xref: /openbmc/linux/drivers/tty/vt/keyboard.c (revision 8730046c)
1 /*
2  * Written for linux by Johan Myreen as a translation from
3  * the assembly version by Linus (with diacriticals added)
4  *
5  * Some additional features added by Christoph Niemann (ChN), March 1993
6  *
7  * Loadable keymaps by Risto Kankkunen, May 1993
8  *
9  * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
10  * Added decr/incr_console, dynamic keymaps, Unicode support,
11  * dynamic function/string keys, led setting,  Sept 1994
12  * `Sticky' modifier keys, 951006.
13  *
14  * 11-11-96: SAK should now work in the raw mode (Martin Mares)
15  *
16  * Modified to provide 'generic' keyboard support by Hamish Macdonald
17  * Merge with the m68k keyboard driver and split-off of the PC low-level
18  * parts by Geert Uytterhoeven, May 1997
19  *
20  * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
21  * 30-07-98: Dead keys redone, aeb@cwi.nl.
22  * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
23  */
24 
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 
27 #include <linux/consolemap.h>
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/tty.h>
31 #include <linux/tty_flip.h>
32 #include <linux/mm.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/slab.h>
36 #include <linux/leds.h>
37 
38 #include <linux/kbd_kern.h>
39 #include <linux/kbd_diacr.h>
40 #include <linux/vt_kern.h>
41 #include <linux/input.h>
42 #include <linux/reboot.h>
43 #include <linux/notifier.h>
44 #include <linux/jiffies.h>
45 #include <linux/uaccess.h>
46 
47 #include <asm/irq_regs.h>
48 
49 extern void ctrl_alt_del(void);
50 
51 /*
52  * Exported functions/variables
53  */
54 
55 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
56 
57 #if defined(CONFIG_X86) || defined(CONFIG_PARISC)
58 #include <asm/kbdleds.h>
59 #else
60 static inline int kbd_defleds(void)
61 {
62 	return 0;
63 }
64 #endif
65 
66 #define KBD_DEFLOCK 0
67 
68 /*
69  * Handler Tables.
70  */
71 
72 #define K_HANDLERS\
73 	k_self,		k_fn,		k_spec,		k_pad,\
74 	k_dead,		k_cons,		k_cur,		k_shift,\
75 	k_meta,		k_ascii,	k_lock,		k_lowercase,\
76 	k_slock,	k_dead2,	k_brl,		k_ignore
77 
78 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
79 			    char up_flag);
80 static k_handler_fn K_HANDLERS;
81 static k_handler_fn *k_handler[16] = { K_HANDLERS };
82 
83 #define FN_HANDLERS\
84 	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
85 	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
86 	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
87 	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
88 	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
89 
90 typedef void (fn_handler_fn)(struct vc_data *vc);
91 static fn_handler_fn FN_HANDLERS;
92 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
93 
94 /*
95  * Variables exported for vt_ioctl.c
96  */
97 
98 struct vt_spawn_console vt_spawn_con = {
99 	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
100 	.pid  = NULL,
101 	.sig  = 0,
102 };
103 
104 
105 /*
106  * Internal Data.
107  */
108 
109 static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
110 static struct kbd_struct *kbd = kbd_table;
111 
112 /* maximum values each key_handler can handle */
113 static const int max_vals[] = {
114 	255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
115 	NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
116 	255, NR_LOCK - 1, 255, NR_BRL - 1
117 };
118 
119 static const int NR_TYPES = ARRAY_SIZE(max_vals);
120 
121 static struct input_handler kbd_handler;
122 static DEFINE_SPINLOCK(kbd_event_lock);
123 static DEFINE_SPINLOCK(led_lock);
124 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)];	/* keyboard key bitmap */
125 static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
126 static bool dead_key_next;
127 static int npadch = -1;					/* -1 or number assembled on pad */
128 static unsigned int diacr;
129 static char rep;					/* flag telling character repeat */
130 
131 static int shift_state = 0;
132 
133 static unsigned int ledstate = -1U;			/* undefined */
134 static unsigned char ledioctl;
135 
136 /*
137  * Notifier list for console keyboard events
138  */
139 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
140 
141 int register_keyboard_notifier(struct notifier_block *nb)
142 {
143 	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
144 }
145 EXPORT_SYMBOL_GPL(register_keyboard_notifier);
146 
147 int unregister_keyboard_notifier(struct notifier_block *nb)
148 {
149 	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
150 }
151 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
152 
153 /*
154  * Translation of scancodes to keycodes. We set them on only the first
155  * keyboard in the list that accepts the scancode and keycode.
156  * Explanation for not choosing the first attached keyboard anymore:
157  *  USB keyboards for example have two event devices: one for all "normal"
158  *  keys and one for extra function keys (like "volume up", "make coffee",
159  *  etc.). So this means that scancodes for the extra function keys won't
160  *  be valid for the first event device, but will be for the second.
161  */
162 
163 struct getset_keycode_data {
164 	struct input_keymap_entry ke;
165 	int error;
166 };
167 
168 static int getkeycode_helper(struct input_handle *handle, void *data)
169 {
170 	struct getset_keycode_data *d = data;
171 
172 	d->error = input_get_keycode(handle->dev, &d->ke);
173 
174 	return d->error == 0; /* stop as soon as we successfully get one */
175 }
176 
177 static int getkeycode(unsigned int scancode)
178 {
179 	struct getset_keycode_data d = {
180 		.ke	= {
181 			.flags		= 0,
182 			.len		= sizeof(scancode),
183 			.keycode	= 0,
184 		},
185 		.error	= -ENODEV,
186 	};
187 
188 	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
189 
190 	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
191 
192 	return d.error ?: d.ke.keycode;
193 }
194 
195 static int setkeycode_helper(struct input_handle *handle, void *data)
196 {
197 	struct getset_keycode_data *d = data;
198 
199 	d->error = input_set_keycode(handle->dev, &d->ke);
200 
201 	return d->error == 0; /* stop as soon as we successfully set one */
202 }
203 
204 static int setkeycode(unsigned int scancode, unsigned int keycode)
205 {
206 	struct getset_keycode_data d = {
207 		.ke	= {
208 			.flags		= 0,
209 			.len		= sizeof(scancode),
210 			.keycode	= keycode,
211 		},
212 		.error	= -ENODEV,
213 	};
214 
215 	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
216 
217 	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
218 
219 	return d.error;
220 }
221 
222 /*
223  * Making beeps and bells. Note that we prefer beeps to bells, but when
224  * shutting the sound off we do both.
225  */
226 
227 static int kd_sound_helper(struct input_handle *handle, void *data)
228 {
229 	unsigned int *hz = data;
230 	struct input_dev *dev = handle->dev;
231 
232 	if (test_bit(EV_SND, dev->evbit)) {
233 		if (test_bit(SND_TONE, dev->sndbit)) {
234 			input_inject_event(handle, EV_SND, SND_TONE, *hz);
235 			if (*hz)
236 				return 0;
237 		}
238 		if (test_bit(SND_BELL, dev->sndbit))
239 			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
240 	}
241 
242 	return 0;
243 }
244 
245 static void kd_nosound(unsigned long ignored)
246 {
247 	static unsigned int zero;
248 
249 	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
250 }
251 
252 static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
253 
254 void kd_mksound(unsigned int hz, unsigned int ticks)
255 {
256 	del_timer_sync(&kd_mksound_timer);
257 
258 	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
259 
260 	if (hz && ticks)
261 		mod_timer(&kd_mksound_timer, jiffies + ticks);
262 }
263 EXPORT_SYMBOL(kd_mksound);
264 
265 /*
266  * Setting the keyboard rate.
267  */
268 
269 static int kbd_rate_helper(struct input_handle *handle, void *data)
270 {
271 	struct input_dev *dev = handle->dev;
272 	struct kbd_repeat *rpt = data;
273 
274 	if (test_bit(EV_REP, dev->evbit)) {
275 
276 		if (rpt[0].delay > 0)
277 			input_inject_event(handle,
278 					   EV_REP, REP_DELAY, rpt[0].delay);
279 		if (rpt[0].period > 0)
280 			input_inject_event(handle,
281 					   EV_REP, REP_PERIOD, rpt[0].period);
282 
283 		rpt[1].delay = dev->rep[REP_DELAY];
284 		rpt[1].period = dev->rep[REP_PERIOD];
285 	}
286 
287 	return 0;
288 }
289 
290 int kbd_rate(struct kbd_repeat *rpt)
291 {
292 	struct kbd_repeat data[2] = { *rpt };
293 
294 	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
295 	*rpt = data[1];	/* Copy currently used settings */
296 
297 	return 0;
298 }
299 
300 /*
301  * Helper Functions.
