xref: /openbmc/linux/drivers/tty/vt/keyboard.c (revision f220d3eb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Written for linux by Johan Myreen as a translation from
4  * the assembly version by Linus (with diacriticals added)
5  *
6  * Some additional features added by Christoph Niemann (ChN), March 1993
7  *
8  * Loadable keymaps by Risto Kankkunen, May 1993
9  *
10  * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
11  * Added decr/incr_console, dynamic keymaps, Unicode support,
12  * dynamic function/string keys, led setting,  Sept 1994
13  * `Sticky' modifier keys, 951006.
14  *
15  * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16  *
17  * Modified to provide 'generic' keyboard support by Hamish Macdonald
18  * Merge with the m68k keyboard driver and split-off of the PC low-level
19  * parts by Geert Uytterhoeven, May 1997
20  *
21  * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22  * 30-07-98: Dead keys redone, aeb@cwi.nl.
23  * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/consolemap.h>
29 #include <linux/module.h>
30 #include <linux/sched/signal.h>
31 #include <linux/sched/debug.h>
32 #include <linux/tty.h>
33 #include <linux/tty_flip.h>
34 #include <linux/mm.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/leds.h>
39 
40 #include <linux/kbd_kern.h>
41 #include <linux/kbd_diacr.h>
42 #include <linux/vt_kern.h>
43 #include <linux/input.h>
44 #include <linux/reboot.h>
45 #include <linux/notifier.h>
46 #include <linux/jiffies.h>
47 #include <linux/uaccess.h>
48 
49 #include <asm/irq_regs.h>
50 
51 extern void ctrl_alt_del(void);
52 
53 /*
54  * Exported functions/variables
55  */
56 
57 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
58 
59 #if defined(CONFIG_X86) || defined(CONFIG_PARISC)
60 #include <asm/kbdleds.h>
61 #else
62 static inline int kbd_defleds(void)
63 {
64 	return 0;
65 }
66 #endif
67 
68 #define KBD_DEFLOCK 0
69 
70 /*
71  * Handler Tables.
72  */
73 
74 #define K_HANDLERS\
75 	k_self,		k_fn,		k_spec,		k_pad,\
76 	k_dead,		k_cons,		k_cur,		k_shift,\
77 	k_meta,		k_ascii,	k_lock,		k_lowercase,\
78 	k_slock,	k_dead2,	k_brl,		k_ignore
79 
80 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
81 			    char up_flag);
82 static k_handler_fn K_HANDLERS;
83 static k_handler_fn *k_handler[16] = { K_HANDLERS };
84 
85 #define FN_HANDLERS\
86 	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
87 	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
88 	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
89 	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
90 	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
91 
92 typedef void (fn_handler_fn)(struct vc_data *vc);
93 static fn_handler_fn FN_HANDLERS;
94 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
95 
96 /*
97  * Variables exported for vt_ioctl.c
98  */
99 
100 struct vt_spawn_console vt_spawn_con = {
101 	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
102 	.pid  = NULL,
103 	.sig  = 0,
104 };
105 
106 
107 /*
108  * Internal Data.
109  */
110 
111 static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
112 static struct kbd_struct *kbd = kbd_table;
113 
114 /* maximum values each key_handler can handle */
115 static const int max_vals[] = {
116 	255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
117 	NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
118 	255, NR_LOCK - 1, 255, NR_BRL - 1
119 };
120 
121 static const int NR_TYPES = ARRAY_SIZE(max_vals);
122 
123 static struct input_handler kbd_handler;
124 static DEFINE_SPINLOCK(kbd_event_lock);
125 static DEFINE_SPINLOCK(led_lock);
126 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)];	/* keyboard key bitmap */
127 static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
128 static bool dead_key_next;
129 static int npadch = -1;					/* -1 or number assembled on pad */
130 static unsigned int diacr;
131 static char rep;					/* flag telling character repeat */
132 
133 static int shift_state = 0;
134 
135 static unsigned int ledstate = -1U;			/* undefined */
136 static unsigned char ledioctl;
137 
138 /*
139  * Notifier list for console keyboard events
140  */
141 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
142 
143 int register_keyboard_notifier(struct notifier_block *nb)
144 {
145 	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
146 }
147 EXPORT_SYMBOL_GPL(register_keyboard_notifier);
148 
149 int unregister_keyboard_notifier(struct notifier_block *nb)
150 {
151 	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
152 }
153 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
154 
155 /*
156  * Translation of scancodes to keycodes. We set them on only the first
157  * keyboard in the list that accepts the scancode and keycode.
158  * Explanation for not choosing the first attached keyboard anymore:
159  *  USB keyboards for example have two event devices: one for all "normal"
160  *  keys and one for extra function keys (like "volume up", "make coffee",
161  *  etc.). So this means that scancodes for the extra function keys won't
162  *  be valid for the first event device, but will be for the second.
163  */
164 
165 struct getset_keycode_data {
166 	struct input_keymap_entry ke;
167 	int error;
168 };
169 
170 static int getkeycode_helper(struct input_handle *handle, void *data)
171 {
172 	struct getset_keycode_data *d = data;
173 
174 	d->error = input_get_keycode(handle->dev, &d->ke);
175 
176 	return d->error == 0; /* stop as soon as we successfully get one */
177 }
178 
179 static int getkeycode(unsigned int scancode)
180 {
181 	struct getset_keycode_data d = {
182 		.ke	= {
183 			.flags		= 0,
184 			.len		= sizeof(scancode),
185 			.keycode	= 0,
186 		},
187 		.error	= -ENODEV,
188 	};
189 
190 	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
191 
192 	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
193 
194 	return d.error ?: d.ke.keycode;
195 }
196 
197 static int setkeycode_helper(struct input_handle *handle, void *data)
198 {
199 	struct getset_keycode_data *d = data;
200 
201 	d->error = input_set_keycode(handle->dev, &d->ke);
202 
203 	return d->error == 0; /* stop as soon as we successfully set one */
204 }
205 
206 static int setkeycode(unsigned int scancode, unsigned int keycode)
207 {
208 	struct getset_keycode_data d = {
209 		.ke	= {
210 			.flags		= 0,
211 			.len		= sizeof(scancode),
212 			.keycode	= keycode,
213 		},
214 		.error	= -ENODEV,
215 	};
216 
217 	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
218 
219 	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
220 
221 	return d.error;
222 }
223 
224 /*
225  * Making beeps and bells. Note that we prefer beeps to bells, but when
226  * shutting the sound off we do both.
227  */
228 
229 static int kd_sound_helper(struct input_handle *handle, void *data)
230 {
231 	unsigned int *hz = data;
232 	struct input_dev *dev = handle->dev;
233 
234 	if (test_bit(EV_SND, dev->evbit)) {
235 		if (test_bit(SND_TONE, dev->sndbit)) {
236 			input_inject_event(handle, EV_SND, SND_TONE, *hz);
237 			if (*hz)
238 				return 0;
239 		}
240 		if (test_bit(SND_BELL, dev->sndbit))
241 			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
242 	}
243 
244 	return 0;
245 }
246 
247 static void kd_nosound(struct timer_list *unused)
248 {
249 	static unsigned int zero;
250 
251 	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
252 }
253 
254 static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
255 
256 void kd_mksound(unsigned int hz, unsigned int ticks)
257 {
258 	del_timer_sync(&kd_mksound_timer);
259 
260 	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
261 
262 	if (hz && ticks)
263 		mod_timer(&kd_mksound_timer, jiffies + ticks);
264 }
265 EXPORT_SYMBOL(kd_mksound);
266 
267 /*
268  * Setting the keyboard rate.
269  */
270 
271 static int kbd_rate_helper(struct input_handle *handle, void *data)
272 {
273 	struct input_dev *dev = handle->dev;
274 	struct kbd_repeat *rpt = data;
275 
276 	if (test_bit(EV_REP, dev->evbit)) {
277 
278 		if (rpt[0].delay > 0)
279 			input_inject_event(handle,
280 					   EV_REP, REP_DELAY, rpt[0].delay);
281 		if (rpt[0].period > 0)
282 			input_inject_event(handle,
283 					   EV_REP, REP_PERIOD, rpt[0].period);
284 
285 		rpt[1].delay = dev->rep[REP_DELAY];
286 		rpt[1].period = dev->rep[REP_PERIOD];
287 	}
288 
289 	return 0;
290 }
291 
292 int kbd_rate(struct kbd_repeat *rpt)
293 {
294 	struct kbd_repeat data[2] = { *rpt };
295 
296 	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
297 	*rpt = data[1];	/* Copy currently used settings */
298 
299 	return 0;
300 }
301 
302 /*
303  * Helper Functions.
