xref: /openbmc/linux/drivers/tty/vt/keyboard.c (revision fde04ab9)
1 /*
2  * Written for linux by Johan Myreen as a translation from
3  * the assembly version by Linus (with diacriticals added)
4  *
5  * Some additional features added by Christoph Niemann (ChN), March 1993
6  *
7  * Loadable keymaps by Risto Kankkunen, May 1993
8  *
9  * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
10  * Added decr/incr_console, dynamic keymaps, Unicode support,
11  * dynamic function/string keys, led setting,  Sept 1994
12  * `Sticky' modifier keys, 951006.
13  *
14  * 11-11-96: SAK should now work in the raw mode (Martin Mares)
15  *
16  * Modified to provide 'generic' keyboard support by Hamish Macdonald
17  * Merge with the m68k keyboard driver and split-off of the PC low-level
18  * parts by Geert Uytterhoeven, May 1997
19  *
20  * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
21  * 30-07-98: Dead keys redone, aeb@cwi.nl.
22  * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
23  */
24 
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 
27 #include <linux/consolemap.h>
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/tty.h>
31 #include <linux/tty_flip.h>
32 #include <linux/mm.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/slab.h>
36 
37 #include <linux/kbd_kern.h>
38 #include <linux/kbd_diacr.h>
39 #include <linux/vt_kern.h>
40 #include <linux/input.h>
41 #include <linux/reboot.h>
42 #include <linux/notifier.h>
43 #include <linux/jiffies.h>
44 #include <linux/uaccess.h>
45 
46 #include <asm/irq_regs.h>
47 
48 extern void ctrl_alt_del(void);
49 
50 /*
51  * Exported functions/variables
52  */
53 
54 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
55 
56 #if defined(CONFIG_X86) || defined(CONFIG_PARISC)
57 #include <asm/kbdleds.h>
58 #else
59 static inline int kbd_defleds(void)
60 {
61 	return 0;
62 }
63 #endif
64 
65 #define KBD_DEFLOCK 0
66 
67 /*
68  * Handler Tables.
69  */
70 
71 #define K_HANDLERS\
72 	k_self,		k_fn,		k_spec,		k_pad,\
73 	k_dead,		k_cons,		k_cur,		k_shift,\
74 	k_meta,		k_ascii,	k_lock,		k_lowercase,\
75 	k_slock,	k_dead2,	k_brl,		k_ignore
76 
77 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
78 			    char up_flag);
79 static k_handler_fn K_HANDLERS;
80 static k_handler_fn *k_handler[16] = { K_HANDLERS };
81 
82 #define FN_HANDLERS\
83 	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
84 	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
85 	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
86 	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
87 	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
88 
89 typedef void (fn_handler_fn)(struct vc_data *vc);
90 static fn_handler_fn FN_HANDLERS;
91 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
92 
93 /*
94  * Variables exported for vt_ioctl.c
95  */
96 
97 struct vt_spawn_console vt_spawn_con = {
98 	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
99 	.pid  = NULL,
100 	.sig  = 0,
101 };
102 
103 
104 /*
105  * Internal Data.
106  */
107 
108 static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
109 static struct kbd_struct *kbd = kbd_table;
110 
111 /* maximum values each key_handler can handle */
112 static const int max_vals[] = {
113 	255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
114 	NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
115 	255, NR_LOCK - 1, 255, NR_BRL - 1
116 };
117 
118 static const int NR_TYPES = ARRAY_SIZE(max_vals);
119 
120 static struct input_handler kbd_handler;
121 static DEFINE_SPINLOCK(kbd_event_lock);
122 static DEFINE_SPINLOCK(led_lock);
123 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)];	/* keyboard key bitmap */
124 static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
125 static bool dead_key_next;
126 static int npadch = -1;					/* -1 or number assembled on pad */
127 static unsigned int diacr;
128 static char rep;					/* flag telling character repeat */
129 
130 static int shift_state = 0;
131 
132 static unsigned char ledstate = 0xff;			/* undefined */
133 static unsigned char ledioctl;
134 
135 static struct ledptr {
136 	unsigned int *addr;
137 	unsigned int mask;
138 	unsigned char valid:1;
139 } ledptrs[3];
140 
141 /*
142  * Notifier list for console keyboard events
143  */
144 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
145 
146 int register_keyboard_notifier(struct notifier_block *nb)
147 {
148 	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
149 }
150 EXPORT_SYMBOL_GPL(register_keyboard_notifier);
151 
152 int unregister_keyboard_notifier(struct notifier_block *nb)
153 {
154 	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
155 }
156 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
157 
158 /*
159  * Translation of scancodes to keycodes. We set them on only the first
160  * keyboard in the list that accepts the scancode and keycode.
161  * Explanation for not choosing the first attached keyboard anymore:
162  *  USB keyboards for example have two event devices: one for all "normal"
163  *  keys and one for extra function keys (like "volume up", "make coffee",
164  *  etc.). So this means that scancodes for the extra function keys won't
165  *  be valid for the first event device, but will be for the second.
166  */
167 
168 struct getset_keycode_data {
169 	struct input_keymap_entry ke;
170 	int error;
171 };
172 
173 static int getkeycode_helper(struct input_handle *handle, void *data)
174 {
175 	struct getset_keycode_data *d = data;
176 
177 	d->error = input_get_keycode(handle->dev, &d->ke);
178 
179 	return d->error == 0; /* stop as soon as we successfully get one */
180 }
181 
182 static int getkeycode(unsigned int scancode)
183 {
184 	struct getset_keycode_data d = {
185 		.ke	= {
186 			.flags		= 0,
187 			.len		= sizeof(scancode),
188 			.keycode	= 0,
189 		},
190 		.error	= -ENODEV,
191 	};
192 
193 	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
194 
195 	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
196 
197 	return d.error ?: d.ke.keycode;
198 }
199 
200 static int setkeycode_helper(struct input_handle *handle, void *data)
201 {
202 	struct getset_keycode_data *d = data;
203 
204 	d->error = input_set_keycode(handle->dev, &d->ke);
205 
206 	return d->error == 0; /* stop as soon as we successfully set one */
207 }
208 
209 static int setkeycode(unsigned int scancode, unsigned int keycode)
210 {
211 	struct getset_keycode_data d = {
212 		.ke	= {
213 			.flags		= 0,
214 			.len		= sizeof(scancode),
215 			.keycode	= keycode,
216 		},
217 		.error	= -ENODEV,
218 	};
219 
220 	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
221 
222 	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
223 
224 	return d.error;
225 }
226 
227 /*
228  * Making beeps and bells. Note that we prefer beeps to bells, but when
229  * shutting the sound off we do both.
230  */
231 
232 static int kd_sound_helper(struct input_handle *handle, void *data)
233 {
234 	unsigned int *hz = data;
235 	struct input_dev *dev = handle->dev;
236 
237 	if (test_bit(EV_SND, dev->evbit)) {
238 		if (test_bit(SND_TONE, dev->sndbit)) {
239 			input_inject_event(handle, EV_SND, SND_TONE, *hz);
240 			if (*hz)
241 				return 0;
242 		}
243 		if (test_bit(SND_BELL, dev->sndbit))
244 			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
245 	}
246 
247 	return 0;
248 }
249 
250 static void kd_nosound(unsigned long ignored)
251 {
252 	static unsigned int zero;
253 
254 	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
255 }
256 
257 static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
258 
259 void kd_mksound(unsigned int hz, unsigned int ticks)
260 {
261 	del_timer_sync(&kd_mksound_timer);
262 
263 	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
264 
265 	if (hz && ticks)
266 		mod_timer(&kd_mksound_timer, jiffies + ticks);
267 }
268 EXPORT_SYMBOL(kd_mksound);
269 
270 /*
271  * Setting the keyboard rate.
272  */
273 
274 static int kbd_rate_helper(struct input_handle *handle, void *data)
275 {
276 	struct input_dev *dev = handle->dev;
277 	struct kbd_repeat *rep = data;
278 
279 	if (test_bit(EV_REP, dev->evbit)) {
280 
281 		if (rep[0].delay > 0)
282 			input_inject_event(handle,
283 					   EV_REP, REP_DELAY, rep[0].delay);
284 		if (rep[0].period > 0)
285 			input_inject_event(handle,
286 					   EV_REP, REP_PERIOD, rep[0].period);
287 
288 		rep[1].delay = dev->rep[REP_DELAY];
289 		rep[1].period = dev->rep[REP_PERIOD];
290 	}
291 
292 	return 0;
293 }
294 
295 int kbd_rate(struct kbd_repeat *rep)
296 {
297 	struct kbd_repeat data[2] = { *rep };
298 
299 	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
300 	*rep = data[1];	/* Copy currently used settings */
301 
302 	return 0;
303 }
304 
305 /*
306  * Helper Functions.
