 key_maps[s] = NULL; 233 if (key_map[0] == U(K_ALLOCATED)) { 234 kfree(key_map); 235 keymap_count--; 236 } 237 } 238 break; 239 } 240 241 if (KTYP(v) < NR_TYPES) { 242 if (KVAL(v) > max_vals[KTYP(v)]) 243 return -EINVAL; 244 } else 245 if (kbd->kbdmode != VC_UNICODE) 246 return -EINVAL; 247 248 /* ++Geert: non-PC keyboards may generate keycode zero */ 249 #if !defined(__mc68000__) && !defined(__powerpc__) 250 /* assignment to entry 0 only tests validity of args */ 251 if (!i) 252 break; 253 #endif 254 255 if (!(key_map = key_maps[s])) { 256 int j; 257 258 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS && 259 !capable(CAP_SYS_RESOURCE)) 260 return -EPERM; 261 262 key_map = kmalloc(sizeof(plain_map), 263 GFP_KERNEL); 264 if (!key_map) 265 return -ENOMEM; 266 key_maps[s] = key_map; 267 key_map[0] = U(K_ALLOCATED); 268 for (j = 1; j < NR_KEYS; j++) 269 key_map[j] = U(K_HOLE); 270 keymap_count++; 271 } 272 ov = U(key_map[i]); 273 if (v == ov) 274 break; /* nothing to do */ 275 /* 276 * Attention Key. 277 */ 278 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) 279 return -EPERM; 280 key_map[i] = U(v); 281 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT)) 282 compute_shiftstate(); 283 break; 284 } 285 return 0; 286 } 287 #undef i 288 #undef s 289 #undef v 290 291 static inline int 292 do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc, int perm) 293 { 294 struct kbkeycode tmp; 295 int kc = 0; 296 297 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode))) 298 return -EFAULT; 299 switch (cmd) { 300 case KDGETKEYCODE: 301 kc = getkeycode(tmp.scancode); 302 if (kc >= 0) 303 kc = put_user(kc, &user_kbkc->keycode); 304 break; 305 case KDSETKEYCODE: 306 if (!perm) 307 return -EPERM; 308 kc = setkeycode(tmp.scancode, tmp.keycode); 309 break; 310 } 311 return kc; 312 } 313 314 static inline int 315 do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm) 316 { 317 struct kbsentry *kbs; 318 char *p; 319 u_char *q; 320 u_char __user *up; 321 int sz; 322 int delta; 323 char *first_free, *fj, *fnw; 324 int i, j, k; 325 int ret; 326 327 if (!capable(CAP_SYS_TTY_CONFIG)) 328 perm = 0; 329 330 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL); 331 if (!kbs) { 332 ret = -ENOMEM; 333 goto reterr; 334 } 335 336 /* we mostly copy too much here (512bytes), but who cares ;) */ 337 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) { 338 ret = -EFAULT; 339 goto reterr; 340 } 341 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0'; 342 i = kbs->kb_func; 343 344 switch (cmd) { 345 case KDGKBSENT: 346 sz = sizeof(kbs->kb_string) - 1; /* sz should have been 347 a struct member */ 348 up = user_kdgkb->kb_string; 349 p = func_table[i]; 350 if(p) 351 for ( ; *p && sz; p++, sz--) 352 if (put_user(*p, up++)) { 353 ret = -EFAULT; 354 goto reterr; 355 } 356 if (put_user('\0', up)) { 357 ret = -EFAULT; 358 goto reterr; 359 } 360 kfree(kbs); 361 return ((p && *p) ? -EOVERFLOW : 0); 362 case KDSKBSENT: 363 if (!perm) { 364 ret = -EPERM; 365 goto reterr; 366 } 367 368 q = func_table[i]; 369 first_free = funcbufptr + (funcbufsize - funcbufleft); 370 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++) 371 ; 372 if (j < MAX_NR_FUNC) 373 fj = func_table[j]; 374 else 375 fj = first_free; 376 377 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string); 378 if (delta <= funcbufleft) { /* it fits in current buf */ 379 if (j < MAX_NR_FUNC) { 380 memmove(fj + delta, fj, first_free - fj); 381 for (k = j; k < MAX_NR_FUNC; k++) 382 if (func_table[k]) 383 func_table[k] += delta; 384 } 385 if (!q) 386 func_table[i] = fj; 387 funcbufleft -= delta; 388 } else { /* allocate a larger buffer */ 389 sz = 256; 390 while (sz < funcbufsize - funcbufleft + delta) 391 sz <<= 1; 392 fnw = kmalloc(sz, GFP_KERNEL); 393 if(!fnw) { 394 ret = -ENOMEM; 395 goto reterr; 396 } 397 398 if (!q) 399 func_table[i] = fj; 400 if (fj > funcbufptr) 401 memmove(fnw, funcbufptr, fj - funcbufptr); 402 for (k = 0; k < j; k++) 403 if (func_table[k]) 404 func_table[k] = fnw + (func_table[k] - funcbufptr); 405 406 if (first_free > fj) { 407 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj); 408 for (k = j; k < MAX_NR_FUNC; k++) 409 if (func_table[k]) 410 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta; 411 } 412 if (funcbufptr != func_buf) 413 kfree(funcbufptr); 414 funcbufptr = fnw; 415 funcbufleft = funcbufleft - delta + sz - funcbufsize; 416 funcbufsize = sz; 417 } 418 strcpy(func_table[i], kbs->kb_string); 419 break; 420 } 421 ret = 0; 422 reterr: 423 kfree(kbs); 424 return ret; 425 } 426 427 static inline int 428 do_fontx_ioctl(int cmd, struct consolefontdesc __user *user_cfd, int perm, struct console_font_op *op) 429 { 430 struct consolefontdesc cfdarg; 431 int i; 432 433 if (copy_from_user(&cfdarg, user_cfd, sizeof(struct consolefontdesc))) 