xref: /openbmc/linux/drivers/tty/vt/keyboard.c (revision 5d0e4d78)
1 /*
2  * Written for linux by Johan Myreen as a translation from
3  * the assembly version by Linus (with diacriticals added)
4  *
5  * Some additional features added by Christoph Niemann (ChN), March 1993
6  *
7  * Loadable keymaps by Risto Kankkunen, May 1993
8  *
9  * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
10  * Added decr/incr_console, dynamic keymaps, Unicode support,
11  * dynamic function/string keys, led setting,  Sept 1994
12  * `Sticky' modifier keys, 951006.
13  *
14  * 11-11-96: SAK should now work in the raw mode (Martin Mares)
15  *
16  * Modified to provide 'generic' keyboard support by Hamish Macdonald
17  * Merge with the m68k keyboard driver and split-off of the PC low-level
18  * parts by Geert Uytterhoeven, May 1997
19  *
20  * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
21  * 30-07-98: Dead keys redone, aeb@cwi.nl.
22  * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
23  */
24 
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 
27 #include <linux/consolemap.h>
28 #include <linux/module.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/debug.h>
31 #include <linux/tty.h>
32 #include <linux/tty_flip.h>
33 #include <linux/mm.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/slab.h>
37 #include <linux/leds.h>
38 
39 #include <linux/kbd_kern.h>
40 #include <linux/kbd_diacr.h>
41 #include <linux/vt_kern.h>
42 #include <linux/input.h>
43 #include <linux/reboot.h>
44 #include <linux/notifier.h>
45 #include <linux/jiffies.h>
46 #include <linux/uaccess.h>
47 
48 #include <asm/irq_regs.h>
49 
50 extern void ctrl_alt_del(void);
51 
52 /*
53  * Exported functions/variables
54  */
55 
56 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
57 
58 #if defined(CONFIG_X86) || defined(CONFIG_PARISC)
59 #include <asm/kbdleds.h>
60 #else
61 static inline int kbd_defleds(void)
62 {
63 	return 0;
64 }
65 #endif
66 
67 #define KBD_DEFLOCK 0
68 
69 /*
70  * Handler Tables.
71  */
72 
73 #define K_HANDLERS\
74 	k_self,		k_fn,		k_spec,		k_pad,\
75 	k_dead,		k_cons,		k_cur,		k_shift,\
76 	k_meta,		k_ascii,	k_lock,		k_lowercase,\
77 	k_slock,	k_dead2,	k_brl,		k_ignore
78 
79 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
80 			    char up_flag);
81 static k_handler_fn K_HANDLERS;
82 static k_handler_fn *k_handler[16] = { K_HANDLERS };
83 
84 #define FN_HANDLERS\
85 	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
86 	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
87 	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
88 	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
89 	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
90 
91 typedef void (fn_handler_fn)(struct vc_data *vc);
92 static fn_handler_fn FN_HANDLERS;
93 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
94 
95 /*
96  * Variables exported for vt_ioctl.c
97  */
98 
99 struct vt_spawn_console vt_spawn_con = {
100 	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
101 	.pid  = NULL,
102 	.sig  = 0,
103 };
104 
105 
106 /*
107  * Internal Data.
108  */
109 
110 static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
111 static struct kbd_struct *kbd = kbd_table;
112 
113 /* maximum values each key_handler can handle */
114 static const int max_vals[] = {
115 	255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
116 	NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
117 	255, NR_LOCK - 1, 255, NR_BRL - 1
118 };
119 
120 static const int NR_TYPES = ARRAY_SIZE(max_vals);
121 
122 static struct input_handler kbd_handler;
123 static DEFINE_SPINLOCK(kbd_event_lock);
124 static DEFINE_SPINLOCK(led_lock);
125 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)];	/* keyboard key bitmap */
126 static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
127 static bool dead_key_next;
128 static int npadch = -1;					/* -1 or number assembled on pad */
129 static unsigned int diacr;
130 static char rep;					/* flag telling character repeat */
131 
132 static int shift_state = 0;
133 
134 static unsigned int ledstate = -1U;			/* undefined */
135 static unsigned char ledioctl;
136 
137 /*
138  * Notifier list for console keyboard events
139  */
140 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
141 
142 int register_keyboard_notifier(struct notifier_block *nb)
143 {
144 	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
145 }
146 EXPORT_SYMBOL_GPL(register_keyboard_notifier);
147 
148 int unregister_keyboard_notifier(struct notifier_block *nb)
149 {
150 	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
151 }
152 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
153 
154 /*
155  * Translation of scancodes to keycodes. We set them on only the first
156  * keyboard in the list that accepts the scancode and keycode.
157  * Explanation for not choosing the first attached keyboard anymore:
158  *  USB keyboards for example have two event devices: one for all "normal"
159  *  keys and one for extra function keys (like "volume up", "make coffee",
160  *  etc.). So this means that scancodes for the extra function keys won't
161  *  be valid for the first event device, but will be for the second.
162  */
163 
164 struct getset_keycode_data {
165 	struct input_keymap_entry ke;
166 	int error;
167 };
168 
169 static int getkeycode_helper(struct input_handle *handle, void *data)
170 {
171 	struct getset_keycode_data *d = data;
172 
173 	d->error = input_get_keycode(handle->dev, &d->ke);
174 
175 	return d->error == 0; /* stop as soon as we successfully get one */
176 }
177 
178 static int getkeycode(unsigned int scancode)
179 {
180 	struct getset_keycode_data d = {
181 		.ke	= {
182 			.flags		= 0,
183 			.len		= sizeof(scancode),
184 			.keycode	= 0,
185 		},
186 		.error	= -ENODEV,
187 	};
188 
189 	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
190 
191 	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
192 
193 	return d.error ?: d.ke.keycode;
194 }
195 
196 static int setkeycode_helper(struct input_handle *handle, void *data)
197 {
198 	struct getset_keycode_data *d = data;
199 
200 	d->error = input_set_keycode(handle->dev, &d->ke);
201 
202 	return d->error == 0; /* stop as soon as we successfully set one */
203 }
204 
205 static int setkeycode(unsigned int scancode, unsigned int keycode)
206 {
207 	struct getset_keycode_data d = {
208 		.ke	= {
209 			.flags		= 0,
210 			.len		= sizeof(scancode),
211 			.keycode	= keycode,
212 		},
213 		.error	= -ENODEV,
214 	};
215 
216 	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
217 
218 	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
219 
220 	return d.error;
221 }
222 
223 /*
224  * Making beeps and bells. Note that we prefer beeps to bells, but when
225  * shutting the sound off we do both.
226  */
227 
228 static int kd_sound_helper(struct input_handle *handle, void *data)
229 {
230 	unsigned int *hz = data;
231 	struct input_dev *dev = handle->dev;
232 
233 	if (test_bit(EV_SND, dev->evbit)) {
234 		if (test_bit(SND_TONE, dev->sndbit)) {
235 			input_inject_event(handle, EV_SND, SND_TONE, *hz);
236 			if (*hz)
237 				return 0;
238 		}
239 		if (test_bit(SND_BELL, dev->sndbit))
240 			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
241 	}
242 
243 	return 0;
244 }
245 
246 static void kd_nosound(unsigned long ignored)
247 {
248 	static unsigned int zero;
249 
250 	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
251 }
252 
253 static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
254 
255 void kd_mksound(unsigned int hz, unsigned int ticks)
256 {
257 	del_timer_sync(&kd_mksound_timer);
258 
259 	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
260 
261 	if (hz && ticks)
262 		mod_timer(&kd_mksound_timer, jiffies + ticks);
263 }
264 EXPORT_SYMBOL(kd_mksound);
265 
266 /*
267  * Setting the keyboard rate.
268  */
269 
270 static int kbd_rate_helper(struct input_handle *handle, void *data)
271 {
272 	struct input_dev *dev = handle->dev;
273 	struct kbd_repeat *rpt = data;
274 
275 	if (test_bit(EV_REP, dev->evbit)) {
276 
277 		if (rpt[0].delay > 0)
278 			input_inject_event(handle,
279 					   EV_REP, REP_DELAY, rpt[0].delay);
280 		if (rpt[0].period > 0)
281 			input_inject_event(handle,
282 					   EV_REP, REP_PERIOD, rpt[0].period);
283 
284 		rpt[1].delay = dev->rep[REP_DELAY];
285 		rpt[1].period = dev->rep[REP_PERIOD];
286 	}
287 
288 	return 0;
289 }
290 
291 int kbd_rate(struct kbd_repeat *rpt)
292 {
293 	struct kbd_repeat data[2] = { *rpt };
294 
295 	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
296 	*rpt = data[1];	/* Copy currently used settings */
297 
298 	return 0;
299 }
300 
301 /*
302  * Helper Functions.
