1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Written for linux by Johan Myreen as a translation from 4 * the assembly version by Linus (with diacriticals added) 5 * 6 * Some additional features added by Christoph Niemann (ChN), March 1993 7 * 8 * Loadable keymaps by Risto Kankkunen, May 1993 9 * 10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993 11 * Added decr/incr_console, dynamic keymaps, Unicode support, 12 * dynamic function/string keys, led setting, Sept 1994 13 * `Sticky' modifier keys, 951006. 14 * 15 * 11-11-96: SAK should now work in the raw mode (Martin Mares) 16 * 17 * Modified to provide 'generic' keyboard support by Hamish Macdonald 18 * Merge with the m68k keyboard driver and split-off of the PC low-level 19 * parts by Geert Uytterhoeven, May 1997 20 * 21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares) 22 * 30-07-98: Dead keys redone, aeb@cwi.nl. 23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik) 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/consolemap.h> 29 #include <linux/module.h> 30 #include <linux/sched/signal.h> 31 #include <linux/sched/debug.h> 32 #include <linux/tty.h> 33 #include <linux/tty_flip.h> 34 #include <linux/mm.h> 35 #include <linux/string.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/leds.h> 39 40 #include <linux/kbd_kern.h> 41 #include <linux/kbd_diacr.h> 42 #include <linux/vt_kern.h> 43 #include <linux/input.h> 44 #include <linux/reboot.h> 45 #include <linux/notifier.h> 46 #include <linux/jiffies.h> 47 #include <linux/uaccess.h> 48 49 #include <asm/irq_regs.h> 50 51 extern void ctrl_alt_del(void); 52 53 /* 54 * Exported functions/variables 55 */ 56 57 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META)) 58 59 #if defined(CONFIG_X86) || defined(CONFIG_PARISC) 60 #include <asm/kbdleds.h> 61 #else 62 static inline int kbd_defleds(void) 63 { 64 return 0; 65 } 66 #endif 67 68 #define KBD_DEFLOCK 0 69 70 /* 71 * Handler Tables. 72 */ 73 74 #define K_HANDLERS\ 75 k_self, k_fn, k_spec, k_pad,\ 76 k_dead, k_cons, k_cur, k_shift,\ 77 k_meta, k_ascii, k_lock, k_lowercase,\ 78 k_slock, k_dead2, k_brl, k_ignore 79 80 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value, 81 char up_flag); 82 static k_handler_fn K_HANDLERS; 83 static k_handler_fn *k_handler[16] = { K_HANDLERS }; 84 85 #define FN_HANDLERS\ 86 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\ 87 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\ 88 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\ 89 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\ 90 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num 91 92 typedef void (fn_handler_fn)(struct vc_data *vc); 93 static fn_handler_fn FN_HANDLERS; 94 static fn_handler_fn *fn_handler[] = { FN_HANDLERS }; 95 96 /* 97 * Variables exported for vt_ioctl.c 98 */ 99 100 struct vt_spawn_console vt_spawn_con = { 101 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock), 102 .pid = NULL, 103 .sig = 0, 104 }; 105 106 107 /* 108 * Internal Data. 109 */ 110 111 static struct kbd_struct kbd_table[MAX_NR_CONSOLES]; 112 static struct kbd_struct *kbd = kbd_table; 113 114 /* maximum values each key_handler can handle */ 115 static const int max_vals[] = { 116 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1, 117 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1, 118 255, NR_LOCK - 1, 255, NR_BRL - 1 119 }; 120 121 static const int NR_TYPES = ARRAY_SIZE(max_vals); 122 123 static struct input_handler kbd_handler; 124 static DEFINE_SPINLOCK(kbd_event_lock); 125 static DEFINE_SPINLOCK(led_lock); 126 static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */ 127 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */ 128 static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */ 129 static bool dead_key_next; 130 static int npadch = -1; /* -1 or number assembled on pad */ 131 static unsigned int diacr; 132 static char rep; /* flag telling character repeat */ 133 134 static int shift_state = 0; 135 136 static unsigned int ledstate = -1U; /* undefined */ 137 static unsigned char ledioctl; 138 139 /* 140 * Notifier list for console keyboard events 141 */ 142 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list); 143 144 int register_keyboard_notifier(struct notifier_block *nb) 145 { 146 return atomic_notifier_chain_register(&keyboard_notifier_list, nb); 147 } 148 EXPORT_SYMBOL_GPL(register_keyboard_notifier); 149 150 int unregister_keyboard_notifier(struct notifier_block *nb) 151 { 152 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb); 153 } 154 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier); 155 156 /* 157 * Translation of scancodes to keycodes. We set them on only the first 158 * keyboard in the list that accepts the scancode and keycode. 159 * Explanation for not choosing the first attached keyboard anymore: 160 * USB keyboards for example have two event devices: one for all "normal" 161 * keys and one for extra function keys (like "volume up", "make coffee", 162 * etc.). So this means that scancodes for the extra function keys won't 163 * be valid for the first event device, but will be for the second. 164 */ 165 166 struct getset_keycode_data { 167 struct input_keymap_entry ke; 168 int error; 169 }; 170 171 static int getkeycode_helper(struct input_handle *handle, void *data) 172 { 173 struct getset_keycode_data *d = data; 174 175 d->error = input_get_keycode(handle->dev, &d->ke); 176 177 return d->error == 0; /* stop as soon as we successfully get one */ 178 } 179 180 static int getkeycode(unsigned int scancode) 181 { 182 struct getset_keycode_data d = { 183 .ke = { 184 .flags = 0, 185 .len = sizeof(scancode), 186 .keycode = 0, 187 }, 188 .error = -ENODEV, 189 }; 190 191 memcpy(d.ke.scancode, &scancode, sizeof(scancode)); 192 193 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper); 194 195 return d.error ?: d.ke.keycode; 196 } 197 198 static int setkeycode_helper(struct input_handle *handle, void *data) 199 { 200 struct getset_keycode_data *d = data; 201 202 d->error = input_set_keycode(handle->dev, &d->ke); 203 204 return d->error == 0; /* stop as soon as we successfully set one */ 205 } 206 207 static int setkeycode(unsigned int scancode, unsigned int keycode) 208 { 209 struct getset_keycode_data d = { 210 .ke = { 211 .flags = 0, 212 .len = sizeof(scancode), 213 .keycode = keycode, 214 }, 215 .error = -ENODEV, 216 }; 217 218 memcpy(d.ke.scancode, &scancode, sizeof(scancode)); 219 220 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper); 221 222 return d.error; 223 } 224 225 /* 226 * Making beeps and bells. Note that we prefer beeps to bells, but when 227 * shutting the sound off we do both. 228 */ 229 230 static int kd_sound_helper(struct input_handle *handle, void *data) 231 { 232 unsigned int *hz = data; 233 struct input_dev *dev = handle->dev; 234 235 if (test_bit(EV_SND, dev->evbit)) { 236 if (test_bit(SND_TONE, dev->sndbit)) { 237 input_inject_event(handle, EV_SND, SND_TONE, *hz); 238 if (*hz) 239 return 0; 240 } 241 if (test_bit(SND_BELL, dev->sndbit)) 242 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0); 243 } 244 245 return 0; 246 } 247 248 static void kd_nosound(struct timer_list *unused) 249 { 250 static unsigned int zero; 251 252 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper); 253 } 254 255 static DEFINE_TIMER(kd_mksound_timer, kd_nosound); 256 257 void kd_mksound(unsigned int hz, unsigned int ticks) 258 { 259 del_timer_sync(&kd_mksound_timer); 260 261 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper); 262 263 if (hz && ticks) 264 mod_timer(&kd_mksound_timer, jiffies + ticks); 265 } 266 EXPORT_SYMBOL(kd_mksound); 267 268 /* 269 * Setting the keyboard rate. 270 */ 271 272 static int kbd_rate_helper(struct input_handle *handle, void *data) 273 { 274 struct input_dev *dev = handle->dev; 275 struct kbd_repeat *rpt = data; 276 277 if (test_bit(EV_REP, dev->evbit)) { 278 279 if (rpt[0].delay > 0) 280 input_inject_event(handle, 281 EV_REP, REP_DELAY, rpt[0].delay); 282 if (rpt[0].period > 0) 283 input_inject_event(handle, 284 EV_REP, REP_PERIOD, rpt[0].period); 285 286 rpt[1].delay = dev->rep[REP_DELAY]; 287 rpt[1].period = dev->rep[REP_PERIOD]; 288 } 289 290 return 0; 291 } 292 293 int kbd_rate(struct kbd_repeat *rpt) 294 { 295 struct kbd_repeat data[2] = { *rpt }; 296 297 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper); 298 *rpt = data[1]; /* Copy currently used settings */ 299 300 return 0; 301 } 302 303 /* 304 * Helper Functions. 