307  */
308 static void put_queue(struct vc_data *vc, int ch)
309 {
310 	tty_insert_flip_char(&vc->port, ch, 0);
311 	tty_schedule_flip(&vc->port);
312 }
313 
314 static void puts_queue(struct vc_data *vc, char *cp)
315 {
316 	while (*cp) {
317 		tty_insert_flip_char(&vc->port, *cp, 0);
318 		cp++;
319 	}
320 	tty_schedule_flip(&vc->port);
321 }
322 
323 static void applkey(struct vc_data *vc, int key, char mode)
324 {
325 	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
326 
327 	buf[1] = (mode ? 'O' : '[');
328 	buf[2] = key;
329 	puts_queue(vc, buf);
330 }
331 
332 /*
333  * Many other routines do put_queue, but I think either
334  * they produce ASCII, or they produce some user-assigned
335  * string, and in both cases we might assume that it is
336  * in utf-8 already.
337  */
338 static void to_utf8(struct vc_data *vc, uint c)
339 {
340 	if (c < 0x80)
341 		/*  0******* */
342 		put_queue(vc, c);
343 	else if (c < 0x800) {
344 		/* 110***** 10****** */
345 		put_queue(vc, 0xc0 | (c >> 6));
346 		put_queue(vc, 0x80 | (c & 0x3f));
347 	} else if (c < 0x10000) {
348 		if (c >= 0xD800 && c < 0xE000)
349 			return;
350 		if (c == 0xFFFF)
351 			return;
352 		/* 1110**** 10****** 10****** */
353 		put_queue(vc, 0xe0 | (c >> 12));
354 		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
355 		put_queue(vc, 0x80 | (c & 0x3f));
356 	} else if (c < 0x110000) {
357 		/* 11110*** 10****** 10****** 10****** */
358 		put_queue(vc, 0xf0 | (c >> 18));
359 		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
360 		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
361 		put_queue(vc, 0x80 | (c & 0x3f));
362 	}
363 }
364 
365 /*
366  * Called after returning from RAW mode or when changing consoles - recompute
367  * shift_down[] and shift_state from key_down[] maybe called when keymap is
368  * undefined, so that shiftkey release is seen. The caller must hold the
369  * kbd_event_lock.
370  */
371 
372 static void do_compute_shiftstate(void)
373 {
374 	unsigned int i, j, k, sym, val;
375 
376 	shift_state = 0;
377 	memset(shift_down, 0, sizeof(shift_down));
378 
379 	for (i = 0; i < ARRAY_SIZE(key_down); i++) {
380 
381 		if (!key_down[i])
382 			continue;
383 
384 		k = i * BITS_PER_LONG;
385 
386 		for (j = 0; j < BITS_PER_LONG; j++, k++) {
387 
388 			if (!test_bit(k, key_down))
389 				continue;
390 
391 			sym = U(key_maps[0][k]);
392 			if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
393 				continue;
394 
395 			val = KVAL(sym);
396 			if (val == KVAL(K_CAPSSHIFT))
397 				val = KVAL(K_SHIFT);
398 
399 			shift_down[val]++;
400 			shift_state |= (1 << val);
401 		}
402 	}
403 }
404 
405 /* We still have to export this method to vt.c */
406 void compute_shiftstate(void)
407 {
408 	unsigned long flags;
409 	spin_lock_irqsave(&kbd_event_lock, flags);
410 	do_compute_shiftstate();
411 	spin_unlock_irqrestore(&kbd_event_lock, flags);
412 }
413 
414 /*
415  * We have a combining character DIACR here, followed by the character CH.
416  * If the combination occurs in the table, return the corresponding value.
417  * Otherwise, if CH is a space or equals DIACR, return DIACR.
418  * Otherwise, conclude that DIACR was not combining after all,
419  * queue it and return CH.
420  */
421 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
422 {
423 	unsigned int d = diacr;
424 	unsigned int i;
425 
426 	diacr = 0;
427 
428 	if ((d & ~0xff) == BRL_UC_ROW) {
429 		if ((ch & ~0xff) == BRL_UC_ROW)
430 			return d | ch;
431 	} else {
432 		for (i = 0; i < accent_table_size; i++)
433 			if (accent_table[i].diacr == d && accent_table[i].base == ch)
434 				return accent_table[i].result;
435 	}
436 
437 	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
438 		return d;
439 
440 	if (kbd->kbdmode == VC_UNICODE)
441 		to_utf8(vc, d);
442 	else {
443 		int c = conv_uni_to_8bit(d);
444 		if (c != -1)
445 			put_queue(vc, c);
446 	}
447 
448 	return ch;
449 }
450 
451 /*
452  * Special function handlers
453  */
454 static void fn_enter(struct vc_data *vc)
455 {
456 	if (diacr) {
457 		if (kbd->kbdmode == VC_UNICODE)
458 			to_utf8(vc, diacr);
459 		else {
460 			int c = conv_uni_to_8bit(diacr);
461 			if (c != -1)
462 				put_queue(vc, c);
463 		}
464 		diacr = 0;
465 	}
466 
467 	put_queue(vc, 13);
468 	if (vc_kbd_mode(kbd, VC_CRLF))
469 		put_queue(vc, 10);
470 }
471 
472 static void fn_caps_toggle(struct vc_data *vc)
473 {
474 	if (rep)
475 		return;
476 
477 	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
478 }
479 
480 static void fn_caps_on(struct vc_data *vc)
481 {
482 	if (rep)
483 		return;
484 
485 	set_vc_kbd_led(kbd, VC_CAPSLOCK);
486 }
487 
488 static void fn_show_ptregs(struct vc_data *vc)
489 {
490 	struct pt_regs *regs = get_irq_regs();
491 
492 	if (regs)
493 		show_regs(regs);
494 }
495 
496 static void fn_hold(struct vc_data *vc)
497 {
498 	struct tty_struct *tty = vc->port.tty;
499 
500 	if (rep || !tty)
501 		return;
502 
503 	/*
504 	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
505 	 * these routines are also activated by ^S/^Q.
506 	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
507 	 */
508 	if (tty->stopped)
509 		start_tty(tty);
510 	else
511 		stop_tty(tty);
512 }
513 
514 static void fn_num(struct vc_data *vc)
515 {
516 	if (vc_kbd_mode(kbd, VC_APPLIC))
517 		applkey(vc, 'P', 1);
518 	else
519 		fn_bare_num(vc);
520 }
521 
522 /*
523  * Bind this to Shift-NumLock if you work in application keypad mode
524  * but want to be able to change the NumLock flag.
525  * Bind this to NumLock if you prefer that the NumLock key always
526  * changes the NumLock flag.