304  */
305 static void put_queue(struct vc_data *vc, int ch)
306 {
307 	tty_insert_flip_char(&vc->port, ch, 0);
308 	tty_schedule_flip(&vc->port);
309 }
310 
311 static void puts_queue(struct vc_data *vc, char *cp)
312 {
313 	while (*cp) {
314 		tty_insert_flip_char(&vc->port, *cp, 0);
315 		cp++;
316 	}
317 	tty_schedule_flip(&vc->port);
318 }
319 
320 static void applkey(struct vc_data *vc, int key, char mode)
321 {
322 	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
323 
324 	buf[1] = (mode ? 'O' : '[');
325 	buf[2] = key;
326 	puts_queue(vc, buf);
327 }
328 
329 /*
330  * Many other routines do put_queue, but I think either
331  * they produce ASCII, or they produce some user-assigned
332  * string, and in both cases we might assume that it is
333  * in utf-8 already.
334  */
335 static void to_utf8(struct vc_data *vc, uint c)
336 {
337 	if (c < 0x80)
338 		/*  0******* */
339 		put_queue(vc, c);
340 	else if (c < 0x800) {
341 		/* 110***** 10****** */
342 		put_queue(vc, 0xc0 | (c >> 6));
343 		put_queue(vc, 0x80 | (c & 0x3f));
344 	} else if (c < 0x10000) {
345 		if (c >= 0xD800 && c < 0xE000)
346 			return;
347 		if (c == 0xFFFF)
348 			return;
349 		/* 1110**** 10****** 10****** */
350 		put_queue(vc, 0xe0 | (c >> 12));
351 		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
352 		put_queue(vc, 0x80 | (c & 0x3f));
353 	} else if (c < 0x110000) {
354 		/* 11110*** 10****** 10****** 10****** */
355 		put_queue(vc, 0xf0 | (c >> 18));
356 		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
357 		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
358 		put_queue(vc, 0x80 | (c & 0x3f));
359 	}
360 }
361 
362 /*
363  * Called after returning from RAW mode or when changing consoles - recompute
364  * shift_down[] and shift_state from key_down[] maybe called when keymap is
365  * undefined, so that shiftkey release is seen. The caller must hold the
366  * kbd_event_lock.
367  */
368 
369 static void do_compute_shiftstate(void)
370 {
371 	unsigned int k, sym, val;
372 
373 	shift_state = 0;
374 	memset(shift_down, 0, sizeof(shift_down));
375 
376 	for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
377 		sym = U(key_maps[0][k]);
378 		if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
379 			continue;
380 
381 		val = KVAL(sym);
382 		if (val == KVAL(K_CAPSSHIFT))
383 			val = KVAL(K_SHIFT);
384 
385 		shift_down[val]++;
386 		shift_state |= BIT(val);
387 	}
388 }
389 
390 /* We still have to export this method to vt.c */
391 void compute_shiftstate(void)
392 {
393 	unsigned long flags;
394 	spin_lock_irqsave(&kbd_event_lock, flags);
395 	do_compute_shiftstate();
396 	spin_unlock_irqrestore(&kbd_event_lock, flags);
397 }
398 
399 /*
400  * We have a combining character DIACR here, followed by the character CH.
401  * If the combination occurs in the table, return the corresponding value.
402  * Otherwise, if CH is a space or equals DIACR, return DIACR.
403  * Otherwise, conclude that DIACR was not combining after all,
404  * queue it and return CH.
405  */
406 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
407 {
408 	unsigned int d = diacr;
409 	unsigned int i;
410 
411 	diacr = 0;
412 
413 	if ((d & ~0xff) == BRL_UC_ROW) {
414 		if ((ch & ~0xff) == BRL_UC_ROW)
415 			return d | ch;
416 	} else {
417 		for (i = 0; i < accent_table_size; i++)
418 			if (accent_table[i].diacr == d && accent_table[i].base == ch)
419 				return accent_table[i].result;
420 	}
421 
422 	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
423 		return d;
424 
425 	if (kbd->kbdmode == VC_UNICODE)
426 		to_utf8(vc, d);
427 	else {
428 		int c = conv_uni_to_8bit(d);
429 		if (c != -1)
430 			put_queue(vc, c);
431 	}
432 
433 	return ch;
434 }
435 
436 /*
437  * Special function handlers
438  */
439 static void fn_enter(struct vc_data *vc)
440 {
441 	if (diacr) {
442 		if (kbd->kbdmode == VC_UNICODE)
443 			to_utf8(vc, diacr);
444 		else {
445 			int c = conv_uni_to_8bit(diacr);
446 			if (c != -1)
447 				put_queue(vc, c);
448 		}
449 		diacr = 0;
450 	}
451 
452 	put_queue(vc, 13);
453 	if (vc_kbd_mode(kbd, VC_CRLF))
454 		put_queue(vc, 10);
455 }
456 
457 static void fn_caps_toggle(struct vc_data *vc)
458 {
459 	if (rep)
460 		return;
461 
462 	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
463 }
464 
465 static void fn_caps_on(struct vc_data *vc)
466 {
467 	if (rep)
468 		return;
469 
470 	set_vc_kbd_led(kbd, VC_CAPSLOCK);
471 }
472 
473 static void fn_show_ptregs(struct vc_data *vc)
474 {
475 	struct pt_regs *regs = get_irq_regs();
476 
477 	if (regs)
478 		show_regs(regs);
479 }
480 
481 static void fn_hold(struct vc_data *vc)
482 {
483 	struct tty_struct *tty = vc->port.tty;
484 
485 	if (rep || !tty)
486 		return;
487 
488 	/*
489 	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
490 	 * these routines are also activated by ^S/^Q.
491 	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
492 	 */
493 	if (tty->stopped)
494 		start_tty(tty);
495 	else
496 		stop_tty(tty);
497 }
498 
499 static void fn_num(struct vc_data *vc)
500 {
501 	if (vc_kbd_mode(kbd, VC_APPLIC))
502 		applkey(vc, 'P', 1);
503 	else
504 		fn_bare_num(vc);
505 }
506 
507 /*
508  * Bind this to Shift-NumLock if you work in application keypad mode
509  * but want to be able to change the NumLock flag.
510  * Bind this to NumLock if you prefer that the NumLock key always
511  * changes the NumLock flag.
512  */
513 static void fn_bare_num(struct vc_data *vc)
514 {
515 	if (!rep)
516 		chg_vc_kbd_led(kbd, VC_NUMLOCK);
517 }
518 
519 static void fn_lastcons(struct vc_data *vc)
520 {
521 	/* switch to the last used console, ChN */
522 	set_console(last_console);
523 }
524 
525 static void fn_dec_console(struct vc_data *vc)
526 {
527 	int i, cur = fg_console;
528 
529 	/* Currently switching?  Queue this next switch relative to that. */
530 	if (want_console != -1)
531 		cur = want_console;
532 
533 	for (i = cur - 1; i != cur; i--) {
534 		if (i == -1)
535 			i = MAX_NR_CONSOLES - 1;
536 		if (vc_cons_allocated(i))
537 			break;
538 	}
539 	set_console(i);
540 }
541 
542 static void fn_inc_console(struct vc_data *vc)
543 {
544 	int i, cur = fg_console;
545 
546 	/* Currently switching?  Queue this next switch relative to that. */
547 	if (want_console != -1)
548 		cur = want_console;
549 
550 	for (i = cur+1; i != cur; i++) {
551 		if (i == MAX_NR_CONSOLES)
552 			i = 0;
553 		if (vc_cons_allocated(i))
554 			break;
555 	}
556 	set_console(i);
557 }
558 
559 static void fn_send_intr(struct vc_data *vc)
560 {
561 	tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
562 	tty_schedule_flip(&vc->port);
563 }
564 
565 static void fn_scroll_forw(struct vc_data *vc)
566 {
567 	scrollfront(vc, 0);
568 }
569 
570 static void fn_scroll_back(struct vc_data *vc)
571 {
572 	scrollback(vc);
573 }
574 
575 static void fn_show_mem(struct vc_data *vc)
576 {
577 	show_mem(0, NULL);
578 }
579 
580 static void fn_show_state(struct vc_data *vc)
581 {
582 	show_state();
583 }
584 
585 static void fn_boot_it(struct vc_data *vc)
586 {
587 	ctrl_alt_del();
588 }
589 
590 static void fn_compose(struct vc_data *vc)
591 {
592 	dead_key_next = true;
593 }
594 
595 static void fn_spawn_con(struct vc_data *vc)
596 {
597 	spin_lock(&vt_spawn_con.lock);
598 	if (vt_spawn_con.pid)
599 		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
600 			put_pid(vt_spawn_con.pid);
601 			vt_spawn_con.pid = NULL;
602 		}
603 	spin_unlock(&vt_spawn_con.lock);
604 }
605 
606 static void fn_SAK(struct vc_data *vc)
607 {
608 	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
609 	schedule_work(SAK_work);
610 }
611 
612 static void fn_null(struct vc_data *vc)
613 {
614 	do_compute_shiftstate();
615 }
616 
617 /*
618  * Special key handlers
619  */
620 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
621 {
622 }
623 
624 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
625 {
626 	if (up_flag)
627 		return;
628 	if (value >= ARRAY_SIZE(fn_handler))
629 		return;
630 	if ((kbd->kbdmode == VC_RAW ||
631 	     kbd->kbdmode == VC_MEDIUMRAW ||
632 	     kbd->kbdmode == VC_OFF) &&
633 	     value != KVAL(K_SAK))
634 		return;		/* SAK is allowed even in raw mode */
635 	fn_handler[value](vc);
636 }
637 
638 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
639 {
640 	pr_err("k_lowercase was called - impossible\n");
641 }
642 
643 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
644 {
645 	if (up_flag)
646 		return;		/* no action, if this is a key release */
647 
648 	if (diacr)
649 		value = handle_diacr(vc, value);
650 
651 	if (dead_key_next) {
652 		dead_key_next = false;
653 		diacr = value;
654 		return;
655 	}
656 	if (kbd->kbdmode == VC_UNICODE)
657 		to_utf8(vc, value);
658 	else {
659 		int c = conv_uni_to_8bit(value);
660 		if (c != -1)
661 			put_queue(vc, c);
662 	}
663 }
664 
665 /*
666  * Handle dead key. Note that we now may have several
667  * dead keys modifying the same character. Very useful
668  * for Vietnamese.
