xref: /openbmc/linux/drivers/tty/vt/keyboard.c (revision 232b0b08)
1 /*
2  * Written for linux by Johan Myreen as a translation from
3  * the assembly version by Linus (with diacriticals added)
4  *
5  * Some additional features added by Christoph Niemann (ChN), March 1993
6  *
7  * Loadable keymaps by Risto Kankkunen, May 1993
8  *
9  * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
10  * Added decr/incr_console, dynamic keymaps, Unicode support,
11  * dynamic function/string keys, led setting,  Sept 1994
12  * `Sticky' modifier keys, 951006.
13  *
14  * 11-11-96: SAK should now work in the raw mode (Martin Mares)
15  *
16  * Modified to provide 'generic' keyboard support by Hamish Macdonald
17  * Merge with the m68k keyboard driver and split-off of the PC low-level
18  * parts by Geert Uytterhoeven, May 1997
19  *
20  * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
21  * 30-07-98: Dead keys redone, aeb@cwi.nl.
22  * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
23  */
24 
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 
27 #include <linux/consolemap.h>
28 #include <linux/module.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/debug.h>
32 #include <linux/tty.h>
33 #include <linux/tty_flip.h>
34 #include <linux/mm.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/leds.h>
39 
40 #include <linux/kbd_kern.h>
41 #include <linux/kbd_diacr.h>
42 #include <linux/vt_kern.h>
43 #include <linux/input.h>
44 #include <linux/reboot.h>
45 #include <linux/notifier.h>
46 #include <linux/jiffies.h>
47 #include <linux/uaccess.h>
48 
49 #include <asm/irq_regs.h>
50 
51 extern void ctrl_alt_del(void);
52 
53 /*
54  * Exported functions/variables
55  */
56 
57 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
58 
59 #if defined(CONFIG_X86) || defined(CONFIG_PARISC)
60 #include <asm/kbdleds.h>
61 #else
62 static inline int kbd_defleds(void)
63 {
64 	return 0;
65 }
66 #endif
67 
68 #define KBD_DEFLOCK 0
69 
70 /*
71  * Handler Tables.
72  */
73 
74 #define K_HANDLERS\
75 	k_self,		k_fn,		k_spec,		k_pad,\
76 	k_dead,		k_cons,		k_cur,		k_shift,\
77 	k_meta,		k_ascii,	k_lock,		k_lowercase,\
78 	k_slock,	k_dead2,	k_brl,		k_ignore
79 
80 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
81 			    char up_flag);
82 static k_handler_fn K_HANDLERS;
83 static k_handler_fn *k_handler[16] = { K_HANDLERS };
84 
85 #define FN_HANDLERS\
86 	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
87 	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
88 	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
89 	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
90 	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
91 
92 typedef void (fn_handler_fn)(struct vc_data *vc);
93 static fn_handler_fn FN_HANDLERS;
94 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
95 
96 /*
97  * Variables exported for vt_ioctl.c
98  */
99 
100 struct vt_spawn_console vt_spawn_con = {
101 	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
102 	.pid  = NULL,
103 	.sig  = 0,
104 };
105 
106 
107 /*
108  * Internal Data.
109  */
110 
111 static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
112 static struct kbd_struct *kbd = kbd_table;
113 
114 /* maximum values each key_handler can handle */
115 static const int max_vals[] = {
116 	255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
117 	NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
118 	255, NR_LOCK - 1, 255, NR_BRL - 1
119 };
120 
121 static const int NR_TYPES = ARRAY_SIZE(max_vals);
122 
123 static struct input_handler kbd_handler;
124 static DEFINE_SPINLOCK(kbd_event_lock);
125 static DEFINE_SPINLOCK(led_lock);
126 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)];	/* keyboard key bitmap */
127 static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
128 static bool dead_key_next;
129 static int npadch = -1;					/* -1 or number assembled on pad */
130 static unsigned int diacr;
131 static char rep;					/* flag telling character repeat */
132 
133 static int shift_state = 0;
134 
135 static unsigned int ledstate = -1U;			/* undefined */
136 static unsigned char ledioctl;
137 
138 /*
139  * Notifier list for console keyboard events
140  */
141 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
142 
143 int register_keyboard_notifier(struct notifier_block *nb)
144 {
145 	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
146 }
147 EXPORT_SYMBOL_GPL(register_keyboard_notifier);
148 
149 int unregister_keyboard_notifier(struct notifier_block *nb)
150 {
151 	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
152 }
153 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
154 
155 /*
156  * Translation of scancodes to keycodes. We set them on only the first
157  * keyboard in the list that accepts the scancode and keycode.
158  * Explanation for not choosing the first attached keyboard anymore:
159  *  USB keyboards for example have two event devices: one for all "normal"
160  *  keys and one for extra function keys (like "volume up", "make coffee",
161  *  etc.). So this means that scancodes for the extra function keys won't
162  *  be valid for the first event device, but will be for the second.
163  */
164 
165 struct getset_keycode_data {
166 	struct input_keymap_entry ke;
167 	int error;
168 };
169 
170 static int getkeycode_helper(struct input_handle *handle, void *data)
171 {
172 	struct getset_keycode_data *d = data;
173 
174 	d->error = input_get_keycode(handle->dev, &d->ke);
175 
176 	return d->error == 0; /* stop as soon as we successfully get one */
177 }
178 
179 static int getkeycode(unsigned int scancode)
180 {
181 	struct getset_keycode_data d = {
182 		.ke	= {
183 			.flags		= 0,
184 			.len		= sizeof(scancode),
185 			.keycode	= 0,
186 		},
187 		.error	= -ENODEV,
188 	};
189 
190 	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
191 
192 	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
193 
194 	return d.error ?: d.ke.keycode;
195 }
196 
197 static int setkeycode_helper(struct input_handle *handle, void *data)
198 {
199 	struct getset_keycode_data *d = data;
200 
201 	d->error = input_set_keycode(handle->dev, &d->ke);
202 
203 	return d->error == 0; /* stop as soon as we successfully set one */
204 }
205 
206 static int setkeycode(unsigned int scancode, unsigned int keycode)
207 {
208 	struct getset_keycode_data d = {
209 		.ke	= {
210 			.flags		= 0,
211 			.len		= sizeof(scancode),
212 			.keycode	= keycode,
213 		},
214 		.error	= -ENODEV,
215 	};
216 
217 	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
218 
219 	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
220 
221 	return d.error;
222 }
223 
224 /*
225  * Making beeps and bells. Note that we prefer beeps to bells, but when
226  * shutting the sound off we do both.
227  */
228 
229 static int kd_sound_helper(struct input_handle *handle, void *data)
230 {
231 	unsigned int *hz = data;
232 	struct input_dev *dev = handle->dev;
233 
234 	if (test_bit(EV_SND, dev->evbit)) {
235 		if (test_bit(SND_TONE, dev->sndbit)) {
236 			input_inject_event(handle, EV_SND, SND_TONE, *hz);
237 			if (*hz)
238 				return 0;
239 		}
240 		if (test_bit(SND_BELL, dev->sndbit))
241 			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
242 	}
243 
244 	return 0;
245 }
246 
247 static void kd_nosound(unsigned long ignored)
248 {
249 	static unsigned int zero;
250 
251 	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
252 }
253 
254 static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
255 
256 void kd_mksound(unsigned int hz, unsigned int ticks)
257 {
258 	del_timer_sync(&kd_mksound_timer);
259 
260 	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
261 
262 	if (hz && ticks)
263 		mod_timer(&kd_mksound_timer, jiffies + ticks);
264 }
265 EXPORT_SYMBOL(kd_mksound);
266 
267 /*
268  * Setting the keyboard rate.
269  */
270 
271 static int kbd_rate_helper(struct input_handle *handle, void *data)
272 {
273 	struct input_dev *dev = handle->dev;
274 	struct kbd_repeat *rpt = data;
275 
276 	if (test_bit(EV_REP, dev->evbit)) {
277 
278 		if (rpt[0].delay > 0)
279 			input_inject_event(handle,
280 					   EV_REP, REP_DELAY, rpt[0].delay);
281 		if (rpt[0].period > 0)
282 			input_inject_event(handle,
283 					   EV_REP, REP_PERIOD, rpt[0].period);
284 
285 		rpt[1].delay = dev->rep[REP_DELAY];
286 		rpt[1].period = dev->rep[REP_PERIOD];
287 	}
288 
289 	return 0;
290 }
291 
292 int kbd_rate(struct kbd_repeat *rpt)
293 {
294 	struct kbd_repeat data[2] = { *rpt };
295 
296 	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
297 	*rpt = data[1];	/* Copy currently used settings */
298 
299 	return 0;
300 }
301 
302 /*
303  * Helper Functions.
