1 /* 2 * Written for linux by Johan Myreen as a translation from 3 * the assembly version by Linus (with diacriticals added) 4 * 5 * Some additional features added by Christoph Niemann (ChN), March 1993 6 * 7 * Loadable keymaps by Risto Kankkunen, May 1993 8 * 9 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993 10 * Added decr/incr_console, dynamic keymaps, Unicode support, 11 * dynamic function/string keys, led setting, Sept 1994 12 * `Sticky' modifier keys, 951006. 13 * 14 * 11-11-96: SAK should now work in the raw mode (Martin Mares) 15 * 16 * Modified to provide 'generic' keyboard support by Hamish Macdonald 17 * Merge with the m68k keyboard driver and split-off of the PC low-level 18 * parts by Geert Uytterhoeven, May 1997 19 * 20 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares) 21 * 30-07-98: Dead keys redone, aeb@cwi.nl. 22 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik) 23 */ 24 25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 26 27 #include <linux/consolemap.h> 28 #include <linux/module.h> 29 #include <linux/sched.h> 30 #include <linux/tty.h> 31 #include <linux/tty_flip.h> 32 #include <linux/mm.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/slab.h> 36 37 #include <linux/kbd_kern.h> 38 #include <linux/kbd_diacr.h> 39 #include <linux/vt_kern.h> 40 #include <linux/input.h> 41 #include <linux/reboot.h> 42 #include <linux/notifier.h> 43 #include <linux/jiffies.h> 44 #include <linux/uaccess.h> 45 46 #include <asm/irq_regs.h> 47 48 extern void ctrl_alt_del(void); 49 50 /* 51 * Exported functions/variables 52 */ 53 54 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META)) 55 56 #if defined(CONFIG_X86) || defined(CONFIG_PARISC) 57 #include <asm/kbdleds.h> 58 #else 59 static inline int kbd_defleds(void) 60 { 61 return 0; 62 } 63 #endif 64 65 #define KBD_DEFLOCK 0 66 67 /* 68 * Handler Tables. 69 */ 70 71 #define K_HANDLERS\ 72 k_self, k_fn, k_spec, k_pad,\ 73 k_dead, k_cons, k_cur, k_shift,\ 74 k_meta, k_ascii, k_lock, k_lowercase,\ 75 k_slock, k_dead2, k_brl, k_ignore 76 77 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value, 78 char up_flag); 79 static k_handler_fn K_HANDLERS; 80 static k_handler_fn *k_handler[16] = { K_HANDLERS }; 81 82 #define FN_HANDLERS\ 83 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\ 84 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\ 85 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\ 86 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\ 87 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num 88 89 typedef void (fn_handler_fn)(struct vc_data *vc); 90 static fn_handler_fn FN_HANDLERS; 91 static fn_handler_fn *fn_handler[] = { FN_HANDLERS }; 92 93 /* 94 * Variables exported for vt_ioctl.c 95 */ 96 97 struct vt_spawn_console vt_spawn_con = { 98 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock), 99 .pid = NULL, 100 .sig = 0, 101 }; 102 103 104 /* 105 * Internal Data. 106 */ 107 108 static struct kbd_struct kbd_table[MAX_NR_CONSOLES]; 109 static struct kbd_struct *kbd = kbd_table; 110 111 /* maximum values each key_handler can handle */ 112 static const int max_vals[] = { 113 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1, 114 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1, 115 255, NR_LOCK - 1, 255, NR_BRL - 1 116 }; 117 118 static const int NR_TYPES = ARRAY_SIZE(max_vals); 119 120 static struct input_handler kbd_handler; 121 static DEFINE_SPINLOCK(kbd_event_lock); 122 static DEFINE_SPINLOCK(led_lock); 123 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */ 124 static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */ 125 static bool dead_key_next; 126 static int npadch = -1; /* -1 or number assembled on pad */ 127 static unsigned int diacr; 128 static char rep; /* flag telling character repeat */ 129 130 static int shift_state = 0; 131 132 static unsigned char ledstate = 0xff; /* undefined */ 133 static unsigned char ledioctl; 134 135 static struct ledptr { 136 unsigned int *addr; 137 unsigned int mask; 138 unsigned char valid:1; 139 } ledptrs[3]; 140 141 /* 142 * Notifier list for console keyboard events 143 */ 144 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list); 145 146 int register_keyboard_notifier(struct notifier_block *nb) 147 { 148 return atomic_notifier_chain_register(&keyboard_notifier_list, nb); 149 } 150 EXPORT_SYMBOL_GPL(register_keyboard_notifier); 151 152 int unregister_keyboard_notifier(struct notifier_block *nb) 153 { 154 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb); 155 } 156 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier); 157 158 /* 159 * Translation of scancodes to keycodes. We set them on only the first 160 * keyboard in the list that accepts the scancode and keycode. 161 * Explanation for not choosing the first attached keyboard anymore: 162 * USB keyboards for example have two event devices: one for all "normal" 163 * keys and one for extra function keys (like "volume up", "make coffee", 164 * etc.). So this means that scancodes for the extra function keys won't 165 * be valid for the first event device, but will be for the second. 166 */ 167 168 struct getset_keycode_data { 169 struct input_keymap_entry ke; 170 int error; 171 }; 172 173 static int getkeycode_helper(struct input_handle *handle, void *data) 174 { 175 struct getset_keycode_data *d = data; 176 177 d->error = input_get_keycode(handle->dev, &d->ke); 178 179 return d->error == 0; /* stop as soon as we successfully get one */ 180 } 181 182 static int getkeycode(unsigned int scancode) 183 { 184 struct getset_keycode_data d = { 185 .ke = { 186 .flags = 0, 187 .len = sizeof(scancode), 188 .keycode = 0, 189 }, 190 .error = -ENODEV, 191 }; 192 193 memcpy(d.ke.scancode, &scancode, sizeof(scancode)); 194 195 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper); 196 197 return d.error ?: d.ke.keycode; 198 } 199 200 static int setkeycode_helper(struct input_handle *handle, void *data) 201 { 202 struct getset_keycode_data *d = data; 203 204 d->error = input_set_keycode(handle->dev, &d->ke); 205 206 return d->error == 0; /* stop as soon as we successfully set one */ 207 } 208 209 static int setkeycode(unsigned int scancode, unsigned int keycode) 210 { 211 struct getset_keycode_data d = { 212 .ke = { 213 .flags = 0, 214 .len = sizeof(scancode), 215 .keycode = keycode, 216 }, 217 .error = -ENODEV, 218 }; 219 220 memcpy(d.ke.scancode, &scancode, sizeof(scancode)); 221 222 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper); 223 224 return d.error; 225 } 226 227 /* 228 * Making beeps and bells. Note that we prefer beeps to bells, but when 229 * shutting the sound off we do both. 230 */ 231 232 static int kd_sound_helper(struct input_handle *handle, void *data) 233 { 234 unsigned int *hz = data; 235 struct input_dev *dev = handle->dev; 236 237 if (test_bit(EV_SND, dev->evbit)) { 238 if (test_bit(SND_TONE, dev->sndbit)) { 239 input_inject_event(handle, EV_SND, SND_TONE, *hz); 240 if (*hz) 241 return 0; 242 } 243 if (test_bit(SND_BELL, dev->sndbit)) 244 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0); 