1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Written for linux by Johan Myreen as a translation from 4 * the assembly version by Linus (with diacriticals added) 5 * 6 * Some additional features added by Christoph Niemann (ChN), March 1993 7 * 8 * Loadable keymaps by Risto Kankkunen, May 1993 9 * 10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993 11 * Added decr/incr_console, dynamic keymaps, Unicode support, 12 * dynamic function/string keys, led setting, Sept 1994 13 * `Sticky' modifier keys, 951006. 14 * 15 * 11-11-96: SAK should now work in the raw mode (Martin Mares) 16 * 17 * Modified to provide 'generic' keyboard support by Hamish Macdonald 18 * Merge with the m68k keyboard driver and split-off of the PC low-level 19 * parts by Geert Uytterhoeven, May 1997 20 * 21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares) 22 * 30-07-98: Dead keys redone, aeb@cwi.nl. 23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik) 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/consolemap.h> 29 #include <linux/module.h> 30 #include <linux/sched/signal.h> 31 #include <linux/sched/debug.h> 32 #include <linux/tty.h> 33 #include <linux/tty_flip.h> 34 #include <linux/mm.h> 35 #include <linux/nospec.h> 36 #include <linux/string.h> 37 #include <linux/init.h> 38 #include <linux/slab.h> 39 #include <linux/leds.h> 40 41 #include <linux/kbd_kern.h> 42 #include <linux/kbd_diacr.h> 43 #include <linux/vt_kern.h> 44 #include <linux/input.h> 45 #include <linux/reboot.h> 46 #include <linux/notifier.h> 47 #include <linux/jiffies.h> 48 #include <linux/uaccess.h> 49 50 #include <asm/irq_regs.h> 51 52 extern void ctrl_alt_del(void); 53 54 /* 55 * Exported functions/variables 56 */ 57 58 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META)) 59 60 #if defined(CONFIG_X86) || defined(CONFIG_PARISC) 61 #include <asm/kbdleds.h> 62 #else 63 static inline int kbd_defleds(void) 64 { 65 return 0; 66 } 67 #endif 68 69 #define KBD_DEFLOCK 0 70 71 /* 72 * Handler Tables. 73 */ 74 75 #define K_HANDLERS\ 76 k_self, k_fn, k_spec, k_pad,\ 77 k_dead, k_cons, k_cur, k_shift,\ 78 k_meta, k_ascii, k_lock, k_lowercase,\ 79 k_slock, k_dead2, k_brl, k_ignore 80 81 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value, 82 char up_flag); 83 static k_handler_fn K_HANDLERS; 84 static k_handler_fn *k_handler[16] = { K_HANDLERS }; 85 86 #define FN_HANDLERS\ 87 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\ 88 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\ 89 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\ 90 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\ 91 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num 92 93 typedef void (fn_handler_fn)(struct vc_data *vc); 94 static fn_handler_fn FN_HANDLERS; 95 static fn_handler_fn *fn_handler[] = { FN_HANDLERS }; 96 97 /* 98 * Variables exported for vt_ioctl.c 99 */ 100 101 struct vt_spawn_console vt_spawn_con = { 102 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock), 103 .pid = NULL, 104 .sig = 0, 105 }; 106 107 108 /* 109 * Internal Data. 110 */ 111 112 static struct kbd_struct kbd_table[MAX_NR_CONSOLES]; 113 static struct kbd_struct *kbd = kbd_table; 114 115 /* maximum values each key_handler can handle */ 116 static const int max_vals[] = { 117 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1, 118 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1, 119 255, NR_LOCK - 1, 255, NR_BRL - 1 120 }; 121 122 static const int NR_TYPES = ARRAY_SIZE(max_vals); 123 124 static struct input_handler kbd_handler; 125 static DEFINE_SPINLOCK(kbd_event_lock); 126 static DEFINE_SPINLOCK(led_lock); 127 static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */ 128 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */ 129 static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */ 130 static bool dead_key_next; 131 132 /* Handles a number being assembled on the number pad */ 133 static bool npadch_active; 134 static unsigned int npadch_value; 135 136 static unsigned int diacr; 137 static char rep; /* flag telling character repeat */ 138 139 static int shift_state = 0; 140 141 static unsigned int ledstate = -1U; /* undefined */ 142 static unsigned char ledioctl; 143 144 /* 145 * Notifier list for console keyboard events 146 */ 147 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list); 148 149 int register_keyboard_notifier(struct notifier_block *nb) 150 { 151 return atomic_notifier_chain_register(&keyboard_notifier_list, nb); 152 } 153 EXPORT_SYMBOL_GPL(register_keyboard_notifier); 154 155 int unregister_keyboard_notifier(struct notifier_block *nb) 156 { 157 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb); 158 } 159 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier); 160 161 /* 162 * Translation of scancodes to keycodes. We set them on only the first 163 * keyboard in the list that accepts the scancode and keycode. 164 * Explanation for not choosing the first attached keyboard anymore: 165 * USB keyboards for example have two event devices: one for all "normal" 166 * keys and one for extra function keys (like "volume up", "make coffee", 167 * etc.). So this means that scancodes for the extra function keys won't 168 * be valid for the first event device, but will be for the second. 169 */ 170 171 struct getset_keycode_data { 172 struct input_keymap_entry ke; 173 int error; 174 }; 175 176 static int getkeycode_helper(struct input_handle *handle, void *data) 177 { 178 struct getset_keycode_data *d = data; 179 180 d->error = input_get_keycode(handle->dev, &d->ke); 181 182 return d->error == 0; /* stop as soon as we successfully get one */ 183 } 184 185 static int getkeycode(unsigned int scancode) 186 { 187 struct getset_keycode_data d = { 188 .ke = { 189 .flags = 0, 190 .len = sizeof(scancode), 191 .keycode = 0, 192 }, 193 .error = -ENODEV, 194 }; 195 196 memcpy(d.ke.scancode, &scancode, sizeof(scancode)); 197 198 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper); 199 200 return d.error ?: d.ke.keycode; 201 } 202 203 static int setkeycode_helper(struct input_handle *handle, void *data) 204 { 205 struct getset_keycode_data *d = data; 206 207 d->error = input_set_keycode(handle->dev, &d->ke); 208 209 return d->error == 0; /* stop as soon as we successfully set one */ 210 } 211 212 static int setkeycode(unsigned int scancode, unsigned int keycode) 213 { 214 struct getset_keycode_data d = { 215 .ke = { 216 .flags = 0, 217 .len = sizeof(scancode), 218 .keycode = keycode, 219 }, 220 .error = -ENODEV, 221 }; 222 223 memcpy(d.ke.scancode, &scancode, sizeof(scancode)); 224 225 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper); 226 227 return d.error; 228 } 229 230 /* 231 * Making beeps and bells. Note that we prefer beeps to bells, but when 232 * shutting the sound off we do both. 233 */ 234 235 static int kd_sound_helper(struct input_handle *handle, void *data) 236 { 237 unsigned int *hz = data; 238 struct input_dev *dev = handle->dev; 239 240 if (test_bit(EV_SND, dev->evbit)) { 241 if (test_bit(SND_TONE, dev->sndbit)) { 242 input_inject_event(handle, EV_SND, SND_TONE, *hz); 243 if (*hz) 244 return 0; 245 } 246 if (test_bit(SND_BELL, dev->sndbit)) 247 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0); 248 } 249 250 return 0; 251 } 252 253 static void kd_nosound(struct timer_list *unused) 254 { 255 static unsigned int zero; 256 257 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper); 258 } 259 260 static DEFINE_TIMER(kd_mksound_timer, kd_nosound); 261 262 void kd_mksound(unsigned int hz, unsigned int ticks) 263 { 264 del_timer_sync(&kd_mksound_timer); 265 266 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper); 267 268 if (hz && ticks) 269 mod_timer(&kd_mksound_timer, jiffies + ticks); 270 } 271 EXPORT_SYMBOL(kd_mksound); 272 273 /* 274 * Setting the keyboard rate. 275 */ 276 277 static int kbd_rate_helper(struct input_handle *handle, void *data) 278 { 279 struct input_dev *dev = handle->dev; 280 struct kbd_repeat *rpt = data; 281 282 if (test_bit(EV_REP, dev->evbit)) { 283 284 if (rpt[0].delay > 0) 285 input_inject_event(handle, 286 EV_REP, REP_DELAY, rpt[0].delay); 287 if (rpt[0].period > 0) 288 input_inject_event(handle, 289 EV_REP, REP_PERIOD, rpt[0].period); 290 291 rpt[1].delay = dev->rep[REP_DELAY]; 292 rpt[1].period = dev->rep[REP_PERIOD]; 293 } 294 295 return 0; 296 } 297 298 int kbd_rate(struct kbd_repeat *rpt) 299 { 300 struct kbd_repeat data[2] = { *rpt }; 301 302 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper); 303 *rpt = data[1]; /* Copy currently used settings */ 304 305 return 0; 306 } 307 308 /* 309 * Helper Functions. 