304  */
305 static void put_queue(struct vc_data *vc, int ch)
306 {
307 	tty_insert_flip_char(&vc->port, ch, 0);
308 	tty_schedule_flip(&vc->port);
309 }
310 
311 static void puts_queue(struct vc_data *vc, char *cp)
312 {
313 	while (*cp) {
314 		tty_insert_flip_char(&vc->port, *cp, 0);
315 		cp++;
316 	}
317 	tty_schedule_flip(&vc->port);
318 }
319 
320 static void applkey(struct vc_data *vc, int key, char mode)
321 {
322 	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
323 
324 	buf[1] = (mode ? 'O' : '[');
325 	buf[2] = key;
326 	puts_queue(vc, buf);
327 }
328 
329 /*
330  * Many other routines do put_queue, but I think either
331  * they produce ASCII, or they produce some user-assigned
332  * string, and in both cases we might assume that it is
333  * in utf-8 already.
334  */
335 static void to_utf8(struct vc_data *vc, uint c)
336 {
337 	if (c < 0x80)
338 		/*  0******* */
339 		put_queue(vc, c);
340 	else if (c < 0x800) {
341 		/* 110***** 10****** */
342 		put_queue(vc, 0xc0 | (c >> 6));
343 		put_queue(vc, 0x80 | (c & 0x3f));
344 	} else if (c < 0x10000) {
345 		if (c >= 0xD800 && c < 0xE000)
346 			return;
347 		if (c == 0xFFFF)
348 			return;
349 		/* 1110**** 10****** 10****** */
350 		put_queue(vc, 0xe0 | (c >> 12));
351 		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
352 		put_queue(vc, 0x80 | (c & 0x3f));
353 	} else if (c < 0x110000) {
354 		/* 11110*** 10****** 10****** 10****** */
355 		put_queue(vc, 0xf0 | (c >> 18));
356 		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
357 		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
358 		put_queue(vc, 0x80 | (c & 0x3f));
359 	}
360 }
361 
362 /*
363  * Called after returning from RAW mode or when changing consoles - recompute
364  * shift_down[] and shift_state from key_down[] maybe called when keymap is
365  * undefined, so that shiftkey release is seen. The caller must hold the
366  * kbd_event_lock.
367  */
368 
369 static void do_compute_shiftstate(void)
370 {
371 	unsigned int k, sym, val;
372 
373 	shift_state = 0;
374 	memset(shift_down, 0, sizeof(shift_down));
375 
376 	for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
377 		sym = U(key_maps[0][k]);
378 		if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
379 			continue;
380 
381 		val = KVAL(sym);
382 		if (val == KVAL(K_CAPSSHIFT))
383 			val = KVAL(K_SHIFT);
384 
385 		shift_down[val]++;
386 		shift_state |= BIT(val);
387 	}
388 }
389 
390 /* We still have to export this method to vt.c */
391 void compute_shiftstate(void)
392 {
393 	unsigned long flags;
394 	spin_lock_irqsave(&kbd_event_lock, flags);
395 	do_compute_shiftstate();
396 	spin_unlock_irqrestore(&kbd_event_lock, flags);
397 }
398 
399 /*
400  * We have a combining character DIACR here, followed by the character CH.
401  * If the combination occurs in the table, return the corresponding value.
402  * Otherwise, if CH is a space or equals DIACR, return DIACR.
403  * Otherwise, conclude that DIACR was not combining after all,
404  * queue it and return CH.
405  */
406 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
407 {
408 	unsigned int d = diacr;
409 	unsigned int i;
410 
411 	diacr = 0;
412 
413 	if ((d & ~0xff) == BRL_UC_ROW) {
414 		if ((ch & ~0xff) == BRL_UC_ROW)
415 			return d | ch;
416 	} else {
417 		for (i = 0; i < accent_table_size; i++)
418 			if (accent_table[i].diacr == d && accent_table[i].base == ch)
419 				return accent_table[i].result;
420 	}
421 
422 	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
423 		return d;
424 
425 	if (kbd->kbdmode == VC_UNICODE)
426 		to_utf8(vc, d);
427 	else {
428 		int c = conv_uni_to_8bit(d);
429 		if (c != -1)
430 			put_queue(vc, c);
431 	}
432 
433 	return ch;
434 }
435 
436 /*
437  * Special function handlers
438  */
439 static void fn_enter(struct vc_data *vc)
440 {
441 	if (diacr) {
442 		if (kbd->kbdmode == VC_UNICODE)
443 			to_utf8(vc, diacr);
444 		else {
445 			int c = conv_uni_to_8bit(diacr);
446 			if (c != -1)
447 				put_queue(vc, c);
448 		}
449 		diacr = 0;
450 	}
451 
452 	put_queue(vc, 13);
453 	if (vc_kbd_mode(kbd, VC_CRLF))
454 		put_queue(vc, 10);
455 }
456 
457 static void fn_caps_toggle(struct vc_data *vc)
458 {
459 	if (rep)
460 		return;
461 
462 	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
463 }
464 
465 static void fn_caps_on(struct vc_data *vc)
466 {
467 	if (rep)
468 		return;
469 
470 	set_vc_kbd_led(kbd, VC_CAPSLOCK);
471 }
472 
473 static void fn_show_ptregs(struct vc_data *vc)
474 {
475 	struct pt_regs *regs = get_irq_regs();
476 
477 	if (regs)
478 		show_regs(regs);
479 }
480 
481 static void fn_hold(struct vc_data *vc)
482 {
483 	struct tty_struct *tty = vc->port.tty;
484 
485 	if (rep || !tty)
486 		return;
487 
488 	/*
489 	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
490 	 * these routines are also activated by ^S/^Q.
491 	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
492 	 */
493 	if (tty->stopped)
494 		start_tty(tty);
495 	else
496 		stop_tty(tty);
497 }
498 
499 static void fn_num(struct vc_data *vc)
500 {
501 	if (vc_kbd_mode(kbd, VC_APPLIC))
502 		applkey(vc, 'P', 1);
503 	else
504 		fn_bare_num(vc);
505 }
506 
507 /*
508  * Bind this to Shift-NumLock if you work in application keypad mode
509  * but want to be able to change the NumLock flag.
510  * Bind this to NumLock if you prefer that the NumLock key always
511  * changes the NumLock flag.
512  */
513 static void fn_bare_num(struct vc_data *vc)
514 {
515 	if (!rep)
516 		chg_vc_kbd_led(kbd, VC_NUMLOCK);
517 }
518 
519 static void fn_lastcons(struct vc_data *vc)
520 {
521 	/* switch to the last used console, ChN */
522 	set_console(last_console);
523 }
524 
525 static void fn_dec_console(struct vc_data *vc)
526 {
527 	int i, cur = fg_console;
528 
529 	/* Currently switching?  Queue this next switch relative to that. */
530 	if (want_console != -1)
531 		cur = want_console;
532 
533 	for (i = cur - 1; i != cur; i--) {
534 		if (i == -1)
535 			i = MAX_NR_CONSOLES - 1;
536 		if (vc_cons_allocated(i))
537 			break;
538 	}
539 	set_console(i);
540 }
541 
542 static void fn_inc_console(struct vc_data *vc)
543 {
544 	int i, cur = fg_console;
545 
546 	/* Currently switching?  Queue this next switch relative to that. */
547 	if (want_console != -1)
548 		cur = want_console;
549 
550 	for (i = cur+1; i != cur; i++) {
551 		if (i == MAX_NR_CONSOLES)
552 			i = 0;
553 		if (vc_cons_allocated(i))
554 			break;
555 	}
556 	set_console(i);
557 }
558 
559 static void fn_send_intr(struct vc_data *vc)
560 {
561 	tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
562 	tty_schedule_flip(&vc->port);
563 }
564 
565 static void fn_scroll_forw(struct vc_data *vc)
566 {
567 	scrollfront(vc, 0);
568 }
569 
570 static void fn_scroll_back(struct vc_data *vc)
571 {
572 	scrollback(vc);
573 }
574 
575 static void fn_show_mem(struct vc_data *vc)
576 {
577 	show_mem(0, NULL);
578 }
579 
580 static void fn_show_state(struct vc_data *vc)
581 {
582 	show_state();
583 }
584 
585 static void fn_boot_it(struct vc_data *vc)
586 {
587 	ctrl_alt_del();
588 }
589 
590 static void fn_compose(struct vc_data *vc)
591 {
592 	dead_key_next = true;
593 }
594 
595 static void fn_spawn_con(struct vc_data *vc)
596 {
597 	spin_lock(&vt_spawn_con.lock);
598 	if (vt_spawn_con.pid)
599 		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
600 			put_pid(vt_spawn_con.pid);
601 			vt_spawn_con.pid = NULL;
602 		}
603 	spin_unlock(&vt_spawn_con.lock);
604 }
605 
606 static void fn_SAK(struct vc_data *vc)
607 {
608 	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
609 	schedule_work(SAK_work);
610 }
611 
612 static void fn_null(struct vc_data *vc)
613 {
614 	do_compute_shiftstate();
615 }
616 
617 /*
618  * Special key handlers
619  */
620 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
621 {
622 }
623 
624 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
625 {
626 	if (up_flag)
627 		return;
628 	if (value >= ARRAY_SIZE(fn_handler))
629 		return;
630 	if ((kbd->kbdmode == VC_RAW ||
631 	     kbd->kbdmode == VC_MEDIUMRAW ||
632 	     kbd->kbdmode == VC_OFF) &&
633 	     value != KVAL(K_SAK))
634 		return;		/* SAK is allowed even in raw mode */
635 	fn_handler[value](vc);
636 }
637 
638 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
639 {
640 	pr_err("k_lowercase was called - impossible\n");
641 }
642 
643 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
644 {
645 	if (up_flag)
646 		return;		/* no action, if this is a key release */
647 
648 	if (diacr)
649 		value = handle_diacr(vc, value);
650 
651 	if (dead_key_next) {
652 		dead_key_next = false;
653 		diacr = value;
654 		return;
655 	}
656 	if (kbd->kbdmode == VC_UNICODE)
657 		to_utf8(vc, value);
658 	else {
659 		int c = conv_uni_to_8bit(value);
660 		if (c != -1)
661 			put_queue(vc, c);
662 	}
663 }
664 
665 /*
666  * Handle dead key. Note that we now may have several
667  * dead keys modifying the same character. Very useful
668  * for Vietnamese.