245 } 246 247 return 0; 248 } 249 250 static void kd_nosound(unsigned long ignored) 251 { 252 static unsigned int zero; 253 254 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper); 255 } 256 257 static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0); 258 259 void kd_mksound(unsigned int hz, unsigned int ticks) 260 { 261 del_timer_sync(&kd_mksound_timer); 262 263 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper); 264 265 if (hz && ticks) 266 mod_timer(&kd_mksound_timer, jiffies + ticks); 267 } 268 EXPORT_SYMBOL(kd_mksound); 269 270 /* 271 * Setting the keyboard rate. 272 */ 273 274 static int kbd_rate_helper(struct input_handle *handle, void *data) 275 { 276 struct input_dev *dev = handle->dev; 277 struct kbd_repeat *rep = data; 278 279 if (test_bit(EV_REP, dev->evbit)) { 280 281 if (rep[0].delay > 0) 282 input_inject_event(handle, 283 EV_REP, REP_DELAY, rep[0].delay); 284 if (rep[0].period > 0) 285 input_inject_event(handle, 286 EV_REP, REP_PERIOD, rep[0].period); 287 288 rep[1].delay = dev->rep[REP_DELAY]; 289 rep[1].period = dev->rep[REP_PERIOD]; 290 } 291 292 return 0; 293 } 294 295 int kbd_rate(struct kbd_repeat *rep) 296 { 297 struct kbd_repeat data[2] = { *rep }; 298 299 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper); 300 *rep = data[1]; /* Copy currently used settings */ 301 302 return 0; 303 } 304 305 /* 306 * Helper Functions. 307 */ 308 static void put_queue(struct vc_data *vc, int ch) 309 { 310 tty_insert_flip_char(&vc->port, ch, 0); 311 tty_schedule_flip(&vc->port); 312 } 313 314 static void puts_queue(struct vc_data *vc, char *cp) 315 { 316 while (*cp) { 317 tty_insert_flip_char(&vc->port, *cp, 0); 318 cp++; 319 } 320 tty_schedule_flip(&vc->port); 321 } 322 323 static void applkey(struct vc_data *vc, int key, char mode) 324 { 325 static char buf[] = { 0x1b, 'O', 0x00, 0x00 }; 326 327 buf[1] = (mode ? 'O' : '['); 328 buf[2] = key; 329 puts_queue(vc, buf); 330 } 331 332 /* 333 * Many other routines do put_queue, but I think either 334 * they produce ASCII, or they produce some user-assigned 335 * string, and in both cases we might assume that it is 336 * in utf-8 already. 337 */ 338 static void to_utf8(struct vc_data *vc, uint c) 339 { 340 if (c < 0x80) 341 /* 0******* */ 342 put_queue(vc, c); 343 else if (c < 0x800) { 344 /* 110***** 10****** */ 345 put_queue(vc, 0xc0 | (c >> 6)); 346 put_queue(vc, 0x80 | (c & 0x3f)); 347 } else if (c < 0x10000) { 348 if (c >= 0xD800 && c < 0xE000) 349 return; 350 if (c == 0xFFFF) 351 return; 352 /* 1110**** 10****** 10****** */ 353 put_queue(vc, 0xe0 | (c >> 12)); 354 put_queue(vc, 0x80 | ((c >> 6) & 0x3f)); 355 put_queue(vc, 0x80 | (c & 0x3f)); 356 } else if (c < 0x110000) { 357 /* 11110*** 10****** 10****** 10****** */ 358 put_queue(vc, 0xf0 | (c >> 18)); 359 put_queue(vc, 0x80 | ((c >> 12) & 0x3f)); 360 put_queue(vc, 0x80 | ((c >> 6) & 0x3f)); 361 put_queue(vc, 0x80 | (c & 0x3f)); 362 } 363 } 364 365 /* 366 * Called after returning from RAW mode or when changing consoles - recompute 367 * shift_down[] and shift_state from key_down[] maybe called when keymap is 368 * undefined, so that shiftkey release is seen. The caller must hold the 369 * kbd_event_lock. 370 */ 371 372 static void do_compute_shiftstate(void) 373 { 374 unsigned int i, j, k, sym, val; 375 376 shift_state = 0; 377 memset(shift_down, 0, sizeof(shift_down)); 378 379 for (i = 0; i < ARRAY_SIZE(key_down); i++) { 380 381 if (!key_down[i]) 382 continue; 383 384 k = i * BITS_PER_LONG; 385 386 for (j = 0; j < BITS_PER_LONG; j++, k++) { 387 388 if (!test_bit(k, key_down)) 389 continue; 390 391 sym = U(key_maps[0][k]); 392 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK) 393 continue; 394 395 val = KVAL(sym); 396 if (val == KVAL(K_CAPSSHIFT)) 397 val = KVAL(K_SHIFT); 398 399 shift_down[val]++; 400 shift_state |= (1 << val); 401 } 402 } 403 } 404 405 /* We still have to export this method to vt.c */ 406 void compute_shiftstate(void) 407 { 408 unsigned long flags; 409 spin_lock_irqsave(&kbd_event_lock, flags); 410 do_compute_shiftstate(); 411 spin_unlock_irqrestore(&kbd_event_lock, flags); 412 } 413 414 /* 415 * We have a combining character DIACR here, followed by the character CH. 416 * If the combination occurs in the table, return the corresponding value. 417 * Otherwise, if CH is a space or equals DIACR, return DIACR. 418 * Otherwise, conclude that DIACR was not combining after all, 419 * queue it and return CH. 420 */ 421 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch) 422 { 423 unsigned int d = diacr; 424 unsigned int i; 425 426 diacr = 0; 427 428 if ((d & ~0xff) == BRL_UC_ROW) { 429 if ((ch & ~0xff) == BRL_UC_ROW) 430 return d | ch; 431 } else { 432 for (i = 0; i < accent_table_size; i++) 433 if (accent_table[i].diacr == d && accent_table[i].base == ch) 434 return accent_table[i].result; 435 } 436 437 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d) 438 return d; 439 440 if (kbd->kbdmode == VC_UNICODE) 441 to_utf8(vc, d); 442 else { 443 int c = conv_uni_to_8bit(d); 444 if (c != -1) 445 put_queue(vc, c); 446 } 447 448 return ch; 449 } 450 451 /* 452 * Special function handlers 453 */ 454 static void fn_enter(struct vc_data *vc) 455 { 456 if (diacr) { 457 if (kbd->kbdmode == VC_UNICODE) 458 to_utf8(vc, diacr); 459 else { 460 int c = conv_uni_to_8bit(diacr); 461 if (c != -1) 462 put_queue(vc, c); 463 } 464 diacr = 0; 465 } 466 467 put_queue(vc, 13); 468 if (vc_kbd_mode(kbd, VC_CRLF)) 469 put_queue(vc, 10); 470 } 471 472 static void fn_caps_toggle(struct vc_data *vc) 473 { 474 if (rep) 475 return; 476 477 chg_vc_kbd_led(kbd, VC_CAPSLOCK); 478 } 479 480 static void fn_caps_on(struct vc_data *vc) 481 { 482 if (rep) 483 return; 484 485 set_vc_kbd_led(kbd, VC_CAPSLOCK); 486 } 487 488 static void fn_show_ptregs(struct vc_data *vc) 489 { 490 struct pt_regs *regs = get_irq_regs(); 491 492 if (regs) 493 show_regs(regs); 494 } 495 496 static void fn_hold(struct vc_data *vc) 497 { 498 struct tty_struct *tty = vc->port.tty; 499 500 if (rep || !tty) 501 return; 502 503 /* 504 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty); 505 * these routines are also activated by ^S/^Q. 506 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.) 