310 */ 311 static void put_queue(struct vc_data *vc, int ch) 312 { 313 tty_insert_flip_char(&vc->port, ch, 0); 314 tty_schedule_flip(&vc->port); 315 } 316 317 static void puts_queue(struct vc_data *vc, char *cp) 318 { 319 while (*cp) { 320 tty_insert_flip_char(&vc->port, *cp, 0); 321 cp++; 322 } 323 tty_schedule_flip(&vc->port); 324 } 325 326 static void applkey(struct vc_data *vc, int key, char mode) 327 { 328 static char buf[] = { 0x1b, 'O', 0x00, 0x00 }; 329 330 buf[1] = (mode ? 'O' : '['); 331 buf[2] = key; 332 puts_queue(vc, buf); 333 } 334 335 /* 336 * Many other routines do put_queue, but I think either 337 * they produce ASCII, or they produce some user-assigned 338 * string, and in both cases we might assume that it is 339 * in utf-8 already. 340 */ 341 static void to_utf8(struct vc_data *vc, uint c) 342 { 343 if (c < 0x80) 344 /* 0******* */ 345 put_queue(vc, c); 346 else if (c < 0x800) { 347 /* 110***** 10****** */ 348 put_queue(vc, 0xc0 | (c >> 6)); 349 put_queue(vc, 0x80 | (c & 0x3f)); 350 } else if (c < 0x10000) { 351 if (c >= 0xD800 && c < 0xE000) 352 return; 353 if (c == 0xFFFF) 354 return; 355 /* 1110**** 10****** 10****** */ 356 put_queue(vc, 0xe0 | (c >> 12)); 357 put_queue(vc, 0x80 | ((c >> 6) & 0x3f)); 358 put_queue(vc, 0x80 | (c & 0x3f)); 359 } else if (c < 0x110000) { 360 /* 11110*** 10****** 10****** 10****** */ 361 put_queue(vc, 0xf0 | (c >> 18)); 362 put_queue(vc, 0x80 | ((c >> 12) & 0x3f)); 363 put_queue(vc, 0x80 | ((c >> 6) & 0x3f)); 364 put_queue(vc, 0x80 | (c & 0x3f)); 365 } 366 } 367 368 /* 369 * Called after returning from RAW mode or when changing consoles - recompute 370 * shift_down[] and shift_state from key_down[] maybe called when keymap is 371 * undefined, so that shiftkey release is seen. The caller must hold the 372 * kbd_event_lock. 373 */ 374 375 static void do_compute_shiftstate(void) 376 { 377 unsigned int k, sym, val; 378 379 shift_state = 0; 380 memset(shift_down, 0, sizeof(shift_down)); 381 382 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) { 383 sym = U(key_maps[0][k]); 384 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK) 385 continue; 386 387 val = KVAL(sym); 388 if (val == KVAL(K_CAPSSHIFT)) 389 val = KVAL(K_SHIFT); 390 391 shift_down[val]++; 392 shift_state |= BIT(val); 393 } 394 } 395 396 /* We still have to export this method to vt.c */ 397 void compute_shiftstate(void) 398 { 399 unsigned long flags; 400 spin_lock_irqsave(&kbd_event_lock, flags); 401 do_compute_shiftstate(); 402 spin_unlock_irqrestore(&kbd_event_lock, flags); 403 } 404 405 /* 406 * We have a combining character DIACR here, followed by the character CH. 407 * If the combination occurs in the table, return the corresponding value. 408 * Otherwise, if CH is a space or equals DIACR, return DIACR. 409 * Otherwise, conclude that DIACR was not combining after all, 410 * queue it and return CH. 411 */ 412 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch) 413 { 414 unsigned int d = diacr; 415 unsigned int i; 416 417 diacr = 0; 418 419 if ((d & ~0xff) == BRL_UC_ROW) { 420 if ((ch & ~0xff) == BRL_UC_ROW) 421 return d | ch; 422 } else { 423 for (i = 0; i < accent_table_size; i++) 424 if (accent_table[i].diacr == d && accent_table[i].base == ch) 425 return accent_table[i].result; 426 } 427 428 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d) 429 return d; 430 431 if (kbd->kbdmode == VC_UNICODE) 432 to_utf8(vc, d); 433 else { 434 int c = conv_uni_to_8bit(d); 435 if (c != -1) 436 put_queue(vc, c); 437 } 438 439 return ch; 440 } 441 442 /* 443 * Special function handlers 444 */ 445 static void fn_enter(struct vc_data *vc) 446 { 447 if (diacr) { 448 if (kbd->kbdmode == VC_UNICODE) 449 to_utf8(vc, diacr); 450 else { 451 int c = conv_uni_to_8bit(diacr); 452 if (c != -1) 453 put_queue(vc, c); 454 } 455 diacr = 0; 456 } 457 458 put_queue(vc, 13); 459 if (vc_kbd_mode(kbd, VC_CRLF)) 460 put_queue(vc, 10); 461 } 462 463 static void fn_caps_toggle(struct vc_data *vc) 464 { 465 if (rep) 466 return; 467 468 chg_vc_kbd_led(kbd, VC_CAPSLOCK); 469 } 470 471 static void fn_caps_on(struct vc_data *vc) 472 { 473 if (rep) 474 return; 475 476 set_vc_kbd_led(kbd, VC_CAPSLOCK); 477 } 478 479 static void fn_show_ptregs(struct vc_data *vc) 480 { 481 struct pt_regs *regs = get_irq_regs(); 482 483 if (regs) 484 show_regs(regs); 485 } 486 487 static void fn_hold(struct vc_data *vc) 488 { 489 struct tty_struct *tty = vc->port.tty; 490 491 if (rep || !tty) 492 return; 493 494 /* 495 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty); 496 * these routines are also activated by ^S/^Q. 497 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.) 498 */ 499 if (tty->stopped) 500 start_tty(tty); 501 else 502 stop_tty(tty); 503 } 504 505 static void fn_num(struct vc_data *vc) 506 { 507 if (vc_kbd_mode(kbd, VC_APPLIC)) 508 applkey(vc, 'P', 1); 509 else 510 fn_bare_num(vc); 511 } 512 513 /* 514 * Bind this to Shift-NumLock if you work in application keypad mode 515 * but want to be able to change the NumLock flag. 516 * Bind this to NumLock if you prefer that the NumLock key always 517 * changes the NumLock flag. 518 */ 519 static void fn_bare_num(struct vc_data *vc) 520 { 521 if (!rep) 522 chg_vc_kbd_led(kbd, VC_NUMLOCK); 523 } 524 525 static void fn_lastcons(struct vc_data *vc) 526 { 527 /* switch to the last used console, ChN */ 528 set_console(last_console); 529 } 530 531 static void fn_dec_console(struct vc_data *vc) 532 { 533 int i, cur = fg_console; 534 535 /* Currently switching? Queue this next switch relative to that. */ 536 if (want_console != -1) 537 cur = want_console; 538 539 for (i = cur - 1; i != cur; i--) { 540 if (i == -1) 541 i = MAX_NR_CONSOLES - 1; 542 if (vc_cons_allocated(i)) 543 break; 544 } 545 set_console(i); 546 } 547 548 static void fn_inc_console(struct vc_data *vc) 549 { 550 int i, cur = fg_console; 551 552 /* Currently switching? Queue this next switch relative to that. */ 553 if (want_console != -1) 554 cur = want_console; 555 556 for (i = cur+1; i != cur; i++) { 557 if (i == MAX_NR_CONSOLES) 558 i = 0; 559 if (vc_cons_allocated(i)) 560 break; 561 } 562 set_console(i); 563 } 564 565 static void fn_send_intr(struct vc_data *vc) 566 { 567 tty_insert_flip_char(&vc->port, 0, TTY_BREAK); 568 tty_schedule_flip(&vc->port); 569 } 570 571 static void fn_scroll_forw(struct vc_data *vc) 572 { 573 scrollfront(vc, 0); 574 } 575 576 static void fn_scroll_back(struct vc_data *vc) 577 { 578 scrollback(vc); 579 } 580 581 static void fn_show_mem(struct vc_data *vc) 582 { 583 show_mem(0, NULL); 584 } 585 586 static void