669  */
670 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
671 {
672 	if (up_flag)
673 		return;
674 
675 	diacr = (diacr ? handle_diacr(vc, value) : value);
676 }
677 
678 static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
679 {
680 	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
681 }
682 
683 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
684 {
685 	k_deadunicode(vc, value, up_flag);
686 }
687 
688 /*
689  * Obsolete - for backwards compatibility only
690  */
691 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
692 {
693 	static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
694 
695 	k_deadunicode(vc, ret_diacr[value], up_flag);
696 }
697 
698 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
699 {
700 	if (up_flag)
701 		return;
702 
703 	set_console(value);
704 }
705 
706 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
707 {
708 	if (up_flag)
709 		return;
710 
711 	if ((unsigned)value < ARRAY_SIZE(func_table)) {
712 		if (func_table[value])
713 			puts_queue(vc, func_table[value]);
714 	} else
715 		pr_err("k_fn called with value=%d\n", value);
716 }
717 
718 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
719 {
720 	static const char cur_chars[] = "BDCA";
721 
722 	if (up_flag)
723 		return;
724 
725 	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
726 }
727 
728 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
729 {
730 	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
731 	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
732 
733 	if (up_flag)
734 		return;		/* no action, if this is a key release */
735 
736 	/* kludge... shift forces cursor/number keys */
737 	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
738 		applkey(vc, app_map[value], 1);
739 		return;
740 	}
741 
742 	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
743 
744 		switch (value) {
745 		case KVAL(K_PCOMMA):
746 		case KVAL(K_PDOT):
747 			k_fn(vc, KVAL(K_REMOVE), 0);
748 			return;
749 		case KVAL(K_P0):
750 			k_fn(vc, KVAL(K_INSERT), 0);
751 			return;
752 		case KVAL(K_P1):
753 			k_fn(vc, KVAL(K_SELECT), 0);
754 			return;
755 		case KVAL(K_P2):
756 			k_cur(vc, KVAL(K_DOWN), 0);
757 			return;
758 		case KVAL(K_P3):
759 			k_fn(vc, KVAL(K_PGDN), 0);
760 			return;
761 		case KVAL(K_P4):
762 			k_cur(vc, KVAL(K_LEFT), 0);
763 			return;
764 		case KVAL(K_P6):
765 			k_cur(vc, KVAL(K_RIGHT), 0);
766 			return;
767 		case KVAL(K_P7):
768 			k_fn(vc, KVAL(K_FIND), 0);
769 			return;
770 		case KVAL(K_P8):
771 			k_cur(vc, KVAL(K_UP), 0);
772 			return;
773 		case KVAL(K_P9):
774 			k_fn(vc, KVAL(K_PGUP), 0);
775 			return;
776 		case KVAL(K_P5):
777 			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
778 			return;
779 		}
780 	}
781 
782 	put_queue(vc, pad_chars[value]);
783 	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
784 		put_queue(vc, 10);
785 }
786 
787 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
788 {
789 	int old_state = shift_state;
790 
791 	if (rep)
792 		return;
793 	/*
794 	 * Mimic typewriter:
795 	 * a CapsShift key acts like Shift but undoes CapsLock
796 	 */
797 	if (value == KVAL(K_CAPSSHIFT)) {
798 		value = KVAL(K_SHIFT);
799 		if (!up_flag)
800 			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
801 	}
802 
803 	if (up_flag) {
804 		/*
805 		 * handle the case that two shift or control
806 		 * keys are depressed simultaneously
807 		 */
808 		if (shift_down[value])
809 			shift_down[value]--;
810 	} else
811 		shift_down[value]++;
812 
813 	if (shift_down[value])
814 		shift_state |= (1 << value);
815 	else
816 		shift_state &= ~(1 << value);
817 
818 	/* kludge */
819 	if (up_flag && shift_state != old_state && npadch != -1) {
820 		if (kbd->kbdmode == VC_UNICODE)
821 			to_utf8(vc, npadch);
822 		else
823 			put_queue(vc, npadch & 0xff);
824 		npadch = -1;
825 	}
826 }
827 
828 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
829 {
830 	if (up_flag)
831 		return;
832 
833 	if (vc_kbd_mode(kbd, VC_META)) {
834 		put_queue(vc, '\033');
835 		put_queue(vc, value);
836 	} else
837 		put_queue(vc, value | 0x80);
838 }
839 
840 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
841 {
842 	int base;
843 
844 	if (up_flag)
845 		return;
846 
847 	if (value < 10) {
848 		/* decimal input of code, while Alt depressed */
849 		base = 10;
850 	} else {
851 		/* hexadecimal input of code, while AltGr depressed */
852 		value -= 10;
853 		base = 16;
854 	}
855 
856 	if (npadch == -1)
857 		npadch = value;
858 	else
859 		npadch = npadch * base + value;
860 }
861 
862 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
863 {
864 	if (up_flag || rep)
865 		return;
866 
867 	chg_vc_kbd_lock(kbd, value);
868 }
869 
870 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
871 {
872 	k_shift(vc, value, up_flag);
873 	if (up_flag || rep)
874 		return;
875 
876 	chg_vc_kbd_slock(kbd, value);
877 	/* try to make Alt, oops, AltGr and such work */
878 	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
879 		kbd->slockstate = 0;
880 		chg_vc_kbd_slock(kbd, value);
881 	}
882 }
883 
884 /* by default, 300ms interval for combination release */
885 static unsigned brl_timeout = 300;
886 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
887 module_param(brl_timeout, uint, 0644);
888 
889 static unsigned brl_nbchords = 1;
890 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
891 module_param(brl_nbchords, uint, 0644);
892 
893 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
894 {
895 	static unsigned long chords;
896 	static unsigned committed;
897 
898 	if (!brl_nbchords)
899 		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
900 	else {
901 		committed |= pattern;
902 		chords++;
903 		if (chords == brl_nbchords) {
904 			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
905 			chords = 0;
906 			committed = 0;
907 		}
908 	}
909 }
910 
911 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
912 {
913 	static unsigned pressed, committing;
914 	static unsigned long releasestart;
915 
916 	if (kbd->kbdmode != VC_UNICODE) {
917 		if (!up_flag)
918 			pr_warn("keyboard mode must be unicode for braille patterns\n");
919 		return;
920 	}
921 
922 	if (!value) {
923 		k_unicode(vc, BRL_UC_ROW, up_flag);
924 		return;
925 	}
926 
927 	if (value > 8)
928 		return;
929 
930 	if (!up_flag) {
931 		pressed |= 1 << (value - 1);
932 		if (!brl_timeout)
933 			committing = pressed;
934 	} else if (brl_timeout) {
935 		if (!committing ||
936 		    time_after(jiffies,
937 			       releasestart + msecs_to_jiffies(brl_timeout))) {
938 			committing = pressed;
939 			releasestart = jiffies;
940 		}
941 		pressed &= ~(1 << (value - 1));
942 		if (!pressed && committing) {
943 			k_brlcommit(vc, committing, 0);
944 			committing = 0;
945 		}
946 	} else {
947 		if (committing) {
948 			k_brlcommit(vc, committing, 0);
949 			committing = 0;
950 		}
951 		pressed &= ~(1 << (value - 1));
952 	}
953 }
954 
955 #if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
956 
957 struct kbd_led_trigger {
958 	struct led_trigger trigger;
959 	unsigned int mask;
960 };
961 
962 static void kbd_led_trigger_activate(struct led_classdev *cdev)
963 {
964 	struct kbd_led_trigger *trigger =
965 		container_of(cdev->trigger, struct kbd_led_trigger, trigger);
966 
967 	tasklet_disable(&keyboard_tasklet);
968 	if (ledstate != -1U)
969 		led_trigger_event(&trigger->trigger,
970 				  ledstate & trigger->mask ?