527  */
528 static void fn_bare_num(struct vc_data *vc)
529 {
530 	if (!rep)
531 		chg_vc_kbd_led(kbd, VC_NUMLOCK);
532 }
533 
534 static void fn_lastcons(struct vc_data *vc)
535 {
536 	/* switch to the last used console, ChN */
537 	set_console(last_console);
538 }
539 
540 static void fn_dec_console(struct vc_data *vc)
541 {
542 	int i, cur = fg_console;
543 
544 	/* Currently switching?  Queue this next switch relative to that. */
545 	if (want_console != -1)
546 		cur = want_console;
547 
548 	for (i = cur - 1; i != cur; i--) {
549 		if (i == -1)
550 			i = MAX_NR_CONSOLES - 1;
551 		if (vc_cons_allocated(i))
552 			break;
553 	}
554 	set_console(i);
555 }
556 
557 static void fn_inc_console(struct vc_data *vc)
558 {
559 	int i, cur = fg_console;
560 
561 	/* Currently switching?  Queue this next switch relative to that. */
562 	if (want_console != -1)
563 		cur = want_console;
564 
565 	for (i = cur+1; i != cur; i++) {
566 		if (i == MAX_NR_CONSOLES)
567 			i = 0;
568 		if (vc_cons_allocated(i))
569 			break;
570 	}
571 	set_console(i);
572 }
573 
574 static void fn_send_intr(struct vc_data *vc)
575 {
576 	tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
577 	tty_schedule_flip(&vc->port);
578 }
579 
580 static void fn_scroll_forw(struct vc_data *vc)
581 {
582 	scrollfront(vc, 0);
583 }
584 
585 static void fn_scroll_back(struct vc_data *vc)
586 {
587 	scrollback(vc, 0);
588 }
589 
590 static void fn_show_mem(struct vc_data *vc)
591 {
592 	show_mem(0);
593 }
594 
595 static void fn_show_state(struct vc_data *vc)
596 {
597 	show_state();
598 }
599 
600 static void fn_boot_it(struct vc_data *vc)
601 {
602 	ctrl_alt_del();
603 }
604 
605 static void fn_compose(struct vc_data *vc)
606 {
607 	dead_key_next = true;
608 }
609 
610 static void fn_spawn_con(struct vc_data *vc)
611 {
612 	spin_lock(&vt_spawn_con.lock);
613 	if (vt_spawn_con.pid)
614 		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
615 			put_pid(vt_spawn_con.pid);
616 			vt_spawn_con.pid = NULL;
617 		}
618 	spin_unlock(&vt_spawn_con.lock);
619 }
620 
621 static void fn_SAK(struct vc_data *vc)
622 {
623 	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
624 	schedule_work(SAK_work);
625 }
626 
627 static void fn_null(struct vc_data *vc)
628 {
629 	do_compute_shiftstate();
630 }
631 
632 /*
633  * Special key handlers
634  */
635 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
636 {
637 }
638 
639 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
640 {
641 	if (up_flag)
642 		return;
643 	if (value >= ARRAY_SIZE(fn_handler))
644 		return;
645 	if ((kbd->kbdmode == VC_RAW ||
646 	     kbd->kbdmode == VC_MEDIUMRAW ||
647 	     kbd->kbdmode == VC_OFF) &&
648 	     value != KVAL(K_SAK))
649 		return;		/* SAK is allowed even in raw mode */
650 	fn_handler[value](vc);
651 }
652 
653 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
654 {
655 	pr_err("k_lowercase was called - impossible\n");
656 }
657 
658 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
659 {
660 	if (up_flag)
661 		return;		/* no action, if this is a key release */
662 
663 	if (diacr)
664 		value = handle_diacr(vc, value);
665 
666 	if (dead_key_next) {
667 		dead_key_next = false;
668 		diacr = value;
669 		return;
670 	}
671 	if (kbd->kbdmode == VC_UNICODE)
672 		to_utf8(vc, value);
673 	else {
674 		int c = conv_uni_to_8bit(value);
675 		if (c != -1)
676 			put_queue(vc, c);
677 	}
678 }
679 
680 /*
681  * Handle dead key. Note that we now may have several
682  * dead keys modifying the same character. Very useful
683  * for Vietnamese.
684  */
685 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
686 {
687 	if (up_flag)
688 		return;
689 
690 	diacr = (diacr ? handle_diacr(vc, value) : value);
691 }
692 
693 static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
694 {
695 	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
696 }
697 
698 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
699 {
700 	k_deadunicode(vc, value, up_flag);
701 }
702 
703 /*
704  * Obsolete - for backwards compatibility only
705  */
706 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
707 {
708 	static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
709 
710 	k_deadunicode(vc, ret_diacr[value], up_flag);
711 }
712 
713 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
714 {
715 	if (up_flag)
716 		return;
717 
718 	set_console(value);
719 }
720 
721 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
722 {
723 	if (up_flag)
724 		return;
725 
726 	if ((unsigned)value < ARRAY_SIZE(func_table)) {
727 		if (func_table[value])
728 			puts_queue(vc, func_table[value]);
729 	} else
730 		pr_err("k_fn called with value=%d\n", value);
731 }
732 
733 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
734 {
735 	static const char cur_chars[] = "BDCA";
736 
737 	if (up_flag)
738 		return;
739 
740 	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
741 }
742 
743 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
744 {
745 	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
746 	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
747 
748 	if (up_flag)
749 		return;		/* no action, if this is a key release */
750 
751 	/* kludge... shift forces cursor/number keys */
752 	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
753 		applkey(vc, app_map[value], 1);
754 		return;
755 	}
756 
757 	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
758 
759 		switch (value) {
760 		case KVAL(K_PCOMMA):
761 		case KVAL(K_PDOT):
762 			k_fn(vc, KVAL(K_REMOVE), 0);
763 			return;
764 		case KVAL(K_P0):
765 			k_fn(vc, KVAL(K_INSERT), 0);
766 			return;
767 		case KVAL(K_P1):
768 			k_fn(vc, KVAL(K_SELECT), 0);
769 			return;
770 		case KVAL(K_P2):
771 			k_cur(vc, KVAL(K_DOWN), 0);
772 			return;
773 		case KVAL(K_P3):
774 			k_fn(vc, KVAL(K_PGDN), 0);
775 			return;
776 		case KVAL(K_P4):
777 			k_cur(vc, KVAL(K_LEFT), 0);
778 			return;
779 		case KVAL(K_P6):
780 			k_cur(vc, KVAL(K_RIGHT), 0);
781 			return;
782 		case KVAL(K_P7):
783 			k_fn(vc, KVAL(K_FIND), 0);
784 			return;
785 		case KVAL(K_P8):
786 			k_cur(vc, KVAL(K_UP), 0);
787 			return;
788 		case KVAL(K_P9):
789 			k_fn(vc, KVAL(K_PGUP), 0);
790 			return;
791 		case KVAL(K_P5):
792 			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
793 			return;
794 		}
795 	}
796 
797 	put_queue(vc, pad_chars[value]);
798 	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
799 		put_queue(vc, 10);
800 }
801 
802 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
803 {
804 	int old_state = shift_state;
805 
806 	if (rep)
807 		return;
808 	/*
809 	 * Mimic typewriter:
810 	 * a CapsShift key acts like Shift but undoes CapsLock
811 	 */
812 	if (value == KVAL(K_CAPSSHIFT)) {
813 		value = KVAL(K_SHIFT);
814 		if (!up_flag)
815 			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
816 	}
817 
818 	if (up_flag) {
819 		/*
820 		 * handle the case that two shift or control
821 		 * keys are depressed simultaneously
822 		 */
823 		if (shift_down[value])
824 			shift_down[value]--;
825 	} else
826 		shift_down[value]++;
827 
828 	if (shift_down[value])
829 		shift_state |= (1 << value);
830 	else
831 		shift_state &= ~(1 << value);
832 
833 	/* kludge */
834 	if (up_flag && shift_state != old_state && npadch != -1) {
835 		if (kbd->kbdmode == VC_UNICODE)
836 			to_utf8(vc, npadch);
837 		else
838 			put_queue(vc, npadch & 0xff);
839 		npadch = -1;
840 	}
841 }
842 
843 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
844 {
845 	if (up_flag)
846 		return;
847 
848 	if (vc_kbd_mode(kbd, VC_META)) {
849 		put_queue(vc, '\033');
850 		put_queue(vc, value);
851 	} else
852 		put_queue(vc, value | 0x80);
853 }
854 
855 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
856 {
857 	int base;
858 
859 	if (up_flag)
860 		return;
861 
862 	if (value < 10) {
863 		/* decimal input of code, while Alt depressed */
864 		base = 10;
865 	} else {
866 		/* hexadecimal input of code, while AltGr depressed */
867 		value -= 10;
868 		base = 16;
869 	}
870 
871 	if (npadch == -1)
872 		npadch = value;
873 	else
874 		npadch = npadch * base + value;
875 }
876 
877 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
878 {
879 	if (up_flag || rep)
880 		return;
881 
882 	chg_vc_kbd_lock(kbd, value);
883 }
884 
885 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
886 {
887 	k_shift(vc, value, up_flag);
888 	if (up_flag || rep)
889 		return;
890 
891 	chg_vc_kbd_slock(kbd, value);
892 	/* try to make Alt, oops, AltGr and such work */
893 	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
894 		kbd->slockstate = 0;
895 		chg_vc_kbd_slock(kbd, value);
896 	}
897 }
898 
899 /* by default, 300ms interval for combination release */
900 static unsigned brl_timeout = 300;
901 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
902 module_param(brl_timeout, uint, 0644);
903 
904 static unsigned brl_nbchords = 1;
905 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
906 module_param(brl_nbchords, uint, 0644);
907 
908 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
909 {
910 	static unsigned long chords;
911 	static unsigned committed;
912 
913 	if (!brl_nbchords)
914 		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
915 	else {
916 		committed |= pattern;
917 		chords++;
918 		if (chords == brl_nbchords) {
919 			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
920 			chords = 0;
921 			committed = 0;
922 		}
923 	}
924 }
925 
926 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
927 {
928 	static unsigned pressed, committing;
929 	static unsigned long releasestart;
930 
931 	if (kbd->kbdmode != VC_UNICODE) {
932 		if (!up_flag)
933 			pr_warning("keyboard mode must be unicode for braille patterns\n");
934 		return;
935 	}
936 
937 	if (!value) {
938 		k_unicode(vc, BRL_UC_ROW, up_flag);
939 		return;
940 	}
941 
942 	if (value > 8)
943 		return;
944 
945 	if (!up_flag) {
946 		pressed |= 1 << (value - 1);
947 		if (!brl_timeout)
948 			committing = pressed;
949 	} else if (brl_timeout) {
950 		if (!committing ||
951 		    time_after(jiffies,
952 			       releasestart + msecs_to_jiffies(brl_timeout))) {
953 			committing = pressed;
954 			releasestart = jiffies;
955 		}
956 		pressed &= ~(1 << (value - 1));
957 		if (!pressed && committing) {
958 			k_brlcommit(vc, committing, 0);
959 			committing = 0;
960 		}
961 	} else {
962 		if (committing) {
963 			k_brlcommit(vc, committing, 0);
964 			committing = 0;
965 		}
966 		pressed &= ~(1 << (value - 1));
967 	}
968 }
969 
970 /*
971  * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
972  * or (ii) whatever pattern of lights people want to show using KDSETLED,
973  * or (iii) specified bits of specified words in kernel memory.