305 */ 306 static void put_queue(struct vc_data *vc, int ch) 307 { 308 tty_insert_flip_char(&vc->port, ch, 0); 309 tty_schedule_flip(&vc->port); 310 } 311 312 static void puts_queue(struct vc_data *vc, char *cp) 313 { 314 while (*cp) { 315 tty_insert_flip_char(&vc->port, *cp, 0); 316 cp++; 317 } 318 tty_schedule_flip(&vc->port); 319 } 320 321 static void applkey(struct vc_data *vc, int key, char mode) 322 { 323 static char buf[] = { 0x1b, 'O', 0x00, 0x00 }; 324 325 buf[1] = (mode ? 'O' : '['); 326 buf[2] = key; 327 puts_queue(vc, buf); 328 } 329 330 /* 331 * Many other routines do put_queue, but I think either 332 * they produce ASCII, or they produce some user-assigned 333 * string, and in both cases we might assume that it is 334 * in utf-8 already. 335 */ 336 static void to_utf8(struct vc_data *vc, uint c) 337 { 338 if (c < 0x80) 339 /* 0******* */ 340 put_queue(vc, c); 341 else if (c < 0x800) { 342 /* 110***** 10****** */ 343 put_queue(vc, 0xc0 | (c >> 6)); 344 put_queue(vc, 0x80 | (c & 0x3f)); 345 } else if (c < 0x10000) { 346 if (c >= 0xD800 && c < 0xE000) 347 return; 348 if (c == 0xFFFF) 349 return; 350 /* 1110**** 10****** 10****** */ 351 put_queue(vc, 0xe0 | (c >> 12)); 352 put_queue(vc, 0x80 | ((c >> 6) & 0x3f)); 353 put_queue(vc, 0x80 | (c & 0x3f)); 354 } else if (c < 0x110000) { 355 /* 11110*** 10****** 10****** 10****** */ 356 put_queue(vc, 0xf0 | (c >> 18)); 357 put_queue(vc, 0x80 | ((c >> 12) & 0x3f)); 358 put_queue(vc, 0x80 | ((c >> 6) & 0x3f)); 359 put_queue(vc, 0x80 | (c & 0x3f)); 360 } 361 } 362 363 /* 364 * Called after returning from RAW mode or when changing consoles - recompute 365 * shift_down[] and shift_state from key_down[] maybe called when keymap is 366 * undefined, so that shiftkey release is seen. The caller must hold the 367 * kbd_event_lock. 368 */ 369 370 static void do_compute_shiftstate(void) 371 { 372 unsigned int k, sym, val; 373 374 shift_state = 0; 375 memset(shift_down, 0, sizeof(shift_down)); 376 377 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) { 378 sym = U(key_maps[0][k]); 379 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK) 380 continue; 381 382 val = KVAL(sym); 383 if (val == KVAL(K_CAPSSHIFT)) 384 val = KVAL(K_SHIFT); 385 386 shift_down[val]++; 387 shift_state |= BIT(val); 388 } 389 } 390 391 /* We still have to export this method to vt.c */ 392 void compute_shiftstate(void) 393 { 394 unsigned long flags; 395 spin_lock_irqsave(&kbd_event_lock, flags); 396 do_compute_shiftstate(); 397 spin_unlock_irqrestore(&kbd_event_lock, flags); 398 } 399 400 /* 401 * We have a combining character DIACR here, followed by the character CH. 402 * If the combination occurs in the table, return the corresponding value. 403 * Otherwise, if CH is a space or equals DIACR, return DIACR. 404 * Otherwise, conclude that DIACR was not combining after all, 405 * queue it and return CH. 406 */ 407 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch) 408 { 409 unsigned int d = diacr; 410 unsigned int i; 411 412 diacr = 0; 413 414 if ((d & ~0xff) == BRL_UC_ROW) { 415 if ((ch & ~0xff) == BRL_UC_ROW) 416 return d | ch; 417 } else { 418 for (i = 0; i < accent_table_size; i++) 419 if (accent_table[i].diacr == d && accent_table[i].base == ch) 420 return accent_table[i].result; 421 } 422 423 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d) 424 return d; 425 426 if (kbd->kbdmode == VC_UNICODE) 427 to_utf8(vc, d); 428 else { 429 int c = conv_uni_to_8bit(d); 430 if (c != -1) 431 put_queue(vc, c); 432 } 433 434 return ch; 435 } 436 437 /* 438 * Special function handlers 439 */ 440 static void fn_enter(struct vc_data *vc) 441 { 442 if (diacr) { 443 if (kbd->kbdmode == VC_UNICODE) 444 to_utf8(vc, diacr); 445 else { 446 int c = conv_uni_to_8bit(diacr); 447 if (c != -1) 448 put_queue(vc, c); 449 } 450 diacr = 0; 451 } 452 453 put_queue(vc, 13); 454 if (vc_kbd_mode(kbd, VC_CRLF)) 455 put_queue(vc, 10); 456 } 457 458 static void fn_caps_toggle(struct vc_data *vc) 459 { 460 if (rep) 461 return; 462 463 chg_vc_kbd_led(kbd, VC_CAPSLOCK); 464 } 465 466 static void fn_caps_on(struct vc_data *vc) 467 { 468 if (rep) 469 return; 470 471 set_vc_kbd_led(kbd, VC_CAPSLOCK); 472 } 473 474 static void fn_show_ptregs(struct vc_data *vc) 475 { 476 struct pt_regs *regs = get_irq_regs(); 477 478 if (regs) 479 show_regs(regs); 480 } 481 482 static void fn_hold(struct vc_data *vc) 483 { 484 struct tty_struct *tty = vc->port.tty; 485 486 if (rep || !tty) 487 return; 488 489 /* 490 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty); 491 * these routines are also activated by ^S/^Q. 492 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.) 493 */ 494 if (tty->stopped) 495 start_tty(tty); 496 else 497 stop_tty(tty); 498 } 499 500 static void fn_num(struct vc_data *vc) 501 { 502 if (vc_kbd_mode(kbd, VC_APPLIC)) 503 applkey(vc, 'P', 1); 504 else 505 fn_bare_num(vc); 506 } 507 508 /* 509 * Bind this to Shift-NumLock if you work in application keypad mode 510 * but want to be able to change the NumLock flag. 511 * Bind this to NumLock if you prefer that the NumLock key always 512 * changes the NumLock flag. 513 */ 514 static void fn_bare_num(struct vc_data *vc) 515 { 516 if (!rep) 517 chg_vc_kbd_led(kbd, VC_NUMLOCK); 518 } 519 520 static void fn_lastcons(struct vc_data *vc) 521 { 522 /* switch to the last used console, ChN */ 523 set_console(last_console); 524 } 525 526 static void fn_dec_console(struct vc_data *vc) 527 { 528 int i, cur = fg_console; 529 530 /* Currently switching? Queue this next switch relative to that. */ 531 if (want_console != -1) 532 cur = want_console; 533 534 for (i = cur - 1; i != cur; i--) { 535 if (i == -1) 536 i = MAX_NR_CONSOLES - 1; 537 if (vc_cons_allocated(i)) 538 break; 539 } 540 set_console(i); 541 } 542 543 static void fn_inc_console(struct vc_data *vc) 544 { 545 int i, cur = fg_console; 546 547 /* Currently switching? Queue this next switch relative to that. */ 548 if (want_console != -1) 549 cur = want_console; 550 551 for (i = cur+1; i != cur; i++) { 552 if (i == MAX_NR_CONSOLES) 553 i = 0; 554 if (vc_cons_allocated(i)) 555 break; 556 } 557 set_console(i); 558 } 559 560 static void fn_send_intr(struct vc_data *vc) 561 { 562 tty_insert_flip_char(&vc->port, 0, TTY_BREAK); 563 tty_schedule_flip(&vc->port); 564 } 565 566 static void fn_scroll_forw(struct vc_data *vc) 567 { 568 scrollfront(vc, 0); 569 } 570 571 static void fn_scroll_back(struct vc_data *vc) 572 { 573 scrollback(vc); 574 } 575 576 static void fn_show_mem(struct vc_data *vc) 577 { 578 show_mem(0, NULL); 579 } 580 581 static void fn_show_state(struct vc_data *vc) 582 { 583 show_state(); 584 } 