669  */
670 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
671 {
672 	if (up_flag)
673 		return;
674 
675 	diacr = (diacr ? handle_diacr(vc, value) : value);
676 }
677 
678 static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
679 {
680 	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
681 }
682 
683 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
684 {
685 	k_deadunicode(vc, value, up_flag);
686 }
687 
688 /*
689  * Obsolete - for backwards compatibility only
690  */
691 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
692 {
693 	static const unsigned char ret_diacr[NR_DEAD] = {
694 		'`',	/* dead_grave */
695 		'\'',	/* dead_acute */
696 		'^',	/* dead_circumflex */
697 		'~',	/* dead_tilda */
698 		'"',	/* dead_diaeresis */
699 		',',	/* dead_cedilla */
700 		'_',	/* dead_macron */
701 		'U',	/* dead_breve */
702 		'.',	/* dead_abovedot */
703 		'*',	/* dead_abovering */
704 		'=',	/* dead_doubleacute */
705 		'c',	/* dead_caron */
706 		'k',	/* dead_ogonek */
707 		'i',	/* dead_iota */
708 		'#',	/* dead_voiced_sound */
709 		'o',	/* dead_semivoiced_sound */
710 		'!',	/* dead_belowdot */
711 		'?',	/* dead_hook */
712 		'+',	/* dead_horn */
713 		'-',	/* dead_stroke */
714 		')',	/* dead_abovecomma */
715 		'(',	/* dead_abovereversedcomma */
716 		':',	/* dead_doublegrave */
717 		'n',	/* dead_invertedbreve */
718 		';',	/* dead_belowcomma */
719 		'$',	/* dead_currency */
720 		'@',	/* dead_greek */
721 	};
722 
723 	k_deadunicode(vc, ret_diacr[value], up_flag);
724 }
725 
726 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
727 {
728 	if (up_flag)
729 		return;
730 
731 	set_console(value);
732 }
733 
734 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
735 {
736 	if (up_flag)
737 		return;
738 
739 	if ((unsigned)value < ARRAY_SIZE(func_table)) {
740 		if (func_table[value])
741 			puts_queue(vc, func_table[value]);
742 	} else
743 		pr_err("k_fn called with value=%d\n", value);
744 }
745 
746 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
747 {
748 	static const char cur_chars[] = "BDCA";
749 
750 	if (up_flag)
751 		return;
752 
753 	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
754 }
755 
756 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
757 {
758 	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
759 	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
760 
761 	if (up_flag)
762 		return;		/* no action, if this is a key release */
763 
764 	/* kludge... shift forces cursor/number keys */
765 	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
766 		applkey(vc, app_map[value], 1);
767 		return;
768 	}
769 
770 	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
771 
772 		switch (value) {
773 		case KVAL(K_PCOMMA):
774 		case KVAL(K_PDOT):
775 			k_fn(vc, KVAL(K_REMOVE), 0);
776 			return;
777 		case KVAL(K_P0):
778 			k_fn(vc, KVAL(K_INSERT), 0);
779 			return;
780 		case KVAL(K_P1):
781 			k_fn(vc, KVAL(K_SELECT), 0);
782 			return;
783 		case KVAL(K_P2):
784 			k_cur(vc, KVAL(K_DOWN), 0);
785 			return;
786 		case KVAL(K_P3):
787 			k_fn(vc, KVAL(K_PGDN), 0);
788 			return;
789 		case KVAL(K_P4):
790 			k_cur(vc, KVAL(K_LEFT), 0);
791 			return;
792 		case KVAL(K_P6):
793 			k_cur(vc, KVAL(K_RIGHT), 0);
794 			return;
795 		case KVAL(K_P7):
796 			k_fn(vc, KVAL(K_FIND), 0);
797 			return;
798 		case KVAL(K_P8):
799 			k_cur(vc, KVAL(K_UP), 0);
800 			return;
801 		case KVAL(K_P9):
802 			k_fn(vc, KVAL(K_PGUP), 0);
803 			return;
804 		case KVAL(K_P5):
805 			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
806 			return;
807 		}
808 	}
809 
810 	put_queue(vc, pad_chars[value]);
811 	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
812 		put_queue(vc, 10);
813 }
814 
815 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
816 {
817 	int old_state = shift_state;
818 
819 	if (rep)
820 		return;
821 	/*
822 	 * Mimic typewriter:
823 	 * a CapsShift key acts like Shift but undoes CapsLock
824 	 */
825 	if (value == KVAL(K_CAPSSHIFT)) {
826 		value = KVAL(K_SHIFT);
827 		if (!up_flag)
828 			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
829 	}
830 
831 	if (up_flag) {
832 		/*
833 		 * handle the case that two shift or control
834 		 * keys are depressed simultaneously
835 		 */
836 		if (shift_down[value])
837 			shift_down[value]--;
838 	} else
839 		shift_down[value]++;
840 
841 	if (shift_down[value])
842 		shift_state |= (1 << value);
843 	else
844 		shift_state &= ~(1 << value);
845 
846 	/* kludge */
847 	if (up_flag && shift_state != old_state && npadch != -1) {
848 		if (kbd->kbdmode == VC_UNICODE)
849 			to_utf8(vc, npadch);
850 		else
851 			put_queue(vc, npadch & 0xff);
852 		npadch = -1;
853 	}
854 }
855 
856 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
857 {
858 	if (up_flag)
859 		return;
860 
861 	if (vc_kbd_mode(kbd, VC_META)) {
862 		put_queue(vc, '\033');
863 		put_queue(vc, value);
864 	} else
865 		put_queue(vc, value | 0x80);
866 }
867 
868 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
869 {
870 	int base;
871 
872 	if (up_flag)
873 		return;
874 
875 	if (value < 10) {
876 		/* decimal input of code, while Alt depressed */
877 		base = 10;
878 	} else {
879 		/* hexadecimal input of code, while AltGr depressed */
880 		value -= 10;
881 		base = 16;
882 	}
883 
884 	if (npadch == -1)
885 		npadch = value;
886 	else
887 		npadch = npadch * base + value;
888 }
889 
890 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
891 {
892 	if (up_flag || rep)
893 		return;
894 
895 	chg_vc_kbd_lock(kbd, value);
896 }
897 
898 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
899 {
900 	k_shift(vc, value, up_flag);
901 	if (up_flag || rep)
902 		return;
903 
904 	chg_vc_kbd_slock(kbd, value);
905 	/* try to make Alt, oops, AltGr and such work */
906 	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
907 		kbd->slockstate = 0;
908 		chg_vc_kbd_slock(kbd, value);
909 	}
910 }
911 
912 /* by default, 300ms interval for combination release */
913 static unsigned brl_timeout = 300;
914 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
915 module_param(brl_timeout, uint, 0644);
916 
917 static unsigned brl_nbchords = 1;
918 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
919 module_param(brl_nbchords, uint, 0644);
920 
921 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
922 {
923 	static unsigned long chords;
924 	static unsigned committed;
925 
926 	if (!brl_nbchords)
927 		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
928 	else {
929 		committed |= pattern;
930 		chords++;
931 		if (chords == brl_nbchords) {
932 			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
933 			chords = 0;
934 			committed = 0;
935 		}
936 	}
937 }
938 
939 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
940 {
941 	static unsigned pressed, committing;
942 	static unsigned long releasestart;
943 
944 	if (kbd->kbdmode != VC_UNICODE) {
945 		if (!up_flag)
946 			pr_warn("keyboard mode must be unicode for braille patterns\n");
947 		return;
948 	}
949 
950 	if (!value) {
951 		k_unicode(vc, BRL_UC_ROW, up_flag);
952 		return;
953 	}
954 
955 	if (value > 8)
956 		return;
957 
958 	if (!up_flag) {
959 		pressed |= 1 << (value - 1);
960 		if (!brl_timeout)
961 			committing = pressed;
962 	} else if (brl_timeout) {
963 		if (!committing ||
964 		    time_after(jiffies,
965 			       releasestart + msecs_to_jiffies(brl_timeout))) {
966 			committing = pressed;
967 			releasestart = jiffies;
968 		}
969 		pressed &= ~(1 << (value - 1));
970 		if (!pressed && committing) {
971 			k_brlcommit(vc, committing, 0);
972 			committing = 0;
973 		}
974 	} else {
975 		if (committing) {
976 			k_brlcommit(vc, committing, 0);
977 			committing = 0;
978 		}
979 		pressed &= ~(1 << (value - 1));
980 	}
981 }
982 
983 #if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
984 
985 struct kbd_led_trigger {
986 	struct led_trigger trigger;
987 	unsigned int mask;
988 };
989 
990 static int kbd_led_trigger_activate(struct led_classdev *cdev)
991 {
992 	struct kbd_led_trigger *trigger =
993 		container_of(cdev->trigger, struct kbd_led_trigger, trigger);
994 
995 	tasklet_disable(&keyboard_tasklet);
996 	if (ledstate != -1U)
997 		led_trigger_event(&trigger->trigger,
998 				  ledstate & trigger->mask ?
