1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Written for linux by Johan Myreen as a translation from 4 * the assembly version by Linus (with diacriticals added) 5 * 6 * Some additional features added by Christoph Niemann (ChN), March 1993 7 * 8 * Loadable keymaps by Risto Kankkunen, May 1993 9 * 10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993 11 * Added decr/incr_console, dynamic keymaps, Unicode support, 12 * dynamic function/string keys, led setting, Sept 1994 13 * `Sticky' modifier keys, 951006. 14 * 15 * 11-11-96: SAK should now work in the raw mode (Martin Mares) 16 * 17 * Modified to provide 'generic' keyboard support by Hamish Macdonald 18 * Merge with the m68k keyboard driver and split-off of the PC low-level 19 * parts by Geert Uytterhoeven, May 1997 20 * 21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares) 22 * 30-07-98: Dead keys redone, aeb@cwi.nl. 23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik) 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/consolemap.h> 29 #include <linux/module.h> 30 #include <linux/sched/signal.h> 31 #include <linux/sched/debug.h> 32 #include <linux/tty.h> 33 #include <linux/tty_flip.h> 34 #include <linux/mm.h> 35 #include <linux/string.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/leds.h> 39 40 #include <linux/kbd_kern.h> 41 #include <linux/kbd_diacr.h> 42 #include <linux/vt_kern.h> 43 #include <linux/input.h> 44 #include <linux/reboot.h> 45 #include <linux/notifier.h> 46 #include <linux/jiffies.h> 47 #include <linux/uaccess.h> 48 49 #include <asm/irq_regs.h> 50 51 extern void ctrl_alt_del(void); 52 53 /* 54 * Exported functions/variables 55 */ 56 57 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META)) 58 59 #if defined(CONFIG_X86) || defined(CONFIG_PARISC) 60 #include <asm/kbdleds.h> 61 #else 62 static inline int kbd_defleds(void) 63 { 64 return 0; 65 } 66 #endif 67 68 #define KBD_DEFLOCK 0 69 70 /* 71 * Handler Tables. 72 */ 73 74 #define K_HANDLERS\ 75 k_self, k_fn, k_spec, k_pad,\ 76 k_dead, k_cons, k_cur, k_shift,\ 77 k_meta, k_ascii, k_lock, k_lowercase,\ 78 k_slock, k_dead2, k_brl, k_ignore 79 80 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value, 81 char up_flag); 82 static k_handler_fn K_HANDLERS; 83 static k_handler_fn *k_handler[16] = { K_HANDLERS }; 84 85 #define FN_HANDLERS\ 86 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\ 87 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\ 88 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\ 89 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\ 90 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num 91 92 typedef void (fn_handler_fn)(struct vc_data *vc); 93 static fn_handler_fn FN_HANDLERS; 94 static fn_handler_fn *fn_handler[] = { FN_HANDLERS }; 95 96 /* 97 * Variables exported for vt_ioctl.c 98 */ 99 100 struct vt_spawn_console vt_spawn_con = { 101 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock), 102 .pid = NULL, 103 .sig = 0, 104 }; 105 106 107 /* 108 * Internal Data. 109 */ 110 111 static struct kbd_struct kbd_table[MAX_NR_CONSOLES]; 112 static struct kbd_struct *kbd = kbd_table; 113 114 /* maximum values each key_handler can handle */ 115 static const int max_vals[] = { 116 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1, 117 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1, 118 255, NR_LOCK - 1, 255, NR_BRL - 1 119 }; 120 121 static const int NR_TYPES = ARRAY_SIZE(max_vals); 122 123 static struct input_handler kbd_handler; 124 static DEFINE_SPINLOCK(kbd_event_lock); 125 static DEFINE_SPINLOCK(led_lock); 126 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */ 127 static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */ 128 static bool dead_key_next; 129 static int npadch = -1; /* -1 or number assembled on pad */ 130 static unsigned int diacr; 131 static char rep; /* flag telling character repeat */ 132 133 static int shift_state = 0; 134 135 static unsigned int ledstate = -1U; /* undefined */ 136 static unsigned char ledioctl; 137 138 /* 139 * Notifier list for console keyboard events 140 */ 141 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list); 142 143 int register_keyboard_notifier(struct notifier_block *nb) 144 { 145 return atomic_notifier_chain_register(&keyboard_notifier_list, nb); 146 } 147 EXPORT_SYMBOL_GPL(register_keyboard_notifier); 148 149 int unregister_keyboard_notifier(struct notifier_block *nb) 150 { 151 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb); 152 } 153 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier); 154 155 /* 156 * Translation of scancodes to keycodes. We set them on only the first 157 * keyboard in the list that accepts the scancode and keycode. 158 * Explanation for not choosing the first attached keyboard anymore: 159 * USB keyboards for example have two event devices: one for all "normal" 160 * keys and one for extra function keys (like "volume up", "make coffee", 161 * etc.). So this means that scancodes for the extra function keys won't 162 * be valid for the first event device, but will be for the second. 163 */ 164 165 struct getset_keycode_data { 166 struct input_keymap_entry ke; 167 int error; 168 }; 169 170 static int getkeycode_helper(struct input_handle *handle, void *data) 171 { 172 struct getset_keycode_data *d = data; 173 174 d->error = input_get_keycode(handle->dev, &d->ke); 175 176 return d->error == 0; /* stop as soon as we successfully get one */ 177 } 178 179 static int getkeycode(unsigned int scancode) 180 { 181 struct getset_keycode_data d = { 182 .ke = { 183 .flags = 0, 184 .len = sizeof(scancode), 185 .keycode = 0, 186 }, 187 .error = -ENODEV, 188 }; 189 190 memcpy(d.ke.scancode, &scancode, sizeof(scancode)); 191 192 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper); 193 194 return d.error ?: d.ke.keycode; 195 } 196 197 static int setkeycode_helper(struct input_handle *handle, void *data) 198 { 199 struct getset_keycode_data *d = data; 200 201 d->error = input_set_keycode(handle->dev, &d->ke); 202 203 return d->error == 0; /* stop as soon as we successfully set one */ 204 } 205 206 static int setkeycode(unsigned int scancode, unsigned int keycode) 207 { 208 struct getset_keycode_data d = { 209 .ke = { 210 .flags = 0, 211 .len = sizeof(scancode), 212 .keycode = keycode, 213 }, 214 .error = -ENODEV, 215 }; 216 217 memcpy(d.ke.scancode, &scancode, sizeof(scancode)); 218 219 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper); 220 221 return d.error; 222 } 223 224 /* 225 * Making beeps and bells. Note that we prefer beeps to bells, but when 226 * shutting the sound off we do both. 227 */ 228 229 static int kd_sound_helper(struct input_handle *handle, void *data) 230 { 231 unsigned int *hz = data; 232 struct input_dev *dev = handle->dev; 233 234 if (test_bit(EV_SND, dev->evbit)) { 235 if (test_bit(SND_TONE, dev->sndbit)) { 236 input_inject_event(handle, EV_SND, SND_TONE, *hz); 237 if (*hz) 238 return 0; 239 } 240 if (test_bit(SND_BELL, dev->sndbit)) 241 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0); 242 } 243 244 return 0; 245 } 246 247 static void kd_nosound(struct timer_list *unused) 248 { 249 static unsigned int zero; 250 251 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper); 252 } 253 254 static DEFINE_TIMER(kd_mksound_timer, kd_nosound); 255 256 void kd_mksound(unsigned int hz, unsigned int ticks) 257 { 258 del_timer_sync(&kd_mksound_timer); 259 260 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper); 261 262 if (hz && ticks) 263 mod_timer(&kd_mksound_timer, jiffies + ticks); 264 } 265 EXPORT_SYMBOL(kd_mksound); 266 267 /* 268 * Setting the keyboard rate. 269 */ 270 271 static int kbd_rate_helper(struct input_handle *handle, void *data) 272 { 273 struct input_dev *dev = handle->dev; 274 struct kbd_repeat *rpt = data; 275 276 if (test_bit(EV_REP, dev->evbit)) { 277 278 if (rpt[0].delay > 0) 279 input_inject_event(handle, 280 EV_REP, REP_DELAY, rpt[0].delay); 281 if (rpt[0].period > 0) 282 input_inject_event(handle, 283 EV_REP, REP_PERIOD, rpt[0].period); 284 285 rpt[1].delay = dev->rep[REP_DELAY]; 286 rpt[1].period = dev->rep[REP_PERIOD]; 287 } 288 289 return 0; 290 } 291 292 int kbd_rate(struct kbd_repeat *rpt) 293 { 294 struct kbd_repeat data[2] = { *rpt }; 295 296 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper); 297 *rpt = data[1]; /* Copy currently used settings */ 298 299 return 0; 300 } 301 302 /* 303 * Helper Functions. 