302  */
303 static void put_queue(struct vc_data *vc, int ch)
304 {
305 	tty_insert_flip_char(&vc->port, ch, 0);
306 	tty_schedule_flip(&vc->port);
307 }
308 
309 static void puts_queue(struct vc_data *vc, char *cp)
310 {
311 	while (*cp) {
312 		tty_insert_flip_char(&vc->port, *cp, 0);
313 		cp++;
314 	}
315 	tty_schedule_flip(&vc->port);
316 }
317 
318 static void applkey(struct vc_data *vc, int key, char mode)
319 {
320 	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
321 
322 	buf[1] = (mode ? 'O' : '[');
323 	buf[2] = key;
324 	puts_queue(vc, buf);
325 }
326 
327 /*
328  * Many other routines do put_queue, but I think either
329  * they produce ASCII, or they produce some user-assigned
330  * string, and in both cases we might assume that it is
331  * in utf-8 already.
332  */
333 static void to_utf8(struct vc_data *vc, uint c)
334 {
335 	if (c < 0x80)
336 		/*  0******* */
337 		put_queue(vc, c);
338 	else if (c < 0x800) {
339 		/* 110***** 10****** */
340 		put_queue(vc, 0xc0 | (c >> 6));
341 		put_queue(vc, 0x80 | (c & 0x3f));
342 	} else if (c < 0x10000) {
343 		if (c >= 0xD800 && c < 0xE000)
344 			return;
345 		if (c == 0xFFFF)
346 			return;
347 		/* 1110**** 10****** 10****** */
348 		put_queue(vc, 0xe0 | (c >> 12));
349 		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
350 		put_queue(vc, 0x80 | (c & 0x3f));
351 	} else if (c < 0x110000) {
352 		/* 11110*** 10****** 10****** 10****** */
353 		put_queue(vc, 0xf0 | (c >> 18));
354 		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
355 		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
356 		put_queue(vc, 0x80 | (c & 0x3f));
357 	}
358 }
359 
360 /*
361  * Called after returning from RAW mode or when changing consoles - recompute
362  * shift_down[] and shift_state from key_down[] maybe called when keymap is
363  * undefined, so that shiftkey release is seen. The caller must hold the
364  * kbd_event_lock.
365  */
366 
367 static void do_compute_shiftstate(void)
368 {
369 	unsigned int k, sym, val;
370 
371 	shift_state = 0;
372 	memset(shift_down, 0, sizeof(shift_down));
373 
374 	for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
375 		sym = U(key_maps[0][k]);
376 		if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
377 			continue;
378 
379 		val = KVAL(sym);
380 		if (val == KVAL(K_CAPSSHIFT))
381 			val = KVAL(K_SHIFT);
382 
383 		shift_down[val]++;
384 		shift_state |= BIT(val);
385 	}
386 }
387 
388 /* We still have to export this method to vt.c */
389 void compute_shiftstate(void)
390 {
391 	unsigned long flags;
392 	spin_lock_irqsave(&kbd_event_lock, flags);
393 	do_compute_shiftstate();
394 	spin_unlock_irqrestore(&kbd_event_lock, flags);
395 }
396 
397 /*
398  * We have a combining character DIACR here, followed by the character CH.
399  * If the combination occurs in the table, return the corresponding value.
400  * Otherwise, if CH is a space or equals DIACR, return DIACR.
401  * Otherwise, conclude that DIACR was not combining after all,
402  * queue it and return CH.
403  */
404 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
405 {
406 	unsigned int d = diacr;
407 	unsigned int i;
408 
409 	diacr = 0;
410 
411 	if ((d & ~0xff) == BRL_UC_ROW) {
412 		if ((ch & ~0xff) == BRL_UC_ROW)
413 			return d | ch;
414 	} else {
415 		for (i = 0; i < accent_table_size; i++)
416 			if (accent_table[i].diacr == d && accent_table[i].base == ch)
417 				return accent_table[i].result;
418 	}
419 
420 	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
421 		return d;
422 
423 	if (kbd->kbdmode == VC_UNICODE)
424 		to_utf8(vc, d);
425 	else {
426 		int c = conv_uni_to_8bit(d);
427 		if (c != -1)
428 			put_queue(vc, c);
429 	}
430 
431 	return ch;
432 }
433 
434 /*
435  * Special function handlers
436  */
437 static void fn_enter(struct vc_data *vc)
438 {
439 	if (diacr) {
440 		if (kbd->kbdmode == VC_UNICODE)
441 			to_utf8(vc, diacr);
442 		else {
443 			int c = conv_uni_to_8bit(diacr);
444 			if (c != -1)
445 				put_queue(vc, c);
446 		}
447 		diacr = 0;
448 	}
449 
450 	put_queue(vc, 13);
451 	if (vc_kbd_mode(kbd, VC_CRLF))
452 		put_queue(vc, 10);
453 }
454 
455 static void fn_caps_toggle(struct vc_data *vc)
456 {
457 	if (rep)
458 		return;
459 
460 	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
461 }
462 
463 static void fn_caps_on(struct vc_data *vc)
464 {
465 	if (rep)
466 		return;
467 
468 	set_vc_kbd_led(kbd, VC_CAPSLOCK);
469 }
470 
471 static void fn_show_ptregs(struct vc_data *vc)
472 {
473 	struct pt_regs *regs = get_irq_regs();
474 
475 	if (regs)
476 		show_regs(regs);
477 }
478 
479 static void fn_hold(struct vc_data *vc)
480 {
481 	struct tty_struct *tty = vc->port.tty;
482 
483 	if (rep || !tty)
484 		return;
485 
486 	/*
487 	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
488 	 * these routines are also activated by ^S/^Q.
489 	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
490 	 */
491 	if (tty->stopped)
492 		start_tty(tty);
493 	else
494 		stop_tty(tty);
495 }
496 
497 static void fn_num(struct vc_data *vc)
498 {
499 	if (vc_kbd_mode(kbd, VC_APPLIC))
500 		applkey(vc, 'P', 1);
501 	else
502 		fn_bare_num(vc);
503 }
504 
505 /*
506  * Bind this to Shift-NumLock if you work in application keypad mode
507  * but want to be able to change the NumLock flag.
508  * Bind this to NumLock if you prefer that the NumLock key always
509  * changes the NumLock flag.
510  */
511 static void fn_bare_num(struct vc_data *vc)
512 {
513 	if (!rep)
514 		chg_vc_kbd_led(kbd, VC_NUMLOCK);
515 }
516 
517 static void fn_lastcons(struct vc_data *vc)
518 {
519 	/* switch to the last used console, ChN */
520 	set_console(last_console);
521 }
522 
523 static void fn_dec_console(struct vc_data *vc)
524 {
525 	int i, cur = fg_console;
526 
527 	/* Currently switching?  Queue this next switch relative to that. */
528 	if (want_console != -1)
529 		cur = want_console;
530 
531 	for (i = cur - 1; i != cur; i--) {
532 		if (i == -1)
533 			i = MAX_NR_CONSOLES - 1;
534 		if (vc_cons_allocated(i))
535 			break;
536 	}
537 	set_console(i);
538 }
539 
540 static void fn_inc_console(struct vc_data *vc)
541 {
542 	int i, cur = fg_console;
543 
544 	/* Currently switching?  Queue this next switch relative to that. */
545 	if (want_console != -1)
546 		cur = want_console;
547 
548 	for (i = cur+1; i != cur; i++) {
549 		if (i == MAX_NR_CONSOLES)
550 			i = 0;
551 		if (vc_cons_allocated(i))
552 			break;
553 	}
554 	set_console(i);
555 }
556 
557 static void fn_send_intr(struct vc_data *vc)
558 {
559 	tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
560 	tty_schedule_flip(&vc->port);
561 }
562 
563 static void fn_scroll_forw(struct vc_data *vc)
564 {
565 	scrollfront(vc, 0);
566 }
567 
568 static void fn_scroll_back(struct vc_data *vc)
569 {
570 	scrollback(vc);
571 }
572 
573 static void fn_show_mem(struct vc_data *vc)
574 {
575 	show_mem(0);
576 }
577 
578 static void fn_show_state(struct vc_data *vc)
579 {
580 	show_state();
581 }
582 
583 static void fn_boot_it(struct vc_data *vc)
584 {
585 	ctrl_alt_del();
586 }
587 
588 static void fn_compose(struct vc_data *vc)
589 {
590 	dead_key_next = true;
591 }
592 
593 static void fn_spawn_con(struct vc_data *vc)
594 {
595 	spin_lock(&vt_spawn_con.lock);
596 	if (vt_spawn_con.pid)
597 		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
598 			put_pid(vt_spawn_con.pid);
599 			vt_spawn_con.pid = NULL;
600 		}
601 	spin_unlock(&vt_spawn_con.lock);
602 }
603 
604 static void fn_SAK(struct vc_data *vc)
605 {
606 	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
607 	schedule_work(SAK_work);
608 }
609 
610 static void fn_null(struct vc_data *vc)
611 {
612 	do_compute_shiftstate();
613 }
614 
615 /*
616  * Special key handlers
617  */
618 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
619 {
620 }
621 
622 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
623 {
624 	if (up_flag)
625 		return;
626 	if (value >= ARRAY_SIZE(fn_handler))
627 		return;
628 	if ((kbd->kbdmode == VC_RAW ||
629 	     kbd->kbdmode == VC_MEDIUMRAW ||
630 	     kbd->kbdmode == VC_OFF) &&
631 	     value != KVAL(K_SAK))
632 		return;		/* SAK is allowed even in raw mode */
633 	fn_handler[value](vc);
634 }
635 
636 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
637 {
638 	pr_err("k_lowercase was called - impossible\n");
639 }
640 
641 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
642 {
643 	if (up_flag)
644 		return;		/* no action, if this is a key release */
645 
646 	if (diacr)
647 		value = handle_diacr(vc, value);
648 
649 	if (dead_key_next) {
650 		dead_key_next = false;
651 		diacr = value;
652 		return;
653 	}
654 	if (kbd->kbdmode == VC_UNICODE)
655 		to_utf8(vc, value);
656 	else {
657 		int c = conv_uni_to_8bit(value);
658 		if (c != -1)
659 			put_queue(vc, c);
660 	}
661 }
662 
663 /*
664  * Handle dead key. Note that we now may have several
665  * dead keys modifying the same character. Very useful
666  * for Vietnamese.