507 */ 508 if (tty->stopped) 509 start_tty(tty); 510 else 511 stop_tty(tty); 512 } 513 514 static void fn_num(struct vc_data *vc) 515 { 516 if (vc_kbd_mode(kbd, VC_APPLIC)) 517 applkey(vc, 'P', 1); 518 else 519 fn_bare_num(vc); 520 } 521 522 /* 523 * Bind this to Shift-NumLock if you work in application keypad mode 524 * but want to be able to change the NumLock flag. 525 * Bind this to NumLock if you prefer that the NumLock key always 526 * changes the NumLock flag. 527 */ 528 static void fn_bare_num(struct vc_data *vc) 529 { 530 if (!rep) 531 chg_vc_kbd_led(kbd, VC_NUMLOCK); 532 } 533 534 static void fn_lastcons(struct vc_data *vc) 535 { 536 /* switch to the last used console, ChN */ 537 set_console(last_console); 538 } 539 540 static void fn_dec_console(struct vc_data *vc) 541 { 542 int i, cur = fg_console; 543 544 /* Currently switching? Queue this next switch relative to that. */ 545 if (want_console != -1) 546 cur = want_console; 547 548 for (i = cur - 1; i != cur; i--) { 549 if (i == -1) 550 i = MAX_NR_CONSOLES - 1; 551 if (vc_cons_allocated(i)) 552 break; 553 } 554 set_console(i); 555 } 556 557 static void fn_inc_console(struct vc_data *vc) 558 { 559 int i, cur = fg_console; 560 561 /* Currently switching? Queue this next switch relative to that. */ 562 if (want_console != -1) 563 cur = want_console; 564 565 for (i = cur+1; i != cur; i++) { 566 if (i == MAX_NR_CONSOLES) 567 i = 0; 568 if (vc_cons_allocated(i)) 569 break; 570 } 571 set_console(i); 572 } 573 574 static void fn_send_intr(struct vc_data *vc) 575 { 576 tty_insert_flip_char(&vc->port, 0, TTY_BREAK); 577 tty_schedule_flip(&vc->port); 578 } 579 580 static void fn_scroll_forw(struct vc_data *vc) 581 { 582 scrollfront(vc, 0); 583 } 584 585 static void fn_scroll_back(struct vc_data *vc) 586 { 587 scrollback(vc, 0); 588 } 589 590 static void fn_show_mem(struct vc_data *vc) 591 { 592 show_mem(0); 593 } 594 595 static void fn_show_state(struct vc_data *vc) 596 { 597 show_state(); 598 } 599 600 static void fn_boot_it(struct vc_data *vc) 601 { 602 ctrl_alt_del(); 603 } 604 605 static void fn_compose(struct vc_data *vc) 606 { 607 dead_key_next = true; 608 } 609 610 static void fn_spawn_con(struct vc_data *vc) 611 { 612 spin_lock(&vt_spawn_con.lock); 613 if (vt_spawn_con.pid) 614 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) { 615 put_pid(vt_spawn_con.pid); 616 vt_spawn_con.pid = NULL; 617 } 618 spin_unlock(&vt_spawn_con.lock); 619 } 620 621 static void fn_SAK(struct vc_data *vc) 622 { 623 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work; 624 schedule_work(SAK_work); 625 } 626 627 static void fn_null(struct vc_data *vc) 628 { 629 do_compute_shiftstate(); 630 } 631 632 /* 633 * Special key handlers 634 */ 635 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag) 636 { 637 } 638 639 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag) 640 { 641 if (up_flag) 642 return; 643 if (value >= ARRAY_SIZE(fn_handler)) 644 return; 645 if ((kbd->kbdmode == VC_RAW || 646 kbd->kbdmode == VC_MEDIUMRAW || 647 kbd->kbdmode == VC_OFF) && 648 value != KVAL(K_SAK)) 649 return; /* SAK is allowed even in raw mode */ 650 fn_handler[value](vc); 651 } 652 653 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag) 654 { 655 pr_err("k_lowercase was called - impossible\n"); 656 } 657 658 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag) 659 { 660 if (up_flag) 661 return; /* no action, if this is a key release */ 662 663 if (diacr) 664 value = handle_diacr(vc, value); 665 666 if (dead_key_next) { 667 dead_key_next = false; 668 diacr = value; 669 return; 670 } 671 if (kbd->kbdmode == VC_UNICODE) 672 to_utf8(vc, value); 673 else { 674 int c = conv_uni_to_8bit(value); 675 if (c != -1) 676 put_queue(vc, c); 677 } 678 } 679 680 /* 681 * Handle dead key. Note that we now may have several 682 * dead keys modifying the same character. Very useful 683 * for Vietnamese. 684 */ 685 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag) 686 { 687 if (up_flag) 688 return; 689 690 diacr = (diacr ? handle_diacr(vc, value) : value); 691 } 692 693 static void k_self(struct vc_data *vc, unsigned char value, char up_flag) 694 { 695 k_unicode(vc, conv_8bit_to_uni(value), up_flag); 696 } 697 698 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag) 699 { 700 k_deadunicode(vc, value, up_flag); 701 } 702 703 /* 704 * Obsolete - for backwards compatibility only 705 */ 706 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag) 707 { 708 static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' }; 709 710 k_deadunicode(vc, ret_diacr[value], up_flag); 711 } 712 713 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag) 714 { 715 if (up_flag) 716 return; 717 718 set_console(value); 719 } 720 721 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag) 722 { 723 if (up_flag) 724 return; 725 726 if ((unsigned)value < ARRAY_SIZE(func_table)) { 727 if (func_table[value]) 728 puts_queue(vc, func_table[value]); 729 } else 730 pr_err("k_fn called with value=%d\n", value); 731 } 732 733 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag) 734 { 735 static const char cur_chars[] = "BDCA"; 736 737 if (up_flag) 738 return; 739 740 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE)); 741 } 742 743 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag) 744 { 745 static const char pad_chars[] = "0123456789+-*/\015,.?()#"; 746 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS"; 747 748 if (up_flag) 749 return; /* no action, if this is a key release */ 750 751 /* kludge... shift forces cursor/number keys */ 752 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) { 753 applkey(vc, app_map[value], 1); 754 return; 755 } 756 757 if (!vc_kbd_led(kbd, VC_NUMLOCK)) { 758 759 switch (value) { 760 case KVAL(K_PCOMMA): 761 case KVAL(K_PDOT): 762 k_fn(vc, KVAL(K_REMOVE), 0); 763 return; 764 case KVAL(K_P0): 765 k_fn(vc, KVAL(K_INSERT), 0); 766 return; 767 case KVAL(K_P1): 768 k_fn(vc, KVAL(K_SELECT), 0); 769 return; 770 case KVAL(K_P2): 771 k_cur(vc, KVAL(K_DOWN), 0); 772 return; 773 case KVAL(K_P3): 774 k_fn(vc, KVAL(K_PGDN), 0); 775 return; 776 case KVAL(K_P4): 777 k_cur(vc, KVAL(K_LEFT), 0); 778 return; 779 case KVAL(K_P6): 780 k_cur(vc, KVAL(K_RIGHT), 0); 781 return; 782 case KVAL(K_P7): 783 k_fn(vc, KVAL(K_FIND), 0); 784 return; 785 case KVAL(K_P8): 786 k_cur(vc, KVAL(K_UP), 0); 787 return; 788 case KVAL(K_P9): 789 k_fn(vc, KVAL(K_PGUP), 0); 790 return; 791 case KVAL(K_P5): 792 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC)); 793 return; 794 } 795 } 796 797 put_queue(vc, pad_chars[value]); 798 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF)) 799 put_queue(vc, 10); 800 } 801 802 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag) 803 { 804 int old_state = shift_state; 805 806 if (rep) 807 return; 808 /* 809 * Mimic typewriter: 810 * a CapsShift key acts like Shift but undoes CapsLock 811 */ 812 if (value == KVAL(K_CAPSSHIFT)) { 813 value = KVAL(K_SHIFT); 814 if (!up_flag) 815 clr_vc_kbd_led(kbd, VC_CAPSLOCK); 816 } 817 818 if (up_flag) { 819 /* 820 * handle the case that two shift or control 821 * keys are depressed simultaneously 822 */ 823 if (shift_down[value]) 824 shift_down[value]--; 825 } else 826 shift_down[value]++; 827 828 if (shift_down[value]) 829 shift_state |= (1 << value); 830 else 831 shift_state &= ~(1 << value); 832 833 /* kludge */ 834 if (up_flag && shift_state != old_state && npadch != -1) { 835 if (kbd->kbdmode == VC_UNICODE) 836 to_utf8(vc, npadch); 837 else 838 put_queue(vc, npadch & 0xff); 839 npadch = -1; 840 } 841 } 842 843 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag) 844 { 845 if (up_flag) 846 return; 847 848 if (vc_kbd_mode(kbd, VC_META)) { 849 put_queue(vc, '\033'); 850 put_queue(vc, value); 851 } else 852 put_queue(vc, value | 0x80); 853 } 854 855 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag) 856 { 857 int base; 858 859 if (up_flag) 860 return; 861 862 if (value < 10) { 863 /* decimal