1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Written for linux by Johan Myreen as a translation from 4 * the assembly version by Linus (with diacriticals added) 5 * 6 * Some additional features added by Christoph Niemann (ChN), March 1993 7 * 8 * Loadable keymaps by Risto Kankkunen, May 1993 9 * 10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993 11 * Added decr/incr_console, dynamic keymaps, Unicode support, 12 * dynamic function/string keys, led setting, Sept 1994 13 * `Sticky' modifier keys, 951006. 14 * 15 * 11-11-96: SAK should now work in the raw mode (Martin Mares) 16 * 17 * Modified to provide 'generic' keyboard support by Hamish Macdonald 18 * Merge with the m68k keyboard driver and split-off of the PC low-level 19 * parts by Geert Uytterhoeven, May 1997 20 * 21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares) 22 * 30-07-98: Dead keys redone, aeb@cwi.nl. 23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik) 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/consolemap.h> 29 #include <linux/module.h> 30 #include <linux/sched/signal.h> 31 #include <linux/sched/debug.h> 32 #include <linux/tty.h> 33 #include <linux/tty_flip.h> 34 #include <linux/mm.h> 35 #include <linux/string.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/leds.h> 39 40 #include <linux/kbd_kern.h> 41 #include <linux/kbd_diacr.h> 42 #include <linux/vt_kern.h> 43 #include <linux/input.h> 44 #include <linux/reboot.h> 45 #include <linux/notifier.h> 46 #include <linux/jiffies.h> 47 #include <linux/uaccess.h> 48 49 #include <asm/irq_regs.h> 50 51 extern void ctrl_alt_del(void); 52 53 /* 54 * Exported functions/variables 55 */ 56 57 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META)) 58 59 #if defined(CONFIG_X86) || defined(CONFIG_PARISC) 60 #include <asm/kbdleds.h> 61 #else 62 static inline int kbd_defleds(void) 63 { 64 return 0; 65 } 66 #endif 67 68 #define KBD_DEFLOCK 0 69 70 /* 71 * Handler Tables. 72 */ 73 74 #define K_HANDLERS\ 75 k_self, k_fn, k_spec, k_pad,\ 76 k_dead, k_cons, k_cur, k_shift,\ 77 k_meta, k_ascii, k_lock, k_lowercase,\ 78 k_slock, k_dead2, k_brl, k_ignore 79 80 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value, 81 char up_flag); 82 static k_handler_fn K_HANDLERS; 83 static k_handler_fn *k_handler[16] = { K_HANDLERS }; 84 85 #define FN_HANDLERS\ 86 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\ 87 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\ 88 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\ 89 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\ 90 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num 91 92 typedef void (fn_handler_fn)(struct vc_data *vc); 93 static fn_handler_fn FN_HANDLERS; 94 static fn_handler_fn *fn_handler[] = { FN_HANDLERS }; 95 96 /* 97 * Variables exported for vt_ioctl.c 98 */ 99 100 struct vt_spawn_console vt_spawn_con = { 101 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock), 102 .pid = NULL, 103 .sig = 0, 104 }; 105 106 107 /* 108 * Internal Data. 109 */ 110 111 static struct kbd_struct kbd_table[MAX_NR_CONSOLES]; 112 static struct kbd_struct *kbd = kbd_table; 113 114 /* maximum values each key_handler can handle */ 115 static const int max_vals[] = { 116 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1, 117 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1, 118 255, NR_LOCK - 1, 255, NR_BRL - 1 119 }; 120 121 static const int NR_TYPES = ARRAY_SIZE(max_vals); 122 123 static struct input_handler kbd_handler; 124 static DEFINE_SPINLOCK(kbd_event_lock); 125 static DEFINE_SPINLOCK(led_lock); 126 static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */ 127 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */ 128 static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */ 129 static bool dead_key_next; 130 131 /* Handles a number being assembled on the number pad */ 132 static bool npadch_active; 133 static unsigned int npadch_value; 134 135 static unsigned int diacr; 136 static char rep; /* flag telling character repeat */ 137 138 static int shift_state = 0; 139 140 static unsigned int ledstate = -1U; /* undefined */ 141 static unsigned char ledioctl; 142 143 /* 144 * Notifier list for console keyboard events 145 */ 146 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list); 147 148 int register_keyboard_notifier(struct notifier_block *nb) 149 { 150 return atomic_notifier_chain_register(&keyboard_notifier_list, nb); 151 } 152 EXPORT_SYMBOL_GPL(register_keyboard_notifier); 153 154 int unregister_keyboard_notifier(struct notifier_block *nb) 155 { 156 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb); 157 } 158 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier); 159 160 /* 161 * Translation of scancodes to keycodes. We set them on only the first 162 * keyboard in the list that accepts the scancode and keycode. 163 * Explanation for not choosing the first attached keyboard anymore: 164 * USB keyboards for example have two event devices: one for all "normal" 165 * keys and one for extra function keys (like "volume up", "make coffee", 166 * etc.). So this means that scancodes for the extra function keys won't 167 * be valid for the first event device, but will be for the second. 168 */ 169 170 struct getset_keycode_data { 171 struct input_keymap_entry ke; 172 int error; 173 }; 174 175 static int getkeycode_helper(struct input_handle *handle, void *data) 176 { 177 struct getset_keycode_data *d = data; 178 179 d->error = input_get_keycode(handle->dev, &d->ke); 180 181 return d->error == 0; /* stop as soon as we successfully get one */ 182 } 183 184 static int getkeycode(unsigned int scancode) 185 { 186 struct getset_keycode_data d = { 187 .ke = { 188 .flags = 0, 189 .len = sizeof(scancode), 190 .keycode = 0, 191 }, 192 .error = -ENODEV, 193 }; 194 195 memcpy(d.ke.scancode, &scancode, sizeof(scancode)); 196 197 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper); 198 199 return d.error ?: d.ke.keycode; 200 } 201 202 static int setkeycode_helper(struct input_handle *handle, void *data) 203 { 204 struct getset_keycode_data *d = data; 205 206 d->error = input_set_keycode(handle->dev, &d->ke); 207 208 return d->error == 0; /* stop as soon as we successfully set one */ 209 } 210 211 static int setkeycode(unsigned int scancode, unsigned int keycode) 212 { 213 struct getset_keycode_data d = { 214 .ke = { 215 .flags = 0, 216 .len = sizeof(scancode), 217 .keycode = keycode, 218 }, 219 .error = -ENODEV, 220 }; 221 222 memcpy(d.ke.scancode, &scancode, sizeof(scancode)); 223 224 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper); 225 226 return d.error; 227 } 228 229 /* 230 * Making beeps and bells. Note that we prefer beeps to bells, but when 231 * shutting the sound off we do both. 232 */ 233 234 static int kd_sound_helper(struct input_handle *handle, void *data) 235 { 236 unsigned int *hz = data; 237 struct input_dev *dev = handle->dev; 238 239 if (test_bit(EV_SND, dev->evbit)) { 240 if (test_bit(SND_TONE, dev->sndbit)) { 241 input_inject_event(handle, EV_SND, SND_TONE, *hz); 242 if (*hz) 243 return 0; 244 } 245 if (test_bit(SND_BELL, dev->sndbit)) 246 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0); 247 } 248 249 return 0; 250 } 251 252 static void kd_nosound(struct timer_list *unused) 253 { 254 static unsigned int zero; 255 256 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper); 257 } 258 259 static DEFINE_TIMER(kd_mksound_timer, kd_nosound); 260 261 void kd_mksound(unsigned int hz, unsigned int ticks) 262 { 263 del_timer_sync(&kd_mksound_timer); 264 265 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper); 266 267 if (hz && ticks) 268 mod_timer(&kd_mksound_timer, jiffies + ticks); 269 } 270 EXPORT_SYMBOL(kd_mksound); 271 272 /* 273 * Setting the keyboard rate. 274 */ 275 276 static int kbd_rate_helper(struct input_handle *handle, void *data) 277 { 278 struct input_dev *dev = handle->dev; 279 struct kbd_repeat *rpt = data; 280 281 if (test_bit(EV_REP, dev->evbit)) { 282 283 if (rpt[0].delay > 0) 284 input_inject_event(handle, 285 EV_REP, REP_DELAY, rpt[0].delay); 286 if (rpt[0].period > 0) 287 input_inject_event(handle, 288 EV_REP, REP_PERIOD, rpt[0].period); 289 290 rpt[1].delay = dev->rep[REP_DELAY]; 291 rpt[1].period = dev->rep[REP_PERIOD]; 292 } 293 294 return 0; 295 } 296 297 int kbd_rate(struct kbd_repeat *rpt) 298 { 299 struct kbd_repeat data[2] = { *rpt }; 300 301 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper); 302 *rpt = data[1]; /* Copy currently used settings */ 303 304 return 0; 305 } 306 307 /* 308 * Helper Functions. 