304 */ 305 static void put_queue(struct vc_data *vc, int ch) 306 { 307 tty_insert_flip_char(&vc->port, ch, 0); 308 tty_schedule_flip(&vc->port); 309 } 310 311 static void puts_queue(struct vc_data *vc, char *cp) 312 { 313 while (*cp) { 314 tty_insert_flip_char(&vc->port, *cp, 0); 315 cp++; 316 } 317 tty_schedule_flip(&vc->port); 318 } 319 320 static void applkey(struct vc_data *vc, int key, char mode) 321 { 322 static char buf[] = { 0x1b, 'O', 0x00, 0x00 }; 323 324 buf[1] = (mode ? 'O' : '['); 325 buf[2] = key; 326 puts_queue(vc, buf); 327 } 328 329 /* 330 * Many other routines do put_queue, but I think either 331 * they produce ASCII, or they produce some user-assigned 332 * string, and in both cases we might assume that it is 333 * in utf-8 already. 334 */ 335 static void to_utf8(struct vc_data *vc, uint c) 336 { 337 if (c < 0x80) 338 /* 0******* */ 339 put_queue(vc, c); 340 else if (c < 0x800) { 341 /* 110***** 10****** */ 342 put_queue(vc, 0xc0 | (c >> 6)); 343 put_queue(vc, 0x80 | (c & 0x3f)); 344 } else if (c < 0x10000) { 345 if (c >= 0xD800 && c < 0xE000) 346 return; 347 if (c == 0xFFFF) 348 return; 349 /* 1110**** 10****** 10****** */ 350 put_queue(vc, 0xe0 | (c >> 12)); 351 put_queue(vc, 0x80 | ((c >> 6) & 0x3f)); 352 put_queue(vc, 0x80 | (c & 0x3f)); 353 } else if (c < 0x110000) { 354 /* 11110*** 10****** 10****** 10****** */ 355 put_queue(vc, 0xf0 | (c >> 18)); 356 put_queue(vc, 0x80 | ((c >> 12) & 0x3f)); 357 put_queue(vc, 0x80 | ((c >> 6) & 0x3f)); 358 put_queue(vc, 0x80 | (c & 0x3f)); 359 } 360 } 361 362 /* 363 * Called after returning from RAW mode or when changing consoles - recompute 364 * shift_down[] and shift_state from key_down[] maybe called when keymap is 365 * undefined, so that shiftkey release is seen. The caller must hold the 366 * kbd_event_lock. 367 */ 368 369 static void do_compute_shiftstate(void) 370 { 371 unsigned int k, sym, val; 372 373 shift_state = 0; 374 memset(shift_down, 0, sizeof(shift_down)); 375 376 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) { 377 sym = U(key_maps[0][k]); 378 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK) 379 continue; 380 381 val = KVAL(sym); 382 if (val == KVAL(K_CAPSSHIFT)) 383 val = KVAL(K_SHIFT); 384 385 shift_down[val]++; 386 shift_state |= BIT(val); 387 } 388 } 389 390 /* We still have to export this method to vt.c */ 391 void compute_shiftstate(void) 392 { 393 unsigned long flags; 394 spin_lock_irqsave(&kbd_event_lock, flags); 395 do_compute_shiftstate(); 396 spin_unlock_irqrestore(&kbd_event_lock, flags); 397 } 398 399 /* 400 * We have a combining character DIACR here, followed by the character CH. 401 * If the combination occurs in the table, return the corresponding value. 402 * Otherwise, if CH is a space or equals DIACR, return DIACR. 403 * Otherwise, conclude that DIACR was not combining after all, 404 * queue it and return CH. 405 */ 406 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch) 407 { 408 unsigned int d = diacr; 409 unsigned int i; 410 411 diacr = 0; 412 413 if ((d & ~0xff) == BRL_UC_ROW) { 414 if ((ch & ~0xff) == BRL_UC_ROW) 415 return d | ch; 416 } else { 417 for (i = 0; i < accent_table_size; i++) 418 if (accent_table[i].diacr == d && accent_table[i].base == ch) 419 return accent_table[i].result; 420 } 421 422 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d) 423 return d; 424 425 if (kbd->kbdmode == VC_UNICODE) 426 to_utf8(vc, d); 427 else { 428 int c = conv_uni_to_8bit(d); 429 if (c != -1) 430 put_queue(vc, c); 431 } 432 433 return ch; 434 } 435 436 /* 437 * Special function handlers 438 */ 439 static void fn_enter(struct vc_data *vc) 440 { 441 if (diacr) { 442 if (kbd->kbdmode == VC_UNICODE) 443 to_utf8(vc, diacr); 444 else { 445 int c = conv_uni_to_8bit(diacr); 446 if (c != -1) 447 put_queue(vc, c); 448 } 449 diacr = 0; 450 } 451 452 put_queue(vc, 13); 453 if (vc_kbd_mode(kbd, VC_CRLF)) 454 put_queue(vc, 10); 455 } 456 457 static void fn_caps_toggle(struct vc_data *vc) 458 { 459 if (rep) 460 return; 461 462 chg_vc_kbd_led(kbd, VC_CAPSLOCK); 463 } 464 465 static void fn_caps_on(struct vc_data *vc) 466 { 467 if (rep) 468 return; 469 470 set_vc_kbd_led(kbd, VC_CAPSLOCK); 471 } 472 473 static void fn_show_ptregs(struct vc_data *vc) 474 { 475 struct pt_regs *regs = get_irq_regs(); 476 477 if (regs) 478 show_regs(regs); 479 } 480 481 static void fn_hold(struct vc_data *vc) 482 { 483 struct tty_struct *tty = vc->port.tty; 484 485 if (rep || !tty) 486 return; 487 488 /* 489 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty); 490 * these routines are also activated by ^S/^Q. 491 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.) 492 */ 493 if (tty->stopped) 494 start_tty(tty); 495 else 496 stop_tty(tty); 497 } 498 499 static void fn_num(struct vc_data *vc) 500 { 501 if (vc_kbd_mode(kbd, VC_APPLIC)) 502 applkey(vc, 'P', 1); 503 else 504 fn_bare_num(vc); 505 } 506 507 /* 508 * Bind this to Shift-NumLock if you work in application keypad mode 509 * but want to be able to change the NumLock flag. 510 * Bind this to NumLock if you prefer that the NumLock key always 511 * changes the NumLock flag. 512 */ 513 static void fn_bare_num(struct vc_data *vc) 514 { 515 if (!rep) 516 chg_vc_kbd_led(kbd, VC_NUMLOCK); 517 } 518 519 static void fn_lastcons(struct vc_data *vc) 520 { 521 /* switch to the last used console, ChN */ 522 set_console(last_console); 523 } 524 525 static void fn_dec_console(struct vc_data *vc) 526 { 527 int i, cur = fg_console; 528 529 /* Currently switching? Queue this next switch relative to that. */ 530 if (want_console != -1) 531 cur = want_console; 532 533 for (i = cur - 1; i != cur; i--) { 534 if (i == -1) 535 i = MAX_NR_CONSOLES - 1; 536 if (vc_cons_allocated(i)) 537 break; 538 } 539 set_console(i); 540 } 541 542 static void fn_inc_console(struct vc_data *vc) 543 { 544 int i, cur = fg_console; 545 546 /* Currently switching? Queue this next switch relative to that. */ 547 if (want_console != -1) 548 cur = want_console; 549 550 for (i = cur+1; i != cur; i++) { 551 if (i == MAX_NR_CONSOLES) 552 i = 0; 553 if (vc_cons_allocated(i)) 554 break; 555 } 556 set_console(i); 557 } 558 559 static void fn_send_intr(struct vc_data *vc) 560 { 561 tty_insert_flip_char(&vc->port, 0, TTY_BREAK); 562 tty_schedule_flip(&vc->port); 563 } 564 565 static void