303  */
304 static void put_queue(struct vc_data *vc, int ch)
305 {
306 	tty_insert_flip_char(&vc->port, ch, 0);
307 	tty_schedule_flip(&vc->port);
308 }
309 
310 static void puts_queue(struct vc_data *vc, char *cp)
311 {
312 	while (*cp) {
313 		tty_insert_flip_char(&vc->port, *cp, 0);
314 		cp++;
315 	}
316 	tty_schedule_flip(&vc->port);
317 }
318 
319 static void applkey(struct vc_data *vc, int key, char mode)
320 {
321 	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
322 
323 	buf[1] = (mode ? 'O' : '[');
324 	buf[2] = key;
325 	puts_queue(vc, buf);
326 }
327 
328 /*
329  * Many other routines do put_queue, but I think either
330  * they produce ASCII, or they produce some user-assigned
331  * string, and in both cases we might assume that it is
332  * in utf-8 already.
333  */
334 static void to_utf8(struct vc_data *vc, uint c)
335 {
336 	if (c < 0x80)
337 		/*  0******* */
338 		put_queue(vc, c);
339 	else if (c < 0x800) {
340 		/* 110***** 10****** */
341 		put_queue(vc, 0xc0 | (c >> 6));
342 		put_queue(vc, 0x80 | (c & 0x3f));
343 	} else if (c < 0x10000) {
344 		if (c >= 0xD800 && c < 0xE000)
345 			return;
346 		if (c == 0xFFFF)
347 			return;
348 		/* 1110**** 10****** 10****** */
349 		put_queue(vc, 0xe0 | (c >> 12));
350 		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
351 		put_queue(vc, 0x80 | (c & 0x3f));
352 	} else if (c < 0x110000) {
353 		/* 11110*** 10****** 10****** 10****** */
354 		put_queue(vc, 0xf0 | (c >> 18));
355 		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
356 		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
357 		put_queue(vc, 0x80 | (c & 0x3f));
358 	}
359 }
360 
361 /*
362  * Called after returning from RAW mode or when changing consoles - recompute
363  * shift_down[] and shift_state from key_down[] maybe called when keymap is
364  * undefined, so that shiftkey release is seen. The caller must hold the
365  * kbd_event_lock.
366  */
367 
368 static void do_compute_shiftstate(void)
369 {
370 	unsigned int k, sym, val;
371 
372 	shift_state = 0;
373 	memset(shift_down, 0, sizeof(shift_down));
374 
375 	for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
376 		sym = U(key_maps[0][k]);
377 		if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
378 			continue;
379 
380 		val = KVAL(sym);
381 		if (val == KVAL(K_CAPSSHIFT))
382 			val = KVAL(K_SHIFT);
383 
384 		shift_down[val]++;
385 		shift_state |= BIT(val);
386 	}
387 }
388 
389 /* We still have to export this method to vt.c */
390 void compute_shiftstate(void)
391 {
392 	unsigned long flags;
393 	spin_lock_irqsave(&kbd_event_lock, flags);
394 	do_compute_shiftstate();
395 	spin_unlock_irqrestore(&kbd_event_lock, flags);
396 }
397 
398 /*
399  * We have a combining character DIACR here, followed by the character CH.
400  * If the combination occurs in the table, return the corresponding value.
401  * Otherwise, if CH is a space or equals DIACR, return DIACR.
402  * Otherwise, conclude that DIACR was not combining after all,
403  * queue it and return CH.
404  */
405 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
406 {
407 	unsigned int d = diacr;
408 	unsigned int i;
409 
410 	diacr = 0;
411 
412 	if ((d & ~0xff) == BRL_UC_ROW) {
413 		if ((ch & ~0xff) == BRL_UC_ROW)
414 			return d | ch;
415 	} else {
416 		for (i = 0; i < accent_table_size; i++)
417 			if (accent_table[i].diacr == d && accent_table[i].base == ch)
418 				return accent_table[i].result;
419 	}
420 
421 	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
422 		return d;
423 
424 	if (kbd->kbdmode == VC_UNICODE)
425 		to_utf8(vc, d);
426 	else {
427 		int c = conv_uni_to_8bit(d);
428 		if (c != -1)
429 			put_queue(vc, c);
430 	}
431 
432 	return ch;
433 }
434 
435 /*
436  * Special function handlers
437  */
438 static void fn_enter(struct vc_data *vc)
439 {
440 	if (diacr) {
441 		if (kbd->kbdmode == VC_UNICODE)
442 			to_utf8(vc, diacr);
443 		else {
444 			int c = conv_uni_to_8bit(diacr);
445 			if (c != -1)
446 				put_queue(vc, c);
447 		}
448 		diacr = 0;
449 	}
450 
451 	put_queue(vc, 13);
452 	if (vc_kbd_mode(kbd, VC_CRLF))
453 		put_queue(vc, 10);
454 }
455 
456 static void fn_caps_toggle(struct vc_data *vc)
457 {
458 	if (rep)
459 		return;
460 
461 	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
462 }
463 
464 static void fn_caps_on(struct vc_data *vc)
465 {
466 	if (rep)
467 		return;
468 
469 	set_vc_kbd_led(kbd, VC_CAPSLOCK);
470 }
471 
472 static void fn_show_ptregs(struct vc_data *vc)
473 {
474 	struct pt_regs *regs = get_irq_regs();
475 
476 	if (regs)
477 		show_regs(regs);
478 }
479 
480 static void fn_hold(struct vc_data *vc)
481 {
482 	struct tty_struct *tty = vc->port.tty;
483 
484 	if (rep || !tty)
485 		return;
486 
487 	/*
488 	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
489 	 * these routines are also activated by ^S/^Q.
490 	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
491 	 */
492 	if (tty->stopped)
493 		start_tty(tty);
494 	else
495 		stop_tty(tty);
496 }
497 
498 static void fn_num(struct vc_data *vc)
499 {
500 	if (vc_kbd_mode(kbd, VC_APPLIC))
501 		applkey(vc, 'P', 1);
502 	else
503 		fn_bare_num(vc);
504 }
505 
506 /*
507  * Bind this to Shift-NumLock if you work in application keypad mode
508  * but want to be able to change the NumLock flag.
509  * Bind this to NumLock if you prefer that the NumLock key always
510  * changes the NumLock flag.
511  */
512 static void fn_bare_num(struct vc_data *vc)
513 {
514 	if (!rep)
515 		chg_vc_kbd_led(kbd, VC_NUMLOCK);
516 }
517 
518 static void fn_lastcons(struct vc_data *vc)
519 {
520 	/* switch to the last used console, ChN */
521 	set_console(last_console);
522 }
523 
524 static void fn_dec_console(struct vc_data *vc)
525 {
526 	int i, cur = fg_console;
527 
528 	/* Currently switching?  Queue this next switch relative to that. */
529 	if (want_console != -1)
530 		cur = want_console;
531 
532 	for (i = cur - 1; i != cur; i--) {
533 		if (i == -1)
534 			i = MAX_NR_CONSOLES - 1;
535 		if (vc_cons_allocated(i))
536 			break;
537 	}
538 	set_console(i);
539 }
540 
541 static void fn_inc_console(struct vc_data *vc)
542 {
543 	int i, cur = fg_console;
544 
545 	/* Currently switching?  Queue this next switch relative to that. */
546 	if (want_console != -1)
547 		cur = want_console;
548 
549 	for (i = cur+1; i != cur; i++) {
550 		if (i == MAX_NR_CONSOLES)
551 			i = 0;
552 		if (vc_cons_allocated(i))
553 			break;
554 	}
555 	set_console(i);
556 }
557 
558 static void fn_send_intr(struct vc_data *vc)
559 {
560 	tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
561 	tty_schedule_flip(&vc->port);
562 }
563 
564 static void fn_scroll_forw(struct vc_data *vc)
565 {
566 	scrollfront(vc, 0);
567 }
568 
569 static void fn_scroll_back(struct vc_data *vc)
570 {
571 	scrollback(vc);
572 }
573 
574 static void fn_show_mem(struct vc_data *vc)
575 {
576 	show_mem(0, NULL);
577 }
578 
579 static void fn_show_state(struct vc_data *vc)
580 {
581 	show_state();
582 }
583 
584 static void fn_boot_it(struct vc_data *vc)
585 {
586 	ctrl_alt_del();
587 }
588 
589 static void fn_compose(struct vc_data *vc)
590 {
591 	dead_key_next = true;
592 }
593 
594 static void fn_spawn_con(struct vc_data *vc)
595 {
596 	spin_lock(&vt_spawn_con.lock);
597 	if (vt_spawn_con.pid)
598 		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
599 			put_pid(vt_spawn_con.pid);
600 			vt_spawn_con.pid = NULL;
601 		}
602 	spin_unlock(&vt_spawn_con.lock);
603 }
604 
605 static void fn_SAK(struct vc_data *vc)
606 {
607 	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
608 	schedule_work(SAK_work);
609 }
610 
611 static void fn_null(struct vc_data *vc)
612 {
613 	do_compute_shiftstate();
614 }
615 
616 /*
617  * Special key handlers
618  */
619 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
620 {
621 }
622 
623 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
624 {
625 	if (up_flag)
626 		return;
627 	if (value >= ARRAY_SIZE(fn_handler))
628 		return;
629 	if ((kbd->kbdmode == VC_RAW ||
630 	     kbd->kbdmode == VC_MEDIUMRAW ||
631 	     kbd->kbdmode == VC_OFF) &&
632 	     value != KVAL(K_SAK))
633 		return;		/* SAK is allowed even in raw mode */
634 	fn_handler[value](vc);
635 }
636 
637 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
638 {
639 	pr_err("k_lowercase was called - impossible\n");
640 }
641 
642 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
643 {
644 	if (up_flag)
645 		return;		/* no action, if this is a key release */
646 
647 	if (diacr)
648 		value = handle_diacr(vc, value);
649 
650 	if (dead_key_next) {
651 		dead_key_next = false;
652 		diacr = value;
653 		return;
654 	}
655 	if (kbd->kbdmode == VC_UNICODE)
656 		to_utf8(vc, value);
657 	else {
658 		int c = conv_uni_to_8bit(value);
659 		if (c != -1)
660 			put_queue(vc, c);
661 	}
662 }
663 
664 /*
665  * Handle dead key. Note that we now may have several
666  * dead keys modifying the same character. Very useful
667  * for Vietnamese.