fn_show_state(struct vc_data *vc) 587 { 588 show_state(); 589 } 590 591 static void fn_boot_it(struct vc_data *vc) 592 { 593 ctrl_alt_del(); 594 } 595 596 static void fn_compose(struct vc_data *vc) 597 { 598 dead_key_next = true; 599 } 600 601 static void fn_spawn_con(struct vc_data *vc) 602 { 603 spin_lock(&vt_spawn_con.lock); 604 if (vt_spawn_con.pid) 605 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) { 606 put_pid(vt_spawn_con.pid); 607 vt_spawn_con.pid = NULL; 608 } 609 spin_unlock(&vt_spawn_con.lock); 610 } 611 612 static void fn_SAK(struct vc_data *vc) 613 { 614 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work; 615 schedule_work(SAK_work); 616 } 617 618 static void fn_null(struct vc_data *vc) 619 { 620 do_compute_shiftstate(); 621 } 622 623 /* 624 * Special key handlers 625 */ 626 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag) 627 { 628 } 629 630 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag) 631 { 632 if (up_flag) 633 return; 634 if (value >= ARRAY_SIZE(fn_handler)) 635 return; 636 if ((kbd->kbdmode == VC_RAW || 637 kbd->kbdmode == VC_MEDIUMRAW || 638 kbd->kbdmode == VC_OFF) && 639 value != KVAL(K_SAK)) 640 return; /* SAK is allowed even in raw mode */ 641 fn_handler[value](vc); 642 } 643 644 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag) 645 { 646 pr_err("k_lowercase was called - impossible\n"); 647 } 648 649 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag) 650 { 651 if (up_flag) 652 return; /* no action, if this is a key release */ 653 654 if (diacr) 655 value = handle_diacr(vc, value); 656 657 if (dead_key_next) { 658 dead_key_next = false; 659 diacr = value; 660 return; 661 } 662 if (kbd->kbdmode == VC_UNICODE) 663 to_utf8(vc, value); 664 else { 665 int c = conv_uni_to_8bit(value); 666 if (c != -1) 667 put_queue(vc, c); 668 } 669 } 670 671 /* 672 * Handle dead key. Note that we now may have several 673 * dead keys modifying the same character. Very useful 674 * for Vietnamese. 675 */ 676 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag) 677 { 678 if (up_flag) 679 return; 680 681 diacr = (diacr ? handle_diacr(vc, value) : value); 682 } 683 684 static void k_self(struct vc_data *vc, unsigned char value, char up_flag) 685 { 686 k_unicode(vc, conv_8bit_to_uni(value), up_flag); 687 } 688 689 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag) 690 { 691 k_deadunicode(vc, value, up_flag); 692 } 693 694 /* 695 * Obsolete - for backwards compatibility only 696 */ 697 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag) 698 { 699 static const unsigned char ret_diacr[NR_DEAD] = { 700 '`', /* dead_grave */ 701 '\'', /* dead_acute */ 702 '^', /* dead_circumflex */ 703 '~', /* dead_tilda */ 704 '"', /* dead_diaeresis */ 705 ',', /* dead_cedilla */ 706 '_', /* dead_macron */ 707 'U', /* dead_breve */ 708 '.', /* dead_abovedot */ 709 '*', /* dead_abovering */ 710 '=', /* dead_doubleacute */ 711 'c', /* dead_caron */ 712 'k', /* dead_ogonek */ 713 'i', /* dead_iota */ 714 '#', /* dead_voiced_sound */ 715 'o', /* dead_semivoiced_sound */ 716 '!', /* dead_belowdot */ 717 '?', /* dead_hook */ 718 '+', /* dead_horn */ 719 '-', /* dead_stroke */ 720 ')', /* dead_abovecomma */ 721 '(', /* dead_abovereversedcomma */ 722 ':', /* dead_doublegrave */ 723 'n', /* dead_invertedbreve */ 724 ';', /* dead_belowcomma */ 725 '$', /* dead_currency */ 726 '@', /* dead_greek */ 727 }; 728 729 k_deadunicode(vc, ret_diacr[value], up_flag); 730 } 731 732 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag) 733 { 734 if (up_flag) 735 return; 736 737 set_console(value); 738 } 739 740 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag) 741 { 742 if (up_flag) 743 return; 744 745 if ((unsigned)value < ARRAY_SIZE(func_table)) { 746 if (func_table[value]) 747 puts_queue(vc, func_table[value]); 748 } else 749 pr_err("k_fn called with value=%d\n", value); 750 } 751 752 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag) 753 { 754 static const char cur_chars[] = "BDCA"; 755 756 if (up_flag) 757 return; 758 759 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE)); 760 } 761 762 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag) 763 { 764 static const char pad_chars[] = "0123456789+-*/\015,.?()#"; 765 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS"; 766 767 if (up_flag) 768 return; /* no action, if this is a key release */ 769 770 /* kludge... shift forces cursor/number keys */ 771 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) { 772 applkey(vc, app_map[value], 1); 773 return; 774 } 775 776 if (!vc_kbd_led(kbd, VC_NUMLOCK)) { 777 778 switch (value) { 779 case KVAL(K_PCOMMA): 780 case KVAL(K_PDOT): 781 k_fn(vc, KVAL(K_REMOVE), 0); 782 return; 783 case KVAL(K_P0): 784 k_fn(vc, KVAL(K_INSERT), 0); 785 return; 786 case KVAL(K_P1): 787 k_fn(vc, KVAL(K_SELECT), 0); 788 return; 789 case KVAL(K_P2): 790 k_cur(vc, KVAL(K_DOWN), 0); 791 return; 792 case KVAL(K_P3): 793 k_fn(vc, KVAL(K_PGDN), 0); 794 return; 795 case KVAL(K_P4): 796 k_cur(vc, KVAL(K_LEFT), 0); 797 return; 798 case KVAL(K_P6): 799 k_cur(vc, KVAL(K_RIGHT), 0); 800 return; 801 case KVAL(K_P7): 802 k_fn(vc, KVAL(K_FIND), 0); 803 return; 804 case KVAL(K_P8): 805 k_cur(vc, KVAL(K_UP), 0); 806 return; 807 case KVAL(K_P9): 808 k_fn(vc, KVAL(K_PGUP), 0); 809 return; 810 case KVAL(K_P5): 811 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC)); 812 return; 813 } 814 } 815 816 put_queue(vc, pad_chars[value]); 817 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF)) 818 put_queue(vc, 10); 819 } 820 821 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag) 822 { 823 int old_state = shift_state; 824 825 if (rep) 826 return; 827 /* 828 * Mimic typewriter: 829 * a CapsShift key acts like Shift but undoes CapsLock 830 */ 831 if (value == KVAL(K_CAPSSHIFT)) { 832 value = KVAL(K_SHIFT); 833 if (!up_flag) 834 clr_vc_kbd_led(kbd, VC_CAPSLOCK); 835 } 836 837 if (up_flag) { 838 /* 839 * handle the case that two shift or control 840 * keys are depressed simultaneously 841 */ 842 if (shift_down[value]) 843 shift_down[value]--; 844 } else 845 shift_down[value]++; 846 847 if (shift_down[value]) 848 shift_state |= (1 << value); 849 else 850 shift_state &= ~(1 << value); 851 852 /* kludge */ 853 if (up_flag && shift_state != old_state && npadch_active) { 854 if (kbd->kbdmode == VC_UNICODE) 855 to_utf8(vc, npadch_value); 856 else 857 put_queue(vc, npadch_value & 0xff); 858 npadch_active = false; 859 } 860 } 861 862 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag) 863 { 864 if (up_flag) 865 return; 866 867 if (vc_kbd_mode(kbd, VC_META)) { 868 put_queue(vc, '\033'); 869 put_queue(vc, value); 870 } else 871 put_queue(vc, value | 0x80); 872 } 873 874 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag) 875 { 876 unsigned int base; 877 878 if (up_flag) 879 return; 880 881 if (value < 10) { 882 /* decimal input of code, while Alt depressed */ 883 base = 10; 884 } else { 885 /* hexadecimal input of code, while AltGr depressed */ 886 value -= 10; 887 base = 16; 888 } 889 890 if (!npadch_active) { 891 npadch_value = 0; 892 npadch_active = true; 893 } 894 895 npadch_value = npadch_value * base + value; 896 } 897 898 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag) 899 { 900 if (up_flag || rep) 901 return; 902 903 chg_vc_kbd_lock(kbd, value); 904 } 905 906 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag) 907 { 908 k_shift(vc, value, up_flag); 909 if (up_flag || rep) 910 return; 911 912 chg_vc_kbd_slock(kbd, value); 913 /* try to make Alt, oops, AltGr and such work */ 914 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) { 