fn_scroll_forw(struct vc_data *vc) 566 { 567 scrollfront(vc, 0); 568 } 569 570 static void fn_scroll_back(struct vc_data *vc) 571 { 572 scrollback(vc); 573 } 574 575 static void fn_show_mem(struct vc_data *vc) 576 { 577 show_mem(0, NULL); 578 } 579 580 static void fn_show_state(struct vc_data *vc) 581 { 582 show_state(); 583 } 584 585 static void fn_boot_it(struct vc_data *vc) 586 { 587 ctrl_alt_del(); 588 } 589 590 static void fn_compose(struct vc_data *vc) 591 { 592 dead_key_next = true; 593 } 594 595 static void fn_spawn_con(struct vc_data *vc) 596 { 597 spin_lock(&vt_spawn_con.lock); 598 if (vt_spawn_con.pid) 599 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) { 600 put_pid(vt_spawn_con.pid); 601 vt_spawn_con.pid = NULL; 602 } 603 spin_unlock(&vt_spawn_con.lock); 604 } 605 606 static void fn_SAK(struct vc_data *vc) 607 { 608 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work; 609 schedule_work(SAK_work); 610 } 611 612 static void fn_null(struct vc_data *vc) 613 { 614 do_compute_shiftstate(); 615 } 616 617 /* 618 * Special key handlers 619 */ 620 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag) 621 { 622 } 623 624 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag) 625 { 626 if (up_flag) 627 return; 628 if (value >= ARRAY_SIZE(fn_handler)) 629 return; 630 if ((kbd->kbdmode == VC_RAW || 631 kbd->kbdmode == VC_MEDIUMRAW || 632 kbd->kbdmode == VC_OFF) && 633 value != KVAL(K_SAK)) 634 return; /* SAK is allowed even in raw mode */ 635 fn_handler[value](vc); 636 } 637 638 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag) 639 { 640 pr_err("k_lowercase was called - impossible\n"); 641 } 642 643 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag) 644 { 645 if (up_flag) 646 return; /* no action, if this is a key release */ 647 648 if (diacr) 649 value = handle_diacr(vc, value); 650 651 if (dead_key_next) { 652 dead_key_next = false; 653 diacr = value; 654 return; 655 } 656 if (kbd->kbdmode == VC_UNICODE) 657 to_utf8(vc, value); 658 else { 659 int c = conv_uni_to_8bit(value); 660 if (c != -1) 661 put_queue(vc, c); 662 } 663 } 664 665 /* 666 * Handle dead key. Note that we now may have several 667 * dead keys modifying the same character. Very useful 668 * for Vietnamese. 669 */ 670 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag) 671 { 672 if (up_flag) 673 return; 674 675 diacr = (diacr ? handle_diacr(vc, value) : value); 676 } 677 678 static void k_self(struct vc_data *vc, unsigned char value, char up_flag) 679 { 680 k_unicode(vc, conv_8bit_to_uni(value), up_flag); 681 } 682 683 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag) 684 { 685 k_deadunicode(vc, value, up_flag); 686 } 687 688 /* 689 * Obsolete - for backwards compatibility only 690 */ 691 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag) 692 { 693 static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' }; 694 695 k_deadunicode(vc, ret_diacr[value], up_flag); 696 } 697 698 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag) 699 { 700 if (up_flag) 701 return; 702 703 set_console(value); 704 } 705 706 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag) 707 { 708 if (up_flag) 709 return; 710 711 if ((unsigned)value < ARRAY_SIZE(func_table)) { 712 if (func_table[value]) 713 puts_queue(vc, func_table[value]); 714 } else 715 pr_err("k_fn called with value=%d\n", value); 716 } 717 718 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag) 719 { 720 static const char cur_chars[] = "BDCA"; 721 722 if (up_flag) 723 return; 724 725 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE)); 726 } 727 728 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag) 729 { 730 static const char pad_chars[] = "0123456789+-*/\015,.?()#"; 731 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS"; 732 733 if (up_flag) 734 return; /* no action, if this is a key release */ 735 736 /* kludge... shift forces cursor/number keys */ 737 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) { 738 applkey(vc, app_map[value], 1); 739 return; 740 } 741 742 if (!vc_kbd_led(kbd, VC_NUMLOCK)) { 743 744 switch (value) { 745 case KVAL(K_PCOMMA): 746 case KVAL(K_PDOT): 747 k_fn(vc, KVAL(K_REMOVE), 0); 748 return; 749 case KVAL(K_P0): 750 k_fn(vc, KVAL(K_INSERT), 0); 751 return; 752 case KVAL(K_P1): 753 k_fn(vc, KVAL(K_SELECT), 0); 754 return; 755 case KVAL(K_P2): 756 k_cur(vc, KVAL(K_DOWN), 0); 757 return; 758 case KVAL(K_P3): 759 k_fn(vc, KVAL(K_PGDN), 0); 760 return; 761 case KVAL(K_P4): 762 k_cur(vc, KVAL(K_LEFT), 0); 763 return; 764 case KVAL(K_P6): 765 k_cur(vc, KVAL(K_RIGHT), 0); 766 return; 767 case KVAL(K_P7): 768 k_fn(vc, KVAL(K_FIND), 0); 769 return; 770 case KVAL(K_P8): 771 k_cur(vc, KVAL(K_UP), 0); 772 return; 773 case KVAL(K_P9): 774 k_fn(vc, KVAL(K_PGUP), 0); 775 return; 776 case KVAL(K_P5): 777 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC)); 778 return; 779 } 780 } 781 782 put_queue(vc, pad_chars[value]); 783 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF)) 784 put_queue(vc, 10); 785 } 786 787 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag) 788 { 789 int old_state = shift_state; 790 791 if (rep) 792 return; 793 /* 794 * Mimic typewriter: 795 * a CapsShift key acts like Shift but undoes CapsLock 796 */ 797 if (value == KVAL(K_CAPSSHIFT)) { 798 value = KVAL(K_SHIFT); 799 if (!up_flag) 800 clr_vc_kbd_led(kbd, VC_CAPSLOCK); 801 } 802 803 if (up_flag) { 804 /* 805 * handle the case that two shift or control 806 * keys are depressed simultaneously 807 */ 808 if (shift_down[value]) 809 shift_down[value]--; 810 } else 811 shift_down[value]++; 812 813 if (shift_down[value]) 814 shift_state |= (1 << value); 815 else 816 shift_state &= ~(1 << value); 817 818 /* kludge */ 819 if (up_flag && shift_state != old_state && npadch != -1) { 820 if (kbd->kbdmode == VC_UNICODE) 821 to_utf8(vc, npadch); 822 else 823 put_queue(vc, npadch & 0xff); 824 npadch = -1; 825 } 826 } 827 828 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag) 829 { 830 if (up_flag) 831 return; 832 833 if (vc_kbd_mode(kbd, VC_META)) { 834 put_queue(vc, '\033'); 835 put_queue(vc, value); 836 } else 837 put_queue(vc, value | 0x80); 838 } 839 840 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag) 841 { 842 int base; 843 844 if (up_flag) 845 return; 846 847 if (value < 10) { 848 /* decimal input of code, while Alt depressed */ 849 base = 10; 850 } else { 851 /* hexadecimal input of code, while AltGr depressed */ 852 value -= 10; 853 base = 16; 854 } 855 856 if (npadch == -1) 857 npadch = value; 858 else 859 npadch = npadch * base + value; 860 } 861 862 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag) 863 { 864 if (up_flag || rep) 865 return; 866 867 chg_vc_kbd_lock(kbd, value); 868 } 869 870 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag) 871 { 872 k_shift(vc, value, up_flag); 873 if (up_flag || rep) 874 return; 875 876 chg_vc_kbd_slock(kbd, value); 877 /* try to make Alt, oops, AltGr and such work */ 878 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) { 879 kbd->slockstate = 0; 880 chg_vc_kbd_slock(kbd, value); 881 } 882 } 883 884 /* by default, 300ms interval for combination release */ 885 static unsigned brl_timeout = 300; 886 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)"); 887 module_param(brl_timeout, uint, 0644); 888 889 static unsigned brl_nbchords = 1; 890 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)"); 