974  */
975 static unsigned char getledstate(void)
976 {
977 	return ledstate;
978 }
979 
980 void setledstate(struct kbd_struct *kbd, unsigned int led)
981 {
982         unsigned long flags;
983         spin_lock_irqsave(&led_lock, flags);
984 	if (!(led & ~7)) {
985 		ledioctl = led;
986 		kbd->ledmode = LED_SHOW_IOCTL;
987 	} else
988 		kbd->ledmode = LED_SHOW_FLAGS;
989 
990 	set_leds();
991 	spin_unlock_irqrestore(&led_lock, flags);
992 }
993 
994 static inline unsigned char getleds(void)
995 {
996 	struct kbd_struct *kbd = kbd_table + fg_console;
997 	unsigned char leds;
998 	int i;
999 
1000 	if (kbd->ledmode == LED_SHOW_IOCTL)
1001 		return ledioctl;
1002 
1003 	leds = kbd->ledflagstate;
1004 
1005 	if (kbd->ledmode == LED_SHOW_MEM) {
1006 		for (i = 0; i < 3; i++)
1007 			if (ledptrs[i].valid) {
1008 				if (*ledptrs[i].addr & ledptrs[i].mask)
1009 					leds |= (1 << i);
1010 				else
1011 					leds &= ~(1 << i);
1012 			}
1013 	}
1014 	return leds;
1015 }
1016 
1017 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1018 {
1019 	unsigned char leds = *(unsigned char *)data;
1020 
1021 	if (test_bit(EV_LED, handle->dev->evbit)) {
1022 		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1023 		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & 0x02));
1024 		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & 0x04));
1025 		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1026 	}
1027 
1028 	return 0;
1029 }
1030 
1031 /**
1032  *	vt_get_leds	-	helper for braille console
1033  *	@console: console to read
1034  *	@flag: flag we want to check
1035  *
1036  *	Check the status of a keyboard led flag and report it back
1037  */
1038 int vt_get_leds(int console, int flag)
1039 {
1040 	struct kbd_struct * kbd = kbd_table + console;
1041 	int ret;
1042 	unsigned long flags;
1043 
1044 	spin_lock_irqsave(&led_lock, flags);
1045 	ret = vc_kbd_led(kbd, flag);
1046 	spin_unlock_irqrestore(&led_lock, flags);
1047 
1048 	return ret;
1049 }
1050 EXPORT_SYMBOL_GPL(vt_get_leds);
1051 
1052 /**
1053  *	vt_set_led_state	-	set LED state of a console
1054  *	@console: console to set
1055  *	@leds: LED bits
1056  *
1057  *	Set the LEDs on a console. This is a wrapper for the VT layer
1058  *	so that we can keep kbd knowledge internal
1059  */
1060 void vt_set_led_state(int console, int leds)
1061 {
1062 	struct kbd_struct * kbd = kbd_table + console;
1063 	setledstate(kbd, leds);
1064 }
1065 
1066 /**
1067  *	vt_kbd_con_start	-	Keyboard side of console start
1068  *	@console: console
1069  *
1070  *	Handle console start. This is a wrapper for the VT layer
1071  *	so that we can keep kbd knowledge internal
1072  *
1073  *	FIXME: We eventually need to hold the kbd lock here to protect
1074  *	the LED updating. We can't do it yet because fn_hold calls stop_tty
1075  *	and start_tty under the kbd_event_lock, while normal tty paths
1076  *	don't hold the lock. We probably need to split out an LED lock
1077  *	but not during an -rc release!
1078  */
1079 void vt_kbd_con_start(int console)
1080 {
1081 	struct kbd_struct * kbd = kbd_table + console;
1082 	unsigned long flags;
1083 	spin_lock_irqsave(&led_lock, flags);
1084 	clr_vc_kbd_led(kbd, VC_SCROLLOCK);
1085 	set_leds();
1086 	spin_unlock_irqrestore(&led_lock, flags);
1087 }
1088 
1089 /**
1090  *	vt_kbd_con_stop		-	Keyboard side of console stop
1091  *	@console: console
1092  *
1093  *	Handle console stop. This is a wrapper for the VT layer
1094  *	so that we can keep kbd knowledge internal
1095  */
1096 void vt_kbd_con_stop(int console)
1097 {
1098 	struct kbd_struct * kbd = kbd_table + console;
1099 	unsigned long flags;
1100 	spin_lock_irqsave(&led_lock, flags);
1101 	set_vc_kbd_led(kbd, VC_SCROLLOCK);
1102 	set_leds();
1103 	spin_unlock_irqrestore(&led_lock, flags);
1104 }
1105 
1106 /*
1107  * This is the tasklet that updates LED state on all keyboards
1108  * attached to the box. The reason we use tasklet is that we
1109  * need to handle the scenario when keyboard handler is not
1110  * registered yet but we already getting updates from the VT to
1111  * update led state.
1112  */
1113 static void kbd_bh(unsigned long dummy)
1114 {
1115 	unsigned char leds;
1116 	unsigned long flags;
1117 
1118 	spin_lock_irqsave(&led_lock, flags);
1119 	leds = getleds();
1120 	spin_unlock_irqrestore(&led_lock, flags);
1121 
1122 	if (leds != ledstate) {
1123 		input_handler_for_each_handle(&kbd_handler, &leds,
1124 					      kbd_update_leds_helper);
1125 		ledstate = leds;
1126 	}
1127 }
1128 
1129 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1130 
1131 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1132     defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1133     defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1134     (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1135     defined(CONFIG_AVR32)
1136 
1137 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1138 			((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1139 
1140 static const unsigned short x86_keycodes[256] =
1141 	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1142 	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1143 	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1144 	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1145 	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1146 	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1147 	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1148 	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1149 	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1150 	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1151 	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1152 	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1153 	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1154 	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1155 	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1156 
1157 #ifdef CONFIG_SPARC
1158 static int sparc_l1_a_state;
1159 extern void sun_do_break(void);
1160 #endif
1161 
1162 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1163 		       unsigned char up_flag)
1164 {
1165 	int code;
1166 
1167 	switch (keycode) {
1168 
1169 	case KEY_PAUSE:
1170 		put_queue(vc, 0xe1);
1171 		put_queue(vc, 0x1d | up_flag);
1172 		put_queue(vc, 0x45 | up_flag);
1173 		break;
1174 
1175 	case KEY_HANGEUL:
1176 		if (!up_flag)
1177 			put_queue(vc, 0xf2);
1178 		break;
1179 
1180 	case KEY_HANJA:
1181 		if (!up_flag)
1182 			put_queue(vc, 0xf1);
1183 		break;
1184 
1185 	case KEY_SYSRQ:
1186 		/*
1187 		 * Real AT keyboards (that's what we're trying
1188 		 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1189 		 * pressing PrtSc/SysRq alone, but simply 0x54
1190 		 * when pressing Alt+PrtSc/SysRq.
