1 /* 2 * Written for linux by Johan Myreen as a translation from 3 * the assembly version by Linus (with diacriticals added) 4 * 5 * Some additional features added by Christoph Niemann (ChN), March 1993 6 * 7 * Loadable keymaps by Risto Kankkunen, May 1993 8 * 9 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993 10 * Added decr/incr_console, dynamic keymaps, Unicode support, 11 * dynamic function/string keys, led setting, Sept 1994 12 * `Sticky' modifier keys, 951006. 13 * 14 * 11-11-96: SAK should now work in the raw mode (Martin Mares) 15 * 16 * Modified to provide 'generic' keyboard support by Hamish Macdonald 17 * Merge with the m68k keyboard driver and split-off of the PC low-level 18 * parts by Geert Uytterhoeven, May 1997 19 * 20 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares) 21 * 30-07-98: Dead keys redone, aeb@cwi.nl. 22 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik) 23 */ 24 25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 26 27 #include <linux/consolemap.h> 28 #include <linux/module.h> 29 #include <linux/sched.h> 30 #include <linux/tty.h> 31 #include <linux/tty_flip.h> 32 #include <linux/mm.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/slab.h> 36 37 #include <linux/kbd_kern.h> 38 #include <linux/kbd_diacr.h> 39 #include <linux/vt_kern.h> 40 #include <linux/input.h> 41 #include <linux/reboot.h> 42 #include <linux/notifier.h> 43 #include <linux/jiffies.h> 44 #include <linux/uaccess.h> 45 46 #include <asm/irq_regs.h> 47 48 extern void ctrl_alt_del(void); 49 50 /* 51 * Exported functions/variables 52 */ 53 54 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META)) 55 56 /* 57 * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on. 58 * This seems a good reason to start with NumLock off. On HIL keyboards 59 * of PARISC machines however there is no NumLock key and everyone expects the 60 * keypad to be used for numbers. 61 */ 62 63 #if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD)) 64 #define KBD_DEFLEDS (1 << VC_NUMLOCK) 65 #else 66 #define KBD_DEFLEDS 0 67 #endif 68 69 #define KBD_DEFLOCK 0 70 71 /* 72 * Handler Tables. 73 */ 74 75 #define K_HANDLERS\ 76 k_self, k_fn, k_spec, k_pad,\ 77 k_dead, k_cons, k_cur, k_shift,\ 78 k_meta, k_ascii, k_lock, k_lowercase,\ 79 k_slock, k_dead2, k_brl, k_ignore 80 81 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value, 82 char up_flag); 83 static k_handler_fn K_HANDLERS; 84 static k_handler_fn *k_handler[16] = { K_HANDLERS }; 85 86 #define FN_HANDLERS\ 87 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\ 88 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\ 89 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\ 90 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\ 91 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num 92 93 typedef void (fn_handler_fn)(struct vc_data *vc); 94 static fn_handler_fn FN_HANDLERS; 95 static fn_handler_fn *fn_handler[] = { FN_HANDLERS }; 96 97 /* 98 * Variables exported for vt_ioctl.c 99 */ 100 101 struct vt_spawn_console vt_spawn_con = { 102 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock), 103 .pid = NULL, 104 .sig = 0, 105 }; 106 107 108 /* 109 * Internal Data. 110 */ 111 112 static struct kbd_struct kbd_table[MAX_NR_CONSOLES]; 113 static struct kbd_struct *kbd = kbd_table; 114 115 /* maximum values each key_handler can handle */ 116 static const int max_vals[] = { 117 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1, 118 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1, 119 255, NR_LOCK - 1, 255, NR_BRL - 1 120 }; 121 122 static const int NR_TYPES = ARRAY_SIZE(max_vals); 123 124 static struct input_handler kbd_handler; 125 static DEFINE_SPINLOCK(kbd_event_lock); 126 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */ 127 static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */ 128 static bool dead_key_next; 129 static int npadch = -1; /* -1 or number assembled on pad */ 130 static unsigned int diacr; 131 static char rep; /* flag telling character repeat */ 132 133 static int shift_state = 0; 134 135 static unsigned char ledstate = 0xff; /* undefined */ 136 static unsigned char ledioctl; 137 138 static struct ledptr { 139 unsigned int *addr; 140 unsigned int mask; 141 unsigned char valid:1; 142 } ledptrs[3]; 143 144 /* 145 * Notifier list for console keyboard events 146 */ 147 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list); 148 149 int register_keyboard_notifier(struct notifier_block *nb) 150 { 151 return atomic_notifier_chain_register(&keyboard_notifier_list, nb); 152 } 153 EXPORT_SYMBOL_GPL(register_keyboard_notifier); 154 155 int unregister_keyboard_notifier(struct notifier_block *nb) 156 { 157 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb); 158 } 159 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier); 160 161 /* 162 * Translation of scancodes to keycodes. We set them on only the first 163 * keyboard in the list that accepts the scancode and keycode. 164 * Explanation for not choosing the first attached keyboard anymore: 165 * USB keyboards for example have two event devices: one for all "normal" 166 * keys and one for extra function keys (like "volume up", "make coffee", 167 * etc.). So this means that scancodes for the extra function keys won't 168 * be valid for the first event device, but will be for the second. 169 */ 170 171 struct getset_keycode_data { 172 struct input_keymap_entry ke; 173 int error; 174 }; 175 176 static int getkeycode_helper(struct input_handle *handle, void *data) 177 { 178 struct getset_keycode_data *d = data; 179 180 d->error = input_get_keycode(handle->dev, &d->ke); 181 182 return d->error == 0; /* stop as soon as we successfully get one */ 183 } 184 185 static int getkeycode(unsigned int scancode) 186 { 187 struct getset_keycode_data d = { 188 .ke = { 189 .flags = 0, 190 .len = sizeof(scancode), 191 .keycode = 0, 192 }, 193 .error = -ENODEV, 194 }; 195 196 memcpy(d.ke.scancode, &scancode, sizeof(scancode)); 197 198 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper); 199 200 return d.error ?: d.ke.keycode; 201 } 202 203 static int setkeycode_helper(struct input_handle *handle, void *data) 204 { 205 struct getset_keycode_data *d = data; 206 207 d->error = input_set_keycode(handle->dev, &d->ke); 208 209 return d->error == 0; /* stop as soon as we successfully set one */ 210 } 211 212 static int setkeycode(unsigned int scancode, unsigned int keycode) 213 { 214 struct getset_keycode_data d = { 215 .ke = { 216 .flags = 0, 217 .len = sizeof(scancode), 218 .keycode = keycode, 219 }, 220 .error = -ENODEV, 221 }; 222 223 memcpy(d.ke.scancode, &scancode, sizeof(scancode)); 224 225 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper); 226 227 return d.error; 228 } 229 230 /* 231 * Making beeps and bells. Note that we prefer beeps to bells, but when 232 * shutting the sound off we do both. 233 */ 234 235 static int kd_sound_helper(struct input_handle *handle, void *data) 236 { 237 unsigned int *hz = data; 238 struct input_dev *dev = handle->dev; 239 240 if (test_bit(EV_SND, dev->evbit)) { 241 if (test_bit(SND_TONE, dev->sndbit)) { 242 input_inject_event(handle, EV_SND, SND_TONE, *hz); 