971 					LED_FULL : LED_OFF);
972 	tasklet_enable(&keyboard_tasklet);
973 }
974 
975 #define KBD_LED_TRIGGER(_led_bit, _name) {			\
976 		.trigger = {					\
977 			.name = _name,				\
978 			.activate = kbd_led_trigger_activate,	\
979 		},						\
980 		.mask	= BIT(_led_bit),			\
981 	}
982 
983 #define KBD_LOCKSTATE_TRIGGER(_led_bit, _name)		\
984 	KBD_LED_TRIGGER((_led_bit) + 8, _name)
985 
986 static struct kbd_led_trigger kbd_led_triggers[] = {
987 	KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
988 	KBD_LED_TRIGGER(VC_NUMLOCK,   "kbd-numlock"),
989 	KBD_LED_TRIGGER(VC_CAPSLOCK,  "kbd-capslock"),
990 	KBD_LED_TRIGGER(VC_KANALOCK,  "kbd-kanalock"),
991 
992 	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK,  "kbd-shiftlock"),
993 	KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK,  "kbd-altgrlock"),
994 	KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK,   "kbd-ctrllock"),
995 	KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK,    "kbd-altlock"),
996 	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
997 	KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
998 	KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK,  "kbd-ctrlllock"),
999 	KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK,  "kbd-ctrlrlock"),
1000 };
1001 
1002 static void kbd_propagate_led_state(unsigned int old_state,
1003 				    unsigned int new_state)
1004 {
1005 	struct kbd_led_trigger *trigger;
1006 	unsigned int changed = old_state ^ new_state;
1007 	int i;
1008 
1009 	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1010 		trigger = &kbd_led_triggers[i];
1011 
1012 		if (changed & trigger->mask)
1013 			led_trigger_event(&trigger->trigger,
1014 					  new_state & trigger->mask ?
1015 						LED_FULL : LED_OFF);
1016 	}
1017 }
1018 
1019 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1020 {
1021 	unsigned int led_state = *(unsigned int *)data;
1022 
1023 	if (test_bit(EV_LED, handle->dev->evbit))
1024 		kbd_propagate_led_state(~led_state, led_state);
1025 
1026 	return 0;
1027 }
1028 
1029 static void kbd_init_leds(void)
1030 {
1031 	int error;
1032 	int i;
1033 
1034 	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1035 		error = led_trigger_register(&kbd_led_triggers[i].trigger);
1036 		if (error)
1037 			pr_err("error %d while registering trigger %s\n",
1038 			       error, kbd_led_triggers[i].trigger.name);
1039 	}
1040 }
1041 
1042 #else
1043 
1044 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1045 {
1046 	unsigned int leds = *(unsigned int *)data;
1047 
1048 	if (test_bit(EV_LED, handle->dev->evbit)) {
1049 		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1050 		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & 0x02));
1051 		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & 0x04));
1052 		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1053 	}
1054 
1055 	return 0;
1056 }
1057 
1058 static void kbd_propagate_led_state(unsigned int old_state,
1059 				    unsigned int new_state)
1060 {
1061 	input_handler_for_each_handle(&kbd_handler, &new_state,
1062 				      kbd_update_leds_helper);
1063 }
1064 
1065 static void kbd_init_leds(void)
1066 {
1067 }
1068 
1069 #endif
1070 
1071 /*
1072  * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1073  * or (ii) whatever pattern of lights people want to show using KDSETLED,
1074  * or (iii) specified bits of specified words in kernel memory.
1075  */
1076 static unsigned char getledstate(void)
1077 {
1078 	return ledstate & 0xff;
1079 }
1080 
1081 void setledstate(struct kbd_struct *kb, unsigned int led)
1082 {
1083         unsigned long flags;
1084         spin_lock_irqsave(&led_lock, flags);
1085 	if (!(led & ~7)) {
1086 		ledioctl = led;
1087 		kb->ledmode = LED_SHOW_IOCTL;
1088 	} else
1089 		kb->ledmode = LED_SHOW_FLAGS;
1090 
1091 	set_leds();
1092 	spin_unlock_irqrestore(&led_lock, flags);
1093 }
1094 
1095 static inline unsigned char getleds(void)
1096 {
1097 	struct kbd_struct *kb = kbd_table + fg_console;
1098 
1099 	if (kb->ledmode == LED_SHOW_IOCTL)
1100 		return ledioctl;
1101 
1102 	return kb->ledflagstate;
1103 }
1104 
1105 /**
1106  *	vt_get_leds	-	helper for braille console
1107  *	@console: console to read
1108  *	@flag: flag we want to check
1109  *
1110  *	Check the status of a keyboard led flag and report it back
1111  */
1112 int vt_get_leds(int console, int flag)
1113 {
1114 	struct kbd_struct *kb = kbd_table + console;
1115 	int ret;
1116 	unsigned long flags;
1117 
1118 	spin_lock_irqsave(&led_lock, flags);
1119 	ret = vc_kbd_led(kb, flag);
1120 	spin_unlock_irqrestore(&led_lock, flags);
1121 
1122 	return ret;
1123 }
1124 EXPORT_SYMBOL_GPL(vt_get_leds);
1125 
1126 /**
1127  *	vt_set_led_state	-	set LED state of a console
1128  *	@console: console to set
1129  *	@leds: LED bits
1130  *
1131  *	Set the LEDs on a console. This is a wrapper for the VT layer
1132  *	so that we can keep kbd knowledge internal
1133  */
1134 void vt_set_led_state(int console, int leds)
1135 {
1136 	struct kbd_struct *kb = kbd_table + console;
1137 	setledstate(kb, leds);
1138 }
1139 
1140 /**
1141  *	vt_kbd_con_start	-	Keyboard side of console start
1142  *	@console: console
1143  *
1144  *	Handle console start. This is a wrapper for the VT layer
1145  *	so that we can keep kbd knowledge internal
1146  *
1147  *	FIXME: We eventually need to hold the kbd lock here to protect
1148  *	the LED updating. We can't do it yet because fn_hold calls stop_tty
1149  *	and start_tty under the kbd_event_lock, while normal tty paths
1150  *	don't hold the lock. We probably need to split out an LED lock
1151  *	but not during an -rc release!
1152  */
1153 void vt_kbd_con_start(int console)
1154 {
1155 	struct kbd_struct *kb = kbd_table + console;
1156 	unsigned long flags;
1157 	spin_lock_irqsave(&led_lock, flags);
1158 	clr_vc_kbd_led(kb, VC_SCROLLOCK);
1159 	set_leds();
1160 	spin_unlock_irqrestore(&led_lock, flags);
1161 }
1162 
1163 /**
1164  *	vt_kbd_con_stop		-	Keyboard side of console stop
1165  *	@console: console
1166  *
1167  *	Handle console stop. This is a wrapper for the VT layer
1168  *	so that we can keep kbd knowledge internal
1169  */
1170 void vt_kbd_con_stop(int console)
1171 {
1172 	struct kbd_struct *kb = kbd_table + console;
1173 	unsigned long flags;
1174 	spin_lock_irqsave(&led_lock, flags);
1175 	set_vc_kbd_led(kb, VC_SCROLLOCK);
1176 	set_leds();
1177 	spin_unlock_irqrestore(&led_lock, flags);
1178 }
1179 
1180 /*
1181  * This is the tasklet that updates LED state of LEDs using standard
1182  * keyboard triggers. The reason we use tasklet is that we need to
1183  * handle the scenario when keyboard handler is not registered yet
1184  * but we already getting updates from the VT to update led state.