585 586 static void fn_boot_it(struct vc_data *vc) 587 { 588 ctrl_alt_del(); 589 } 590 591 static void fn_compose(struct vc_data *vc) 592 { 593 dead_key_next = true; 594 } 595 596 static void fn_spawn_con(struct vc_data *vc) 597 { 598 spin_lock(&vt_spawn_con.lock); 599 if (vt_spawn_con.pid) 600 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) { 601 put_pid(vt_spawn_con.pid); 602 vt_spawn_con.pid = NULL; 603 } 604 spin_unlock(&vt_spawn_con.lock); 605 } 606 607 static void fn_SAK(struct vc_data *vc) 608 { 609 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work; 610 schedule_work(SAK_work); 611 } 612 613 static void fn_null(struct vc_data *vc) 614 { 615 do_compute_shiftstate(); 616 } 617 618 /* 619 * Special key handlers 620 */ 621 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag) 622 { 623 } 624 625 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag) 626 { 627 if (up_flag) 628 return; 629 if (value >= ARRAY_SIZE(fn_handler)) 630 return; 631 if ((kbd->kbdmode == VC_RAW || 632 kbd->kbdmode == VC_MEDIUMRAW || 633 kbd->kbdmode == VC_OFF) && 634 value != KVAL(K_SAK)) 635 return; /* SAK is allowed even in raw mode */ 636 fn_handler[value](vc); 637 } 638 639 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag) 640 { 641 pr_err("k_lowercase was called - impossible\n"); 642 } 643 644 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag) 645 { 646 if (up_flag) 647 return; /* no action, if this is a key release */ 648 649 if (diacr) 650 value = handle_diacr(vc, value); 651 652 if (dead_key_next) { 653 dead_key_next = false; 654 diacr = value; 655 return; 656 } 657 if (kbd->kbdmode == VC_UNICODE) 658 to_utf8(vc, value); 659 else { 660 int c = conv_uni_to_8bit(value); 661 if (c != -1) 662 put_queue(vc, c); 663 } 664 } 665 666 /* 667 * Handle dead key. Note that we now may have several 668 * dead keys modifying the same character. Very useful 669 * for Vietnamese. 670 */ 671 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag) 672 { 673 if (up_flag) 674 return; 675 676 diacr = (diacr ? handle_diacr(vc, value) : value); 677 } 678 679 static void k_self(struct vc_data *vc, unsigned char value, char up_flag) 680 { 681 k_unicode(vc, conv_8bit_to_uni(value), up_flag); 682 } 683 684 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag) 685 { 686 k_deadunicode(vc, value, up_flag); 687 } 688 689 /* 690 * Obsolete - for backwards compatibility only 691 */ 692 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag) 693 { 694 static const unsigned char ret_diacr[NR_DEAD] = { 695 '`', /* dead_grave */ 696 '\'', /* dead_acute */ 697 '^', /* dead_circumflex */ 698 '~', /* dead_tilda */ 699 '"', /* dead_diaeresis */ 700 ',', /* dead_cedilla */ 701 '_', /* dead_macron */ 702 'U', /* dead_breve */ 703 '.', /* dead_abovedot */ 704 '*', /* dead_abovering */ 705 '=', /* dead_doubleacute */ 706 'c', /* dead_caron */ 707 'k', /* dead_ogonek */ 708 'i', /* dead_iota */ 709 '#', /* dead_voiced_sound */ 710 'o', /* dead_semivoiced_sound */ 711 '!', /* dead_belowdot */ 712 '?', /* dead_hook */ 713 '+', /* dead_horn */ 714 '-', /* dead_stroke */ 715 ')', /* dead_abovecomma */ 716 '(', /* dead_abovereversedcomma */ 717 ':', /* dead_doublegrave */ 718 'n', /* dead_invertedbreve */ 719 ';', /* dead_belowcomma */ 720 '$', /* dead_currency */ 721 '@', /* dead_greek */ 722 }; 723 724 k_deadunicode(vc, ret_diacr[value], up_flag); 725 } 726 727 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag) 728 { 729 if (up_flag) 730 return; 731 732 set_console(value); 733 } 734 735 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag) 736 { 737 if (up_flag) 738 return; 739 740 if ((unsigned)value < ARRAY_SIZE(func_table)) { 741 if (func_table[value]) 742 puts_queue(vc, func_table[value]); 743 } else 744 pr_err("k_fn called with value=%d\n", value); 745 } 746 747 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag) 748 { 749 static const char cur_chars[] = "BDCA"; 750 751 if (up_flag) 752 return; 753 754 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE)); 755 } 756 757 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag) 758 { 759 static const char pad_chars[] = "0123456789+-*/\015,.?()#"; 760 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS"; 761 762 if (up_flag) 763 return; /* no action, if this is a key release */ 764 765 /* kludge... shift forces cursor/number keys */ 766 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) { 767 applkey(vc, app_map[value], 1); 768 return; 769 } 770 771 if (!vc_kbd_led(kbd, VC_NUMLOCK)) { 772 773 switch (value) { 774 case KVAL(K_PCOMMA): 775 case KVAL(K_PDOT): 776 k_fn(vc, KVAL(K_REMOVE), 0); 777 return; 778 case KVAL(K_P0): 779 k_fn(vc, KVAL(K_INSERT), 0); 780 return; 781 case KVAL(K_P1): 782 k_fn(vc, KVAL(K_SELECT), 0); 783 return; 784 case KVAL(K_P2): 785 k_cur(vc, KVAL(K_DOWN), 0); 786 return; 787 case KVAL(K_P3): 788 k_fn(vc, KVAL(K_PGDN), 0); 789 return; 790 case KVAL(K_P4): 791 k_cur(vc, KVAL(K_LEFT), 0); 792 return; 793 case KVAL(K_P6): 794 k_cur(vc, KVAL(K_RIGHT), 0); 795 return; 796 case KVAL(K_P7): 797 k_fn(vc, KVAL(K_FIND), 0); 798 return; 799 case KVAL(K_P8): 800 k_cur(vc, KVAL(K_UP), 0); 801 return; 802 case KVAL(K_P9): 803 k_fn(vc, KVAL(K_PGUP), 0); 804 return; 805 case KVAL(K_P5): 806 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC)); 807 return; 808 } 809 } 810 811 put_queue(vc, pad_chars[value]); 812 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF)) 813 put_queue(vc, 10); 814 } 815 816 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag) 817 { 818 int old_state = shift_state; 819 820 if (rep) 821 return; 822 /* 823 * Mimic typewriter: 824 * a CapsShift key acts like Shift but undoes CapsLock 825 */ 826 if (value == KVAL(K_CAPSSHIFT)) { 827 value = KVAL(K_SHIFT); 828 if (!up_flag) 829 clr_vc_kbd_led(kbd, VC_CAPSLOCK); 830 } 831 832 if (up_flag) { 833 /* 834 * handle the case that two shift or control 835 * keys are depressed simultaneously 836 */ 837 if (shift_down[value]) 838 shift_down[value]--; 839 } else 840 shift_down[value]++; 841 842 if (shift_down[value]) 843 shift_state |= (1 << value); 844 else 845 shift_state &= ~(1 << value); 846 847 /* kludge */ 848 if (up_flag && shift_state != old_state && npadch != -1) { 849 if (kbd->kbdmode == VC_UNICODE) 850 to_utf8(vc, npadch); 851 else 852 put_queue(vc, npadch & 0xff); 853 npadch = -1; 854 } 855 } 856 857 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag) 858 { 859 if (up_flag) 860 return; 861 862 if (vc_kbd_mode(kbd, VC_META)) { 863 put_queue(vc, '\033'); 864 put_queue(vc, value); 865 } else 866 put_queue(vc, value | 0x80); 867 } 868 869 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag) 870 { 871 int base; 872 873 if (up_flag) 874 return; 875 876 if (value < 10) { 877 /* decimal input of code, while Alt depressed */ 878 base = 10; 879 } else { 880 /* hexadecimal input of code, while AltGr depressed */ 881 value -= 10; 882 base = 16; 883 } 884 885 if (npadch == -1) 886 npadch = value; 887 else 888 npadch = npadch * base + value; 889 } 890 891 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag) 892 { 893 if (up_flag || rep) 894 return; 895 896 chg_vc_kbd_lock(kbd, value); 897 } 898 899 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag) 900 { 901 k_shift(vc, value, up_flag); 902 if (up_flag || rep) 903 return; 904 905 chg_vc_kbd_slock(kbd, value); 906 /* try to make Alt, oops, AltGr and such work */ 907 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) { 908 kbd->slockstate = 0; 909 chg_vc_kbd_slock(kbd, value); 910 } 911 } 912 913 /* by default, 300ms interval