243 if (*hz) 244 return 0; 245 } 246 if (test_bit(SND_BELL, dev->sndbit)) 247 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0); 248 } 249 250 return 0; 251 } 252 253 static void kd_nosound(unsigned long ignored) 254 { 255 static unsigned int zero; 256 257 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper); 258 } 259 260 static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0); 261 262 void kd_mksound(unsigned int hz, unsigned int ticks) 263 { 264 del_timer_sync(&kd_mksound_timer); 265 266 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper); 267 268 if (hz && ticks) 269 mod_timer(&kd_mksound_timer, jiffies + ticks); 270 } 271 EXPORT_SYMBOL(kd_mksound); 272 273 /* 274 * Setting the keyboard rate. 275 */ 276 277 static int kbd_rate_helper(struct input_handle *handle, void *data) 278 { 279 struct input_dev *dev = handle->dev; 280 struct kbd_repeat *rep = data; 281 282 if (test_bit(EV_REP, dev->evbit)) { 283 284 if (rep[0].delay > 0) 285 input_inject_event(handle, 286 EV_REP, REP_DELAY, rep[0].delay); 287 if (rep[0].period > 0) 288 input_inject_event(handle, 289 EV_REP, REP_PERIOD, rep[0].period); 290 291 rep[1].delay = dev->rep[REP_DELAY]; 292 rep[1].period = dev->rep[REP_PERIOD]; 293 } 294 295 return 0; 296 } 297 298 int kbd_rate(struct kbd_repeat *rep) 299 { 300 struct kbd_repeat data[2] = { *rep }; 301 302 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper); 303 *rep = data[1]; /* Copy currently used settings */ 304 305 return 0; 306 } 307 308 /* 309 * Helper Functions. 310 */ 311 static void put_queue(struct vc_data *vc, int ch) 312 { 313 struct tty_struct *tty = vc->port.tty; 314 315 if (tty) { 316 tty_insert_flip_char(tty, ch, 0); 317 con_schedule_flip(tty); 318 } 319 } 320 321 static void puts_queue(struct vc_data *vc, char *cp) 322 { 323 struct tty_struct *tty = vc->port.tty; 324 325 if (!tty) 326 return; 327 328 while (*cp) { 329 tty_insert_flip_char(tty, *cp, 0); 330 cp++; 331 } 332 con_schedule_flip(tty); 333 } 334 335 static void applkey(struct vc_data *vc, int key, char mode) 336 { 337 static char buf[] = { 0x1b, 'O', 0x00, 0x00 }; 338 339 buf[1] = (mode ? 'O' : '['); 340 buf[2] = key; 341 puts_queue(vc, buf); 342 } 343 344 /* 345 * Many other routines do put_queue, but I think either 346 * they produce ASCII, or they produce some user-assigned 347 * string, and in both cases we might assume that it is 348 * in utf-8 already. 349 */ 350 static void to_utf8(struct vc_data *vc, uint c) 351 { 352 if (c < 0x80) 353 /* 0******* */ 354 put_queue(vc, c); 355 else if (c < 0x800) { 356 /* 110***** 10****** */ 357 put_queue(vc, 0xc0 | (c >> 6)); 358 put_queue(vc, 0x80 | (c & 0x3f)); 359 } else if (c < 0x10000) { 360 if (c >= 0xD800 && c < 0xE000) 361 return; 362 if (c == 0xFFFF) 363 return; 364 /* 1110**** 10****** 10****** */ 365 put_queue(vc, 0xe0 | (c >> 12)); 366 put_queue(vc, 0x80 | ((c >> 6) & 0x3f)); 367 put_queue(vc, 0x80 | (c & 0x3f)); 368 } else if (c < 0x110000) { 369 /* 11110*** 10****** 10****** 10****** */ 370 put_queue(vc, 0xf0 | (c >> 18)); 371 put_queue(vc, 0x80 | ((c >> 12) & 0x3f)); 372 put_queue(vc, 0x80 | ((c >> 6) & 0x3f)); 373 put_queue(vc, 0x80 | (c & 0x3f)); 374 } 375 } 376 377 /* 378 * Called after returning from RAW mode or when changing consoles - recompute 379 * shift_down[] and shift_state from key_down[] maybe called when keymap is 380 * undefined, so that shiftkey release is seen. The caller must hold the 381 * kbd_event_lock. 382 */ 383 384 static void do_compute_shiftstate(void) 385 { 386 unsigned int i, j, k, sym, val; 387 388 shift_state = 0; 389 memset(shift_down, 0, sizeof(shift_down)); 390 391 for (i = 0; i < ARRAY_SIZE(key_down); i++) { 392 393 if (!key_down[i]) 394 continue; 395 396 k = i * BITS_PER_LONG; 397 398 for (j = 0; j < BITS_PER_LONG; j++, k++) { 399 400 if (!test_bit(k, key_down)) 401 continue; 402 403 sym = U(key_maps[0][k]); 404 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK) 405 continue; 406 407 val = KVAL(sym); 408 if (val == KVAL(K_CAPSSHIFT)) 409 val = KVAL(K_SHIFT); 410 411 shift_down[val]++; 412 shift_state |= (1 << val); 413 } 414 } 415 } 416 417 /* We still have to export this method to vt.c */ 418 void compute_shiftstate(void) 419 { 420 unsigned long flags; 421 spin_lock_irqsave(&kbd_event_lock, flags); 422 do_compute_shiftstate(); 423 spin_unlock_irqrestore(&kbd_event_lock, flags); 424 } 425 426 /* 427 * We have a combining character DIACR here, followed by the character CH. 428 * If the combination occurs in the table, return the corresponding value. 429 * Otherwise, if CH is a space or equals DIACR, return DIACR. 430 * Otherwise, conclude that DIACR was not combining after all, 431 * queue it and return CH. 432 */ 433 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch) 434 { 435 unsigned int d = diacr; 436 unsigned int i; 437 438 diacr = 0; 439 440 if ((d & ~0xff) == BRL_UC_ROW) { 441 if ((ch & ~0xff) == BRL_UC_ROW) 442 return d | ch; 443 } else { 444 for (i = 0; i < accent_table_size; i++) 445 if (accent_table[i].diacr == d && accent_table[i].base == ch) 446 return accent_table[i].result; 447 } 448 449 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d) 450 return d; 451 452 if (kbd->kbdmode == VC_UNICODE) 453 to_utf8(vc, d); 454 else { 455 int c = conv_uni_to_8bit(d); 456 if (c != -1) 457 put_queue(vc, c); 458 } 459 460 return ch; 461 } 462 463 /* 464 * Special function handlers 465 */ 466 static void fn_enter(struct vc_data *vc) 467 { 468 if (diacr) { 469 if (kbd->kbdmode == VC_UNICODE) 470 to_utf8(vc, diacr); 471 else { 472 int c = conv_uni_to_8bit(diacr); 473 if (c != -1) 474 put_queue(vc, c); 475 } 476 diacr = 0; 477 } 478 479 put_queue(vc, 13); 480 if (vc_kbd_mode(kbd, VC_CRLF)) 481 put_queue(vc, 10); 482 } 483 484 static void fn_caps_toggle(struct vc_data *vc) 485 { 486 if (rep) 487 return; 488 489 chg_vc_kbd_led(kbd, VC_CAPSLOCK); 490 } 491 492 static void fn_caps_on(struct vc_data *vc) 493 { 494 if (rep) 495 return; 496 497 set_vc_kbd_led(kbd, VC_CAPSLOCK); 498 } 499 500 static void fn_show_ptregs(struct vc_data *vc) 501 { 502 struct pt_regs *regs = get_irq_regs(); 503 504 if (regs) 505 show_regs(regs); 506 } 507 508 static void fn_hold(struct vc_data *vc) 509 { 510 struct tty_struct *tty = vc->port.tty; 511 512 if (rep || !tty) 513 return; 514 515 /* 516 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty); 517 * these routines are also activated by ^S/^Q. 518 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.) 