668  */
669 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
670 {
671 	if (up_flag)
672 		return;
673 
674 	diacr = (diacr ? handle_diacr(vc, value) : value);
675 }
676 
677 static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
678 {
679 	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
680 }
681 
682 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
683 {
684 	k_deadunicode(vc, value, up_flag);
685 }
686 
687 /*
688  * Obsolete - for backwards compatibility only
689  */
690 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
691 {
692 	static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
693 
694 	k_deadunicode(vc, ret_diacr[value], up_flag);
695 }
696 
697 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
698 {
699 	if (up_flag)
700 		return;
701 
702 	set_console(value);
703 }
704 
705 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
706 {
707 	if (up_flag)
708 		return;
709 
710 	if ((unsigned)value < ARRAY_SIZE(func_table)) {
711 		if (func_table[value])
712 			puts_queue(vc, func_table[value]);
713 	} else
714 		pr_err("k_fn called with value=%d\n", value);
715 }
716 
717 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
718 {
719 	static const char cur_chars[] = "BDCA";
720 
721 	if (up_flag)
722 		return;
723 
724 	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
725 }
726 
727 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
728 {
729 	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
730 	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
731 
732 	if (up_flag)
733 		return;		/* no action, if this is a key release */
734 
735 	/* kludge... shift forces cursor/number keys */
736 	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
737 		applkey(vc, app_map[value], 1);
738 		return;
739 	}
740 
741 	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
742 
743 		switch (value) {
744 		case KVAL(K_PCOMMA):
745 		case KVAL(K_PDOT):
746 			k_fn(vc, KVAL(K_REMOVE), 0);
747 			return;
748 		case KVAL(K_P0):
749 			k_fn(vc, KVAL(K_INSERT), 0);
750 			return;
751 		case KVAL(K_P1):
752 			k_fn(vc, KVAL(K_SELECT), 0);
753 			return;
754 		case KVAL(K_P2):
755 			k_cur(vc, KVAL(K_DOWN), 0);
756 			return;
757 		case KVAL(K_P3):
758 			k_fn(vc, KVAL(K_PGDN), 0);
759 			return;
760 		case KVAL(K_P4):
761 			k_cur(vc, KVAL(K_LEFT), 0);
762 			return;
763 		case KVAL(K_P6):
764 			k_cur(vc, KVAL(K_RIGHT), 0);
765 			return;
766 		case KVAL(K_P7):
767 			k_fn(vc, KVAL(K_FIND), 0);
768 			return;
769 		case KVAL(K_P8):
770 			k_cur(vc, KVAL(K_UP), 0);
771 			return;
772 		case KVAL(K_P9):
773 			k_fn(vc, KVAL(K_PGUP), 0);
774 			return;
775 		case KVAL(K_P5):
776 			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
777 			return;
778 		}
779 	}
780 
781 	put_queue(vc, pad_chars[value]);
782 	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
783 		put_queue(vc, 10);
784 }
785 
786 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
787 {
788 	int old_state = shift_state;
789 
790 	if (rep)
791 		return;
792 	/*
793 	 * Mimic typewriter:
794 	 * a CapsShift key acts like Shift but undoes CapsLock
795 	 */
796 	if (value == KVAL(K_CAPSSHIFT)) {
797 		value = KVAL(K_SHIFT);
798 		if (!up_flag)
799 			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
800 	}
801 
802 	if (up_flag) {
803 		/*
804 		 * handle the case that two shift or control
805 		 * keys are depressed simultaneously
806 		 */
807 		if (shift_down[value])
808 			shift_down[value]--;
809 	} else
810 		shift_down[value]++;
811 
812 	if (shift_down[value])
813 		shift_state |= (1 << value);
814 	else
815 		shift_state &= ~(1 << value);
816 
817 	/* kludge */
818 	if (up_flag && shift_state != old_state && npadch != -1) {
819 		if (kbd->kbdmode == VC_UNICODE)
820 			to_utf8(vc, npadch);
821 		else
822 			put_queue(vc, npadch & 0xff);
823 		npadch = -1;
824 	}
825 }
826 
827 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
828 {
829 	if (up_flag)
830 		return;
831 
832 	if (vc_kbd_mode(kbd, VC_META)) {
833 		put_queue(vc, '\033');
834 		put_queue(vc, value);
835 	} else
836 		put_queue(vc, value | 0x80);
837 }
838 
839 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
840 {
841 	int base;
842 
843 	if (up_flag)
844 		return;
845 
846 	if (value < 10) {
847 		/* decimal input of code, while Alt depressed */
848 		base = 10;
849 	} else {
850 		/* hexadecimal input of code, while AltGr depressed */
851 		value -= 10;
852 		base = 16;
853 	}
854 
855 	if (npadch == -1)
856 		npadch = value;
857 	else
858 		npadch = npadch * base + value;
859 }
860 
861 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
862 {
863 	if (up_flag || rep)
864 		return;
865 
866 	chg_vc_kbd_lock(kbd, value);
867 }
868 
869 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
870 {
871 	k_shift(vc, value, up_flag);
872 	if (up_flag || rep)
873 		return;
874 
875 	chg_vc_kbd_slock(kbd, value);
876 	/* try to make Alt, oops, AltGr and such work */
877 	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
878 		kbd->slockstate = 0;
879 		chg_vc_kbd_slock(kbd, value);
880 	}
881 }
882 
883 /* by default, 300ms interval for combination release */
884 static unsigned brl_timeout = 300;
885 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
886 module_param(brl_timeout, uint, 0644);
887 
888 static unsigned brl_nbchords = 1;
889 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
890 module_param(brl_nbchords, uint, 0644);
891 
892 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
893 {
894 	static unsigned long chords;
895 	static unsigned committed;
896 
897 	if (!brl_nbchords)
898 		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
899 	else {
900 		committed |= pattern;
901 		chords++;
902 		if (chords == brl_nbchords) {
903 			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
904 			chords = 0;
905 			committed = 0;
906 		}
907 	}
908 }
909 
910 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
911 {
912 	static unsigned pressed, committing;
913 	static unsigned long releasestart;
914 
915 	if (kbd->kbdmode != VC_UNICODE) {
916 		if (!up_flag)
917 			pr_warn("keyboard mode must be unicode for braille patterns\n");
918 		return;
919 	}
920 
921 	if (!value) {
922 		k_unicode(vc, BRL_UC_ROW, up_flag);
923 		return;
924 	}
925 
926 	if (value > 8)
927 		return;
928 
929 	if (!up_flag) {
930 		pressed |= 1 << (value - 1);
931 		if (!brl_timeout)
932 			committing = pressed;
933 	} else if (brl_timeout) {
934 		if (!committing ||
935 		    time_after(jiffies,
936 			       releasestart + msecs_to_jiffies(brl_timeout))) {
937 			committing = pressed;
938 			releasestart = jiffies;
939 		}
940 		pressed &= ~(1 << (value - 1));
941 		if (!pressed && committing) {
942 			k_brlcommit(vc, committing, 0);
943 			committing = 0;
944 		}
945 	} else {
946 		if (committing) {
947 			k_brlcommit(vc, committing, 0);
948 			committing = 0;
949 		}
950 		pressed &= ~(1 << (value - 1));
951 	}
952 }
953 
954 #if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
955 
956 struct kbd_led_trigger {
957 	struct led_trigger trigger;
958 	unsigned int mask;
959 };
960 
961 static void kbd_led_trigger_activate(struct led_classdev *cdev)
962 {
963 	struct kbd_led_trigger *trigger =
964 		container_of(cdev->trigger, struct kbd_led_trigger, trigger);
965 
966 	tasklet_disable(&keyboard_tasklet);
967 	if (ledstate != -1U)
968 		led_trigger_event(&trigger->trigger,
969 				  ledstate & trigger->mask ?