1191 		 */
1192 		if (test_bit(KEY_LEFTALT, key_down) ||
1193 		    test_bit(KEY_RIGHTALT, key_down)) {
1194 			put_queue(vc, 0x54 | up_flag);
1195 		} else {
1196 			put_queue(vc, 0xe0);
1197 			put_queue(vc, 0x2a | up_flag);
1198 			put_queue(vc, 0xe0);
1199 			put_queue(vc, 0x37 | up_flag);
1200 		}
1201 		break;
1202 
1203 	default:
1204 		if (keycode > 255)
1205 			return -1;
1206 
1207 		code = x86_keycodes[keycode];
1208 		if (!code)
1209 			return -1;
1210 
1211 		if (code & 0x100)
1212 			put_queue(vc, 0xe0);
1213 		put_queue(vc, (code & 0x7f) | up_flag);
1214 
1215 		break;
1216 	}
1217 
1218 	return 0;
1219 }
1220 
1221 #else
1222 
1223 #define HW_RAW(dev)	0
1224 
1225 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1226 {
1227 	if (keycode > 127)
1228 		return -1;
1229 
1230 	put_queue(vc, keycode | up_flag);
1231 	return 0;
1232 }
1233 #endif
1234 
1235 static void kbd_rawcode(unsigned char data)
1236 {
1237 	struct vc_data *vc = vc_cons[fg_console].d;
1238 
1239 	kbd = kbd_table + vc->vc_num;
1240 	if (kbd->kbdmode == VC_RAW)
1241 		put_queue(vc, data);
1242 }
1243 
1244 static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1245 {
1246 	struct vc_data *vc = vc_cons[fg_console].d;
1247 	unsigned short keysym, *key_map;
1248 	unsigned char type;
1249 	bool raw_mode;
1250 	struct tty_struct *tty;
1251 	int shift_final;
1252 	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1253 	int rc;
1254 
1255 	tty = vc->port.tty;
1256 
1257 	if (tty && (!tty->driver_data)) {
1258 		/* No driver data? Strange. Okay we fix it then. */
1259 		tty->driver_data = vc;
1260 	}
1261 
1262 	kbd = kbd_table + vc->vc_num;
1263 
1264 #ifdef CONFIG_SPARC
1265 	if (keycode == KEY_STOP)
1266 		sparc_l1_a_state = down;
1267 #endif
1268 
1269 	rep = (down == 2);
1270 
1271 	raw_mode = (kbd->kbdmode == VC_RAW);
1272 	if (raw_mode && !hw_raw)
1273 		if (emulate_raw(vc, keycode, !down << 7))
1274 			if (keycode < BTN_MISC && printk_ratelimit())
1275 				pr_warning("can't emulate rawmode for keycode %d\n",
1276 					   keycode);
1277 
1278 #ifdef CONFIG_SPARC
1279 	if (keycode == KEY_A && sparc_l1_a_state) {
1280 		sparc_l1_a_state = false;
1281 		sun_do_break();
1282 	}
1283 #endif
1284 
1285 	if (kbd->kbdmode == VC_MEDIUMRAW) {
1286 		/*
1287 		 * This is extended medium raw mode, with keys above 127
1288 		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1289 		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1290 		 * interfere with anything else. The two bytes after 0 will
1291 		 * always have the up flag set not to interfere with older
1292 		 * applications. This allows for 16384 different keycodes,
1293 		 * which should be enough.
1294 		 */
1295 		if (keycode < 128) {
1296 			put_queue(vc, keycode | (!down << 7));
1297 		} else {
1298 			put_queue(vc, !down << 7);
1299 			put_queue(vc, (keycode >> 7) | 0x80);
1300 			put_queue(vc, keycode | 0x80);
1301 		}
1302 		raw_mode = true;
1303 	}
1304 
1305 	if (down)
1306 		set_bit(keycode, key_down);
1307 	else
1308 		clear_bit(keycode, key_down);
1309 
1310 	if (rep &&
1311 	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1312 	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1313 		/*
1314 		 * Don't repeat a key if the input buffers are not empty and the
1315 		 * characters get aren't echoed locally. This makes key repeat
1316 		 * usable with slow applications and under heavy loads.
1317 		 */
1318 		return;
1319 	}
1320 
1321 	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1322 	param.ledstate = kbd->ledflagstate;
1323 	key_map = key_maps[shift_final];
1324 
1325 	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1326 					KBD_KEYCODE, &param);
1327 	if (rc == NOTIFY_STOP || !key_map) {
1328 		atomic_notifier_call_chain(&keyboard_notifier_list,
1329 					   KBD_UNBOUND_KEYCODE, &param);
1330 		do_compute_shiftstate();
1331 		kbd->slockstate = 0;
1332 		return;
1333 	}
1334 
1335 	if (keycode < NR_KEYS)
1336 		keysym = key_map[keycode];
1337 	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1338 		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1339 	else
1340 		return;
1341 
1342 	type = KTYP(keysym);
1343 
1344 	if (type < 0xf0) {
1345 		param.value = keysym;
1346 		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1347 						KBD_UNICODE, &param);
1348 		if (rc != NOTIFY_STOP)
1349 			if (down && !raw_mode)
1350 				to_utf8(vc, keysym);
1351 		return;
1352 	}
1353 
1354 	type -= 0xf0;
1355 
1356 	if (type == KT_LETTER) {
1357 		type = KT_LATIN;
1358 		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1359 			key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1360 			if (key_map)
1361 				keysym = key_map[keycode];
1362 		}
1363 	}
1364 
1365 	param.value = keysym;
1366 	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1367 					KBD_KEYSYM, &param);
1368 	if (rc == NOTIFY_STOP)
1369 		return;
1370 
1371 	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1372 		return;
1373 
1374 	(*k_handler[type])(vc, keysym & 0xff, !down);
1375 
1376 	param.ledstate = kbd->ledflagstate;
1377 	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1378 
1379 	if (type != KT_SLOCK)
1380 		kbd->slockstate = 0;
1381 }
1382 
1383 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1384 		      unsigned int event_code, int value)
1385 {
1386 	/* We are called with interrupts disabled, just take the lock */
1387 	spin_lock(&kbd_event_lock);
1388 
1389 	if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1390 		kbd_rawcode(value);
1391 	if (event_type == EV_KEY)
1392 		kbd_keycode(event_code, value, HW_RAW(handle->dev));
1393 
1394 	spin_unlock(&kbd_event_lock);
1395 
1396 	tasklet_schedule(&keyboard_tasklet);
1397 	do_poke_blanked_console = 1;
1398 	schedule_console_callback();
1399 }
1400 
1401 static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1402 {
1403 	int i;
1404 
1405 	if (test_bit(EV_SND, dev->evbit))
1406 		return true;
1407 
1408 	if (test_bit(EV_KEY, dev->evbit)) {
1409 		for (i = KEY_RESERVED; i < BTN_MISC; i++)
1410 			if (test_bit(i, dev->keybit))
1411 				return true;
1412 		for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1413 			if (test_bit(i, dev->keybit))
1414 				return true;
1415 	}
1416 
1417 	return false;
1418 }
1419 
1420 /*
1421  * When a keyboard (or other input device) is found, the kbd_connect
1422  * function is called. The function then looks at the device, and if it
1423  * likes it, it can open it and get events from it. In this (kbd_connect)
1424  * function, we should decide which VT to bind that keyboard to initially.
1425  */
1426 static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1427 			const struct input_device_id *id)
1428 {
1429 	struct input_handle *handle;
1430 	int error;
1431 
1432 	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1433 	if (!handle)
1434 		return -ENOMEM;
1435 
1436 	handle->dev = dev;
1437 	handle->handler = handler;
1438 	handle->name = "kbd";
1439 
1440 	error = input_register_handle(handle);
1441 	if (error)
1442 		goto err_free_handle;
1443 
1444 	error = input_open_device(handle);
1445 	if (error)
1446 		goto err_unregister_handle;
1447 
1448 	return 0;
1449 
1450  err_unregister_handle:
1451 	input_unregister_handle(handle);
1452  err_free_handle:
1453 	kfree(handle);
1454 	return error;
1455 }
1456 
1457 static void kbd_disconnect(struct input_handle *handle)
1458 {
1459 	input_close_device(handle);
1460 	input_unregister_handle(handle);
1461 	kfree(handle);
1462 }
1463 
1464 /*
1465  * Start keyboard handler on the new keyboard by refreshing LED state to
1466  * match the rest of the system.