999 					LED_FULL : LED_OFF);
1000 	tasklet_enable(&keyboard_tasklet);
1001 
1002 	return 0;
1003 }
1004 
1005 #define KBD_LED_TRIGGER(_led_bit, _name) {			\
1006 		.trigger = {					\
1007 			.name = _name,				\
1008 			.activate = kbd_led_trigger_activate,	\
1009 		},						\
1010 		.mask	= BIT(_led_bit),			\
1011 	}
1012 
1013 #define KBD_LOCKSTATE_TRIGGER(_led_bit, _name)		\
1014 	KBD_LED_TRIGGER((_led_bit) + 8, _name)
1015 
1016 static struct kbd_led_trigger kbd_led_triggers[] = {
1017 	KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1018 	KBD_LED_TRIGGER(VC_NUMLOCK,   "kbd-numlock"),
1019 	KBD_LED_TRIGGER(VC_CAPSLOCK,  "kbd-capslock"),
1020 	KBD_LED_TRIGGER(VC_KANALOCK,  "kbd-kanalock"),
1021 
1022 	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK,  "kbd-shiftlock"),
1023 	KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK,  "kbd-altgrlock"),
1024 	KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK,   "kbd-ctrllock"),
1025 	KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK,    "kbd-altlock"),
1026 	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1027 	KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1028 	KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK,  "kbd-ctrlllock"),
1029 	KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK,  "kbd-ctrlrlock"),
1030 };
1031 
1032 static void kbd_propagate_led_state(unsigned int old_state,
1033 				    unsigned int new_state)
1034 {
1035 	struct kbd_led_trigger *trigger;
1036 	unsigned int changed = old_state ^ new_state;
1037 	int i;
1038 
1039 	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1040 		trigger = &kbd_led_triggers[i];
1041 
1042 		if (changed & trigger->mask)
1043 			led_trigger_event(&trigger->trigger,
1044 					  new_state & trigger->mask ?
1045 						LED_FULL : LED_OFF);
1046 	}
1047 }
1048 
1049 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1050 {
1051 	unsigned int led_state = *(unsigned int *)data;
1052 
1053 	if (test_bit(EV_LED, handle->dev->evbit))
1054 		kbd_propagate_led_state(~led_state, led_state);
1055 
1056 	return 0;
1057 }
1058 
1059 static void kbd_init_leds(void)
1060 {
1061 	int error;
1062 	int i;
1063 
1064 	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1065 		error = led_trigger_register(&kbd_led_triggers[i].trigger);
1066 		if (error)
1067 			pr_err("error %d while registering trigger %s\n",
1068 			       error, kbd_led_triggers[i].trigger.name);
1069 	}
1070 }
1071 
1072 #else
1073 
1074 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1075 {
1076 	unsigned int leds = *(unsigned int *)data;
1077 
1078 	if (test_bit(EV_LED, handle->dev->evbit)) {
1079 		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1080 		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & 0x02));
1081 		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & 0x04));
1082 		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1083 	}
1084 
1085 	return 0;
1086 }
1087 
1088 static void kbd_propagate_led_state(unsigned int old_state,
1089 				    unsigned int new_state)
1090 {
1091 	input_handler_for_each_handle(&kbd_handler, &new_state,
1092 				      kbd_update_leds_helper);
1093 }
1094 
1095 static void kbd_init_leds(void)
1096 {
1097 }
1098 
1099 #endif
1100 
1101 /*
1102  * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1103  * or (ii) whatever pattern of lights people want to show using KDSETLED,
1104  * or (iii) specified bits of specified words in kernel memory.
1105  */
1106 static unsigned char getledstate(void)
1107 {
1108 	return ledstate & 0xff;
1109 }
1110 
1111 void setledstate(struct kbd_struct *kb, unsigned int led)
1112 {
1113         unsigned long flags;
1114         spin_lock_irqsave(&led_lock, flags);
1115 	if (!(led & ~7)) {
1116 		ledioctl = led;
1117 		kb->ledmode = LED_SHOW_IOCTL;
1118 	} else
1119 		kb->ledmode = LED_SHOW_FLAGS;
1120 
1121 	set_leds();
1122 	spin_unlock_irqrestore(&led_lock, flags);
1123 }
1124 
1125 static inline unsigned char getleds(void)
1126 {
1127 	struct kbd_struct *kb = kbd_table + fg_console;
1128 
1129 	if (kb->ledmode == LED_SHOW_IOCTL)
1130 		return ledioctl;
1131 
1132 	return kb->ledflagstate;
1133 }
1134 
1135 /**
1136  *	vt_get_leds	-	helper for braille console
1137  *	@console: console to read
1138  *	@flag: flag we want to check
1139  *
1140  *	Check the status of a keyboard led flag and report it back
1141  */
1142 int vt_get_leds(int console, int flag)
1143 {
1144 	struct kbd_struct *kb = kbd_table + console;
1145 	int ret;
1146 	unsigned long flags;
1147 
1148 	spin_lock_irqsave(&led_lock, flags);
1149 	ret = vc_kbd_led(kb, flag);
1150 	spin_unlock_irqrestore(&led_lock, flags);
1151 
1152 	return ret;
1153 }
1154 EXPORT_SYMBOL_GPL(vt_get_leds);
1155 
1156 /**
1157  *	vt_set_led_state	-	set LED state of a console
1158  *	@console: console to set
1159  *	@leds: LED bits
1160  *
1161  *	Set the LEDs on a console. This is a wrapper for the VT layer
1162  *	so that we can keep kbd knowledge internal
1163  */
1164 void vt_set_led_state(int console, int leds)
1165 {
1166 	struct kbd_struct *kb = kbd_table + console;
1167 	setledstate(kb, leds);
1168 }
1169 
1170 /**
1171  *	vt_kbd_con_start	-	Keyboard side of console start
1172  *	@console: console
1173  *
1174  *	Handle console start. This is a wrapper for the VT layer
1175  *	so that we can keep kbd knowledge internal
1176  *
1177  *	FIXME: We eventually need to hold the kbd lock here to protect
1178  *	the LED updating. We can't do it yet because fn_hold calls stop_tty
1179  *	and start_tty under the kbd_event_lock, while normal tty paths
1180  *	don't hold the lock. We probably need to split out an LED lock
1181  *	but not during an -rc release!
1182  */
1183 void vt_kbd_con_start(int console)
1184 {
1185 	struct kbd_struct *kb = kbd_table + console;
1186 	unsigned long flags;
1187 	spin_lock_irqsave(&led_lock, flags);
1188 	clr_vc_kbd_led(kb, VC_SCROLLOCK);
1189 	set_leds();
1190 	spin_unlock_irqrestore(&led_lock, flags);
1191 }
1192 
1193 /**
1194  *	vt_kbd_con_stop		-	Keyboard side of console stop
1195  *	@console: console
1196  *
1197  *	Handle console stop. This is a wrapper for the VT layer
1198  *	so that we can keep kbd knowledge internal
1199  */
1200 void vt_kbd_con_stop(int console)
1201 {
1202 	struct kbd_struct *kb = kbd_table + console;
1203 	unsigned long flags;
1204 	spin_lock_irqsave(&led_lock, flags);
1205 	set_vc_kbd_led(kb, VC_SCROLLOCK);
1206 	set_leds();
1207 	spin_unlock_irqrestore(&led_lock, flags);
1208 }
1209 
1210 /*
1211  * This is the tasklet that updates LED state of LEDs using standard
1212  * keyboard triggers. The reason we use tasklet is that we need to
1213  * handle the scenario when keyboard handler is not registered yet
1214  * but we already getting updates from the VT to update led state.