input of code, while Alt depressed */ 864 base = 10; 865 } else { 866 /* hexadecimal input of code, while AltGr depressed */ 867 value -= 10; 868 base = 16; 869 } 870 871 if (npadch == -1) 872 npadch = value; 873 else 874 npadch = npadch * base + value; 875 } 876 877 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag) 878 { 879 if (up_flag || rep) 880 return; 881 882 chg_vc_kbd_lock(kbd, value); 883 } 884 885 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag) 886 { 887 k_shift(vc, value, up_flag); 888 if (up_flag || rep) 889 return; 890 891 chg_vc_kbd_slock(kbd, value); 892 /* try to make Alt, oops, AltGr and such work */ 893 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) { 894 kbd->slockstate = 0; 895 chg_vc_kbd_slock(kbd, value); 896 } 897 } 898 899 /* by default, 300ms interval for combination release */ 900 static unsigned brl_timeout = 300; 901 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)"); 902 module_param(brl_timeout, uint, 0644); 903 904 static unsigned brl_nbchords = 1; 905 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)"); 906 module_param(brl_nbchords, uint, 0644); 907 908 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag) 909 { 910 static unsigned long chords; 911 static unsigned committed; 912 913 if (!brl_nbchords) 914 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag); 915 else { 916 committed |= pattern; 917 chords++; 918 if (chords == brl_nbchords) { 919 k_unicode(vc, BRL_UC_ROW | committed, up_flag); 920 chords = 0; 921 committed = 0; 922 } 923 } 924 } 925 926 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag) 927 { 928 static unsigned pressed, committing; 929 static unsigned long releasestart; 930 931 if (kbd->kbdmode != VC_UNICODE) { 932 if (!up_flag) 933 pr_warning("keyboard mode must be unicode for braille patterns\n"); 934 return; 935 } 936 937 if (!value) { 938 k_unicode(vc, BRL_UC_ROW, up_flag); 939 return; 940 } 941 942 if (value > 8) 943 return; 944 945 if (!up_flag) { 946 pressed |= 1 << (value - 1); 947 if (!brl_timeout) 948 committing = pressed; 949 } else if (brl_timeout) { 950 if (!committing || 951 time_after(jiffies, 952 releasestart + msecs_to_jiffies(brl_timeout))) { 953 committing = pressed; 954 releasestart = jiffies; 955 } 956 pressed &= ~(1 << (value - 1)); 957 if (!pressed && committing) { 958 k_brlcommit(vc, committing, 0); 959 committing = 0; 960 } 961 } else { 962 if (committing) { 963 k_brlcommit(vc, committing, 0); 964 committing = 0; 965 } 966 pressed &= ~(1 << (value - 1)); 967 } 968 } 969 970 /* 971 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock, 972 * or (ii) whatever pattern of lights people want to show using KDSETLED, 973 * or (iii) specified bits of specified words in kernel memory. 974 */ 975 static unsigned char getledstate(void) 976 { 977 return ledstate; 978 } 979 980 void setledstate(struct kbd_struct *kbd, unsigned int led) 981 { 982 unsigned long flags; 983 spin_lock_irqsave(&led_lock, flags); 984 if (!(led & ~7)) { 985 ledioctl = led; 986 kbd->ledmode = LED_SHOW_IOCTL; 987 } else 988 kbd->ledmode = LED_SHOW_FLAGS; 989 990 set_leds(); 991 spin_unlock_irqrestore(&led_lock, flags); 992 } 993 994 static inline unsigned char getleds(void) 995 { 996 struct kbd_struct *kbd = kbd_table + fg_console; 997 unsigned char leds; 998 int i; 999 1000 if (kbd->ledmode == LED_SHOW_IOCTL) 1001 return ledioctl; 1002 1003 leds = kbd->ledflagstate; 1004 1005 if (kbd->ledmode == LED_SHOW_MEM) { 1006 for (i = 0; i < 3; i++) 1007 if (ledptrs[i].valid) { 1008 if (*ledptrs[i].addr & ledptrs[i].mask) 1009 leds |= (1 << i); 1010 else 1011 leds &= ~(1 << i); 1012 } 1013 } 1014 return leds; 1015 } 1016 1017 static int kbd_update_leds_helper(struct input_handle *handle, void *data) 1018 { 1019 unsigned char leds = *(unsigned char *)data; 1020 1021 if (test_bit(EV_LED, handle->dev->evbit)) { 1022 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01)); 1023 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02)); 1024 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04)); 1025 input_inject_event(handle, EV_SYN, SYN_REPORT, 0); 1026 } 1027 1028 return 0; 1029 } 1030 1031 /** 1032 * vt_get_leds - helper for braille console 1033 * @console: console to read 1034 * @flag: flag we want to check 1035 * 1036 * Check the status of a keyboard led flag and report it back 1037 */ 1038 int vt_get_leds(int console, int flag) 1039 { 1040 struct kbd_struct * kbd = kbd_table + console; 1041 int ret; 1042 unsigned long flags; 1043 1044 spin_lock_irqsave(&led_lock, flags); 1045 ret = vc_kbd_led(kbd, flag); 1046 spin_unlock_irqrestore(&led_lock, flags); 1047 1048 return ret; 1049 } 1050 EXPORT_SYMBOL_GPL(vt_get_leds); 1051 1052 /** 1053 * vt_set_led_state - set LED state of a console 1054 * @console: console to set 1055 * @leds: LED bits 1056 * 1057 * Set the LEDs on a console. This is a wrapper for the VT layer 1058 * so that we can keep kbd knowledge internal 1059 */ 1060 void vt_set_led_state(int console, int leds) 1061 { 1062 struct kbd_struct * kbd = kbd_table + console; 1063 setledstate(kbd, leds); 1064 } 1065 1066 /** 1067 * vt_kbd_con_start - Keyboard side of console start 1068 * @console: console 1069 * 1070 * Handle console start. This is a wrapper for the VT layer 1071 * so that we can keep kbd knowledge internal 1072 * 1073 * FIXME: We eventually need to hold the kbd lock here to protect 1074 * the LED updating. We can't do it yet because fn_hold calls stop_tty 1075 * and start_tty under the kbd_event_lock, while normal tty paths 1076 * don't hold the lock. We probably need to split out an LED lock 1077 * but not during an -rc release! 1078 */ 1079 void vt_kbd_con_start(int console) 1080 { 1081 struct kbd_struct * kbd = kbd_table + console; 1082 unsigned long flags; 1083 spin_lock_irqsave(&led_lock, flags); 1084 clr_vc_kbd_led(kbd, VC_SCROLLOCK); 1085 set_leds(); 1086 spin_unlock_irqrestore(&led_lock, flags); 1087 } 1088 1089 /** 1090 * vt_kbd_con_stop - Keyboard side of console stop 1091 * @console: console 1092 * 1093 * Handle console stop. This is a wrapper for the VT layer 1094 * so that we can keep kbd knowledge internal 1095 */ 1096 void vt_kbd_con_stop(int console) 1097 { 1098 struct kbd_struct * kbd = kbd_table + console; 1099 unsigned long flags; 1100 spin_lock_irqsave(&led_lock, flags); 1101 set_vc_kbd_led(kbd, VC_SCROLLOCK); 1102 set_leds(); 1103 spin_unlock_irqrestore(&led_lock, flags); 1104 } 1105 1106 /* 1107 * This is the tasklet that updates LED state on all keyboards 1108 * attached to the box. The reason we use tasklet is that we 1109 * need to handle the scenario when keyboard handler is not 1110 * registered yet but we already getting updates from the VT to 1111 * update led state. 