970 					LED_FULL : LED_OFF);
971 	tasklet_enable(&keyboard_tasklet);
972 }
973 
974 #define KBD_LED_TRIGGER(_led_bit, _name) {			\
975 		.trigger = {					\
976 			.name = _name,				\
977 			.activate = kbd_led_trigger_activate,	\
978 		},						\
979 		.mask	= BIT(_led_bit),			\
980 	}
981 
982 #define KBD_LOCKSTATE_TRIGGER(_led_bit, _name)		\
983 	KBD_LED_TRIGGER((_led_bit) + 8, _name)
984 
985 static struct kbd_led_trigger kbd_led_triggers[] = {
986 	KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
987 	KBD_LED_TRIGGER(VC_NUMLOCK,   "kbd-numlock"),
988 	KBD_LED_TRIGGER(VC_CAPSLOCK,  "kbd-capslock"),
989 	KBD_LED_TRIGGER(VC_KANALOCK,  "kbd-kanalock"),
990 
991 	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK,  "kbd-shiftlock"),
992 	KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK,  "kbd-altgrlock"),
993 	KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK,   "kbd-ctrllock"),
994 	KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK,    "kbd-altlock"),
995 	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
996 	KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
997 	KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK,  "kbd-ctrlllock"),
998 	KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK,  "kbd-ctrlrlock"),
999 };
1000 
1001 static void kbd_propagate_led_state(unsigned int old_state,
1002 				    unsigned int new_state)
1003 {
1004 	struct kbd_led_trigger *trigger;
1005 	unsigned int changed = old_state ^ new_state;
1006 	int i;
1007 
1008 	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1009 		trigger = &kbd_led_triggers[i];
1010 
1011 		if (changed & trigger->mask)
1012 			led_trigger_event(&trigger->trigger,
1013 					  new_state & trigger->mask ?
1014 						LED_FULL : LED_OFF);
1015 	}
1016 }
1017 
1018 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1019 {
1020 	unsigned int led_state = *(unsigned int *)data;
1021 
1022 	if (test_bit(EV_LED, handle->dev->evbit))
1023 		kbd_propagate_led_state(~led_state, led_state);
1024 
1025 	return 0;
1026 }
1027 
1028 static void kbd_init_leds(void)
1029 {
1030 	int error;
1031 	int i;
1032 
1033 	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1034 		error = led_trigger_register(&kbd_led_triggers[i].trigger);
1035 		if (error)
1036 			pr_err("error %d while registering trigger %s\n",
1037 			       error, kbd_led_triggers[i].trigger.name);
1038 	}
1039 }
1040 
1041 #else
1042 
1043 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1044 {
1045 	unsigned int leds = *(unsigned int *)data;
1046 
1047 	if (test_bit(EV_LED, handle->dev->evbit)) {
1048 		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1049 		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & 0x02));
1050 		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & 0x04));
1051 		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1052 	}
1053 
1054 	return 0;
1055 }
1056 
1057 static void kbd_propagate_led_state(unsigned int old_state,
1058 				    unsigned int new_state)
1059 {
1060 	input_handler_for_each_handle(&kbd_handler, &new_state,
1061 				      kbd_update_leds_helper);
1062 }
1063 
1064 static void kbd_init_leds(void)
1065 {
1066 }
1067 
1068 #endif
1069 
1070 /*
1071  * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1072  * or (ii) whatever pattern of lights people want to show using KDSETLED,
1073  * or (iii) specified bits of specified words in kernel memory.
1074  */
1075 static unsigned char getledstate(void)
1076 {
1077 	return ledstate & 0xff;
1078 }
1079 
1080 void setledstate(struct kbd_struct *kb, unsigned int led)
1081 {
1082         unsigned long flags;
1083         spin_lock_irqsave(&led_lock, flags);
1084 	if (!(led & ~7)) {
1085 		ledioctl = led;
1086 		kb->ledmode = LED_SHOW_IOCTL;
1087 	} else
1088 		kb->ledmode = LED_SHOW_FLAGS;
1089 
1090 	set_leds();
1091 	spin_unlock_irqrestore(&led_lock, flags);
1092 }
1093 
1094 static inline unsigned char getleds(void)
1095 {
1096 	struct kbd_struct *kb = kbd_table + fg_console;
1097 
1098 	if (kb->ledmode == LED_SHOW_IOCTL)
1099 		return ledioctl;
1100 
1101 	return kb->ledflagstate;
1102 }
1103 
1104 /**
1105  *	vt_get_leds	-	helper for braille console
1106  *	@console: console to read
1107  *	@flag: flag we want to check
1108  *
1109  *	Check the status of a keyboard led flag and report it back
1110  */
1111 int vt_get_leds(int console, int flag)
1112 {
1113 	struct kbd_struct *kb = kbd_table + console;
1114 	int ret;
1115 	unsigned long flags;
1116 
1117 	spin_lock_irqsave(&led_lock, flags);
1118 	ret = vc_kbd_led(kb, flag);
1119 	spin_unlock_irqrestore(&led_lock, flags);
1120 
1121 	return ret;
1122 }
1123 EXPORT_SYMBOL_GPL(vt_get_leds);
1124 
1125 /**
1126  *	vt_set_led_state	-	set LED state of a console
1127  *	@console: console to set
1128  *	@leds: LED bits
1129  *
1130  *	Set the LEDs on a console. This is a wrapper for the VT layer
1131  *	so that we can keep kbd knowledge internal
1132  */
1133 void vt_set_led_state(int console, int leds)
1134 {
1135 	struct kbd_struct *kb = kbd_table + console;
1136 	setledstate(kb, leds);
1137 }
1138 
1139 /**
1140  *	vt_kbd_con_start	-	Keyboard side of console start
1141  *	@console: console
1142  *
1143  *	Handle console start. This is a wrapper for the VT layer
1144  *	so that we can keep kbd knowledge internal
1145  *
1146  *	FIXME: We eventually need to hold the kbd lock here to protect
1147  *	the LED updating. We can't do it yet because fn_hold calls stop_tty
1148  *	and start_tty under the kbd_event_lock, while normal tty paths
1149  *	don't hold the lock. We probably need to split out an LED lock
1150  *	but not during an -rc release!
1151  */
1152 void vt_kbd_con_start(int console)
1153 {
1154 	struct kbd_struct *kb = kbd_table + console;
1155 	unsigned long flags;
1156 	spin_lock_irqsave(&led_lock, flags);
1157 	clr_vc_kbd_led(kb, VC_SCROLLOCK);
1158 	set_leds();
1159 	spin_unlock_irqrestore(&led_lock, flags);
1160 }
1161 
1162 /**
1163  *	vt_kbd_con_stop		-	Keyboard side of console stop
1164  *	@console: console
1165  *
1166  *	Handle console stop. This is a wrapper for the VT layer
1167  *	so that we can keep kbd knowledge internal
1168  */
1169 void vt_kbd_con_stop(int console)
1170 {
1171 	struct kbd_struct *kb = kbd_table + console;
1172 	unsigned long flags;
1173 	spin_lock_irqsave(&led_lock, flags);
1174 	set_vc_kbd_led(kb, VC_SCROLLOCK);
1175 	set_leds();
1176 	spin_unlock_irqrestore(&led_lock, flags);
1177 }
1178 
1179 /*
1180  * This is the tasklet that updates LED state of LEDs using standard
1181  * keyboard triggers. The reason we use tasklet is that we need to
1182  * handle the scenario when keyboard handler is not registered yet
1183  * but we already getting updates from the VT to update led state.