1215  */
1216 static void kbd_bh(unsigned long dummy)
1217 {
1218 	unsigned int leds;
1219 	unsigned long flags;
1220 
1221 	spin_lock_irqsave(&led_lock, flags);
1222 	leds = getleds();
1223 	leds |= (unsigned int)kbd->lockstate << 8;
1224 	spin_unlock_irqrestore(&led_lock, flags);
1225 
1226 	if (leds != ledstate) {
1227 		kbd_propagate_led_state(ledstate, leds);
1228 		ledstate = leds;
1229 	}
1230 }
1231 
1232 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1233 
1234 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1235     defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1236     defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1237     (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1238 
1239 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1240 			((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1241 
1242 static const unsigned short x86_keycodes[256] =
1243 	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1244 	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1245 	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1246 	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1247 	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1248 	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1249 	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1250 	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1251 	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1252 	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1253 	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1254 	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1255 	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1256 	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1257 	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1258 
1259 #ifdef CONFIG_SPARC
1260 static int sparc_l1_a_state;
1261 extern void sun_do_break(void);
1262 #endif
1263 
1264 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1265 		       unsigned char up_flag)
1266 {
1267 	int code;
1268 
1269 	switch (keycode) {
1270 
1271 	case KEY_PAUSE:
1272 		put_queue(vc, 0xe1);
1273 		put_queue(vc, 0x1d | up_flag);
1274 		put_queue(vc, 0x45 | up_flag);
1275 		break;
1276 
1277 	case KEY_HANGEUL:
1278 		if (!up_flag)
1279 			put_queue(vc, 0xf2);
1280 		break;
1281 
1282 	case KEY_HANJA:
1283 		if (!up_flag)
1284 			put_queue(vc, 0xf1);
1285 		break;
1286 
1287 	case KEY_SYSRQ:
1288 		/*
1289 		 * Real AT keyboards (that's what we're trying
1290 		 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1291 		 * pressing PrtSc/SysRq alone, but simply 0x54
1292 		 * when pressing Alt+PrtSc/SysRq.
1293 		 */
1294 		if (test_bit(KEY_LEFTALT, key_down) ||
1295 		    test_bit(KEY_RIGHTALT, key_down)) {
1296 			put_queue(vc, 0x54 | up_flag);
1297 		} else {
1298 			put_queue(vc, 0xe0);
1299 			put_queue(vc, 0x2a | up_flag);
1300 			put_queue(vc, 0xe0);
1301 			put_queue(vc, 0x37 | up_flag);
1302 		}
1303 		break;
1304 
1305 	default:
1306 		if (keycode > 255)
1307 			return -1;
1308 
1309 		code = x86_keycodes[keycode];
1310 		if (!code)
1311 			return -1;
1312 
1313 		if (code & 0x100)
1314 			put_queue(vc, 0xe0);
1315 		put_queue(vc, (code & 0x7f) | up_flag);
1316 
1317 		break;
1318 	}
1319 
1320 	return 0;
1321 }
1322 
1323 #else
1324 
1325 #define HW_RAW(dev)	0
1326 
1327 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1328 {
1329 	if (keycode > 127)
1330 		return -1;
1331 
1332 	put_queue(vc, keycode | up_flag);
1333 	return 0;
1334 }
1335 #endif
1336 
1337 static void kbd_rawcode(unsigned char data)
1338 {
1339 	struct vc_data *vc = vc_cons[fg_console].d;
1340 
1341 	kbd = kbd_table + vc->vc_num;
1342 	if (kbd->kbdmode == VC_RAW)
1343 		put_queue(vc, data);
1344 }
1345 
1346 static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1347 {
1348 	struct vc_data *vc = vc_cons[fg_console].d;
1349 	unsigned short keysym, *key_map;
1350 	unsigned char type;
1351 	bool raw_mode;
1352 	struct tty_struct *tty;
1353 	int shift_final;
1354 	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1355 	int rc;
1356 
1357 	tty = vc->port.tty;
1358 
1359 	if (tty && (!tty->driver_data)) {
1360 		/* No driver data? Strange. Okay we fix it then. */
1361 		tty->driver_data = vc;
1362 	}
1363 
1364 	kbd = kbd_table + vc->vc_num;
1365 
1366 #ifdef CONFIG_SPARC
1367 	if (keycode == KEY_STOP)
1368 		sparc_l1_a_state = down;
1369 #endif
1370 
1371 	rep = (down == 2);
1372 
1373 	raw_mode = (kbd->kbdmode == VC_RAW);
1374 	if (raw_mode && !hw_raw)
1375 		if (emulate_raw(vc, keycode, !down << 7))
1376 			if (keycode < BTN_MISC && printk_ratelimit())
1377 				pr_warn("can't emulate rawmode for keycode %d\n",
1378 					keycode);
1379 
1380 #ifdef CONFIG_SPARC
1381 	if (keycode == KEY_A && sparc_l1_a_state) {
1382 		sparc_l1_a_state = false;
1383 		sun_do_break();
1384 	}
1385 #endif
1386 
1387 	if (kbd->kbdmode == VC_MEDIUMRAW) {
1388 		/*
1389 		 * This is extended medium raw mode, with keys above 127
1390 		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1391 		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1392 		 * interfere with anything else. The two bytes after 0 will
1393 		 * always have the up flag set not to interfere with older
1394 		 * applications. This allows for 16384 different keycodes,
1395 		 * which should be enough.
1396 		 */
1397 		if (keycode < 128) {
1398 			put_queue(vc, keycode | (!down << 7));
1399 		} else {
1400 			put_queue(vc, !down << 7);
1401 			put_queue(vc, (keycode >> 7) | 0x80);
1402 			put_queue(vc, keycode | 0x80);
1403 		}
1404 		raw_mode = true;
1405 	}
1406 
1407 	if (down)
1408 		set_bit(keycode, key_down);
1409 	else
1410 		clear_bit(keycode, key_down);
1411 
1412 	if (rep &&
1413 	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1414 	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1415 		/*
1416 		 * Don't repeat a key if the input buffers are not empty and the
1417 		 * characters get aren't echoed locally. This makes key repeat
1418 		 * usable with slow applications and under heavy loads.
1419 		 */
1420 		return;
1421 	}
1422 
1423 	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1424 	param.ledstate = kbd->ledflagstate;
1425 	key_map = key_maps[shift_final];
1426 
1427 	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1428 					KBD_KEYCODE, &param);
1429 	if (rc == NOTIFY_STOP || !key_map) {
1430 		atomic_notifier_call_chain(&keyboard_notifier_list,
1431 					   KBD_UNBOUND_KEYCODE, &param);
1432 		do_compute_shiftstate();
1433 		kbd->slockstate = 0;
1434 		return;
1435 	}
1436 
1437 	if (keycode < NR_KEYS)
1438 		keysym = key_map[keycode];
1439 	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1440 		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1441 	else
1442 		return;
1443 
1444 	type = KTYP(keysym);
1445 
1446 	if (type < 0xf0) {
1447 		param.value = keysym;
1448 		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1449 						KBD_UNICODE, &param);
1450 		if (rc != NOTIFY_STOP)
1451 			if (down && !raw_mode)
1452 				to_utf8(vc, keysym);
1453 		return;
1454 	}
1455 
1456 	type -= 0xf0;
1457 
1458 	if (type == KT_LETTER) {
1459 		type = KT_LATIN;
1460 		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1461 			key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1462 			if (key_map)
1463 				keysym = key_map[keycode];
1464 		}
1465 	}
1466 
1467 	param.value = keysym;
1468 	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1469 					KBD_KEYSYM, &param);
1470 	if (rc == NOTIFY_STOP)
1471 		return;
1472 
1473 	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1474 		return;
1475 
1476 	(*k_handler[type])(vc, keysym & 0xff, !down);
1477 
1478 	param.ledstate = kbd->ledflagstate;
1479 	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1480 
1481 	if (type != KT_SLOCK)
1482 		kbd->slockstate = 0;
1483 }
1484 
1485 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1486 		      unsigned int event_code, int value)
1487 {
1488 	/* We are called with interrupts disabled, just take the lock */
1489 	spin_lock(&kbd_event_lock);
1490 
1491 	if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1492 		kbd_rawcode(value);
1493 	if (event_type == EV_KEY)
1494 		kbd_keycode(event_code, value, HW_RAW(handle->dev));
1495 
1496 	spin_unlock(&kbd_event_lock);
1497 
1498 	tasklet_schedule(&keyboard_tasklet);
1499 	do_poke_blanked_console = 1;
1500 	schedule_console_callback();
1501 }
1502 
1503 static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1504 {
1505 	int i;
1506 
1507 	if (test_bit(EV_SND, dev->evbit))
1508 		return true;
1509 
1510 	if (test_bit(EV_KEY, dev->evbit)) {
1511 		for (i = KEY_RESERVED; i < BTN_MISC; i++)
1512 			if (test_bit(i, dev->keybit))
1513 				return true;
1514 		for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1515 			if (test_bit(i, dev->keybit))
1516 				return true;
1517 	}
1518 
1519 	return false;
1520 }
1521 
1522 /*
1523  * When a keyboard (or other input device) is found, the kbd_connect
1524  * function is called. The function then looks at the device, and if it
1525  * likes it, it can open it and get events from it. In this (kbd_connect)
1526  * function, we should decide which VT to bind that keyboard to initially.