434 return -EFAULT; 435 436 switch (cmd) { 437 case PIO_FONTX: 438 if (!perm) 439 return -EPERM; 440 op->op = KD_FONT_OP_SET; 441 op->flags = KD_FONT_FLAG_OLD; 442 op->width = 8; 443 op->height = cfdarg.charheight; 444 op->charcount = cfdarg.charcount; 445 op->data = cfdarg.chardata; 446 return con_font_op(vc_cons[fg_console].d, op); 447 case GIO_FONTX: { 448 op->op = KD_FONT_OP_GET; 449 op->flags = KD_FONT_FLAG_OLD; 450 op->width = 8; 451 op->height = cfdarg.charheight; 452 op->charcount = cfdarg.charcount; 453 op->data = cfdarg.chardata; 454 i = con_font_op(vc_cons[fg_console].d, op); 455 if (i) 456 return i; 457 cfdarg.charheight = op->height; 458 cfdarg.charcount = op->charcount; 459 if (copy_to_user(user_cfd, &cfdarg, sizeof(struct consolefontdesc))) 460 return -EFAULT; 461 return 0; 462 } 463 } 464 return -EINVAL; 465 } 466 467 static inline int 468 do_unimap_ioctl(int cmd, struct unimapdesc __user *user_ud, int perm, struct vc_data *vc) 469 { 470 struct unimapdesc tmp; 471 472 if (copy_from_user(&tmp, user_ud, sizeof tmp)) 473 return -EFAULT; 474 if (tmp.entries) 475 if (!access_ok(VERIFY_WRITE, tmp.entries, 476 tmp.entry_ct*sizeof(struct unipair))) 477 return -EFAULT; 478 switch (cmd) { 479 case PIO_UNIMAP: 480 if (!perm) 481 return -EPERM; 482 return con_set_unimap(vc, tmp.entry_ct, tmp.entries); 483 case GIO_UNIMAP: 484 if (!perm && fg_console != vc->vc_num) 485 return -EPERM; 486 return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp.entries); 487 } 488 return 0; 489 } 490 491 492 493 /* 494 * We handle the console-specific ioctl's here. We allow the 495 * capability to modify any console, not just the fg_console. 496 */ 497 int vt_ioctl(struct tty_struct *tty, 498 unsigned int cmd, unsigned long arg) 499 { 500 struct vc_data *vc = tty->driver_data; 501 struct console_font_op op; /* used in multiple places here */ 502 struct kbd_struct * kbd; 503 unsigned int console; 504 unsigned char ucval; 505 unsigned int uival; 506 void __user *up = (void __user *)arg; 507 int i, perm; 508 int ret = 0; 509 510 console = vc->vc_num; 511 512 tty_lock(); 513 514 if (!vc_cons_allocated(console)) { /* impossible? */ 515 ret = -ENOIOCTLCMD; 516 goto out; 517 } 518 519 520 /* 521 * To have permissions to do most of the vt ioctls, we either have 522 * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG. 523 */ 524 perm = 0; 525 if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG)) 526 perm = 1; 527 528 kbd = kbd_table + console; 529 switch (cmd) { 530 case TIOCLINUX: 531 ret = tioclinux(tty, arg); 532 break; 533 case KIOCSOUND: 534 if (!perm) 535 goto eperm; 536 /* 537 * The use of PIT_TICK_RATE is historic, it used to be 538 * the platform-dependent CLOCK_TICK_RATE between 2.6.12 539 * and 2.6.36, which was a minor but unfortunate ABI 540 * change. 541 */ 542 if (arg) 543 arg = PIT_TICK_RATE / arg; 544 kd_mksound(arg, 0); 545 break; 546 547 case KDMKTONE: 548 if (!perm) 549 goto eperm; 550 { 551 unsigned int ticks, count; 552 553 /* 554 * Generate the tone for the appropriate number of ticks. 555 * If the time is zero, turn off sound ourselves. 556 */ 557 ticks = HZ * ((arg >> 16) & 0xffff) / 1000; 558 count = ticks ? (arg & 0xffff) : 0; 559 if (count) 560 count = PIT_TICK_RATE / count; 561 kd_mksound(count, ticks); 562 break; 563 } 564 565 case KDGKBTYPE: 566 /* 567 * this is naive. 568 */ 569 ucval = KB_101; 570 goto setchar; 571 572 /* 573 * These cannot be implemented on any machine that implements 574 * ioperm() in user level (such as Alpha PCs) or not at all. 575 * 576 * XXX: you should never use these, just call ioperm directly.. 577 */ 578 #ifdef CONFIG_X86 579 case KDADDIO: 580 case KDDELIO: 581 /* 582 * KDADDIO and KDDELIO may be able to add ports beyond what 583 * we reject here, but to be safe... 584 */ 585 if (arg < GPFIRST || arg > GPLAST) { 586 ret = -EINVAL; 587 break; 588 } 589 ret = sys_ioperm(arg, 1, (cmd == KDADDIO)) ? -ENXIO : 0; 590 break; 591 592 case KDENABIO: 593 case KDDISABIO: 594 ret = sys_ioperm(GPFIRST, GPNUM, 595 (cmd == KDENABIO)) ? -ENXIO : 0; 596 break; 597 #endif 598 599 /* Linux m68k/i386 interface for setting the keyboard delay/repeat rate */ 600 601 case KDKBDREP: 602 { 603 struct kbd_repeat kbrep; 604 605 if (!capable(CAP_SYS_TTY_CONFIG)) 606 goto eperm; 607 608 if (copy_from_user(&kbrep, up, sizeof(struct kbd_repeat))) { 609 ret = -EFAULT; 610 break; 611 } 612 ret = kbd_rate(&kbrep); 613 if (ret) 614 break; 615 if (copy_to_user(up, &kbrep, sizeof(struct kbd_repeat))) 616 ret = -EFAULT; 617 break; 618 } 619 620 case KDSETMODE: 621 /* 622 * currently, setting the mode from KD_TEXT to KD_GRAPHICS 623 * doesn't do a whole lot. i'm not sure if it should do any 624 * restoration of modes or what... 625 * 626 * XXX It should at least call into the driver, fbdev's definitely 627 * need