1184  */
1185 static void kbd_bh(unsigned long dummy)
1186 {
1187 	unsigned int leds;
1188 	unsigned long flags;
1189 
1190 	spin_lock_irqsave(&led_lock, flags);
1191 	leds = getleds();
1192 	leds |= (unsigned int)kbd->lockstate << 8;
1193 	spin_unlock_irqrestore(&led_lock, flags);
1194 
1195 	if (leds != ledstate) {
1196 		kbd_propagate_led_state(ledstate, leds);
1197 		ledstate = leds;
1198 	}
1199 }
1200 
1201 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1202 
1203 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1204     defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1205     defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1206     (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1207 
1208 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1209 			((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1210 
1211 static const unsigned short x86_keycodes[256] =
1212 	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1213 	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1214 	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1215 	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1216 	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1217 	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1218 	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1219 	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1220 	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1221 	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1222 	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1223 	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1224 	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1225 	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1226 	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1227 
1228 #ifdef CONFIG_SPARC
1229 static int sparc_l1_a_state;
1230 extern void sun_do_break(void);
1231 #endif
1232 
1233 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1234 		       unsigned char up_flag)
1235 {
1236 	int code;
1237 
1238 	switch (keycode) {
1239 
1240 	case KEY_PAUSE:
1241 		put_queue(vc, 0xe1);
1242 		put_queue(vc, 0x1d | up_flag);
1243 		put_queue(vc, 0x45 | up_flag);
1244 		break;
1245 
1246 	case KEY_HANGEUL:
1247 		if (!up_flag)
1248 			put_queue(vc, 0xf2);
1249 		break;
1250 
1251 	case KEY_HANJA:
1252 		if (!up_flag)
1253 			put_queue(vc, 0xf1);
1254 		break;
1255 
1256 	case KEY_SYSRQ:
1257 		/*
1258 		 * Real AT keyboards (that's what we're trying
1259 		 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1260 		 * pressing PrtSc/SysRq alone, but simply 0x54
1261 		 * when pressing Alt+PrtSc/SysRq.
1262 		 */
1263 		if (test_bit(KEY_LEFTALT, key_down) ||
1264 		    test_bit(KEY_RIGHTALT, key_down)) {
1265 			put_queue(vc, 0x54 | up_flag);
1266 		} else {
1267 			put_queue(vc, 0xe0);
1268 			put_queue(vc, 0x2a | up_flag);
1269 			put_queue(vc, 0xe0);
1270 			put_queue(vc, 0x37 | up_flag);
1271 		}
1272 		break;
1273 
1274 	default:
1275 		if (keycode > 255)
1276 			return -1;
1277 
1278 		code = x86_keycodes[keycode];
1279 		if (!code)
1280 			return -1;
1281 
1282 		if (code & 0x100)
1283 			put_queue(vc, 0xe0);
1284 		put_queue(vc, (code & 0x7f) | up_flag);
1285 
1286 		break;
1287 	}
1288 
1289 	return 0;
1290 }
1291 
1292 #else
1293 
1294 #define HW_RAW(dev)	0
1295 
1296 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1297 {
1298 	if (keycode > 127)
1299 		return -1;
1300 
1301 	put_queue(vc, keycode | up_flag);
1302 	return 0;
1303 }
1304 #endif
1305 
1306 static void kbd_rawcode(unsigned char data)
1307 {
1308 	struct vc_data *vc = vc_cons[fg_console].d;
1309 
1310 	kbd = kbd_table + vc->vc_num;
1311 	if (kbd->kbdmode == VC_RAW)
1312 		put_queue(vc, data);
1313 }
1314 
1315 static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1316 {
1317 	struct vc_data *vc = vc_cons[fg_console].d;
1318 	unsigned short keysym, *key_map;
1319 	unsigned char type;
1320 	bool raw_mode;
1321 	struct tty_struct *tty;
1322 	int shift_final;
1323 	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1324 	int rc;
1325 
1326 	tty = vc->port.tty;
1327 
1328 	if (tty && (!tty->driver_data)) {
1329 		/* No driver data? Strange. Okay we fix it then. */
1330 		tty->driver_data = vc;
1331 	}
1332 
1333 	kbd = kbd_table + vc->vc_num;
1334 
1335 #ifdef CONFIG_SPARC
1336 	if (keycode == KEY_STOP)
1337 		sparc_l1_a_state = down;
1338 #endif
1339 
1340 	rep = (down == 2);
1341 
1342 	raw_mode = (kbd->kbdmode == VC_RAW);
1343 	if (raw_mode && !hw_raw)
1344 		if (emulate_raw(vc, keycode, !down << 7))
1345 			if (keycode < BTN_MISC && printk_ratelimit())
1346 				pr_warn("can't emulate rawmode for keycode %d\n",
1347 					keycode);
1348 
1349 #ifdef CONFIG_SPARC
1350 	if (keycode == KEY_A && sparc_l1_a_state) {
1351 		sparc_l1_a_state = false;
1352 		sun_do_break();
1353 	}
1354 #endif
1355 
1356 	if (kbd->kbdmode == VC_MEDIUMRAW) {
1357 		/*
1358 		 * This is extended medium raw mode, with keys above 127
1359 		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1360 		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1361 		 * interfere with anything else. The two bytes after 0 will
1362 		 * always have the up flag set not to interfere with older
1363 		 * applications. This allows for 16384 different keycodes,
1364 		 * which should be enough.
1365 		 */
1366 		if (keycode < 128) {
1367 			put_queue(vc, keycode | (!down << 7));
1368 		} else {
1369 			put_queue(vc, !down << 7);
1370 			put_queue(vc, (keycode >> 7) | 0x80);
1371 			put_queue(vc, keycode | 0x80);
1372 		}
1373 		raw_mode = true;
1374 	}
1375 
1376 	if (down)
1377 		set_bit(keycode, key_down);
1378 	else
1379 		clear_bit(keycode, key_down);
1380 
1381 	if (rep &&
1382 	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1383 	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1384 		/*
1385 		 * Don't repeat a key if the input buffers are not empty and the
1386 		 * characters get aren't echoed locally. This makes key repeat
1387 		 * usable with slow applications and under heavy loads.
1388 		 */
1389 		return;
1390 	}
1391 
1392 	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1393 	param.ledstate = kbd->ledflagstate;
1394 	key_map = key_maps[shift_final];
1395 
1396 	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1397 					KBD_KEYCODE, &param);
1398 	if (rc == NOTIFY_STOP || !key_map) {
1399 		atomic_notifier_call_chain(&keyboard_notifier_list,
1400 					   KBD_UNBOUND_KEYCODE, &param);
1401 		do_compute_shiftstate();
1402 		kbd->slockstate = 0;
1403 		return;
1404 	}
1405 
1406 	if (keycode < NR_KEYS)
1407 		keysym = key_map[keycode];
1408 	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1409 		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1410 	else
1411 		return;
1412 
1413 	type = KTYP(keysym);
1414 
1415 	if (type < 0xf0) {
1416 		param.value = keysym;
1417 		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1418 						KBD_UNICODE, &param);
1419 		if (rc != NOTIFY_STOP)
1420 			if (down && !raw_mode)
1421 				to_utf8(vc, keysym);
1422 		return;
1423 	}
1424 
1425 	type -= 0xf0;
1426 
1427 	if (type == KT_LETTER) {
1428 		type = KT_LATIN;
1429 		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1430 			key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1431 			if (key_map)
1432 				keysym = key_map[keycode];
1433 		}
1434 	}
1435 
1436 	param.value = keysym;
1437 	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1438 					KBD_KEYSYM, &param);
1439 	if (rc == NOTIFY_STOP)
1440 		return;
1441 
1442 	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1443 		return;
1444 
1445 	(*k_handler[type])(vc, keysym & 0xff, !down);
1446 
1447 	param.ledstate = kbd->ledflagstate;
1448 	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1449 
1450 	if (type != KT_SLOCK)
1451 		kbd->slockstate = 0;
1452 }
1453 
1454 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1455 		      unsigned int event_code, int value)
1456 {
1457 	/* We are called with interrupts disabled, just take the lock */
1458 	spin_lock(&kbd_event_lock);
1459 
1460 	if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1461 		kbd_rawcode(value);
1462 	if (event_type == EV_KEY)
1463 		kbd_keycode(event_code, value, HW_RAW(handle->dev));
1464 
1465 	spin_unlock(&kbd_event_lock);
1466 
1467 	tasklet_schedule(&keyboard_tasklet);
1468 	do_poke_blanked_console = 1;
1469 	schedule_console_callback();
1470 }
1471 
1472 static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1473 {
1474 	int i;
1475 
1476 	if (test_bit(EV_SND, dev->evbit))
1477 		return true;
1478 
1479 	if (test_bit(EV_KEY, dev->evbit)) {
1480 		for (i = KEY_RESERVED; i < BTN_MISC; i++)
1481 			if (test_bit(i, dev->keybit))
1482 				return true;
1483 		for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1484 			if (test_bit(i, dev->keybit))
1485 				return true;
1486 	}
1487 
1488 	return false;
1489 }
1490 
1491 /*
1492  * When a keyboard (or other input device) is found, the kbd_connect
1493  * function is called. The function then looks at the device, and if it
1494  * likes it, it can open it and get events from it. In this (kbd_connect)
1495  * function, we should decide which VT to bind that keyboard to initially.