for combination release */ 914 static unsigned brl_timeout = 300; 915 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)"); 916 module_param(brl_timeout, uint, 0644); 917 918 static unsigned brl_nbchords = 1; 919 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)"); 920 module_param(brl_nbchords, uint, 0644); 921 922 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag) 923 { 924 static unsigned long chords; 925 static unsigned committed; 926 927 if (!brl_nbchords) 928 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag); 929 else { 930 committed |= pattern; 931 chords++; 932 if (chords == brl_nbchords) { 933 k_unicode(vc, BRL_UC_ROW | committed, up_flag); 934 chords = 0; 935 committed = 0; 936 } 937 } 938 } 939 940 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag) 941 { 942 static unsigned pressed, committing; 943 static unsigned long releasestart; 944 945 if (kbd->kbdmode != VC_UNICODE) { 946 if (!up_flag) 947 pr_warn("keyboard mode must be unicode for braille patterns\n"); 948 return; 949 } 950 951 if (!value) { 952 k_unicode(vc, BRL_UC_ROW, up_flag); 953 return; 954 } 955 956 if (value > 8) 957 return; 958 959 if (!up_flag) { 960 pressed |= 1 << (value - 1); 961 if (!brl_timeout) 962 committing = pressed; 963 } else if (brl_timeout) { 964 if (!committing || 965 time_after(jiffies, 966 releasestart + msecs_to_jiffies(brl_timeout))) { 967 committing = pressed; 968 releasestart = jiffies; 969 } 970 pressed &= ~(1 << (value - 1)); 971 if (!pressed && committing) { 972 k_brlcommit(vc, committing, 0); 973 committing = 0; 974 } 975 } else { 976 if (committing) { 977 k_brlcommit(vc, committing, 0); 978 committing = 0; 979 } 980 pressed &= ~(1 << (value - 1)); 981 } 982 } 983 984 #if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS) 985 986 struct kbd_led_trigger { 987 struct led_trigger trigger; 988 unsigned int mask; 989 }; 990 991 static int kbd_led_trigger_activate(struct led_classdev *cdev) 992 { 993 struct kbd_led_trigger *trigger = 994 container_of(cdev->trigger, struct kbd_led_trigger, trigger); 995 996 tasklet_disable(&keyboard_tasklet); 997 if (ledstate != -1U) 998 led_trigger_event(&trigger->trigger, 999 ledstate & trigger->mask ? 1000 LED_FULL : LED_OFF); 1001 tasklet_enable(&keyboard_tasklet); 1002 1003 return 0; 1004 } 1005 1006 #define KBD_LED_TRIGGER(_led_bit, _name) { \ 1007 .trigger = { \ 1008 .name = _name, \ 1009 .activate = kbd_led_trigger_activate, \ 1010 }, \ 1011 .mask = BIT(_led_bit), \ 1012 } 1013 1014 #define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \ 1015 KBD_LED_TRIGGER((_led_bit) + 8, _name) 1016 1017 static struct kbd_led_trigger kbd_led_triggers[] = { 1018 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"), 1019 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"), 1020 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"), 1021 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"), 1022 1023 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"), 1024 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"), 1025 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"), 1026 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"), 1027 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"), 1028 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"), 1029 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"), 1030 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"), 1031 }; 1032 1033 static void kbd_propagate_led_state(unsigned int old_state, 1034 unsigned int new_state) 1035 { 1036 struct kbd_led_trigger *trigger; 1037 unsigned int changed = old_state ^ new_state; 1038 int i; 1039 1040 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) { 1041 trigger = &kbd_led_triggers[i]; 1042 1043 if (changed & trigger->mask) 1044 led_trigger_event(&trigger->trigger, 1045 new_state & trigger->mask ? 1046 LED_FULL : LED_OFF); 1047 } 1048 } 1049 1050 static int kbd_update_leds_helper(struct input_handle *handle, void *data) 1051 { 1052 unsigned int led_state = *(unsigned int *)data; 1053 1054 if (test_bit(EV_LED, handle->dev->evbit)) 1055 kbd_propagate_led_state(~led_state, led_state); 1056 1057 return 0; 1058 } 1059 1060 static void kbd_init_leds(void) 1061 { 1062 int error; 1063 int i; 1064 1065 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) { 1066 error = led_trigger_register(&kbd_led_triggers[i].trigger); 1067 if (error) 1068 pr_err("error %d while registering trigger %s\n", 1069 error, kbd_led_triggers[i].trigger.name); 1070 } 1071 } 1072 1073 #else 1074 1075 static int kbd_update_leds_helper(struct input_handle *handle, void *data) 1076 { 1077 unsigned int leds = *(unsigned int *)data; 1078 1079 if (test_bit(EV_LED, handle->dev->evbit)) { 1080 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01)); 1081 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02)); 1082 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04)); 1083 input_inject_event(handle, EV_SYN, SYN_REPORT, 0); 1084 } 1085 1086 return 0; 1087 } 1088 1089 static void kbd_propagate_led_state(unsigned int old_state, 1090 unsigned int new_state) 1091 { 1092 input_handler_for_each_handle(&kbd_handler, &new_state, 1093 kbd_update_leds_helper); 1094 } 1095 1096 static void kbd_init_leds(void) 1097 { 1098 } 1099 1100 #endif 1101 1102 /* 1103 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock, 1104 * or (ii) whatever pattern of lights people want to show using KDSETLED, 1105 * or (iii) specified bits of specified words in kernel memory. 1106 */ 1107 static unsigned char getledstate(void) 1108 { 1109 return ledstate & 0xff; 1110 } 1111 1112 void setledstate(struct kbd_struct *kb, unsigned int led) 1113 { 1114 unsigned long flags; 1115 spin_lock_irqsave(&led_lock, flags); 1116 if (!(led & ~7)) { 1117 ledioctl = led; 1118 kb->ledmode = LED_SHOW_IOCTL; 1119 } else 1120 kb->ledmode = LED_SHOW_FLAGS; 1121 1122 set_leds(); 1123 spin_unlock_irqrestore(&led_lock, flags); 1124 } 1125 1126 static inline unsigned char getleds(void) 1127 { 1128 struct kbd_struct *kb = kbd_table + fg_console; 1129 1130 if (kb->ledmode == LED_SHOW_IOCTL) 1131 return ledioctl; 1132 1133 return kb->ledflagstate; 1134 } 1135 1136 /** 1137 * vt_get_leds - helper for braille console 1138 * @console: console to read 1139 * @flag: flag we want to check 1140 * 1141 * Check the status of a keyboard led flag and report it back 1142 */ 1143 int vt_get_leds(int console, int flag) 1144 { 1145 struct kbd_struct *kb = kbd_table + console; 1146 int ret; 1147 unsigned long flags; 1148 1149 spin_lock_irqsave(&led_lock, flags); 1150 ret = vc_kbd_led(kb, flag); 1151 spin_unlock_irqrestore(&led_lock, flags); 1152 1153 return ret; 1154 } 1155 EXPORT_SYMBOL_GPL(vt_get_leds); 1156 1157 /** 1158 * vt_set_led_state - set LED state of a console 1159 * @console: console to set 1160 * @leds: LED bits 1161 * 1162 * Set the LEDs on a console. This is a wrapper for the VT layer 1163 * so that we can keep kbd knowledge internal 1164 */ 1165 void vt_set_led_state(int console, int leds) 1166 { 1167 struct kbd_struct *kb = kbd_table + console; 1168 setledstate(kb, leds); 1169 } 1170 1171 /** 1172 * vt_kbd_con_start - Keyboard side of console start 1173 * @console: console 1174 * 1175 * Handle console start. This is a wrapper for the VT layer 1176 * so that we can keep kbd knowledge internal 1177 * 1178 * FIXME: We eventually need to hold the kbd lock here to protect 1179 * the LED updating. We can't do it yet because fn_hold calls stop_tty 1180 * and start_tty under the kbd_event_lock, while normal tty paths 1181 * don't hold the lock. We probably need to split out an LED lock 1182 * but not during an -rc release! 