1112 */ 1113 static void kbd_bh(unsigned long dummy) 1114 { 1115 unsigned char leds; 1116 unsigned long flags; 1117 1118 spin_lock_irqsave(&led_lock, flags); 1119 leds = getleds(); 1120 spin_unlock_irqrestore(&led_lock, flags); 1121 1122 if (leds != ledstate) { 1123 input_handler_for_each_handle(&kbd_handler, &leds, 1124 kbd_update_leds_helper); 1125 ledstate = leds; 1126 } 1127 } 1128 1129 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0); 1130 1131 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\ 1132 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\ 1133 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\ 1134 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\ 1135 defined(CONFIG_AVR32) 1136 1137 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\ 1138 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001)) 1139 1140 static const unsigned short x86_keycodes[256] = 1141 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1142 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1143 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 1144 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 1145 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 1146 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92, 1147 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339, 1148 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349, 1149 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355, 1150 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361, 1151 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114, 1152 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116, 1153 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307, 1154 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330, 1155 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 }; 1156 1157 #ifdef CONFIG_SPARC 1158 static int sparc_l1_a_state; 1159 extern void sun_do_break(void); 1160 #endif 1161 1162 static int emulate_raw(struct vc_data *vc, unsigned int keycode, 1163 unsigned char up_flag) 1164 { 1165 int code; 1166 1167 switch (keycode) { 1168 1169 case KEY_PAUSE: 1170 put_queue(vc, 0xe1); 1171 put_queue(vc, 0x1d | up_flag); 1172 put_queue(vc, 0x45 | up_flag); 1173 break; 1174 1175 case KEY_HANGEUL: 1176 if (!up_flag) 1177 put_queue(vc, 0xf2); 1178 break; 1179 1180 case KEY_HANJA: 1181 if (!up_flag) 1182 put_queue(vc, 0xf1); 1183 break; 1184 1185 case KEY_SYSRQ: 1186 /* 1187 * Real AT keyboards (that's what we're trying 1188 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when 1189 * pressing PrtSc/SysRq alone, but simply 0x54 1190 * when pressing Alt+PrtSc/SysRq. 1191 */ 1192 if (test_bit(KEY_LEFTALT, key_down) || 1193 test_bit(KEY_RIGHTALT, key_down)) { 1194 put_queue(vc, 0x54 | up_flag); 1195 } else { 1196 put_queue(vc, 0xe0); 1197 put_queue(vc, 0x2a | up_flag); 1198 put_queue(vc, 0xe0); 1199 put_queue(vc, 0x37 | up_flag); 1200 } 1201 break; 1202 1203 default: 1204 if (keycode > 255) 1205 return -1; 1206 1207 code = x86_keycodes[keycode]; 1208 if (!code) 1209 return -1; 1210 1211 if (code & 0x100) 1212 put_queue(vc, 0xe0); 1213 put_queue(vc, (code & 0x7f) | up_flag); 1214 1215 break; 1216 } 1217 1218 return 0; 1219 } 1220 1221 #else 1222 1223 #define HW_RAW(dev) 0 1224 1225 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag) 1226 { 1227 if (keycode > 127) 1228 return -1; 1229 1230 put_queue(vc, keycode | up_flag); 1231 return 0; 1232 } 1233 #endif 1234 1235 static void kbd_rawcode(unsigned char data) 1236 { 1237 struct vc_data *vc = vc_cons[fg_console].d; 1238 1239 kbd = kbd_table + vc->vc_num; 1240 if (kbd->kbdmode == VC_RAW) 1241 put_queue(vc, data); 1242 } 1243 1244 static void kbd_keycode(unsigned int keycode, int down, int hw_raw) 1245 { 1246 struct vc_data *vc = vc_cons[fg_console].d; 1247 unsigned short keysym, *key_map; 1248 unsigned char type; 1249 bool raw_mode; 1250 struct tty_struct *tty; 1251 int shift_final; 1252 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down }; 1253 int rc; 1254 1255 tty = vc->port.tty; 1256 1257 if (tty && (!tty->driver_data)) { 1258 /* No driver data? Strange. Okay we fix it then. */ 1259 tty->driver_data = vc; 1260 } 1261 1262 kbd = kbd_table + vc->vc_num; 1263 1264 #ifdef CONFIG_SPARC 1265 if (keycode == KEY_STOP) 1266 sparc_l1_a_state = down; 1267 #endif 1268 1269 rep = (down == 2); 1270 1271 raw_mode = (kbd->kbdmode == VC_RAW); 1272 if (raw_mode && !hw_raw) 1273 if (emulate_raw(vc, keycode, !down << 7)) 1274 if (keycode < BTN_MISC && printk_ratelimit()) 1275 pr_warning("can't emulate rawmode for keycode %d\n", 1276 keycode); 1277 1278 #ifdef CONFIG_SPARC 1279 if (keycode == KEY_A && sparc_l1_a_state) { 1280 sparc_l1_a_state = false; 1281 sun_do_break(); 1282 } 1283 #endif 1284 1285 if (kbd->kbdmode == VC_MEDIUMRAW) { 1286 /* 1287 * This is extended medium raw mode, with keys above 127 1288 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing 1289 * the 'up' flag if needed. 0 is reserved, so this shouldn't 1290 * interfere with anything else. The two bytes after 0 will 1291 * always have the up flag set not to interfere with older 1292 * applications. This allows for 16384 different keycodes, 1293 * which should be enough. 1294 */ 1295 if (keycode < 128) { 1296 put_queue(vc, keycode | (!down << 7)); 1297 } else { 1298 put_queue(vc, !down << 7); 1299 put_queue(vc, (keycode >> 7) | 0x80); 1300 put_queue(vc, keycode | 0x80); 1301 } 1302 raw_mode = true; 1303 } 1304 1305 if (down) 1306 set_bit(keycode, key_down); 1307 else 1308 clear_bit(keycode, key_down); 1309 1310 if (rep && 1311 (!vc_kbd_mode(kbd, VC_REPEAT) || 1312 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) { 1313 /* 1314 * Don't repeat a key if the input buffers are not empty and the 1315 * characters get aren't echoed locally. This makes key repeat 1316 * usable with slow applications and under heavy loads. 1317 */ 1318 return; 1319 } 1320 1321 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate; 1322 param.ledstate = kbd->ledflagstate; 1323 key_map = key_maps[shift_final]; 1324 1325 rc = atomic_notifier_call_chain(&keyboard_notifier_list, 1326 KBD_KEYCODE, ¶m); 1327 if (rc == NOTIFY_STOP || !key_map) { 1328 atomic_notifier_call_chain(&keyboard_notifier_list, 1329 KBD_UNBOUND_KEYCODE, ¶m); 1330 do_compute_shiftstate(); 1331 kbd->slockstate = 0; 1332 return; 1333 } 1334 1335 if (keycode < NR_KEYS) 1336 keysym = key_map[keycode]; 1337 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8) 1338 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1)); 1339 else 1340 return; 1341 1342 type = KTYP(keysym); 1343 1344 if (type < 0xf0) { 1345 param.value = keysym; 1346 rc = atomic_notifier_call_chain(&keyboard_notifier_list, 1347 KBD_UNICODE, ¶m); 1348 if (rc != NOTIFY_STOP) 1349 if (down && !raw_mode) 1350 to_utf8(vc, keysym); 1351 return; 1352 } 1353 1354 type -= 0xf0; 1355 1356 if (type == KT_LETTER) { 1357 type = KT_LATIN; 1358 if (vc_kbd_led(kbd, VC_CAPSLOCK)) { 1359 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)]; 1360 if (key_map) 1361 keysym = key_map[keycode]; 1362 } 1363 } 1364 1365 param.value = keysym; 1366 rc = atomic_notifier_call_chain(&keyboard_notifier_list, 1367 KBD_KEYSYM, ¶m); 1368 if (rc == NOTIFY_STOP) 1369 return; 1370 1371 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT) 1372 return; 1373 1374 (*k_handler[type])(vc, keysym & 0xff, !down); 1375 1376 param.ledstate = kbd->ledflagstate; 1377 