309 */ 310 static void put_queue(struct vc_data *vc, int ch) 311 { 312 tty_insert_flip_char(&vc->port, ch, 0); 313 tty_schedule_flip(&vc->port); 314 } 315 316 static void puts_queue(struct vc_data *vc, char *cp) 317 { 318 while (*cp) { 319 tty_insert_flip_char(&vc->port, *cp, 0); 320 cp++; 321 } 322 tty_schedule_flip(&vc->port); 323 } 324 325 static void applkey(struct vc_data *vc, int key, char mode) 326 { 327 static char buf[] = { 0x1b, 'O', 0x00, 0x00 }; 328 329 buf[1] = (mode ? 'O' : '['); 330 buf[2] = key; 331 puts_queue(vc, buf); 332 } 333 334 /* 335 * Many other routines do put_queue, but I think either 336 * they produce ASCII, or they produce some user-assigned 337 * string, and in both cases we might assume that it is 338 * in utf-8 already. 339 */ 340 static void to_utf8(struct vc_data *vc, uint c) 341 { 342 if (c < 0x80) 343 /* 0******* */ 344 put_queue(vc, c); 345 else if (c < 0x800) { 346 /* 110***** 10****** */ 347 put_queue(vc, 0xc0 | (c >> 6)); 348 put_queue(vc, 0x80 | (c & 0x3f)); 349 } else if (c < 0x10000) { 350 if (c >= 0xD800 && c < 0xE000) 351 return; 352 if (c == 0xFFFF) 353 return; 354 /* 1110**** 10****** 10****** */ 355 put_queue(vc, 0xe0 | (c >> 12)); 356 put_queue(vc, 0x80 | ((c >> 6) & 0x3f)); 357 put_queue(vc, 0x80 | (c & 0x3f)); 358 } else if (c < 0x110000) { 359 /* 11110*** 10****** 10****** 10****** */ 360 put_queue(vc, 0xf0 | (c >> 18)); 361 put_queue(vc, 0x80 | ((c >> 12) & 0x3f)); 362 put_queue(vc, 0x80 | ((c >> 6) & 0x3f)); 363 put_queue(vc, 0x80 | (c & 0x3f)); 364 } 365 } 366 367 /* 368 * Called after returning from RAW mode or when changing consoles - recompute 369 * shift_down[] and shift_state from key_down[] maybe called when keymap is 370 * undefined, so that shiftkey release is seen. The caller must hold the 371 * kbd_event_lock. 372 */ 373 374 static void do_compute_shiftstate(void) 375 { 376 unsigned int k, sym, val; 377 378 shift_state = 0; 379 memset(shift_down, 0, sizeof(shift_down)); 380 381 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) { 382 sym = U(key_maps[0][k]); 383 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK) 384 continue; 385 386 val = KVAL(sym); 387 if (val == KVAL(K_CAPSSHIFT)) 388 val = KVAL(K_SHIFT); 389 390 shift_down[val]++; 391 shift_state |= BIT(val); 392 } 393 } 394 395 /* We still have to export this method to vt.c */ 396 void compute_shiftstate(void) 397 { 398 unsigned long flags; 399 spin_lock_irqsave(&kbd_event_lock, flags); 400 do_compute_shiftstate(); 401 spin_unlock_irqrestore(&kbd_event_lock, flags); 402 } 403 404 /* 405 * We have a combining character DIACR here, followed by the character CH. 406 * If the combination occurs in the table, return the corresponding value. 407 * Otherwise, if CH is a space or equals DIACR, return DIACR. 408 * Otherwise, conclude that DIACR was not combining after all, 409 * queue it and return CH. 410 */ 411 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch) 412 { 413 unsigned int d = diacr; 414 unsigned int i; 415 416 diacr = 0; 417 418 if ((d & ~0xff) == BRL_UC_ROW) { 419 if ((ch & ~0xff) == BRL_UC_ROW) 420 return d | ch; 421 } else { 422 for (i = 0; i < accent_table_size; i++) 423 if (accent_table[i].diacr == d && accent_table[i].base == ch) 424 return accent_table[i].result; 425 } 426 427 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d) 428 return d; 429 430 if (kbd->kbdmode == VC_UNICODE) 431 to_utf8(vc, d); 432 else { 433 int c = conv_uni_to_8bit(d); 434 if (c != -1) 435 put_queue(vc, c); 436 } 437 438 return ch; 439 } 440 441 /* 442 * Special function handlers 443 */ 444 static void fn_enter(struct vc_data *vc) 445 { 446 if (diacr) { 447 if (kbd->kbdmode == VC_UNICODE) 448 to_utf8(vc, diacr); 449 else { 450 int c = conv_uni_to_8bit(diacr); 451 if (c != -1) 452 put_queue(vc, c); 453 } 454 diacr = 0; 455 } 456 457 put_queue(vc, 13); 458 if (vc_kbd_mode(kbd, VC_CRLF)) 459 put_queue(vc, 10); 460 } 461 462 static void fn_caps_toggle(struct vc_data *vc) 463 { 464 if (rep) 465 return; 466 467 chg_vc_kbd_led(kbd, VC_CAPSLOCK); 468 } 469 470 static void fn_caps_on(struct vc_data *vc) 471 { 472 if (rep) 473 return; 474 475 set_vc_kbd_led(kbd, VC_CAPSLOCK); 476 } 477 478 static void fn_show_ptregs(struct vc_data *vc) 479 { 480 struct pt_regs *regs = get_irq_regs(); 481 482 if (regs) 483 show_regs(regs); 484 } 485 486 static void fn_hold(struct vc_data *vc) 487 { 488 struct tty_struct *tty = vc->port.tty; 489 490 if (rep || !tty) 491 return; 492 493 /* 494 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty); 495 * these routines are also activated by ^S/^Q. 496 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.) 497 */ 498 if (tty->stopped) 499 start_tty(tty); 500 else 501 stop_tty(tty); 502 } 503 504 static void fn_num(struct vc_data *vc) 505 { 506 if (vc_kbd_mode(kbd, VC_APPLIC)) 507 applkey(vc, 'P', 1); 508 else 509 fn_bare_num(vc); 510 } 511 512 /* 513 * Bind this to Shift-NumLock if you work in application keypad mode 514 * but want to be able to change the NumLock flag. 515 * Bind this to NumLock if you prefer that the NumLock key always 516 * changes the NumLock flag. 517 */ 518 static void fn_bare_num(struct vc_data *vc) 519 { 520 if (!rep) 521 chg_vc_kbd_led(kbd, VC_NUMLOCK); 522 } 523 524 static void fn_lastcons(struct vc_data *vc) 525 { 526 /* switch to the last used console, ChN */ 527 set_console(last_console); 528 } 529 530 static void fn_dec_console(struct vc_data *vc) 531 { 532 int i, cur = fg_console; 533 534 /* Currently switching? Queue this next switch relative to that. */ 535 if (want_console != -1) 536 cur = want_console; 537 538 for (i = cur - 1; i != cur; i--) { 539 if (i == -1) 540 i = MAX_NR_CONSOLES - 1; 541 if (vc_cons_allocated(i)) 542 break; 543 } 544 set_console(i); 545 } 546 547 static void fn_inc_console(struct vc_data *vc) 548 { 549 int i, cur = fg_console; 550 551 /* Currently switching? Queue this next switch relative to that. */ 552 if (want_console != -1) 553 cur = want_console; 554 555 for (i = cur+1; i != cur; i++) { 556 if (i == MAX_NR_CONSOLES) 557 i = 0; 558 if (vc_cons_allocated(i)) 559 break; 560 } 561 set_console(i); 562 } 563 564 static void fn_send_intr(struct vc_data *vc) 565 { 566 tty_insert_flip_char(&vc->port, 0, TTY_BREAK); 567 tty_schedule_flip(&vc->port); 568 } 569 570 static void fn_scroll_forw(struct vc_data *vc) 571 { 572 scrollfront(vc, 0); 573 } 574 575 static void fn_scroll_back(struct vc_data *vc) 576 { 577 scrollback(vc); 578 } 579 580 static void fn_show_mem(struct vc_data *vc) 581 { 582 show_mem(0, NULL); 583 } 584 585 static void fn_show_state(struct vc_data *vc) 586 { 587 show_state(); 588 } 589 590 static void fn_boot_it(struct vc_data *vc) 591 { 592 ctrl_alt_del(); 593 } 594 595 static void fn_compose(struct vc_data *vc) 596 { 597 dead_key_next = true; 598 } 599 600 static void fn_spawn_con(struct vc_data *vc) 601 { 602 spin_lock(&vt_spawn_con.lock); 603 if (vt_spawn_con.pid) 604 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) { 605 put_pid(vt_spawn_con.pid); 606 vt_spawn_con.pid = NULL; 607 } 608 spin_unlock(&vt_spawn_con.lock); 609 } 610 611 static void fn_SAK(struct vc_data *vc) 612 { 613 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work; 614 schedule_work(SAK_work); 615 } 616 617 static void fn_null(struct vc_data *vc) 618 { 619 do_compute_shiftstate(); 620 } 621 622 /* 623 * Special key handlers 624 */ 625 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag) 626 { 627 } 628 629 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag) 630 { 631 if (up_flag) 632 return; 633 if (value >= ARRAY_SIZE(fn_handler)) 634 return; 635 if ((kbd->kbdmode == VC_RAW || 636 kbd->kbdmode == VC_MEDIUMRAW || 637 kbd->kbdmode == VC_OFF) && 638 value != KVAL(K_SAK)) 639 return; /* SAK is allowed even in raw mode */ 640 fn_handler[value](vc); 641 } 642 643 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag) 644 { 645 pr_err("k_lowercase was called - impossible\n"); 646 } 647 648 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag) 649 { 650 if (up_flag) 651 return; /* no action, if this is a key release */ 652 653 if (diacr) 654 value = handle_diacr(vc, value); 655 656 if (dead_key_next) { 657 dead_key_next = false; 658 diacr = value; 659 return; 660 } 661 if (kbd->kbdmode == VC_UNICODE) 662 to_utf8(vc, value); 663 else { 664 int c = conv_uni_to_8bit(value); 665 if (c != -1) 666 put_queue(vc, c); 667 } 668 } 669 670 /* 671 * Handle dead key. Note that we now may have several 672 * dead keys modifying the same character. Very useful 673 * for Vietnamese. 674 */ 675 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag) 676 { 677 if (up_flag) 678 return; 679 680 diacr = (diacr ? handle_diacr(vc, value) : value); 681 } 682 683 static void k_self(struct vc_data *vc, unsigned char value, char up_flag) 684 { 685 k_unicode(vc, conv_8bit_to_uni(value), up_flag); 686 } 687 688 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag) 689 { 690 k_deadunicode(vc, value, up_flag); 691 } 692 693 /* 694 * Obsolete - for backwards compatibility only 695 */ 696 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag) 697 { 698 static const unsigned char ret_diacr[NR_DEAD] = { 699 '`', /* dead_grave */ 700 '\'', /* dead_acute */ 701 '^', /* dead_circumflex */ 702 '~', /* dead_tilda */ 703 '"', /* dead_diaeresis */ 704 ',', /* dead_cedilla */ 705 '_', /* dead_macron */ 706 'U', /* dead_breve */ 707 '.', /* dead_abovedot */ 708 '*', /* dead_abovering */ 709 '=', /* dead_doubleacute */ 710 'c', /* dead_caron */ 711 'k', /* dead_ogonek */ 712 'i', /* dead_iota */ 713 '#', /* dead_voiced_sound */ 714 'o', /* dead_semivoiced_sound */ 715 '!', /* dead_belowdot */ 716 '?', /* dead_hook */ 717 '+', /* dead_horn */ 718 '-', /* dead_stroke */ 719 ')', /* dead_abovecomma */ 720 '(', /* dead_abovereversedcomma */ 721 ':', /* dead_doublegrave */ 722 'n', /* dead_invertedbreve */ 723 ';', /* dead_belowcomma */ 724 '$', /* dead_currency */ 725 '@', /* dead_greek */ 726 }; 727 728 k_deadunicode(vc, ret_diacr[value], up_flag); 729 } 730 731 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag) 732 { 733 if (up_flag) 734 return; 735 736 set_console(value); 737 } 738 739 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag) 740 { 741 if (up_flag) 742 return; 743 744 if ((unsigned)value < ARRAY_SIZE(func_table)) { 745 if (func_table[value]) 746 puts_queue(vc, func_table[value]); 747 } else 748 pr_err("k_fn called with value=%d\n", value); 749 } 750 751 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag) 752 { 753 static const char cur_chars[] = "BDCA"; 754 755 if (up_flag) 756 return; 757 758 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE)); 759 } 760 761 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag) 762 { 763 static const char pad_chars[] = "0123456789+-*/\015,.?()#"; 764 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS"; 765 766 if (up_flag) 767 return; /* no action, if this is a key release */ 768 769 /* kludge... shift forces cursor/number keys */ 770 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) { 771 applkey(vc, app_map[value], 1); 772 return; 773 } 774 775 if (!vc_kbd_led(kbd, VC_NUMLOCK)) { 776 777 switch (value) { 778 case KVAL(K_PCOMMA): 779 case KVAL(K_PDOT): 780 k_fn(vc, KVAL(K_REMOVE), 0); 781 return; 782 case KVAL(K_P0): 783 k_fn(vc, KVAL(K_INSERT), 0); 784 return; 785 case KVAL(K_P1): 786 k_fn(vc, KVAL(K_SELECT), 0); 787 return; 788 case KVAL(K_P2): 789 k_cur(vc, KVAL(K_DOWN), 0); 790 return; 791 case KVAL(K_P3): 792 k_fn(vc, KVAL(K_PGDN), 0); 793 return; 794 case KVAL(K_P4): 795 k_cur(vc, KVAL(K_LEFT), 0); 796 return; 797 case KVAL(K_P6): 798 k_cur(vc, KVAL(K_RIGHT), 0); 799 return; 800 case KVAL(K_P7): 801 k_fn(vc, KVAL(K_FIND), 0); 802 return; 803 case KVAL(K_P8): 804 k_cur(vc, KVAL(K_UP), 0); 805 return; 806 case KVAL(K_P9): 807 k_fn(vc, KVAL(K_PGUP), 0); 808 return; 809 case KVAL(K_P5): 810 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC)); 811 return; 812 } 813 } 814 815 put_queue(vc, pad_chars[value]); 816 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF)) 817 put_queue(vc, 10); 818 } 819 820 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag) 821 { 822 int old_state = shift_state; 823 824 if (rep) 825 return; 826 /* 827 * Mimic typewriter: 828 * a CapsShift key acts like Shift but undoes CapsLock 829 */ 830 if (value == KVAL(K_CAPSSHIFT)) { 831 value = KVAL(K_SHIFT); 832 if (!up_flag) 833 clr_vc_kbd_led(kbd, VC_CAPSLOCK); 834 } 835 836 if (up_flag) { 837 /* 838 * handle the case that two shift or control 839 * keys are depressed simultaneously 840 */ 841 if (shift_down[value]) 842 shift_down[value]--; 843 } else 844 shift_down[value]++; 845 846 if (shift_down[value]) 847 shift_state |= (1 << value); 848 else 849 shift_state &= ~(1 << value); 850 851 /* kludge */ 852 if (up_flag && shift_state != old_state && npadch_active) { 853 if (kbd->kbdmode == VC_UNICODE) 854 to_utf8(vc, npadch_value); 855 else 856 put_queue(vc, npadch_value & 0xff); 857 npadch_active = false; 858 } 859 } 860 861 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag) 862 { 863 if (up_flag) 864 return; 865 866 if (vc_kbd_mode(kbd, VC_META)) { 867 put_queue(vc, '\033'); 868 put_queue(vc, value); 869 } else 870 put_queue(vc, value | 0x80); 871 } 872 873 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag) 874 { 875 unsigned int base; 876 877 if (up_flag) 878 return; 879 880 if (value < 10) { 881 /* decimal input of code, while Alt depressed */ 882 base = 10; 883 } else { 884 /* hexadecimal input of code, while AltGr depressed */ 885 value -= 10; 886 base = 16; 887 } 888 889 if (!npadch_active) { 890 npadch_value = 0; 891 npadch_active = true; 892 } 893 894 npadch_value = npadch_value * base + value; 895 } 896 897 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag) 898 { 899 if (up_flag || rep) 900 return; 901 902 chg_vc_kbd_lock(kbd, value); 903 } 904 905 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag) 906 { 907 k_shift(vc, value, up_flag); 908 if (up_flag || rep) 909 return; 910 911 chg_vc_kbd_slock(kbd, value); 912 /* try to make Alt, oops, AltGr and such work */ 913 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) { 914 kbd->slockstate = 0; 915 chg_vc_kbd_slock(kbd, value); 916 } 917 } 918 919 /* by default, 300ms interval for combination release */ 920 static unsigned brl_timeout = 300; 921 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)"); 922 module_param(brl_timeout, uint, 0644); 923 924 static unsigned brl_nbchords = 1; 925 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)"); 926 module_param(brl_nbchords, uint, 0644); 927 928 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag) 929 { 930 static unsigned long chords; 931 static unsigned committed; 932 933 if (!brl_nbchords) 934 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag); 935 else { 936 committed |= pattern; 937 chords++; 938 if (chords == brl_nbchords) { 939 k_unicode(vc, BRL_UC_ROW | committed, up_flag); 940 chords = 0; 941 committed = 0; 942 } 943 } 944 } 945 946 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag) 947 { 948 static unsigned pressed, committing; 949 static unsigned long releasestart; 950 951 if (kbd->kbdmode != VC_UNICODE) { 952 if (!up_flag) 953 pr_warn("keyboard mode must be unicode for braille patterns\n"); 954 return; 955 } 956 957 if (!value) { 958 k_unicode(vc, BRL_UC_ROW, up_flag); 959 return; 960 } 961 962 if (value > 8) 963 return; 964 965 if (!up_flag) { 966 pressed |= 1 << (value - 1); 967 if (!brl_timeout) 968 committing = pressed; 969 } else if (brl_timeout) { 970 if (!committing || 971 time_after(jiffies, 972 releasestart + msecs_to_jiffies(brl_timeout))) { 973 committing = pressed; 974 releasestart = jiffies; 975 } 976 pressed &= ~(1 << (value - 1)); 977 if (!pressed && committing) { 978 k_brlcommit(vc, committing, 0); 979 committing = 0; 980 } 981 } else { 982 if (committing) { 983 k_brlcommit(vc, committing, 0); 984 committing = 0; 985 } 986 pressed &= ~(1 << (value - 1)); 987 } 988 } 989 990 #if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS) 991 992 struct kbd_led_trigger { 993 struct led_trigger trigger; 994 unsigned int mask; 995 }; 996 997 static int kbd_led_trigger_activate(struct led_classdev *cdev) 998 { 999 struct kbd_led_trigger *trigger = 1000 container_of(cdev->trigger, struct kbd_led_trigger, trigger); 1001 1002 tasklet_disable(&keyboard_tasklet); 1003 if (ledstate != -1U) 1004 led_trigger_event(&trigger->trigger, 1005 ledstate & trigger->mask ? 1006 LED_FULL : LED_OFF); 1007 tasklet_enable(&keyboard_tasklet); 1008 1009 return 0; 1010 } 1011 1012 #define KBD_LED_TRIGGER(_led_bit, _name) { \ 1013 .trigger = { \ 1014 .name = _name, \ 1015 .activate = kbd_led_trigger_activate, \ 1016 }, \ 1017 .mask = BIT(_led_bit), \ 1018 } 1019 1020 #define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \ 1021 KBD_LED_TRIGGER((_led_bit) + 8, _name) 1022 1023 static struct kbd_led_trigger kbd_led_triggers[] = { 1024 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"), 1025 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"), 1026 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"), 1027 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"), 1028 1029 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"), 1030 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"), 1031 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"), 1032 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"), 1033 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"), 1034 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"), 1035 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"), 1036 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"), 1037 }; 1038 1039 static void kbd_propagate_led_state(unsigned int old_state, 1040 unsigned int new_state) 1041 { 1042 struct kbd_led_trigger *trigger; 1043 unsigned int changed = old_state ^ new_state; 1044 int i; 1045 1046 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) { 1047 trigger = &kbd_led_triggers[i]; 1048 1049 if (changed & trigger->mask) 1050 led_trigger_event(&trigger->trigger, 1051 new_state & trigger->mask ? 1052 LED_FULL : LED_OFF); 1053 } 1054 } 1055 1056 static int kbd_update_leds_helper(struct input_handle *handle, void *data) 1057 { 1058 unsigned int led_state = *(unsigned int *)data; 1059 1060 if (test_bit(EV_LED, handle->dev->evbit)) 1061 kbd_propagate_led_state(~led_state, led_state); 1062 1063 return 0; 1064 } 1065 1066 static void kbd_init_leds(void) 1067 { 1068 int error; 1069 int i; 1070 1071 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) { 1072 error = led_trigger_register(&kbd_led_triggers[i].trigger); 1073 if (error) 1074 pr_err("error %d while registering trigger %s\n", 1075 error, kbd_led_triggers[i].trigger.name); 1076 } 1077 } 1078 1079 #else 1080 1081 static int kbd_update_leds_helper(struct input_handle *handle, void *data) 1082 { 1083 unsigned int leds = *(unsigned int *)data; 1084 1085 if (test_bit(EV_LED, handle->dev->evbit)) { 1086 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01)); 1087 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02)); 1088 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04)); 1089 input_inject_event(handle, EV_SYN, SYN_REPORT, 0); 1090 } 1091 1092 return 0; 1093 } 1094 1095 static void kbd_propagate_led_state(unsigned int old_state, 1096 unsigned int new_state) 1097 { 1098 input_handler_for_each_handle(&kbd_handler, &new_state, 1099 kbd_update_leds_helper); 1100 } 1101 1102 static void kbd_init_leds(void) 1103 { 1104 } 1105 1106 #endif 1107 1108 /* 1109 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock, 1110 * or (ii) whatever pattern of lights people want to show using KDSETLED, 1111 * or (iii) specified bits of specified words in kernel memory. 1112 */ 1113 static unsigned char getledstate(void) 1114 { 1115 return ledstate & 0xff; 1116 } 1117 1118 void setledstate(struct kbd_struct *kb, unsigned int led) 1119 { 1120 unsigned long flags; 1121 spin_lock_irqsave(&led_lock, flags); 1122 if (!(led & ~7)) { 1123 ledioctl = led; 1124 kb->ledmode = LED_SHOW_IOCTL; 1125 } else 1126 kb->ledmode = LED_SHOW_FLAGS; 1127 1128 set_leds(); 1129 spin_unlock_irqrestore(&led_lock, flags); 1130 } 1131 1132 static inline unsigned char getleds(void) 1133 { 1134 struct kbd_struct *kb = kbd_table + fg_console; 1135 1136 if (kb->ledmode == LED_SHOW_IOCTL) 1137 return ledioctl; 1138 1139 return kb->ledflagstate; 1140 } 1141 1142 /** 1143 * vt_get_leds - helper for braille console 1144 * @console: console to read 1145 * @flag: flag we want to check 1146 * 1147 * Check the status of a keyboard led flag and report it back 1148 */ 1149 int vt_get_leds(int console, int flag) 1150 { 1151 struct kbd_struct *kb = kbd_table + console; 1152 int ret; 1153 unsigned long flags; 1154 1155 spin_lock_irqsave(&led_lock, flags); 1156 ret = vc_kbd_led(kb, flag); 1157 spin_unlock_irqrestore(&led_lock, flags); 1158 1159 return ret; 1160 } 1161 EXPORT_SYMBOL_GPL(vt_get_leds); 1162 1163 /** 1164 * vt_set_led_state - set LED state of a console 1165 * @console: console to set 1166 * @leds: LED bits 1167 * 1168 * Set the LEDs on a console. This is a wrapper for the VT layer 1169 * so that we can keep kbd knowledge internal 1170 */ 1171 void vt_set_led_state(int console, int leds) 1172 { 1173 struct kbd_struct *kb = kbd_table + console; 1174 setledstate(kb, leds); 1175 } 1176 1177 /** 1178 * vt_kbd_con_start - Keyboard side of console start 1179 * @console: console 1180 * 1181 * Handle console start. This is a wrapper for the VT layer 1182 * so that we can keep kbd knowledge internal 1183 * 1184 * FIXME: We eventually need to hold the kbd lock here to protect 1185 * the LED updating. We can't do it yet because fn_hold calls stop_tty 1186 * and start_tty under the kbd_event_lock, while normal tty paths 1187 * don't hold the lock. We probably need to split out an LED lock 1188 * but not during an -rc release! 