891 module_param(brl_nbchords, uint, 0644); 892 893 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag) 894 { 895 static unsigned long chords; 896 static unsigned committed; 897 898 if (!brl_nbchords) 899 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag); 900 else { 901 committed |= pattern; 902 chords++; 903 if (chords == brl_nbchords) { 904 k_unicode(vc, BRL_UC_ROW | committed, up_flag); 905 chords = 0; 906 committed = 0; 907 } 908 } 909 } 910 911 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag) 912 { 913 static unsigned pressed, committing; 914 static unsigned long releasestart; 915 916 if (kbd->kbdmode != VC_UNICODE) { 917 if (!up_flag) 918 pr_warn("keyboard mode must be unicode for braille patterns\n"); 919 return; 920 } 921 922 if (!value) { 923 k_unicode(vc, BRL_UC_ROW, up_flag); 924 return; 925 } 926 927 if (value > 8) 928 return; 929 930 if (!up_flag) { 931 pressed |= 1 << (value - 1); 932 if (!brl_timeout) 933 committing = pressed; 934 } else if (brl_timeout) { 935 if (!committing || 936 time_after(jiffies, 937 releasestart + msecs_to_jiffies(brl_timeout))) { 938 committing = pressed; 939 releasestart = jiffies; 940 } 941 pressed &= ~(1 << (value - 1)); 942 if (!pressed && committing) { 943 k_brlcommit(vc, committing, 0); 944 committing = 0; 945 } 946 } else { 947 if (committing) { 948 k_brlcommit(vc, committing, 0); 949 committing = 0; 950 } 951 pressed &= ~(1 << (value - 1)); 952 } 953 } 954 955 #if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS) 956 957 struct kbd_led_trigger { 958 struct led_trigger trigger; 959 unsigned int mask; 960 }; 961 962 static void kbd_led_trigger_activate(struct led_classdev *cdev) 963 { 964 struct kbd_led_trigger *trigger = 965 container_of(cdev->trigger, struct kbd_led_trigger, trigger); 966 967 tasklet_disable(&keyboard_tasklet); 968 if (ledstate != -1U) 969 led_trigger_event(&trigger->trigger, 970 ledstate & trigger->mask ? 971 LED_FULL : LED_OFF); 972 tasklet_enable(&keyboard_tasklet); 973 } 974 975 #define KBD_LED_TRIGGER(_led_bit, _name) { \ 976 .trigger = { \ 977 .name = _name, \ 978 .activate = kbd_led_trigger_activate, \ 979 }, \ 980 .mask = BIT(_led_bit), \ 981 } 982 983 #define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \ 984 KBD_LED_TRIGGER((_led_bit) + 8, _name) 985 986 static struct kbd_led_trigger kbd_led_triggers[] = { 987 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"), 988 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"), 989 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"), 990 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"), 991 992 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"), 993 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"), 994 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"), 995 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"), 996 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"), 997 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"), 998 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"), 999 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"), 1000 }; 1001 1002 static void kbd_propagate_led_state(unsigned int old_state, 1003 unsigned int new_state) 1004 { 1005 struct kbd_led_trigger *trigger; 1006 unsigned int changed = old_state ^ new_state; 1007 int i; 1008 1009 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) { 1010 trigger = &kbd_led_triggers[i]; 1011 1012 if (changed & trigger->mask) 1013 led_trigger_event(&trigger->trigger, 1014 new_state & trigger->mask ? 1015 LED_FULL : LED_OFF); 1016 } 1017 } 1018 1019 static int kbd_update_leds_helper(struct input_handle *handle, void *data) 1020 { 1021 unsigned int led_state = *(unsigned int *)data; 1022 1023 if (test_bit(EV_LED, handle->dev->evbit)) 1024 kbd_propagate_led_state(~led_state, led_state); 1025 1026 return 0; 1027 } 1028 1029 static void kbd_init_leds(void) 1030 { 1031 int error; 1032 int i; 1033 1034 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) { 1035 error = led_trigger_register(&kbd_led_triggers[i].trigger); 1036 if (error) 1037 pr_err("error %d while registering trigger %s\n", 1038 error, kbd_led_triggers[i].trigger.name); 1039 } 1040 } 1041 1042 #else 1043 1044 static int kbd_update_leds_helper(struct input_handle *handle, void *data) 1045 { 1046 unsigned int leds = *(unsigned int *)data; 1047 1048 if (test_bit(EV_LED, handle->dev->evbit)) { 1049 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01)); 1050 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02)); 1051 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04)); 1052 input_inject_event(handle, EV_SYN, SYN_REPORT, 0); 1053 } 1054 1055 return 0; 1056 } 1057 1058 static void kbd_propagate_led_state(unsigned int old_state, 1059 unsigned int new_state) 1060 { 1061 input_handler_for_each_handle(&kbd_handler, &new_state, 1062 kbd_update_leds_helper); 1063 } 1064 1065 static void kbd_init_leds(void) 1066 { 1067 } 1068 1069 #endif 1070 1071 /* 1072 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock, 1073 * or (ii) whatever pattern of lights people want to show using KDSETLED, 1074 * or (iii) specified bits of specified words in kernel memory. 1075 */ 1076 static unsigned char getledstate(void) 1077 { 1078 return ledstate & 0xff; 1079 } 1080 1081 void setledstate(struct kbd_struct *kb, unsigned int led) 1082 { 1083 unsigned long flags; 1084 spin_lock_irqsave(&led_lock, flags); 1085 if (!(led & ~7)) { 1086 ledioctl = led; 1087 kb->ledmode = LED_SHOW_IOCTL; 1088 } else 1089 kb->ledmode = LED_SHOW_FLAGS; 1090 1091 set_leds(); 1092 spin_unlock_irqrestore(&led_lock, flags); 1093 } 1094 1095 static inline unsigned char getleds(void) 1096 { 1097 struct kbd_struct *kb = kbd_table + fg_console; 1098 1099 if (kb->ledmode == LED_SHOW_IOCTL) 1100 return ledioctl; 1101 1102 return kb->ledflagstate; 1103 } 1104 1105 /** 1106 * vt_get_leds - helper for braille console 1107 * @console: console to read 1108 * @flag: flag we want to check 1109 * 1110 * Check the status of a keyboard led flag and report it back 1111 */ 1112 int vt_get_leds(int console, int flag) 1113 { 1114 struct kbd_struct *kb = kbd_table + console; 1115 int ret; 1116 unsigned long flags; 1117 1118 spin_lock_irqsave(&led_lock, flags); 1119 ret = vc_kbd_led(kb, flag); 1120 spin_unlock_irqrestore(&led_lock, flags); 1121 1122 return ret; 1123 } 1124 EXPORT_SYMBOL_GPL(vt_get_leds); 1125 1126 /** 1127 * vt_set_led_state - set LED state of a console 1128 * @console: console to set 1129 * @leds: LED bits 1130 * 1131 * Set the LEDs on a console. This is a wrapper for the VT layer 1132 * so that we can keep kbd knowledge internal 1133 */ 1134 void vt_set_led_state(int console, int leds) 1135 { 1136 struct kbd_struct *kb = kbd_table + console; 1137 setledstate(kb, leds); 1138 } 1139 1140 /** 1141 * vt_kbd_con_start - Keyboard side of console start 1142 * @console: console 1143 * 1144 * Handle console start. This is a wrapper for the VT layer 1145 * so that we can keep kbd knowledge internal 1146 * 1147 * FIXME: We eventually need to hold the kbd lock here to protect 1148 * the LED updating. We can't do it yet because fn_hold calls stop_tty 1149 * and start_tty under the kbd_event_lock, while normal tty paths 1150 * don't hold the lock. We probably need to split out an LED lock 1151 * but not during an -rc release! 