1527  */
1528 static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1529 			const struct input_device_id *id)
1530 {
1531 	struct input_handle *handle;
1532 	int error;
1533 
1534 	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1535 	if (!handle)
1536 		return -ENOMEM;
1537 
1538 	handle->dev = dev;
1539 	handle->handler = handler;
1540 	handle->name = "kbd";
1541 
1542 	error = input_register_handle(handle);
1543 	if (error)
1544 		goto err_free_handle;
1545 
1546 	error = input_open_device(handle);
1547 	if (error)
1548 		goto err_unregister_handle;
1549 
1550 	return 0;
1551 
1552  err_unregister_handle:
1553 	input_unregister_handle(handle);
1554  err_free_handle:
1555 	kfree(handle);
1556 	return error;
1557 }
1558 
1559 static void kbd_disconnect(struct input_handle *handle)
1560 {
1561 	input_close_device(handle);
1562 	input_unregister_handle(handle);
1563 	kfree(handle);
1564 }
1565 
1566 /*
1567  * Start keyboard handler on the new keyboard by refreshing LED state to
1568  * match the rest of the system.
1569  */
1570 static void kbd_start(struct input_handle *handle)
1571 {
1572 	tasklet_disable(&keyboard_tasklet);
1573 
1574 	if (ledstate != -1U)
1575 		kbd_update_leds_helper(handle, &ledstate);
1576 
1577 	tasklet_enable(&keyboard_tasklet);
1578 }
1579 
1580 static const struct input_device_id kbd_ids[] = {
1581 	{
1582 		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1583 		.evbit = { BIT_MASK(EV_KEY) },
1584 	},
1585 
1586 	{
1587 		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1588 		.evbit = { BIT_MASK(EV_SND) },
1589 	},
1590 
1591 	{ },    /* Terminating entry */
1592 };
1593 
1594 MODULE_DEVICE_TABLE(input, kbd_ids);
1595 
1596 static struct input_handler kbd_handler = {
1597 	.event		= kbd_event,
1598 	.match		= kbd_match,
1599 	.connect	= kbd_connect,
1600 	.disconnect	= kbd_disconnect,
1601 	.start		= kbd_start,
1602 	.name		= "kbd",
1603 	.id_table	= kbd_ids,
1604 };
1605 
1606 int __init kbd_init(void)
1607 {
1608 	int i;
1609 	int error;
1610 
1611 	for (i = 0; i < MAX_NR_CONSOLES; i++) {
1612 		kbd_table[i].ledflagstate = kbd_defleds();
1613 		kbd_table[i].default_ledflagstate = kbd_defleds();
1614 		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1615 		kbd_table[i].lockstate = KBD_DEFLOCK;
1616 		kbd_table[i].slockstate = 0;
1617 		kbd_table[i].modeflags = KBD_DEFMODE;
1618 		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1619 	}
1620 
1621 	kbd_init_leds();
1622 
1623 	error = input_register_handler(&kbd_handler);
1624 	if (error)
1625 		return error;
1626 
1627 	tasklet_enable(&keyboard_tasklet);
1628 	tasklet_schedule(&keyboard_tasklet);
1629 
1630 	return 0;
1631 }
1632 
1633 /* Ioctl support code */
1634 
1635 /**
1636  *	vt_do_diacrit		-	diacritical table updates
1637  *	@cmd: ioctl request
1638  *	@udp: pointer to user data for ioctl
1639  *	@perm: permissions check computed by caller
1640  *
1641  *	Update the diacritical tables atomically and safely. Lock them
1642  *	against simultaneous keypresses
1643  */
1644 int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1645 {
1646 	unsigned long flags;
1647 	int asize;
1648 	int ret = 0;
1649 
1650 	switch (cmd) {
1651 	case KDGKBDIACR:
1652 	{
1653 		struct kbdiacrs __user *a = udp;
1654 		struct kbdiacr *dia;
1655 		int i;
1656 
1657 		dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1658 								GFP_KERNEL);
1659 		if (!dia)
1660 			return -ENOMEM;
1661 
1662 		/* Lock the diacriticals table, make a copy and then
1663 		   copy it after we unlock */
1664 		spin_lock_irqsave(&kbd_event_lock, flags);
1665 
1666 		asize = accent_table_size;
1667 		for (i = 0; i < asize; i++) {
1668 			dia[i].diacr = conv_uni_to_8bit(
1669 						accent_table[i].diacr);
1670 			dia[i].base = conv_uni_to_8bit(
1671 						accent_table[i].base);
1672 			dia[i].result = conv_uni_to_8bit(
1673 						accent_table[i].result);
1674 		}
1675 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1676 
1677 		if (put_user(asize, &a->kb_cnt))
1678 			ret = -EFAULT;
1679 		else  if (copy_to_user(a->kbdiacr, dia,
1680 				asize * sizeof(struct kbdiacr)))
1681 			ret = -EFAULT;
1682 		kfree(dia);
1683 		return ret;
1684 	}
1685 	case KDGKBDIACRUC:
1686 	{
1687 		struct kbdiacrsuc __user *a = udp;
1688 		void *buf;
1689 
1690 		buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1691 								GFP_KERNEL);
1692 		if (buf == NULL)
1693 			return -ENOMEM;
1694 
1695 		/* Lock the diacriticals table, make a copy and then
1696 		   copy it after we unlock */
1697 		spin_lock_irqsave(&kbd_event_lock, flags);
1698 
1699 		asize = accent_table_size;
1700 		memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1701 
1702 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1703 
1704 		if (put_user(asize, &a->kb_cnt))
1705 			ret = -EFAULT;
1706 		else if (copy_to_user(a->kbdiacruc, buf,
1707 				asize*sizeof(struct kbdiacruc)))
1708 			ret = -EFAULT;
1709 		kfree(buf);
1710 		return ret;
1711 	}
1712 
1713 	case KDSKBDIACR:
1714 	{
1715 		struct kbdiacrs __user *a = udp;
1716 		struct kbdiacr *dia = NULL;
1717 		unsigned int ct;
1718 		int i;
1719 
1720 		if (!perm)
1721 			return -EPERM;
1722 		if (get_user(ct, &a->kb_cnt))
1723 			return -EFAULT;
1724 		if (ct >= MAX_DIACR)
1725 			return -EINVAL;
1726 
1727 		if (ct) {
1728 
1729 			dia = memdup_user(a->kbdiacr,
1730 					sizeof(struct kbdiacr) * ct);
1731 			if (IS_ERR(dia))
1732 				return PTR_ERR(dia);
1733 
1734 		}
1735 
1736 		spin_lock_irqsave(&kbd_event_lock, flags);
1737 		accent_table_size = ct;
1738 		for (i = 0; i < ct; i++) {
1739 			accent_table[i].diacr =
1740 					conv_8bit_to_uni(dia[i].diacr);
1741 			accent_table[i].base =
1742 					conv_8bit_to_uni(dia[i].base);
1743 			accent_table[i].result =
1744 					conv_8bit_to_uni(dia[i].result);
1745 		}
1746 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1747 		kfree(dia);
1748 		return 0;
1749 	}
1750 
1751 	case KDSKBDIACRUC:
1752 	{
1753 		struct kbdiacrsuc __user *a = udp;
1754 		unsigned int ct;
1755 		void *buf = NULL;
1756 
1757 		if (!perm)
1758 			return -EPERM;
1759 
1760 		if (get_user(ct, &a->kb_cnt))
1761 			return -EFAULT;
1762 
1763 		if (ct >= MAX_DIACR)
1764 			return -EINVAL;
1765 
1766 		if (ct) {
1767 			buf = memdup_user(a->kbdiacruc,
1768 					  ct * sizeof(struct kbdiacruc));
1769 			if (IS_ERR(buf))
1770 				return PTR_ERR(buf);
1771 		}
1772 		spin_lock_irqsave(&kbd_event_lock, flags);
1773 		if (ct)
1774 			memcpy(accent_table, buf,
1775 					ct * sizeof(struct kbdiacruc));
1776 		accent_table_size = ct;
1777 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1778 		kfree(buf);
1779 		return 0;
1780 	}
1781 	}
1782 	return ret;
1783 }
1784 
1785 /**
1786  *	vt_do_kdskbmode		-	set keyboard mode ioctl
1787  *	@console: the console to use
1788  *	@arg: the requested mode
1789  *
1790  *	Update the keyboard mode bits while holding the correct locks.