519 */ 520 if (tty->stopped) 521 start_tty(tty); 522 else 523 stop_tty(tty); 524 } 525 526 static void fn_num(struct vc_data *vc) 527 { 528 if (vc_kbd_mode(kbd, VC_APPLIC)) 529 applkey(vc, 'P', 1); 530 else 531 fn_bare_num(vc); 532 } 533 534 /* 535 * Bind this to Shift-NumLock if you work in application keypad mode 536 * but want to be able to change the NumLock flag. 537 * Bind this to NumLock if you prefer that the NumLock key always 538 * changes the NumLock flag. 539 */ 540 static void fn_bare_num(struct vc_data *vc) 541 { 542 if (!rep) 543 chg_vc_kbd_led(kbd, VC_NUMLOCK); 544 } 545 546 static void fn_lastcons(struct vc_data *vc) 547 { 548 /* switch to the last used console, ChN */ 549 set_console(last_console); 550 } 551 552 static void fn_dec_console(struct vc_data *vc) 553 { 554 int i, cur = fg_console; 555 556 /* Currently switching? Queue this next switch relative to that. */ 557 if (want_console != -1) 558 cur = want_console; 559 560 for (i = cur - 1; i != cur; i--) { 561 if (i == -1) 562 i = MAX_NR_CONSOLES - 1; 563 if (vc_cons_allocated(i)) 564 break; 565 } 566 set_console(i); 567 } 568 569 static void fn_inc_console(struct vc_data *vc) 570 { 571 int i, cur = fg_console; 572 573 /* Currently switching? Queue this next switch relative to that. */ 574 if (want_console != -1) 575 cur = want_console; 576 577 for (i = cur+1; i != cur; i++) { 578 if (i == MAX_NR_CONSOLES) 579 i = 0; 580 if (vc_cons_allocated(i)) 581 break; 582 } 583 set_console(i); 584 } 585 586 static void fn_send_intr(struct vc_data *vc) 587 { 588 struct tty_struct *tty = vc->port.tty; 589 590 if (!tty) 591 return; 592 tty_insert_flip_char(tty, 0, TTY_BREAK); 593 con_schedule_flip(tty); 594 } 595 596 static void fn_scroll_forw(struct vc_data *vc) 597 { 598 scrollfront(vc, 0); 599 } 600 601 static void fn_scroll_back(struct vc_data *vc) 602 { 603 scrollback(vc, 0); 604 } 605 606 static void fn_show_mem(struct vc_data *vc) 607 { 608 show_mem(0); 609 } 610 611 static void fn_show_state(struct vc_data *vc) 612 { 613 show_state(); 614 } 615 616 static void fn_boot_it(struct vc_data *vc) 617 { 618 ctrl_alt_del(); 619 } 620 621 static void fn_compose(struct vc_data *vc) 622 { 623 dead_key_next = true; 624 } 625 626 static void fn_spawn_con(struct vc_data *vc) 627 { 628 spin_lock(&vt_spawn_con.lock); 629 if (vt_spawn_con.pid) 630 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) { 631 put_pid(vt_spawn_con.pid); 632 vt_spawn_con.pid = NULL; 633 } 634 spin_unlock(&vt_spawn_con.lock); 635 } 636 637 static void fn_SAK(struct vc_data *vc) 638 { 639 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work; 640 schedule_work(SAK_work); 641 } 642 643 static void fn_null(struct vc_data *vc) 644 { 645 do_compute_shiftstate(); 646 } 647 648 /* 649 * Special key handlers 650 */ 651 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag) 652 { 653 } 654 655 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag) 656 { 657 if (up_flag) 658 return; 659 if (value >= ARRAY_SIZE(fn_handler)) 660 return; 661 if ((kbd->kbdmode == VC_RAW || 662 kbd->kbdmode == VC_MEDIUMRAW || 663 kbd->kbdmode == VC_OFF) && 664 value != KVAL(K_SAK)) 665 return; /* SAK is allowed even in raw mode */ 666 fn_handler[value](vc); 667 } 668 669 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag) 670 { 671 pr_err("k_lowercase was called - impossible\n"); 672 } 673 674 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag) 675 { 676 if (up_flag) 677 return; /* no action, if this is a key release */ 678 679 if (diacr) 680 value = handle_diacr(vc, value); 681 682 if (dead_key_next) { 683 dead_key_next = false; 684 diacr = value; 685 return; 686 } 687 if (kbd->kbdmode == VC_UNICODE) 688 to_utf8(vc, value); 689 else { 690 int c = conv_uni_to_8bit(value); 691 if (c != -1) 692 put_queue(vc, c); 693 } 694 } 695 696 /* 697 * Handle dead key. Note that we now may have several 698 * dead keys modifying the same character. Very useful 699 * for Vietnamese. 700 */ 701 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag) 702 { 703 if (up_flag) 704 return; 705 706 diacr = (diacr ? handle_diacr(vc, value) : value); 707 } 708 709 static void k_self(struct vc_data *vc, unsigned char value, char up_flag) 710 { 711 k_unicode(vc, conv_8bit_to_uni(value), up_flag); 712 } 713 714 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag) 715 { 716 k_deadunicode(vc, value, up_flag); 717 } 718 719 /* 720 * Obsolete - for backwards compatibility only 721 */ 722 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag) 723 { 724 static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' }; 725 726 k_deadunicode(vc, ret_diacr[value], up_flag); 727 } 728 729 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag) 730 { 731 if (up_flag) 732 return; 733 734 set_console(value); 735 } 736 737 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag) 738 { 739 if (up_flag) 740 return; 741 742 if ((unsigned)value < ARRAY_SIZE(func_table)) { 743 if (func_table[value]) 744 puts_queue(vc, func_table[value]); 745 } else 746 pr_err("k_fn called with value=%d\n", value); 747 } 748 749 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag) 750 { 751 static const char cur_chars[] = "BDCA"; 752 753 if (up_flag) 754 return; 755 756 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE)); 757 } 758 759 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag) 760 { 761 static const char pad_chars[] = "0123456789+-*/\015,.?()#"; 762 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS"; 763 764 if (up_flag) 765 return; /* no action, if this is a key release */ 766 767 /* kludge... shift forces cursor/number keys */ 768 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) { 769 applkey(vc, app_map[value], 1); 770 return; 771 } 772 773 if (!vc_kbd_led(kbd, VC_NUMLOCK)) { 774 775 switch (value) { 776 case KVAL(K_PCOMMA): 777 case KVAL(K_PDOT): 778 k_fn(vc, KVAL(K_REMOVE), 0); 779 return; 780 case KVAL(K_P0): 781 k_fn(vc, KVAL(K_INSERT), 0); 782 return; 783 case KVAL(K_P1): 784 k_fn(vc, KVAL(K_SELECT), 0); 785 return; 786 case KVAL(K_P2): 787 k_cur(vc, KVAL(K_DOWN), 0); 788 return; 789 case KVAL(K_P3): 790 k_fn(vc, KVAL(K_PGDN), 0); 791 return; 792 case KVAL(K_P4): 793 k_cur(vc, KVAL(K_LEFT), 0); 794 return; 795 case KVAL(K_P6): 796 k_cur(vc, KVAL(K_RIGHT), 0); 797 return; 798 case KVAL(K_P7): 799 k_fn(vc, KVAL(K_FIND), 0); 800 return; 801 case KVAL(K_P8): 802 k_cur(vc, KVAL(K_UP), 0); 803 return; 804 case KVAL(K_P9): 805 k_fn(vc, KVAL(K_PGUP), 0); 806 return; 807 case KVAL(K_P5): 808 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC)); 809 return; 810 } 811 } 812 813 put_queue(vc, pad_chars[value]); 814 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF)) 815 put_queue(vc, 10); 816 } 817 818 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag) 819 { 820 int old_state = shift_state; 821 822 if (rep) 823 return; 824 /* 825 * Mimic typewriter: 826 * a CapsShift key acts like Shift but undoes CapsLock 827 */ 828 if (value == KVAL(K_CAPSSHIFT)) { 829 value = KVAL(K_SHIFT); 830 if (!up_flag) 831 clr_vc_kbd_led(kbd, VC_CAPSLOCK); 832 } 833 834 if (up_flag) { 835 /* 836 * handle the case that two shift or control 837 * keys are depressed simultaneously 838 */ 839 if (shift_down[value]) 840 shift_down[value]--; 841 } else 842 shift_down[value]++; 843 844 if (shift_down[value]) 845 shift_state |= (1 << value); 846 else 847 shift_state &= ~(1 << value); 848 849 /* kludge */ 850 if (up_flag && shift_state != old_state && npadch != -1) { 851 if (kbd->kbdmode == VC_UNICODE) 852 to_utf8(vc, npadch); 853 else 854 put_queue(vc, npadch & 0xff); 855 npadch = -1; 856 } 857 } 858 859 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag) 860 { 861 if (up_flag) 862 return; 863 864 if (vc_kbd_mode(kbd, VC_META)) { 865 put_queue(vc, '\033'); 866 put_queue(vc, value); 867 } else 868 put_queue(vc, value | 0x80); 869 } 