1496  */
1497 static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1498 			const struct input_device_id *id)
1499 {
1500 	struct input_handle *handle;
1501 	int error;
1502 
1503 	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1504 	if (!handle)
1505 		return -ENOMEM;
1506 
1507 	handle->dev = dev;
1508 	handle->handler = handler;
1509 	handle->name = "kbd";
1510 
1511 	error = input_register_handle(handle);
1512 	if (error)
1513 		goto err_free_handle;
1514 
1515 	error = input_open_device(handle);
1516 	if (error)
1517 		goto err_unregister_handle;
1518 
1519 	return 0;
1520 
1521  err_unregister_handle:
1522 	input_unregister_handle(handle);
1523  err_free_handle:
1524 	kfree(handle);
1525 	return error;
1526 }
1527 
1528 static void kbd_disconnect(struct input_handle *handle)
1529 {
1530 	input_close_device(handle);
1531 	input_unregister_handle(handle);
1532 	kfree(handle);
1533 }
1534 
1535 /*
1536  * Start keyboard handler on the new keyboard by refreshing LED state to
1537  * match the rest of the system.
1538  */
1539 static void kbd_start(struct input_handle *handle)
1540 {
1541 	tasklet_disable(&keyboard_tasklet);
1542 
1543 	if (ledstate != -1U)
1544 		kbd_update_leds_helper(handle, &ledstate);
1545 
1546 	tasklet_enable(&keyboard_tasklet);
1547 }
1548 
1549 static const struct input_device_id kbd_ids[] = {
1550 	{
1551 		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1552 		.evbit = { BIT_MASK(EV_KEY) },
1553 	},
1554 
1555 	{
1556 		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1557 		.evbit = { BIT_MASK(EV_SND) },
1558 	},
1559 
1560 	{ },    /* Terminating entry */
1561 };
1562 
1563 MODULE_DEVICE_TABLE(input, kbd_ids);
1564 
1565 static struct input_handler kbd_handler = {
1566 	.event		= kbd_event,
1567 	.match		= kbd_match,
1568 	.connect	= kbd_connect,
1569 	.disconnect	= kbd_disconnect,
1570 	.start		= kbd_start,
1571 	.name		= "kbd",
1572 	.id_table	= kbd_ids,
1573 };
1574 
1575 int __init kbd_init(void)
1576 {
1577 	int i;
1578 	int error;
1579 
1580 	for (i = 0; i < MAX_NR_CONSOLES; i++) {
1581 		kbd_table[i].ledflagstate = kbd_defleds();
1582 		kbd_table[i].default_ledflagstate = kbd_defleds();
1583 		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1584 		kbd_table[i].lockstate = KBD_DEFLOCK;
1585 		kbd_table[i].slockstate = 0;
1586 		kbd_table[i].modeflags = KBD_DEFMODE;
1587 		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1588 	}
1589 
1590 	kbd_init_leds();
1591 
1592 	error = input_register_handler(&kbd_handler);
1593 	if (error)
1594 		return error;
1595 
1596 	tasklet_enable(&keyboard_tasklet);
1597 	tasklet_schedule(&keyboard_tasklet);
1598 
1599 	return 0;
1600 }
1601 
1602 /* Ioctl support code */
1603 
1604 /**
1605  *	vt_do_diacrit		-	diacritical table updates
1606  *	@cmd: ioctl request
1607  *	@udp: pointer to user data for ioctl
1608  *	@perm: permissions check computed by caller
1609  *
1610  *	Update the diacritical tables atomically and safely. Lock them
1611  *	against simultaneous keypresses
1612  */
1613 int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1614 {
1615 	unsigned long flags;
1616 	int asize;
1617 	int ret = 0;
1618 
1619 	switch (cmd) {
1620 	case KDGKBDIACR:
1621 	{
1622 		struct kbdiacrs __user *a = udp;
1623 		struct kbdiacr *dia;
1624 		int i;
1625 
1626 		dia = kmalloc(MAX_DIACR * sizeof(struct kbdiacr),
1627 								GFP_KERNEL);
1628 		if (!dia)
1629 			return -ENOMEM;
1630 
1631 		/* Lock the diacriticals table, make a copy and then
1632 		   copy it after we unlock */
1633 		spin_lock_irqsave(&kbd_event_lock, flags);
1634 
1635 		asize = accent_table_size;
1636 		for (i = 0; i < asize; i++) {
1637 			dia[i].diacr = conv_uni_to_8bit(
1638 						accent_table[i].diacr);
1639 			dia[i].base = conv_uni_to_8bit(
1640 						accent_table[i].base);
1641 			dia[i].result = conv_uni_to_8bit(
1642 						accent_table[i].result);
1643 		}
1644 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1645 
1646 		if (put_user(asize, &a->kb_cnt))
1647 			ret = -EFAULT;
1648 		else  if (copy_to_user(a->kbdiacr, dia,
1649 				asize * sizeof(struct kbdiacr)))
1650 			ret = -EFAULT;
1651 		kfree(dia);
1652 		return ret;
1653 	}
1654 	case KDGKBDIACRUC:
1655 	{
1656 		struct kbdiacrsuc __user *a = udp;
1657 		void *buf;
1658 
1659 		buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc),
1660 								GFP_KERNEL);
1661 		if (buf == NULL)
1662 			return -ENOMEM;
1663 
1664 		/* Lock the diacriticals table, make a copy and then
1665 		   copy it after we unlock */
1666 		spin_lock_irqsave(&kbd_event_lock, flags);
1667 
1668 		asize = accent_table_size;
1669 		memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1670 
1671 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1672 
1673 		if (put_user(asize, &a->kb_cnt))
1674 			ret = -EFAULT;
1675 		else if (copy_to_user(a->kbdiacruc, buf,
1676 				asize*sizeof(struct kbdiacruc)))
1677 			ret = -EFAULT;
1678 		kfree(buf);
1679 		return ret;
1680 	}
1681 
1682 	case KDSKBDIACR:
1683 	{
1684 		struct kbdiacrs __user *a = udp;
1685 		struct kbdiacr *dia = NULL;
1686 		unsigned int ct;
1687 		int i;
1688 
1689 		if (!perm)
1690 			return -EPERM;
1691 		if (get_user(ct, &a->kb_cnt))
1692 			return -EFAULT;
1693 		if (ct >= MAX_DIACR)
1694 			return -EINVAL;
1695 
1696 		if (ct) {
1697 
1698 			dia = memdup_user(a->kbdiacr,
1699 					sizeof(struct kbdiacr) * ct);
1700 			if (IS_ERR(dia))
1701 				return PTR_ERR(dia);
1702 
1703 		}
1704 
1705 		spin_lock_irqsave(&kbd_event_lock, flags);
1706 		accent_table_size = ct;
1707 		for (i = 0; i < ct; i++) {
1708 			accent_table[i].diacr =
1709 					conv_8bit_to_uni(dia[i].diacr);
1710 			accent_table[i].base =
1711 					conv_8bit_to_uni(dia[i].base);
1712 			accent_table[i].result =
1713 					conv_8bit_to_uni(dia[i].result);
1714 		}
1715 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1716 		kfree(dia);
1717 		return 0;
1718 	}
1719 
1720 	case KDSKBDIACRUC:
1721 	{
1722 		struct kbdiacrsuc __user *a = udp;
1723 		unsigned int ct;
1724 		void *buf = NULL;
1725 
1726 		if (!perm)
1727 			return -EPERM;
1728 
1729 		if (get_user(ct, &a->kb_cnt))
1730 			return -EFAULT;
1731 
1732 		if (ct >= MAX_DIACR)
1733 			return -EINVAL;
1734 
1735 		if (ct) {
1736 			buf = memdup_user(a->kbdiacruc,
1737 					  ct * sizeof(struct kbdiacruc));
1738 			if (IS_ERR(buf))
1739 				return PTR_ERR(buf);
1740 		}
1741 		spin_lock_irqsave(&kbd_event_lock, flags);
1742 		if (ct)
1743 			memcpy(accent_table, buf,
1744 					ct * sizeof(struct kbdiacruc));
1745 		accent_table_size = ct;
1746 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1747 		kfree(buf);
1748 		return 0;
1749 	}
1750 	}
1751 	return ret;
1752 }
1753 
1754 /**
1755  *	vt_do_kdskbmode		-	set keyboard mode ioctl
1756  *	@console: the console to use
1757  *	@arg: the requested mode
1758  *
1759  *	Update the keyboard mode bits while holding the correct locks.