1189 */ 1190 void vt_kbd_con_start(int console) 1191 { 1192 struct kbd_struct *kb = kbd_table + console; 1193 unsigned long flags; 1194 spin_lock_irqsave(&led_lock, flags); 1195 clr_vc_kbd_led(kb, VC_SCROLLOCK); 1196 set_leds(); 1197 spin_unlock_irqrestore(&led_lock, flags); 1198 } 1199 1200 /** 1201 * vt_kbd_con_stop - Keyboard side of console stop 1202 * @console: console 1203 * 1204 * Handle console stop. This is a wrapper for the VT layer 1205 * so that we can keep kbd knowledge internal 1206 */ 1207 void vt_kbd_con_stop(int console) 1208 { 1209 struct kbd_struct *kb = kbd_table + console; 1210 unsigned long flags; 1211 spin_lock_irqsave(&led_lock, flags); 1212 set_vc_kbd_led(kb, VC_SCROLLOCK); 1213 set_leds(); 1214 spin_unlock_irqrestore(&led_lock, flags); 1215 } 1216 1217 /* 1218 * This is the tasklet that updates LED state of LEDs using standard 1219 * keyboard triggers. The reason we use tasklet is that we need to 1220 * handle the scenario when keyboard handler is not registered yet 1221 * but we already getting updates from the VT to update led state. 1222 */ 1223 static void kbd_bh(unsigned long dummy) 1224 { 1225 unsigned int leds; 1226 unsigned long flags; 1227 1228 spin_lock_irqsave(&led_lock, flags); 1229 leds = getleds(); 1230 leds |= (unsigned int)kbd->lockstate << 8; 1231 spin_unlock_irqrestore(&led_lock, flags); 1232 1233 if (leds != ledstate) { 1234 kbd_propagate_led_state(ledstate, leds); 1235 ledstate = leds; 1236 } 1237 } 1238 1239 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0); 1240 1241 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\ 1242 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\ 1243 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\ 1244 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) 1245 1246 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\ 1247 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001)) 1248 1249 static const unsigned short x86_keycodes[256] = 1250 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1251 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1252 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 1253 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 1254 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 1255 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92, 1256 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339, 1257 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349, 1258 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355, 1259 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361, 1260 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114, 1261 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116, 1262 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307, 1263 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330, 1264 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 }; 1265 1266 #ifdef CONFIG_SPARC 1267 static int sparc_l1_a_state; 1268 extern void sun_do_break(void); 1269 #endif 1270 1271 static int emulate_raw(struct vc_data *vc, unsigned int keycode, 1272 unsigned char up_flag) 1273 { 1274 int code; 1275 1276 switch (keycode) { 1277 1278 case KEY_PAUSE: 1279 put_queue(vc, 0xe1); 1280 put_queue(vc, 0x1d | up_flag); 1281 put_queue(vc, 0x45 | up_flag); 1282 break; 1283 1284 case KEY_HANGEUL: 1285 if (!up_flag) 1286 put_queue(vc, 0xf2); 1287 break; 1288 1289 case KEY_HANJA: 1290 if (!up_flag) 1291 put_queue(vc, 0xf1); 1292 break; 1293 1294 case KEY_SYSRQ: 1295 /* 1296 * Real AT keyboards (that's what we're trying 1297 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when 1298 * pressing PrtSc/SysRq alone, but simply 0x54 1299 * when pressing Alt+PrtSc/SysRq. 1300 */ 1301 if (test_bit(KEY_LEFTALT, key_down) || 1302 test_bit(KEY_RIGHTALT, key_down)) { 1303 put_queue(vc, 0x54 | up_flag); 1304 } else { 1305 put_queue(vc, 0xe0); 1306 put_queue(vc, 0x2a | up_flag); 1307 put_queue(vc, 0xe0); 1308 put_queue(vc, 0x37 | up_flag); 1309 } 1310 break; 1311 1312 default: 1313 if (keycode > 255) 1314 return -1; 1315 1316 code = x86_keycodes[keycode]; 1317 if (!code) 1318 return -1; 1319 1320 if (code & 0x100) 1321 put_queue(vc, 0xe0); 1322 put_queue(vc, (code & 0x7f) | up_flag); 1323 1324 break; 1325 } 1326 1327 return 0; 1328 } 1329 1330 #else 1331 1332 #define HW_RAW(dev) 0 1333 1334 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag) 1335 { 1336 if (keycode > 127) 1337 return -1; 1338 1339 put_queue(vc, keycode | up_flag); 1340 return 0; 1341 } 1342 #endif 1343 1344 static void kbd_rawcode(unsigned char data) 1345 { 1346 struct vc_data *vc = vc_cons[fg_console].d; 1347 1348 kbd = kbd_table + vc->vc_num; 1349 if (kbd->kbdmode == VC_RAW) 1350 put_queue(vc, data); 1351 } 1352 1353 static void kbd_keycode(unsigned int keycode, int down, int hw_raw) 1354 { 1355 struct vc_data *vc = vc_cons[fg_console].d; 1356 unsigned short keysym, *key_map; 1357 unsigned char type; 1358 bool raw_mode; 1359 struct tty_struct *tty; 1360 int shift_final; 1361 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down }; 1362 int rc; 1363 1364 tty = vc->port.tty; 1365 1366 if (tty && (!tty->driver_data)) { 1367 /* No driver data? Strange. Okay we fix it then. */ 1368 tty->driver_data = vc; 1369 } 1370 1371 kbd = kbd_table + vc->vc_num; 1372 1373 #ifdef CONFIG_SPARC 1374 if (keycode == KEY_STOP) 1375 sparc_l1_a_state = down; 1376 #endif 1377 1378 rep = (down == 2); 1379 1380 raw_mode = (kbd->kbdmode == VC_RAW); 1381 if (raw_mode && !hw_raw) 1382 if (emulate_raw(vc, keycode, !down << 7)) 1383 if (keycode < BTN_MISC && printk_ratelimit()) 1384 pr_warn("can't emulate rawmode for keycode %d\n", 1385 keycode); 1386 1387 #ifdef CONFIG_SPARC 1388 if (keycode == KEY_A && sparc_l1_a_state) { 1389 sparc_l1_a_state = false; 1390 sun_do_break(); 1391 } 1392 #endif 1393 1394 if (kbd->kbdmode == VC_MEDIUMRAW) { 1395 /* 1396 * This is extended medium raw mode, with keys above 127 1397 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing 1398 * the 'up' flag if needed. 0 is reserved, so this shouldn't 1399 * interfere with anything else. The two bytes after 0 will 1400 * always have the up flag set not to interfere with older 1401 * applications. This allows for 16384 different keycodes, 1402 * which should be enough. 1403 */ 1404 if (keycode < 128) { 1405 put_queue(vc, keycode | (!down << 7)); 1406 } else { 1407 put_queue(vc, !down << 7); 1408 put_queue(vc, (keycode >> 7) | 0x80); 1409 put_queue(vc, keycode | 0x80); 1410 } 1411 raw_mode = true; 1412 } 1413 1414 if (down) 1415 set_bit(keycode, key_down); 1416 else 1417 clear_bit(keycode, key_down); 1418 1419 if (rep && 1420 (!vc_kbd_mode(kbd, VC_REPEAT) || 1421 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) { 1422 /* 1423 * Don't repeat a key if the input buffers are not empty and the 1424 * characters get aren't echoed locally. This makes key repeat 1425 * usable with slow applications and under heavy loads. 