to restore their engine state. --BenH 628 */ 629 if (!perm) 630 goto eperm; 631 switch (arg) { 632 case KD_GRAPHICS: 633 break; 634 case KD_TEXT0: 635 case KD_TEXT1: 636 arg = KD_TEXT; 637 case KD_TEXT: 638 break; 639 default: 640 ret = -EINVAL; 641 goto out; 642 } 643 if (vc->vc_mode == (unsigned char) arg) 644 break; 645 vc->vc_mode = (unsigned char) arg; 646 if (console != fg_console) 647 break; 648 /* 649 * explicitly blank/unblank the screen if switching modes 650 */ 651 console_lock(); 652 if (arg == KD_TEXT) 653 do_unblank_screen(1); 654 else 655 do_blank_screen(1); 656 console_unlock(); 657 break; 658 659 case KDGETMODE: 660 uival = vc->vc_mode; 661 goto setint; 662 663 case KDMAPDISP: 664 case KDUNMAPDISP: 665 /* 666 * these work like a combination of mmap and KDENABIO. 667 * this could be easily finished. 668 */ 669 ret = -EINVAL; 670 break; 671 672 case KDSKBMODE: 673 if (!perm) 674 goto eperm; 675 switch(arg) { 676 case K_RAW: 677 kbd->kbdmode = VC_RAW; 678 break; 679 case K_MEDIUMRAW: 680 kbd->kbdmode = VC_MEDIUMRAW; 681 break; 682 case K_XLATE: 683 kbd->kbdmode = VC_XLATE; 684 compute_shiftstate(); 685 break; 686 case K_UNICODE: 687 kbd->kbdmode = VC_UNICODE; 688 compute_shiftstate(); 689 break; 690 case K_OFF: 691 kbd->kbdmode = VC_OFF; 692 break; 693 default: 694 ret = -EINVAL; 695 goto out; 696 } 697 tty_ldisc_flush(tty); 698 break; 699 700 case KDGKBMODE: 701 uival = ((kbd->kbdmode == VC_RAW) ? K_RAW : 702 (kbd->kbdmode == VC_MEDIUMRAW) ? K_MEDIUMRAW : 703 (kbd->kbdmode == VC_UNICODE) ? K_UNICODE : 704 K_XLATE); 705 goto setint; 706 707 /* this could be folded into KDSKBMODE, but for compatibility 708 reasons it is not so easy to fold KDGKBMETA into KDGKBMODE */ 709 case KDSKBMETA: 710 switch(arg) { 711 case K_METABIT: 712 clr_vc_kbd_mode(kbd, VC_META); 713 break; 714 case K_ESCPREFIX: 715 set_vc_kbd_mode(kbd, VC_META); 716 break; 717 default: 718 ret = -EINVAL; 719 } 720 break; 721 722 case KDGKBMETA: 723 uival = (vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT); 724 setint: 725 ret = put_user(uival, (int __user *)arg); 726 break; 727 728 case KDGETKEYCODE: 729 case KDSETKEYCODE: 730 if(!capable(CAP_SYS_TTY_CONFIG)) 731 perm = 0; 732 ret = do_kbkeycode_ioctl(cmd, up, perm); 733 break; 734 735 case KDGKBENT: 736 case KDSKBENT: 737 ret = do_kdsk_ioctl(cmd, up, perm, kbd); 738 break; 739 740 case KDGKBSENT: 741 case KDSKBSENT: 742 ret = do_kdgkb_ioctl(cmd, up, perm); 743 break; 744 745 case KDGKBDIACR: 746 { 747 struct kbdiacrs __user *a = up; 748 struct kbdiacr diacr; 749 int i; 750 751 if (put_user(accent_table_size, &a->kb_cnt)) { 752 ret = -EFAULT; 753 break; 754 } 755 for (i = 0; i < accent_table_size; i++) { 756 diacr.diacr = conv_uni_to_8bit(accent_table[i].diacr); 757 diacr.base = conv_uni_to_8bit(accent_table[i].base); 758 diacr.result = conv_uni_to_8bit(accent_table[i].result); 759 if (copy_to_user(a->kbdiacr + i, &diacr, sizeof(struct kbdiacr))) { 760 ret = -EFAULT; 761 break; 762 } 763 } 764 break; 765 } 766 case KDGKBDIACRUC: 767 { 768 struct kbdiacrsuc __user *a = up; 769 770 if (put_user(accent_table_size, &a->kb_cnt)) 771 ret = -EFAULT; 772 else if (copy_to_user(a->kbdiacruc, accent_table, 773 accent_table_size*sizeof(struct kbdiacruc))) 774 ret = -EFAULT; 775 break; 776 } 777 778 case KDSKBDIACR: 779 { 780 struct kbdiacrs __user *a = up; 781 struct kbdiacr diacr; 782 unsigned int ct; 783 int i; 784 785 if (!perm) 786 goto eperm; 787 if (get_user(ct,&a->kb_cnt)) { 788 ret = -EFAULT; 789 break; 790 } 791 if (ct >= MAX_DIACR) { 792 ret = -EINVAL; 793 break; 794 } 795 accent_table_size = ct; 796 for (i = 0; i < ct; i++) { 797 if (copy_from_user(&diacr, a->kbdiacr + i, sizeof(struct kbdiacr))) { 798 ret = -EFAULT; 799 break; 800 } 801 accent_table[i].diacr = conv_8bit_to_uni(diacr.diacr); 802 accent_table[i].base = conv_8bit_to_uni(diacr.base); 803 accent_table[i].result = conv_8bit_to_uni(diacr.result); 804 } 805 break; 806 } 807 808 case KDSKBDIACRUC: 809 { 810 struct kbdiacrsuc __user *a = up; 811 unsigned int ct; 812 813 if (!perm) 814 goto eperm; 815 if (get_user(ct,&a->kb_cnt)) { 816 ret = -EFAULT; 817 break; 818 } 819 if (ct >= MAX_DIACR) { 820 ret = -EINVAL; 821 break; 822 } 823 accent_table_size = ct; 824 if (copy_from_user(accent_table, a->kbdiacruc, ct*sizeof(struct kbdiacruc))) 825 ret = -EFAULT; 826 break; 827 } 828 829 /* the ioctls below read/set the flags usually shown in the leds */ 830 /* don't use them - they will go away without warning */ 831 case KDGKBLED: 832 ucval = kbd->ledflagstate | (kbd->default_ledflagstate << 4); 833 goto setchar; 834 835 case KDSKBLED: 836 if (!perm) 837 goto eperm; 838 if (arg & ~0x77) { 839 ret = -EINVAL; 840 break; 841 } 842 kbd->ledflagstate = (arg & 7); 843 kbd->default_ledflagstate = ((arg >> 4) & 7); 844 set_leds(); 845 break; 846 847 /* the ioctls below only set the lights, not the functions */ 848 /* for those, see KDGKBLED and KDSKBLED above */ 849 case KDGETLED: 850 ucval = getledstate(); 851 setchar: 852 ret = put_user(ucval, (char __user *)arg); 853 break; 854 855 case KDSETLED: 856 if (!perm) 857 goto eperm; 858 setledstate(kbd, arg); 859 break; 860 861 /* 862 * A process can indicate its willingness to accept signals 863 * generated by pressing an appropriate key combination. 