667  */
668 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
669 {
670 	if (up_flag)
671 		return;
672 
673 	diacr = (diacr ? handle_diacr(vc, value) : value);
674 }
675 
676 static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
677 {
678 	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
679 }
680 
681 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
682 {
683 	k_deadunicode(vc, value, up_flag);
684 }
685 
686 /*
687  * Obsolete - for backwards compatibility only
688  */
689 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
690 {
691 	static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
692 
693 	k_deadunicode(vc, ret_diacr[value], up_flag);
694 }
695 
696 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
697 {
698 	if (up_flag)
699 		return;
700 
701 	set_console(value);
702 }
703 
704 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
705 {
706 	if (up_flag)
707 		return;
708 
709 	if ((unsigned)value < ARRAY_SIZE(func_table)) {
710 		if (func_table[value])
711 			puts_queue(vc, func_table[value]);
712 	} else
713 		pr_err("k_fn called with value=%d\n", value);
714 }
715 
716 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
717 {
718 	static const char cur_chars[] = "BDCA";
719 
720 	if (up_flag)
721 		return;
722 
723 	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
724 }
725 
726 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
727 {
728 	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
729 	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
730 
731 	if (up_flag)
732 		return;		/* no action, if this is a key release */
733 
734 	/* kludge... shift forces cursor/number keys */
735 	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
736 		applkey(vc, app_map[value], 1);
737 		return;
738 	}
739 
740 	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
741 
742 		switch (value) {
743 		case KVAL(K_PCOMMA):
744 		case KVAL(K_PDOT):
745 			k_fn(vc, KVAL(K_REMOVE), 0);
746 			return;
747 		case KVAL(K_P0):
748 			k_fn(vc, KVAL(K_INSERT), 0);
749 			return;
750 		case KVAL(K_P1):
751 			k_fn(vc, KVAL(K_SELECT), 0);
752 			return;
753 		case KVAL(K_P2):
754 			k_cur(vc, KVAL(K_DOWN), 0);
755 			return;
756 		case KVAL(K_P3):
757 			k_fn(vc, KVAL(K_PGDN), 0);
758 			return;
759 		case KVAL(K_P4):
760 			k_cur(vc, KVAL(K_LEFT), 0);
761 			return;
762 		case KVAL(K_P6):
763 			k_cur(vc, KVAL(K_RIGHT), 0);
764 			return;
765 		case KVAL(K_P7):
766 			k_fn(vc, KVAL(K_FIND), 0);
767 			return;
768 		case KVAL(K_P8):
769 			k_cur(vc, KVAL(K_UP), 0);
770 			return;
771 		case KVAL(K_P9):
772 			k_fn(vc, KVAL(K_PGUP), 0);
773 			return;
774 		case KVAL(K_P5):
775 			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
776 			return;
777 		}
778 	}
779 
780 	put_queue(vc, pad_chars[value]);
781 	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
782 		put_queue(vc, 10);
783 }
784 
785 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
786 {
787 	int old_state = shift_state;
788 
789 	if (rep)
790 		return;
791 	/*
792 	 * Mimic typewriter:
793 	 * a CapsShift key acts like Shift but undoes CapsLock
794 	 */
795 	if (value == KVAL(K_CAPSSHIFT)) {
796 		value = KVAL(K_SHIFT);
797 		if (!up_flag)
798 			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
799 	}
800 
801 	if (up_flag) {
802 		/*
803 		 * handle the case that two shift or control
804 		 * keys are depressed simultaneously
805 		 */
806 		if (shift_down[value])
807 			shift_down[value]--;
808 	} else
809 		shift_down[value]++;
810 
811 	if (shift_down[value])
812 		shift_state |= (1 << value);
813 	else
814 		shift_state &= ~(1 << value);
815 
816 	/* kludge */
817 	if (up_flag && shift_state != old_state && npadch != -1) {
818 		if (kbd->kbdmode == VC_UNICODE)
819 			to_utf8(vc, npadch);
820 		else
821 			put_queue(vc, npadch & 0xff);
822 		npadch = -1;
823 	}
824 }
825 
826 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
827 {
828 	if (up_flag)
829 		return;
830 
831 	if (vc_kbd_mode(kbd, VC_META)) {
832 		put_queue(vc, '\033');
833 		put_queue(vc, value);
834 	} else
835 		put_queue(vc, value | 0x80);
836 }
837 
838 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
839 {
840 	int base;
841 
842 	if (up_flag)
843 		return;
844 
845 	if (value < 10) {
846 		/* decimal input of code, while Alt depressed */
847 		base = 10;
848 	} else {
849 		/* hexadecimal input of code, while AltGr depressed */
850 		value -= 10;
851 		base = 16;
852 	}
853 
854 	if (npadch == -1)
855 		npadch = value;
856 	else
857 		npadch = npadch * base + value;
858 }
859 
860 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
861 {
862 	if (up_flag || rep)
863 		return;
864 
865 	chg_vc_kbd_lock(kbd, value);
866 }
867 
868 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
869 {
870 	k_shift(vc, value, up_flag);
871 	if (up_flag || rep)
872 		return;
873 
874 	chg_vc_kbd_slock(kbd, value);
875 	/* try to make Alt, oops, AltGr and such work */
876 	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
877 		kbd->slockstate = 0;
878 		chg_vc_kbd_slock(kbd, value);
879 	}
880 }
881 
882 /* by default, 300ms interval for combination release */
883 static unsigned brl_timeout = 300;
884 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
885 module_param(brl_timeout, uint, 0644);
886 
887 static unsigned brl_nbchords = 1;
888 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
889 module_param(brl_nbchords, uint, 0644);
890 
891 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
892 {
893 	static unsigned long chords;
894 	static unsigned committed;
895 
896 	if (!brl_nbchords)
897 		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
898 	else {
899 		committed |= pattern;
900 		chords++;
901 		if (chords == brl_nbchords) {
902 			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
903 			chords = 0;
904 			committed = 0;
905 		}
906 	}
907 }
908 
909 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
910 {
911 	static unsigned pressed, committing;
912 	static unsigned long releasestart;
913 
914 	if (kbd->kbdmode != VC_UNICODE) {
915 		if (!up_flag)
916 			pr_warn("keyboard mode must be unicode for braille patterns\n");
917 		return;
918 	}
919 
920 	if (!value) {
921 		k_unicode(vc, BRL_UC_ROW, up_flag);
922 		return;
923 	}
924 
925 	if (value > 8)
926 		return;
927 
928 	if (!up_flag) {
929 		pressed |= 1 << (value - 1);
930 		if (!brl_timeout)
931 			committing = pressed;
932 	} else if (brl_timeout) {
933 		if (!committing ||
934 		    time_after(jiffies,
935 			       releasestart + msecs_to_jiffies(brl_timeout))) {
936 			committing = pressed;
937 			releasestart = jiffies;
938 		}
939 		pressed &= ~(1 << (value - 1));
940 		if (!pressed && committing) {
941 			k_brlcommit(vc, committing, 0);
942 			committing = 0;
943 		}
944 	} else {
945 		if (committing) {
946 			k_brlcommit(vc, committing, 0);
947 			committing = 0;
948 		}
949 		pressed &= ~(1 << (value - 1));
950 	}
951 }
952 
953 #if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
954 
955 struct kbd_led_trigger {
956 	struct led_trigger trigger;
957 	unsigned int mask;
958 };
959 
960 static void kbd_led_trigger_activate(struct led_classdev *cdev)
961 {
962 	struct kbd_led_trigger *trigger =
963 		container_of(cdev->trigger, struct kbd_led_trigger, trigger);
964 
965 	tasklet_disable(&keyboard_tasklet);
966 	if (ledstate != -1U)
967 		led_trigger_event(&trigger->trigger,
968 				  ledstate & trigger->mask ?