1185  */
1186 static void kbd_bh(unsigned long dummy)
1187 {
1188 	unsigned int leds;
1189 	unsigned long flags;
1190 
1191 	spin_lock_irqsave(&led_lock, flags);
1192 	leds = getleds();
1193 	leds |= (unsigned int)kbd->lockstate << 8;
1194 	spin_unlock_irqrestore(&led_lock, flags);
1195 
1196 	if (leds != ledstate) {
1197 		kbd_propagate_led_state(ledstate, leds);
1198 		ledstate = leds;
1199 	}
1200 }
1201 
1202 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1203 
1204 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1205     defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1206     defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1207     (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1208     defined(CONFIG_AVR32)
1209 
1210 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1211 			((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1212 
1213 static const unsigned short x86_keycodes[256] =
1214 	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1215 	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1216 	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1217 	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1218 	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1219 	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1220 	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1221 	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1222 	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1223 	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1224 	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1225 	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1226 	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1227 	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1228 	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1229 
1230 #ifdef CONFIG_SPARC
1231 static int sparc_l1_a_state;
1232 extern void sun_do_break(void);
1233 #endif
1234 
1235 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1236 		       unsigned char up_flag)
1237 {
1238 	int code;
1239 
1240 	switch (keycode) {
1241 
1242 	case KEY_PAUSE:
1243 		put_queue(vc, 0xe1);
1244 		put_queue(vc, 0x1d | up_flag);
1245 		put_queue(vc, 0x45 | up_flag);
1246 		break;
1247 
1248 	case KEY_HANGEUL:
1249 		if (!up_flag)
1250 			put_queue(vc, 0xf2);
1251 		break;
1252 
1253 	case KEY_HANJA:
1254 		if (!up_flag)
1255 			put_queue(vc, 0xf1);
1256 		break;
1257 
1258 	case KEY_SYSRQ:
1259 		/*
1260 		 * Real AT keyboards (that's what we're trying
1261 		 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1262 		 * pressing PrtSc/SysRq alone, but simply 0x54
1263 		 * when pressing Alt+PrtSc/SysRq.
1264 		 */
1265 		if (test_bit(KEY_LEFTALT, key_down) ||
1266 		    test_bit(KEY_RIGHTALT, key_down)) {
1267 			put_queue(vc, 0x54 | up_flag);
1268 		} else {
1269 			put_queue(vc, 0xe0);
1270 			put_queue(vc, 0x2a | up_flag);
1271 			put_queue(vc, 0xe0);
1272 			put_queue(vc, 0x37 | up_flag);
1273 		}
1274 		break;
1275 
1276 	default:
1277 		if (keycode > 255)
1278 			return -1;
1279 
1280 		code = x86_keycodes[keycode];
1281 		if (!code)
1282 			return -1;
1283 
1284 		if (code & 0x100)
1285 			put_queue(vc, 0xe0);
1286 		put_queue(vc, (code & 0x7f) | up_flag);
1287 
1288 		break;
1289 	}
1290 
1291 	return 0;
1292 }
1293 
1294 #else
1295 
1296 #define HW_RAW(dev)	0
1297 
1298 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1299 {
1300 	if (keycode > 127)
1301 		return -1;
1302 
1303 	put_queue(vc, keycode | up_flag);
1304 	return 0;
1305 }
1306 #endif
1307 
1308 static void kbd_rawcode(unsigned char data)
1309 {
1310 	struct vc_data *vc = vc_cons[fg_console].d;
1311 
1312 	kbd = kbd_table + vc->vc_num;
1313 	if (kbd->kbdmode == VC_RAW)
1314 		put_queue(vc, data);
1315 }
1316 
1317 static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1318 {
1319 	struct vc_data *vc = vc_cons[fg_console].d;
1320 	unsigned short keysym, *key_map;
1321 	unsigned char type;
1322 	bool raw_mode;
1323 	struct tty_struct *tty;
1324 	int shift_final;
1325 	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1326 	int rc;
1327 
1328 	tty = vc->port.tty;
1329 
1330 	if (tty && (!tty->driver_data)) {
1331 		/* No driver data? Strange. Okay we fix it then. */
1332 		tty->driver_data = vc;
1333 	}
1334 
1335 	kbd = kbd_table + vc->vc_num;
1336 
1337 #ifdef CONFIG_SPARC
1338 	if (keycode == KEY_STOP)
1339 		sparc_l1_a_state = down;
1340 #endif
1341 
1342 	rep = (down == 2);
1343 
1344 	raw_mode = (kbd->kbdmode == VC_RAW);
1345 	if (raw_mode && !hw_raw)
1346 		if (emulate_raw(vc, keycode, !down << 7))
1347 			if (keycode < BTN_MISC && printk_ratelimit())
1348 				pr_warn("can't emulate rawmode for keycode %d\n",
1349 					keycode);
1350 
1351 #ifdef CONFIG_SPARC
1352 	if (keycode == KEY_A && sparc_l1_a_state) {
1353 		sparc_l1_a_state = false;
1354 		sun_do_break();
1355 	}
1356 #endif
1357 
1358 	if (kbd->kbdmode == VC_MEDIUMRAW) {
1359 		/*
1360 		 * This is extended medium raw mode, with keys above 127
1361 		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1362 		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1363 		 * interfere with anything else. The two bytes after 0 will
1364 		 * always have the up flag set not to interfere with older
1365 		 * applications. This allows for 16384 different keycodes,
1366 		 * which should be enough.
1367 		 */
1368 		if (keycode < 128) {
1369 			put_queue(vc, keycode | (!down << 7));
1370 		} else {
1371 			put_queue(vc, !down << 7);
1372 			put_queue(vc, (keycode >> 7) | 0x80);
1373 			put_queue(vc, keycode | 0x80);
1374 		}
1375 		raw_mode = true;
1376 	}
1377 
1378 	if (down)
1379 		set_bit(keycode, key_down);
1380 	else
1381 		clear_bit(keycode, key_down);
1382 
1383 	if (rep &&
1384 	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1385 	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1386 		/*
1387 		 * Don't repeat a key if the input buffers are not empty and the
1388 		 * characters get aren't echoed locally. This makes key repeat
1389 		 * usable with slow applications and under heavy loads.
1390 		 */
1391 		return;
1392 	}
1393 
1394 	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1395 	param.ledstate = kbd->ledflagstate;
1396 	key_map = key_maps[shift_final];
1397 
1398 	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1399 					KBD_KEYCODE, &param);
1400 	if (rc == NOTIFY_STOP || !key_map) {
1401 		atomic_notifier_call_chain(&keyboard_notifier_list,
1402 					   KBD_UNBOUND_KEYCODE, &param);
1403 		do_compute_shiftstate();
1404 		kbd->slockstate = 0;
1405 		return;
1406 	}
1407 
1408 	if (keycode < NR_KEYS)
1409 		keysym = key_map[keycode];
1410 	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1411 		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1412 	else
1413 		return;
1414 
1415 	type = KTYP(keysym);
1416 
1417 	if (type < 0xf0) {
1418 		param.value = keysym;
1419 		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1420 						KBD_UNICODE, &param);
1421 		if (rc != NOTIFY_STOP)
1422 			if (down && !raw_mode)
1423 				to_utf8(vc, keysym);
1424 		return;
1425 	}
1426 
1427 	type -= 0xf0;
1428 
1429 	if (type == KT_LETTER) {
1430 		type = KT_LATIN;
1431 		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1432 			key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1433 			if (key_map)
1434 				keysym = key_map[keycode];
1435 		}
1436 	}
1437 
1438 	param.value = keysym;
1439 	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1440 					KBD_KEYSYM, &param);
1441 	if (rc == NOTIFY_STOP)
1442 		return;
1443 
1444 	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1445 		return;
1446 
1447 	(*k_handler[type])(vc, keysym & 0xff, !down);
1448 
1449 	param.ledstate = kbd->ledflagstate;
1450 	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1451 
1452 	if (type != KT_SLOCK)
1453 		kbd->slockstate = 0;
1454 }
1455 
1456 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1457 		      unsigned int event_code, int value)
1458 {
1459 	/* We are called with interrupts disabled, just take the lock */
1460 	spin_lock(&kbd_event_lock);
1461 
1462 	if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1463 		kbd_rawcode(value);
1464 	if (event_type == EV_KEY)
1465 		kbd_keycode(event_code, value, HW_RAW(handle->dev));
1466 
1467 	spin_unlock(&kbd_event_lock);
1468 
1469 	tasklet_schedule(&keyboard_tasklet);
1470 	do_poke_blanked_console = 1;
1471 	schedule_console_callback();
1472 }
1473 
1474 static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1475 {
1476 	int i;
1477 
1478 	if (test_bit(EV_SND, dev->evbit))
1479 		return true;
1480 
1481 	if (test_bit(EV_KEY, dev->evbit)) {
1482 		for (i = KEY_RESERVED; i < BTN_MISC; i++)
1483 			if (test_bit(i, dev->keybit))
1484 				return true;
1485 		for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1486 			if (test_bit(i, dev->keybit))
1487 				return true;
1488 	}
1489 
1490 	return false;
1491 }
1492 
1493 /*
1494  * When a keyboard (or other input device) is found, the kbd_connect
1495  * function is called. The function then looks at the device, and if it
1496  * likes it, it can open it and get events from it. In this (kbd_connect)
1497  * function, we should decide which VT to bind that keyboard to initially.