870 871 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag) 872 { 873 int base; 874 875 if (up_flag) 876 return; 877 878 if (value < 10) { 879 /* decimal input of code, while Alt depressed */ 880 base = 10; 881 } else { 882 /* hexadecimal input of code, while AltGr depressed */ 883 value -= 10; 884 base = 16; 885 } 886 887 if (npadch == -1) 888 npadch = value; 889 else 890 npadch = npadch * base + value; 891 } 892 893 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag) 894 { 895 if (up_flag || rep) 896 return; 897 898 chg_vc_kbd_lock(kbd, value); 899 } 900 901 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag) 902 { 903 k_shift(vc, value, up_flag); 904 if (up_flag || rep) 905 return; 906 907 chg_vc_kbd_slock(kbd, value); 908 /* try to make Alt, oops, AltGr and such work */ 909 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) { 910 kbd->slockstate = 0; 911 chg_vc_kbd_slock(kbd, value); 912 } 913 } 914 915 /* by default, 300ms interval for combination release */ 916 static unsigned brl_timeout = 300; 917 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)"); 918 module_param(brl_timeout, uint, 0644); 919 920 static unsigned brl_nbchords = 1; 921 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)"); 922 module_param(brl_nbchords, uint, 0644); 923 924 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag) 925 { 926 static unsigned long chords; 927 static unsigned committed; 928 929 if (!brl_nbchords) 930 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag); 931 else { 932 committed |= pattern; 933 chords++; 934 if (chords == brl_nbchords) { 935 k_unicode(vc, BRL_UC_ROW | committed, up_flag); 936 chords = 0; 937 committed = 0; 938 } 939 } 940 } 941 942 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag) 943 { 944 static unsigned pressed, committing; 945 static unsigned long releasestart; 946 947 if (kbd->kbdmode != VC_UNICODE) { 948 if (!up_flag) 949 pr_warning("keyboard mode must be unicode for braille patterns\n"); 950 return; 951 } 952 953 if (!value) { 954 k_unicode(vc, BRL_UC_ROW, up_flag); 955 return; 956 } 957 958 if (value > 8) 959 return; 960 961 if (!up_flag) { 962 pressed |= 1 << (value - 1); 963 if (!brl_timeout) 964 committing = pressed; 965 } else if (brl_timeout) { 966 if (!committing || 967 time_after(jiffies, 968 releasestart + msecs_to_jiffies(brl_timeout))) { 969 committing = pressed; 970 releasestart = jiffies; 971 } 972 pressed &= ~(1 << (value - 1)); 973 if (!pressed && committing) { 974 k_brlcommit(vc, committing, 0); 975 committing = 0; 976 } 977 } else { 978 if (committing) { 979 k_brlcommit(vc, committing, 0); 980 committing = 0; 981 } 982 pressed &= ~(1 << (value - 1)); 983 } 984 } 985 986 /* 987 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock, 988 * or (ii) whatever pattern of lights people want to show using KDSETLED, 989 * or (iii) specified bits of specified words in kernel memory. 990 */ 991 unsigned char getledstate(void) 992 { 993 return ledstate; 994 } 995 996 void setledstate(struct kbd_struct *kbd, unsigned int led) 997 { 998 unsigned long flags; 999 spin_lock_irqsave(&kbd_event_lock, flags); 1000 if (!(led & ~7)) { 1001 ledioctl = led; 1002 kbd->ledmode = LED_SHOW_IOCTL; 1003 } else 1004 kbd->ledmode = LED_SHOW_FLAGS; 1005 1006 set_leds(); 1007 spin_unlock_irqrestore(&kbd_event_lock, flags); 1008 } 1009 1010 static inline unsigned char getleds(void) 1011 { 1012 struct kbd_struct *kbd = kbd_table + fg_console; 1013 unsigned char leds; 1014 int i; 1015 1016 if (kbd->ledmode == LED_SHOW_IOCTL) 1017 return ledioctl; 1018 1019 leds = kbd->ledflagstate; 1020 1021 if (kbd->ledmode == LED_SHOW_MEM) { 1022 for (i = 0; i < 3; i++) 1023 if (ledptrs[i].valid) { 1024 if (*ledptrs[i].addr & ledptrs[i].mask) 1025 leds |= (1 << i); 1026 else 1027 leds &= ~(1 << i); 1028 } 1029 } 1030 return leds; 1031 } 1032 1033 static int kbd_update_leds_helper(struct input_handle *handle, void *data) 1034 { 1035 unsigned char leds = *(unsigned char *)data; 1036 1037 if (test_bit(EV_LED, handle->dev->evbit)) { 1038 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01)); 1039 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02)); 1040 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04)); 1041 input_inject_event(handle, EV_SYN, SYN_REPORT, 0); 1042 } 1043 1044 return 0; 1045 } 1046 1047 /** 1048 * vt_get_leds - helper for braille console 1049 * @console: console to read 1050 * @flag: flag we want to check 1051 * 1052 * Check the status of a keyboard led flag and report it back 1053 */ 1054 int vt_get_leds(int console, int flag) 1055 { 1056 unsigned long flags; 1057 struct kbd_struct * kbd = kbd_table + console; 1058 int ret; 1059 1060 spin_lock_irqsave(&kbd_event_lock, flags); 1061 ret = vc_kbd_led(kbd, flag); 1062 spin_unlock_irqrestore(&kbd_event_lock, flags); 1063 1064 return ret; 1065 } 1066 EXPORT_SYMBOL_GPL(vt_get_leds); 1067 1068 /** 1069 * vt_set_led_state - set LED state of a console 1070 * @console: console to set 1071 * @leds: LED bits 1072 * 1073 * Set the LEDs on a console. This is a wrapper for the VT layer 1074 * so that we can keep kbd knowledge internal 1075 */ 1076 void vt_set_led_state(int console, int leds) 1077 { 1078 struct kbd_struct * kbd = kbd_table + console; 1079 setledstate(kbd, leds); 1080 } 1081 1082 /** 1083 * vt_kbd_con_start - Keyboard side of console start 1084 * @console: console 1085 * 1086 * Handle console start. This is a wrapper for the VT layer 1087 * so that we can keep kbd knowledge internal 1088 * 1089 * FIXME: We eventually need to hold the kbd lock here to protect 1090 * the LED updating. We can't do it yet because fn_hold calls stop_tty 1091 * and start_tty under the kbd_event_lock, while normal tty paths 1092 * don't hold the lock. We probably need to split out an LED lock 1093 * but not during an -rc release! 1094 */ 1095 void vt_kbd_con_start(int console) 1096 { 1097 struct kbd_struct * kbd = kbd_table + console; 1098 /* unsigned long flags; */ 1099 /* spin_lock_irqsave(&kbd_event_lock, flags); */ 1100 clr_vc_kbd_led(kbd, VC_SCROLLOCK); 1101 set_leds(); 1102 /* spin_unlock_irqrestore(&kbd_event_lock, flags); */ 1103 } 1104 1105 /** 1106 * vt_kbd_con_stop - Keyboard side of console stop 1107 * @console: console 1108 * 1109 * Handle console stop. This is a wrapper for the VT layer 1110 * so that we can keep kbd knowledge internal 1111 * 1112 * FIXME: We eventually need to hold the kbd lock here to protect 1113 * the LED updating. We can't do it yet because fn_hold calls stop_tty 1114 * and start_tty under the kbd_event_lock, while normal tty paths 1115 * don't hold the lock. We probably need to split out an LED lock 1116 * but not during an -rc release! 1117 */ 1118 void vt_kbd_con_stop(int console) 1119 { 1120 struct kbd_struct * kbd = kbd_table + console; 1121 /* unsigned long flags; */ 1122 /* spin_lock_irqsave(&kbd_event_lock, flags); */ 1123 set_vc_kbd_led(kbd, VC_SCROLLOCK); 1124 set_leds(); 1125 /* spin_unlock_irqrestore(&kbd_event_lock, flags); */ 1126 } 1127 1128 /* 1129 * This is the tasklet that updates LED state on all keyboards 1130 * attached to the box. The reason we use tasklet is that we 1131 * need to handle the scenario when keyboard handler is not 1132 * registered yet but we already getting updates from the VT to 1133 * update led state. 