1183 */ 1184 void vt_kbd_con_start(int console) 1185 { 1186 struct kbd_struct *kb = kbd_table + console; 1187 unsigned long flags; 1188 spin_lock_irqsave(&led_lock, flags); 1189 clr_vc_kbd_led(kb, VC_SCROLLOCK); 1190 set_leds(); 1191 spin_unlock_irqrestore(&led_lock, flags); 1192 } 1193 1194 /** 1195 * vt_kbd_con_stop - Keyboard side of console stop 1196 * @console: console 1197 * 1198 * Handle console stop. This is a wrapper for the VT layer 1199 * so that we can keep kbd knowledge internal 1200 */ 1201 void vt_kbd_con_stop(int console) 1202 { 1203 struct kbd_struct *kb = kbd_table + console; 1204 unsigned long flags; 1205 spin_lock_irqsave(&led_lock, flags); 1206 set_vc_kbd_led(kb, VC_SCROLLOCK); 1207 set_leds(); 1208 spin_unlock_irqrestore(&led_lock, flags); 1209 } 1210 1211 /* 1212 * This is the tasklet that updates LED state of LEDs using standard 1213 * keyboard triggers. The reason we use tasklet is that we need to 1214 * handle the scenario when keyboard handler is not registered yet 1215 * but we already getting updates from the VT to update led state. 1216 */ 1217 static void kbd_bh(unsigned long dummy) 1218 { 1219 unsigned int leds; 1220 unsigned long flags; 1221 1222 spin_lock_irqsave(&led_lock, flags); 1223 leds = getleds(); 1224 leds |= (unsigned int)kbd->lockstate << 8; 1225 spin_unlock_irqrestore(&led_lock, flags); 1226 1227 if (leds != ledstate) { 1228 kbd_propagate_led_state(ledstate, leds); 1229 ledstate = leds; 1230 } 1231 } 1232 1233 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0); 1234 1235 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\ 1236 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\ 1237 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\ 1238 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) 1239 1240 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\ 1241 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001)) 1242 1243 static const unsigned short x86_keycodes[256] = 1244 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1245 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1246 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 1247 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 1248 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 1249 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92, 1250 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339, 1251 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349, 1252 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355, 1253 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361, 1254 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114, 1255 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116, 1256 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307, 1257 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330, 1258 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 }; 1259 1260 #ifdef CONFIG_SPARC 1261 static int sparc_l1_a_state; 1262 extern void sun_do_break(void); 1263 #endif 1264 1265 static int emulate_raw(struct vc_data *vc, unsigned int keycode, 1266 unsigned char up_flag) 1267 { 1268 int code; 1269 1270 switch (keycode) { 1271 1272 case KEY_PAUSE: 1273 put_queue(vc, 0xe1); 1274 put_queue(vc, 0x1d | up_flag); 1275 put_queue(vc, 0x45 | up_flag); 1276 break; 1277 1278 case KEY_HANGEUL: 1279 if (!up_flag) 1280 put_queue(vc, 0xf2); 1281 break; 1282 1283 case KEY_HANJA: 1284 if (!up_flag) 1285 put_queue(vc, 0xf1); 1286 break; 1287 1288 case KEY_SYSRQ: 1289 /* 1290 * Real AT keyboards (that's what we're trying 1291 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when 1292 * pressing PrtSc/SysRq alone, but simply 0x54 1293 * when pressing Alt+PrtSc/SysRq. 1294 */ 1295 if (test_bit(KEY_LEFTALT, key_down) || 1296 test_bit(KEY_RIGHTALT, key_down)) { 1297 put_queue(vc, 0x54 | up_flag); 1298 } else { 1299 put_queue(vc, 0xe0); 1300 put_queue(vc, 0x2a | up_flag); 1301 put_queue(vc, 0xe0); 1302 put_queue(vc, 0x37 | up_flag); 1303 } 1304 break; 1305 1306 default: 1307 if (keycode > 255) 1308 return -1; 1309 1310 code = x86_keycodes[keycode]; 1311 if (!code) 1312 return -1; 1313 1314 if (code & 0x100) 1315 put_queue(vc, 0xe0); 1316 put_queue(vc, (code & 0x7f) | up_flag); 1317 1318 break; 1319 } 1320 1321 return 0; 1322 } 1323 1324 #else 1325 1326 #define HW_RAW(dev) 0 1327 1328 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag) 1329 { 1330 if (keycode > 127) 1331 return -1; 1332 1333 put_queue(vc, keycode | up_flag); 1334 return 0; 1335 } 1336 #endif 1337 1338 static void kbd_rawcode(unsigned char data) 1339 { 1340 struct vc_data *vc = vc_cons[fg_console].d; 1341 1342 kbd = kbd_table + vc->vc_num; 1343 if (kbd->kbdmode == VC_RAW) 1344 put_queue(vc, data); 1345 } 1346 1347 static void kbd_keycode(unsigned int keycode, int down, int hw_raw) 1348 { 1349 struct vc_data *vc = vc_cons[fg_console].d; 1350 unsigned short keysym, *key_map; 1351 unsigned char type; 1352 bool raw_mode; 1353 struct tty_struct *tty; 1354 int shift_final; 1355 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down }; 1356 int rc; 1357 1358 tty = vc->port.tty; 1359 1360 if (tty && (!tty->driver_data)) { 1361 /* No driver data? Strange. Okay we fix it then. */ 1362 tty->driver_data = vc; 1363 } 1364 1365 kbd = kbd_table + vc->vc_num; 1366 1367 #ifdef CONFIG_SPARC 1368 if (keycode == KEY_STOP) 1369 sparc_l1_a_state = down; 1370 #endif 1371 1372 rep = (down == 2); 1373 1374 raw_mode = (kbd->kbdmode == VC_RAW); 1375 if (raw_mode && !hw_raw) 1376 if (emulate_raw(vc, keycode, !down << 7)) 1377 if (keycode < BTN_MISC && printk_ratelimit()) 1378 pr_warn("can't emulate rawmode for keycode %d\n", 1379 keycode); 1380 1381 #ifdef CONFIG_SPARC 1382 if (keycode == KEY_A && sparc_l1_a_state) { 1383 sparc_l1_a_state = false; 1384 sun_do_break(); 1385 } 1386 #endif 1387 1388 if (kbd->kbdmode == VC_MEDIUMRAW) { 1389 /* 1390 * This is extended medium raw mode, with keys above 127 1391 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing 1392 * the 'up' flag if needed. 0 is reserved, so this shouldn't 1393 * interfere with anything else. The two bytes after 0 will 1394 * always have the up flag set not to interfere with older 1395 * applications. This allows for 16384 different keycodes, 1396 * which should be enough. 1397 */ 1398 if (keycode < 128) { 1399 put_queue(vc, keycode | (!down << 7)); 1400 } else { 1401 put_queue(vc, !down << 7); 1402 put_queue(vc, (keycode >> 7) | 0x80); 1403 put_queue(vc, keycode | 0x80); 1404 } 1405 raw_mode = true; 1406 } 1407 1408 if (down) 1409 set_bit(keycode, key_down); 1410 else 1411 clear_bit(keycode, key_down); 1412 1413 if (rep && 1414 (!vc_kbd_mode(kbd, VC_REPEAT) || 1415 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) { 1416 /* 1417 * Don't repeat a key if the input buffers are not empty and the 1418 * characters get aren't echoed locally. This makes key repeat 1419 * usable with slow applications and under heavy loads. 