1426 */ 1427 return; 1428 } 1429 1430 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate; 1431 param.ledstate = kbd->ledflagstate; 1432 key_map = key_maps[shift_final]; 1433 1434 rc = atomic_notifier_call_chain(&keyboard_notifier_list, 1435 KBD_KEYCODE, ¶m); 1436 if (rc == NOTIFY_STOP || !key_map) { 1437 atomic_notifier_call_chain(&keyboard_notifier_list, 1438 KBD_UNBOUND_KEYCODE, ¶m); 1439 do_compute_shiftstate(); 1440 kbd->slockstate = 0; 1441 return; 1442 } 1443 1444 if (keycode < NR_KEYS) 1445 keysym = key_map[keycode]; 1446 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8) 1447 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1)); 1448 else 1449 return; 1450 1451 type = KTYP(keysym); 1452 1453 if (type < 0xf0) { 1454 param.value = keysym; 1455 rc = atomic_notifier_call_chain(&keyboard_notifier_list, 1456 KBD_UNICODE, ¶m); 1457 if (rc != NOTIFY_STOP) 1458 if (down && !raw_mode) 1459 k_unicode(vc, keysym, !down); 1460 return; 1461 } 1462 1463 type -= 0xf0; 1464 1465 if (type == KT_LETTER) { 1466 type = KT_LATIN; 1467 if (vc_kbd_led(kbd, VC_CAPSLOCK)) { 1468 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)]; 1469 if (key_map) 1470 keysym = key_map[keycode]; 1471 } 1472 } 1473 1474 param.value = keysym; 1475 rc = atomic_notifier_call_chain(&keyboard_notifier_list, 1476 KBD_KEYSYM, ¶m); 1477 if (rc == NOTIFY_STOP) 1478 return; 1479 1480 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT) 1481 return; 1482 1483 (*k_handler[type])(vc, keysym & 0xff, !down); 1484 1485 param.ledstate = kbd->ledflagstate; 1486 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m); 1487 1488 if (type != KT_SLOCK) 1489 kbd->slockstate = 0; 1490 } 1491 1492 static void kbd_event(struct input_handle *handle, unsigned int event_type, 1493 unsigned int event_code, int value) 1494 { 1495 /* We are called with interrupts disabled, just take the lock */ 1496 spin_lock(&kbd_event_lock); 1497 1498 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev)) 1499 kbd_rawcode(value); 1500 if (event_type == EV_KEY && event_code <= KEY_MAX) 1501 kbd_keycode(event_code, value, HW_RAW(handle->dev)); 1502 1503 spin_unlock(&kbd_event_lock); 1504 1505 tasklet_schedule(&keyboard_tasklet); 1506 do_poke_blanked_console = 1; 1507 schedule_console_callback(); 1508 } 1509 1510 static bool kbd_match(struct input_handler *handler, struct input_dev *dev) 1511 { 1512 int i; 1513 1514 if (test_bit(EV_SND, dev->evbit)) 1515 return true; 1516 1517 if (test_bit(EV_KEY, dev->evbit)) { 1518 for (i = KEY_RESERVED; i < BTN_MISC; i++) 1519 if (test_bit(i, dev->keybit)) 1520 return true; 1521 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++) 1522 if (test_bit(i, dev->keybit)) 1523 return true; 1524 } 1525 1526 return false; 1527 } 1528 1529 /* 1530 * When a keyboard (or other input device) is found, the kbd_connect 1531 * function is called. The function then looks at the device, and if it 1532 * likes it, it can open it and get events from it. In this (kbd_connect) 1533 * function, we should decide which VT to bind that keyboard to initially. 1534 */ 1535 static int kbd_connect(struct input_handler *handler, struct input_dev *dev, 1536 const struct input_device_id *id) 1537 { 1538 struct input_handle *handle; 1539 int error; 1540 1541 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL); 1542 if (!handle) 1543 return -ENOMEM; 1544 1545 handle->dev = dev; 1546 handle->handler = handler; 1547 handle->name = "kbd"; 1548 1549 error = input_register_handle(handle); 1550 if (error) 1551 goto err_free_handle; 1552 1553 error = input_open_device(handle); 1554 if (error) 1555 goto err_unregister_handle; 1556 1557 return 0; 1558 1559 err_unregister_handle: 1560 input_unregister_handle(handle); 1561 err_free_handle: 1562 kfree(handle); 1563 return error; 1564 } 1565 1566 static void kbd_disconnect(struct input_handle *handle) 1567 { 1568 input_close_device(handle); 1569 input_unregister_handle(handle); 1570 kfree(handle); 1571 } 1572 1573 /* 1574 * Start keyboard handler on the new keyboard by refreshing LED state to 1575 * match the rest of the system. 1576 */ 1577 static void kbd_start(struct input_handle *handle) 1578 { 1579 tasklet_disable(&keyboard_tasklet); 1580 1581 if (ledstate != -1U) 1582 kbd_update_leds_helper(handle, &ledstate); 1583 1584 tasklet_enable(&keyboard_tasklet); 1585 } 1586 1587 static const struct input_device_id kbd_ids[] = { 1588 { 1589 .flags = INPUT_DEVICE_ID_MATCH_EVBIT, 1590 .evbit = { BIT_MASK(EV_KEY) }, 1591 }, 1592 1593 { 1594 .flags = INPUT_DEVICE_ID_MATCH_EVBIT, 1595 .evbit = { BIT_MASK(EV_SND) }, 1596 }, 1597 1598 { }, /* Terminating entry */ 1599 }; 1600 1601 MODULE_DEVICE_TABLE(input, kbd_ids); 1602 1603 static struct input_handler kbd_handler = { 1604 .event = kbd_event, 1605 .match = kbd_match, 1606 .connect = kbd_connect, 1607 .disconnect = kbd_disconnect, 1608 .start = kbd_start, 1609 .name = "kbd", 1610 .id_table = kbd_ids, 1611 }; 1612 1613 int __init kbd_init(void) 1614 { 1615 int i; 1616 int error; 1617 1618 for (i = 0; i < MAX_NR_CONSOLES; i++) { 1619 kbd_table[i].ledflagstate = kbd_defleds(); 1620 kbd_table[i].default_ledflagstate = kbd_defleds(); 1621 kbd_table[i].ledmode = LED_SHOW_FLAGS; 1622 kbd_table[i].lockstate = KBD_DEFLOCK; 1623 kbd_table[i].slockstate = 0; 1624 kbd_table[i].modeflags = KBD_DEFMODE; 1625 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE; 1626 } 1627 1628 kbd_init_leds(); 1629 1630 error = input_register_handler(&kbd_handler); 1631 if (error) 1632 return error; 1633 1634 tasklet_enable(&keyboard_tasklet); 1635 tasklet_schedule(&keyboard_tasklet); 1636 1637 return 0; 1638 } 1639 1640 /* Ioctl support code */ 1641 1642 /** 1643 * vt_do_diacrit - diacritical table updates 1644 * @cmd: ioctl request 1645 * @udp: pointer to user data for ioctl 1646 * @perm: permissions check computed by caller 1647 * 1648 * Update the diacritical tables atomically and safely. Lock them 1649 * against simultaneous keypresses 1650 */ 1651 int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm) 1652 { 1653 unsigned long flags; 1654 int asize; 1655 int ret = 0; 1656 1657 switch (cmd) { 1658 case KDGKBDIACR: 1659 { 1660 struct kbdiacrs __user *a = udp; 1661 struct kbdiacr *dia; 1662 int i; 1663 1664 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr), 1665 GFP_KERNEL); 1666 if (!dia) 1667 return -ENOMEM; 1668 1669 /* Lock the diacriticals table, make a copy and then 1670 copy it after we unlock */ 1671 spin_lock_irqsave(&kbd_event_lock, flags); 1672 1673 asize = accent_table_size; 1674 for (i = 0; i < asize; i++) { 1675 dia[i].diacr = conv_uni_to_8bit( 1676 accent_table[i].diacr); 1677 dia[i].base = conv_uni_to_8bit( 1678 accent_table[i].base); 1679 dia[i].result = conv_uni_to_8bit( 1680 accent_table[i].result); 1681 } 1682 spin_unlock_irqrestore(&kbd_event_lock, flags); 1683 1684 if (put_user(asize, &a->kb_cnt)) 1685 ret = -EFAULT; 1686 else if (copy_to_user(a->kbdiacr, dia, 1687 asize * sizeof(struct kbdiacr))) 1688 ret = -EFAULT; 1689 kfree(dia); 1690 return ret; 1691 } 1692 case KDGKBDIACRUC: 1693 { 1694 struct kbdiacrsuc __user *a = udp; 1695 void *buf; 1696 1697 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc), 1698 GFP_KERNEL); 1699 if (buf == NULL) 1700 return -ENOMEM; 1701 1702 /* Lock the diacriticals table, make a copy and then 1703 copy it after we unlock */ 1704 spin_lock_irqsave(&kbd_event_lock, flags); 1705 1706 asize = accent_table_size; 1707 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc)); 1708 1709 spin_unlock_irqrestore(&kbd_event_lock, flags); 1710 1711 if (put_user(asize, &a->kb_cnt)) 1712 ret = -EFAULT; 1713 else if (copy_to_user(a->kbdiacruc, buf, 1714 asize*sizeof(struct kbdiacruc))) 1715 ret = -EFAULT; 1716 kfree(buf); 1717 return ret; 1718 } 1719 1720 case KDSKBDIACR: 1721 { 1722 struct kbdiacrs __user *a = udp; 1723 struct kbdiacr *dia = NULL; 1724 unsigned int ct; 1725 int i; 1726 1727 if (!perm) 1728 return -EPERM; 1729 if (get_user(ct, &a->kb_cnt)) 1730 return -EFAULT; 1731 if (ct >= MAX_DIACR) 1732 return -EINVAL; 1733 1734 if (ct) { 1735 