1498  */
1499 static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1500 			const struct input_device_id *id)
1501 {
1502 	struct input_handle *handle;
1503 	int error;
1504 
1505 	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1506 	if (!handle)
1507 		return -ENOMEM;
1508 
1509 	handle->dev = dev;
1510 	handle->handler = handler;
1511 	handle->name = "kbd";
1512 
1513 	error = input_register_handle(handle);
1514 	if (error)
1515 		goto err_free_handle;
1516 
1517 	error = input_open_device(handle);
1518 	if (error)
1519 		goto err_unregister_handle;
1520 
1521 	return 0;
1522 
1523  err_unregister_handle:
1524 	input_unregister_handle(handle);
1525  err_free_handle:
1526 	kfree(handle);
1527 	return error;
1528 }
1529 
1530 static void kbd_disconnect(struct input_handle *handle)
1531 {
1532 	input_close_device(handle);
1533 	input_unregister_handle(handle);
1534 	kfree(handle);
1535 }
1536 
1537 /*
1538  * Start keyboard handler on the new keyboard by refreshing LED state to
1539  * match the rest of the system.
1540  */
1541 static void kbd_start(struct input_handle *handle)
1542 {
1543 	tasklet_disable(&keyboard_tasklet);
1544 
1545 	if (ledstate != -1U)
1546 		kbd_update_leds_helper(handle, &ledstate);
1547 
1548 	tasklet_enable(&keyboard_tasklet);
1549 }
1550 
1551 static const struct input_device_id kbd_ids[] = {
1552 	{
1553 		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1554 		.evbit = { BIT_MASK(EV_KEY) },
1555 	},
1556 
1557 	{
1558 		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1559 		.evbit = { BIT_MASK(EV_SND) },
1560 	},
1561 
1562 	{ },    /* Terminating entry */
1563 };
1564 
1565 MODULE_DEVICE_TABLE(input, kbd_ids);
1566 
1567 static struct input_handler kbd_handler = {
1568 	.event		= kbd_event,
1569 	.match		= kbd_match,
1570 	.connect	= kbd_connect,
1571 	.disconnect	= kbd_disconnect,
1572 	.start		= kbd_start,
1573 	.name		= "kbd",
1574 	.id_table	= kbd_ids,
1575 };
1576 
1577 int __init kbd_init(void)
1578 {
1579 	int i;
1580 	int error;
1581 
1582 	for (i = 0; i < MAX_NR_CONSOLES; i++) {
1583 		kbd_table[i].ledflagstate = kbd_defleds();
1584 		kbd_table[i].default_ledflagstate = kbd_defleds();
1585 		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1586 		kbd_table[i].lockstate = KBD_DEFLOCK;
1587 		kbd_table[i].slockstate = 0;
1588 		kbd_table[i].modeflags = KBD_DEFMODE;
1589 		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1590 	}
1591 
1592 	kbd_init_leds();
1593 
1594 	error = input_register_handler(&kbd_handler);
1595 	if (error)
1596 		return error;
1597 
1598 	tasklet_enable(&keyboard_tasklet);
1599 	tasklet_schedule(&keyboard_tasklet);
1600 
1601 	return 0;
1602 }
1603 
1604 /* Ioctl support code */
1605 
1606 /**
1607  *	vt_do_diacrit		-	diacritical table updates
1608  *	@cmd: ioctl request
1609  *	@udp: pointer to user data for ioctl
1610  *	@perm: permissions check computed by caller
1611  *
1612  *	Update the diacritical tables atomically and safely. Lock them
1613  *	against simultaneous keypresses
1614  */
1615 int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1616 {
1617 	unsigned long flags;
1618 	int asize;
1619 	int ret = 0;
1620 
1621 	switch (cmd) {
1622 	case KDGKBDIACR:
1623 	{
1624 		struct kbdiacrs __user *a = udp;
1625 		struct kbdiacr *dia;
1626 		int i;
1627 
1628 		dia = kmalloc(MAX_DIACR * sizeof(struct kbdiacr),
1629 								GFP_KERNEL);
1630 		if (!dia)
1631 			return -ENOMEM;
1632 
1633 		/* Lock the diacriticals table, make a copy and then
1634 		   copy it after we unlock */
1635 		spin_lock_irqsave(&kbd_event_lock, flags);
1636 
1637 		asize = accent_table_size;
1638 		for (i = 0; i < asize; i++) {
1639 			dia[i].diacr = conv_uni_to_8bit(
1640 						accent_table[i].diacr);
1641 			dia[i].base = conv_uni_to_8bit(
1642 						accent_table[i].base);
1643 			dia[i].result = conv_uni_to_8bit(
1644 						accent_table[i].result);
1645 		}
1646 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1647 
1648 		if (put_user(asize, &a->kb_cnt))
1649 			ret = -EFAULT;
1650 		else  if (copy_to_user(a->kbdiacr, dia,
1651 				asize * sizeof(struct kbdiacr)))
1652 			ret = -EFAULT;
1653 		kfree(dia);
1654 		return ret;
1655 	}
1656 	case KDGKBDIACRUC:
1657 	{
1658 		struct kbdiacrsuc __user *a = udp;
1659 		void *buf;
1660 
1661 		buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc),
1662 								GFP_KERNEL);
1663 		if (buf == NULL)
1664 			return -ENOMEM;
1665 
1666 		/* Lock the diacriticals table, make a copy and then
1667 		   copy it after we unlock */
1668 		spin_lock_irqsave(&kbd_event_lock, flags);
1669 
1670 		asize = accent_table_size;
1671 		memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1672 
1673 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1674 
1675 		if (put_user(asize, &a->kb_cnt))
1676 			ret = -EFAULT;
1677 		else if (copy_to_user(a->kbdiacruc, buf,
1678 				asize*sizeof(struct kbdiacruc)))
1679 			ret = -EFAULT;
1680 		kfree(buf);
1681 		return ret;
1682 	}
1683 
1684 	case KDSKBDIACR:
1685 	{
1686 		struct kbdiacrs __user *a = udp;
1687 		struct kbdiacr *dia = NULL;
1688 		unsigned int ct;
1689 		int i;
1690 
1691 		if (!perm)
1692 			return -EPERM;
1693 		if (get_user(ct, &a->kb_cnt))
1694 			return -EFAULT;
1695 		if (ct >= MAX_DIACR)
1696 			return -EINVAL;
1697 
1698 		if (ct) {
1699 
1700 			dia = memdup_user(a->kbdiacr,
1701 					sizeof(struct kbdiacr) * ct);
1702 			if (IS_ERR(dia))
1703 				return PTR_ERR(dia);
1704 
1705 		}
1706 
1707 		spin_lock_irqsave(&kbd_event_lock, flags);
1708 		accent_table_size = ct;
1709 		for (i = 0; i < ct; i++) {
1710 			accent_table[i].diacr =
1711 					conv_8bit_to_uni(dia[i].diacr);
1712 			accent_table[i].base =
1713 					conv_8bit_to_uni(dia[i].base);
1714 			accent_table[i].result =
1715 					conv_8bit_to_uni(dia[i].result);
1716 		}
1717 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1718 		kfree(dia);
1719 		return 0;
1720 	}
1721 
1722 	case KDSKBDIACRUC:
1723 	{
1724 		struct kbdiacrsuc __user *a = udp;
1725 		unsigned int ct;
1726 		void *buf = NULL;
1727 
1728 		if (!perm)
1729 			return -EPERM;
1730 
1731 		if (get_user(ct, &a->kb_cnt))
1732 			return -EFAULT;
1733 
1734 		if (ct >= MAX_DIACR)
1735 			return -EINVAL;
1736 
1737 		if (ct) {
1738 			buf = memdup_user(a->kbdiacruc,
1739 					  ct * sizeof(struct kbdiacruc));
1740 			if (IS_ERR(buf))
1741 				return PTR_ERR(buf);
1742 		}
1743 		spin_lock_irqsave(&kbd_event_lock, flags);
1744 		if (ct)
1745 			memcpy(accent_table, buf,
1746 					ct * sizeof(struct kbdiacruc));
1747 		accent_table_size = ct;
1748 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1749 		kfree(buf);
1750 		return 0;
1751 	}
1752 	}
1753 	return ret;
1754 }
1755 
1756 /**
1757  *	vt_do_kdskbmode		-	set keyboard mode ioctl
1758  *	@console: the console to use
1759  *	@arg: the requested mode
1760  *
1761  *	Update the keyboard mode bits while holding the correct locks.