969 					LED_FULL : LED_OFF);
970 	tasklet_enable(&keyboard_tasklet);
971 }
972 
973 #define KBD_LED_TRIGGER(_led_bit, _name) {			\
974 		.trigger = {					\
975 			.name = _name,				\
976 			.activate = kbd_led_trigger_activate,	\
977 		},						\
978 		.mask	= BIT(_led_bit),			\
979 	}
980 
981 #define KBD_LOCKSTATE_TRIGGER(_led_bit, _name)		\
982 	KBD_LED_TRIGGER((_led_bit) + 8, _name)
983 
984 static struct kbd_led_trigger kbd_led_triggers[] = {
985 	KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
986 	KBD_LED_TRIGGER(VC_NUMLOCK,   "kbd-numlock"),
987 	KBD_LED_TRIGGER(VC_CAPSLOCK,  "kbd-capslock"),
988 	KBD_LED_TRIGGER(VC_KANALOCK,  "kbd-kanalock"),
989 
990 	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK,  "kbd-shiftlock"),
991 	KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK,  "kbd-altgrlock"),
992 	KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK,   "kbd-ctrllock"),
993 	KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK,    "kbd-altlock"),
994 	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
995 	KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
996 	KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK,  "kbd-ctrlllock"),
997 	KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK,  "kbd-ctrlrlock"),
998 };
999 
1000 static void kbd_propagate_led_state(unsigned int old_state,
1001 				    unsigned int new_state)
1002 {
1003 	struct kbd_led_trigger *trigger;
1004 	unsigned int changed = old_state ^ new_state;
1005 	int i;
1006 
1007 	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1008 		trigger = &kbd_led_triggers[i];
1009 
1010 		if (changed & trigger->mask)
1011 			led_trigger_event(&trigger->trigger,
1012 					  new_state & trigger->mask ?
1013 						LED_FULL : LED_OFF);
1014 	}
1015 }
1016 
1017 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1018 {
1019 	unsigned int led_state = *(unsigned int *)data;
1020 
1021 	if (test_bit(EV_LED, handle->dev->evbit))
1022 		kbd_propagate_led_state(~led_state, led_state);
1023 
1024 	return 0;
1025 }
1026 
1027 static void kbd_init_leds(void)
1028 {
1029 	int error;
1030 	int i;
1031 
1032 	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1033 		error = led_trigger_register(&kbd_led_triggers[i].trigger);
1034 		if (error)
1035 			pr_err("error %d while registering trigger %s\n",
1036 			       error, kbd_led_triggers[i].trigger.name);
1037 	}
1038 }
1039 
1040 #else
1041 
1042 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1043 {
1044 	unsigned int leds = *(unsigned int *)data;
1045 
1046 	if (test_bit(EV_LED, handle->dev->evbit)) {
1047 		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1048 		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & 0x02));
1049 		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & 0x04));
1050 		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1051 	}
1052 
1053 	return 0;
1054 }
1055 
1056 static void kbd_propagate_led_state(unsigned int old_state,
1057 				    unsigned int new_state)
1058 {
1059 	input_handler_for_each_handle(&kbd_handler, &new_state,
1060 				      kbd_update_leds_helper);
1061 }
1062 
1063 static void kbd_init_leds(void)
1064 {
1065 }
1066 
1067 #endif
1068 
1069 /*
1070  * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1071  * or (ii) whatever pattern of lights people want to show using KDSETLED,
1072  * or (iii) specified bits of specified words in kernel memory.
1073  */
1074 static unsigned char getledstate(void)
1075 {
1076 	return ledstate & 0xff;
1077 }
1078 
1079 void setledstate(struct kbd_struct *kb, unsigned int led)
1080 {
1081         unsigned long flags;
1082         spin_lock_irqsave(&led_lock, flags);
1083 	if (!(led & ~7)) {
1084 		ledioctl = led;
1085 		kb->ledmode = LED_SHOW_IOCTL;
1086 	} else
1087 		kb->ledmode = LED_SHOW_FLAGS;
1088 
1089 	set_leds();
1090 	spin_unlock_irqrestore(&led_lock, flags);
1091 }
1092 
1093 static inline unsigned char getleds(void)
1094 {
1095 	struct kbd_struct *kb = kbd_table + fg_console;
1096 
1097 	if (kb->ledmode == LED_SHOW_IOCTL)
1098 		return ledioctl;
1099 
1100 	return kb->ledflagstate;
1101 }
1102 
1103 /**
1104  *	vt_get_leds	-	helper for braille console
1105  *	@console: console to read
1106  *	@flag: flag we want to check
1107  *
1108  *	Check the status of a keyboard led flag and report it back
1109  */
1110 int vt_get_leds(int console, int flag)
1111 {
1112 	struct kbd_struct *kb = kbd_table + console;
1113 	int ret;
1114 	unsigned long flags;
1115 
1116 	spin_lock_irqsave(&led_lock, flags);
1117 	ret = vc_kbd_led(kb, flag);
1118 	spin_unlock_irqrestore(&led_lock, flags);
1119 
1120 	return ret;
1121 }
1122 EXPORT_SYMBOL_GPL(vt_get_leds);
1123 
1124 /**
1125  *	vt_set_led_state	-	set LED state of a console
1126  *	@console: console to set
1127  *	@leds: LED bits
1128  *
1129  *	Set the LEDs on a console. This is a wrapper for the VT layer
1130  *	so that we can keep kbd knowledge internal
1131  */
1132 void vt_set_led_state(int console, int leds)
1133 {
1134 	struct kbd_struct *kb = kbd_table + console;
1135 	setledstate(kb, leds);
1136 }
1137 
1138 /**
1139  *	vt_kbd_con_start	-	Keyboard side of console start
1140  *	@console: console
1141  *
1142  *	Handle console start. This is a wrapper for the VT layer
1143  *	so that we can keep kbd knowledge internal
1144  *
1145  *	FIXME: We eventually need to hold the kbd lock here to protect
1146  *	the LED updating. We can't do it yet because fn_hold calls stop_tty
1147  *	and start_tty under the kbd_event_lock, while normal tty paths
1148  *	don't hold the lock. We probably need to split out an LED lock
1149  *	but not during an -rc release!
1150  */
1151 void vt_kbd_con_start(int console)
1152 {
1153 	struct kbd_struct *kb = kbd_table + console;
1154 	unsigned long flags;
1155 	spin_lock_irqsave(&led_lock, flags);
1156 	clr_vc_kbd_led(kb, VC_SCROLLOCK);
1157 	set_leds();
1158 	spin_unlock_irqrestore(&led_lock, flags);
1159 }
1160 
1161 /**
1162  *	vt_kbd_con_stop		-	Keyboard side of console stop
1163  *	@console: console
1164  *
1165  *	Handle console stop. This is a wrapper for the VT layer
1166  *	so that we can keep kbd knowledge internal
1167  */
1168 void vt_kbd_con_stop(int console)
1169 {
1170 	struct kbd_struct *kb = kbd_table + console;
1171 	unsigned long flags;
1172 	spin_lock_irqsave(&led_lock, flags);
1173 	set_vc_kbd_led(kb, VC_SCROLLOCK);
1174 	set_leds();
1175 	spin_unlock_irqrestore(&led_lock, flags);
1176 }
1177 
1178 /*
1179  * This is the tasklet that updates LED state of LEDs using standard
1180  * keyboard triggers. The reason we use tasklet is that we need to
1181  * handle the scenario when keyboard handler is not registered yet
1182  * but we already getting updates from the VT to update led state.