1152 */ 1153 void vt_kbd_con_start(int console) 1154 { 1155 struct kbd_struct *kb = kbd_table + console; 1156 unsigned long flags; 1157 spin_lock_irqsave(&led_lock, flags); 1158 clr_vc_kbd_led(kb, VC_SCROLLOCK); 1159 set_leds(); 1160 spin_unlock_irqrestore(&led_lock, flags); 1161 } 1162 1163 /** 1164 * vt_kbd_con_stop - Keyboard side of console stop 1165 * @console: console 1166 * 1167 * Handle console stop. This is a wrapper for the VT layer 1168 * so that we can keep kbd knowledge internal 1169 */ 1170 void vt_kbd_con_stop(int console) 1171 { 1172 struct kbd_struct *kb = kbd_table + console; 1173 unsigned long flags; 1174 spin_lock_irqsave(&led_lock, flags); 1175 set_vc_kbd_led(kb, VC_SCROLLOCK); 1176 set_leds(); 1177 spin_unlock_irqrestore(&led_lock, flags); 1178 } 1179 1180 /* 1181 * This is the tasklet that updates LED state of LEDs using standard 1182 * keyboard triggers. The reason we use tasklet is that we need to 1183 * handle the scenario when keyboard handler is not registered yet 1184 * but we already getting updates from the VT to update led state. 1185 */ 1186 static void kbd_bh(unsigned long dummy) 1187 { 1188 unsigned int leds; 1189 unsigned long flags; 1190 1191 spin_lock_irqsave(&led_lock, flags); 1192 leds = getleds(); 1193 leds |= (unsigned int)kbd->lockstate << 8; 1194 spin_unlock_irqrestore(&led_lock, flags); 1195 1196 if (leds != ledstate) { 1197 kbd_propagate_led_state(ledstate, leds); 1198 ledstate = leds; 1199 } 1200 } 1201 1202 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0); 1203 1204 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\ 1205 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\ 1206 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\ 1207 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) 1208 1209 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\ 1210 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001)) 1211 1212 static const unsigned short x86_keycodes[256] = 1213 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1214 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1215 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 1216 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 1217 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 1218 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92, 1219 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339, 1220 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349, 1221 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355, 1222 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361, 1223 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114, 1224 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116, 1225 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307, 1226 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330, 1227 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 }; 1228 1229 #ifdef CONFIG_SPARC 1230 static int sparc_l1_a_state; 1231 extern void sun_do_break(void); 1232 #endif 1233 1234 static int emulate_raw(struct vc_data *vc, unsigned int keycode, 1235 unsigned char up_flag) 1236 { 1237 int code; 1238 1239 switch (keycode) { 1240 1241 case KEY_PAUSE: 1242 put_queue(vc, 0xe1); 1243 put_queue(vc, 0x1d | up_flag); 1244 put_queue(vc, 0x45 | up_flag); 1245 break; 1246 1247 case KEY_HANGEUL: 1248 if (!up_flag) 1249 put_queue(vc, 0xf2); 1250 break; 1251 1252 case KEY_HANJA: 1253 if (!up_flag) 1254 put_queue(vc, 0xf1); 1255 break; 1256 1257 case KEY_SYSRQ: 1258 /* 1259 * Real AT keyboards (that's what we're trying 1260 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when 1261 * pressing PrtSc/SysRq alone, but simply 0x54 1262 * when pressing Alt+PrtSc/SysRq. 1263 */ 1264 if (test_bit(KEY_LEFTALT, key_down) || 1265 test_bit(KEY_RIGHTALT, key_down)) { 1266 put_queue(vc, 0x54 | up_flag); 1267 } else { 1268 put_queue(vc, 0xe0); 1269 put_queue(vc, 0x2a | up_flag); 1270 put_queue(vc, 0xe0); 1271 put_queue(vc, 0x37 | up_flag); 1272 } 1273 break; 1274 1275 default: 1276 if (keycode > 255) 1277 return -1; 1278 1279 code = x86_keycodes[keycode]; 1280 if (!code) 1281 return -1; 1282 1283 if (code & 0x100) 1284 put_queue(vc, 0xe0); 1285 put_queue(vc, (code & 0x7f) | up_flag); 1286 1287 break; 1288 } 1289 1290 return 0; 1291 } 1292 1293 #else 1294 1295 #define HW_RAW(dev) 0 1296 1297 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag) 1298 { 1299 if (keycode > 127) 1300 return -1; 1301 1302 put_queue(vc, keycode | up_flag); 1303 return 0; 1304 } 1305 #endif 1306 1307 static void kbd_rawcode(unsigned char data) 1308 { 1309 struct vc_data *vc = vc_cons[fg_console].d; 1310 1311 kbd = kbd_table + vc->vc_num; 1312 if (kbd->kbdmode == VC_RAW) 1313 put_queue(vc, data); 1314 } 1315 1316 static void kbd_keycode(unsigned int keycode, int down, int hw_raw) 1317 { 1318 struct vc_data *vc = vc_cons[fg_console].d; 1319 unsigned short keysym, *key_map; 1320 unsigned char type; 1321 bool raw_mode; 1322 struct tty_struct *tty; 1323 int shift_final; 1324 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down }; 1325 int rc; 1326 1327 tty = vc->port.tty; 1328 1329 if (tty && (!tty->driver_data)) { 1330 /* No driver data? Strange. Okay we fix it then. */ 1331 tty->driver_data = vc; 1332 } 1333 1334 kbd = kbd_table + vc->vc_num; 1335 1336 #ifdef CONFIG_SPARC 1337 if (keycode == KEY_STOP) 1338 sparc_l1_a_state = down; 1339 #endif 1340 1341 rep = (down == 2); 1342 1343 raw_mode = (kbd->kbdmode == VC_RAW); 1344 if (raw_mode && !hw_raw) 1345 if (emulate_raw(vc, keycode, !down << 7)) 1346 if (keycode < BTN_MISC && printk_ratelimit()) 1347 pr_warn("can't emulate rawmode for keycode %d\n", 1348 keycode); 1349 1350 #ifdef CONFIG_SPARC 1351 if (keycode == KEY_A && sparc_l1_a_state) { 1352 sparc_l1_a_state = false; 1353 sun_do_break(); 1354 } 1355 #endif 1356 1357 if (kbd->kbdmode == VC_MEDIUMRAW) { 1358 /* 1359 * This is extended medium raw mode, with keys above 127 1360 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing 1361 * the 'up' flag if needed. 0 is reserved, so this shouldn't 1362 * interfere with anything else. The two bytes after 0 will 1363 * always have the up flag set not to interfere with older 1364 * applications. This allows for 16384 different keycodes, 1365 * which should be enough. 1366 */ 1367 if (keycode < 128) { 1368 put_queue(vc, keycode | (!down << 7)); 1369 } else { 1370 put_queue(vc, !down << 7); 1371 put_queue(vc, (keycode >> 7) | 0x80); 1372 put_queue(vc, keycode | 0x80); 1373 } 1374 raw_mode = true; 1375 } 1376 1377 if (down) 1378 set_bit(keycode, key_down); 1379 else 1380 clear_bit(keycode, key_down); 1381 1382 if (rep && 1383 (!vc_kbd_mode(kbd, VC_REPEAT) || 1384 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) { 1385 /* 1386 * Don't repeat a key if the input buffers are not empty and the 1387 * characters get aren't echoed locally. This makes key repeat 1388 * usable with slow applications and under heavy loads. 