1134 */ 1135 static void kbd_bh(unsigned long dummy) 1136 { 1137 unsigned char leds = getleds(); 1138 1139 if (leds != ledstate) { 1140 input_handler_for_each_handle(&kbd_handler, &leds, 1141 kbd_update_leds_helper); 1142 ledstate = leds; 1143 } 1144 } 1145 1146 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0); 1147 1148 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\ 1149 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\ 1150 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\ 1151 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\ 1152 defined(CONFIG_AVR32) 1153 1154 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\ 1155 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001)) 1156 1157 static const unsigned short x86_keycodes[256] = 1158 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1159 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1160 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 1161 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 1162 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 1163 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92, 1164 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339, 1165 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349, 1166 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355, 1167 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361, 1168 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114, 1169 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116, 1170 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307, 1171 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330, 1172 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 }; 1173 1174 #ifdef CONFIG_SPARC 1175 static int sparc_l1_a_state; 1176 extern void sun_do_break(void); 1177 #endif 1178 1179 static int emulate_raw(struct vc_data *vc, unsigned int keycode, 1180 unsigned char up_flag) 1181 { 1182 int code; 1183 1184 switch (keycode) { 1185 1186 case KEY_PAUSE: 1187 put_queue(vc, 0xe1); 1188 put_queue(vc, 0x1d | up_flag); 1189 put_queue(vc, 0x45 | up_flag); 1190 break; 1191 1192 case KEY_HANGEUL: 1193 if (!up_flag) 1194 put_queue(vc, 0xf2); 1195 break; 1196 1197 case KEY_HANJA: 1198 if (!up_flag) 1199 put_queue(vc, 0xf1); 1200 break; 1201 1202 case KEY_SYSRQ: 1203 /* 1204 * Real AT keyboards (that's what we're trying 1205 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when 1206 * pressing PrtSc/SysRq alone, but simply 0x54 1207 * when pressing Alt+PrtSc/SysRq. 1208 */ 1209 if (test_bit(KEY_LEFTALT, key_down) || 1210 test_bit(KEY_RIGHTALT, key_down)) { 1211 put_queue(vc, 0x54 | up_flag); 1212 } else { 1213 put_queue(vc, 0xe0); 1214 put_queue(vc, 0x2a | up_flag); 1215 put_queue(vc, 0xe0); 1216 put_queue(vc, 0x37 | up_flag); 1217 } 1218 break; 1219 1220 default: 1221 if (keycode > 255) 1222 return -1; 1223 1224 code = x86_keycodes[keycode]; 1225 if (!code) 1226 return -1; 1227 1228 if (code & 0x100) 1229 put_queue(vc, 0xe0); 1230 put_queue(vc, (code & 0x7f) | up_flag); 1231 1232 break; 1233 } 1234 1235 return 0; 1236 } 1237 1238 #else 1239 1240 #define HW_RAW(dev) 0 1241 1242 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag) 1243 { 1244 if (keycode > 127) 1245 return -1; 1246 1247 put_queue(vc, keycode | up_flag); 1248 return 0; 1249 } 1250 #endif 1251 1252 static void kbd_rawcode(unsigned char data) 1253 { 1254 struct vc_data *vc = vc_cons[fg_console].d; 1255 1256 kbd = kbd_table + vc->vc_num; 1257 if (kbd->kbdmode == VC_RAW) 1258 put_queue(vc, data); 1259 } 1260 1261 static void kbd_keycode(unsigned int keycode, int down, int hw_raw) 1262 { 1263 struct vc_data *vc = vc_cons[fg_console].d; 1264 unsigned short keysym, *key_map; 1265 unsigned char type; 1266 bool raw_mode; 1267 struct tty_struct *tty; 1268 int shift_final; 1269 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down }; 1270 int rc; 1271 1272 tty = vc->port.tty; 1273 1274 if (tty && (!tty->driver_data)) { 1275 /* No driver data? Strange. Okay we fix it then. */ 1276 tty->driver_data = vc; 1277 } 1278 1279 kbd = kbd_table + vc->vc_num; 1280 1281 #ifdef CONFIG_SPARC 1282 if (keycode == KEY_STOP) 1283 sparc_l1_a_state = down; 1284 #endif 1285 1286 rep = (down == 2); 1287 1288 raw_mode = (kbd->kbdmode == VC_RAW); 1289 if (raw_mode && !hw_raw) 1290 if (emulate_raw(vc, keycode, !down << 7)) 1291 if (keycode < BTN_MISC && printk_ratelimit()) 1292 pr_warning("can't emulate rawmode for keycode %d\n", 1293 keycode); 1294 1295 #ifdef CONFIG_SPARC 1296 if (keycode == KEY_A && sparc_l1_a_state) { 1297 sparc_l1_a_state = false; 1298 sun_do_break(); 1299 } 1300 #endif 1301 1302 if (kbd->kbdmode == VC_MEDIUMRAW) { 1303 /* 1304 * This is extended medium raw mode, with keys above 127 1305 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing 1306 * the 'up' flag if needed. 0 is reserved, so this shouldn't 1307 * interfere with anything else. The two bytes after 0 will 1308 * always have the up flag set not to interfere with older 1309 * applications. This allows for 16384 different keycodes, 1310 * which should be enough. 1311 */ 1312 if (keycode < 128) { 1313 put_queue(vc, keycode | (!down << 7)); 1314 } else { 1315 put_queue(vc, !down << 7); 1316 put_queue(vc, (keycode >> 7) | 0x80); 1317 put_queue(vc, keycode | 0x80); 1318 } 1319 raw_mode = true; 1320 } 1321 1322 if (down) 1323 set_bit(keycode, key_down); 1324 else 1325 clear_bit(keycode, key_down); 1326 1327 if (rep && 1328 (!vc_kbd_mode(kbd, VC_REPEAT) || 1329 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) { 1330 /* 1331 * Don't repeat a key if the input buffers are not empty and the 1332 * characters get aren't echoed locally. This makes key repeat 1333 * usable with slow applications and under heavy loads. 1334 */ 1335 return; 1336 } 1337 1338 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate; 1339 param.ledstate = kbd->ledflagstate; 1340 key_map = key_maps[shift_final]; 1341 1342 rc = atomic_notifier_call_chain(&keyboard_notifier_list, 1343 KBD_KEYCODE, ¶m); 1344 if (rc == NOTIFY_STOP || !key_map) { 1345 atomic_notifier_call_chain(&keyboard_notifier_list, 1346 KBD_UNBOUND_KEYCODE, ¶m); 1347 do_compute_shiftstate(); 1348 kbd->slockstate = 0; 1349 return; 1350 } 1351 1352 if (keycode < NR_KEYS) 1353 keysym = key_map[keycode]; 1354 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8) 1355 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1)); 1356 else 1357 return; 1358 1359 type = KTYP(keysym); 1360 1361 if (type < 0xf0) { 1362 param.value = keysym; 1363 rc = atomic_notifier_call_chain(&keyboard_notifier_list, 1364 KBD_UNICODE, ¶m); 1365 if (rc != NOTIFY_STOP) 1366 if (down && !raw_mode) 1367 to_utf8(vc, keysym); 1368 return; 1369 } 1370 1371 type -= 0xf0; 1372 1373 if (type == KT_LETTER) { 1374 type = KT_LATIN; 1375 if (vc_kbd_led(kbd, VC_CAPSLOCK)) { 1376 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)]; 1377 if (key_map) 1378 keysym = key_map[keycode]; 1379 } 1380 } 1381 1382 param.value = keysym; 1383 rc = atomic_notifier_call_chain(&keyboard_notifier_list, 