915 kbd->slockstate = 0; 916 chg_vc_kbd_slock(kbd, value); 917 } 918 } 919 920 /* by default, 300ms interval for combination release */ 921 static unsigned brl_timeout = 300; 922 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)"); 923 module_param(brl_timeout, uint, 0644); 924 925 static unsigned brl_nbchords = 1; 926 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)"); 927 module_param(brl_nbchords, uint, 0644); 928 929 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag) 930 { 931 static unsigned long chords; 932 static unsigned committed; 933 934 if (!brl_nbchords) 935 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag); 936 else { 937 committed |= pattern; 938 chords++; 939 if (chords == brl_nbchords) { 940 k_unicode(vc, BRL_UC_ROW | committed, up_flag); 941 chords = 0; 942 committed = 0; 943 } 944 } 945 } 946 947 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag) 948 { 949 static unsigned pressed, committing; 950 static unsigned long releasestart; 951 952 if (kbd->kbdmode != VC_UNICODE) { 953 if (!up_flag) 954 pr_warn("keyboard mode must be unicode for braille patterns\n"); 955 return; 956 } 957 958 if (!value) { 959 k_unicode(vc, BRL_UC_ROW, up_flag); 960 return; 961 } 962 963 if (value > 8) 964 return; 965 966 if (!up_flag) { 967 pressed |= 1 << (value - 1); 968 if (!brl_timeout) 969 committing = pressed; 970 } else if (brl_timeout) { 971 if (!committing || 972 time_after(jiffies, 973 releasestart + msecs_to_jiffies(brl_timeout))) { 974 committing = pressed; 975 releasestart = jiffies; 976 } 977 pressed &= ~(1 << (value - 1)); 978 if (!pressed && committing) { 979 k_brlcommit(vc, committing, 0); 980 committing = 0; 981 } 982 } else { 983 if (committing) { 984 k_brlcommit(vc, committing, 0); 985 committing = 0; 986 } 987 pressed &= ~(1 << (value - 1)); 988 } 989 } 990 991 #if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS) 992 993 struct kbd_led_trigger { 994 struct led_trigger trigger; 995 unsigned int mask; 996 }; 997 998 static int kbd_led_trigger_activate(struct led_classdev *cdev) 999 { 1000 struct kbd_led_trigger *trigger = 1001 container_of(cdev->trigger, struct kbd_led_trigger, trigger); 1002 1003 tasklet_disable(&keyboard_tasklet); 1004 if (ledstate != -1U) 1005 led_trigger_event(&trigger->trigger, 1006 ledstate & trigger->mask ? 1007 LED_FULL : LED_OFF); 1008 tasklet_enable(&keyboard_tasklet); 1009 1010 return 0; 1011 } 1012 1013 #define KBD_LED_TRIGGER(_led_bit, _name) { \ 1014 .trigger = { \ 1015 .name = _name, \ 1016 .activate = kbd_led_trigger_activate, \ 1017 }, \ 1018 .mask = BIT(_led_bit), \ 1019 } 1020 1021 #define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \ 1022 KBD_LED_TRIGGER((_led_bit) + 8, _name) 1023 1024 static struct kbd_led_trigger kbd_led_triggers[] = { 1025 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"), 1026 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"), 1027 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"), 1028 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"), 1029 1030 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"), 1031 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"), 1032 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"), 1033 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"), 1034 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"), 1035 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"), 1036 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"), 1037 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"), 1038 }; 1039 1040 static void kbd_propagate_led_state(unsigned int old_state, 1041 unsigned int new_state) 1042 { 1043 struct kbd_led_trigger *trigger; 1044 unsigned int changed = old_state ^ new_state; 1045 int i; 1046 1047 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) { 1048 trigger = &kbd_led_triggers[i]; 1049 1050 if (changed & trigger->mask) 1051 led_trigger_event(&trigger->trigger, 1052 new_state & trigger->mask ? 1053 LED_FULL : LED_OFF); 1054 } 1055 } 1056 1057 static int kbd_update_leds_helper(struct input_handle *handle, void *data) 1058 { 1059 unsigned int led_state = *(unsigned int *)data; 1060 1061 if (test_bit(EV_LED, handle->dev->evbit)) 1062 kbd_propagate_led_state(~led_state, led_state); 1063 1064 return 0; 1065 } 1066 1067 static void kbd_init_leds(void) 1068 { 1069 int error; 1070 int i; 1071 1072 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) { 1073 error = led_trigger_register(&kbd_led_triggers[i].trigger); 1074 if (error) 1075 pr_err("error %d while registering trigger %s\n", 1076 error, kbd_led_triggers[i].trigger.name); 1077 } 1078 } 1079 1080 #else 1081 1082 static int kbd_update_leds_helper(struct input_handle *handle, void *data) 1083 { 1084 unsigned int leds = *(unsigned int *)data; 1085 1086 if (test_bit(EV_LED, handle->dev->evbit)) { 1087 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01)); 1088 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02)); 1089 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04)); 1090 input_inject_event(handle, EV_SYN, SYN_REPORT, 0); 1091 } 1092 1093 return 0; 1094 } 1095 1096 static void kbd_propagate_led_state(unsigned int old_state, 1097 unsigned int new_state) 1098 { 1099 input_handler_for_each_handle(&kbd_handler, &new_state, 1100 kbd_update_leds_helper); 1101 } 1102 1103 static void kbd_init_leds(void) 1104 { 1105 } 1106 1107 #endif 1108 1109 /* 1110 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock, 1111 * or (ii) whatever pattern of lights people want to show using KDSETLED, 1112 * or (iii) specified bits of specified words in kernel memory. 1113 */ 1114 static unsigned char getledstate(void) 1115 { 1116 return ledstate & 0xff; 1117 } 1118 1119 void setledstate(struct kbd_struct *kb, unsigned int led) 1120 { 1121 unsigned long flags; 1122 spin_lock_irqsave(&led_lock, flags); 1123 if (!(led & ~7)) { 1124 ledioctl = led; 1125 kb->ledmode = LED_SHOW_IOCTL; 1126 } else 1127 kb->ledmode = LED_SHOW_FLAGS; 1128 1129 set_leds(); 1130 spin_unlock_irqrestore(&led_lock, flags); 1131 } 1132 1133 static inline unsigned char getleds(void) 1134 { 1135 struct kbd_struct *kb = kbd_table + fg_console; 1136 1137 if (kb->ledmode == LED_SHOW_IOCTL) 1138 return ledioctl; 1139 1140 return kb->ledflagstate; 1141 } 1142 1143 /** 1144 * vt_get_leds - helper for braille console 1145 * @console: console to read 1146 * @flag: flag we want to check 1147 * 1148 * Check the status of a keyboard led flag and report it back 1149 */ 1150 int vt_get_leds(int console, int flag) 1151 { 1152 struct kbd_struct *kb = kbd_table + console; 1153 int ret; 1154 unsigned long flags; 1155 1156 spin_lock_irqsave(&led_lock, flags); 1157 ret = vc_kbd_led(kb, flag); 1158 spin_unlock_irqrestore(&led_lock, flags); 1159 1160 return ret; 1161 } 1162 EXPORT_SYMBOL_GPL(vt_get_leds); 1163 1164 /** 1165 * vt_set_led_state - set LED state of a console 1166 * @console: console to set 1167 * @leds: LED bits 1168 * 1169 * Set the LEDs on a console. This is a wrapper for the VT layer 1170 * so that we can keep kbd knowledge internal 1171 */ 1172 void vt_set_led_state(int console, int leds) 1173 { 1174 struct kbd_struct *kb = kbd_table + console; 1175 setledstate(kb, leds); 1176 } 1177 1178 /** 1179 * vt_kbd_con_start - Keyboard side of console start 1180 * @console: console 1181 * 1182 * Handle console start. This is a wrapper for the VT layer 1183 * so that we can keep kbd knowledge internal 1184 * 1185 * FIXME: We eventually need to hold the kbd lock here to protect 1186 * the LED updating. We can't do it yet because fn_hold calls stop_tty 1187 * and start_tty under the kbd_event_lock, while normal tty paths 1188 * don't hold the lock. We probably need to split out an LED lock 1189 * but not during an -rc release! 