1420 */ 1421 return; 1422 } 1423 1424 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate; 1425 param.ledstate = kbd->ledflagstate; 1426 key_map = key_maps[shift_final]; 1427 1428 rc = atomic_notifier_call_chain(&keyboard_notifier_list, 1429 KBD_KEYCODE, ¶m); 1430 if (rc == NOTIFY_STOP || !key_map) { 1431 atomic_notifier_call_chain(&keyboard_notifier_list, 1432 KBD_UNBOUND_KEYCODE, ¶m); 1433 do_compute_shiftstate(); 1434 kbd->slockstate = 0; 1435 return; 1436 } 1437 1438 if (keycode < NR_KEYS) 1439 keysym = key_map[keycode]; 1440 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8) 1441 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1)); 1442 else 1443 return; 1444 1445 type = KTYP(keysym); 1446 1447 if (type < 0xf0) { 1448 param.value = keysym; 1449 rc = atomic_notifier_call_chain(&keyboard_notifier_list, 1450 KBD_UNICODE, ¶m); 1451 if (rc != NOTIFY_STOP) 1452 if (down && !raw_mode) 1453 k_unicode(vc, keysym, !down); 1454 return; 1455 } 1456 1457 type -= 0xf0; 1458 1459 if (type == KT_LETTER) { 1460 type = KT_LATIN; 1461 if (vc_kbd_led(kbd, VC_CAPSLOCK)) { 1462 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)]; 1463 if (key_map) 1464 keysym = key_map[keycode]; 1465 } 1466 } 1467 1468 param.value = keysym; 1469 rc = atomic_notifier_call_chain(&keyboard_notifier_list, 1470 KBD_KEYSYM, ¶m); 1471 if (rc == NOTIFY_STOP) 1472 return; 1473 1474 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT) 1475 return; 1476 1477 (*k_handler[type])(vc, keysym & 0xff, !down); 1478 1479 param.ledstate = kbd->ledflagstate; 1480 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m); 1481 1482 if (type != KT_SLOCK) 1483 kbd->slockstate = 0; 1484 } 1485 1486 static void kbd_event(struct input_handle *handle, unsigned int event_type, 1487 unsigned int event_code, int value) 1488 { 1489 /* We are called with interrupts disabled, just take the lock */ 1490 spin_lock(&kbd_event_lock); 1491 1492 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev)) 1493 kbd_rawcode(value); 1494 if (event_type == EV_KEY && event_code <= KEY_MAX) 1495 kbd_keycode(event_code, value, HW_RAW(handle->dev)); 1496 1497 spin_unlock(&kbd_event_lock); 1498 1499 tasklet_schedule(&keyboard_tasklet); 1500 do_poke_blanked_console = 1; 1501 schedule_console_callback(); 1502 } 1503 1504 static bool kbd_match(struct input_handler *handler, struct input_dev *dev) 1505 { 1506 int i; 1507 1508 if (test_bit(EV_SND, dev->evbit)) 1509 return true; 1510 1511 if (test_bit(EV_KEY, dev->evbit)) { 1512 for (i = KEY_RESERVED; i < BTN_MISC; i++) 1513 if (test_bit(i, dev->keybit)) 1514 return true; 1515 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++) 1516 if (test_bit(i, dev->keybit)) 1517 return true; 1518 } 1519 1520 return false; 1521 } 1522 1523 /* 1524 * When a keyboard (or other input device) is found, the kbd_connect 1525 * function is called. The function then looks at the device, and if it 1526 * likes it, it can open it and get events from it. In this (kbd_connect) 1527 * function, we should decide which VT to bind that keyboard to initially. 1528 */ 1529 static int kbd_connect(struct input_handler *handler, struct input_dev *dev, 1530 const struct input_device_id *id) 1531 { 1532 struct input_handle *handle; 1533 int error; 1534 1535 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL); 1536 if (!handle) 1537 return -ENOMEM; 1538 1539 handle->dev = dev; 1540 handle->handler = handler; 1541 handle->name = "kbd"; 1542 1543 error = input_register_handle(handle); 1544 if (error) 1545 goto err_free_handle; 1546 1547 error = input_open_device(handle); 1548 if (error) 1549 goto err_unregister_handle; 1550 1551 return 0; 1552 1553 err_unregister_handle: 1554 input_unregister_handle(handle); 1555 err_free_handle: 1556 kfree(handle); 1557 return error; 1558 } 1559 1560 static void kbd_disconnect(struct input_handle *handle) 1561 { 1562 input_close_device(handle); 1563 input_unregister_handle(handle); 1564 kfree(handle); 1565 } 1566 1567 /* 1568 * Start keyboard handler on the new keyboard by refreshing LED state to 1569 * match the rest of the system. 1570 */ 1571 static void kbd_start(struct input_handle *handle) 1572 { 1573 tasklet_disable(&keyboard_tasklet); 1574 1575 if (ledstate != -1U) 1576 kbd_update_leds_helper(handle, &ledstate); 1577 1578 tasklet_enable(&keyboard_tasklet); 1579 } 1580 1581 static const struct input_device_id kbd_ids[] = { 1582 { 1583 .flags = INPUT_DEVICE_ID_MATCH_EVBIT, 1584 .evbit = { BIT_MASK(EV_KEY) }, 1585 }, 1586 1587 { 1588 .flags = INPUT_DEVICE_ID_MATCH_EVBIT, 1589 .evbit = { BIT_MASK(EV_SND) }, 1590 }, 1591 1592 { }, /* Terminating entry */ 1593 }; 1594 1595 MODULE_DEVICE_TABLE(input, kbd_ids); 1596 1597 static struct input_handler kbd_handler = { 1598 .event = kbd_event, 1599 .match = kbd_match, 1600 .connect = kbd_connect, 1601 .disconnect = kbd_disconnect, 1602 .start = kbd_start, 1603 .name = "kbd", 1604 .id_table = kbd_ids, 1605 }; 1606 1607 int __init kbd_init(void) 1608 { 1609 int i; 1610 int error; 1611 1612 for (i = 0; i < MAX_NR_CONSOLES; i++) { 1613 kbd_table[i].ledflagstate = kbd_defleds(); 1614 kbd_table[i].default_ledflagstate = kbd_defleds(); 1615 kbd_table[i].ledmode = LED_SHOW_FLAGS; 1616 kbd_table[i].lockstate = KBD_DEFLOCK; 1617 kbd_table[i].slockstate = 0; 1618 kbd_table[i].modeflags = KBD_DEFMODE; 1619 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE; 1620 } 1621 1622 kbd_init_leds(); 1623 1624 error = input_register_handler(&kbd_handler); 1625 if (error) 1626 return error; 1627 1628 tasklet_enable(&keyboard_tasklet); 1629 tasklet_schedule(&keyboard_tasklet); 1630 1631 return 0; 1632 } 1633 1634 /* Ioctl support code */ 1635 1636 /** 1637 * vt_do_diacrit - diacritical table updates 1638 * @cmd: ioctl request 1639 * @udp: pointer to user data for ioctl 1640 * @perm: permissions check computed by caller 1641 * 1642 * Update the diacritical tables atomically and safely. Lock them 1643 * against simultaneous keypresses 1644 */ 1645 int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm) 1646 { 1647 unsigned long flags; 1648 int asize; 1649 int ret = 0; 1650 1651 switch (cmd) { 1652 case KDGKBDIACR: 1653 { 1654 struct kbdiacrs __user *a = udp; 1655 struct kbdiacr *dia; 1656 int i; 1657 1658 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr), 1659 GFP_KERNEL); 1660 if (!dia) 1661 return -ENOMEM; 1662 1663 /* Lock the diacriticals table, make a copy and then 1664 copy it after we unlock */ 1665 spin_lock_irqsave(&kbd_event_lock, flags); 1666 1667 asize = accent_table_size; 1668 for (i = 0; i < asize; i++) { 1669 dia[i].diacr = conv_uni_to_8bit( 1670 accent_table[i].diacr); 1671 dia[i].base = conv_uni_to_8bit( 1672 accent_table[i].base); 1673 dia[i].result = conv_uni_to_8bit( 1674 accent_table[i].result); 1675 } 1676 spin_unlock_irqrestore(&kbd_event_lock, flags); 1677 1678 if (put_user(asize, &a->kb_cnt)) 1679 ret = -EFAULT; 1680 else if (copy_to_user(a->kbdiacr, dia, 1681 asize * sizeof(struct kbdiacr))) 1682 ret = -EFAULT; 1683 kfree(dia); 1684 return ret; 1685 } 1686 case KDGKBDIACRUC: 1687 { 1688 struct kbdiacrsuc __user *a = udp; 1689 void *buf; 1690 1691 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc), 1692 GFP_KERNEL); 1693 if (buf == NULL) 1694 return -ENOMEM; 1695 1696 /* Lock the diacriticals table, make a copy and then 1697 copy it after we unlock */ 1698 spin_lock_irqsave(&kbd_event_lock, flags); 1699 1700 asize = accent_table_size; 1701 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc)); 1702 1703 spin_unlock_irqrestore(&kbd_event_lock, flags); 1704 1705 if (put_user(asize, &a->kb_cnt)) 1706 ret = -EFAULT; 1707 else if (copy_to_user(a->kbdiacruc, buf, 1708 asize*sizeof(struct kbdiacruc))) 1709 ret = -EFAULT; 1710 kfree(buf); 1711 return ret; 1712 } 1713 1714 case KDSKBDIACR: 1715 { 1716 struct kbdiacrs __user *a = udp; 1717 struct kbdiacr *dia = NULL; 1718 unsigned int ct; 1719 int i; 1720 1721 if (!perm) 1722 return -EPERM; 1723 if (get_user(ct, &a->kb_cnt)) 1724 return -EFAULT; 1725 if (ct >= MAX_DIACR) 1726 return -EINVAL; 1727 1728 if (ct) { 1729 1730 dia = memdup_user(a->kbdiacr, 1731 