1762  *	Return 0 for success or an error code.
1763  */
1764 int vt_do_kdskbmode(int console, unsigned int arg)
1765 {
1766 	struct kbd_struct *kb = kbd_table + console;
1767 	int ret = 0;
1768 	unsigned long flags;
1769 
1770 	spin_lock_irqsave(&kbd_event_lock, flags);
1771 	switch(arg) {
1772 	case K_RAW:
1773 		kb->kbdmode = VC_RAW;
1774 		break;
1775 	case K_MEDIUMRAW:
1776 		kb->kbdmode = VC_MEDIUMRAW;
1777 		break;
1778 	case K_XLATE:
1779 		kb->kbdmode = VC_XLATE;
1780 		do_compute_shiftstate();
1781 		break;
1782 	case K_UNICODE:
1783 		kb->kbdmode = VC_UNICODE;
1784 		do_compute_shiftstate();
1785 		break;
1786 	case K_OFF:
1787 		kb->kbdmode = VC_OFF;
1788 		break;
1789 	default:
1790 		ret = -EINVAL;
1791 	}
1792 	spin_unlock_irqrestore(&kbd_event_lock, flags);
1793 	return ret;
1794 }
1795 
1796 /**
1797  *	vt_do_kdskbmeta		-	set keyboard meta state
1798  *	@console: the console to use
1799  *	@arg: the requested meta state
1800  *
1801  *	Update the keyboard meta bits while holding the correct locks.
1802  *	Return 0 for success or an error code.
1803  */
1804 int vt_do_kdskbmeta(int console, unsigned int arg)
1805 {
1806 	struct kbd_struct *kb = kbd_table + console;
1807 	int ret = 0;
1808 	unsigned long flags;
1809 
1810 	spin_lock_irqsave(&kbd_event_lock, flags);
1811 	switch(arg) {
1812 	case K_METABIT:
1813 		clr_vc_kbd_mode(kb, VC_META);
1814 		break;
1815 	case K_ESCPREFIX:
1816 		set_vc_kbd_mode(kb, VC_META);
1817 		break;
1818 	default:
1819 		ret = -EINVAL;
1820 	}
1821 	spin_unlock_irqrestore(&kbd_event_lock, flags);
1822 	return ret;
1823 }
1824 
1825 int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1826 								int perm)
1827 {
1828 	struct kbkeycode tmp;
1829 	int kc = 0;
1830 
1831 	if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1832 		return -EFAULT;
1833 	switch (cmd) {
1834 	case KDGETKEYCODE:
1835 		kc = getkeycode(tmp.scancode);
1836 		if (kc >= 0)
1837 			kc = put_user(kc, &user_kbkc->keycode);
1838 		break;
1839 	case KDSETKEYCODE:
1840 		if (!perm)
1841 			return -EPERM;
1842 		kc = setkeycode(tmp.scancode, tmp.keycode);
1843 		break;
1844 	}
1845 	return kc;
1846 }
1847 
1848 #define i (tmp.kb_index)
1849 #define s (tmp.kb_table)
1850 #define v (tmp.kb_value)
1851 
1852 int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1853 						int console)
1854 {
1855 	struct kbd_struct *kb = kbd_table + console;
1856 	struct kbentry tmp;
1857 	ushort *key_map, *new_map, val, ov;
1858 	unsigned long flags;
1859 
1860 	if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1861 		return -EFAULT;
1862 
1863 	if (!capable(CAP_SYS_TTY_CONFIG))
1864 		perm = 0;
1865 
1866 	switch (cmd) {
1867 	case KDGKBENT:
1868 		/* Ensure another thread doesn't free it under us */
1869 		spin_lock_irqsave(&kbd_event_lock, flags);
1870 		key_map = key_maps[s];
1871 		if (key_map) {
1872 		    val = U(key_map[i]);
1873 		    if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1874 			val = K_HOLE;
1875 		} else
1876 		    val = (i ? K_HOLE : K_NOSUCHMAP);
1877 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1878 		return put_user(val, &user_kbe->kb_value);
1879 	case KDSKBENT:
1880 		if (!perm)
1881 			return -EPERM;
1882 		if (!i && v == K_NOSUCHMAP) {
1883 			spin_lock_irqsave(&kbd_event_lock, flags);
1884 			/* deallocate map */
1885 			key_map = key_maps[s];
1886 			if (s && key_map) {
1887 			    key_maps[s] = NULL;
1888 			    if (key_map[0] == U(K_ALLOCATED)) {
1889 					kfree(key_map);
1890 					keymap_count--;
1891 			    }
1892 			}
1893 			spin_unlock_irqrestore(&kbd_event_lock, flags);
1894 			break;
1895 		}
1896 
1897 		if (KTYP(v) < NR_TYPES) {
1898 		    if (KVAL(v) > max_vals[KTYP(v)])
1899 				return -EINVAL;
1900 		} else
1901 		    if (kb->kbdmode != VC_UNICODE)
1902 				return -EINVAL;
1903 
1904 		/* ++Geert: non-PC keyboards may generate keycode zero */
1905 #if !defined(__mc68000__) && !defined(__powerpc__)
1906 		/* assignment to entry 0 only tests validity of args */
1907 		if (!i)
1908 			break;
1909 #endif
1910 
1911 		new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1912 		if (!new_map)
1913 			return -ENOMEM;
1914 		spin_lock_irqsave(&kbd_event_lock, flags);
1915 		key_map = key_maps[s];
1916 		if (key_map == NULL) {
1917 			int j;
1918 
1919 			if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1920 			    !capable(CAP_SYS_RESOURCE)) {
1921 				spin_unlock_irqrestore(&kbd_event_lock, flags);
1922 				kfree(new_map);
1923 				return -EPERM;
1924 			}
1925 			key_maps[s] = new_map;
1926 			key_map = new_map;
1927 			key_map[0] = U(K_ALLOCATED);
1928 			for (j = 1; j < NR_KEYS; j++)
1929 				key_map[j] = U(K_HOLE);
1930 			keymap_count++;
1931 		} else
1932 			kfree(new_map);
1933 
1934 		ov = U(key_map[i]);
1935 		if (v == ov)
1936 			goto out;
1937 		/*
1938 		 * Attention Key.