1183  */
1184 static void kbd_bh(unsigned long dummy)
1185 {
1186 	unsigned int leds;
1187 	unsigned long flags;
1188 
1189 	spin_lock_irqsave(&led_lock, flags);
1190 	leds = getleds();
1191 	leds |= (unsigned int)kbd->lockstate << 8;
1192 	spin_unlock_irqrestore(&led_lock, flags);
1193 
1194 	if (leds != ledstate) {
1195 		kbd_propagate_led_state(ledstate, leds);
1196 		ledstate = leds;
1197 	}
1198 }
1199 
1200 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1201 
1202 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1203     defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1204     defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1205     (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1206     defined(CONFIG_AVR32)
1207 
1208 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1209 			((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1210 
1211 static const unsigned short x86_keycodes[256] =
1212 	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1213 	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1214 	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1215 	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1216 	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1217 	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1218 	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1219 	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1220 	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1221 	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1222 	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1223 	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1224 	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1225 	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1226 	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1227 
1228 #ifdef CONFIG_SPARC
1229 static int sparc_l1_a_state;
1230 extern void sun_do_break(void);
1231 #endif
1232 
1233 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1234 		       unsigned char up_flag)
1235 {
1236 	int code;
1237 
1238 	switch (keycode) {
1239 
1240 	case KEY_PAUSE:
1241 		put_queue(vc, 0xe1);
1242 		put_queue(vc, 0x1d | up_flag);
1243 		put_queue(vc, 0x45 | up_flag);
1244 		break;
1245 
1246 	case KEY_HANGEUL:
1247 		if (!up_flag)
1248 			put_queue(vc, 0xf2);
1249 		break;
1250 
1251 	case KEY_HANJA:
1252 		if (!up_flag)
1253 			put_queue(vc, 0xf1);
1254 		break;
1255 
1256 	case KEY_SYSRQ:
1257 		/*
1258 		 * Real AT keyboards (that's what we're trying
1259 		 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1260 		 * pressing PrtSc/SysRq alone, but simply 0x54
1261 		 * when pressing Alt+PrtSc/SysRq.
1262 		 */
1263 		if (test_bit(KEY_LEFTALT, key_down) ||
1264 		    test_bit(KEY_RIGHTALT, key_down)) {
1265 			put_queue(vc, 0x54 | up_flag);
1266 		} else {
1267 			put_queue(vc, 0xe0);
1268 			put_queue(vc, 0x2a | up_flag);
1269 			put_queue(vc, 0xe0);
1270 			put_queue(vc, 0x37 | up_flag);
1271 		}
1272 		break;
1273 
1274 	default:
1275 		if (keycode > 255)
1276 			return -1;
1277 
1278 		code = x86_keycodes[keycode];
1279 		if (!code)
1280 			return -1;
1281 
1282 		if (code & 0x100)
1283 			put_queue(vc, 0xe0);
1284 		put_queue(vc, (code & 0x7f) | up_flag);
1285 
1286 		break;
1287 	}
1288 
1289 	return 0;
1290 }
1291 
1292 #else
1293 
1294 #define HW_RAW(dev)	0
1295 
1296 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1297 {
1298 	if (keycode > 127)
1299 		return -1;
1300 
1301 	put_queue(vc, keycode | up_flag);
1302 	return 0;
1303 }
1304 #endif
1305 
1306 static void kbd_rawcode(unsigned char data)
1307 {
1308 	struct vc_data *vc = vc_cons[fg_console].d;
1309 
1310 	kbd = kbd_table + vc->vc_num;
1311 	if (kbd->kbdmode == VC_RAW)
1312 		put_queue(vc, data);
1313 }
1314 
1315 static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1316 {
1317 	struct vc_data *vc = vc_cons[fg_console].d;
1318 	unsigned short keysym, *key_map;
1319 	unsigned char type;
1320 	bool raw_mode;
1321 	struct tty_struct *tty;
1322 	int shift_final;
1323 	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1324 	int rc;
1325 
1326 	tty = vc->port.tty;
1327 
1328 	if (tty && (!tty->driver_data)) {
1329 		/* No driver data? Strange. Okay we fix it then. */
1330 		tty->driver_data = vc;
1331 	}
1332 
1333 	kbd = kbd_table + vc->vc_num;
1334 
1335 #ifdef CONFIG_SPARC
1336 	if (keycode == KEY_STOP)
1337 		sparc_l1_a_state = down;
1338 #endif
1339 
1340 	rep = (down == 2);
1341 
1342 	raw_mode = (kbd->kbdmode == VC_RAW);
1343 	if (raw_mode && !hw_raw)
1344 		if (emulate_raw(vc, keycode, !down << 7))
1345 			if (keycode < BTN_MISC && printk_ratelimit())
1346 				pr_warn("can't emulate rawmode for keycode %d\n",
1347 					keycode);
1348 
1349 #ifdef CONFIG_SPARC
1350 	if (keycode == KEY_A && sparc_l1_a_state) {
1351 		sparc_l1_a_state = false;
1352 		sun_do_break();
1353 	}
1354 #endif
1355 
1356 	if (kbd->kbdmode == VC_MEDIUMRAW) {
1357 		/*
1358 		 * This is extended medium raw mode, with keys above 127
1359 		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1360 		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1361 		 * interfere with anything else. The two bytes after 0 will
1362 		 * always have the up flag set not to interfere with older
1363 		 * applications. This allows for 16384 different keycodes,
1364 		 * which should be enough.
1365 		 */
1366 		if (keycode < 128) {
1367 			put_queue(vc, keycode | (!down << 7));
1368 		} else {
1369 			put_queue(vc, !down << 7);
1370 			put_queue(vc, (keycode >> 7) | 0x80);
1371 			put_queue(vc, keycode | 0x80);
1372 		}
1373 		raw_mode = true;
1374 	}
1375 
1376 	if (down)
1377 		set_bit(keycode, key_down);
1378 	else
1379 		clear_bit(keycode, key_down);
1380 
1381 	if (rep &&
1382 	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1383 	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1384 		/*
1385 		 * Don't repeat a key if the input buffers are not empty and the
1386 		 * characters get aren't echoed locally. This makes key repeat
1387 		 * usable with slow applications and under heavy loads.
1388 		 */
1389 		return;
1390 	}
1391 
1392 	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1393 	param.ledstate = kbd->ledflagstate;
1394 	key_map = key_maps[shift_final];
1395 
1396 	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1397 					KBD_KEYCODE, &param);
1398 	if (rc == NOTIFY_STOP || !key_map) {
1399 		atomic_notifier_call_chain(&keyboard_notifier_list,
1400 					   KBD_UNBOUND_KEYCODE, &param);
1401 		do_compute_shiftstate();
1402 		kbd->slockstate = 0;
1403 		return;
1404 	}
1405 
1406 	if (keycode < NR_KEYS)
1407 		keysym = key_map[keycode];
1408 	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1409 		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1410 	else
1411 		return;
1412 
1413 	type = KTYP(keysym);
1414 
1415 	if (type < 0xf0) {
1416 		param.value = keysym;
1417 		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1418 						KBD_UNICODE, &param);
1419 		if (rc != NOTIFY_STOP)
1420 			if (down && !raw_mode)
1421 				to_utf8(vc, keysym);
1422 		return;
1423 	}
1424 
1425 	type -= 0xf0;
1426 
1427 	if (type == KT_LETTER) {
1428 		type = KT_LATIN;
1429 		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1430 			key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1431 			if (key_map)
1432 				keysym = key_map[keycode];
1433 		}
1434 	}
1435 
1436 	param.value = keysym;
1437 	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1438 					KBD_KEYSYM, &param);
1439 	if (rc == NOTIFY_STOP)
1440 		return;
1441 
1442 	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1443 		return;
1444 
1445 	(*k_handler[type])(vc, keysym & 0xff, !down);
1446 
1447 	param.ledstate = kbd->ledflagstate;
1448 	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1449 
1450 	if (type != KT_SLOCK)
1451 		kbd->slockstate = 0;
1452 }
1453 
1454 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1455 		      unsigned int event_code, int value)
1456 {
1457 	/* We are called with interrupts disabled, just take the lock */
1458 	spin_lock(&kbd_event_lock);
1459 
1460 	if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1461 		kbd_rawcode(value);
1462 	if (event_type == EV_KEY)
1463 		kbd_keycode(event_code, value, HW_RAW(handle->dev));
1464 
1465 	spin_unlock(&kbd_event_lock);
1466 
1467 	tasklet_schedule(&keyboard_tasklet);
1468 	do_poke_blanked_console = 1;
1469 	schedule_console_callback();
1470 }
1471 
1472 static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1473 {
1474 	int i;
1475 
1476 	if (test_bit(EV_SND, dev->evbit))
1477 		return true;
1478 
1479 	if (test_bit(EV_KEY, dev->evbit)) {
1480 		for (i = KEY_RESERVED; i < BTN_MISC; i++)
1481 			if (test_bit(i, dev->keybit))
1482 				return true;
1483 		for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1484 			if (test_bit(i, dev->keybit))
1485 				return true;
1486 	}
1487 
1488 	return false;
1489 }
1490 
1491 /*
1492  * When a keyboard (or other input device) is found, the kbd_connect
1493  * function is called. The function then looks at the device, and if it
1494  * likes it, it can open it and get events from it. In this (kbd_connect)
1495  * function, we should decide which VT to bind that keyboard to initially.