sizeof(struct kbdiacr) * ct); 1732 if (IS_ERR(dia)) 1733 return PTR_ERR(dia); 1734 1735 } 1736 1737 spin_lock_irqsave(&kbd_event_lock, flags); 1738 accent_table_size = ct; 1739 for (i = 0; i < ct; i++) { 1740 accent_table[i].diacr = 1741 conv_8bit_to_uni(dia[i].diacr); 1742 accent_table[i].base = 1743 conv_8bit_to_uni(dia[i].base); 1744 accent_table[i].result = 1745 conv_8bit_to_uni(dia[i].result); 1746 } 1747 spin_unlock_irqrestore(&kbd_event_lock, flags); 1748 kfree(dia); 1749 return 0; 1750 } 1751 1752 case KDSKBDIACRUC: 1753 { 1754 struct kbdiacrsuc __user *a = udp; 1755 unsigned int ct; 1756 void *buf = NULL; 1757 1758 if (!perm) 1759 return -EPERM; 1760 1761 if (get_user(ct, &a->kb_cnt)) 1762 return -EFAULT; 1763 1764 if (ct >= MAX_DIACR) 1765 return -EINVAL; 1766 1767 if (ct) { 1768 buf = memdup_user(a->kbdiacruc, 1769 ct * sizeof(struct kbdiacruc)); 1770 if (IS_ERR(buf)) 1771 return PTR_ERR(buf); 1772 } 1773 spin_lock_irqsave(&kbd_event_lock, flags); 1774 if (ct) 1775 memcpy(accent_table, buf, 1776 ct * sizeof(struct kbdiacruc)); 1777 accent_table_size = ct; 1778 spin_unlock_irqrestore(&kbd_event_lock, flags); 1779 kfree(buf); 1780 return 0; 1781 } 1782 } 1783 return ret; 1784 } 1785 1786 /** 1787 * vt_do_kdskbmode - set keyboard mode ioctl 1788 * @console: the console to use 1789 * @arg: the requested mode 1790 * 1791 * Update the keyboard mode bits while holding the correct locks. 1792 * Return 0 for success or an error code. 1793 */ 1794 int vt_do_kdskbmode(int console, unsigned int arg) 1795 { 1796 struct kbd_struct *kb = kbd_table + console; 1797 int ret = 0; 1798 unsigned long flags; 1799 1800 spin_lock_irqsave(&kbd_event_lock, flags); 1801 switch(arg) { 1802 case K_RAW: 1803 kb->kbdmode = VC_RAW; 1804 break; 1805 case K_MEDIUMRAW: 1806 kb->kbdmode = VC_MEDIUMRAW; 1807 break; 1808 case K_XLATE: 1809 kb->kbdmode = VC_XLATE; 1810 do_compute_shiftstate(); 1811 break; 1812 case K_UNICODE: 1813 kb->kbdmode = VC_UNICODE; 1814 do_compute_shiftstate(); 1815 break; 1816 case K_OFF: 1817 kb->kbdmode = VC_OFF; 1818 break; 1819 default: 1820 ret = -EINVAL; 1821 } 1822 spin_unlock_irqrestore(&kbd_event_lock, flags); 1823 return ret; 1824 } 1825 1826 /** 1827 * vt_do_kdskbmeta - set keyboard meta state 1828 * @console: the console to use 1829 * @arg: the requested meta state 1830 * 1831 * Update the keyboard meta bits while holding the correct locks. 1832 * Return 0 for success or an error code. 1833 */ 1834 int vt_do_kdskbmeta(int console, unsigned int arg) 1835 { 1836 struct kbd_struct *kb = kbd_table + console; 1837 int ret = 0; 1838 unsigned long flags; 1839 1840 spin_lock_irqsave(&kbd_event_lock, flags); 1841 switch(arg) { 1842 case K_METABIT: 1843 clr_vc_kbd_mode(kb, VC_META); 1844 break; 1845 case K_ESCPREFIX: 1846 set_vc_kbd_mode(kb, VC_META); 1847 break; 1848 default: 1849 ret = -EINVAL; 1850 } 1851 spin_unlock_irqrestore(&kbd_event_lock, flags); 1852 return ret; 1853 } 1854 1855 int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc, 1856 int perm) 1857 { 1858 struct kbkeycode tmp; 1859 int kc = 0; 1860 1861 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode))) 1862 return -EFAULT; 1863 switch (cmd) { 1864 case KDGETKEYCODE: 1865 kc = getkeycode(tmp.scancode); 1866 if (kc >= 0) 1867 kc = put_user(kc, &user_kbkc->keycode); 1868 break; 1869 case KDSETKEYCODE: 1870 if (!perm) 1871 return -EPERM; 1872 kc = setkeycode(tmp.scancode, tmp.keycode); 1873 break; 1874 } 1875 return kc; 1876 } 1877 1878 #define i (tmp.kb_index) 1879 #define s (tmp.kb_table) 1880 #define v (tmp.kb_value) 1881 1882 int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm, 1883 int console) 1884 { 1885 struct kbd_struct *kb = kbd_table + console; 1886 struct kbentry tmp; 1887 ushort *key_map, *new_map, val, ov; 1888 unsigned long flags; 1889 1890 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry))) 1891 return -EFAULT; 1892 1893 if (!capable(CAP_SYS_TTY_CONFIG)) 1894 perm = 0; 1895 1896 switch (cmd) { 1897 case KDGKBENT: 1898 /* Ensure another thread doesn't free it under us */ 1899 spin_lock_irqsave(&kbd_event_lock, flags); 1900 key_map = key_maps[s]; 1901 if (key_map) { 1902 val = U(key_map[i]); 1903 if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES) 1904 val = K_HOLE; 1905 } else 1906 val = (i ? K_HOLE : K_NOSUCHMAP); 1907 spin_unlock_irqrestore(&kbd_event_lock, flags); 1908 return put_user(val, &user_kbe->kb_value); 1909 case KDSKBENT: 1910 if (!perm) 1911 return -EPERM; 1912 if (!i && v == K_NOSUCHMAP) { 1913 spin_lock_irqsave(&kbd_event_lock, flags); 1914 /* deallocate map */ 1915 key_map = key_maps[s]; 1916 if (s && key_map) { 1917 key_maps[s] = NULL; 1918 if (key_map[0] == U(K_ALLOCATED)) { 1919 kfree(key_map); 1920 keymap_count--; 1921 } 1922 } 1923 spin_unlock_irqrestore(&kbd_event_lock, flags); 1924 break; 1925 } 1926 1927 if (KTYP(v) < NR_TYPES) { 1928 if (KVAL(v) > max_vals[KTYP(v)]) 1929 return -EINVAL; 1930 } else 1931 if (kb->kbdmode != VC_UNICODE) 1932 return -EINVAL; 1933 1934 /* ++Geert: non-PC keyboards may generate keycode zero */ 1935 #if !defined(__mc68000__) && !defined(__powerpc__) 1936 /* assignment to entry 0 only tests validity of args */ 1937 if (!i) 1938 break; 1939 #endif 1940 1941 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL); 1942 if (!new_map) 1943 return -ENOMEM; 1944 spin_lock_irqsave(&kbd_event_lock, flags); 1945 key_map = key_maps[s]; 1946 if (key_map == NULL) { 1947 int j; 1948 1949 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS && 1950 !capable(CAP_SYS_RESOURCE)) { 1951 spin_unlock_irqrestore(&kbd_event_lock, flags); 1952 kfree(new_map); 1953 return -EPERM; 1954 } 1955 key_maps[s] = new_map; 1956 key_map = new_map; 1957 key_map[0] = U(K_ALLOCATED); 1958 for (j = 1; j < NR_KEYS; j++) 1959 key_map[j] = U(K_HOLE); 1960 keymap_count++; 1961 } else 1962 kfree(new_map); 1963 1964 ov = U(key_map[i]); 1965 if (v == ov) 1966 goto out; 1967 /* 1968 * Attention Key. 1969 */ 1970 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) { 1971 spin_unlock_irqrestore(&kbd_event_lock, flags); 1972 return -EPERM; 1973 } 1974 key_map[i] = U(v); 1975 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT)) 1976 do_compute_shiftstate(); 1977 out: 1978 spin_unlock_irqrestore(&kbd_event_lock, flags); 1979 break; 1980 } 1981 return 0; 1982 } 1983 #undef i 1984 #undef s 1985 #undef v 1986 1987 /* FIXME: This one needs untangling and locking */ 1988 int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm) 1989 { 1990 struct kbsentry *kbs; 1991 char *p; 1992 u_char *q; 1993 u_char __user *up; 1994 int sz, fnw_sz; 1995 int delta; 1996 char *first_free, *fj, *fnw; 1997 int i, j, k; 1998 int ret; 1999 unsigned long flags; 2000 2001 if (!capable(CAP_SYS_TTY_CONFIG)) 2002 perm = 0; 2003 2004 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL); 2005 if (!kbs) { 2006 ret = -ENOMEM; 2007 goto reterr; 2008 } 2009 2010 /* we mostly copy too much here (512bytes), but who cares ;) */ 2011 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) { 2012 ret = -EFAULT; 2013 goto reterr; 2014 } 2015 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0'; 2016 i = kbs->kb_func; 2017 2018 switch (cmd) { 2019 case KDGKBSENT: 2020 sz = sizeof(kbs->kb_string) - 1; /* sz should have been 2021 a struct member */ 2022 up = user_kdgkb->kb_string; 2023 p = func_table[i]; 2024 if(p) 2025 for ( ; *p && sz; p++, sz--) 2026 if (put_user(*p, up++)) { 2027 ret = -EFAULT; 2028 goto reterr; 2029 } 2030 if (put_user('\0', up)) { 2031 ret = -EFAULT; 2032 goto reterr; 2033 } 2034 kfree(kbs); 2035 return ((p && *p) ? -EOVERFLOW : 0); 2036 case KDSKBSENT: 2037 if (!perm) { 2038 ret = -EPERM; 2039 goto reterr; 2040 } 2041 2042 fnw = NULL; 2043 fnw_sz = 0; 2044 /* race aginst other writers */ 2045 again: 2046 spin_lock_irqsave(&func_buf_lock, flags); 2047 q = func_table[i]; 2048 2049 /* fj pointer to next entry after 'q' */ 2050 first_free = funcbufptr + (funcbufsize - funcbufleft); 2051 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++) 2052 ; 2053 if (j < MAX_NR_FUNC) 2054 fj = func_table[j]; 2055 else 2056 fj = first_free; 2057 /* buffer usage increase by new entry */ 2058 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string); 2059 2060 if (delta <= funcbufleft) { /* it fits in current buf */ 2061 if (j < MAX_NR_FUNC) { 2062 /* make enough space for new entry at 'fj' */ 2063 memmove(fj + delta, fj, first_free - fj); 2064 for (k = j; k < MAX_NR_FUNC; k++) 2065 if (func_table[k]) 2066 func_table[k] += delta; 2067 } 2068 if (!q) 2069 func_table[i] = fj; 2070 funcbufleft -= delta; 2071 } else { /* allocate a larger buffer */ 2072 sz = 256; 2073 while (sz < funcbufsize - funcbufleft + delta) 2074 sz <<= 1; 2075 if (fnw_sz != sz) { 2076 spin_unlock_irqrestore(&func_buf_lock, flags); 2077 kfree(fnw); 2078 fnw = kmalloc(sz, GFP_KERNEL); 2079 fnw_sz = sz; 2080 if (!fnw) { 2081 ret = -ENOMEM; 2082 goto reterr; 2083 } 2084 goto again; 2085 } 2086 2087 if (!q) 2088 func_table[i] = fj; 2089 /* copy data before insertion point to new location */ 2090 if (fj > funcbufptr) 2091 memmove(fnw, funcbufptr, fj - funcbufptr); 2092 for (k = 0; k < j; k++) 2093 if (func_table[k]) 2094 func_table[k] = fnw + (func_table[k] - funcbufptr); 2095 2096 /* copy data after insertion point to new location */ 2097 if (first_free > fj) { 2098 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj); 2099 for (k = j; k < MAX_NR_FUNC; k++) 2100 if (func_table[k]) 2101 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta; 2102 } 2103 if (funcbufptr != func_buf) 2104 kfree(funcbufptr); 2105 funcbufptr = fnw; 2106 funcbufleft = funcbufleft - delta + sz - funcbufsize; 2107 funcbufsize = sz; 2108 } 2109 /* finally insert item itself */ 2110 strcpy(func_table[i], kbs->kb_string); 2111 spin_unlock_irqrestore(&func_buf_lock, flags); 2112 break; 2113 } 2114 ret = 0; 2115 reterr: 2116 kfree(kbs); 2117 return ret; 2118 } 2119 2120 int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm) 2121 { 2122 struct kbd_struct *kb = kbd_table + console; 2123 unsigned long flags; 2124 unsigned char ucval; 2125 2126 switch(cmd) { 2127 /* the ioctls below read/set the flags usually shown in the leds */ 2128 /* don't use them - they will go away without warning */ 2129 case KDGKBLED: 2130 spin_lock_irqsave(&kbd_event_lock, flags); 2131 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4); 2132 spin_unlock_irqrestore(&kbd_event_lock, flags); 2133 return put_user(ucval, (char __user *)arg); 2134 2135 case KDSKBLED: 2136 if (!perm) 2137 return -EPERM; 2138 if (arg & ~0x77) 2139 return -EINVAL; 2140 spin_lock_irqsave(&led_lock, flags); 2141 kb->ledflagstate = (arg & 7); 2142 kb->default_ledflagstate = ((arg >> 4) & 7); 2143 set_leds(); 2144 spin_unlock_irqrestore(&led_lock, flags); 2145 return 0; 2146 2147 /* the ioctls below only set the lights, not the functions */ 2148 /* for those, see KDGKBLED and KDSKBLED above */ 2149 case KDGETLED: 2150 ucval = getledstate(); 2151 return put_user(ucval, (char __user *)arg); 2152 2153 case KDSETLED: 2154 if (!perm) 2155 return -EPERM; 2156 setledstate(kb, arg); 2157 return 0; 2158 } 2159 return -ENOIOCTLCMD; 2160 } 2161 2162 int vt_do_kdgkbmode(int console) 2163 { 2164 struct kbd_struct *kb = kbd_table + console; 2165 /* This is a spot read so needs no locking */ 2166 switch (kb->kbdmode) { 2167 case VC_RAW: 2168 return K_RAW; 2169 case VC_MEDIUMRAW: 2170 return K_MEDIUMRAW; 2171 case VC_UNICODE: 2172 return K_UNICODE; 2173 case VC_OFF: 2174 return K_OFF; 2175 default: 2176 return K_XLATE; 2177 } 2178 } 2179 2180 /** 2181 * vt_do_kdgkbmeta - report meta status 2182 * @console: console to report 2183 * 2184 * Report the meta flag status of this console 2185 */ 2186 int vt_do_kdgkbmeta(int console) 2187 { 2188 struct kbd_struct *kb = kbd_table + console; 2189 /* Again a spot read so no locking */ 2190 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT; 2191 } 2192 2193 /** 2194 * vt_reset_unicode - reset the unicode status 2195 * @console: console being reset 2196 * 2197 * Restore the unicode console state to its default 2198 */ 2199 void vt_reset_unicode(int console) 2200 { 2201 unsigned long flags; 2202 2203 spin_lock_irqsave(&kbd_event_lock, flags); 2204 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE; 2205 spin_unlock_irqrestore(&kbd_event_lock, flags); 2206 } 2207 2208 /** 2209 * vt_get_shiftstate - shift bit state 2210 * 2211 * Report the shift bits from the keyboard state. We have to export 2212 * this to support some oddities in the vt layer. 2213 */ 2214 int vt_get_shift_state(void) 2215 { 2216 /* Don't lock as this is a transient report */ 2217 return shift_state; 2218 } 2219 2220 /** 2221 * vt_reset_keyboard - reset keyboard state 2222 * @console: console to reset 2223 * 2224 * Reset the keyboard bits for a console as part of a general console 2225 * reset event 2226 */ 2227 void vt_reset_keyboard(int console) 2228 { 2229 struct kbd_struct *kb = kbd_table + console; 2230 unsigned long flags; 2231 2232 spin_lock_irqsave(&kbd_event_lock, flags); 2233 set_vc_kbd_mode(kb, VC_REPEAT); 2234 clr_vc_kbd_mode(kb, VC_CKMODE); 2235 clr_vc_kbd_mode(kb, VC_APPLIC); 2236 clr_vc_kbd_mode(kb, VC_CRLF); 2237 kb->lockstate = 0; 2238 kb->slockstate = 0; 2239 spin_lock(&led_lock); 2240 kb->ledmode = LED_SHOW_FLAGS; 2241 kb->ledflagstate = kb->default_ledflagstate; 2242 spin_unlock(&led_lock); 2243 /* do not do set_leds here because this causes an endless tasklet loop 2244 when the keyboard hasn't been initialized yet */ 2245 spin_unlock_irqrestore(&kbd_event_lock, flags); 2246 } 2247 2248 /** 2249 * vt_get_kbd_mode_bit - read keyboard status bits 2250 * @console: console to read from 2251 * @bit: mode bit to read 2252 * 2253 * Report back a vt mode bit. We do this without locking so the 2254 * caller must be sure that there are no synchronization needs 2255 */ 2256 2257 int vt_get_kbd_mode_bit(int console, int bit) 2258 { 2259 struct kbd_struct *kb = kbd_table + console; 2260 return vc_kbd_mode(kb, bit); 2261 } 2262 2263 /** 2264 * vt_set_kbd_mode_bit - read keyboard status bits 2265 * @console: console to read from 2266 * @bit: mode bit to read 2267 * 2268 * Set a vt mode bit. We do this without locking so the 2269 * caller must be sure that there are no synchronization needs 2270 */ 2271 2272 void vt_set_kbd_mode_bit(int console, int bit) 2273 { 2274 struct kbd_struct *kb = kbd_table + console; 2275 unsigned long flags; 2276 2277 spin_lock_irqsave(&kbd_event_lock, flags); 2278 set_vc_kbd_mode(kb, bit); 2279 spin_unlock_irqrestore(&kbd_event_lock, flags); 2280 } 2281 2282 /** 2283 * vt_clr_kbd_mode_bit - read keyboard status bits 2284 * @console: console to read from 2285 * @bit: mode bit to read 2286 * 2287 * Report back a vt mode bit. We do this without locking so the 2288 * caller must be sure that there are no synchronization needs 2289 */ 2290 2291 void vt_clr_kbd_mode_bit(int console, int bit) 2292 { 2293 struct kbd_struct *kb = kbd_table + console; 2294 unsigned long flags; 2295 2296 spin_lock_irqsave(&kbd_event_lock, flags); 2297 clr_vc_kbd_mode(kb, bit); 2298 spin_unlock_irqrestore(&kbd_event_lock, flags); 2299 } 2300