1760  *	Return 0 for success or an error code.
1761  */
1762 int vt_do_kdskbmode(int console, unsigned int arg)
1763 {
1764 	struct kbd_struct *kb = kbd_table + console;
1765 	int ret = 0;
1766 	unsigned long flags;
1767 
1768 	spin_lock_irqsave(&kbd_event_lock, flags);
1769 	switch(arg) {
1770 	case K_RAW:
1771 		kb->kbdmode = VC_RAW;
1772 		break;
1773 	case K_MEDIUMRAW:
1774 		kb->kbdmode = VC_MEDIUMRAW;
1775 		break;
1776 	case K_XLATE:
1777 		kb->kbdmode = VC_XLATE;
1778 		do_compute_shiftstate();
1779 		break;
1780 	case K_UNICODE:
1781 		kb->kbdmode = VC_UNICODE;
1782 		do_compute_shiftstate();
1783 		break;
1784 	case K_OFF:
1785 		kb->kbdmode = VC_OFF;
1786 		break;
1787 	default:
1788 		ret = -EINVAL;
1789 	}
1790 	spin_unlock_irqrestore(&kbd_event_lock, flags);
1791 	return ret;
1792 }
1793 
1794 /**
1795  *	vt_do_kdskbmeta		-	set keyboard meta state
1796  *	@console: the console to use
1797  *	@arg: the requested meta state
1798  *
1799  *	Update the keyboard meta bits while holding the correct locks.
1800  *	Return 0 for success or an error code.
1801  */
1802 int vt_do_kdskbmeta(int console, unsigned int arg)
1803 {
1804 	struct kbd_struct *kb = kbd_table + console;
1805 	int ret = 0;
1806 	unsigned long flags;
1807 
1808 	spin_lock_irqsave(&kbd_event_lock, flags);
1809 	switch(arg) {
1810 	case K_METABIT:
1811 		clr_vc_kbd_mode(kb, VC_META);
1812 		break;
1813 	case K_ESCPREFIX:
1814 		set_vc_kbd_mode(kb, VC_META);
1815 		break;
1816 	default:
1817 		ret = -EINVAL;
1818 	}
1819 	spin_unlock_irqrestore(&kbd_event_lock, flags);
1820 	return ret;
1821 }
1822 
1823 int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1824 								int perm)
1825 {
1826 	struct kbkeycode tmp;
1827 	int kc = 0;
1828 
1829 	if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1830 		return -EFAULT;
1831 	switch (cmd) {
1832 	case KDGETKEYCODE:
1833 		kc = getkeycode(tmp.scancode);
1834 		if (kc >= 0)
1835 			kc = put_user(kc, &user_kbkc->keycode);
1836 		break;
1837 	case KDSETKEYCODE:
1838 		if (!perm)
1839 			return -EPERM;
1840 		kc = setkeycode(tmp.scancode, tmp.keycode);
1841 		break;
1842 	}
1843 	return kc;
1844 }
1845 
1846 #define i (tmp.kb_index)
1847 #define s (tmp.kb_table)
1848 #define v (tmp.kb_value)
1849 
1850 int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1851 						int console)
1852 {
1853 	struct kbd_struct *kb = kbd_table + console;
1854 	struct kbentry tmp;
1855 	ushort *key_map, *new_map, val, ov;
1856 	unsigned long flags;
1857 
1858 	if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1859 		return -EFAULT;
1860 
1861 	if (!capable(CAP_SYS_TTY_CONFIG))
1862 		perm = 0;
1863 
1864 	switch (cmd) {
1865 	case KDGKBENT:
1866 		/* Ensure another thread doesn't free it under us */
1867 		spin_lock_irqsave(&kbd_event_lock, flags);
1868 		key_map = key_maps[s];
1869 		if (key_map) {
1870 		    val = U(key_map[i]);
1871 		    if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1872 			val = K_HOLE;
1873 		} else
1874 		    val = (i ? K_HOLE : K_NOSUCHMAP);
1875 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1876 		return put_user(val, &user_kbe->kb_value);
1877 	case KDSKBENT:
1878 		if (!perm)
1879 			return -EPERM;
1880 		if (!i && v == K_NOSUCHMAP) {
1881 			spin_lock_irqsave(&kbd_event_lock, flags);
1882 			/* deallocate map */
1883 			key_map = key_maps[s];
1884 			if (s && key_map) {
1885 			    key_maps[s] = NULL;
1886 			    if (key_map[0] == U(K_ALLOCATED)) {
1887 					kfree(key_map);
1888 					keymap_count--;
1889 			    }
1890 			}
1891 			spin_unlock_irqrestore(&kbd_event_lock, flags);
1892 			break;
1893 		}
1894 
1895 		if (KTYP(v) < NR_TYPES) {
1896 		    if (KVAL(v) > max_vals[KTYP(v)])
1897 				return -EINVAL;
1898 		} else
1899 		    if (kb->kbdmode != VC_UNICODE)
1900 				return -EINVAL;
1901 
1902 		/* ++Geert: non-PC keyboards may generate keycode zero */
1903 #if !defined(__mc68000__) && !defined(__powerpc__)
1904 		/* assignment to entry 0 only tests validity of args */
1905 		if (!i)
1906 			break;
1907 #endif
1908 
1909 		new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1910 		if (!new_map)
1911 			return -ENOMEM;
1912 		spin_lock_irqsave(&kbd_event_lock, flags);
1913 		key_map = key_maps[s];
1914 		if (key_map == NULL) {
1915 			int j;
1916 
1917 			if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1918 			    !capable(CAP_SYS_RESOURCE)) {
1919 				spin_unlock_irqrestore(&kbd_event_lock, flags);
1920 				kfree(new_map);
1921 				return -EPERM;
1922 			}
1923 			key_maps[s] = new_map;
1924 			key_map = new_map;
1925 			key_map[0] = U(K_ALLOCATED);
1926 			for (j = 1; j < NR_KEYS; j++)
1927 				key_map[j] = U(K_HOLE);
1928 			keymap_count++;
1929 		} else
1930 			kfree(new_map);
1931 
1932 		ov = U(key_map[i]);
1933 		if (v == ov)
1934 			goto out;
1935 		/*
1936 		 * Attention Key.