1467  */
1468 static void kbd_start(struct input_handle *handle)
1469 {
1470 	tasklet_disable(&keyboard_tasklet);
1471 
1472 	if (ledstate != 0xff)
1473 		kbd_update_leds_helper(handle, &ledstate);
1474 
1475 	tasklet_enable(&keyboard_tasklet);
1476 }
1477 
1478 static const struct input_device_id kbd_ids[] = {
1479 	{
1480 		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1481 		.evbit = { BIT_MASK(EV_KEY) },
1482 	},
1483 
1484 	{
1485 		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1486 		.evbit = { BIT_MASK(EV_SND) },
1487 	},
1488 
1489 	{ },    /* Terminating entry */
1490 };
1491 
1492 MODULE_DEVICE_TABLE(input, kbd_ids);
1493 
1494 static struct input_handler kbd_handler = {
1495 	.event		= kbd_event,
1496 	.match		= kbd_match,
1497 	.connect	= kbd_connect,
1498 	.disconnect	= kbd_disconnect,
1499 	.start		= kbd_start,
1500 	.name		= "kbd",
1501 	.id_table	= kbd_ids,
1502 };
1503 
1504 int __init kbd_init(void)
1505 {
1506 	int i;
1507 	int error;
1508 
1509 	for (i = 0; i < MAX_NR_CONSOLES; i++) {
1510 		kbd_table[i].ledflagstate = kbd_defleds();
1511 		kbd_table[i].default_ledflagstate = kbd_defleds();
1512 		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1513 		kbd_table[i].lockstate = KBD_DEFLOCK;
1514 		kbd_table[i].slockstate = 0;
1515 		kbd_table[i].modeflags = KBD_DEFMODE;
1516 		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1517 	}
1518 
1519 	error = input_register_handler(&kbd_handler);
1520 	if (error)
1521 		return error;
1522 
1523 	tasklet_enable(&keyboard_tasklet);
1524 	tasklet_schedule(&keyboard_tasklet);
1525 
1526 	return 0;
1527 }
1528 
1529 /* Ioctl support code */
1530 
1531 /**
1532  *	vt_do_diacrit		-	diacritical table updates
1533  *	@cmd: ioctl request
1534  *	@up: pointer to user data for ioctl
1535  *	@perm: permissions check computed by caller
1536  *
1537  *	Update the diacritical tables atomically and safely. Lock them
1538  *	against simultaneous keypresses
1539  */
1540 int vt_do_diacrit(unsigned int cmd, void __user *up, int perm)
1541 {
1542 	struct kbdiacrs __user *a = up;
1543 	unsigned long flags;
1544 	int asize;
1545 	int ret = 0;
1546 
1547 	switch (cmd) {
1548 	case KDGKBDIACR:
1549 	{
1550 		struct kbdiacr *diacr;
1551 		int i;
1552 
1553 		diacr = kmalloc(MAX_DIACR * sizeof(struct kbdiacr),
1554 								GFP_KERNEL);
1555 		if (diacr == NULL)
1556 			return -ENOMEM;
1557 
1558 		/* Lock the diacriticals table, make a copy and then
1559 		   copy it after we unlock */
1560 		spin_lock_irqsave(&kbd_event_lock, flags);
1561 
1562 		asize = accent_table_size;
1563 		for (i = 0; i < asize; i++) {
1564 			diacr[i].diacr = conv_uni_to_8bit(
1565 						accent_table[i].diacr);
1566 			diacr[i].base = conv_uni_to_8bit(
1567 						accent_table[i].base);
1568 			diacr[i].result = conv_uni_to_8bit(
1569 						accent_table[i].result);
1570 		}
1571 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1572 
1573 		if (put_user(asize, &a->kb_cnt))
1574 			ret = -EFAULT;
1575 		else  if (copy_to_user(a->kbdiacr, diacr,
1576 				asize * sizeof(struct kbdiacr)))
1577 			ret = -EFAULT;
1578 		kfree(diacr);
1579 		return ret;
1580 	}
1581 	case KDGKBDIACRUC:
1582 	{
1583 		struct kbdiacrsuc __user *a = up;
1584 		void *buf;
1585 
1586 		buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc),
1587 								GFP_KERNEL);
1588 		if (buf == NULL)
1589 			return -ENOMEM;
1590 
1591 		/* Lock the diacriticals table, make a copy and then
1592 		   copy it after we unlock */
1593 		spin_lock_irqsave(&kbd_event_lock, flags);
1594 
1595 		asize = accent_table_size;
1596 		memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1597 
1598 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1599 
1600 		if (put_user(asize, &a->kb_cnt))
1601 			ret = -EFAULT;
1602 		else if (copy_to_user(a->kbdiacruc, buf,
1603 				asize*sizeof(struct kbdiacruc)))
1604 			ret = -EFAULT;
1605 		kfree(buf);
1606 		return ret;
1607 	}
1608 
1609 	case KDSKBDIACR:
1610 	{
1611 		struct kbdiacrs __user *a = up;
1612 		struct kbdiacr *diacr = NULL;
1613 		unsigned int ct;
1614 		int i;
1615 
1616 		if (!perm)
1617 			return -EPERM;
1618 		if (get_user(ct, &a->kb_cnt))
1619 			return -EFAULT;
1620 		if (ct >= MAX_DIACR)
1621 			return -EINVAL;
1622 
1623 		if (ct) {
1624 			diacr = kmalloc(sizeof(struct kbdiacr) * ct,
1625 								GFP_KERNEL);
1626 			if (diacr == NULL)
1627 				return -ENOMEM;
1628 
1629 			if (copy_from_user(diacr, a->kbdiacr,
1630 					sizeof(struct kbdiacr) * ct)) {
1631 				kfree(diacr);
1632 				return -EFAULT;
1633 			}
1634 		}
1635 
1636 		spin_lock_irqsave(&kbd_event_lock, flags);
1637 		accent_table_size = ct;
1638 		for (i = 0; i < ct; i++) {
1639 			accent_table[i].diacr =
1640 					conv_8bit_to_uni(diacr[i].diacr);
1641 			accent_table[i].base =
1642 					conv_8bit_to_uni(diacr[i].base);
1643 			accent_table[i].result =
1644 					conv_8bit_to_uni(diacr[i].result);
1645 		}
1646 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1647 		kfree(diacr);
1648 		return 0;
1649 	}
1650 
1651 	case KDSKBDIACRUC:
1652 	{
1653 		struct kbdiacrsuc __user *a = up;
1654 		unsigned int ct;
1655 		void *buf = NULL;
1656 
1657 		if (!perm)
1658 			return -EPERM;
1659 
1660 		if (get_user(ct, &a->kb_cnt))
1661 			return -EFAULT;
1662 
1663 		if (ct >= MAX_DIACR)
1664 			return -EINVAL;
1665 
1666 		if (ct) {
1667 			buf = kmalloc(ct * sizeof(struct kbdiacruc),
1668 								GFP_KERNEL);
1669 			if (buf == NULL)
1670 				return -ENOMEM;
1671 
1672 			if (copy_from_user(buf, a->kbdiacruc,
1673 					ct * sizeof(struct kbdiacruc))) {
1674 				kfree(buf);
1675 				return -EFAULT;
1676 			}
1677 		}
1678 		spin_lock_irqsave(&kbd_event_lock, flags);
1679 		if (ct)
1680 			memcpy(accent_table, buf,
1681 					ct * sizeof(struct kbdiacruc));
1682 		accent_table_size = ct;
1683 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1684 		kfree(buf);
1685 		return 0;
1686 	}
1687 	}
1688 	return ret;
1689 }
1690 
1691 /**
1692  *	vt_do_kdskbmode		-	set keyboard mode ioctl
1693  *	@console: the console to use
1694  *	@arg: the requested mode
1695  *
1696  *	Update the keyboard mode bits while holding the correct locks.
1697  *	Return 0 for success or an error code.