1190 */ 1191 void vt_kbd_con_start(int console) 1192 { 1193 struct kbd_struct *kb = kbd_table + console; 1194 unsigned long flags; 1195 spin_lock_irqsave(&led_lock, flags); 1196 clr_vc_kbd_led(kb, VC_SCROLLOCK); 1197 set_leds(); 1198 spin_unlock_irqrestore(&led_lock, flags); 1199 } 1200 1201 /** 1202 * vt_kbd_con_stop - Keyboard side of console stop 1203 * @console: console 1204 * 1205 * Handle console stop. This is a wrapper for the VT layer 1206 * so that we can keep kbd knowledge internal 1207 */ 1208 void vt_kbd_con_stop(int console) 1209 { 1210 struct kbd_struct *kb = kbd_table + console; 1211 unsigned long flags; 1212 spin_lock_irqsave(&led_lock, flags); 1213 set_vc_kbd_led(kb, VC_SCROLLOCK); 1214 set_leds(); 1215 spin_unlock_irqrestore(&led_lock, flags); 1216 } 1217 1218 /* 1219 * This is the tasklet that updates LED state of LEDs using standard 1220 * keyboard triggers. The reason we use tasklet is that we need to 1221 * handle the scenario when keyboard handler is not registered yet 1222 * but we already getting updates from the VT to update led state. 1223 */ 1224 static void kbd_bh(unsigned long dummy) 1225 { 1226 unsigned int leds; 1227 unsigned long flags; 1228 1229 spin_lock_irqsave(&led_lock, flags); 1230 leds = getleds(); 1231 leds |= (unsigned int)kbd->lockstate << 8; 1232 spin_unlock_irqrestore(&led_lock, flags); 1233 1234 if (leds != ledstate) { 1235 kbd_propagate_led_state(ledstate, leds); 1236 ledstate = leds; 1237 } 1238 } 1239 1240 DECLARE_TASKLET_DISABLED_OLD(keyboard_tasklet, kbd_bh); 1241 1242 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\ 1243 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\ 1244 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\ 1245 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) 1246 1247 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\ 1248 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001)) 1249 1250 static const unsigned short x86_keycodes[256] = 1251 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1252 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1253 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 1254 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 1255 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 1256 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92, 1257 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339, 1258 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349, 1259 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355, 1260 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361, 1261 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114, 1262 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116, 1263 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307, 1264 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330, 1265 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 }; 1266 1267 #ifdef CONFIG_SPARC 1268 static int sparc_l1_a_state; 1269 extern void sun_do_break(void); 1270 #endif 1271 1272 static int emulate_raw(struct vc_data *vc, unsigned int keycode, 1273 unsigned char up_flag) 1274 { 1275 int code; 1276 1277 switch (keycode) { 1278 1279 case KEY_PAUSE: 1280 put_queue(vc, 0xe1); 1281 put_queue(vc, 0x1d | up_flag); 1282 put_queue(vc, 0x45 | up_flag); 1283 break; 1284 1285 case KEY_HANGEUL: 1286 if (!up_flag) 1287 put_queue(vc, 0xf2); 1288 break; 1289 1290 case KEY_HANJA: 1291 if (!up_flag) 1292 put_queue(vc, 0xf1); 1293 break; 1294 1295 case KEY_SYSRQ: 1296 /* 1297 * Real AT keyboards (that's what we're trying 1298 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when 1299 * pressing PrtSc/SysRq alone, but simply 0x54 1300 * when pressing Alt+PrtSc/SysRq. 1301 */ 1302 if (test_bit(KEY_LEFTALT, key_down) || 1303 test_bit(KEY_RIGHTALT, key_down)) { 1304 put_queue(vc, 0x54 | up_flag); 1305 } else { 1306 put_queue(vc, 0xe0); 1307 put_queue(vc, 0x2a | up_flag); 1308 put_queue(vc, 0xe0); 1309 put_queue(vc, 0x37 | up_flag); 1310 } 1311 break; 1312 1313 default: 1314 if (keycode > 255) 1315 return -1; 1316 1317 code = x86_keycodes[keycode]; 1318 if (!code) 1319 return -1; 1320 1321 if (code & 0x100) 1322 put_queue(vc, 0xe0); 1323 put_queue(vc, (code & 0x7f) | up_flag); 1324 1325 break; 1326 } 1327 1328 return 0; 1329 } 1330 1331 #else 1332 1333 #define HW_RAW(dev) 0 1334 1335 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag) 1336 { 1337 if (keycode > 127) 1338 return -1; 1339 1340 put_queue(vc, keycode | up_flag); 1341 return 0; 1342 } 1343 #endif 1344 1345 static void kbd_rawcode(unsigned char data) 1346 { 1347 struct vc_data *vc = vc_cons[fg_console].d; 1348 1349 kbd = kbd_table + vc->vc_num; 1350 if (kbd->kbdmode == VC_RAW) 1351 put_queue(vc, data); 1352 } 1353 1354 static void kbd_keycode(unsigned int keycode, int down, int hw_raw) 1355 { 1356 struct vc_data *vc = vc_cons[fg_console].d; 1357 unsigned short keysym, *key_map; 1358 unsigned char type; 1359 bool raw_mode; 1360 struct tty_struct *tty; 1361 int shift_final; 1362 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down }; 1363 int rc; 1364 1365 tty = vc->port.tty; 1366 1367 if (tty && (!tty->driver_data)) { 1368 /* No driver data? Strange. Okay we fix it then. */ 1369 tty->driver_data = vc; 1370 } 1371 1372 kbd = kbd_table + vc->vc_num; 1373 1374 #ifdef CONFIG_SPARC 1375 if (keycode == KEY_STOP) 1376 sparc_l1_a_state = down; 1377 #endif 1378 1379 rep = (down == 2); 1380 1381 raw_mode = (kbd->kbdmode == VC_RAW); 1382 if (raw_mode && !hw_raw) 1383 if (emulate_raw(vc, keycode, !down << 7)) 1384 if (keycode < BTN_MISC && printk_ratelimit()) 1385 pr_warn("can't emulate rawmode for keycode %d\n", 1386 keycode); 1387 1388 #ifdef CONFIG_SPARC 1389 if (keycode == KEY_A && sparc_l1_a_state) { 1390 sparc_l1_a_state = false; 1391 sun_do_break(); 1392 } 1393 #endif 1394 1395 if (kbd->kbdmode == VC_MEDIUMRAW) { 1396 /* 1397 * This is extended medium raw mode, with keys above 127 1398 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing 1399 * the 'up' flag if needed. 0 is reserved, so this shouldn't 1400 * interfere with anything else. The two bytes after 0 will 1401 * always have the up flag set not to interfere with older 1402 * applications. This allows for 16384 different keycodes, 1403 * which should be enough. 1404 */ 1405 if (keycode < 128) { 1406 put_queue(vc, keycode | (!down << 7)); 1407 } else { 1408 put_queue(vc, !down << 7); 1409 put_queue(vc, (keycode >> 7) | 0x80); 1410 put_queue(vc, keycode | 0x80); 1411 } 1412 raw_mode = true; 1413 } 1414 1415 if (down) 1416 set_bit(keycode, key_down); 1417 else 1418 clear_bit(keycode, key_down); 1419 1420 if (rep && 1421 (!vc_kbd_mode(kbd, VC_REPEAT) || 1422 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) { 1423 /* 1424 * Don't repeat a key if the input buffers are not empty and the 1425 * characters get aren't echoed locally. This makes key repeat 1426 * usable with slow applications and under heavy loads. 