1736 dia = memdup_user(a->kbdiacr, 1737 sizeof(struct kbdiacr) * ct); 1738 if (IS_ERR(dia)) 1739 return PTR_ERR(dia); 1740 1741 } 1742 1743 spin_lock_irqsave(&kbd_event_lock, flags); 1744 accent_table_size = ct; 1745 for (i = 0; i < ct; i++) { 1746 accent_table[i].diacr = 1747 conv_8bit_to_uni(dia[i].diacr); 1748 accent_table[i].base = 1749 conv_8bit_to_uni(dia[i].base); 1750 accent_table[i].result = 1751 conv_8bit_to_uni(dia[i].result); 1752 } 1753 spin_unlock_irqrestore(&kbd_event_lock, flags); 1754 kfree(dia); 1755 return 0; 1756 } 1757 1758 case KDSKBDIACRUC: 1759 { 1760 struct kbdiacrsuc __user *a = udp; 1761 unsigned int ct; 1762 void *buf = NULL; 1763 1764 if (!perm) 1765 return -EPERM; 1766 1767 if (get_user(ct, &a->kb_cnt)) 1768 return -EFAULT; 1769 1770 if (ct >= MAX_DIACR) 1771 return -EINVAL; 1772 1773 if (ct) { 1774 buf = memdup_user(a->kbdiacruc, 1775 ct * sizeof(struct kbdiacruc)); 1776 if (IS_ERR(buf)) 1777 return PTR_ERR(buf); 1778 } 1779 spin_lock_irqsave(&kbd_event_lock, flags); 1780 if (ct) 1781 memcpy(accent_table, buf, 1782 ct * sizeof(struct kbdiacruc)); 1783 accent_table_size = ct; 1784 spin_unlock_irqrestore(&kbd_event_lock, flags); 1785 kfree(buf); 1786 return 0; 1787 } 1788 } 1789 return ret; 1790 } 1791 1792 /** 1793 * vt_do_kdskbmode - set keyboard mode ioctl 1794 * @console: the console to use 1795 * @arg: the requested mode 1796 * 1797 * Update the keyboard mode bits while holding the correct locks. 1798 * Return 0 for success or an error code. 1799 */ 1800 int vt_do_kdskbmode(int console, unsigned int arg) 1801 { 1802 struct kbd_struct *kb = kbd_table + console; 1803 int ret = 0; 1804 unsigned long flags; 1805 1806 spin_lock_irqsave(&kbd_event_lock, flags); 1807 switch(arg) { 1808 case K_RAW: 1809 kb->kbdmode = VC_RAW; 1810 break; 1811 case K_MEDIUMRAW: 1812 kb->kbdmode = VC_MEDIUMRAW; 1813 break; 1814 case K_XLATE: 1815 kb->kbdmode = VC_XLATE; 1816 do_compute_shiftstate(); 1817 break; 1818 case K_UNICODE: 1819 kb->kbdmode = VC_UNICODE; 1820 do_compute_shiftstate(); 1821 break; 1822 case K_OFF: 1823 kb->kbdmode = VC_OFF; 1824 break; 1825 default: 1826 ret = -EINVAL; 1827 } 1828 spin_unlock_irqrestore(&kbd_event_lock, flags); 1829 return ret; 1830 } 1831 1832 /** 1833 * vt_do_kdskbmeta - set keyboard meta state 1834 * @console: the console to use 1835 * @arg: the requested meta state 1836 * 1837 * Update the keyboard meta bits while holding the correct locks. 1838 * Return 0 for success or an error code. 1839 */ 1840 int vt_do_kdskbmeta(int console, unsigned int arg) 1841 { 1842 struct kbd_struct *kb = kbd_table + console; 1843 int ret = 0; 1844 unsigned long flags; 1845 1846 spin_lock_irqsave(&kbd_event_lock, flags); 1847 switch(arg) { 1848 case K_METABIT: 1849 clr_vc_kbd_mode(kb, VC_META); 1850 break; 1851 case K_ESCPREFIX: 1852 set_vc_kbd_mode(kb, VC_META); 1853 break; 1854 default: 1855 ret = -EINVAL; 1856 } 1857 spin_unlock_irqrestore(&kbd_event_lock, flags); 1858 return ret; 1859 } 1860 1861 int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc, 1862 int perm) 1863 { 1864 struct kbkeycode tmp; 1865 int kc = 0; 1866 1867 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode))) 1868 return -EFAULT; 1869 switch (cmd) { 1870 case KDGETKEYCODE: 1871 kc = getkeycode(tmp.scancode); 1872 if (kc >= 0) 1873 kc = put_user(kc, &user_kbkc->keycode); 1874 break; 1875 case KDSETKEYCODE: 1876 if (!perm) 1877 return -EPERM; 1878 kc = setkeycode(tmp.scancode, tmp.keycode); 1879 break; 1880 } 1881 return kc; 1882 } 1883 1884 #define i (tmp.kb_index) 1885 #define s (tmp.kb_table) 1886 #define v (tmp.kb_value) 1887 1888 int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm, 1889 int console) 1890 { 1891 struct kbd_struct *kb = kbd_table + console; 1892 struct kbentry tmp; 1893 ushort *key_map, *new_map, val, ov; 1894 unsigned long flags; 1895 1896 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry))) 1897 return -EFAULT; 1898 1899 if (!capable(CAP_SYS_TTY_CONFIG)) 1900 perm = 0; 1901 1902 switch (cmd) { 1903 case KDGKBENT: 1904 /* Ensure another thread doesn't free it under us */ 1905 spin_lock_irqsave(&kbd_event_lock, flags); 1906 key_map = key_maps[s]; 1907 if (key_map) { 1908 val = U(key_map[i]); 1909 if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES) 1910 val = K_HOLE; 1911 } else 1912 val = (i ? K_HOLE : K_NOSUCHMAP); 1913 spin_unlock_irqrestore(&kbd_event_lock, flags); 1914 return put_user(val, &user_kbe->kb_value); 1915 case KDSKBENT: 1916 if (!perm) 1917 return -EPERM; 1918 if (!i && v == K_NOSUCHMAP) { 1919 spin_lock_irqsave(&kbd_event_lock, flags); 1920 /* deallocate map */ 1921 key_map = key_maps[s]; 1922 if (s && key_map) { 1923 key_maps[s] = NULL; 1924 if (key_map[0] == U(K_ALLOCATED)) { 1925 kfree(key_map); 1926 keymap_count--; 1927 } 1928 } 1929 spin_unlock_irqrestore(&kbd_event_lock, flags); 1930 break; 1931 } 1932 1933 if (KTYP(v) < NR_TYPES) { 1934 if (KVAL(v) > max_vals[KTYP(v)]) 1935 return -EINVAL; 1936 } else 1937 if (kb->kbdmode != VC_UNICODE) 1938 return -EINVAL; 1939 1940 /* ++Geert: non-PC keyboards may generate keycode zero */ 1941 #if !defined(__mc68000__) && !defined(__powerpc__) 1942 /* assignment to entry 0 only tests validity of args */ 1943 if (!i) 1944 break; 1945 #endif 1946 1947 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL); 1948 if (!new_map) 1949 return -ENOMEM; 1950 spin_lock_irqsave(&kbd_event_lock, flags); 1951 key_map = key_maps[s]; 1952 if (key_map == NULL) { 1953 int j; 1954 1955 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS && 1956 !capable(CAP_SYS_RESOURCE)) { 1957 spin_unlock_irqrestore(&kbd_event_lock, flags); 1958 kfree(new_map); 1959 return -EPERM; 1960 } 1961 key_maps[s] = new_map; 1962 key_map = new_map; 1963 key_map[0] = U(K_ALLOCATED); 1964 for (j = 1; j < NR_KEYS; j++) 1965 key_map[j] = U(K_HOLE); 1966 keymap_count++; 1967 } else 1968 kfree(new_map); 1969 1970 ov = U(key_map[i]); 1971 if (v == ov) 1972 goto out; 1973 /* 1974 * Attention Key. 1975 */ 1976 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) { 1977 spin_unlock_irqrestore(&kbd_event_lock, flags); 1978 return -EPERM; 1979 } 1980 key_map[i] = U(v); 1981 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT)) 1982 do_compute_shiftstate(); 1983 out: 1984 spin_unlock_irqrestore(&kbd_event_lock, flags); 1985 break; 1986 } 1987 return 0; 1988 } 1989 #undef i 1990 #undef s 1991 #undef v 1992 1993 /* FIXME: This one needs untangling and locking */ 1994 int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm) 1995 { 1996 struct kbsentry *kbs; 1997 char *p; 1998 u_char *q; 1999 u_char __user *up; 2000 int sz, fnw_sz; 2001 int delta; 2002 char *first_free, *fj, *fnw; 2003 int i, j, k; 2004 int ret; 2005 unsigned long flags; 2006 2007 if (!capable(CAP_SYS_TTY_CONFIG)) 2008 perm = 0; 2009 2010 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL); 2011 if (!kbs) { 2012 ret = -ENOMEM; 2013 goto reterr; 2014 } 2015 2016 /* we mostly copy too much here (512bytes), but who cares ;) */ 2017 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) { 2018 ret = -EFAULT; 2019 goto reterr; 2020 } 2021 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0'; 2022 i = kbs->kb_func; 2023 2024 switch (cmd) { 2025 case KDGKBSENT: 2026 sz = sizeof(kbs->kb_string) - 1; /* sz should have been 2027 a struct member */ 2028 up = user_kdgkb->kb_string; 2029 p = func_table[i]; 2030 if(p) 2031 for ( ; *p && sz; p++, sz--) 2032 if (put_user(*p, up++)) { 2033 ret = -EFAULT; 2034 goto reterr; 2035 } 2036 if (put_user('\0', up)) { 2037 ret = -EFAULT; 2038 goto reterr; 2039 } 2040 kfree(kbs); 