1384 KBD_KEYSYM, ¶m); 1385 if (rc == NOTIFY_STOP) 1386 return; 1387 1388 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT) 1389 return; 1390 1391 (*k_handler[type])(vc, keysym & 0xff, !down); 1392 1393 param.ledstate = kbd->ledflagstate; 1394 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m); 1395 1396 if (type != KT_SLOCK) 1397 kbd->slockstate = 0; 1398 } 1399 1400 static void kbd_event(struct input_handle *handle, unsigned int event_type, 1401 unsigned int event_code, int value) 1402 { 1403 /* We are called with interrupts disabled, just take the lock */ 1404 spin_lock(&kbd_event_lock); 1405 1406 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev)) 1407 kbd_rawcode(value); 1408 if (event_type == EV_KEY) 1409 kbd_keycode(event_code, value, HW_RAW(handle->dev)); 1410 1411 spin_unlock(&kbd_event_lock); 1412 1413 tasklet_schedule(&keyboard_tasklet); 1414 do_poke_blanked_console = 1; 1415 schedule_console_callback(); 1416 } 1417 1418 static bool kbd_match(struct input_handler *handler, struct input_dev *dev) 1419 { 1420 int i; 1421 1422 if (test_bit(EV_SND, dev->evbit)) 1423 return true; 1424 1425 if (test_bit(EV_KEY, dev->evbit)) { 1426 for (i = KEY_RESERVED; i < BTN_MISC; i++) 1427 if (test_bit(i, dev->keybit)) 1428 return true; 1429 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++) 1430 if (test_bit(i, dev->keybit)) 1431 return true; 1432 } 1433 1434 return false; 1435 } 1436 1437 /* 1438 * When a keyboard (or other input device) is found, the kbd_connect 1439 * function is called. The function then looks at the device, and if it 1440 * likes it, it can open it and get events from it. In this (kbd_connect) 1441 * function, we should decide which VT to bind that keyboard to initially. 1442 */ 1443 static int kbd_connect(struct input_handler *handler, struct input_dev *dev, 1444 const struct input_device_id *id) 1445 { 1446 struct input_handle *handle; 1447 int error; 1448 1449 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL); 1450 if (!handle) 1451 return -ENOMEM; 1452 1453 handle->dev = dev; 1454 handle->handler = handler; 1455 handle->name = "kbd"; 1456 1457 error = input_register_handle(handle); 1458 if (error) 1459 goto err_free_handle; 1460 1461 error = input_open_device(handle); 1462 if (error) 1463 goto err_unregister_handle; 1464 1465 return 0; 1466 1467 err_unregister_handle: 1468 input_unregister_handle(handle); 1469 err_free_handle: 1470 kfree(handle); 1471 return error; 1472 } 1473 1474 static void kbd_disconnect(struct input_handle *handle) 1475 { 1476 input_close_device(handle); 1477 input_unregister_handle(handle); 1478 kfree(handle); 1479 } 1480 1481 /* 1482 * Start keyboard handler on the new keyboard by refreshing LED state to 1483 * match the rest of the system. 1484 */ 1485 static void kbd_start(struct input_handle *handle) 1486 { 1487 tasklet_disable(&keyboard_tasklet); 1488 1489 if (ledstate != 0xff) 1490 kbd_update_leds_helper(handle, &ledstate); 1491 1492 tasklet_enable(&keyboard_tasklet); 1493 } 1494 1495 static const struct input_device_id kbd_ids[] = { 1496 { 1497 .flags = INPUT_DEVICE_ID_MATCH_EVBIT, 1498 .evbit = { BIT_MASK(EV_KEY) }, 1499 }, 1500 1501 { 1502 .flags = INPUT_DEVICE_ID_MATCH_EVBIT, 1503 .evbit = { BIT_MASK(EV_SND) }, 1504 }, 1505 1506 { }, /* Terminating entry */ 1507 }; 1508 1509 MODULE_DEVICE_TABLE(input, kbd_ids); 1510 1511 static struct input_handler kbd_handler = { 1512 .event = kbd_event, 1513 .match = kbd_match, 1514 .connect = kbd_connect, 1515 .disconnect = kbd_disconnect, 1516 .start = kbd_start, 1517 .name = "kbd", 1518 .id_table = kbd_ids, 1519 }; 1520 1521 int __init kbd_init(void) 1522 { 1523 int i; 1524 int error; 1525 1526 for (i = 0; i < MAX_NR_CONSOLES; i++) { 1527 kbd_table[i].ledflagstate = KBD_DEFLEDS; 1528 kbd_table[i].default_ledflagstate = KBD_DEFLEDS; 1529 kbd_table[i].ledmode = LED_SHOW_FLAGS; 1530 kbd_table[i].lockstate = KBD_DEFLOCK; 1531 kbd_table[i].slockstate = 0; 1532 kbd_table[i].modeflags = KBD_DEFMODE; 1533 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE; 1534 } 1535 1536 error = input_register_handler(&kbd_handler); 1537 if (error) 1538 return error; 1539 1540 tasklet_enable(&keyboard_tasklet); 1541 tasklet_schedule(&keyboard_tasklet); 1542 1543 return 0; 1544 } 1545 1546 /* Ioctl support code */ 1547 1548 /** 1549 * vt_do_diacrit - diacritical table updates 1550 * @cmd: ioctl request 1551 * @up: pointer to user data for ioctl 1552 * @perm: permissions check computed by caller 1553 * 1554 * Update the diacritical tables atomically and safely. Lock them 1555 * against simultaneous keypresses 1556 */ 1557 int vt_do_diacrit(unsigned int cmd, void __user *up, int perm) 1558 { 1559 struct kbdiacrs __user *a = up; 1560 unsigned long flags; 1561 int asize; 1562 int ret = 0; 1563 1564 switch (cmd) { 1565 case KDGKBDIACR: 1566 { 1567 struct kbdiacr *diacr; 1568 int i; 1569 1570 diacr = kmalloc(MAX_DIACR * sizeof(struct kbdiacr), 1571 GFP_KERNEL); 1572 if (diacr == NULL) 1573 return -ENOMEM; 1574 1575 /* Lock the diacriticals table, make a copy and then 1576 copy it after we unlock */ 1577 spin_lock_irqsave(&kbd_event_lock, flags); 1578 1579 asize = accent_table_size; 1580 for (i = 0; i < asize; i++) { 1581 diacr[i].diacr = conv_uni_to_8bit( 1582 accent_table[i].diacr); 1583 diacr[i].base = conv_uni_to_8bit( 1584 accent_table[i].base); 1585 diacr[i].result = conv_uni_to_8bit( 1586 accent_table[i].result); 1587 } 1588 spin_unlock_irqrestore(&kbd_event_lock, flags); 1589 1590 if (put_user(asize, &a->kb_cnt)) 1591 ret = -EFAULT; 1592 else if (copy_to_user(a->kbdiacr, diacr, 1593 asize * sizeof(struct kbdiacr))) 1594 ret = -EFAULT; 1595 kfree(diacr); 1596 return ret; 1597 } 1598 case KDGKBDIACRUC: 1599 { 1600 struct kbdiacrsuc __user *a = up; 1601 void *buf; 1602 1603 buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc), 1604 GFP_KERNEL); 1605 if (buf == NULL) 1606 return -ENOMEM; 1607 1608 /* Lock the diacriticals table, make a copy and then 1609 copy it after we unlock */ 1610 spin_lock_irqsave(&kbd_event_lock, flags); 1611 1612 asize = accent_table_size; 1613 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc)); 1614 1615 spin_unlock_irqrestore(&kbd_event_lock, flags); 1616 1617 if (put_user(asize, &a->kb_cnt)) 1618 ret = -EFAULT; 1619 else if (copy_to_user(a->kbdiacruc, buf, 1620 asize*sizeof(struct kbdiacruc))) 1621 ret = -EFAULT; 1622 kfree(buf); 1623 return ret; 1624 } 1625 1626 case KDSKBDIACR: 1627 { 1628 struct kbdiacrs __user *a = up; 1629 struct kbdiacr *diacr = NULL; 1630 unsigned int ct; 1631 int i; 1632 1633 if (!perm) 1634 return -EPERM; 1635 if (get_user(ct, &a->kb_cnt)) 1636 return -EFAULT; 1637 if (ct >= MAX_DIACR) 1638 return -EINVAL; 1639 1640 if (ct) { 1641 diacr = kmalloc(sizeof(struct kbdiacr) * ct, 1642 GFP_KERNEL); 1643 if (diacr == NULL) 1644 return -ENOMEM; 1645 1646 if (copy_from_user(diacr, a->kbdiacr, 1647 sizeof(struct kbdiacr) * ct)) { 1648 kfree(diacr); 1649 return -EFAULT; 1650 } 1651 } 1652 1653 spin_lock_irqsave(&kbd_event_lock, flags); 1654 accent_table_size = ct; 1655 for (i = 0; i < ct; i++) { 1656 accent_table[i].diacr = 1657 conv_8bit_to_uni(diacr[i].diacr); 