1427 */ 1428 return; 1429 } 1430 1431 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate; 1432 param.ledstate = kbd->ledflagstate; 1433 key_map = key_maps[shift_final]; 1434 1435 rc = atomic_notifier_call_chain(&keyboard_notifier_list, 1436 KBD_KEYCODE, ¶m); 1437 if (rc == NOTIFY_STOP || !key_map) { 1438 atomic_notifier_call_chain(&keyboard_notifier_list, 1439 KBD_UNBOUND_KEYCODE, ¶m); 1440 do_compute_shiftstate(); 1441 kbd->slockstate = 0; 1442 return; 1443 } 1444 1445 if (keycode < NR_KEYS) 1446 keysym = key_map[keycode]; 1447 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8) 1448 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1)); 1449 else 1450 return; 1451 1452 type = KTYP(keysym); 1453 1454 if (type < 0xf0) { 1455 param.value = keysym; 1456 rc = atomic_notifier_call_chain(&keyboard_notifier_list, 1457 KBD_UNICODE, ¶m); 1458 if (rc != NOTIFY_STOP) 1459 if (down && !raw_mode) 1460 k_unicode(vc, keysym, !down); 1461 return; 1462 } 1463 1464 type -= 0xf0; 1465 1466 if (type == KT_LETTER) { 1467 type = KT_LATIN; 1468 if (vc_kbd_led(kbd, VC_CAPSLOCK)) { 1469 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)]; 1470 if (key_map) 1471 keysym = key_map[keycode]; 1472 } 1473 } 1474 1475 param.value = keysym; 1476 rc = atomic_notifier_call_chain(&keyboard_notifier_list, 1477 KBD_KEYSYM, ¶m); 1478 if (rc == NOTIFY_STOP) 1479 return; 1480 1481 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT) 1482 return; 1483 1484 (*k_handler[type])(vc, keysym & 0xff, !down); 1485 1486 param.ledstate = kbd->ledflagstate; 1487 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m); 1488 1489 if (type != KT_SLOCK) 1490 kbd->slockstate = 0; 1491 } 1492 1493 static void kbd_event(struct input_handle *handle, unsigned int event_type, 1494 unsigned int event_code, int value) 1495 { 1496 /* We are called with interrupts disabled, just take the lock */ 1497 spin_lock(&kbd_event_lock); 1498 1499 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev)) 1500 kbd_rawcode(value); 1501 if (event_type == EV_KEY && event_code <= KEY_MAX) 1502 kbd_keycode(event_code, value, HW_RAW(handle->dev)); 1503 1504 spin_unlock(&kbd_event_lock); 1505 1506 tasklet_schedule(&keyboard_tasklet); 1507 do_poke_blanked_console = 1; 1508 schedule_console_callback(); 1509 } 1510 1511 static bool kbd_match(struct input_handler *handler, struct input_dev *dev) 1512 { 1513 int i; 1514 1515 if (test_bit(EV_SND, dev->evbit)) 1516 return true; 1517 1518 if (test_bit(EV_KEY, dev->evbit)) { 1519 for (i = KEY_RESERVED; i < BTN_MISC; i++) 1520 if (test_bit(i, dev->keybit)) 1521 return true; 1522 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++) 1523 if (test_bit(i, dev->keybit)) 1524 return true; 1525 } 1526 1527 return false; 1528 } 1529 1530 /* 1531 * When a keyboard (or other input device) is found, the kbd_connect 1532 * function is called. The function then looks at the device, and if it 1533 * likes it, it can open it and get events from it. In this (kbd_connect) 1534 * function, we should decide which VT to bind that keyboard to initially. 1535 */ 1536 static int kbd_connect(struct input_handler *handler, struct input_dev *dev, 1537 const struct input_device_id *id) 1538 { 1539 struct input_handle *handle; 1540 int error; 1541 1542 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL); 1543 if (!handle) 1544 return -ENOMEM; 1545 1546 handle->dev = dev; 1547 handle->handler = handler; 1548 handle->name = "kbd"; 1549 1550 error = input_register_handle(handle); 1551 if (error) 1552 goto err_free_handle; 1553 1554 error = input_open_device(handle); 1555 if (error) 1556 goto err_unregister_handle; 1557 1558 return 0; 1559 1560 err_unregister_handle: 1561 input_unregister_handle(handle); 1562 err_free_handle: 1563 kfree(handle); 1564 return error; 1565 } 1566 1567 static void kbd_disconnect(struct input_handle *handle) 1568 { 1569 input_close_device(handle); 1570 input_unregister_handle(handle); 1571 kfree(handle); 1572 } 1573 1574 /* 1575 * Start keyboard handler on the new keyboard by refreshing LED state to 1576 * match the rest of the system. 1577 */ 1578 static void kbd_start(struct input_handle *handle) 1579 { 1580 tasklet_disable(&keyboard_tasklet); 1581 1582 if (ledstate != -1U) 1583 kbd_update_leds_helper(handle, &ledstate); 1584 1585 tasklet_enable(&keyboard_tasklet); 1586 } 1587 1588 static const struct input_device_id kbd_ids[] = { 1589 { 1590 .flags = INPUT_DEVICE_ID_MATCH_EVBIT, 1591 .evbit = { BIT_MASK(EV_KEY) }, 1592 }, 1593 1594 { 1595 .flags = INPUT_DEVICE_ID_MATCH_EVBIT, 1596 .evbit = { BIT_MASK(EV_SND) }, 1597 }, 1598 1599 { }, /* Terminating entry */ 1600 }; 1601 1602 MODULE_DEVICE_TABLE(input, kbd_ids); 1603 1604 static struct input_handler kbd_handler = { 1605 .event = kbd_event, 1606 .match = kbd_match, 1607 .connect = kbd_connect, 1608 .disconnect = kbd_disconnect, 1609 .start = kbd_start, 1610 .name = "kbd", 1611 .id_table = kbd_ids, 1612 }; 1613 1614 int __init kbd_init(void) 1615 { 1616 int i; 1617 int error; 1618 1619 for (i = 0; i < MAX_NR_CONSOLES; i++) { 1620 kbd_table[i].ledflagstate = kbd_defleds(); 1621 kbd_table[i].default_ledflagstate = kbd_defleds(); 1622 kbd_table[i].ledmode = LED_SHOW_FLAGS; 1623 kbd_table[i].lockstate = KBD_DEFLOCK; 1624 kbd_table[i].slockstate = 0; 1625 kbd_table[i].modeflags = KBD_DEFMODE; 1626 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE; 1627 } 1628 1629 kbd_init_leds(); 1630 1631 error = input_register_handler(&kbd_handler); 1632 if (error) 1633 return error; 1634 1635 tasklet_enable(&keyboard_tasklet); 1636 tasklet_schedule(&keyboard_tasklet); 1637 1638 return 0; 1639 } 1640 1641 /* Ioctl support code */ 1642 1643 /** 1644 * vt_do_diacrit - diacritical table updates 1645 * @cmd: ioctl request 1646 * @udp: pointer to user data for ioctl 1647 * @perm: permissions check computed by caller 1648 * 1649 * Update the diacritical tables atomically and safely. Lock them 1650 * against simultaneous keypresses 1651 */ 1652 int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm) 1653 { 1654 unsigned long flags; 1655 int asize; 1656 int ret = 0; 1657 1658 switch (cmd) { 1659 case KDGKBDIACR: 1660 { 1661 struct kbdiacrs __user *a = udp; 1662 struct kbdiacr *dia; 1663 int i; 1664 1665 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr), 1666 GFP_KERNEL); 1667 if (!dia) 1668 return -ENOMEM; 1669 1670 /* Lock the diacriticals table, make a copy and then 1671 copy it after we unlock */ 1672 spin_lock_irqsave(&kbd_event_lock, flags); 1673 1674 asize = accent_table_size; 1675 for (i = 0; i < asize; i++) { 1676 dia[i].diacr = conv_uni_to_8bit( 1677 accent_table[i].diacr); 1678 dia[i].base = conv_uni_to_8bit( 1679 accent_table[i].base); 1680 dia[i].result = conv_uni_to_8bit( 1681 accent_table[i].result); 1682 } 1683 spin_unlock_irqrestore(&kbd_event_lock, flags); 1684 1685 if (put_user(asize, &a->kb_cnt)) 1686 ret = -EFAULT; 1687 else if (copy_to_user(a->kbdiacr, dia, 1688 asize * sizeof(struct kbdiacr))) 1689 ret = -EFAULT; 1690 kfree(dia); 1691 return ret; 1692 } 1693 case KDGKBDIACRUC: 1694 { 1695 struct kbdiacrsuc __user *a = udp; 1696 void *buf; 1697 1698 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc), 1699 GFP_KERNEL); 1700 if (buf == NULL) 1701 return -ENOMEM; 1702 1703 /* Lock the diacriticals table, make a copy and then 1704 copy it after we unlock */ 1705 spin_lock_irqsave(&kbd_event_lock, flags); 1706 1707 asize = accent_table_size; 1708 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc)); 1709 1710 spin_unlock_irqrestore(&kbd_event_lock, flags); 1711 1712 if (put_user(asize, &a->kb_cnt)) 1713 ret = -EFAULT; 1714 else if (copy_to_user(a->kbdiacruc, buf, 1715 asize*sizeof(struct kbdiacruc))) 1716 ret = -EFAULT; 1717 kfree(buf); 1718 return ret; 1719 } 1720 1721 case KDSKBDIACR: 1722 { 1723 struct kbdiacrs __user *a = udp; 1724 struct kbdiacr *dia = NULL; 1725 unsigned int ct; 1726 int i; 1727 1728 if (!perm) 1729 return -EPERM; 1730 if (get_user(ct, &a->kb_cnt)) 1731 return -EFAULT; 1732 if (ct >= MAX_DIACR) 1733 return -EINVAL; 1734 1735 if (ct) { 1736 1737 dia = memdup_user(a->kbdiacr, 1738 sizeof(struct kbdiacr) * ct); 1739 if (IS_ERR(dia)) 1740 return PTR_ERR(dia); 1741 1742 } 1743 1744 spin_lock_irqsave(&kbd_event_lock, flags); 1745 accent_table_size = ct; 1746 for (i = 0; i < ct; i++) { 1747 accent_table[i].diacr = 1748 conv_8bit_to_uni(dia[i].diacr); 1749 accent_table[i].base = 1750 conv_8bit_to_uni(dia[i].base); 1751 accent_table[i].result = 1752 conv_8bit_to_uni(dia[i].result); 1753 } 1754 spin_unlock_irqrestore(&kbd_event_lock, flags); 1755 kfree(dia); 1756 return 0; 1757 } 1758 1759 case KDSKBDIACRUC: 1760 { 1761 struct kbdiacrsuc __user *a = udp; 1762 unsigned int ct; 1763 void *buf = NULL; 1764 1765 if (!perm) 1766 return -EPERM; 1767 1768 if (get_user(ct, &a->kb_cnt)) 1769 return -EFAULT; 1770 1771 if (ct >= MAX_DIACR) 1772 return -EINVAL; 1773 1774 if (ct) { 1775 buf = memdup_user(a->kbdiacruc, 1776 ct * sizeof(struct kbdiacruc)); 1777 if (IS_ERR(buf)) 1778 return PTR_ERR(buf); 1779 } 1780 spin_lock_irqsave(&kbd_event_lock, flags); 1781 if (ct) 1782 memcpy(accent_table, buf, 1783 ct * sizeof(struct kbdiacruc)); 1784 accent_table_size = ct; 1785 spin_unlock_irqrestore(&kbd_event_lock, flags); 1786 kfree(buf); 1787 return 0; 1788 } 1789 } 1790 return ret; 1791 } 1792 1793 /** 1794 * vt_do_kdskbmode - set keyboard mode ioctl 1795 * @console: the console to use 1796 * @arg: the requested mode 1797 * 1798 * Update the keyboard mode bits while holding the correct locks. 1799 * Return 0 for success or an error code. 1800 */ 1801 int vt_do_kdskbmode(int console, unsigned int arg) 1802 { 1803 struct kbd_struct *kb = kbd_table + console; 1804 int ret = 0; 1805 unsigned long flags; 1806 1807 spin_lock_irqsave(&kbd_event_lock, flags); 1808 switch(arg) { 1809 case K_RAW: 1810 kb->kbdmode = VC_RAW; 1811 break; 1812 case K_MEDIUMRAW: 1813 kb->kbdmode = VC_MEDIUMRAW; 1814 break; 1815 case K_XLATE: 1816 kb->kbdmode = VC_XLATE; 1817 do_compute_shiftstate(); 1818 break; 1819 case K_UNICODE: 1820 kb->kbdmode = VC_UNICODE; 1821 do_compute_shiftstate(); 1822 break; 1823 case K_OFF: 1824 kb->kbdmode = VC_OFF; 1825 break; 1826 default: 1827 ret = -EINVAL; 1828 } 1829 spin_unlock_irqrestore(&kbd_event_lock, flags); 1830 return ret; 1831 } 1832 1833 /** 1834 * vt_do_kdskbmeta - set keyboard meta state 1835 * @console: the console to use 1836 * @arg: the requested meta state 1837 * 1838 * Update the keyboard meta bits while holding the correct locks. 1839 * Return 0 for success or an error code. 1840 */ 1841 int vt_do_kdskbmeta(int console, unsigned int arg) 1842 { 1843 struct kbd_struct *kb = kbd_table + console; 1844 int ret = 0; 1845 unsigned long flags; 1846 1847 spin_lock_irqsave(&kbd_event_lock, flags); 1848 switch(arg) { 1849 case K_METABIT: 1850 clr_vc_kbd_mode(kb, VC_META); 1851 break; 1852 case K_ESCPREFIX: 1853 set_vc_kbd_mode(kb, VC_META); 1854 break; 1855 default: 1856 ret = -EINVAL; 1857 } 1858 spin_unlock_irqrestore(&kbd_event_lock, flags); 1859 return ret; 1860 } 1861 1862 int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc, 1863 int perm) 1864 { 1865 struct kbkeycode tmp; 1866 int kc = 0; 1867 1868 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode))) 1869 return -EFAULT; 1870 switch (cmd) { 1871 case KDGETKEYCODE: 1872 kc = getkeycode(tmp.scancode); 1873 if (kc >= 0) 1874 kc = put_user(kc, &user_kbkc->keycode); 1875 break; 1876 case KDSETKEYCODE: 1877 if (!perm) 1878 return -EPERM; 1879 kc = setkeycode(tmp.scancode, tmp.keycode); 1880 break; 1881 } 1882 return kc; 1883 } 1884 1885 #define i (tmp.kb_index) 1886 #define s (tmp.kb_table) 1887 #define v (tmp.kb_value) 1888 1889 int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm, 1890 int console) 1891 { 1892 struct kbd_struct *kb = kbd_table + console; 1893 struct kbentry tmp; 1894 ushort *key_map, *new_map, val, ov; 1895 unsigned long flags; 1896 1897 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry))) 1898 return -EFAULT; 1899 1900 if (!capable(CAP_SYS_TTY_CONFIG)) 1901 perm = 0; 1902 1903 switch (cmd) { 1904 case KDGKBENT: 1905 /* Ensure another thread doesn't free it under us */ 1906 spin_lock_irqsave(&kbd_event_lock, flags); 1907 key_map = key_maps[s]; 1908 if (key_map) { 1909 val = U(key_map[i]); 1910 if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES) 1911 val = K_HOLE; 1912 } else 1913 val = (i ? K_HOLE : K_NOSUCHMAP); 1914 spin_unlock_irqrestore(&kbd_event_lock, flags); 1915 return put_user(val, &user_kbe->kb_value); 1916 case KDSKBENT: 1917 if (!perm) 1918 return -EPERM; 1919 if (!i && v == K_NOSUCHMAP) { 1920 spin_lock_irqsave(&kbd_event_lock, flags); 1921 /* deallocate map */ 1922 key_map = key_maps[s]; 1923 if (s && key_map) { 1924 key_maps[s] = NULL; 1925 if (key_map[0] == U(K_ALLOCATED)) { 1926 kfree(key_map); 1927 keymap_count--; 1928 } 1929 } 1930 spin_unlock_irqrestore(&kbd_event_lock, flags); 1931 break; 1932 } 1933 1934 if (KTYP(v) < NR_TYPES) { 1935 if (KVAL(v) > max_vals[KTYP(v)]) 1936 return -EINVAL; 1937 } else 1938 if (kb->kbdmode != VC_UNICODE) 1939 return -EINVAL; 1940 1941 /* ++Geert: non-PC keyboards may generate keycode zero */ 1942 #if !defined(__mc68000__) && !defined(__powerpc__) 1943 /* assignment to entry 0 only tests validity of args */ 1944 if (!i) 1945 break; 1946 #endif 1947 1948 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL); 1949 if (!new_map) 1950 return -ENOMEM; 1951 spin_lock_irqsave(&kbd_event_lock, flags); 1952 key_map = key_maps[s]; 1953 if (key_map == NULL) { 1954 int j; 1955 1956 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS && 1957 !capable(CAP_SYS_RESOURCE)) { 1958 spin_unlock_irqrestore(&kbd_event_lock, flags); 1959 kfree(new_map); 1960 return -EPERM; 1961 } 1962 key_maps[s] = new_map; 1963 key_map = new_map; 1964 key_map[0] = U(K_ALLOCATED); 1965 for (j = 1; j < NR_KEYS; j++) 1966 key_map[j] = U(K_HOLE); 1967 keymap_count++; 1968 } else 1969 kfree(new_map); 1970 1971 ov = U(key_map[i]); 1972 if (v == ov) 1973 goto out; 1974 /* 1975 * Attention Key. 1976 */ 1977 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) { 1978 spin_unlock_irqrestore(&kbd_event_lock, flags); 1979 return -EPERM; 1980 } 1981 key_map[i] = U(v); 1982 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT)) 1983 do_compute_shiftstate(); 1984 out: 1985 spin_unlock_irqrestore(&kbd_event_lock, flags); 1986 break; 1987 } 1988 return 0; 1989 } 1990 #undef i 1991 #undef s 1992 #undef v 1993 1994 /* FIXME: This one needs untangling and locking */ 1995 int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm) 1996 { 1997 struct kbsentry *kbs; 1998 char *p; 1999 u_char *q; 2000 u_char __user *up; 2001 int sz, fnw_sz; 2002 int delta; 2003 char *first_free, *fj, *fnw; 2004 int i, j, k; 2005 int ret; 2006 unsigned long flags; 2007 2008 if (!capable(CAP_SYS_TTY_CONFIG)) 2009 perm = 0; 2010 2011 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL); 2012 if (!kbs) { 2013 ret = -ENOMEM; 2014 goto reterr; 2015 } 2016 2017 /* we mostly copy too much here (512bytes), but who cares ;) */ 2018 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) { 2019 ret = -EFAULT; 2020 goto reterr; 2021 } 2022 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0'; 2023 i = array_index_nospec(kbs->kb_func, MAX_NR_FUNC); 2024 2025 switch (cmd) { 2026 case KDGKBSENT: 2027 sz = sizeof(kbs->kb_string) - 1; /* sz should have been 2028 a struct member */ 2029 up = user_kdgkb->kb_string; 2030 p = func_table[i]; 2031 if(p) 2032 for ( ; *p && sz; p++, sz--) 2033 if (put_user(*p, up++)) { 2034 ret = -EFAULT; 2035 goto reterr; 2036 } 2037 if (put_user('\0', up)) { 2038 ret = -EFAULT; 2039 goto reterr; 2040 } 2041 