1698  */
1699 int vt_do_kdskbmode(int console, unsigned int arg)
1700 {
1701 	struct kbd_struct * kbd = kbd_table + console;
1702 	int ret = 0;
1703 	unsigned long flags;
1704 
1705 	spin_lock_irqsave(&kbd_event_lock, flags);
1706 	switch(arg) {
1707 	case K_RAW:
1708 		kbd->kbdmode = VC_RAW;
1709 		break;
1710 	case K_MEDIUMRAW:
1711 		kbd->kbdmode = VC_MEDIUMRAW;
1712 		break;
1713 	case K_XLATE:
1714 		kbd->kbdmode = VC_XLATE;
1715 		do_compute_shiftstate();
1716 		break;
1717 	case K_UNICODE:
1718 		kbd->kbdmode = VC_UNICODE;
1719 		do_compute_shiftstate();
1720 		break;
1721 	case K_OFF:
1722 		kbd->kbdmode = VC_OFF;
1723 		break;
1724 	default:
1725 		ret = -EINVAL;
1726 	}
1727 	spin_unlock_irqrestore(&kbd_event_lock, flags);
1728 	return ret;
1729 }
1730 
1731 /**
1732  *	vt_do_kdskbmeta		-	set keyboard meta state
1733  *	@console: the console to use
1734  *	@arg: the requested meta state
1735  *
1736  *	Update the keyboard meta bits while holding the correct locks.
1737  *	Return 0 for success or an error code.
1738  */
1739 int vt_do_kdskbmeta(int console, unsigned int arg)
1740 {
1741 	struct kbd_struct * kbd = kbd_table + console;
1742 	int ret = 0;
1743 	unsigned long flags;
1744 
1745 	spin_lock_irqsave(&kbd_event_lock, flags);
1746 	switch(arg) {
1747 	case K_METABIT:
1748 		clr_vc_kbd_mode(kbd, VC_META);
1749 		break;
1750 	case K_ESCPREFIX:
1751 		set_vc_kbd_mode(kbd, VC_META);
1752 		break;
1753 	default:
1754 		ret = -EINVAL;
1755 	}
1756 	spin_unlock_irqrestore(&kbd_event_lock, flags);
1757 	return ret;
1758 }
1759 
1760 int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1761 								int perm)
1762 {
1763 	struct kbkeycode tmp;
1764 	int kc = 0;
1765 
1766 	if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1767 		return -EFAULT;
1768 	switch (cmd) {
1769 	case KDGETKEYCODE:
1770 		kc = getkeycode(tmp.scancode);
1771 		if (kc >= 0)
1772 			kc = put_user(kc, &user_kbkc->keycode);
1773 		break;
1774 	case KDSETKEYCODE:
1775 		if (!perm)
1776 			return -EPERM;
1777 		kc = setkeycode(tmp.scancode, tmp.keycode);
1778 		break;
1779 	}
1780 	return kc;
1781 }
1782 
1783 #define i (tmp.kb_index)
1784 #define s (tmp.kb_table)
1785 #define v (tmp.kb_value)
1786 
1787 int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1788 						int console)
1789 {
1790 	struct kbd_struct * kbd = kbd_table + console;
1791 	struct kbentry tmp;
1792 	ushort *key_map, *new_map, val, ov;
1793 	unsigned long flags;
1794 
1795 	if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1796 		return -EFAULT;
1797 
1798 	if (!capable(CAP_SYS_TTY_CONFIG))
1799 		perm = 0;
1800 
1801 	switch (cmd) {
1802 	case KDGKBENT:
1803 		/* Ensure another thread doesn't free it under us */
1804 		spin_lock_irqsave(&kbd_event_lock, flags);
1805 		key_map = key_maps[s];
1806 		if (key_map) {
1807 		    val = U(key_map[i]);
1808 		    if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1809 			val = K_HOLE;
1810 		} else
1811 		    val = (i ? K_HOLE : K_NOSUCHMAP);
1812 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1813 		return put_user(val, &user_kbe->kb_value);
1814 	case KDSKBENT:
1815 		if (!perm)
1816 			return -EPERM;
1817 		if (!i && v == K_NOSUCHMAP) {
1818 			spin_lock_irqsave(&kbd_event_lock, flags);
1819 			/* deallocate map */
1820 			key_map = key_maps[s];
1821 			if (s && key_map) {
1822 			    key_maps[s] = NULL;
1823 			    if (key_map[0] == U(K_ALLOCATED)) {
1824 					kfree(key_map);
1825 					keymap_count--;
1826 			    }
1827 			}
1828 			spin_unlock_irqrestore(&kbd_event_lock, flags);
1829 			break;
1830 		}
1831 
1832 		if (KTYP(v) < NR_TYPES) {
1833 		    if (KVAL(v) > max_vals[KTYP(v)])
1834 				return -EINVAL;
1835 		} else
1836 		    if (kbd->kbdmode != VC_UNICODE)
1837 				return -EINVAL;
1838 
1839 		/* ++Geert: non-PC keyboards may generate keycode zero */
1840 #if !defined(__mc68000__) && !defined(__powerpc__)
1841 		/* assignment to entry 0 only tests validity of args */
1842 		if (!i)
1843 			break;
1844 #endif
1845 
1846 		new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1847 		if (!new_map)
1848 			return -ENOMEM;
1849 		spin_lock_irqsave(&kbd_event_lock, flags);
1850 		key_map = key_maps[s];
1851 		if (key_map == NULL) {
1852 			int j;
1853 
1854 			if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1855 			    !capable(CAP_SYS_RESOURCE)) {
1856 				spin_unlock_irqrestore(&kbd_event_lock, flags);
1857 				kfree(new_map);
1858 				return -EPERM;
1859 			}
1860 			key_maps[s] = new_map;
1861 			key_map = new_map;
1862 			key_map[0] = U(K_ALLOCATED);
1863 			for (j = 1; j < NR_KEYS; j++)
1864 				key_map[j] = U(K_HOLE);
1865 			keymap_count++;
1866 		} else
1867 			kfree(new_map);
1868 
1869 		ov = U(key_map[i]);
1870 		if (v == ov)
1871 			goto out;
1872 		/*
1873 		 * Attention Key.