1496  */
1497 static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1498 			const struct input_device_id *id)
1499 {
1500 	struct input_handle *handle;
1501 	int error;
1502 
1503 	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1504 	if (!handle)
1505 		return -ENOMEM;
1506 
1507 	handle->dev = dev;
1508 	handle->handler = handler;
1509 	handle->name = "kbd";
1510 
1511 	error = input_register_handle(handle);
1512 	if (error)
1513 		goto err_free_handle;
1514 
1515 	error = input_open_device(handle);
1516 	if (error)
1517 		goto err_unregister_handle;
1518 
1519 	return 0;
1520 
1521  err_unregister_handle:
1522 	input_unregister_handle(handle);
1523  err_free_handle:
1524 	kfree(handle);
1525 	return error;
1526 }
1527 
1528 static void kbd_disconnect(struct input_handle *handle)
1529 {
1530 	input_close_device(handle);
1531 	input_unregister_handle(handle);
1532 	kfree(handle);
1533 }
1534 
1535 /*
1536  * Start keyboard handler on the new keyboard by refreshing LED state to
1537  * match the rest of the system.
1538  */
1539 static void kbd_start(struct input_handle *handle)
1540 {
1541 	tasklet_disable(&keyboard_tasklet);
1542 
1543 	if (ledstate != -1U)
1544 		kbd_update_leds_helper(handle, &ledstate);
1545 
1546 	tasklet_enable(&keyboard_tasklet);
1547 }
1548 
1549 static const struct input_device_id kbd_ids[] = {
1550 	{
1551 		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1552 		.evbit = { BIT_MASK(EV_KEY) },
1553 	},
1554 
1555 	{
1556 		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1557 		.evbit = { BIT_MASK(EV_SND) },
1558 	},
1559 
1560 	{ },    /* Terminating entry */
1561 };
1562 
1563 MODULE_DEVICE_TABLE(input, kbd_ids);
1564 
1565 static struct input_handler kbd_handler = {
1566 	.event		= kbd_event,
1567 	.match		= kbd_match,
1568 	.connect	= kbd_connect,
1569 	.disconnect	= kbd_disconnect,
1570 	.start		= kbd_start,
1571 	.name		= "kbd",
1572 	.id_table	= kbd_ids,
1573 };
1574 
1575 int __init kbd_init(void)
1576 {
1577 	int i;
1578 	int error;
1579 
1580 	for (i = 0; i < MAX_NR_CONSOLES; i++) {
1581 		kbd_table[i].ledflagstate = kbd_defleds();
1582 		kbd_table[i].default_ledflagstate = kbd_defleds();
1583 		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1584 		kbd_table[i].lockstate = KBD_DEFLOCK;
1585 		kbd_table[i].slockstate = 0;
1586 		kbd_table[i].modeflags = KBD_DEFMODE;
1587 		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1588 	}
1589 
1590 	kbd_init_leds();
1591 
1592 	error = input_register_handler(&kbd_handler);
1593 	if (error)
1594 		return error;
1595 
1596 	tasklet_enable(&keyboard_tasklet);
1597 	tasklet_schedule(&keyboard_tasklet);
1598 
1599 	return 0;
1600 }
1601 
1602 /* Ioctl support code */
1603 
1604 /**
1605  *	vt_do_diacrit		-	diacritical table updates
1606  *	@cmd: ioctl request
1607  *	@udp: pointer to user data for ioctl
1608  *	@perm: permissions check computed by caller
1609  *
1610  *	Update the diacritical tables atomically and safely. Lock them
1611  *	against simultaneous keypresses
1612  */
1613 int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1614 {
1615 	unsigned long flags;
1616 	int asize;
1617 	int ret = 0;
1618 
1619 	switch (cmd) {
1620 	case KDGKBDIACR:
1621 	{
1622 		struct kbdiacrs __user *a = udp;
1623 		struct kbdiacr *dia;
1624 		int i;
1625 
1626 		dia = kmalloc(MAX_DIACR * sizeof(struct kbdiacr),
1627 								GFP_KERNEL);
1628 		if (!dia)
1629 			return -ENOMEM;
1630 
1631 		/* Lock the diacriticals table, make a copy and then
1632 		   copy it after we unlock */
1633 		spin_lock_irqsave(&kbd_event_lock, flags);
1634 
1635 		asize = accent_table_size;
1636 		for (i = 0; i < asize; i++) {
1637 			dia[i].diacr = conv_uni_to_8bit(
1638 						accent_table[i].diacr);
1639 			dia[i].base = conv_uni_to_8bit(
1640 						accent_table[i].base);
1641 			dia[i].result = conv_uni_to_8bit(
1642 						accent_table[i].result);
1643 		}
1644 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1645 
1646 		if (put_user(asize, &a->kb_cnt))
1647 			ret = -EFAULT;
1648 		else  if (copy_to_user(a->kbdiacr, dia,
1649 				asize * sizeof(struct kbdiacr)))
1650 			ret = -EFAULT;
1651 		kfree(dia);
1652 		return ret;
1653 	}
1654 	case KDGKBDIACRUC:
1655 	{
1656 		struct kbdiacrsuc __user *a = udp;
1657 		void *buf;
1658 
1659 		buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc),
1660 								GFP_KERNEL);
1661 		if (buf == NULL)
1662 			return -ENOMEM;
1663 
1664 		/* Lock the diacriticals table, make a copy and then
1665 		   copy it after we unlock */
1666 		spin_lock_irqsave(&kbd_event_lock, flags);
1667 
1668 		asize = accent_table_size;
1669 		memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1670 
1671 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1672 
1673 		if (put_user(asize, &a->kb_cnt))
1674 			ret = -EFAULT;
1675 		else if (copy_to_user(a->kbdiacruc, buf,
1676 				asize*sizeof(struct kbdiacruc)))
1677 			ret = -EFAULT;
1678 		kfree(buf);
1679 		return ret;
1680 	}
1681 
1682 	case KDSKBDIACR:
1683 	{
1684 		struct kbdiacrs __user *a = udp;
1685 		struct kbdiacr *dia = NULL;
1686 		unsigned int ct;
1687 		int i;
1688 
1689 		if (!perm)
1690 			return -EPERM;
1691 		if (get_user(ct, &a->kb_cnt))
1692 			return -EFAULT;
1693 		if (ct >= MAX_DIACR)
1694 			return -EINVAL;
1695 
1696 		if (ct) {
1697 
1698 			dia = memdup_user(a->kbdiacr,
1699 					sizeof(struct kbdiacr) * ct);
1700 			if (IS_ERR(dia))
1701 				return PTR_ERR(dia);
1702 
1703 		}
1704 
1705 		spin_lock_irqsave(&kbd_event_lock, flags);
1706 		accent_table_size = ct;
1707 		for (i = 0; i < ct; i++) {
1708 			accent_table[i].diacr =
1709 					conv_8bit_to_uni(dia[i].diacr);
1710 			accent_table[i].base =
1711 					conv_8bit_to_uni(dia[i].base);
1712 			accent_table[i].result =
1713 					conv_8bit_to_uni(dia[i].result);
1714 		}
1715 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1716 		kfree(dia);
1717 		return 0;
1718 	}
1719 
1720 	case KDSKBDIACRUC:
1721 	{
1722 		struct kbdiacrsuc __user *a = udp;
1723 		unsigned int ct;
1724 		void *buf = NULL;
1725 
1726 		if (!perm)
1727 			return -EPERM;
1728 
1729 		if (get_user(ct, &a->kb_cnt))
1730 			return -EFAULT;
1731 
1732 		if (ct >= MAX_DIACR)
1733 			return -EINVAL;
1734 
1735 		if (ct) {
1736 			buf = memdup_user(a->kbdiacruc,
1737 					  ct * sizeof(struct kbdiacruc));
1738 			if (IS_ERR(buf))
1739 				return PTR_ERR(buf);
1740 		}
1741 		spin_lock_irqsave(&kbd_event_lock, flags);
1742 		if (ct)
1743 			memcpy(accent_table, buf,
1744 					ct * sizeof(struct kbdiacruc));
1745 		accent_table_size = ct;
1746 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1747 		kfree(buf);
1748 		return 0;
1749 	}
1750 	}
1751 	return ret;
1752 }
1753 
1754 /**
1755  *	vt_do_kdskbmode		-	set keyboard mode ioctl
1756  *	@console: the console to use
1757  *	@arg: the requested mode
1758  *
1759  *	Update the keyboard mode bits while holding the correct locks.