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m); 1378 1379 if (type != KT_SLOCK) 1380 kbd->slockstate = 0; 1381 } 1382 1383 static void kbd_event(struct input_handle *handle, unsigned int event_type, 1384 unsigned int event_code, int value) 1385 { 1386 /* We are called with interrupts disabled, just take the lock */ 1387 spin_lock(&kbd_event_lock); 1388 1389 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev)) 1390 kbd_rawcode(value); 1391 if (event_type == EV_KEY) 1392 kbd_keycode(event_code, value, HW_RAW(handle->dev)); 1393 1394 spin_unlock(&kbd_event_lock); 1395 1396 tasklet_schedule(&keyboard_tasklet); 1397 do_poke_blanked_console = 1; 1398 schedule_console_callback(); 1399 } 1400 1401 static bool kbd_match(struct input_handler *handler, struct input_dev *dev) 1402 { 1403 int i; 1404 1405 if (test_bit(EV_SND, dev->evbit)) 1406 return true; 1407 1408 if (test_bit(EV_KEY, dev->evbit)) { 1409 for (i = KEY_RESERVED; i < BTN_MISC; i++) 1410 if (test_bit(i, dev->keybit)) 1411 return true; 1412 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++) 1413 if (test_bit(i, dev->keybit)) 1414 return true; 1415 } 1416 1417 return false; 1418 } 1419 1420 /* 1421 * When a keyboard (or other input device) is found, the kbd_connect 1422 * function is called. The function then looks at the device, and if it 1423 * likes it, it can open it and get events from it. In this (kbd_connect) 1424 * function, we should decide which VT to bind that keyboard to initially. 1425 */ 1426 static int kbd_connect(struct input_handler *handler, struct input_dev *dev, 1427 const struct input_device_id *id) 1428 { 1429 struct input_handle *handle; 1430 int error; 1431 1432 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL); 1433 if (!handle) 1434 return -ENOMEM; 1435 1436 handle->dev = dev; 1437 handle->handler = handler; 1438 handle->name = "kbd"; 1439 1440 error = input_register_handle(handle); 1441 if (error) 1442 goto err_free_handle; 1443 1444 error = input_open_device(handle); 1445 if (error) 1446 goto err_unregister_handle; 1447 1448 return 0; 1449 1450 err_unregister_handle: 1451 input_unregister_handle(handle); 1452 err_free_handle: 1453 kfree(handle); 1454 return error; 1455 } 1456 1457 static void kbd_disconnect(struct input_handle *handle) 1458 { 1459 input_close_device(handle); 1460 input_unregister_handle(handle); 1461 kfree(handle); 1462 } 1463 1464 /* 1465 * Start keyboard handler on the new keyboard by refreshing LED state to 1466 * match the rest of the system. 1467 */ 1468 static void kbd_start(struct input_handle *handle) 1469 { 1470 tasklet_disable(&keyboard_tasklet); 1471 1472 if (ledstate != 0xff) 1473 kbd_update_leds_helper(handle, &ledstate); 1474 1475 tasklet_enable(&keyboard_tasklet); 1476 } 1477 1478 static const struct input_device_id kbd_ids[] = { 1479 { 1480 .flags = INPUT_DEVICE_ID_MATCH_EVBIT, 1481 .evbit = { BIT_MASK(EV_KEY) }, 1482 }, 1483 1484 { 1485 .flags = INPUT_DEVICE_ID_MATCH_EVBIT, 1486 .evbit = { BIT_MASK(EV_SND) }, 1487 }, 1488 1489 { }, /* Terminating entry */ 1490 }; 1491 1492 MODULE_DEVICE_TABLE(input, kbd_ids); 1493 1494 static struct input_handler kbd_handler = { 1495 .event = kbd_event, 1496 .match = kbd_match, 1497 .connect = kbd_connect, 1498 .disconnect = kbd_disconnect, 1499 .start = kbd_start, 1500 .name = "kbd", 1501 .id_table = kbd_ids, 1502 }; 1503 1504 int __init kbd_init(void) 1505 { 1506 int i; 1507 int error; 1508 1509 for (i = 0; i < MAX_NR_CONSOLES; i++) { 1510 kbd_table[i].ledflagstate = kbd_defleds(); 1511 kbd_table[i].default_ledflagstate = kbd_defleds(); 1512 kbd_table[i].ledmode = LED_SHOW_FLAGS; 1513 kbd_table[i].lockstate = KBD_DEFLOCK; 1514 kbd_table[i].slockstate = 0; 1515 kbd_table[i].modeflags = KBD_DEFMODE; 1516 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE; 1517 } 1518 1519 error = input_register_handler(&kbd_handler); 1520 if (error) 1521 return error; 1522 1523 tasklet_enable(&keyboard_tasklet); 1524 tasklet_schedule(&keyboard_tasklet); 1525 1526 return 0; 1527 } 1528 1529 /* Ioctl support code */ 1530 1531 /** 1532 * vt_do_diacrit - diacritical table updates 1533 * @cmd: ioctl request 1534 * @up: pointer to user data for ioctl 1535 * @perm: permissions check computed by caller 1536 * 1537 * Update the diacritical tables atomically and safely. Lock them 1538 * against simultaneous keypresses 1539 */ 1540 int vt_do_diacrit(unsigned int cmd, void __user *up, int perm) 1541 { 1542 struct kbdiacrs __user *a = up; 1543 unsigned long flags; 1544 int asize; 1545 int ret = 0; 1546 1547 switch (cmd) { 1548 case KDGKBDIACR: 1549 { 1550 struct kbdiacr *diacr; 1551 int i; 1552 1553 diacr = kmalloc(MAX_DIACR * sizeof(struct kbdiacr), 1554 GFP_KERNEL); 1555 if (diacr == NULL) 1556 return -ENOMEM; 1557 1558 /* Lock the diacriticals table, make a copy and then 1559 copy it after we unlock */ 1560 spin_lock_irqsave(&kbd_event_lock, flags); 1561 1562 asize = accent_table_size; 1563 for (i = 0; i < asize; i++) { 1564 diacr[i].diacr = conv_uni_to_8bit( 1565 accent_table[i].diacr); 1566 diacr[i].base = conv_uni_to_8bit( 1567 accent_table[i].base); 1568 diacr[i].result = conv_uni_to_8bit( 1569 accent_table[i].result); 1570 } 1571 spin_unlock_irqrestore(&kbd_event_lock, flags); 1572 1573 if (put_user(asize, &a->kb_cnt)) 1574 ret = -EFAULT; 1575 else if (copy_to_user(a->kbdiacr, diacr, 1576 asize * sizeof(struct kbdiacr))) 1577 ret = -EFAULT; 1578 kfree(diacr); 1579 return ret; 1580 } 1581 case KDGKBDIACRUC: 1582 { 1583 struct kbdiacrsuc __user *a = up; 1584 void *buf; 1585 1586 buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc), 1587 GFP_KERNEL); 1588 if (buf == NULL) 1589 return -ENOMEM; 1590 1591 /* Lock the diacriticals table, make a copy and then 1592 copy it after we unlock */ 1593 spin_lock_irqsave(&kbd_event_lock, flags); 1594 1595 asize = accent_table_size; 1596 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc)); 1597 1598 spin_unlock_irqrestore(&kbd_event_lock, flags); 1599 1600 if (put_user(asize, &a->kb_cnt)) 1601 ret = -EFAULT; 1602 else if (copy_to_user(a->kbdiacruc, buf, 1603 asize*sizeof(struct kbdiacruc))) 1604 ret = -EFAULT; 1605 kfree(buf); 1606 return ret; 1607 } 1608 1609 case KDSKBDIACR: 1610 { 1611 struct kbdiacrs __user *a = up; 1612 struct kbdiacr *diacr = NULL; 1613 unsigned int ct; 1614 int i; 1615 1616 if (!perm) 1617 return -EPERM; 1618 if (get_user(ct, &a->kb_cnt)) 1619 return -EFAULT; 1620 if (ct >= MAX_DIACR) 1621 return -EINVAL; 1622 1623 if (ct) { 1624 diacr = kmalloc(sizeof(struct kbdiacr) * ct, 1625 GFP_KERNEL); 1626 if (diacr == NULL) 1627 return -ENOMEM; 1628 1629 if (copy_from_user(diacr, a->kbdiacr, 1630 sizeof(struct kbdiacr) * ct)) { 1631 kfree(diacr); 1632 return -EFAULT; 1633 } 1634 } 1635 1636 spin_lock_irqsave(&kbd_event_lock, flags); 1637 accent_table_size = ct; 1638 for (i = 0; i < ct; i++) { 1639 accent_table[i].diacr = 1640 conv_8bit_to_uni(diacr[i].diacr); 1641 accent_table[i].base = 1642 conv_8bit_to_uni(diacr[i].base); 1643 accent_table[i].result = 1644 conv_8bit_to_uni(diacr[i].result); 1645 } 1646 spin_unlock_irqrestore(&kbd_event_lock, flags); 1647 