1389 */ 1390 return; 1391 } 1392 1393 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate; 1394 param.ledstate = kbd->ledflagstate; 1395 key_map = key_maps[shift_final]; 1396 1397 rc = atomic_notifier_call_chain(&keyboard_notifier_list, 1398 KBD_KEYCODE, ¶m); 1399 if (rc == NOTIFY_STOP || !key_map) { 1400 atomic_notifier_call_chain(&keyboard_notifier_list, 1401 KBD_UNBOUND_KEYCODE, ¶m); 1402 do_compute_shiftstate(); 1403 kbd->slockstate = 0; 1404 return; 1405 } 1406 1407 if (keycode < NR_KEYS) 1408 keysym = key_map[keycode]; 1409 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8) 1410 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1)); 1411 else 1412 return; 1413 1414 type = KTYP(keysym); 1415 1416 if (type < 0xf0) { 1417 param.value = keysym; 1418 rc = atomic_notifier_call_chain(&keyboard_notifier_list, 1419 KBD_UNICODE, ¶m); 1420 if (rc != NOTIFY_STOP) 1421 if (down && !raw_mode) 1422 to_utf8(vc, keysym); 1423 return; 1424 } 1425 1426 type -= 0xf0; 1427 1428 if (type == KT_LETTER) { 1429 type = KT_LATIN; 1430 if (vc_kbd_led(kbd, VC_CAPSLOCK)) { 1431 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)]; 1432 if (key_map) 1433 keysym = key_map[keycode]; 1434 } 1435 } 1436 1437 param.value = keysym; 1438 rc = atomic_notifier_call_chain(&keyboard_notifier_list, 1439 KBD_KEYSYM, ¶m); 1440 if (rc == NOTIFY_STOP) 1441 return; 1442 1443 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT) 1444 return; 1445 1446 (*k_handler[type])(vc, keysym & 0xff, !down); 1447 1448 param.ledstate = kbd->ledflagstate; 1449 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m); 1450 1451 if (type != KT_SLOCK) 1452 kbd->slockstate = 0; 1453 } 1454 1455 static void kbd_event(struct input_handle *handle, unsigned int event_type, 1456 unsigned int event_code, int value) 1457 { 1458 /* We are called with interrupts disabled, just take the lock */ 1459 spin_lock(&kbd_event_lock); 1460 1461 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev)) 1462 kbd_rawcode(value); 1463 if (event_type == EV_KEY) 1464 kbd_keycode(event_code, value, HW_RAW(handle->dev)); 1465 1466 spin_unlock(&kbd_event_lock); 1467 1468 tasklet_schedule(&keyboard_tasklet); 1469 do_poke_blanked_console = 1; 1470 schedule_console_callback(); 1471 } 1472 1473 static bool kbd_match(struct input_handler *handler, struct input_dev *dev) 1474 { 1475 int i; 1476 1477 if (test_bit(EV_SND, dev->evbit)) 1478 return true; 1479 1480 if (test_bit(EV_KEY, dev->evbit)) { 1481 for (i = KEY_RESERVED; i < BTN_MISC; i++) 1482 if (test_bit(i, dev->keybit)) 1483 return true; 1484 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++) 1485 if (test_bit(i, dev->keybit)) 1486 return true; 1487 } 1488 1489 return false; 1490 } 1491 1492 /* 1493 * When a keyboard (or other input device) is found, the kbd_connect 1494 * function is called. The function then looks at the device, and if it 1495 * likes it, it can open it and get events from it. In this (kbd_connect) 1496 * function, we should decide which VT to bind that keyboard to initially. 1497 */ 1498 static int kbd_connect(struct input_handler *handler, struct input_dev *dev, 1499 const struct input_device_id *id) 1500 { 1501 struct input_handle *handle; 1502 int error; 1503 1504 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL); 1505 if (!handle) 1506 return -ENOMEM; 1507 1508 handle->dev = dev; 1509 handle->handler = handler; 1510 handle->name = "kbd"; 1511 1512 error = input_register_handle(handle); 1513 if (error) 1514 goto err_free_handle; 1515 1516 error = input_open_device(handle); 1517 if (error) 1518 goto err_unregister_handle; 1519 1520 return 0; 1521 1522 err_unregister_handle: 1523 input_unregister_handle(handle); 1524 err_free_handle: 1525 kfree(handle); 1526 return error; 1527 } 1528 1529 static void kbd_disconnect(struct input_handle *handle) 1530 { 1531 input_close_device(handle); 1532 input_unregister_handle(handle); 1533 kfree(handle); 1534 } 1535 1536 /* 1537 * Start keyboard handler on the new keyboard by refreshing LED state to 1538 * match the rest of the system. 1539 */ 1540 static void kbd_start(struct input_handle *handle) 1541 { 1542 tasklet_disable(&keyboard_tasklet); 1543 1544 if (ledstate != -1U) 1545 kbd_update_leds_helper(handle, &ledstate); 1546 1547 tasklet_enable(&keyboard_tasklet); 1548 } 1549 1550 static const struct input_device_id kbd_ids[] = { 1551 { 1552 .flags = INPUT_DEVICE_ID_MATCH_EVBIT, 1553 .evbit = { BIT_MASK(EV_KEY) }, 1554 }, 1555 1556 { 1557 .flags = INPUT_DEVICE_ID_MATCH_EVBIT, 1558 .evbit = { BIT_MASK(EV_SND) }, 1559 }, 1560 1561 { }, /* Terminating entry */ 1562 }; 1563 1564 MODULE_DEVICE_TABLE(input, kbd_ids); 1565 1566 static struct input_handler kbd_handler = { 1567 .event = kbd_event, 1568 .match = kbd_match, 1569 .connect = kbd_connect, 1570 .disconnect = kbd_disconnect, 1571 .start = kbd_start, 1572 .name = "kbd", 1573 .id_table = kbd_ids, 1574 }; 1575 1576 int __init kbd_init(void) 1577 { 1578 int i; 1579 int error; 1580 1581 for (i = 0; i < MAX_NR_CONSOLES; i++) { 1582 kbd_table[i].ledflagstate = kbd_defleds(); 1583 kbd_table[i].default_ledflagstate = kbd_defleds(); 1584 kbd_table[i].ledmode = LED_SHOW_FLAGS; 1585 kbd_table[i].lockstate = KBD_DEFLOCK; 1586 kbd_table[i].slockstate = 0; 1587 kbd_table[i].modeflags = KBD_DEFMODE; 1588 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE; 1589 } 1590 1591 kbd_init_leds(); 1592 1593 error = input_register_handler(&kbd_handler); 1594 if (error) 1595 return error; 1596 1597 tasklet_enable(&keyboard_tasklet); 1598 tasklet_schedule(&keyboard_tasklet); 1599 1600 return 0; 1601 } 1602 1603 /* Ioctl support code */ 1604 1605 /** 1606 * vt_do_diacrit - diacritical table updates 1607 * @cmd: ioctl request 1608 * @udp: pointer to user data for ioctl 1609 * @perm: permissions check computed by caller 1610 * 1611 * Update the diacritical tables atomically and safely. Lock them 1612 * against simultaneous keypresses 1613 */ 1614 int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm) 1615 { 1616 unsigned long flags; 1617 int asize; 1618 int ret = 0; 1619 1620 switch (cmd) { 1621 case KDGKBDIACR: 1622 { 1623 struct kbdiacrs __user *a = udp; 1624 struct kbdiacr *dia; 1625 int i; 1626 1627 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr), 1628 GFP_KERNEL); 1629 if (!dia) 1630 return -ENOMEM; 1631 1632 /* Lock the diacriticals table, make a copy and then 1633 copy it after we unlock */ 1634 spin_lock_irqsave(&kbd_event_lock, flags); 1635 1636 asize = accent_table_size; 1637 for (i = 0; i < asize; i++) { 1638 dia[i].diacr = conv_uni_to_8bit( 1639 accent_table[i].diacr); 1640 dia[i].base = conv_uni_to_8bit( 1641 accent_table[i].base); 1642 dia[i].result = conv_uni_to_8bit( 1643 accent_table[i].result); 1644 } 1645 spin_unlock_irqrestore(&kbd_event_lock, flags); 1646 1647 if (put_user(asize, &a->kb_cnt)) 1648 ret = -EFAULT; 1649 else if (copy_to_user(a->kbdiacr, dia, 1650 asize * sizeof(struct kbdiacr))) 1651 ret = -EFAULT; 1652 kfree(dia); 1653 return ret; 1654 } 1655 case KDGKBDIACRUC: 1656 { 1657 struct kbdiacrsuc __user *a = udp; 1658 void *buf; 1659 1660 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc), 1661 GFP_KERNEL); 1662 if (buf == NULL) 1663 return -ENOMEM; 1664 1665 /* Lock the diacriticals table, make a copy and then 1666 copy it after we unlock */ 1667 spin_lock_irqsave(&kbd_event_lock, flags); 1668 1669 asize = accent_table_size; 1670 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc)); 1671 1672 spin_unlock_irqrestore(&kbd_event_lock, flags); 1673 1674 if (put_user(asize, &a->kb_cnt)) 1675 ret = -EFAULT; 1676 else if (copy_to_user(a->kbdiacruc, buf, 1677 asize*sizeof(struct kbdiacruc))) 1678 ret = -EFAULT; 1679 kfree(buf); 1680 return ret; 1681 } 1682 1683 case KDSKBDIACR: 1684 { 1685 struct kbdiacrs __user *a = udp; 1686 struct