1791  *	Return 0 for success or an error code.
1792  */
1793 int vt_do_kdskbmode(int console, unsigned int arg)
1794 {
1795 	struct kbd_struct *kb = kbd_table + console;
1796 	int ret = 0;
1797 	unsigned long flags;
1798 
1799 	spin_lock_irqsave(&kbd_event_lock, flags);
1800 	switch(arg) {
1801 	case K_RAW:
1802 		kb->kbdmode = VC_RAW;
1803 		break;
1804 	case K_MEDIUMRAW:
1805 		kb->kbdmode = VC_MEDIUMRAW;
1806 		break;
1807 	case K_XLATE:
1808 		kb->kbdmode = VC_XLATE;
1809 		do_compute_shiftstate();
1810 		break;
1811 	case K_UNICODE:
1812 		kb->kbdmode = VC_UNICODE;
1813 		do_compute_shiftstate();
1814 		break;
1815 	case K_OFF:
1816 		kb->kbdmode = VC_OFF;
1817 		break;
1818 	default:
1819 		ret = -EINVAL;
1820 	}
1821 	spin_unlock_irqrestore(&kbd_event_lock, flags);
1822 	return ret;
1823 }
1824 
1825 /**
1826  *	vt_do_kdskbmeta		-	set keyboard meta state
1827  *	@console: the console to use
1828  *	@arg: the requested meta state
1829  *
1830  *	Update the keyboard meta bits while holding the correct locks.
1831  *	Return 0 for success or an error code.
1832  */
1833 int vt_do_kdskbmeta(int console, unsigned int arg)
1834 {
1835 	struct kbd_struct *kb = kbd_table + console;
1836 	int ret = 0;
1837 	unsigned long flags;
1838 
1839 	spin_lock_irqsave(&kbd_event_lock, flags);
1840 	switch(arg) {
1841 	case K_METABIT:
1842 		clr_vc_kbd_mode(kb, VC_META);
1843 		break;
1844 	case K_ESCPREFIX:
1845 		set_vc_kbd_mode(kb, VC_META);
1846 		break;
1847 	default:
1848 		ret = -EINVAL;
1849 	}
1850 	spin_unlock_irqrestore(&kbd_event_lock, flags);
1851 	return ret;
1852 }
1853 
1854 int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1855 								int perm)
1856 {
1857 	struct kbkeycode tmp;
1858 	int kc = 0;
1859 
1860 	if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1861 		return -EFAULT;
1862 	switch (cmd) {
1863 	case KDGETKEYCODE:
1864 		kc = getkeycode(tmp.scancode);
1865 		if (kc >= 0)
1866 			kc = put_user(kc, &user_kbkc->keycode);
1867 		break;
1868 	case KDSETKEYCODE:
1869 		if (!perm)
1870 			return -EPERM;
1871 		kc = setkeycode(tmp.scancode, tmp.keycode);
1872 		break;
1873 	}
1874 	return kc;
1875 }
1876 
1877 #define i (tmp.kb_index)
1878 #define s (tmp.kb_table)
1879 #define v (tmp.kb_value)
1880 
1881 int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1882 						int console)
1883 {
1884 	struct kbd_struct *kb = kbd_table + console;
1885 	struct kbentry tmp;
1886 	ushort *key_map, *new_map, val, ov;
1887 	unsigned long flags;
1888 
1889 	if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1890 		return -EFAULT;
1891 
1892 	if (!capable(CAP_SYS_TTY_CONFIG))
1893 		perm = 0;
1894 
1895 	switch (cmd) {
1896 	case KDGKBENT:
1897 		/* Ensure another thread doesn't free it under us */
1898 		spin_lock_irqsave(&kbd_event_lock, flags);
1899 		key_map = key_maps[s];
1900 		if (key_map) {
1901 		    val = U(key_map[i]);
1902 		    if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1903 			val = K_HOLE;
1904 		} else
1905 		    val = (i ? K_HOLE : K_NOSUCHMAP);
1906 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1907 		return put_user(val, &user_kbe->kb_value);
1908 	case KDSKBENT:
1909 		if (!perm)
1910 			return -EPERM;
1911 		if (!i && v == K_NOSUCHMAP) {
1912 			spin_lock_irqsave(&kbd_event_lock, flags);
1913 			/* deallocate map */
1914 			key_map = key_maps[s];
1915 			if (s && key_map) {
1916 			    key_maps[s] = NULL;
1917 			    if (key_map[0] == U(K_ALLOCATED)) {
1918 					kfree(key_map);
1919 					keymap_count--;
1920 			    }
1921 			}
1922 			spin_unlock_irqrestore(&kbd_event_lock, flags);
1923 			break;
1924 		}
1925 
1926 		if (KTYP(v) < NR_TYPES) {
1927 		    if (KVAL(v) > max_vals[KTYP(v)])
1928 				return -EINVAL;
1929 		} else
1930 		    if (kb->kbdmode != VC_UNICODE)
1931 				return -EINVAL;
1932 
1933 		/* ++Geert: non-PC keyboards may generate keycode zero */
1934 #if !defined(__mc68000__) && !defined(__powerpc__)
1935 		/* assignment to entry 0 only tests validity of args */
1936 		if (!i)
1937 			break;
1938 #endif
1939 
1940 		new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1941 		if (!new_map)
1942 			return -ENOMEM;
1943 		spin_lock_irqsave(&kbd_event_lock, flags);
1944 		key_map = key_maps[s];
1945 		if (key_map == NULL) {
1946 			int j;
1947 
1948 			if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1949 			    !capable(CAP_SYS_RESOURCE)) {
1950 				spin_unlock_irqrestore(&kbd_event_lock, flags);
1951 				kfree(new_map);
1952 				return -EPERM;
1953 			}
1954 			key_maps[s] = new_map;
1955 			key_map = new_map;
1956 			key_map[0] = U(K_ALLOCATED);
1957 			for (j = 1; j < NR_KEYS; j++)
1958 				key_map[j] = U(K_HOLE);
1959 			keymap_count++;
1960 		} else
1961 			kfree(new_map);
1962 
1963 		ov = U(key_map[i]);
1964 		if (v == ov)
1965 			goto out;
1966 		/*
1967 		 * Attention Key.