kfree(diacr); 1648 return 0; 1649 } 1650 1651 case KDSKBDIACRUC: 1652 { 1653 struct kbdiacrsuc __user *a = up; 1654 unsigned int ct; 1655 void *buf = NULL; 1656 1657 if (!perm) 1658 return -EPERM; 1659 1660 if (get_user(ct, &a->kb_cnt)) 1661 return -EFAULT; 1662 1663 if (ct >= MAX_DIACR) 1664 return -EINVAL; 1665 1666 if (ct) { 1667 buf = kmalloc(ct * sizeof(struct kbdiacruc), 1668 GFP_KERNEL); 1669 if (buf == NULL) 1670 return -ENOMEM; 1671 1672 if (copy_from_user(buf, a->kbdiacruc, 1673 ct * sizeof(struct kbdiacruc))) { 1674 kfree(buf); 1675 return -EFAULT; 1676 } 1677 } 1678 spin_lock_irqsave(&kbd_event_lock, flags); 1679 if (ct) 1680 memcpy(accent_table, buf, 1681 ct * sizeof(struct kbdiacruc)); 1682 accent_table_size = ct; 1683 spin_unlock_irqrestore(&kbd_event_lock, flags); 1684 kfree(buf); 1685 return 0; 1686 } 1687 } 1688 return ret; 1689 } 1690 1691 /** 1692 * vt_do_kdskbmode - set keyboard mode ioctl 1693 * @console: the console to use 1694 * @arg: the requested mode 1695 * 1696 * Update the keyboard mode bits while holding the correct locks. 1697 * Return 0 for success or an error code. 1698 */ 1699 int vt_do_kdskbmode(int console, unsigned int arg) 1700 { 1701 struct kbd_struct * kbd = kbd_table + console; 1702 int ret = 0; 1703 unsigned long flags; 1704 1705 spin_lock_irqsave(&kbd_event_lock, flags); 1706 switch(arg) { 1707 case K_RAW: 1708 kbd->kbdmode = VC_RAW; 1709 break; 1710 case K_MEDIUMRAW: 1711 kbd->kbdmode = VC_MEDIUMRAW; 1712 break; 1713 case K_XLATE: 1714 kbd->kbdmode = VC_XLATE; 1715 do_compute_shiftstate(); 1716 break; 1717 case K_UNICODE: 1718 kbd->kbdmode = VC_UNICODE; 1719 do_compute_shiftstate(); 1720 break; 1721 case K_OFF: 1722 kbd->kbdmode = VC_OFF; 1723 break; 1724 default: 1725 ret = -EINVAL; 1726 } 1727 spin_unlock_irqrestore(&kbd_event_lock, flags); 1728 return ret; 1729 } 1730 1731 /** 1732 * vt_do_kdskbmeta - set keyboard meta state 1733 * @console: the console to use 1734 * @arg: the requested meta state 1735 * 1736 * Update the keyboard meta bits while holding the correct locks. 1737 * Return 0 for success or an error code. 1738 */ 1739 int vt_do_kdskbmeta(int console, unsigned int arg) 1740 { 1741 struct kbd_struct * kbd = kbd_table + console; 1742 int ret = 0; 1743 unsigned long flags; 1744 1745 spin_lock_irqsave(&kbd_event_lock, flags); 1746 switch(arg) { 1747 case K_METABIT: 1748 clr_vc_kbd_mode(kbd, VC_META); 1749 break; 1750 case K_ESCPREFIX: 1751 set_vc_kbd_mode(kbd, VC_META); 1752 break; 1753 default: 1754 ret = -EINVAL; 1755 } 1756 spin_unlock_irqrestore(&kbd_event_lock, flags); 1757 return ret; 1758 } 1759 1760 int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc, 1761 int perm) 1762 { 1763 struct kbkeycode tmp; 1764 int kc = 0; 1765 1766 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode))) 1767 return -EFAULT; 1768 switch (cmd) { 1769 case KDGETKEYCODE: 1770 kc = getkeycode(tmp.scancode); 1771 if (kc >= 0) 1772 kc = put_user(kc, &user_kbkc->keycode); 1773 break; 1774 case KDSETKEYCODE: 1775 if (!perm) 1776 return -EPERM; 1777 kc = setkeycode(tmp.scancode, tmp.keycode); 1778 break; 1779 } 1780 return kc; 1781 } 1782 1783 #define i (tmp.kb_index) 1784 #define s (tmp.kb_table) 1785 #define v (tmp.kb_value) 1786 1787 int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm, 1788 int console) 1789 { 1790 struct kbd_struct * kbd = kbd_table + console; 1791 struct kbentry tmp; 1792 ushort *key_map, *new_map, val, ov; 1793 unsigned long flags; 1794 1795 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry))) 1796 return -EFAULT; 1797 1798 if (!capable(CAP_SYS_TTY_CONFIG)) 1799 perm = 0; 1800 1801 switch (cmd) { 1802 case KDGKBENT: 1803 /* Ensure another thread doesn't free it under us */ 1804 spin_lock_irqsave(&kbd_event_lock, flags); 1805 key_map = key_maps[s]; 1806 if (key_map) { 1807 val = U(key_map[i]); 1808 if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES) 1809 val = K_HOLE; 1810 } else 1811 val = (i ? K_HOLE : K_NOSUCHMAP); 1812 spin_unlock_irqrestore(&kbd_event_lock, flags); 1813 return put_user(val, &user_kbe->kb_value); 1814 case KDSKBENT: 1815 if (!perm) 1816 return -EPERM; 1817 if (!i && v == K_NOSUCHMAP) { 1818 spin_lock_irqsave(&kbd_event_lock, flags); 1819 /* deallocate map */ 1820 key_map = key_maps[s]; 1821 if (s && key_map) { 1822 key_maps[s] = NULL; 1823 if (key_map[0] == U(K_ALLOCATED)) { 1824 kfree(key_map); 1825 keymap_count--; 1826 } 1827 } 1828 spin_unlock_irqrestore(&kbd_event_lock, flags); 1829 break; 1830 } 1831 1832 if (KTYP(v) < NR_TYPES) { 1833 if (KVAL(v) > max_vals[KTYP(v)]) 1834 return -EINVAL; 1835 } else 1836 if (kbd->kbdmode != VC_UNICODE) 1837 return -EINVAL; 1838 1839 /* ++Geert: non-PC keyboards may generate keycode zero */ 1840 #if !defined(__mc68000__) && !defined(__powerpc__) 1841 /* assignment to entry 0 only tests validity of args */ 1842 if (!i) 1843 break; 1844 #endif 1845 1846 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL); 1847 if (!new_map) 1848 return -ENOMEM; 1849 spin_lock_irqsave(&kbd_event_lock, flags); 1850 key_map = key_maps[s]; 1851 if (key_map == NULL) { 1852 int j; 1853 1854 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS && 1855 !capable(CAP_SYS_RESOURCE)) { 1856 spin_unlock_irqrestore(&kbd_event_lock, flags); 1857 kfree(new_map); 1858 return -EPERM; 1859 } 1860 key_maps[s] = new_map; 1861 key_map = new_map; 1862 key_map[0] = U(K_ALLOCATED); 1863 for (j = 1; j < NR_KEYS; j++) 1864 key_map[j] = U(K_HOLE); 1865 keymap_count++; 1866 } else 1867 kfree(new_map); 1868 1869 ov = U(key_map[i]); 1870 if (v == ov) 1871 goto out; 1872 /* 1873 * Attention Key. 1874 */ 1875 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) { 1876 spin_unlock_irqrestore(&kbd_event_lock, flags); 1877 return -EPERM; 1878 } 1879 key_map[i] = U(v); 1880 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT)) 1881 do_compute_shiftstate(); 1882 out: 1883 spin_unlock_irqrestore(&kbd_event_lock, flags); 1884 break; 1885 } 1886 return 0; 1887 } 1888 #undef i 1889 #undef s 1890 #undef v 1891 1892 /* FIXME: This one needs untangling and locking */ 1893 int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm) 1894 { 1895 struct kbsentry *kbs; 1896 char *p; 1897 u_char *q; 1898 u_char __user *up; 1899 int sz; 1900 int delta; 1901 char *first_free, *fj, *fnw; 1902 int i, j, k; 1903 int ret; 1904 1905 if (!capable(CAP_SYS_TTY_CONFIG)) 1906 perm = 0; 1907 1908 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL); 1909 if (!kbs) { 1910 ret = -ENOMEM; 1911 goto reterr; 1912 } 1913 1914 /* we mostly copy too much here (512bytes), but who cares ;) */ 1915 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) { 1916 ret = -EFAULT; 1917 goto reterr; 1918 } 1919 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0'; 1920 i = kbs->kb_func; 1921 1922 switch (cmd) { 1923 case KDGKBSENT: 1924 sz = sizeof(kbs->kb_string) - 1; /* sz should have been 1925 a struct member */ 1926 up = user_kdgkb->kb_string; 1927 p = func_table[i]; 1928 if(p) 1929 for ( ; *p && sz; p++, sz--) 1930 if (put_user(*p, up++)) { 1931 ret = -EFAULT; 1932 goto reterr; 1933 } 1934 if (put_user('\0', up)) { 1935 ret = -EFAULT; 1936 goto reterr; 1937 } 1938 kfree(kbs); 1939 return ((p && *p) ? -EOVERFLOW : 0); 1940 case KDSKBSENT: 1941 if (!perm) { 1942 ret = -EPERM; 1943 goto reterr; 1944 } 1945 1946 q = func_table[i]; 1947 first_free = funcbufptr + (funcbufsize - funcbufleft); 1948 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++) 1949 ; 1950 if (j < MAX_NR_FUNC) 1951 fj = func_table[j]; 1952 else 1953 fj = first_free; 1954 1955 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string); 1956 if (delta <= funcbufleft) { /* it fits in current buf */ 1957 if (j < MAX_NR_FUNC) { 1958 memmove(fj + delta, fj, first_free - fj); 1959 for (k = j; k < MAX_NR_FUNC; k++) 1960 if (func_table[k]) 1961 func_table[k] += delta; 1962 } 1963 if (!q) 1964 func_table[i] = fj; 1965 funcbufleft -= delta; 1966 } else { /* allocate a larger buffer */ 1967 sz = 256; 1968 while (sz < funcbufsize - funcbufleft + delta) 1969 sz <<= 1; 1970 fnw = kmalloc(sz, GFP_KERNEL); 1971 if(!fnw) { 1972 ret = -ENOMEM; 1973 goto reterr; 1974 } 1975 1976 if (!q) 1977 func_table[i] = fj; 1978 if (fj > funcbufptr) 1979 memmove(fnw, funcbufptr, fj - funcbufptr); 1980 for (k = 0; k < j; k++) 1981 if (func_table[k]) 1982 func_table[k] = fnw + (func_table[k] - funcbufptr); 1983 1984 if (first_free > fj) { 1985 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj); 1986 for (k = j; k < MAX_NR_FUNC; k++) 1987 if (func_table[k]) 1988 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta; 1989 } 1990 if (funcbufptr != func_buf) 1991 kfree(funcbufptr); 1992 funcbufptr = fnw; 1993 funcbufleft = funcbufleft - delta + sz - funcbufsize; 1994 funcbufsize = sz; 1995 } 1996 strcpy(func_table[i], kbs->kb_string); 1997 break; 1998 } 1999 ret = 0; 2000 reterr: 2001 kfree(kbs); 2002 return ret; 2003 } 2004 2005 int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm) 2006 { 2007 struct kbd_struct * kbd = kbd_table + console; 2008 unsigned long flags; 2009 unsigned char ucval; 2010 2011 switch(cmd) { 2012 /* the ioctls below read/set the flags usually shown in the leds */ 2013 /* don't use them - they will go away without warning */ 2014 case KDGKBLED: 2015 spin_lock_irqsave(&kbd_event_lock, flags); 2016 ucval = kbd->ledflagstate | (kbd->default_ledflagstate << 4); 2017 spin_unlock_irqrestore(&kbd_event_lock, flags); 2018 return put_user(ucval, (char __user *)arg); 2019 2020 case KDSKBLED: 2021 if (!perm) 2022 return -EPERM; 2023 if (arg & ~0x77) 2024 return -EINVAL; 2025 spin_lock_irqsave(&led_lock, flags); 2026 kbd->ledflagstate = (arg & 7); 2027 kbd->default_ledflagstate = ((arg >> 4) & 7); 2028 set_leds(); 2029 spin_unlock_irqrestore(&led_lock, flags); 2030 return 0; 2031 2032 /* the ioctls below only set the lights, not the functions */ 2033 /* for those, see KDGKBLED and KDSKBLED above */ 2034 case KDGETLED: 2035 ucval = getledstate(); 2036 return put_user(ucval, (char __user *)arg); 2037 2038 case KDSETLED: 2039 if (!perm) 2040 return -EPERM; 2041 setledstate(kbd, arg); 2042 return 0; 2043 } 2044 return -ENOIOCTLCMD; 2045 } 2046 2047 int vt_do_kdgkbmode(int console) 2048 { 2049 struct kbd_struct * kbd = kbd_table + console; 2050 /* This is a spot read so needs no locking */ 2051 switch (kbd->kbdmode) { 2052 case VC_RAW: 2053 return K_RAW; 2054 case VC_MEDIUMRAW: 2055 return K_MEDIUMRAW; 2056 case VC_UNICODE: 2057 return K_UNICODE; 2058 case VC_OFF: 2059 return K_OFF; 2060 default: 2061 return K_XLATE; 2062 } 2063 } 2064 2065 /** 2066 * vt_do_kdgkbmeta - report meta status 2067 * @console: console to report 2068 * 2069 * Report the meta flag status of this console 2070 */ 2071 int vt_do_kdgkbmeta(int console) 2072 { 2073 struct kbd_struct * kbd = kbd_table + console; 2074 /* Again a spot read so no locking */ 2075 return vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT; 2076 } 2077 2078 /** 2079 * vt_reset_unicode - reset the unicode status 2080 * @console: console being reset 2081 * 2082 * Restore the unicode console state to its default 2083 */ 2084 void vt_reset_unicode(int console) 2085 { 2086 unsigned long flags; 2087 2088 spin_lock_irqsave(&kbd_event_lock, flags); 2089 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE; 2090 spin_unlock_irqrestore(&kbd_event_lock, flags); 2091 } 2092 2093 /** 2094 * vt_get_shiftstate - shift bit state 2095 * 2096 * Report the shift bits from the keyboard state. We have to export 2097 * this to support some oddities in the vt layer. 2098 */ 2099 int vt_get_shift_state(void) 2100 { 2101 /* Don't lock as this is a transient report */ 2102 return shift_state; 2103 } 2104 2105 /** 2106 * vt_reset_keyboard - reset keyboard state 2107 * @console: console to reset 2108 * 2109 * Reset the keyboard bits for a console as part of a general console 2110 * reset event 2111 */ 2112 void vt_reset_keyboard(int console) 2113 { 2114 struct kbd_struct * kbd = kbd_table + console; 2115 unsigned long flags; 2116 2117 spin_lock_irqsave(&kbd_event_lock, flags); 2118 set_vc_kbd_mode(kbd, VC_REPEAT); 2119 clr_vc_kbd_mode(kbd, VC_CKMODE); 2120 clr_vc_kbd_mode(kbd, VC_APPLIC); 2121 clr_vc_kbd_mode(kbd, VC_CRLF); 2122 kbd->lockstate = 0; 2123 kbd->slockstate = 0; 2124 spin_lock(&led_lock); 2125 kbd->ledmode = LED_SHOW_FLAGS; 2126 kbd->ledflagstate = kbd->default_ledflagstate; 2127 spin_unlock(&led_lock); 2128 /* do not do set_leds here because this causes an endless tasklet loop 2129 when the keyboard hasn't been initialized yet */ 2130 spin_unlock_irqrestore(&kbd_event_lock, flags); 2131 } 2132 2133 /** 2134 * vt_get_kbd_mode_bit - read keyboard status bits 2135 * @console: console to read from 2136 * @bit: mode bit to read 2137 * 2138 * Report back a vt mode bit. We do this without locking so the 2139 * caller must be sure that there are no synchronization needs 2140 */ 2141 2142 int vt_get_kbd_mode_bit(int console, int bit) 2143 { 2144 struct kbd_struct * kbd = kbd_table + console; 2145 return vc_kbd_mode(kbd, bit); 2146 } 2147 2148 /** 2149 * vt_set_kbd_mode_bit - read keyboard status bits 2150 * @console: console to read from 2151 * @bit: mode bit to read 2152 * 2153 * Set a vt mode bit. We do this without locking so the 2154 * caller must be sure that there are no synchronization needs 2155 */ 2156 2157 void vt_set_kbd_mode_bit(int console, int bit) 2158 { 2159 struct kbd_struct * kbd = kbd_table + console; 2160 unsigned long flags; 2161 2162 spin_lock_irqsave(&kbd_event_lock, flags); 2163 set_vc_kbd_mode(kbd, bit); 2164 spin_unlock_irqrestore(&kbd_event_lock, flags); 2165 } 2166 2167 /** 2168 * vt_clr_kbd_mode_bit - read keyboard status bits 2169 * @console: console to read from 2170 * @bit: mode bit to read 2171 * 2172 * Report back a vt mode bit. We do this without locking so the 2173 * caller must be sure that there are no synchronization needs 2174 */ 2175 2176 void vt_clr_kbd_mode_bit(int console, int bit) 2177 { 2178 struct kbd_struct * kbd = kbd_table + console; 2179 unsigned long flags; 2180 2181 spin_lock_irqsave(&kbd_event_lock, flags); 2182 clr_vc_kbd_mode(kbd, bit); 2183 spin_unlock_irqrestore(&kbd_event_lock, flags); 2184 } 2185