864 * Thus, one can have a daemon that e.g. spawns a new console 865 * upon a keypress and then changes to it. 866 * See also the kbrequest field of inittab(5). 867 */ 868 case KDSIGACCEPT: 869 { 870 if (!perm || !capable(CAP_KILL)) 871 goto eperm; 872 if (!valid_signal(arg) || arg < 1 || arg == SIGKILL) 873 ret = -EINVAL; 874 else { 875 spin_lock_irq(&vt_spawn_con.lock); 876 put_pid(vt_spawn_con.pid); 877 vt_spawn_con.pid = get_pid(task_pid(current)); 878 vt_spawn_con.sig = arg; 879 spin_unlock_irq(&vt_spawn_con.lock); 880 } 881 break; 882 } 883 884 case VT_SETMODE: 885 { 886 struct vt_mode tmp; 887 888 if (!perm) 889 goto eperm; 890 if (copy_from_user(&tmp, up, sizeof(struct vt_mode))) { 891 ret = -EFAULT; 892 goto out; 893 } 894 if (tmp.mode != VT_AUTO && tmp.mode != VT_PROCESS) { 895 ret = -EINVAL; 896 goto out; 897 } 898 console_lock(); 899 vc->vt_mode = tmp; 900 /* the frsig is ignored, so we set it to 0 */ 901 vc->vt_mode.frsig = 0; 902 put_pid(vc->vt_pid); 903 vc->vt_pid = get_pid(task_pid(current)); 904 /* no switch is required -- saw@shade.msu.ru */ 905 vc->vt_newvt = -1; 906 console_unlock(); 907 break; 908 } 909 910 case VT_GETMODE: 911 { 912 struct vt_mode tmp; 913 int rc; 914 915 console_lock(); 916 memcpy(&tmp, &vc->vt_mode, sizeof(struct vt_mode)); 917 console_unlock(); 918 919 rc = copy_to_user(up, &tmp, sizeof(struct vt_mode)); 920 if (rc) 921 ret = -EFAULT; 922 break; 923 } 924 925 /* 926 * Returns global vt state. Note that VT 0 is always open, since 927 * it's an alias for the current VT, and people can't use it here. 928 * We cannot return state for more than 16 VTs, since v_state is short. 929 */ 930 case VT_GETSTATE: 931 { 932 struct vt_stat __user *vtstat = up; 933 unsigned short state, mask; 934 935 if (put_user(fg_console + 1, &vtstat->v_active)) 936 ret = -EFAULT; 937 else { 938 state = 1; /* /dev/tty0 is always open */ 939 for (i = 0, mask = 2; i < MAX_NR_CONSOLES && mask; 940 ++i, mask <<= 1) 941 if (VT_IS_IN_USE(i)) 942 state |= mask; 943 ret = put_user(state, &vtstat->v_state); 944 } 945 break; 946 } 947 948 /* 949 * Returns the first available (non-opened) console. 950 */ 951 case VT_OPENQRY: 952 for (i = 0; i < MAX_NR_CONSOLES; ++i) 953 if (! VT_IS_IN_USE(i)) 954 break; 955 uival = i < MAX_NR_CONSOLES ? (i+1) : -1; 956 goto setint; 957 958 /* 959 * ioctl(fd, VT_ACTIVATE, num) will cause us to switch to vt # num, 960 * with num >= 1 (switches to vt 0, our console, are not allowed, just 961 * to preserve sanity). 962 */ 963 case VT_ACTIVATE: 964 if (!perm) 965 goto eperm; 966 if (arg == 0 || arg > MAX_NR_CONSOLES) 967 ret = -ENXIO; 968 else { 969 arg--; 970 console_lock(); 971 ret = vc_allocate(arg); 972 console_unlock(); 973 if (ret) 974 break; 975 set_console(arg); 976 } 977 break; 978 979 case VT_SETACTIVATE: 980 { 981 struct vt_setactivate vsa; 982 983 if (!perm) 984 goto eperm; 985 986 if (copy_from_user(&vsa, (struct vt_setactivate __user *)arg, 987 sizeof(struct vt_setactivate))) { 988 ret = -EFAULT; 989 goto out; 990 } 991 if (vsa.console == 0 || vsa.console > MAX_NR_CONSOLES) 992 ret = -ENXIO; 993 else { 994 vsa.console--; 995 console_lock(); 996 ret = vc_allocate(vsa.console); 997 if (ret == 0) { 998 struct vc_data *nvc; 999 /* This is safe providing we don't drop the 1000 console sem between vc_allocate and 1001 finishing referencing nvc */ 1002 nvc = vc_cons[vsa.console].d; 1003 nvc->vt_mode = vsa.mode; 1004 nvc->vt_mode.frsig = 0; 1005 put_pid(nvc->vt_pid); 1006 nvc->vt_pid = get_pid(task_pid(current)); 1007 } 1008 console_unlock(); 1009 if (ret) 1010 break; 1011 /* Commence switch and lock */ 1012 set_console(vsa.console); 1013 } 1014 break; 1015 } 1016 1017 /* 1018 * wait until the specified VT has been activated 1019 */ 1020 case VT_WAITACTIVE: 1021 if (!perm) 1022 goto eperm; 1023 if (arg == 0 || arg > MAX_NR_CONSOLES) 1024 ret = -ENXIO; 1025 else 1026 ret = vt_waitactive(arg); 1027 break; 1028 1029 /* 1030 * If a vt is under process control, the kernel will not switch to it 1031 * immediately, but postpone the operation until the process calls this 1032 * ioctl, allowing the switch to complete. 