1939 		 */
1940 		if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1941 			spin_unlock_irqrestore(&kbd_event_lock, flags);
1942 			return -EPERM;
1943 		}
1944 		key_map[i] = U(v);
1945 		if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1946 			do_compute_shiftstate();
1947 out:
1948 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1949 		break;
1950 	}
1951 	return 0;
1952 }
1953 #undef i
1954 #undef s
1955 #undef v
1956 
1957 /* FIXME: This one needs untangling and locking */
1958 int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1959 {
1960 	struct kbsentry *kbs;
1961 	char *p;
1962 	u_char *q;
1963 	u_char __user *up;
1964 	int sz;
1965 	int delta;
1966 	char *first_free, *fj, *fnw;
1967 	int i, j, k;
1968 	int ret;
1969 
1970 	if (!capable(CAP_SYS_TTY_CONFIG))
1971 		perm = 0;
1972 
1973 	kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
1974 	if (!kbs) {
1975 		ret = -ENOMEM;
1976 		goto reterr;
1977 	}
1978 
1979 	/* we mostly copy too much here (512bytes), but who cares ;) */
1980 	if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
1981 		ret = -EFAULT;
1982 		goto reterr;
1983 	}
1984 	kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
1985 	i = kbs->kb_func;
1986 
1987 	switch (cmd) {
1988 	case KDGKBSENT:
1989 		sz = sizeof(kbs->kb_string) - 1; /* sz should have been
1990 						  a struct member */
1991 		up = user_kdgkb->kb_string;
1992 		p = func_table[i];
1993 		if(p)
1994 			for ( ; *p && sz; p++, sz--)
1995 				if (put_user(*p, up++)) {
1996 					ret = -EFAULT;
1997 					goto reterr;
1998 				}
1999 		if (put_user('\0', up)) {
2000 			ret = -EFAULT;
2001 			goto reterr;
2002 		}
2003 		kfree(kbs);
2004 		return ((p && *p) ? -EOVERFLOW : 0);
2005 	case KDSKBSENT:
2006 		if (!perm) {
2007 			ret = -EPERM;
2008 			goto reterr;
2009 		}
2010 
2011 		q = func_table[i];
2012 		first_free = funcbufptr + (funcbufsize - funcbufleft);
2013 		for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2014 			;
2015 		if (j < MAX_NR_FUNC)
2016 			fj = func_table[j];
2017 		else
2018 			fj = first_free;
2019 
2020 		delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2021 		if (delta <= funcbufleft) { 	/* it fits in current buf */
2022 		    if (j < MAX_NR_FUNC) {
2023 			memmove(fj + delta, fj, first_free - fj);
2024 			for (k = j; k < MAX_NR_FUNC; k++)
2025 			    if (func_table[k])
2026 				func_table[k] += delta;
2027 		    }
2028 		    if (!q)
2029 		      func_table[i] = fj;
2030 		    funcbufleft -= delta;
2031 		} else {			/* allocate a larger buffer */
2032 		    sz = 256;
2033 		    while (sz < funcbufsize - funcbufleft + delta)
2034 		      sz <<= 1;
2035 		    fnw = kmalloc(sz, GFP_KERNEL);
2036 		    if(!fnw) {
2037 		      ret = -ENOMEM;
2038 		      goto reterr;
2039 		    }
2040 
2041 		    if (!q)
2042 		      func_table[i] = fj;
2043 		    if (fj > funcbufptr)
2044 			memmove(fnw, funcbufptr, fj - funcbufptr);
2045 		    for (k = 0; k < j; k++)
2046 		      if (func_table[k])
2047 			func_table[k] = fnw + (func_table[k] - funcbufptr);
2048 
2049 		    if (first_free > fj) {
2050 			memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2051 			for (k = j; k < MAX_NR_FUNC; k++)
2052 			  if (func_table[k])
2053 			    func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2054 		    }
2055 		    if (funcbufptr != func_buf)
2056 		      kfree(funcbufptr);
2057 		    funcbufptr = fnw;
2058 		    funcbufleft = funcbufleft - delta + sz - funcbufsize;
2059 		    funcbufsize = sz;
2060 		}
2061 		strcpy(func_table[i], kbs->kb_string);
2062 		break;
2063 	}
2064 	ret = 0;
2065 reterr:
2066 	kfree(kbs);
2067 	return ret;
2068 }
2069 
2070 int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2071 {
2072 	struct kbd_struct *kb = kbd_table + console;
2073         unsigned long flags;
2074 	unsigned char ucval;
2075 
2076         switch(cmd) {
2077 	/* the ioctls below read/set the flags usually shown in the leds */
2078 	/* don't use them - they will go away without warning */
2079 	case KDGKBLED:
2080                 spin_lock_irqsave(&kbd_event_lock, flags);
2081 		ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2082                 spin_unlock_irqrestore(&kbd_event_lock, flags);
2083 		return put_user(ucval, (char __user *)arg);
2084 
2085 	case KDSKBLED:
2086 		if (!perm)
2087 			return -EPERM;
2088 		if (arg & ~0x77)
2089 			return -EINVAL;
2090                 spin_lock_irqsave(&led_lock, flags);
2091 		kb->ledflagstate = (arg & 7);
2092 		kb->default_ledflagstate = ((arg >> 4) & 7);
2093 		set_leds();
2094                 spin_unlock_irqrestore(&led_lock, flags);
2095 		return 0;
2096 
2097 	/* the ioctls below only set the lights, not the functions */
2098 	/* for those, see KDGKBLED and KDSKBLED above */
2099 	case KDGETLED:
2100 		ucval = getledstate();
2101 		return put_user(ucval, (char __user *)arg);
2102 
2103 	case KDSETLED:
2104 		if (!perm)
2105 			return -EPERM;
2106 		setledstate(kb, arg);
2107 		return 0;
2108         }
2109         return -ENOIOCTLCMD;
2110 }
2111 
2112 int vt_do_kdgkbmode(int console)
2113 {
2114 	struct kbd_struct *kb = kbd_table + console;
2115 	/* This is a spot read so needs no locking */
2116 	switch (kb->kbdmode) {
2117 	case VC_RAW:
2118 		return K_RAW;
2119 	case VC_MEDIUMRAW:
2120 		return K_MEDIUMRAW;
2121 	case VC_UNICODE:
2122 		return K_UNICODE;
2123 	case VC_OFF:
2124 		return K_OFF;
2125 	default:
2126 		return K_XLATE;
2127 	}
2128 }
2129 
2130 /**
2131  *	vt_do_kdgkbmeta		-	report meta status
2132  *	@console: console to report
2133  *
2134  *	Report the meta flag status of this console
2135  */
2136 int vt_do_kdgkbmeta(int console)
2137 {
2138 	struct kbd_struct *kb = kbd_table + console;
2139         /* Again a spot read so no locking */
2140 	return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2141 }
2142 
2143 /**
2144  *	vt_reset_unicode	-	reset the unicode status
2145  *	@console: console being reset
2146  *
2147  *	Restore the unicode console state to its default
2148  */
2149 void vt_reset_unicode(int console)
2150 {
2151 	unsigned long flags;
2152 
2153 	spin_lock_irqsave(&kbd_event_lock, flags);
2154 	kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2155 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2156 }
2157 
2158 /**
2159  *	vt_get_shiftstate	-	shift bit state
2160  *
2161  *	Report the shift bits from the keyboard state. We have to export
2162  *	this to support some oddities in the vt layer.
2163  */
2164 int vt_get_shift_state(void)
2165 {
2166         /* Don't lock as this is a transient report */
2167         return shift_state;
2168 }
2169 
2170 /**
2171  *	vt_reset_keyboard	-	reset keyboard state
2172  *	@console: console to reset
2173  *
2174  *	Reset the keyboard bits for a console as part of a general console
2175  *	reset event
2176  */
2177 void vt_reset_keyboard(int console)
2178 {
2179 	struct kbd_struct *kb = kbd_table + console;
2180 	unsigned long flags;
2181 
2182 	spin_lock_irqsave(&kbd_event_lock, flags);
2183 	set_vc_kbd_mode(kb, VC_REPEAT);
2184 	clr_vc_kbd_mode(kb, VC_CKMODE);
2185 	clr_vc_kbd_mode(kb, VC_APPLIC);
2186 	clr_vc_kbd_mode(kb, VC_CRLF);
2187 	kb->lockstate = 0;
2188 	kb->slockstate = 0;
2189 	spin_lock(&led_lock);
2190 	kb->ledmode = LED_SHOW_FLAGS;
2191 	kb->ledflagstate = kb->default_ledflagstate;
2192 	spin_unlock(&led_lock);
2193 	/* do not do set_leds here because this causes an endless tasklet loop
2194 	   when the keyboard hasn't been initialized yet */
2195 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2196 }
2197 
2198 /**
2199  *	vt_get_kbd_mode_bit	-	read keyboard status bits
2200  *	@console: console to read from
2201  *	@bit: mode bit to read
2202  *
2203  *	Report back a vt mode bit. We do this without locking so the
2204  *	caller must be sure that there are no synchronization needs
2205  */
2206 
2207 int vt_get_kbd_mode_bit(int console, int bit)
2208 {
2209 	struct kbd_struct *kb = kbd_table + console;
2210 	return vc_kbd_mode(kb, bit);
2211 }
2212 
2213 /**
2214  *	vt_set_kbd_mode_bit	-	read keyboard status bits
2215  *	@console: console to read from
2216  *	@bit: mode bit to read
2217  *
2218  *	Set a vt mode bit. We do this without locking so the
2219  *	caller must be sure that there are no synchronization needs
2220  */
2221 
2222 void vt_set_kbd_mode_bit(int console, int bit)
2223 {
2224 	struct kbd_struct *kb = kbd_table + console;
2225 	unsigned long flags;
2226 
2227 	spin_lock_irqsave(&kbd_event_lock, flags);
2228 	set_vc_kbd_mode(kb, bit);
2229 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2230 }
2231 
2232 /**
2233  *	vt_clr_kbd_mode_bit	-	read keyboard status bits
2234  *	@console: console to read from
2235  *	@bit: mode bit to read
2236  *
2237  *	Report back a vt mode bit. We do this without locking so the
2238  *	caller must be sure that there are no synchronization needs
2239  */
2240 
2241 void vt_clr_kbd_mode_bit(int console, int bit)
2242 {
2243 	struct kbd_struct *kb = kbd_table + console;
2244 	unsigned long flags;
2245 
2246 	spin_lock_irqsave(&kbd_event_lock, flags);
2247 	clr_vc_kbd_mode(kb, bit);
2248 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2249 }
2250