1968 		 */
1969 		if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1970 			spin_unlock_irqrestore(&kbd_event_lock, flags);
1971 			return -EPERM;
1972 		}
1973 		key_map[i] = U(v);
1974 		if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1975 			do_compute_shiftstate();
1976 out:
1977 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1978 		break;
1979 	}
1980 	return 0;
1981 }
1982 #undef i
1983 #undef s
1984 #undef v
1985 
1986 /* FIXME: This one needs untangling and locking */
1987 int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1988 {
1989 	struct kbsentry *kbs;
1990 	char *p;
1991 	u_char *q;
1992 	u_char __user *up;
1993 	int sz;
1994 	int delta;
1995 	char *first_free, *fj, *fnw;
1996 	int i, j, k;
1997 	int ret;
1998 
1999 	if (!capable(CAP_SYS_TTY_CONFIG))
2000 		perm = 0;
2001 
2002 	kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
2003 	if (!kbs) {
2004 		ret = -ENOMEM;
2005 		goto reterr;
2006 	}
2007 
2008 	/* we mostly copy too much here (512bytes), but who cares ;) */
2009 	if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
2010 		ret = -EFAULT;
2011 		goto reterr;
2012 	}
2013 	kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
2014 	i = kbs->kb_func;
2015 
2016 	switch (cmd) {
2017 	case KDGKBSENT:
2018 		sz = sizeof(kbs->kb_string) - 1; /* sz should have been
2019 						  a struct member */
2020 		up = user_kdgkb->kb_string;
2021 		p = func_table[i];
2022 		if(p)
2023 			for ( ; *p && sz; p++, sz--)
2024 				if (put_user(*p, up++)) {
2025 					ret = -EFAULT;
2026 					goto reterr;
2027 				}
2028 		if (put_user('\0', up)) {
2029 			ret = -EFAULT;
2030 			goto reterr;
2031 		}
2032 		kfree(kbs);
2033 		return ((p && *p) ? -EOVERFLOW : 0);
2034 	case KDSKBSENT:
2035 		if (!perm) {
2036 			ret = -EPERM;
2037 			goto reterr;
2038 		}
2039 
2040 		q = func_table[i];
2041 		first_free = funcbufptr + (funcbufsize - funcbufleft);
2042 		for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2043 			;
2044 		if (j < MAX_NR_FUNC)
2045 			fj = func_table[j];
2046 		else
2047 			fj = first_free;
2048 
2049 		delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2050 		if (delta <= funcbufleft) { 	/* it fits in current buf */
2051 		    if (j < MAX_NR_FUNC) {
2052 			memmove(fj + delta, fj, first_free - fj);
2053 			for (k = j; k < MAX_NR_FUNC; k++)
2054 			    if (func_table[k])
2055 				func_table[k] += delta;
2056 		    }
2057 		    if (!q)
2058 		      func_table[i] = fj;
2059 		    funcbufleft -= delta;
2060 		} else {			/* allocate a larger buffer */
2061 		    sz = 256;
2062 		    while (sz < funcbufsize - funcbufleft + delta)
2063 		      sz <<= 1;
2064 		    fnw = kmalloc(sz, GFP_KERNEL);
2065 		    if(!fnw) {
2066 		      ret = -ENOMEM;
2067 		      goto reterr;
2068 		    }
2069 
2070 		    if (!q)
2071 		      func_table[i] = fj;
2072 		    if (fj > funcbufptr)
2073 			memmove(fnw, funcbufptr, fj - funcbufptr);
2074 		    for (k = 0; k < j; k++)
2075 		      if (func_table[k])
2076 			func_table[k] = fnw + (func_table[k] - funcbufptr);
2077 
2078 		    if (first_free > fj) {
2079 			memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2080 			for (k = j; k < MAX_NR_FUNC; k++)
2081 			  if (func_table[k])
2082 			    func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2083 		    }
2084 		    if (funcbufptr != func_buf)
2085 		      kfree(funcbufptr);
2086 		    funcbufptr = fnw;
2087 		    funcbufleft = funcbufleft - delta + sz - funcbufsize;
2088 		    funcbufsize = sz;
2089 		}
2090 		strcpy(func_table[i], kbs->kb_string);
2091 		break;
2092 	}
2093 	ret = 0;
2094 reterr:
2095 	kfree(kbs);
2096 	return ret;
2097 }
2098 
2099 int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2100 {
2101 	struct kbd_struct *kb = kbd_table + console;
2102         unsigned long flags;
2103 	unsigned char ucval;
2104 
2105         switch(cmd) {
2106 	/* the ioctls below read/set the flags usually shown in the leds */
2107 	/* don't use them - they will go away without warning */
2108 	case KDGKBLED:
2109                 spin_lock_irqsave(&kbd_event_lock, flags);
2110 		ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2111                 spin_unlock_irqrestore(&kbd_event_lock, flags);
2112 		return put_user(ucval, (char __user *)arg);
2113 
2114 	case KDSKBLED:
2115 		if (!perm)
2116 			return -EPERM;
2117 		if (arg & ~0x77)
2118 			return -EINVAL;
2119                 spin_lock_irqsave(&led_lock, flags);
2120 		kb->ledflagstate = (arg & 7);
2121 		kb->default_ledflagstate = ((arg >> 4) & 7);
2122 		set_leds();
2123                 spin_unlock_irqrestore(&led_lock, flags);
2124 		return 0;
2125 
2126 	/* the ioctls below only set the lights, not the functions */
2127 	/* for those, see KDGKBLED and KDSKBLED above */
2128 	case KDGETLED:
2129 		ucval = getledstate();
2130 		return put_user(ucval, (char __user *)arg);
2131 
2132 	case KDSETLED:
2133 		if (!perm)
2134 			return -EPERM;
2135 		setledstate(kb, arg);
2136 		return 0;
2137         }
2138         return -ENOIOCTLCMD;
2139 }
2140 
2141 int vt_do_kdgkbmode(int console)
2142 {
2143 	struct kbd_struct *kb = kbd_table + console;
2144 	/* This is a spot read so needs no locking */
2145 	switch (kb->kbdmode) {
2146 	case VC_RAW:
2147 		return K_RAW;
2148 	case VC_MEDIUMRAW:
2149 		return K_MEDIUMRAW;
2150 	case VC_UNICODE:
2151 		return K_UNICODE;
2152 	case VC_OFF:
2153 		return K_OFF;
2154 	default:
2155 		return K_XLATE;
2156 	}
2157 }
2158 
2159 /**
2160  *	vt_do_kdgkbmeta		-	report meta status
2161  *	@console: console to report
2162  *
2163  *	Report the meta flag status of this console
2164  */
2165 int vt_do_kdgkbmeta(int console)
2166 {
2167 	struct kbd_struct *kb = kbd_table + console;
2168         /* Again a spot read so no locking */
2169 	return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2170 }
2171 
2172 /**
2173  *	vt_reset_unicode	-	reset the unicode status
2174  *	@console: console being reset
2175  *
2176  *	Restore the unicode console state to its default
2177  */
2178 void vt_reset_unicode(int console)
2179 {
2180 	unsigned long flags;
2181 
2182 	spin_lock_irqsave(&kbd_event_lock, flags);
2183 	kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2184 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2185 }
2186 
2187 /**
2188  *	vt_get_shiftstate	-	shift bit state
2189  *
2190  *	Report the shift bits from the keyboard state. We have to export
2191  *	this to support some oddities in the vt layer.
2192  */
2193 int vt_get_shift_state(void)
2194 {
2195         /* Don't lock as this is a transient report */
2196         return shift_state;
2197 }
2198 
2199 /**
2200  *	vt_reset_keyboard	-	reset keyboard state
2201  *	@console: console to reset
2202  *
2203  *	Reset the keyboard bits for a console as part of a general console
2204  *	reset event
2205  */
2206 void vt_reset_keyboard(int console)
2207 {
2208 	struct kbd_struct *kb = kbd_table + console;
2209 	unsigned long flags;
2210 
2211 	spin_lock_irqsave(&kbd_event_lock, flags);
2212 	set_vc_kbd_mode(kb, VC_REPEAT);
2213 	clr_vc_kbd_mode(kb, VC_CKMODE);
2214 	clr_vc_kbd_mode(kb, VC_APPLIC);
2215 	clr_vc_kbd_mode(kb, VC_CRLF);
2216 	kb->lockstate = 0;
2217 	kb->slockstate = 0;
2218 	spin_lock(&led_lock);
2219 	kb->ledmode = LED_SHOW_FLAGS;
2220 	kb->ledflagstate = kb->default_ledflagstate;
2221 	spin_unlock(&led_lock);
2222 	/* do not do set_leds here because this causes an endless tasklet loop
2223 	   when the keyboard hasn't been initialized yet */
2224 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2225 }
2226 
2227 /**
2228  *	vt_get_kbd_mode_bit	-	read keyboard status bits
2229  *	@console: console to read from
2230  *	@bit: mode bit to read
2231  *
2232  *	Report back a vt mode bit. We do this without locking so the
2233  *	caller must be sure that there are no synchronization needs
2234  */
2235 
2236 int vt_get_kbd_mode_bit(int console, int bit)
2237 {
2238 	struct kbd_struct *kb = kbd_table + console;
2239 	return vc_kbd_mode(kb, bit);
2240 }
2241 
2242 /**
2243  *	vt_set_kbd_mode_bit	-	read keyboard status bits
2244  *	@console: console to read from
2245  *	@bit: mode bit to read
2246  *
2247  *	Set a vt mode bit. We do this without locking so the
2248  *	caller must be sure that there are no synchronization needs
2249  */
2250 
2251 void vt_set_kbd_mode_bit(int console, int bit)
2252 {
2253 	struct kbd_struct *kb = kbd_table + console;
2254 	unsigned long flags;
2255 
2256 	spin_lock_irqsave(&kbd_event_lock, flags);
2257 	set_vc_kbd_mode(kb, bit);
2258 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2259 }
2260 
2261 /**
2262  *	vt_clr_kbd_mode_bit	-	read keyboard status bits
2263  *	@console: console to read from
2264  *	@bit: mode bit to read
2265  *
2266  *	Report back a vt mode bit. We do this without locking so the
2267  *	caller must be sure that there are no synchronization needs
2268  */
2269 
2270 void vt_clr_kbd_mode_bit(int console, int bit)
2271 {
2272 	struct kbd_struct *kb = kbd_table + console;
2273 	unsigned long flags;
2274 
2275 	spin_lock_irqsave(&kbd_event_lock, flags);
2276 	clr_vc_kbd_mode(kb, bit);
2277 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2278 }
2279