2041 return ((p && *p) ? -EOVERFLOW : 0); 2042 case KDSKBSENT: 2043 if (!perm) { 2044 ret = -EPERM; 2045 goto reterr; 2046 } 2047 2048 fnw = NULL; 2049 fnw_sz = 0; 2050 /* race aginst other writers */ 2051 again: 2052 spin_lock_irqsave(&func_buf_lock, flags); 2053 q = func_table[i]; 2054 2055 /* fj pointer to next entry after 'q' */ 2056 first_free = funcbufptr + (funcbufsize - funcbufleft); 2057 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++) 2058 ; 2059 if (j < MAX_NR_FUNC) 2060 fj = func_table[j]; 2061 else 2062 fj = first_free; 2063 /* buffer usage increase by new entry */ 2064 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string); 2065 2066 if (delta <= funcbufleft) { /* it fits in current buf */ 2067 if (j < MAX_NR_FUNC) { 2068 /* make enough space for new entry at 'fj' */ 2069 memmove(fj + delta, fj, first_free - fj); 2070 for (k = j; k < MAX_NR_FUNC; k++) 2071 if (func_table[k]) 2072 func_table[k] += delta; 2073 } 2074 if (!q) 2075 func_table[i] = fj; 2076 funcbufleft -= delta; 2077 } else { /* allocate a larger buffer */ 2078 sz = 256; 2079 while (sz < funcbufsize - funcbufleft + delta) 2080 sz <<= 1; 2081 if (fnw_sz != sz) { 2082 spin_unlock_irqrestore(&func_buf_lock, flags); 2083 kfree(fnw); 2084 fnw = kmalloc(sz, GFP_KERNEL); 2085 fnw_sz = sz; 2086 if (!fnw) { 2087 ret = -ENOMEM; 2088 goto reterr; 2089 } 2090 goto again; 2091 } 2092 2093 if (!q) 2094 func_table[i] = fj; 2095 /* copy data before insertion point to new location */ 2096 if (fj > funcbufptr) 2097 memmove(fnw, funcbufptr, fj - funcbufptr); 2098 for (k = 0; k < j; k++) 2099 if (func_table[k]) 2100 func_table[k] = fnw + (func_table[k] - funcbufptr); 2101 2102 /* copy data after insertion point to new location */ 2103 if (first_free > fj) { 2104 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj); 2105 for (k = j; k < MAX_NR_FUNC; k++) 2106 if (func_table[k]) 2107 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta; 2108 } 2109 if (funcbufptr != func_buf) 2110 kfree(funcbufptr); 2111 funcbufptr = fnw; 2112 funcbufleft = funcbufleft - delta + sz - funcbufsize; 2113 funcbufsize = sz; 2114 } 2115 /* finally insert item itself */ 2116 strcpy(func_table[i], kbs->kb_string); 2117 spin_unlock_irqrestore(&func_buf_lock, flags); 2118 break; 2119 } 2120 ret = 0; 2121 reterr: 2122 kfree(kbs); 2123 return ret; 2124 } 2125 2126 int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm) 2127 { 2128 struct kbd_struct *kb = kbd_table + console; 2129 unsigned long flags; 2130 unsigned char ucval; 2131 2132 switch(cmd) { 2133 /* the ioctls below read/set the flags usually shown in the leds */ 2134 /* don't use them - they will go away without warning */ 2135 case KDGKBLED: 2136 spin_lock_irqsave(&kbd_event_lock, flags); 2137 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4); 2138 spin_unlock_irqrestore(&kbd_event_lock, flags); 2139 return put_user(ucval, (char __user *)arg); 2140 2141 case KDSKBLED: 2142 if (!perm) 2143 return -EPERM; 2144 if (arg & ~0x77) 2145 return -EINVAL; 2146 spin_lock_irqsave(&led_lock, flags); 2147 kb->ledflagstate = (arg & 7); 2148 kb->default_ledflagstate = ((arg >> 4) & 7); 2149 set_leds(); 2150 spin_unlock_irqrestore(&led_lock, flags); 2151 return 0; 2152 2153 /* the ioctls below only set the lights, not the functions */ 2154 /* for those, see KDGKBLED and KDSKBLED above */ 2155 case KDGETLED: 2156 ucval = getledstate(); 2157 return put_user(ucval, (char __user *)arg); 2158 2159 case KDSETLED: 2160 if (!perm) 2161 return -EPERM; 2162 setledstate(kb, arg); 2163 return 0; 2164 } 2165 return -ENOIOCTLCMD; 2166 } 2167 2168 int vt_do_kdgkbmode(int console) 2169 { 2170 struct kbd_struct *kb = kbd_table + console; 2171 /* This is a spot read so needs no locking */ 2172 switch (kb->kbdmode) { 2173 case VC_RAW: 2174 return K_RAW; 2175 case VC_MEDIUMRAW: 2176 return K_MEDIUMRAW; 2177 case VC_UNICODE: 2178 return K_UNICODE; 2179 case VC_OFF: 2180 return K_OFF; 2181 default: 2182 return K_XLATE; 2183 } 2184 } 2185 2186 /** 2187 * vt_do_kdgkbmeta - report meta status 2188 * @console: console to report 2189 * 2190 * Report the meta flag status of this console 2191 */ 2192 int vt_do_kdgkbmeta(int console) 2193 { 2194 struct kbd_struct *kb = kbd_table + console; 2195 /* Again a spot read so no locking */ 2196 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT; 2197 } 2198 2199 /** 2200 * vt_reset_unicode - reset the unicode status 2201 * @console: console being reset 2202 * 2203 * Restore the unicode console state to its default 2204 */ 2205 void vt_reset_unicode(int console) 2206 { 2207 unsigned long flags; 2208 2209 spin_lock_irqsave(&kbd_event_lock, flags); 2210 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE; 2211 spin_unlock_irqrestore(&kbd_event_lock, flags); 2212 } 2213 2214 /** 2215 * vt_get_shiftstate - shift bit state 2216 * 2217 * Report the shift bits from the keyboard state. We have to export 2218 * this to support some oddities in the vt layer. 2219 */ 2220 int vt_get_shift_state(void) 2221 { 2222 /* Don't lock as this is a transient report */ 2223 return shift_state; 2224 } 2225 2226 /** 2227 * vt_reset_keyboard - reset keyboard state 2228 * @console: console to reset 2229 * 2230 * Reset the keyboard bits for a console as part of a general console 2231 * reset event 2232 */ 2233 void vt_reset_keyboard(int console) 2234 { 2235 struct kbd_struct *kb = kbd_table + console; 2236 unsigned long flags; 2237 2238 spin_lock_irqsave(&kbd_event_lock, flags); 2239 set_vc_kbd_mode(kb, VC_REPEAT); 2240 clr_vc_kbd_mode(kb, VC_CKMODE); 2241 clr_vc_kbd_mode(kb, VC_APPLIC); 2242 clr_vc_kbd_mode(kb, VC_CRLF); 2243 kb->lockstate = 0; 2244 kb->slockstate = 0; 2245 spin_lock(&led_lock); 2246 kb->ledmode = LED_SHOW_FLAGS; 2247 kb->ledflagstate = kb->default_ledflagstate; 2248 spin_unlock(&led_lock); 2249 /* do not do set_leds here because this causes an endless tasklet loop 2250 when the keyboard hasn't been initialized yet */ 2251 spin_unlock_irqrestore(&kbd_event_lock, flags); 2252 } 2253 2254 /** 2255 * vt_get_kbd_mode_bit - read keyboard status bits 2256 * @console: console to read from 2257 * @bit: mode bit to read 2258 * 2259 * Report back a vt mode bit. We do this without locking so the 2260 * caller must be sure that there are no synchronization needs 2261 */ 2262 2263 int vt_get_kbd_mode_bit(int console, int bit) 2264 { 2265 struct kbd_struct *kb = kbd_table + console; 2266 return vc_kbd_mode(kb, bit); 2267 } 2268 2269 /** 2270 * vt_set_kbd_mode_bit - read keyboard status bits 2271 * @console: console to read from 2272 * @bit: mode bit to read 2273 * 2274 * Set a vt mode bit. We do this without locking so the 2275 * caller must be sure that there are no synchronization needs 2276 */ 2277 2278 void vt_set_kbd_mode_bit(int console, int bit) 2279 { 2280 struct kbd_struct *kb = kbd_table + console; 2281 unsigned long flags; 2282 2283 spin_lock_irqsave(&kbd_event_lock, flags); 2284 set_vc_kbd_mode(kb, bit); 2285 spin_unlock_irqrestore(&kbd_event_lock, flags); 2286 } 2287 2288 /** 2289 * vt_clr_kbd_mode_bit - read keyboard status bits 2290 * @console: console to read from 2291 * @bit: mode bit to read 2292 * 2293 * Report back a vt mode bit. We do this without locking so the 2294 * caller must be sure that there are no synchronization needs 2295 */ 2296 2297 void vt_clr_kbd_mode_bit(int console, int bit) 2298 { 2299 struct kbd_struct *kb = kbd_table + console; 2300 unsigned long flags; 2301 2302 spin_lock_irqsave(&kbd_event_lock, flags); 2303 clr_vc_kbd_mode(kb, bit); 2304 spin_unlock_irqrestore(&kbd_event_lock, flags); 2305 } 2306