1760  *	Return 0 for success or an error code.
1761  */
1762 int vt_do_kdskbmode(int console, unsigned int arg)
1763 {
1764 	struct kbd_struct *kb = kbd_table + console;
1765 	int ret = 0;
1766 	unsigned long flags;
1767 
1768 	spin_lock_irqsave(&kbd_event_lock, flags);
1769 	switch(arg) {
1770 	case K_RAW:
1771 		kb->kbdmode = VC_RAW;
1772 		break;
1773 	case K_MEDIUMRAW:
1774 		kb->kbdmode = VC_MEDIUMRAW;
1775 		break;
1776 	case K_XLATE:
1777 		kb->kbdmode = VC_XLATE;
1778 		do_compute_shiftstate();
1779 		break;
1780 	case K_UNICODE:
1781 		kb->kbdmode = VC_UNICODE;
1782 		do_compute_shiftstate();
1783 		break;
1784 	case K_OFF:
1785 		kb->kbdmode = VC_OFF;
1786 		break;
1787 	default:
1788 		ret = -EINVAL;
1789 	}
1790 	spin_unlock_irqrestore(&kbd_event_lock, flags);
1791 	return ret;
1792 }
1793 
1794 /**
1795  *	vt_do_kdskbmeta		-	set keyboard meta state
1796  *	@console: the console to use
1797  *	@arg: the requested meta state
1798  *
1799  *	Update the keyboard meta bits while holding the correct locks.
1800  *	Return 0 for success or an error code.
1801  */
1802 int vt_do_kdskbmeta(int console, unsigned int arg)
1803 {
1804 	struct kbd_struct *kb = kbd_table + console;
1805 	int ret = 0;
1806 	unsigned long flags;
1807 
1808 	spin_lock_irqsave(&kbd_event_lock, flags);
1809 	switch(arg) {
1810 	case K_METABIT:
1811 		clr_vc_kbd_mode(kb, VC_META);
1812 		break;
1813 	case K_ESCPREFIX:
1814 		set_vc_kbd_mode(kb, VC_META);
1815 		break;
1816 	default:
1817 		ret = -EINVAL;
1818 	}
1819 	spin_unlock_irqrestore(&kbd_event_lock, flags);
1820 	return ret;
1821 }
1822 
1823 int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1824 								int perm)
1825 {
1826 	struct kbkeycode tmp;
1827 	int kc = 0;
1828 
1829 	if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1830 		return -EFAULT;
1831 	switch (cmd) {
1832 	case KDGETKEYCODE:
1833 		kc = getkeycode(tmp.scancode);
1834 		if (kc >= 0)
1835 			kc = put_user(kc, &user_kbkc->keycode);
1836 		break;
1837 	case KDSETKEYCODE:
1838 		if (!perm)
1839 			return -EPERM;
1840 		kc = setkeycode(tmp.scancode, tmp.keycode);
1841 		break;
1842 	}
1843 	return kc;
1844 }
1845 
1846 #define i (tmp.kb_index)
1847 #define s (tmp.kb_table)
1848 #define v (tmp.kb_value)
1849 
1850 int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1851 						int console)
1852 {
1853 	struct kbd_struct *kb = kbd_table + console;
1854 	struct kbentry tmp;
1855 	ushort *key_map, *new_map, val, ov;
1856 	unsigned long flags;
1857 
1858 	if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1859 		return -EFAULT;
1860 
1861 	if (!capable(CAP_SYS_TTY_CONFIG))
1862 		perm = 0;
1863 
1864 	switch (cmd) {
1865 	case KDGKBENT:
1866 		/* Ensure another thread doesn't free it under us */
1867 		spin_lock_irqsave(&kbd_event_lock, flags);
1868 		key_map = key_maps[s];
1869 		if (key_map) {
1870 		    val = U(key_map[i]);
1871 		    if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1872 			val = K_HOLE;
1873 		} else
1874 		    val = (i ? K_HOLE : K_NOSUCHMAP);
1875 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1876 		return put_user(val, &user_kbe->kb_value);
1877 	case KDSKBENT:
1878 		if (!perm)
1879 			return -EPERM;
1880 		if (!i && v == K_NOSUCHMAP) {
1881 			spin_lock_irqsave(&kbd_event_lock, flags);
1882 			/* deallocate map */
1883 			key_map = key_maps[s];
1884 			if (s && key_map) {
1885 			    key_maps[s] = NULL;
1886 			    if (key_map[0] == U(K_ALLOCATED)) {
1887 					kfree(key_map);
1888 					keymap_count--;
1889 			    }
1890 			}
1891 			spin_unlock_irqrestore(&kbd_event_lock, flags);
1892 			break;
1893 		}
1894 
1895 		if (KTYP(v) < NR_TYPES) {
1896 		    if (KVAL(v) > max_vals[KTYP(v)])
1897 				return -EINVAL;
1898 		} else
1899 		    if (kb->kbdmode != VC_UNICODE)
1900 				return -EINVAL;
1901 
1902 		/* ++Geert: non-PC keyboards may generate keycode zero */
1903 #if !defined(__mc68000__) && !defined(__powerpc__)
1904 		/* assignment to entry 0 only tests validity of args */
1905 		if (!i)
1906 			break;
1907 #endif
1908 
1909 		new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1910 		if (!new_map)
1911 			return -ENOMEM;
1912 		spin_lock_irqsave(&kbd_event_lock, flags);
1913 		key_map = key_maps[s];
1914 		if (key_map == NULL) {
1915 			int j;
1916 
1917 			if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1918 			    !capable(CAP_SYS_RESOURCE)) {
1919 				spin_unlock_irqrestore(&kbd_event_lock, flags);
1920 				kfree(new_map);
1921 				return -EPERM;
1922 			}
1923 			key_maps[s] = new_map;
1924 			key_map = new_map;
1925 			key_map[0] = U(K_ALLOCATED);
1926 			for (j = 1; j < NR_KEYS; j++)
1927 				key_map[j] = U(K_HOLE);
1928 			keymap_count++;
1929 		} else
1930 			kfree(new_map);
1931 
1932 		ov = U(key_map[i]);
1933 		if (v == ov)
1934 			goto out;
1935 		/*
1936 		 * Attention Key.