1658 accent_table[i].base = 1659 conv_8bit_to_uni(diacr[i].base); 1660 accent_table[i].result = 1661 conv_8bit_to_uni(diacr[i].result); 1662 } 1663 spin_unlock_irqrestore(&kbd_event_lock, flags); 1664 kfree(diacr); 1665 return 0; 1666 } 1667 1668 case KDSKBDIACRUC: 1669 { 1670 struct kbdiacrsuc __user *a = up; 1671 unsigned int ct; 1672 void *buf = NULL; 1673 1674 if (!perm) 1675 return -EPERM; 1676 1677 if (get_user(ct, &a->kb_cnt)) 1678 return -EFAULT; 1679 1680 if (ct >= MAX_DIACR) 1681 return -EINVAL; 1682 1683 if (ct) { 1684 buf = kmalloc(ct * sizeof(struct kbdiacruc), 1685 GFP_KERNEL); 1686 if (buf == NULL) 1687 return -ENOMEM; 1688 1689 if (copy_from_user(buf, a->kbdiacruc, 1690 ct * sizeof(struct kbdiacruc))) { 1691 kfree(buf); 1692 return -EFAULT; 1693 } 1694 } 1695 spin_lock_irqsave(&kbd_event_lock, flags); 1696 if (ct) 1697 memcpy(accent_table, buf, 1698 ct * sizeof(struct kbdiacruc)); 1699 accent_table_size = ct; 1700 spin_unlock_irqrestore(&kbd_event_lock, flags); 1701 kfree(buf); 1702 return 0; 1703 } 1704 } 1705 return ret; 1706 } 1707 1708 /** 1709 * vt_do_kdskbmode - set keyboard mode ioctl 1710 * @console: the console to use 1711 * @arg: the requested mode 1712 * 1713 * Update the keyboard mode bits while holding the correct locks. 1714 * Return 0 for success or an error code. 1715 */ 1716 int vt_do_kdskbmode(int console, unsigned int arg) 1717 { 1718 struct kbd_struct * kbd = kbd_table + console; 1719 int ret = 0; 1720 unsigned long flags; 1721 1722 spin_lock_irqsave(&kbd_event_lock, flags); 1723 switch(arg) { 1724 case K_RAW: 1725 kbd->kbdmode = VC_RAW; 1726 break; 1727 case K_MEDIUMRAW: 1728 kbd->kbdmode = VC_MEDIUMRAW; 1729 break; 1730 case K_XLATE: 1731 kbd->kbdmode = VC_XLATE; 1732 do_compute_shiftstate(); 1733 break; 1734 case K_UNICODE: 1735 kbd->kbdmode = VC_UNICODE; 1736 do_compute_shiftstate(); 1737 break; 1738 case K_OFF: 1739 kbd->kbdmode = VC_OFF; 1740 break; 1741 default: 1742 ret = -EINVAL; 1743 } 1744 spin_unlock_irqrestore(&kbd_event_lock, flags); 1745 return ret; 1746 } 1747 1748 /** 1749 * vt_do_kdskbmeta - set keyboard meta state 1750 * @console: the console to use 1751 * @arg: the requested meta state 1752 * 1753 * Update the keyboard meta bits while holding the correct locks. 1754 * Return 0 for success or an error code. 1755 */ 1756 int vt_do_kdskbmeta(int console, unsigned int arg) 1757 { 1758 struct kbd_struct * kbd = kbd_table + console; 1759 int ret = 0; 1760 unsigned long flags; 1761 1762 spin_lock_irqsave(&kbd_event_lock, flags); 1763 switch(arg) { 1764 case K_METABIT: 1765 clr_vc_kbd_mode(kbd, VC_META); 1766 break; 1767 case K_ESCPREFIX: 1768 set_vc_kbd_mode(kbd, VC_META); 1769 break; 1770 default: 1771 ret = -EINVAL; 1772 } 1773 spin_unlock_irqrestore(&kbd_event_lock, flags); 1774 return ret; 1775 } 1776 1777 int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc, 1778 int perm) 1779 { 1780 struct kbkeycode tmp; 1781 int kc = 0; 1782 1783 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode))) 1784 return -EFAULT; 1785 switch (cmd) { 1786 case KDGETKEYCODE: 1787 kc = getkeycode(tmp.scancode); 1788 if (kc >= 0) 1789 kc = put_user(kc, &user_kbkc->keycode); 1790 break; 1791 case KDSETKEYCODE: 1792 if (!perm) 1793 return -EPERM; 1794 kc = setkeycode(tmp.scancode, tmp.keycode); 1795 break; 1796 } 1797 return kc; 1798 } 1799 1800 #define i (tmp.kb_index) 1801 #define s (tmp.kb_table) 1802 #define v (tmp.kb_value) 1803 1804 int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm, 1805 int console) 1806 { 1807 struct kbd_struct * kbd = kbd_table + console; 1808 struct kbentry tmp; 1809 ushort *key_map, *new_map, val, ov; 1810 unsigned long flags; 1811 1812 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry))) 1813 return -EFAULT; 1814 1815 if (!capable(CAP_SYS_TTY_CONFIG)) 1816 perm = 0; 1817 1818 switch (cmd) { 1819 case KDGKBENT: 1820 /* Ensure another thread doesn't free it under us */ 1821 spin_lock_irqsave(&kbd_event_lock, flags); 1822 key_map = key_maps[s]; 1823 if (key_map) { 1824 val = U(key_map[i]); 1825 if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES) 1826 val = K_HOLE; 1827 } else 1828 val = (i ? K_HOLE : K_NOSUCHMAP); 1829 spin_unlock_irqrestore(&kbd_event_lock, flags); 1830 return put_user(val, &user_kbe->kb_value); 1831 case KDSKBENT: 1832 if (!perm) 1833 return -EPERM; 1834 if (!i && v == K_NOSUCHMAP) { 1835 spin_lock_irqsave(&kbd_event_lock, flags); 1836 /* deallocate map */ 1837 key_map = key_maps[s]; 1838 if (s && key_map) { 1839 key_maps[s] = NULL; 1840 if (key_map[0] == U(K_ALLOCATED)) { 1841 kfree(key_map); 1842 keymap_count--; 1843 } 1844 } 1845 spin_unlock_irqrestore(&kbd_event_lock, flags); 1846 break; 1847 } 1848 1849 if (KTYP(v) < NR_TYPES) { 1850 if (KVAL(v) > max_vals[KTYP(v)]) 1851 return -EINVAL; 1852 } else 1853 if (kbd->kbdmode != VC_UNICODE) 1854 return -EINVAL; 1855 1856 /* ++Geert: non-PC keyboards may generate keycode zero */ 1857 #if !defined(__mc68000__) && !defined(__powerpc__) 1858 /* assignment to entry 0 only tests validity of args */ 1859 if (!i) 1860 break; 1861 #endif 1862 1863 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL); 1864 if (!new_map) 1865 return -ENOMEM; 1866 spin_lock_irqsave(&kbd_event_lock, flags); 1867 key_map = key_maps[s]; 1868 if (key_map == NULL) { 1869 int j; 1870 1871 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS && 1872 !capable(CAP_SYS_RESOURCE)) { 1873 spin_unlock_irqrestore(&kbd_event_lock, flags); 1874 kfree(new_map); 1875 return -EPERM; 1876 } 1877 key_maps[s] = new_map; 1878 key_map = new_map; 1879 key_map[0] = U(K_ALLOCATED); 1880 for (j = 1; j < NR_KEYS; j++) 1881 key_map[j] = U(K_HOLE); 1882 keymap_count++; 1883 } else 1884 kfree(new_map); 1885 1886 ov = U(key_map[i]); 1887 if (v == ov) 1888 goto out; 1889 /* 1890 * Attention Key. 1891 */ 1892 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) { 1893 spin_unlock_irqrestore(&kbd_event_lock, flags); 1894 return -EPERM; 1895 } 1896 key_map[i] = U(v); 1897 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT)) 1898 do_compute_shiftstate(); 1899 out: 1900 spin_unlock_irqrestore(&kbd_event_lock, flags); 1901 break; 1902 } 1903 return 0; 1904 } 1905 #undef i 1906 #undef s 1907 #undef v 1908 1909 /* FIXME: This one needs untangling and locking */ 1910 int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm) 1911 { 1912 struct kbsentry *kbs; 1913 char *p; 1914 u_char *q; 1915 u_char __user *up; 1916 int sz; 1917 int delta; 1918 char *first_free, *fj, *fnw; 1919 int i, j, k; 1920 int ret; 1921 1922 if (!capable(CAP_SYS_TTY_CONFIG)) 1923 perm = 0; 1924 1925 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL); 1926 if (!kbs) { 1927 ret = -ENOMEM; 1928 goto reterr; 1929 } 1930 1931 /* we mostly copy too much here (512bytes), but who cares ;) */ 1932 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) { 1933 ret = -EFAULT; 1934 goto reterr; 1935 } 1936 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0'; 1937 i = kbs->kb_func; 1938 1939 switch (cmd) { 1940 case KDGKBSENT: 1941 sz = sizeof(kbs->kb_string) - 1; /* sz should have been 1942 a struct member */ 1943 up = user_kdgkb->kb_string; 1944 p = func_table[i]; 1945 