kfree(kbs); 2042 return ((p && *p) ? -EOVERFLOW : 0); 2043 case KDSKBSENT: 2044 if (!perm) { 2045 ret = -EPERM; 2046 goto reterr; 2047 } 2048 2049 fnw = NULL; 2050 fnw_sz = 0; 2051 /* race aginst other writers */ 2052 again: 2053 spin_lock_irqsave(&func_buf_lock, flags); 2054 q = func_table[i]; 2055 2056 /* fj pointer to next entry after 'q' */ 2057 first_free = funcbufptr + (funcbufsize - funcbufleft); 2058 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++) 2059 ; 2060 if (j < MAX_NR_FUNC) 2061 fj = func_table[j]; 2062 else 2063 fj = first_free; 2064 /* buffer usage increase by new entry */ 2065 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string); 2066 2067 if (delta <= funcbufleft) { /* it fits in current buf */ 2068 if (j < MAX_NR_FUNC) { 2069 /* make enough space for new entry at 'fj' */ 2070 memmove(fj + delta, fj, first_free - fj); 2071 for (k = j; k < MAX_NR_FUNC; k++) 2072 if (func_table[k]) 2073 func_table[k] += delta; 2074 } 2075 if (!q) 2076 func_table[i] = fj; 2077 funcbufleft -= delta; 2078 } else { /* allocate a larger buffer */ 2079 sz = 256; 2080 while (sz < funcbufsize - funcbufleft + delta) 2081 sz <<= 1; 2082 if (fnw_sz != sz) { 2083 spin_unlock_irqrestore(&func_buf_lock, flags); 2084 kfree(fnw); 2085 fnw = kmalloc(sz, GFP_KERNEL); 2086 fnw_sz = sz; 2087 if (!fnw) { 2088 ret = -ENOMEM; 2089 goto reterr; 2090 } 2091 goto again; 2092 } 2093 2094 if (!q) 2095 func_table[i] = fj; 2096 /* copy data before insertion point to new location */ 2097 if (fj > funcbufptr) 2098 memmove(fnw, funcbufptr, fj - funcbufptr); 2099 for (k = 0; k < j; k++) 2100 if (func_table[k]) 2101 func_table[k] = fnw + (func_table[k] - funcbufptr); 2102 2103 /* copy data after insertion point to new location */ 2104 if (first_free > fj) { 2105 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj); 2106 for (k = j; k < MAX_NR_FUNC; k++) 2107 if (func_table[k]) 2108 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta; 2109 } 2110 if (funcbufptr != func_buf) 2111 kfree(funcbufptr); 2112 funcbufptr = fnw; 2113 funcbufleft = funcbufleft - delta + sz - funcbufsize; 2114 funcbufsize = sz; 2115 } 2116 /* finally insert item itself */ 2117 strcpy(func_table[i], kbs->kb_string); 2118 spin_unlock_irqrestore(&func_buf_lock, flags); 2119 break; 2120 } 2121 ret = 0; 2122 reterr: 2123 kfree(kbs); 2124 return ret; 2125 } 2126 2127 int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm) 2128 { 2129 struct kbd_struct *kb = kbd_table + console; 2130 unsigned long flags; 2131 unsigned char ucval; 2132 2133 switch(cmd) { 2134 /* the ioctls below read/set the flags usually shown in the leds */ 2135 /* don't use them - they will go away without warning */ 2136 case KDGKBLED: 2137 spin_lock_irqsave(&kbd_event_lock, flags); 2138 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4); 2139 spin_unlock_irqrestore(&kbd_event_lock, flags); 2140 return put_user(ucval, (char __user *)arg); 2141 2142 case KDSKBLED: 2143 if (!perm) 2144 return -EPERM; 2145 if (arg & ~0x77) 2146 return -EINVAL; 2147 spin_lock_irqsave(&led_lock, flags); 2148 kb->ledflagstate = (arg & 7); 2149 kb->default_ledflagstate = ((arg >> 4) & 7); 2150 set_leds(); 2151 spin_unlock_irqrestore(&led_lock, flags); 2152 return 0; 2153 2154 /* the ioctls below only set the lights, not the functions */ 2155 /* for those, see KDGKBLED and KDSKBLED above */ 2156 case KDGETLED: 2157 ucval = getledstate(); 2158 return put_user(ucval, (char __user *)arg); 2159 2160 case KDSETLED: 2161 if (!perm) 2162 return -EPERM; 2163 setledstate(kb, arg); 2164 return 0; 2165 } 2166 return -ENOIOCTLCMD; 2167 } 2168 2169 int vt_do_kdgkbmode(int console) 2170 { 2171 struct kbd_struct *kb = kbd_table + console; 2172 /* This is a spot read so needs no locking */ 2173 switch (kb->kbdmode) { 2174 case VC_RAW: 2175 return K_RAW; 2176 case VC_MEDIUMRAW: 2177 return K_MEDIUMRAW; 2178 case VC_UNICODE: 2179 return K_UNICODE; 2180 case VC_OFF: 2181 return K_OFF; 2182 default: 2183 return K_XLATE; 2184 } 2185 } 2186 2187 /** 2188 * vt_do_kdgkbmeta - report meta status 2189 * @console: console to report 2190 * 2191 * Report the meta flag status of this console 2192 */ 2193 int vt_do_kdgkbmeta(int console) 2194 { 2195 struct kbd_struct *kb = kbd_table + console; 2196 /* Again a spot read so no locking */ 2197 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT; 2198 } 2199 2200 /** 2201 * vt_reset_unicode - reset the unicode status 2202 * @console: console being reset 2203 * 2204 * Restore the unicode console state to its default 2205 */ 2206 void vt_reset_unicode(int console) 2207 { 2208 unsigned long flags; 2209 2210 spin_lock_irqsave(&kbd_event_lock, flags); 2211 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE; 2212 spin_unlock_irqrestore(&kbd_event_lock, flags); 2213 } 2214 2215 /** 2216 * vt_get_shiftstate - shift bit state 2217 * 2218 * Report the shift bits from the keyboard state. We have to export 2219 * this to support some oddities in the vt layer. 2220 */ 2221 int vt_get_shift_state(void) 2222 { 2223 /* Don't lock as this is a transient report */ 2224 return shift_state; 2225 } 2226 2227 /** 2228 * vt_reset_keyboard - reset keyboard state 2229 * @console: console to reset 2230 * 2231 * Reset the keyboard bits for a console as part of a general console 2232 * reset event 2233 */ 2234 void vt_reset_keyboard(int console) 2235 { 2236 struct kbd_struct *kb = kbd_table + console; 2237 unsigned long flags; 2238 2239 spin_lock_irqsave(&kbd_event_lock, flags); 2240 set_vc_kbd_mode(kb, VC_REPEAT); 2241 clr_vc_kbd_mode(kb, VC_CKMODE); 2242 clr_vc_kbd_mode(kb, VC_APPLIC); 2243 clr_vc_kbd_mode(kb, VC_CRLF); 2244 kb->lockstate = 0; 2245 kb->slockstate = 0; 2246 spin_lock(&led_lock); 2247 kb->ledmode = LED_SHOW_FLAGS; 2248 kb->ledflagstate = kb->default_ledflagstate; 2249 spin_unlock(&led_lock); 2250 /* do not do set_leds here because this causes an endless tasklet loop 2251 when the keyboard hasn't been initialized yet */ 2252 spin_unlock_irqrestore(&kbd_event_lock, flags); 2253 } 2254 2255 /** 2256 * vt_get_kbd_mode_bit - read keyboard status bits 2257 * @console: console to read from 2258 * @bit: mode bit to read 2259 * 2260 * Report back a vt mode bit. We do this without locking so the 2261 * caller must be sure that there are no synchronization needs 2262 */ 2263 2264 int vt_get_kbd_mode_bit(int console, int bit) 2265 { 2266 struct kbd_struct *kb = kbd_table + console; 2267 return vc_kbd_mode(kb, bit); 2268 } 2269 2270 /** 2271 * vt_set_kbd_mode_bit - read keyboard status bits 2272 * @console: console to read from 2273 * @bit: mode bit to read 2274 * 2275 * Set a vt mode bit. We do this without locking so the 2276 * caller must be sure that there are no synchronization needs 2277 */ 2278 2279 void vt_set_kbd_mode_bit(int console, int bit) 2280 { 2281 struct kbd_struct *kb = kbd_table + console; 2282 unsigned long flags; 2283 2284 spin_lock_irqsave(&kbd_event_lock, flags); 2285 set_vc_kbd_mode(kb, bit); 2286 spin_unlock_irqrestore(&kbd_event_lock, flags); 2287 } 2288 2289 /** 2290 * vt_clr_kbd_mode_bit - read keyboard status bits 2291 * @console: console to read from 2292 * @bit: mode bit to read 2293 * 2294 * Report back a vt mode bit. We do this without locking so the 2295 * caller must be sure that there are no synchronization needs 2296 */ 2297 2298 void vt_clr_kbd_mode_bit(int console, int bit) 2299 { 2300 struct kbd_struct *kb = kbd_table + console; 2301 unsigned long flags; 2302 2303 spin_lock_irqsave(&kbd_event_lock, flags); 2304 clr_vc_kbd_mode(kb, bit); 2305 spin_unlock_irqrestore(&kbd_event_lock, flags); 2306 } 2307