1937 		 */
1938 		if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1939 			spin_unlock_irqrestore(&kbd_event_lock, flags);
1940 			return -EPERM;
1941 		}
1942 		key_map[i] = U(v);
1943 		if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1944 			do_compute_shiftstate();
1945 out:
1946 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1947 		break;
1948 	}
1949 	return 0;
1950 }
1951 #undef i
1952 #undef s
1953 #undef v
1954 
1955 /* FIXME: This one needs untangling and locking */
1956 int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1957 {
1958 	struct kbsentry *kbs;
1959 	char *p;
1960 	u_char *q;
1961 	u_char __user *up;
1962 	int sz;
1963 	int delta;
1964 	char *first_free, *fj, *fnw;
1965 	int i, j, k;
1966 	int ret;
1967 
1968 	if (!capable(CAP_SYS_TTY_CONFIG))
1969 		perm = 0;
1970 
1971 	kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
1972 	if (!kbs) {
1973 		ret = -ENOMEM;
1974 		goto reterr;
1975 	}
1976 
1977 	/* we mostly copy too much here (512bytes), but who cares ;) */
1978 	if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
1979 		ret = -EFAULT;
1980 		goto reterr;
1981 	}
1982 	kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
1983 	i = kbs->kb_func;
1984 
1985 	switch (cmd) {
1986 	case KDGKBSENT:
1987 		sz = sizeof(kbs->kb_string) - 1; /* sz should have been
1988 						  a struct member */
1989 		up = user_kdgkb->kb_string;
1990 		p = func_table[i];
1991 		if(p)
1992 			for ( ; *p && sz; p++, sz--)
1993 				if (put_user(*p, up++)) {
1994 					ret = -EFAULT;
1995 					goto reterr;
1996 				}
1997 		if (put_user('\0', up)) {
1998 			ret = -EFAULT;
1999 			goto reterr;
2000 		}
2001 		kfree(kbs);
2002 		return ((p && *p) ? -EOVERFLOW : 0);
2003 	case KDSKBSENT:
2004 		if (!perm) {
2005 			ret = -EPERM;
2006 			goto reterr;
2007 		}
2008 
2009 		q = func_table[i];
2010 		first_free = funcbufptr + (funcbufsize - funcbufleft);
2011 		for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2012 			;
2013 		if (j < MAX_NR_FUNC)
2014 			fj = func_table[j];
2015 		else
2016 			fj = first_free;
2017 
2018 		delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2019 		if (delta <= funcbufleft) { 	/* it fits in current buf */
2020 		    if (j < MAX_NR_FUNC) {
2021 			memmove(fj + delta, fj, first_free - fj);
2022 			for (k = j; k < MAX_NR_FUNC; k++)
2023 			    if (func_table[k])
2024 				func_table[k] += delta;
2025 		    }
2026 		    if (!q)
2027 		      func_table[i] = fj;
2028 		    funcbufleft -= delta;
2029 		} else {			/* allocate a larger buffer */
2030 		    sz = 256;
2031 		    while (sz < funcbufsize - funcbufleft + delta)
2032 		      sz <<= 1;
2033 		    fnw = kmalloc(sz, GFP_KERNEL);
2034 		    if(!fnw) {
2035 		      ret = -ENOMEM;
2036 		      goto reterr;
2037 		    }
2038 
2039 		    if (!q)
2040 		      func_table[i] = fj;
2041 		    if (fj > funcbufptr)
2042 			memmove(fnw, funcbufptr, fj - funcbufptr);
2043 		    for (k = 0; k < j; k++)
2044 		      if (func_table[k])
2045 			func_table[k] = fnw + (func_table[k] - funcbufptr);
2046 
2047 		    if (first_free > fj) {
2048 			memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2049 			for (k = j; k < MAX_NR_FUNC; k++)
2050 			  if (func_table[k])
2051 			    func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2052 		    }
2053 		    if (funcbufptr != func_buf)
2054 		      kfree(funcbufptr);
2055 		    funcbufptr = fnw;
2056 		    funcbufleft = funcbufleft - delta + sz - funcbufsize;
2057 		    funcbufsize = sz;
2058 		}
2059 		strcpy(func_table[i], kbs->kb_string);
2060 		break;
2061 	}
2062 	ret = 0;
2063 reterr:
2064 	kfree(kbs);
2065 	return ret;
2066 }
2067 
2068 int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2069 {
2070 	struct kbd_struct *kb = kbd_table + console;
2071         unsigned long flags;
2072 	unsigned char ucval;
2073 
2074         switch(cmd) {
2075 	/* the ioctls below read/set the flags usually shown in the leds */
2076 	/* don't use them - they will go away without warning */
2077 	case KDGKBLED:
2078                 spin_lock_irqsave(&kbd_event_lock, flags);
2079 		ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2080                 spin_unlock_irqrestore(&kbd_event_lock, flags);
2081 		return put_user(ucval, (char __user *)arg);
2082 
2083 	case KDSKBLED:
2084 		if (!perm)
2085 			return -EPERM;
2086 		if (arg & ~0x77)
2087 			return -EINVAL;
2088                 spin_lock_irqsave(&led_lock, flags);
2089 		kb->ledflagstate = (arg & 7);
2090 		kb->default_ledflagstate = ((arg >> 4) & 7);
2091 		set_leds();
2092                 spin_unlock_irqrestore(&led_lock, flags);
2093 		return 0;
2094 
2095 	/* the ioctls below only set the lights, not the functions */
2096 	/* for those, see KDGKBLED and KDSKBLED above */
2097 	case KDGETLED:
2098 		ucval = getledstate();
2099 		return put_user(ucval, (char __user *)arg);
2100 
2101 	case KDSETLED:
2102 		if (!perm)
2103 			return -EPERM;
2104 		setledstate(kb, arg);
2105 		return 0;
2106         }
2107         return -ENOIOCTLCMD;
2108 }
2109 
2110 int vt_do_kdgkbmode(int console)
2111 {
2112 	struct kbd_struct *kb = kbd_table + console;
2113 	/* This is a spot read so needs no locking */
2114 	switch (kb->kbdmode) {
2115 	case VC_RAW:
2116 		return K_RAW;
2117 	case VC_MEDIUMRAW:
2118 		return K_MEDIUMRAW;
2119 	case VC_UNICODE:
2120 		return K_UNICODE;
2121 	case VC_OFF:
2122 		return K_OFF;
2123 	default:
2124 		return K_XLATE;
2125 	}
2126 }
2127 
2128 /**
2129  *	vt_do_kdgkbmeta		-	report meta status
2130  *	@console: console to report
2131  *
2132  *	Report the meta flag status of this console
2133  */
2134 int vt_do_kdgkbmeta(int console)
2135 {
2136 	struct kbd_struct *kb = kbd_table + console;
2137         /* Again a spot read so no locking */
2138 	return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2139 }
2140 
2141 /**
2142  *	vt_reset_unicode	-	reset the unicode status
2143  *	@console: console being reset
2144  *
2145  *	Restore the unicode console state to its default
2146  */
2147 void vt_reset_unicode(int console)
2148 {
2149 	unsigned long flags;
2150 
2151 	spin_lock_irqsave(&kbd_event_lock, flags);
2152 	kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2153 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2154 }
2155 
2156 /**
2157  *	vt_get_shiftstate	-	shift bit state
2158  *
2159  *	Report the shift bits from the keyboard state. We have to export
2160  *	this to support some oddities in the vt layer.
2161  */
2162 int vt_get_shift_state(void)
2163 {
2164         /* Don't lock as this is a transient report */
2165         return shift_state;
2166 }
2167 
2168 /**
2169  *	vt_reset_keyboard	-	reset keyboard state
2170  *	@console: console to reset
2171  *
2172  *	Reset the keyboard bits for a console as part of a general console
2173  *	reset event
2174  */
2175 void vt_reset_keyboard(int console)
2176 {
2177 	struct kbd_struct *kb = kbd_table + console;
2178 	unsigned long flags;
2179 
2180 	spin_lock_irqsave(&kbd_event_lock, flags);
2181 	set_vc_kbd_mode(kb, VC_REPEAT);
2182 	clr_vc_kbd_mode(kb, VC_CKMODE);
2183 	clr_vc_kbd_mode(kb, VC_APPLIC);
2184 	clr_vc_kbd_mode(kb, VC_CRLF);
2185 	kb->lockstate = 0;
2186 	kb->slockstate = 0;
2187 	spin_lock(&led_lock);
2188 	kb->ledmode = LED_SHOW_FLAGS;
2189 	kb->ledflagstate = kb->default_ledflagstate;
2190 	spin_unlock(&led_lock);
2191 	/* do not do set_leds here because this causes an endless tasklet loop
2192 	   when the keyboard hasn't been initialized yet */
2193 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2194 }
2195 
2196 /**
2197  *	vt_get_kbd_mode_bit	-	read keyboard status bits
2198  *	@console: console to read from
2199  *	@bit: mode bit to read
2200  *
2201  *	Report back a vt mode bit. We do this without locking so the
2202  *	caller must be sure that there are no synchronization needs
2203  */
2204 
2205 int vt_get_kbd_mode_bit(int console, int bit)
2206 {
2207 	struct kbd_struct *kb = kbd_table + console;
2208 	return vc_kbd_mode(kb, bit);
2209 }
2210 
2211 /**
2212  *	vt_set_kbd_mode_bit	-	read keyboard status bits
2213  *	@console: console to read from
2214  *	@bit: mode bit to read
2215  *
2216  *	Set a vt mode bit. We do this without locking so the
2217  *	caller must be sure that there are no synchronization needs
2218  */
2219 
2220 void vt_set_kbd_mode_bit(int console, int bit)
2221 {
2222 	struct kbd_struct *kb = kbd_table + console;
2223 	unsigned long flags;
2224 
2225 	spin_lock_irqsave(&kbd_event_lock, flags);
2226 	set_vc_kbd_mode(kb, bit);
2227 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2228 }
2229 
2230 /**
2231  *	vt_clr_kbd_mode_bit	-	read keyboard status bits
2232  *	@console: console to read from
2233  *	@bit: mode bit to read
2234  *
2235  *	Report back a vt mode bit. We do this without locking so the
2236  *	caller must be sure that there are no synchronization needs
2237  */
2238 
2239 void vt_clr_kbd_mode_bit(int console, int bit)
2240 {
2241 	struct kbd_struct *kb = kbd_table + console;
2242 	unsigned long flags;
2243 
2244 	spin_lock_irqsave(&kbd_event_lock, flags);
2245 	clr_vc_kbd_mode(kb, bit);
2246 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2247 }
2248