if(p) 1946 for ( ; *p && sz; p++, sz--) 1947 if (put_user(*p, up++)) { 1948 ret = -EFAULT; 1949 goto reterr; 1950 } 1951 if (put_user('\0', up)) { 1952 ret = -EFAULT; 1953 goto reterr; 1954 } 1955 kfree(kbs); 1956 return ((p && *p) ? -EOVERFLOW : 0); 1957 case KDSKBSENT: 1958 if (!perm) { 1959 ret = -EPERM; 1960 goto reterr; 1961 } 1962 1963 q = func_table[i]; 1964 first_free = funcbufptr + (funcbufsize - funcbufleft); 1965 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++) 1966 ; 1967 if (j < MAX_NR_FUNC) 1968 fj = func_table[j]; 1969 else 1970 fj = first_free; 1971 1972 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string); 1973 if (delta <= funcbufleft) { /* it fits in current buf */ 1974 if (j < MAX_NR_FUNC) { 1975 memmove(fj + delta, fj, first_free - fj); 1976 for (k = j; k < MAX_NR_FUNC; k++) 1977 if (func_table[k]) 1978 func_table[k] += delta; 1979 } 1980 if (!q) 1981 func_table[i] = fj; 1982 funcbufleft -= delta; 1983 } else { /* allocate a larger buffer */ 1984 sz = 256; 1985 while (sz < funcbufsize - funcbufleft + delta) 1986 sz <<= 1; 1987 fnw = kmalloc(sz, GFP_KERNEL); 1988 if(!fnw) { 1989 ret = -ENOMEM; 1990 goto reterr; 1991 } 1992 1993 if (!q) 1994 func_table[i] = fj; 1995 if (fj > funcbufptr) 1996 memmove(fnw, funcbufptr, fj - funcbufptr); 1997 for (k = 0; k < j; k++) 1998 if (func_table[k]) 1999 func_table[k] = fnw + (func_table[k] - funcbufptr); 2000 2001 if (first_free > fj) { 2002 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj); 2003 for (k = j; k < MAX_NR_FUNC; k++) 2004 if (func_table[k]) 2005 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta; 2006 } 2007 if (funcbufptr != func_buf) 2008 kfree(funcbufptr); 2009 funcbufptr = fnw; 2010 funcbufleft = funcbufleft - delta + sz - funcbufsize; 2011 funcbufsize = sz; 2012 } 2013 strcpy(func_table[i], kbs->kb_string); 2014 break; 2015 } 2016 ret = 0; 2017 reterr: 2018 kfree(kbs); 2019 return ret; 2020 } 2021 2022 int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm) 2023 { 2024 struct kbd_struct * kbd = kbd_table + console; 2025 unsigned long flags; 2026 unsigned char ucval; 2027 2028 switch(cmd) { 2029 /* the ioctls below read/set the flags usually shown in the leds */ 2030 /* don't use them - they will go away without warning */ 2031 case KDGKBLED: 2032 spin_lock_irqsave(&kbd_event_lock, flags); 2033 ucval = kbd->ledflagstate | (kbd->default_ledflagstate << 4); 2034 spin_unlock_irqrestore(&kbd_event_lock, flags); 2035 return put_user(ucval, (char __user *)arg); 2036 2037 case KDSKBLED: 2038 if (!perm) 2039 return -EPERM; 2040 if (arg & ~0x77) 2041 return -EINVAL; 2042 spin_lock_irqsave(&kbd_event_lock, flags); 2043 kbd->ledflagstate = (arg & 7); 2044 kbd->default_ledflagstate = ((arg >> 4) & 7); 2045 set_leds(); 2046 spin_unlock_irqrestore(&kbd_event_lock, flags); 2047 return 0; 2048 2049 /* the ioctls below only set the lights, not the functions */ 2050 /* for those, see KDGKBLED and KDSKBLED above */ 2051 case KDGETLED: 2052 ucval = getledstate(); 2053 return put_user(ucval, (char __user *)arg); 2054 2055 case KDSETLED: 2056 if (!perm) 2057 return -EPERM; 2058 setledstate(kbd, arg); 2059 return 0; 2060 } 2061 return -ENOIOCTLCMD; 2062 } 2063 2064 int vt_do_kdgkbmode(int console) 2065 { 2066 struct kbd_struct * kbd = kbd_table + console; 2067 /* This is a spot read so needs no locking */ 2068 switch (kbd->kbdmode) { 2069 case VC_RAW: 2070 return K_RAW; 2071 case VC_MEDIUMRAW: 2072 return K_MEDIUMRAW; 2073 case VC_UNICODE: 2074 return K_UNICODE; 2075 case VC_OFF: 2076 return K_OFF; 2077 default: 2078 return K_XLATE; 2079 } 2080 } 2081 2082 /** 2083 * vt_do_kdgkbmeta - report meta status 2084 * @console: console to report 2085 * 2086 * Report the meta flag status of this console 2087 */ 2088 int vt_do_kdgkbmeta(int console) 2089 { 2090 struct kbd_struct * kbd = kbd_table + console; 2091 /* Again a spot read so no locking */ 2092 return vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT; 2093 } 2094 2095 /** 2096 * vt_reset_unicode - reset the unicode status 2097 * @console: console being reset 2098 * 2099 * Restore the unicode console state to its default 2100 */ 2101 void vt_reset_unicode(int console) 2102 { 2103 unsigned long flags; 2104 2105 spin_lock_irqsave(&kbd_event_lock, flags); 2106 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE; 2107 spin_unlock_irqrestore(&kbd_event_lock, flags); 2108 } 2109 2110 /** 2111 * vt_get_shiftstate - shift bit state 2112 * 2113 * Report the shift bits from the keyboard state. We have to export 2114 * this to support some oddities in the vt layer. 2115 */ 2116 int vt_get_shift_state(void) 2117 { 2118 /* Don't lock as this is a transient report */ 2119 return shift_state; 2120 } 2121 2122 /** 2123 * vt_reset_keyboard - reset keyboard state 2124 * @console: console to reset 2125 * 2126 * Reset the keyboard bits for a console as part of a general console 2127 * reset event 2128 */ 2129 void vt_reset_keyboard(int console) 2130 { 2131 struct kbd_struct * kbd = kbd_table + console; 2132 unsigned long flags; 2133 2134 spin_lock_irqsave(&kbd_event_lock, flags); 2135 set_vc_kbd_mode(kbd, VC_REPEAT); 2136 clr_vc_kbd_mode(kbd, VC_CKMODE); 2137 clr_vc_kbd_mode(kbd, VC_APPLIC); 2138 clr_vc_kbd_mode(kbd, VC_CRLF); 2139 kbd->lockstate = 0; 2140 kbd->slockstate = 0; 2141 kbd->ledmode = LED_SHOW_FLAGS; 2142 kbd->ledflagstate = kbd->default_ledflagstate; 2143 /* do not do set_leds here because this causes an endless tasklet loop 2144 when the keyboard hasn't been initialized yet */ 2145 spin_unlock_irqrestore(&kbd_event_lock, flags); 2146 } 2147 2148 /** 2149 * vt_get_kbd_mode_bit - read keyboard status bits 2150 * @console: console to read from 2151 * @bit: mode bit to read 2152 * 2153 * Report back a vt mode bit. We do this without locking so the 2154 * caller must be sure that there are no synchronization needs 2155 */ 2156 2157 int vt_get_kbd_mode_bit(int console, int bit) 2158 { 2159 struct kbd_struct * kbd = kbd_table + console; 2160 return vc_kbd_mode(kbd, bit); 2161 } 2162 2163 /** 2164 * vt_set_kbd_mode_bit - read keyboard status bits 2165 * @console: console to read from 2166 * @bit: mode bit to read 2167 * 2168 * Set a vt mode bit. We do this without locking so the 2169 * caller must be sure that there are no synchronization needs 2170 */ 2171 2172 void vt_set_kbd_mode_bit(int console, int bit) 2173 { 2174 struct kbd_struct * kbd = kbd_table + console; 2175 unsigned long flags; 2176 2177 spin_lock_irqsave(&kbd_event_lock, flags); 2178 set_vc_kbd_mode(kbd, bit); 2179 spin_unlock_irqrestore(&kbd_event_lock, flags); 2180 } 2181 2182 /** 2183 * vt_clr_kbd_mode_bit - read keyboard status bits 2184 * @console: console to read from 2185 * @bit: mode bit to read 2186 * 2187 * Report back a vt mode bit. We do this without locking so the 2188 * caller must be sure that there are no synchronization needs 2189 */ 2190 2191 void vt_clr_kbd_mode_bit(int console, int bit) 2192 { 2193 struct kbd_struct * kbd = kbd_table + console; 2194 unsigned long flags; 2195 2196 spin_lock_irqsave(&kbd_event_lock, flags); 2197 clr_vc_kbd_mode(kbd, bit); 2198 spin_unlock_irqrestore(&kbd_event_lock, flags); 2199 } 2200