1033 * 1034 * According to the X sources this is the behavior: 1035 * 0: pending switch-from not OK 1036 * 1: pending switch-from OK 1037 * 2: completed switch-to OK 1038 */ 1039 case VT_RELDISP: 1040 if (!perm) 1041 goto eperm; 1042 1043 if (vc->vt_mode.mode != VT_PROCESS) { 1044 ret = -EINVAL; 1045 break; 1046 } 1047 /* 1048 * Switching-from response 1049 */ 1050 console_lock(); 1051 if (vc->vt_newvt >= 0) { 1052 if (arg == 0) 1053 /* 1054 * Switch disallowed, so forget we were trying 1055 * to do it. 1056 */ 1057 vc->vt_newvt = -1; 1058 1059 else { 1060 /* 1061 * The current vt has been released, so 1062 * complete the switch. 1063 */ 1064 int newvt; 1065 newvt = vc->vt_newvt; 1066 vc->vt_newvt = -1; 1067 ret = vc_allocate(newvt); 1068 if (ret) { 1069 console_unlock(); 1070 break; 1071 } 1072 /* 1073 * When we actually do the console switch, 1074 * make sure we are atomic with respect to 1075 * other console switches.. 1076 */ 1077 complete_change_console(vc_cons[newvt].d); 1078 } 1079 } else { 1080 /* 1081 * Switched-to response 1082 */ 1083 /* 1084 * If it's just an ACK, ignore it 1085 */ 1086 if (arg != VT_ACKACQ) 1087 ret = -EINVAL; 1088 } 1089 console_unlock(); 1090 break; 1091 1092 /* 1093 * Disallocate memory associated to VT (but leave VT1) 1094 */ 1095 case VT_DISALLOCATE: 1096 if (arg > MAX_NR_CONSOLES) { 1097 ret = -ENXIO; 1098 break; 1099 } 1100 if (arg == 0) { 1101 /* deallocate all unused consoles, but leave 0 */ 1102 console_lock(); 1103 for (i=1; i<MAX_NR_CONSOLES; i++) 1104 if (! VT_BUSY(i)) 1105 vc_deallocate(i); 1106 console_unlock(); 1107 } else { 1108 /* deallocate a single console, if possible */ 1109 arg--; 1110 if (VT_BUSY(arg)) 1111 ret = -EBUSY; 1112 else if (arg) { /* leave 0 */ 1113 console_lock(); 1114 vc_deallocate(arg); 1115 console_unlock(); 1116 } 1117 } 1118 break; 1119 1120 case VT_RESIZE: 1121 { 1122 struct vt_sizes __user *vtsizes = up; 1123 struct vc_data *vc; 1124 1125 ushort ll,cc; 1126 if (!perm) 1127 goto eperm; 1128 if (get_user(ll, &vtsizes->v_rows) || 1129 get_user(cc, &vtsizes->v_cols)) 1130 ret = -EFAULT; 1131 else { 1132 console_lock(); 1133 for (i = 0; i < MAX_NR_CONSOLES; i++) { 1134 vc = vc_cons[i].d; 1135 1136 if (vc) { 1137 vc->vc_resize_user = 1; 1138 vc_resize(vc_cons[i].d, cc, ll); 1139 } 1140 } 1141 console_unlock(); 1142 } 1143 break; 1144 } 1145 1146 case VT_RESIZEX: 1147 { 1148 struct vt_consize __user *vtconsize = up; 1149 ushort ll,cc,vlin,clin,vcol,ccol; 1150 if (!perm) 1151 goto eperm; 1152 if (!access_ok(VERIFY_READ, vtconsize, 1153 sizeof(struct vt_consize))) { 1154 ret = -EFAULT; 1155 break; 1156 } 1157 /* FIXME: Should check the copies properly */ 1158 __get_user(ll, &vtconsize->v_rows); 1159 __get_user(cc, &vtconsize->v_cols); 1160 __get_user(vlin, &vtconsize->v_vlin); 1161 __get_user(clin, &vtconsize->v_clin); 1162 __get_user(vcol, &vtconsize->v_vcol); 1163 __get_user(ccol, &vtconsize->v_ccol); 1164 vlin = vlin ? vlin : vc->vc_scan_lines; 1165 if (clin) { 1166 if (ll) { 1167 if (ll != vlin/clin) { 1168 /* Parameters don't add up */ 1169 ret = -EINVAL; 1170 break; 1171 } 1172 } else 1173 ll = vlin/clin; 1174 } 1175 if (vcol && ccol) { 1176 if (cc) { 1177 if (cc != vcol/ccol) { 1178 ret = -EINVAL; 1179 break; 1180 } 1181 } else 1182 cc = vcol/ccol; 1183 } 1184 1185 if (clin > 32) { 1186 ret = -EINVAL; 1187 break; 1188 } 1189 1190 for (i = 0; i < MAX_NR_CONSOLES; i++) { 1191 if (!vc_cons[i].d) 1192 continue; 1193 console_lock(); 1194 if (vlin) 1195 vc_cons[i].d->vc_scan_lines = vlin; 1196 if (clin) 1197 vc_cons[i].d->vc_font.height = clin; 1198 vc_cons[i].d->vc_resize_user = 1; 1199 vc_resize(vc_cons[i].d, cc, ll); 1200 console_unlock(); 1201 } 1202 break; 1203 } 1204 1205 case PIO_FONT: { 1206 if (!perm) 1207 goto eperm; 1208 op.op = KD_FONT_OP_SET; 1209 op.flags = KD_FONT_FLAG_OLD | KD_FONT_FLAG_DONT_RECALC; /* Compatibility */ 1210 op.width = 8; 1211 op.height = 0; 1212 op.charcount = 256; 1213 op.data = up; 1214 ret = con_font_op(vc_cons[fg_console].d, &op); 1215 break; 1216 } 1217 1218 case GIO_FONT: { 1219 op.op = KD_FONT_OP_GET; 1220 op.flags = KD_FONT_FLAG_OLD; 1221 op.width = 8; 1222 op.height = 32; 1223 op.charcount = 256; 1224 op.data = up; 1225 ret = con_font_op(vc_cons[fg_console].d, &op); 1226 break; 1227 } 1228 1229 case PIO_CMAP: 1230 if (!perm) 1231 ret = -EPERM; 1232 else 1233 ret = con_set_cmap(up); 1234 break; 1235 1236 case GIO_CMAP: 1237 ret = con_get_cmap(up); 1238 break; 1239 1240 case PIO_FONTX: 1241 case GIO_FONTX: 1242 ret = do_fontx_ioctl(cmd, up, perm, &op); 1243 break; 1244 1245 case PIO_FONTRESET: 1246 { 1247 if (!perm) 1248 goto eperm; 1249 1250 #ifdef BROKEN_GRAPHICS_PROGRAMS 1251 /* With BROKEN_GRAPHICS_PROGRAMS defined, the default 1252 font is not saved. */ 1253 ret = -ENOSYS; 1254 break; 1255 #else 1256 { 1257 op.op = KD_FONT_OP_SET_DEFAULT; 1258 op.data = NULL; 1259 ret = con_font_op(vc_cons[fg_console].d, &op); 1260 if (ret) 1261 break; 1262 con_set_default_unimap(vc_cons[fg_console].d); 1263 break; 1264 } 1265 #endif 1266 } 1267 1268 case KDFONTOP: { 1269 if (copy_from_user(&op, up, sizeof(op))) { 1270 ret = -EFAULT; 1271 break; 1272 } 1273 if (!perm && op.op != KD_FONT_OP_GET) 1274 goto eperm; 1275 ret = con_font_op(vc, &op); 1276 if (ret) 1277 break; 1278 if (copy_to_user(up, &op, sizeof(op))) 1279 ret = -EFAULT; 1280 break; 1281 } 1282 1283 case PIO_SCRNMAP: 1284 if (!perm) 1285 ret = -EPERM; 1286 else 1287 ret = con_set_trans_old(up); 1288 break; 1289 1290 case GIO_SCRNMAP: 1291 ret = con_get_trans_old(up); 1292 break; 1293 1294 case PIO_UNISCRNMAP: 1295 if (!perm) 1296 ret = -EPERM; 1297 else 1298 ret = con_set_trans_new(up); 1299 break; 1300 1301 case GIO_UNISCRNMAP: 1302 ret = con_get_trans_new(up); 1303 break; 1304 1305 case PIO_UNIMAPCLR: 1306 { struct unimapinit ui; 1307 if (!perm) 1308 goto eperm; 1309 ret = copy_from_user(&ui, up, sizeof(struct unimapinit)); 1310 if (ret) 1311 ret = -EFAULT; 1312 else 1313 con_clear_unimap(vc, &ui); 1314 break; 1315 } 1316 1317 case PIO_UNIMAP: 1318 case GIO_UNIMAP: 1319 ret = do_unimap_ioctl(cmd, up, perm, vc); 1320 break; 1321 1322 case VT_LOCKSWITCH: 1323 if (!capable(CAP_SYS_TTY_CONFIG)) 1324 goto eperm; 1325 vt_dont_switch = 1; 1326 break; 1327 case VT_UNLOCKSWITCH: 1328 if (!capable(CAP_SYS_TTY_CONFIG)) 1329 goto eperm; 1330 vt_dont_switch = 0; 1331 break; 1332 case VT_GETHIFONTMASK: 1333 ret = put_user(vc->vc_hi_font_mask, 1334 (unsigned short __user *)arg); 1335 break; 1336 case VT_WAITEVENT: 1337 ret = vt_event_wait_ioctl((struct vt_event __user *)arg); 1338 break; 1339 default: 1340 ret = -ENOIOCTLCMD; 1341 } 1342 out: 1343 tty_unlock(); 1344 return ret; 1345 eperm: 1346 ret = -EPERM; 1347 goto out; 1348 } 1349 1350 void reset_vc(struct vc_data *vc) 1351 { 1352 vc->vc_mode = KD_TEXT; 1353 kbd_table[vc->vc_num].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE; 1354 vc->vt_mode.mode = VT_AUTO; 1355 vc->vt_mode.waitv = 0; 1356 vc->vt_mode.relsig = 0; 1357 vc->vt_mode.acqsig = 0; 1358 vc->vt_mode.frsig = 0; 1359 put_pid(vc->vt_pid); 1360 vc->vt_pid = NULL; 1361 vc->vt_newvt = -1; 1362 if (!in_interrupt()) /* Via keyboard.c:SAK() - akpm */ 1363 reset_palette(vc); 1364 } 1365 1366 void vc_SAK(struct work_struct *work) 1367 { 1368 struct vc *vc_con = 1369 container_of(work, struct vc, SAK_work); 1370 struct vc_data *vc; 1371 struct tty_struct *tty; 1372 1373 console_lock(); 1374 vc = vc_con->d; 1375 if (vc) { 1376 tty = vc->port.tty; 1377 /* 1378 * SAK should also work in all raw modes and reset 1379 * them properly. 1380 */ 1381 if (tty) 1382 __do_SAK(tty); 1383 reset_vc(vc); 1384 } 1385 console_unlock(); 1386 } 1387 1388 #ifdef CONFIG_COMPAT 1389 1390 struct compat_consolefontdesc { 1391 unsigned short charcount; /* characters in font (256 or 512) */ 1392 unsigned short charheight; /* scan lines per character (1-32) */ 1393 compat_caddr_t chardata; /* font data in expanded form */ 1394 }; 1395 1396 static inline int 1397 compat_fontx_ioctl(int cmd, struct compat_consolefontdesc __user *user_cfd, 1398 int perm, struct console_font_op *op) 1399 { 1400 struct compat_consolefontdesc cfdarg; 1401 int i; 1402 1403 if (copy_from_user(&cfdarg, user_cfd, sizeof(struct compat_consolefontdesc))) 1404 return -EFAULT; 1405 1406 switch (cmd) { 1407 case PIO_FONTX: 1408 if (!perm) 1409 return -EPERM; 1410 op->op = KD_FONT_OP_SET; 1411 op->flags = KD_FONT_FLAG_OLD; 1412 op->width = 8; 1413 op->height = cfdarg.charheight; 1414 op->charcount = cfdarg.charcount; 1415 op->data = compat_ptr(cfdarg.chardata); 1416 return con_font_op(vc_cons[fg_console].d, op); 1417 case GIO_FONTX: 1418 op->op = KD_FONT_OP_GET; 1419 op->flags = KD_FONT_FLAG_OLD; 1420 op->width = 8; 1421 op->height = cfdarg.charheight; 1422 op->charcount = cfdarg.charcount; 1423 op->data = compat_ptr(cfdarg.chardata); 1424 i = con_font_op(vc_cons[fg_console].d, op); 1425 if (i) 1426 return i; 1427 cfdarg.charheight = op->height; 1428 cfdarg.charcount = op->charcount; 1429 if (copy_to_user(user_cfd, &cfdarg, sizeof(struct compat_consolefontdesc))) 1430 return -EFAULT; 1431 return 0; 1432 } 1433 return -EINVAL; 1434 } 1435 1436 struct compat_console_font_op { 1437 compat_uint_t op; /* operation code KD_FONT_OP_* */ 1438 compat_uint_t flags; /* KD_FONT_FLAG_* */ 1439 compat_uint_t width, height; /* font size */ 1440 compat_uint_t charcount; 1441 compat_caddr_t data; /* font data with height fixed to 32 */ 1442 }; 1443 1444 static inline int 1445 compat_kdfontop_ioctl(struct compat_console_font_op __user *fontop, 1446 int perm, struct console_font_op *op, struct vc_data *vc) 1447 { 1448 int i; 1449 1450 if (copy_from_user(op, fontop, sizeof(struct compat_console_font_op))) 1451 return -EFAULT; 1452 if (!perm && op->op != KD_FONT_OP_GET) 1453 return -EPERM; 1454 op->data = compat_ptr(((struct compat_console_font_op *)op)->data); 1455 op->flags |= KD_FONT_FLAG_OLD; 1456 