1874 		 */
1875 		if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1876 			spin_unlock_irqrestore(&kbd_event_lock, flags);
1877 			return -EPERM;
1878 		}
1879 		key_map[i] = U(v);
1880 		if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1881 			do_compute_shiftstate();
1882 out:
1883 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1884 		break;
1885 	}
1886 	return 0;
1887 }
1888 #undef i
1889 #undef s
1890 #undef v
1891 
1892 /* FIXME: This one needs untangling and locking */
1893 int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1894 {
1895 	struct kbsentry *kbs;
1896 	char *p;
1897 	u_char *q;
1898 	u_char __user *up;
1899 	int sz;
1900 	int delta;
1901 	char *first_free, *fj, *fnw;
1902 	int i, j, k;
1903 	int ret;
1904 
1905 	if (!capable(CAP_SYS_TTY_CONFIG))
1906 		perm = 0;
1907 
1908 	kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
1909 	if (!kbs) {
1910 		ret = -ENOMEM;
1911 		goto reterr;
1912 	}
1913 
1914 	/* we mostly copy too much here (512bytes), but who cares ;) */
1915 	if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
1916 		ret = -EFAULT;
1917 		goto reterr;
1918 	}
1919 	kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
1920 	i = kbs->kb_func;
1921 
1922 	switch (cmd) {
1923 	case KDGKBSENT:
1924 		sz = sizeof(kbs->kb_string) - 1; /* sz should have been
1925 						  a struct member */
1926 		up = user_kdgkb->kb_string;
1927 		p = func_table[i];
1928 		if(p)
1929 			for ( ; *p && sz; p++, sz--)
1930 				if (put_user(*p, up++)) {
1931 					ret = -EFAULT;
1932 					goto reterr;
1933 				}
1934 		if (put_user('\0', up)) {
1935 			ret = -EFAULT;
1936 			goto reterr;
1937 		}
1938 		kfree(kbs);
1939 		return ((p && *p) ? -EOVERFLOW : 0);
1940 	case KDSKBSENT:
1941 		if (!perm) {
1942 			ret = -EPERM;
1943 			goto reterr;
1944 		}
1945 
1946 		q = func_table[i];
1947 		first_free = funcbufptr + (funcbufsize - funcbufleft);
1948 		for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
1949 			;
1950 		if (j < MAX_NR_FUNC)
1951 			fj = func_table[j];
1952 		else
1953 			fj = first_free;
1954 
1955 		delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
1956 		if (delta <= funcbufleft) { 	/* it fits in current buf */
1957 		    if (j < MAX_NR_FUNC) {
1958 			memmove(fj + delta, fj, first_free - fj);
1959 			for (k = j; k < MAX_NR_FUNC; k++)
1960 			    if (func_table[k])
1961 				func_table[k] += delta;
1962 		    }
1963 		    if (!q)
1964 		      func_table[i] = fj;
1965 		    funcbufleft -= delta;
1966 		} else {			/* allocate a larger buffer */
1967 		    sz = 256;
1968 		    while (sz < funcbufsize - funcbufleft + delta)
1969 		      sz <<= 1;
1970 		    fnw = kmalloc(sz, GFP_KERNEL);
1971 		    if(!fnw) {
1972 		      ret = -ENOMEM;
1973 		      goto reterr;
1974 		    }
1975 
1976 		    if (!q)
1977 		      func_table[i] = fj;
1978 		    if (fj > funcbufptr)
1979 			memmove(fnw, funcbufptr, fj - funcbufptr);
1980 		    for (k = 0; k < j; k++)
1981 		      if (func_table[k])
1982 			func_table[k] = fnw + (func_table[k] - funcbufptr);
1983 
1984 		    if (first_free > fj) {
1985 			memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
1986 			for (k = j; k < MAX_NR_FUNC; k++)
1987 			  if (func_table[k])
1988 			    func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
1989 		    }
1990 		    if (funcbufptr != func_buf)
1991 		      kfree(funcbufptr);
1992 		    funcbufptr = fnw;
1993 		    funcbufleft = funcbufleft - delta + sz - funcbufsize;
1994 		    funcbufsize = sz;
1995 		}
1996 		strcpy(func_table[i], kbs->kb_string);
1997 		break;
1998 	}
1999 	ret = 0;
2000 reterr:
2001 	kfree(kbs);
2002 	return ret;
2003 }
2004 
2005 int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2006 {
2007 	struct kbd_struct * kbd = kbd_table + console;
2008         unsigned long flags;
2009 	unsigned char ucval;
2010 
2011         switch(cmd) {
2012 	/* the ioctls below read/set the flags usually shown in the leds */
2013 	/* don't use them - they will go away without warning */
2014 	case KDGKBLED:
2015                 spin_lock_irqsave(&kbd_event_lock, flags);
2016 		ucval = kbd->ledflagstate | (kbd->default_ledflagstate << 4);
2017                 spin_unlock_irqrestore(&kbd_event_lock, flags);
2018 		return put_user(ucval, (char __user *)arg);
2019 
2020 	case KDSKBLED:
2021 		if (!perm)
2022 			return -EPERM;
2023 		if (arg & ~0x77)
2024 			return -EINVAL;
2025                 spin_lock_irqsave(&led_lock, flags);
2026 		kbd->ledflagstate = (arg & 7);
2027 		kbd->default_ledflagstate = ((arg >> 4) & 7);
2028 		set_leds();
2029                 spin_unlock_irqrestore(&led_lock, flags);
2030 		return 0;
2031 
2032 	/* the ioctls below only set the lights, not the functions */
2033 	/* for those, see KDGKBLED and KDSKBLED above */
2034 	case KDGETLED:
2035 		ucval = getledstate();
2036 		return put_user(ucval, (char __user *)arg);
2037 
2038 	case KDSETLED:
2039 		if (!perm)
2040 			return -EPERM;
2041 		setledstate(kbd, arg);
2042 		return 0;
2043         }
2044         return -ENOIOCTLCMD;
2045 }
2046 
2047 int vt_do_kdgkbmode(int console)
2048 {
2049 	struct kbd_struct * kbd = kbd_table + console;
2050 	/* This is a spot read so needs no locking */
2051 	switch (kbd->kbdmode) {
2052 	case VC_RAW:
2053 		return K_RAW;
2054 	case VC_MEDIUMRAW:
2055 		return K_MEDIUMRAW;
2056 	case VC_UNICODE:
2057 		return K_UNICODE;
2058 	case VC_OFF:
2059 		return K_OFF;
2060 	default:
2061 		return K_XLATE;
2062 	}
2063 }
2064 
2065 /**
2066  *	vt_do_kdgkbmeta		-	report meta status
2067  *	@console: console to report
2068  *
2069  *	Report the meta flag status of this console
2070  */
2071 int vt_do_kdgkbmeta(int console)
2072 {
2073 	struct kbd_struct * kbd = kbd_table + console;
2074         /* Again a spot read so no locking */
2075 	return vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT;
2076 }
2077 
2078 /**
2079  *	vt_reset_unicode	-	reset the unicode status
2080  *	@console: console being reset
2081  *
2082  *	Restore the unicode console state to its default
2083  */
2084 void vt_reset_unicode(int console)
2085 {
2086 	unsigned long flags;
2087 
2088 	spin_lock_irqsave(&kbd_event_lock, flags);
2089 	kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2090 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2091 }
2092 
2093 /**
2094  *	vt_get_shiftstate	-	shift bit state
2095  *
2096  *	Report the shift bits from the keyboard state. We have to export
2097  *	this to support some oddities in the vt layer.
2098  */
2099 int vt_get_shift_state(void)
2100 {
2101         /* Don't lock as this is a transient report */
2102         return shift_state;
2103 }
2104 
2105 /**
2106  *	vt_reset_keyboard	-	reset keyboard state
2107  *	@console: console to reset
2108  *
2109  *	Reset the keyboard bits for a console as part of a general console
2110  *	reset event
2111  */
2112 void vt_reset_keyboard(int console)
2113 {
2114 	struct kbd_struct * kbd = kbd_table + console;
2115 	unsigned long flags;
2116 
2117 	spin_lock_irqsave(&kbd_event_lock, flags);
2118 	set_vc_kbd_mode(kbd, VC_REPEAT);
2119 	clr_vc_kbd_mode(kbd, VC_CKMODE);
2120 	clr_vc_kbd_mode(kbd, VC_APPLIC);
2121 	clr_vc_kbd_mode(kbd, VC_CRLF);
2122 	kbd->lockstate = 0;
2123 	kbd->slockstate = 0;
2124 	spin_lock(&led_lock);
2125 	kbd->ledmode = LED_SHOW_FLAGS;
2126 	kbd->ledflagstate = kbd->default_ledflagstate;
2127 	spin_unlock(&led_lock);
2128 	/* do not do set_leds here because this causes an endless tasklet loop
2129 	   when the keyboard hasn't been initialized yet */
2130 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2131 }
2132 
2133 /**
2134  *	vt_get_kbd_mode_bit	-	read keyboard status bits
2135  *	@console: console to read from
2136  *	@bit: mode bit to read
2137  *
2138  *	Report back a vt mode bit. We do this without locking so the
2139  *	caller must be sure that there are no synchronization needs
2140  */
2141 
2142 int vt_get_kbd_mode_bit(int console, int bit)
2143 {
2144 	struct kbd_struct * kbd = kbd_table + console;
2145 	return vc_kbd_mode(kbd, bit);
2146 }
2147 
2148 /**
2149  *	vt_set_kbd_mode_bit	-	read keyboard status bits
2150  *	@console: console to read from
2151  *	@bit: mode bit to read
2152  *
2153  *	Set a vt mode bit. We do this without locking so the
2154  *	caller must be sure that there are no synchronization needs
2155  */
2156 
2157 void vt_set_kbd_mode_bit(int console, int bit)
2158 {
2159 	struct kbd_struct * kbd = kbd_table + console;
2160 	unsigned long flags;
2161 
2162 	spin_lock_irqsave(&kbd_event_lock, flags);
2163 	set_vc_kbd_mode(kbd, bit);
2164 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2165 }
2166 
2167 /**
2168  *	vt_clr_kbd_mode_bit	-	read keyboard status bits
2169  *	@console: console to read from
2170  *	@bit: mode bit to read
2171  *
2172  *	Report back a vt mode bit. We do this without locking so the
2173  *	caller must be sure that there are no synchronization needs
2174  */
2175 
2176 void vt_clr_kbd_mode_bit(int console, int bit)
2177 {
2178 	struct kbd_struct * kbd = kbd_table + console;
2179 	unsigned long flags;
2180 
2181 	spin_lock_irqsave(&kbd_event_lock, flags);
2182 	clr_vc_kbd_mode(kbd, bit);
2183 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2184 }
2185