kbdiacr *dia = NULL; 1687 unsigned int ct; 1688 int i; 1689 1690 if (!perm) 1691 return -EPERM; 1692 if (get_user(ct, &a->kb_cnt)) 1693 return -EFAULT; 1694 if (ct >= MAX_DIACR) 1695 return -EINVAL; 1696 1697 if (ct) { 1698 1699 dia = memdup_user(a->kbdiacr, 1700 sizeof(struct kbdiacr) * ct); 1701 if (IS_ERR(dia)) 1702 return PTR_ERR(dia); 1703 1704 } 1705 1706 spin_lock_irqsave(&kbd_event_lock, flags); 1707 accent_table_size = ct; 1708 for (i = 0; i < ct; i++) { 1709 accent_table[i].diacr = 1710 conv_8bit_to_uni(dia[i].diacr); 1711 accent_table[i].base = 1712 conv_8bit_to_uni(dia[i].base); 1713 accent_table[i].result = 1714 conv_8bit_to_uni(dia[i].result); 1715 } 1716 spin_unlock_irqrestore(&kbd_event_lock, flags); 1717 kfree(dia); 1718 return 0; 1719 } 1720 1721 case KDSKBDIACRUC: 1722 { 1723 struct kbdiacrsuc __user *a = udp; 1724 unsigned int ct; 1725 void *buf = NULL; 1726 1727 if (!perm) 1728 return -EPERM; 1729 1730 if (get_user(ct, &a->kb_cnt)) 1731 return -EFAULT; 1732 1733 if (ct >= MAX_DIACR) 1734 return -EINVAL; 1735 1736 if (ct) { 1737 buf = memdup_user(a->kbdiacruc, 1738 ct * sizeof(struct kbdiacruc)); 1739 if (IS_ERR(buf)) 1740 return PTR_ERR(buf); 1741 } 1742 spin_lock_irqsave(&kbd_event_lock, flags); 1743 if (ct) 1744 memcpy(accent_table, buf, 1745 ct * sizeof(struct kbdiacruc)); 1746 accent_table_size = ct; 1747 spin_unlock_irqrestore(&kbd_event_lock, flags); 1748 kfree(buf); 1749 return 0; 1750 } 1751 } 1752 return ret; 1753 } 1754 1755 /** 1756 * vt_do_kdskbmode - set keyboard mode ioctl 1757 * @console: the console to use 1758 * @arg: the requested mode 1759 * 1760 * Update the keyboard mode bits while holding the correct locks. 1761 * Return 0 for success or an error code. 1762 */ 1763 int vt_do_kdskbmode(int console, unsigned int arg) 1764 { 1765 struct kbd_struct *kb = kbd_table + console; 1766 int ret = 0; 1767 unsigned long flags; 1768 1769 spin_lock_irqsave(&kbd_event_lock, flags); 1770 switch(arg) { 1771 case K_RAW: 1772 kb->kbdmode = VC_RAW; 1773 break; 1774 case K_MEDIUMRAW: 1775 kb->kbdmode = VC_MEDIUMRAW; 1776 break; 1777 case K_XLATE: 1778 kb->kbdmode = VC_XLATE; 1779 do_compute_shiftstate(); 1780 break; 1781 case K_UNICODE: 1782 kb->kbdmode = VC_UNICODE; 1783 do_compute_shiftstate(); 1784 break; 1785 case K_OFF: 1786 kb->kbdmode = VC_OFF; 1787 break; 1788 default: 1789 ret = -EINVAL; 1790 } 1791 spin_unlock_irqrestore(&kbd_event_lock, flags); 1792 return ret; 1793 } 1794 1795 /** 1796 * vt_do_kdskbmeta - set keyboard meta state 1797 * @console: the console to use 1798 * @arg: the requested meta state 1799 * 1800 * Update the keyboard meta bits while holding the correct locks. 1801 * Return 0 for success or an error code. 1802 */ 1803 int vt_do_kdskbmeta(int console, unsigned int arg) 1804 { 1805 struct kbd_struct *kb = kbd_table + console; 1806 int ret = 0; 1807 unsigned long flags; 1808 1809 spin_lock_irqsave(&kbd_event_lock, flags); 1810 switch(arg) { 1811 case K_METABIT: 1812 clr_vc_kbd_mode(kb, VC_META); 1813 break; 1814 case K_ESCPREFIX: 1815 set_vc_kbd_mode(kb, VC_META); 1816 break; 1817 default: 1818 ret = -EINVAL; 1819 } 1820 spin_unlock_irqrestore(&kbd_event_lock, flags); 1821 return ret; 1822 } 1823 1824 int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc, 1825 int perm) 1826 { 1827 struct kbkeycode tmp; 1828 int kc = 0; 1829 1830 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode))) 1831 return -EFAULT; 1832 switch (cmd) { 1833 case KDGETKEYCODE: 1834 kc = getkeycode(tmp.scancode); 1835 if (kc >= 0) 1836 kc = put_user(kc, &user_kbkc->keycode); 1837 break; 1838 case KDSETKEYCODE: 1839 if (!perm) 1840 return -EPERM; 1841 kc = setkeycode(tmp.scancode, tmp.keycode); 1842 break; 1843 } 1844 return kc; 1845 } 1846 1847 #define i (tmp.kb_index) 1848 #define s (tmp.kb_table) 1849 #define v (tmp.kb_value) 1850 1851 int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm, 1852 int console) 1853 { 1854 struct kbd_struct *kb = kbd_table + console; 1855 struct kbentry tmp; 1856 ushort *key_map, *new_map, val, ov; 1857 unsigned long flags; 1858 1859 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry))) 1860 return -EFAULT; 1861 1862 if (!capable(CAP_SYS_TTY_CONFIG)) 1863 perm = 0; 1864 1865 switch (cmd) { 1866 case KDGKBENT: 1867 /* Ensure another thread doesn't free it under us */ 1868 spin_lock_irqsave(&kbd_event_lock, flags); 1869 key_map = key_maps[s]; 1870 if (key_map) { 1871 val = U(key_map[i]); 1872 if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES) 1873 val = K_HOLE; 1874 } else 1875 val = (i ? K_HOLE : K_NOSUCHMAP); 1876 spin_unlock_irqrestore(&kbd_event_lock, flags); 1877 return put_user(val, &user_kbe->kb_value); 1878 case KDSKBENT: 1879 if (!perm) 1880 return -EPERM; 1881 if (!i && v == K_NOSUCHMAP) { 1882 spin_lock_irqsave(&kbd_event_lock, flags); 1883 /* deallocate map */ 1884 key_map = key_maps[s]; 1885 if (s && key_map) { 1886 key_maps[s] = NULL; 1887 if (key_map[0] == U(K_ALLOCATED)) { 1888 kfree(key_map); 1889 keymap_count--; 1890 } 1891 } 1892 spin_unlock_irqrestore(&kbd_event_lock, flags); 1893 break; 1894 } 1895 1896 if (KTYP(v) < NR_TYPES) { 1897 if (KVAL(v) > max_vals[KTYP(v)]) 1898 return -EINVAL; 1899 } else 1900 if (kb->kbdmode != VC_UNICODE) 1901 return -EINVAL; 1902 1903 /* ++Geert: non-PC keyboards may generate keycode zero */ 1904 #if !defined(__mc68000__) && !defined(__powerpc__) 1905 /* assignment to entry 0 only tests validity of args */ 1906 if (!i) 1907 break; 1908 #endif 1909 1910 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL); 1911 if (!new_map) 1912 return -ENOMEM; 1913 spin_lock_irqsave(&kbd_event_lock, flags); 1914 key_map = key_maps[s]; 1915 if (key_map == NULL) { 1916 int j; 1917 1918 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS && 1919 !capable(CAP_SYS_RESOURCE)) { 1920 spin_unlock_irqrestore(&kbd_event_lock, flags); 1921 kfree(new_map); 1922 return -EPERM; 1923 } 1924 key_maps[s] = new_map; 1925 key_map = new_map; 1926 key_map[0] = U(K_ALLOCATED); 1927 for (j = 1; j < NR_KEYS; j++) 1928 key_map[j] = U(K_HOLE); 1929 keymap_count++; 1930 } else 1931 kfree(new_map); 1932 1933 ov = U(key_map[i]); 1934 if (v == ov) 1935 goto out; 1936 /* 1937 * Attention Key. 1938 */ 1939 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) { 1940 spin_unlock_irqrestore(&kbd_event_lock, flags); 1941 return -EPERM; 1942 } 1943 key_map[i] = U(v); 1944 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT)) 1945 do_compute_shiftstate(); 1946 out: 1947 spin_unlock_irqrestore(&kbd_event_lock, flags); 1948 break; 1949 } 1950 return 0; 1951 } 1952 #undef i 1953 #undef s 1954 #undef v 1955 1956 /* FIXME: This one needs untangling and locking */ 1957 int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm) 1958 { 1959 struct kbsentry *kbs; 1960 char *p; 1961 u_char *q; 1962 u_char __user *up; 1963 int sz; 1964 int delta; 1965 char *first_free, *fj, *fnw; 1966 int i, j, k; 1967 int ret; 1968 1969 if (!capable(CAP_SYS_TTY_CONFIG)) 1970 perm = 0; 1971 1972 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL); 1973 if (!kbs) { 1974 ret = -ENOMEM; 1975 goto reterr; 1976 } 1977 1978 /* we mostly copy too much here (512bytes), but who cares ;) */ 1979 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) { 1980 ret = -EFAULT; 1981 goto reterr; 1982 } 1983 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0'; 1984 i = kbs->kb_func; 