i = con_font_op(vc, op); 1457 if (i) 1458 return i; 1459 ((struct compat_console_font_op *)op)->data = (unsigned long)op->data; 1460 if (copy_to_user(fontop, op, sizeof(struct compat_console_font_op))) 1461 return -EFAULT; 1462 return 0; 1463 } 1464 1465 struct compat_unimapdesc { 1466 unsigned short entry_ct; 1467 compat_caddr_t entries; 1468 }; 1469 1470 static inline int 1471 compat_unimap_ioctl(unsigned int cmd, struct compat_unimapdesc __user *user_ud, 1472 int perm, struct vc_data *vc) 1473 { 1474 struct compat_unimapdesc tmp; 1475 struct unipair __user *tmp_entries; 1476 1477 if (copy_from_user(&tmp, user_ud, sizeof tmp)) 1478 return -EFAULT; 1479 tmp_entries = compat_ptr(tmp.entries); 1480 if (tmp_entries) 1481 if (!access_ok(VERIFY_WRITE, tmp_entries, 1482 tmp.entry_ct*sizeof(struct unipair))) 1483 return -EFAULT; 1484 switch (cmd) { 1485 case PIO_UNIMAP: 1486 if (!perm) 1487 return -EPERM; 1488 return con_set_unimap(vc, tmp.entry_ct, tmp_entries); 1489 case GIO_UNIMAP: 1490 if (!perm && fg_console != vc->vc_num) 1491 return -EPERM; 1492 return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp_entries); 1493 } 1494 return 0; 1495 } 1496 1497 long vt_compat_ioctl(struct tty_struct *tty, 1498 unsigned int cmd, unsigned long arg) 1499 { 1500 struct vc_data *vc = tty->driver_data; 1501 struct console_font_op op; /* used in multiple places here */ 1502 struct kbd_struct *kbd; 1503 unsigned int console; 1504 void __user *up = (void __user *)arg; 1505 int perm; 1506 int ret = 0; 1507 1508 console = vc->vc_num; 1509 1510 tty_lock(); 1511 1512 if (!vc_cons_allocated(console)) { /* impossible? */ 1513 ret = -ENOIOCTLCMD; 1514 goto out; 1515 } 1516 1517 /* 1518 * To have permissions to do most of the vt ioctls, we either have 1519 * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG. 1520 */ 1521 perm = 0; 1522 if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG)) 1523 perm = 1; 1524 1525 kbd = kbd_table + console; 1526 switch (cmd) { 1527 /* 1528 * these need special handlers for incompatible data structures 1529 */ 1530 case PIO_FONTX: 1531 case GIO_FONTX: 1532 ret = compat_fontx_ioctl(cmd, up, perm, &op); 1533 break; 1534 1535 case KDFONTOP: 1536 ret = compat_kdfontop_ioctl(up, perm, &op, vc); 1537 break; 1538 1539 case PIO_UNIMAP: 1540 case GIO_UNIMAP: 1541 ret = compat_unimap_ioctl(cmd, up, perm, vc); 1542 break; 1543 1544 /* 1545 * all these treat 'arg' as an integer 1546 */ 1547 case KIOCSOUND: 1548 case KDMKTONE: 1549 #ifdef CONFIG_X86 1550 case KDADDIO: 1551 case KDDELIO: 1552 #endif 1553 case KDSETMODE: 1554 case KDMAPDISP: 1555 case KDUNMAPDISP: 1556 case KDSKBMODE: 1557 case KDSKBMETA: 1558 case KDSKBLED: 1559 case KDSETLED: 1560 case KDSIGACCEPT: 1561 case VT_ACTIVATE: 1562 case VT_WAITACTIVE: 1563 case VT_RELDISP: 1564 case VT_DISALLOCATE: 1565 case VT_RESIZE: 1566 case VT_RESIZEX: 1567 goto fallback; 1568 1569 /* 1570 * the rest has a compatible data structure behind arg, 1571 * but we have to convert it to a proper 64 bit pointer. 1572 */ 1573 default: 1574 arg = (unsigned long)compat_ptr(arg); 1575 goto fallback; 1576 } 1577 out: 1578 tty_unlock(); 1579 return ret; 1580 1581 fallback: 1582 tty_unlock(); 1583 return vt_ioctl(tty, cmd, arg); 1584 } 1585 1586 1587 #endif /* CONFIG_COMPAT */ 1588 1589 1590 /* 1591 * Performs the back end of a vt switch. Called under the console 1592 * semaphore. 1593 */ 1594 static void complete_change_console(struct vc_data *vc) 1595 { 1596 unsigned char old_vc_mode; 1597 int old = fg_console; 1598 1599 last_console = fg_console; 1600 1601 /* 1602 * If we're switching, we could be going from KD_GRAPHICS to 1603 * KD_TEXT mode or vice versa, which means we need to blank or 1604 * unblank the screen later. 1605 */ 1606 old_vc_mode = vc_cons[fg_console].d->vc_mode; 1607 switch_screen(vc); 1608 1609 /* 1610 * This can't appear below a successful kill_pid(). If it did, 1611 * then the *blank_screen operation could occur while X, having 1612 * received acqsig, is waking up on another processor. This 1613 * condition can lead to overlapping accesses to the VGA range 1614 * and the framebuffer (causing system lockups). 1615 * 1616 * To account for this we duplicate this code below only if the 1617 * controlling process is gone and we've called reset_vc. 1618 */ 1619 if (old_vc_mode != vc->vc_mode) { 1620 if (vc->vc_mode == KD_TEXT) 1621 do_unblank_screen(1); 1622 else 1623 do_blank_screen(1); 1624 } 1625 1626 /* 1627 * If this new console is under process control, send it a signal 1628 * telling it that it has acquired. Also check if it has died and 1629 * clean up (similar to logic employed in change_console()) 1630 */ 1631 if (vc->vt_mode.mode == VT_PROCESS) { 1632 /* 1633 * Send the signal as privileged - kill_pid() will 1634 * tell us if the process has gone or something else 1635 * is awry 1636 */ 1637 if (kill_pid(vc->vt_pid, vc->vt_mode.acqsig, 1) != 0) { 1638 /* 1639 * The controlling process has died, so we revert back to 1640 * normal operation. In this case, we'll also change back 1641 * to KD_TEXT mode. I'm not sure if this is strictly correct 1642 * but it saves the agony when the X server dies and the screen 1643 * remains blanked due to KD_GRAPHICS! It would be nice to do 1644 * this outside of VT_PROCESS but there is no single process 1645 * to account for and tracking tty count may be undesirable. 