1937 		 */
1938 		if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1939 			spin_unlock_irqrestore(&kbd_event_lock, flags);
1940 			return -EPERM;
1941 		}
1942 		key_map[i] = U(v);
1943 		if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1944 			do_compute_shiftstate();
1945 out:
1946 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1947 		break;
1948 	}
1949 	return 0;
1950 }
1951 #undef i
1952 #undef s
1953 #undef v
1954 
1955 /* FIXME: This one needs untangling and locking */
1956 int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1957 {
1958 	struct kbsentry *kbs;
1959 	char *p;
1960 	u_char *q;
1961 	u_char __user *up;
1962 	int sz;
1963 	int delta;
1964 	char *first_free, *fj, *fnw;
1965 	int i, j, k;
1966 	int ret;
1967 
1968 	if (!capable(CAP_SYS_TTY_CONFIG))
1969 		perm = 0;
1970 
1971 	kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
1972 	if (!kbs) {
1973 		ret = -ENOMEM;
1974 		goto reterr;
1975 	}
1976 
1977 	/* we mostly copy too much here (512bytes), but who cares ;) */
1978 	if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
1979 		ret = -EFAULT;
1980 		goto reterr;
1981 	}
1982 	kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
1983 	i = kbs->kb_func;
1984 
1985 	switch (cmd) {
1986 	case KDGKBSENT:
1987 		sz = sizeof(kbs->kb_string) - 1; /* sz should have been
1988 						  a struct member */
1989 		up = user_kdgkb->kb_string;
1990 		p = func_table[i];
1991 		if(p)
1992 			for ( ; *p && sz; p++, sz--)
1993 				if (put_user(*p, up++)) {
1994 					ret = -EFAULT;
1995 					goto reterr;
1996 				}
1997 		if (put_user('\0', up)) {
1998 			ret = -EFAULT;
1999 			goto reterr;
2000 		}
2001 		kfree(kbs);
2002 		return ((p && *p) ? -EOVERFLOW : 0);
2003 	case KDSKBSENT:
2004 		if (!perm) {
2005 			ret = -EPERM;
2006 			goto reterr;
2007 		}
2008 
2009 		q = func_table[i];
2010 		first_free = funcbufptr + (funcbufsize - funcbufleft);
2011 		for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2012 			;
2013 		if (j < MAX_NR_FUNC)
2014 			fj = func_table[j];
2015 		else
2016 			fj = first_free;
2017 
2018 		delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2019 		if (delta <= funcbufleft) { 	/* it fits in current buf */
2020 		    if (j < MAX_NR_FUNC) {
2021 			memmove(fj + delta, fj, first_free - fj);
2022 			for (k = j; k < MAX_NR_FUNC; k++)
2023 			    if (func_table[k])
2024 				func_table[k] += delta;
2025 		    }
2026 		    if (!q)
2027 		      func_table[i] = fj;
2028 		    funcbufleft -= delta;
2029 		} else {			/* allocate a larger buffer */
2030 		    sz = 256;
2031 		    while (sz < funcbufsize - funcbufleft + delta)
2032 		      sz <<= 1;
2033 		    fnw = kmalloc(sz, GFP_KERNEL);
2034 		    if(!fnw) {
2035 		      ret = -ENOMEM;
2036 		      goto reterr;
2037 		    }
2038 
2039 		    if (!q)
2040 		      func_table[i] = fj;
2041 		    if (fj > funcbufptr)
2042 			memmove(fnw, funcbufptr, fj - funcbufptr);
2043 		    for (k = 0; k < j; k++)
2044 		      if (func_table[k])
2045 			func_table[k] = fnw + (func_table[k] - funcbufptr);
2046 
2047 		    if (first_free > fj) {
2048 			memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2049 			for (k = j; k < MAX_NR_FUNC; k++)
2050 			  if (func_table[k])
2051 			    func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2052 		    }
2053 		    if (funcbufptr != func_buf)
2054 		      kfree(funcbufptr);
2055 		    funcbufptr = fnw;
2056 		    funcbufleft = funcbufleft - delta + sz - funcbufsize;
2057 		    funcbufsize = sz;
2058 		}
2059 		strcpy(func_table[i], kbs->kb_string);
2060 		break;
2061 	}
2062 	ret = 0;
2063 reterr:
2064 	kfree(kbs);
2065 	return ret;
2066 }
2067 
2068 int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2069 {
2070 	struct kbd_struct *kb = kbd_table + console;
2071         unsigned long flags;
2072 	unsigned char ucval;
2073 
2074         switch(cmd) {
2075 	/* the ioctls below read/set the flags usually shown in the leds */
2076 	/* don't use them - they will go away without warning */
2077 	case KDGKBLED:
2078                 spin_lock_irqsave(&kbd_event_lock, flags);
2079 		ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2080                 spin_unlock_irqrestore(&kbd_event_lock, flags);
2081 		return put_user(ucval, (char __user *)arg);
2082 
2083 	case KDSKBLED:
2084 		if (!perm)
2085 			return -EPERM;
2086 		if (arg & ~0x77)
2087 			return -EINVAL;
2088                 spin_lock_irqsave(&led_lock, flags);
2089 		kb->ledflagstate = (arg & 7);
2090 		kb->default_ledflagstate = ((arg >> 4) & 7);
2091 		set_leds();
2092                 spin_unlock_irqrestore(&led_lock, flags);
2093 		return 0;
2094 
2095 	/* the ioctls below only set the lights, not the functions */
2096 	/* for those, see KDGKBLED and KDSKBLED above */
2097 	case KDGETLED:
2098 		ucval = getledstate();
2099 		return put_user(ucval, (char __user *)arg);
2100 
2101 	case KDSETLED:
2102 		if (!perm)
2103 			return -EPERM;
2104 		setledstate(kb, arg);
2105 		return 0;
2106         }
2107         return -ENOIOCTLCMD;
2108 }
2109 
2110 int vt_do_kdgkbmode(int console)
2111 {
2112 	struct kbd_struct *kb = kbd_table + console;
2113 	/* This is a spot read so needs no locking */
2114 	switch (kb->kbdmode) {
2115 	case VC_RAW:
2116 		return K_RAW;
2117 	case VC_MEDIUMRAW:
2118 		return K_MEDIUMRAW;
2119 	case VC_UNICODE:
2120 		return K_UNICODE;
2121 	case VC_OFF:
2122 		return K_OFF;
2123 	default:
2124 		return K_XLATE;
2125 	}
2126 }
2127 
2128 /**
2129  *	vt_do_kdgkbmeta		-	report meta status
2130  *	@console: console to report
2131  *
2132  *	Report the meta flag status of this console
2133  */
2134 int vt_do_kdgkbmeta(int console)
2135 {
2136 	struct kbd_struct *kb = kbd_table + console;
2137         /* Again a spot read so no locking */
2138 	return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2139 }
2140 
2141 /**
2142  *	vt_reset_unicode	-	reset the unicode status
2143  *	@console: console being reset
2144  *
2145  *	Restore the unicode console state to its default
2146  */
2147 void vt_reset_unicode(int console)
2148 {
2149 	unsigned long flags;
2150 
2151 	spin_lock_irqsave(&kbd_event_lock, flags);
2152 	kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2153 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2154 }
2155 
2156 /**
2157  *	vt_get_shiftstate	-	shift bit state
2158  *
2159  *	Report the shift bits from the keyboard state. We have to export
2160  *	this to support some oddities in the vt layer.
2161  */
2162 int vt_get_shift_state(void)
2163 {
2164         /* Don't lock as this is a transient report */
2165         return shift_state;
2166 }
2167 
2168 /**
2169  *	vt_reset_keyboard	-	reset keyboard state
2170  *	@console: console to reset
2171  *
2172  *	Reset the keyboard bits for a console as part of a general console
2173  *	reset event
2174  */
2175 void vt_reset_keyboard(int console)
2176 {
2177 	struct kbd_struct *kb = kbd_table + console;
2178 	unsigned long flags;
2179 
2180 	spin_lock_irqsave(&kbd_event_lock, flags);
2181 	set_vc_kbd_mode(kb, VC_REPEAT);
2182 	clr_vc_kbd_mode(kb, VC_CKMODE);
2183 	clr_vc_kbd_mode(kb, VC_APPLIC);
2184 	clr_vc_kbd_mode(kb, VC_CRLF);
2185 	kb->lockstate = 0;
2186 	kb->slockstate = 0;
2187 	spin_lock(&led_lock);
2188 	kb->ledmode = LED_SHOW_FLAGS;
2189 	kb->ledflagstate = kb->default_ledflagstate;
2190 	spin_unlock(&led_lock);
2191 	/* do not do set_leds here because this causes an endless tasklet loop
2192 	   when the keyboard hasn't been initialized yet */
2193 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2194 }
2195 
2196 /**
2197  *	vt_get_kbd_mode_bit	-	read keyboard status bits
2198  *	@console: console to read from
2199  *	@bit: mode bit to read
2200  *
2201  *	Report back a vt mode bit. We do this without locking so the
2202  *	caller must be sure that there are no synchronization needs
2203  */
2204 
2205 int vt_get_kbd_mode_bit(int console, int bit)
2206 {
2207 	struct kbd_struct *kb = kbd_table + console;
2208 	return vc_kbd_mode(kb, bit);
2209 }
2210 
2211 /**
2212  *	vt_set_kbd_mode_bit	-	read keyboard status bits
2213  *	@console: console to read from
2214  *	@bit: mode bit to read
2215  *
2216  *	Set a vt mode bit. We do this without locking so the
2217  *	caller must be sure that there are no synchronization needs
2218  */
2219 
2220 void vt_set_kbd_mode_bit(int console, int bit)
2221 {
2222 	struct kbd_struct *kb = kbd_table + console;
2223 	unsigned long flags;
2224 
2225 	spin_lock_irqsave(&kbd_event_lock, flags);
2226 	set_vc_kbd_mode(kb, bit);
2227 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2228 }
2229 
2230 /**
2231  *	vt_clr_kbd_mode_bit	-	read keyboard status bits
2232  *	@console: console to read from
2233  *	@bit: mode bit to read
2234  *
2235  *	Report back a vt mode bit. We do this without locking so the
2236  *	caller must be sure that there are no synchronization needs
2237  */
2238 
2239 void vt_clr_kbd_mode_bit(int console, int bit)
2240 {
2241 	struct kbd_struct *kb = kbd_table + console;
2242 	unsigned long flags;
2243 
2244 	spin_lock_irqsave(&kbd_event_lock, flags);
2245 	clr_vc_kbd_mode(kb, bit);
2246 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2247 }
2248