1985 1986 switch (cmd) { 1987 case KDGKBSENT: 1988 sz = sizeof(kbs->kb_string) - 1; /* sz should have been 1989 a struct member */ 1990 up = user_kdgkb->kb_string; 1991 p = func_table[i]; 1992 if(p) 1993 for ( ; *p && sz; p++, sz--) 1994 if (put_user(*p, up++)) { 1995 ret = -EFAULT; 1996 goto reterr; 1997 } 1998 if (put_user('\0', up)) { 1999 ret = -EFAULT; 2000 goto reterr; 2001 } 2002 kfree(kbs); 2003 return ((p && *p) ? -EOVERFLOW : 0); 2004 case KDSKBSENT: 2005 if (!perm) { 2006 ret = -EPERM; 2007 goto reterr; 2008 } 2009 2010 q = func_table[i]; 2011 first_free = funcbufptr + (funcbufsize - funcbufleft); 2012 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++) 2013 ; 2014 if (j < MAX_NR_FUNC) 2015 fj = func_table[j]; 2016 else 2017 fj = first_free; 2018 2019 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string); 2020 if (delta <= funcbufleft) { /* it fits in current buf */ 2021 if (j < MAX_NR_FUNC) { 2022 memmove(fj + delta, fj, first_free - fj); 2023 for (k = j; k < MAX_NR_FUNC; k++) 2024 if (func_table[k]) 2025 func_table[k] += delta; 2026 } 2027 if (!q) 2028 func_table[i] = fj; 2029 funcbufleft -= delta; 2030 } else { /* allocate a larger buffer */ 2031 sz = 256; 2032 while (sz < funcbufsize - funcbufleft + delta) 2033 sz <<= 1; 2034 fnw = kmalloc(sz, GFP_KERNEL); 2035 if(!fnw) { 2036 ret = -ENOMEM; 2037 goto reterr; 2038 } 2039 2040 if (!q) 2041 func_table[i] = fj; 2042 if (fj > funcbufptr) 2043 memmove(fnw, funcbufptr, fj - funcbufptr); 2044 for (k = 0; k < j; k++) 2045 if (func_table[k]) 2046 func_table[k] = fnw + (func_table[k] - funcbufptr); 2047 2048 if (first_free > fj) { 2049 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj); 2050 for (k = j; k < MAX_NR_FUNC; k++) 2051 if (func_table[k]) 2052 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta; 2053 } 2054 if (funcbufptr != func_buf) 2055 kfree(funcbufptr); 2056 funcbufptr = fnw; 2057 funcbufleft = funcbufleft - delta + sz - funcbufsize; 2058 funcbufsize = sz; 2059 } 2060 strcpy(func_table[i], kbs->kb_string); 2061 break; 2062 } 2063 ret = 0; 2064 reterr: 2065 kfree(kbs); 2066 return ret; 2067 } 2068 2069 int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm) 2070 { 2071 struct kbd_struct *kb = kbd_table + console; 2072 unsigned long flags; 2073 unsigned char ucval; 2074 2075 switch(cmd) { 2076 /* the ioctls below read/set the flags usually shown in the leds */ 2077 /* don't use them - they will go away without warning */ 2078 case KDGKBLED: 2079 spin_lock_irqsave(&kbd_event_lock, flags); 2080 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4); 2081 spin_unlock_irqrestore(&kbd_event_lock, flags); 2082 return put_user(ucval, (char __user *)arg); 2083 2084 case KDSKBLED: 2085 if (!perm) 2086 return -EPERM; 2087 if (arg & ~0x77) 2088 return -EINVAL; 2089 spin_lock_irqsave(&led_lock, flags); 2090 kb->ledflagstate = (arg & 7); 2091 kb->default_ledflagstate = ((arg >> 4) & 7); 2092 set_leds(); 2093 spin_unlock_irqrestore(&led_lock, flags); 2094 return 0; 2095 2096 /* the ioctls below only set the lights, not the functions */ 2097 /* for those, see KDGKBLED and KDSKBLED above */ 2098 case KDGETLED: 2099 ucval = getledstate(); 2100 return put_user(ucval, (char __user *)arg); 2101 2102 case KDSETLED: 2103 if (!perm) 2104 return -EPERM; 2105 setledstate(kb, arg); 2106 return 0; 2107 } 2108 return -ENOIOCTLCMD; 2109 } 2110 2111 int vt_do_kdgkbmode(int console) 2112 { 2113 struct kbd_struct *kb = kbd_table + console; 2114 /* This is a spot read so needs no locking */ 2115 switch (kb->kbdmode) { 2116 case VC_RAW: 2117 return K_RAW; 2118 case VC_MEDIUMRAW: 2119 return K_MEDIUMRAW; 2120 case VC_UNICODE: 2121 return K_UNICODE; 2122 case VC_OFF: 2123 return K_OFF; 2124 default: 2125 return K_XLATE; 2126 } 2127 } 2128 2129 /** 2130 * vt_do_kdgkbmeta - report meta status 2131 * @console: console to report 2132 * 2133 * Report the meta flag status of this console 2134 */ 2135 int vt_do_kdgkbmeta(int console) 2136 { 2137 struct kbd_struct *kb = kbd_table + console; 2138 /* Again a spot read so no locking */ 2139 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT; 2140 } 2141 2142 /** 2143 * vt_reset_unicode - reset the unicode status 2144 * @console: console being reset 2145 * 2146 * Restore the unicode console state to its default 2147 */ 2148 void vt_reset_unicode(int console) 2149 { 2150 unsigned long flags; 2151 2152 spin_lock_irqsave(&kbd_event_lock, flags); 2153 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE; 2154 spin_unlock_irqrestore(&kbd_event_lock, flags); 2155 } 2156 2157 /** 2158 * vt_get_shiftstate - shift bit state 2159 * 2160 * Report the shift bits from the keyboard state. We have to export 2161 * this to support some oddities in the vt layer. 2162 */ 2163 int vt_get_shift_state(void) 2164 { 2165 /* Don't lock as this is a transient report */ 2166 return shift_state; 2167 } 2168 2169 /** 2170 * vt_reset_keyboard - reset keyboard state 2171 * @console: console to reset 2172 * 2173 * Reset the keyboard bits for a console as part of a general console 2174 * reset event 2175 */ 2176 void vt_reset_keyboard(int console) 2177 { 2178 struct kbd_struct *kb = kbd_table + console; 2179 unsigned long flags; 2180 2181 spin_lock_irqsave(&kbd_event_lock, flags); 2182 set_vc_kbd_mode(kb, VC_REPEAT); 2183 clr_vc_kbd_mode(kb, VC_CKMODE); 2184 clr_vc_kbd_mode(kb, VC_APPLIC); 2185 clr_vc_kbd_mode(kb, VC_CRLF); 2186 kb->lockstate = 0; 2187 kb->slockstate = 0; 2188 spin_lock(&led_lock); 2189 kb->ledmode = LED_SHOW_FLAGS; 2190 kb->ledflagstate = kb->default_ledflagstate; 2191 spin_unlock(&led_lock); 2192 /* do not do set_leds here because this causes an endless tasklet loop 2193 when the keyboard hasn't been initialized yet */ 2194 spin_unlock_irqrestore(&kbd_event_lock, flags); 2195 } 2196 2197 /** 2198 * vt_get_kbd_mode_bit - read keyboard status bits 2199 * @console: console to read from 2200 * @bit: mode bit to read 2201 * 2202 * Report back a vt mode bit. We do this without locking so the 2203 * caller must be sure that there are no synchronization needs 2204 */ 2205 2206 int vt_get_kbd_mode_bit(int console, int bit) 2207 { 2208 struct kbd_struct *kb = kbd_table + console; 2209 return vc_kbd_mode(kb, bit); 2210 } 2211 2212 /** 2213 * vt_set_kbd_mode_bit - read keyboard status bits 2214 * @console: console to read from 2215 * @bit: mode bit to read 2216 * 2217 * Set a vt mode bit. We do this without locking so the 2218 * caller must be sure that there are no synchronization needs 2219 */ 2220 2221 void vt_set_kbd_mode_bit(int console, int bit) 2222 { 2223 struct kbd_struct *kb = kbd_table + console; 2224 unsigned long flags; 2225 2226 spin_lock_irqsave(&kbd_event_lock, flags); 2227 set_vc_kbd_mode(kb, bit); 2228 spin_unlock_irqrestore(&kbd_event_lock, flags); 2229 } 2230 2231 /** 2232 * vt_clr_kbd_mode_bit - read keyboard status bits 2233 * @console: console to read from 2234 * @bit: mode bit to read 2235 * 2236 * Report back a vt mode bit. We do this without locking so the 2237 * caller must be sure that there are no synchronization needs 2238 */ 2239 2240 void vt_clr_kbd_mode_bit(int console, int bit) 2241 { 2242 struct kbd_struct *kb = kbd_table + console; 2243 unsigned long flags; 2244 2245 spin_lock_irqsave(&kbd_event_lock, flags); 2246 clr_vc_kbd_mode(kb, bit); 2247 spin_unlock_irqrestore(&kbd_event_lock, flags); 2248 } 2249