1646 */ 1647 reset_vc(vc); 1648 1649 if (old_vc_mode != vc->vc_mode) { 1650 if (vc->vc_mode == KD_TEXT) 1651 do_unblank_screen(1); 1652 else 1653 do_blank_screen(1); 1654 } 1655 } 1656 } 1657 1658 /* 1659 * Wake anyone waiting for their VT to activate 1660 */ 1661 vt_event_post(VT_EVENT_SWITCH, old, vc->vc_num); 1662 return; 1663 } 1664 1665 /* 1666 * Performs the front-end of a vt switch 1667 */ 1668 void change_console(struct vc_data *new_vc) 1669 { 1670 struct vc_data *vc; 1671 1672 if (!new_vc || new_vc->vc_num == fg_console || vt_dont_switch) 1673 return; 1674 1675 /* 1676 * If this vt is in process mode, then we need to handshake with 1677 * that process before switching. Essentially, we store where that 1678 * vt wants to switch to and wait for it to tell us when it's done 1679 * (via VT_RELDISP ioctl). 1680 * 1681 * We also check to see if the controlling process still exists. 1682 * If it doesn't, we reset this vt to auto mode and continue. 1683 * This is a cheap way to track process control. The worst thing 1684 * that can happen is: we send a signal to a process, it dies, and 1685 * the switch gets "lost" waiting for a response; hopefully, the 1686 * user will try again, we'll detect the process is gone (unless 1687 * the user waits just the right amount of time :-) and revert the 1688 * vt to auto control. 1689 */ 1690 vc = vc_cons[fg_console].d; 1691 if (vc->vt_mode.mode == VT_PROCESS) { 1692 /* 1693 * Send the signal as privileged - kill_pid() will 1694 * tell us if the process has gone or something else 1695 * is awry. 1696 * 1697 * We need to set vt_newvt *before* sending the signal or we 1698 * have a race. 1699 */ 1700 vc->vt_newvt = new_vc->vc_num; 1701 if (kill_pid(vc->vt_pid, vc->vt_mode.relsig, 1) == 0) { 1702 /* 1703 * It worked. Mark the vt to switch to and 1704 * return. The process needs to send us a 1705 * VT_RELDISP ioctl to complete the switch. 1706 */ 1707 return; 1708 } 1709 1710 /* 1711 * The controlling process has died, so we revert back to 1712 * normal operation. In this case, we'll also change back 1713 * to KD_TEXT mode. I'm not sure if this is strictly correct 1714 * but it saves the agony when the X server dies and the screen 1715 * remains blanked due to KD_GRAPHICS! It would be nice to do 1716 * this outside of VT_PROCESS but there is no single process 1717 * to account for and tracking tty count may be undesirable. 1718 */ 1719 reset_vc(vc); 1720 1721 /* 1722 * Fall through to normal (VT_AUTO) handling of the switch... 1723 */ 1724 } 1725 1726 /* 1727 * Ignore all switches in KD_GRAPHICS+VT_AUTO mode 1728 */ 1729 if (vc->vc_mode == KD_GRAPHICS) 1730 return; 1731 1732 complete_change_console(new_vc); 1733 } 1734 1735 /* Perform a kernel triggered VT switch for suspend/resume */ 1736 1737 static int disable_vt_switch; 1738 1739 int vt_move_to_console(unsigned int vt, int alloc) 1740 { 1741 int prev; 1742 1743 console_lock(); 1744 /* Graphics mode - up to X */ 1745 if (disable_vt_switch) { 1746 console_unlock(); 1747 return 0; 1748 } 1749 prev = fg_console; 1750 1751 if (alloc && vc_allocate(vt)) { 1752 /* we can't have a free VC for now. Too bad, 1753 * we don't want to mess the screen for now. */ 1754 console_unlock(); 1755 return -ENOSPC; 1756 } 1757 1758 if (set_console(vt)) { 1759 /* 1760 * We're unable to switch to the SUSPEND_CONSOLE. 1761 * Let the calling function know so it can decide 1762 * what to do. 1763 */ 1764 console_unlock(); 1765 return -EIO; 1766 } 1767 console_unlock(); 1768 tty_lock(); 1769 if (vt_waitactive(vt + 1)) { 1770 pr_debug("Suspend: Can't switch VCs."); 1771 tty_unlock(); 1772 return -EINTR; 1773 } 1774 tty_unlock(); 1775 return prev; 1776 } 1777 1778 /* 1779 * Normally during a suspend, we allocate a new console and switch to it. 1780 * When we resume, we switch back to the original console. This switch 1781 * can be slow, so on systems where the framebuffer can handle restoration 1782 * of video registers anyways, there's little point in doing the console 1783 * switch. This function allows you to disable it by passing it '0'. 1784 */ 1785 void pm_set_vt_switch(int do_switch) 1786 { 1787 console_lock(); 1788 disable_vt_switch = !do_switch; 1789 console_unlock(); 1790 } 1791 EXPORT_SYMBOL(pm_set_vt_switch); 1792