xref: /openbmc/linux/drivers/tty/vt/keyboard.c (revision 1c2dd16a)
1 /*
2  * Written for linux by Johan Myreen as a translation from
3  * the assembly version by Linus (with diacriticals added)
4  *
5  * Some additional features added by Christoph Niemann (ChN), March 1993
6  *
7  * Loadable keymaps by Risto Kankkunen, May 1993
8  *
9  * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
10  * Added decr/incr_console, dynamic keymaps, Unicode support,
11  * dynamic function/string keys, led setting,  Sept 1994
12  * `Sticky' modifier keys, 951006.
13  *
14  * 11-11-96: SAK should now work in the raw mode (Martin Mares)
15  *
16  * Modified to provide 'generic' keyboard support by Hamish Macdonald
17  * Merge with the m68k keyboard driver and split-off of the PC low-level
18  * parts by Geert Uytterhoeven, May 1997
19  *
20  * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
21  * 30-07-98: Dead keys redone, aeb@cwi.nl.
22  * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
23  */
24 
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 
27 #include <linux/consolemap.h>
28 #include <linux/module.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/debug.h>
31 #include <linux/tty.h>
32 #include <linux/tty_flip.h>
33 #include <linux/mm.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/slab.h>
37 #include <linux/leds.h>
38 
39 #include <linux/kbd_kern.h>
40 #include <linux/kbd_diacr.h>
41 #include <linux/vt_kern.h>
42 #include <linux/input.h>
43 #include <linux/reboot.h>
44 #include <linux/notifier.h>
45 #include <linux/jiffies.h>
46 #include <linux/uaccess.h>
47 
48 #include <asm/irq_regs.h>
49 
50 extern void ctrl_alt_del(void);
51 
52 /*
53  * Exported functions/variables
54  */
55 
56 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
57 
58 #if defined(CONFIG_X86) || defined(CONFIG_PARISC)
59 #include <asm/kbdleds.h>
60 #else
61 static inline int kbd_defleds(void)
62 {
63 	return 0;
64 }
65 #endif
66 
67 #define KBD_DEFLOCK 0
68 
69 /*
70  * Handler Tables.
71  */
72 
73 #define K_HANDLERS\
74 	k_self,		k_fn,		k_spec,		k_pad,\
75 	k_dead,		k_cons,		k_cur,		k_shift,\
76 	k_meta,		k_ascii,	k_lock,		k_lowercase,\
77 	k_slock,	k_dead2,	k_brl,		k_ignore
78 
79 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
80 			    char up_flag);
81 static k_handler_fn K_HANDLERS;
82 static k_handler_fn *k_handler[16] = { K_HANDLERS };
83 
84 #define FN_HANDLERS\
85 	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
86 	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
87 	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
88 	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
89 	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
90 
91 typedef void (fn_handler_fn)(struct vc_data *vc);
92 static fn_handler_fn FN_HANDLERS;
93 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
94 
95 /*
96  * Variables exported for vt_ioctl.c
97  */
98 
99 struct vt_spawn_console vt_spawn_con = {
100 	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
101 	.pid  = NULL,
102 	.sig  = 0,
103 };
104 
105 
106 /*
107  * Internal Data.
108  */
109 
110 static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
111 static struct kbd_struct *kbd = kbd_table;
112 
113 /* maximum values each key_handler can handle */
114 static const int max_vals[] = {
115 	255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
116 	NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
117 	255, NR_LOCK - 1, 255, NR_BRL - 1
118 };
119 
120 static const int NR_TYPES = ARRAY_SIZE(max_vals);
121 
122 static struct input_handler kbd_handler;
123 static DEFINE_SPINLOCK(kbd_event_lock);
124 static DEFINE_SPINLOCK(led_lock);
125 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)];	/* keyboard key bitmap */
126 static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
127 static bool dead_key_next;
128 static int npadch = -1;					/* -1 or number assembled on pad */
129 static unsigned int diacr;
130 static char rep;					/* flag telling character repeat */
131 
132 static int shift_state = 0;
133 
134 static unsigned int ledstate = -1U;			/* undefined */
135 static unsigned char ledioctl;
136 
137 /*
138  * Notifier list for console keyboard events
139  */
140 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
141 
142 int register_keyboard_notifier(struct notifier_block *nb)
143 {
144 	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
145 }
146 EXPORT_SYMBOL_GPL(register_keyboard_notifier);
147 
148 int unregister_keyboard_notifier(struct notifier_block *nb)
149 {
150 	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
151 }
152 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
153 
154 /*
155  * Translation of scancodes to keycodes. We set them on only the first
156  * keyboard in the list that accepts the scancode and keycode.
157  * Explanation for not choosing the first attached keyboard anymore:
158  *  USB keyboards for example have two event devices: one for all "normal"
159  *  keys and one for extra function keys (like "volume up", "make coffee",
160  *  etc.). So this means that scancodes for the extra function keys won't
161  *  be valid for the first event device, but will be for the second.
162  */
163 
164 struct getset_keycode_data {
165 	struct input_keymap_entry ke;
166 	int error;
167 };
168 
169 static int getkeycode_helper(struct input_handle *handle, void *data)
170 {
171 	struct getset_keycode_data *d = data;
172 
173 	d->error = input_get_keycode(handle->dev, &d->ke);
174 
175 	return d->error == 0; /* stop as soon as we successfully get one */
176 }
177 
178 static int getkeycode(unsigned int scancode)
179 {
180 	struct getset_keycode_data d = {
181 		.ke	= {
182 			.flags		= 0,
183 			.len		= sizeof(scancode),
184 			.keycode	= 0,
185 		},
186 		.error	= -ENODEV,
187 	};
188 
189 	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
190 
191 	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
192 
193 	return d.error ?: d.ke.keycode;
194 }
195 
196 static int setkeycode_helper(struct input_handle *handle, void *data)
197 {
198 	struct getset_keycode_data *d = data;
199 
200 	d->error = input_set_keycode(handle->dev, &d->ke);
201 
202 	return d->error == 0; /* stop as soon as we successfully set one */
203 }
204 
205 static int setkeycode(unsigned int scancode, unsigned int keycode)
206 {
207 	struct getset_keycode_data d = {
208 		.ke	= {
209 			.flags		= 0,
210 			.len		= sizeof(scancode),
211 			.keycode	= keycode,
212 		},
213 		.error	= -ENODEV,
214 	};
215 
216 	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
217 
218 	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
219 
220 	return d.error;
221 }
222 
223 /*
224  * Making beeps and bells. Note that we prefer beeps to bells, but when
225  * shutting the sound off we do both.
226  */
227 
228 static int kd_sound_helper(struct input_handle *handle, void *data)
229 {
230 	unsigned int *hz = data;
231 	struct input_dev *dev = handle->dev;
232 
233 	if (test_bit(EV_SND, dev->evbit)) {
234 		if (test_bit(SND_TONE, dev->sndbit)) {
235 			input_inject_event(handle, EV_SND, SND_TONE, *hz);
236 			if (*hz)
237 				return 0;
238 		}
239 		if (test_bit(SND_BELL, dev->sndbit))
240 			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
241 	}
242 
243 	return 0;
244 }
245 
246 static void kd_nosound(unsigned long ignored)
247 {
248 	static unsigned int zero;
249 
250 	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
251 }
252 
253 static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
254 
255 void kd_mksound(unsigned int hz, unsigned int ticks)
256 {
257 	del_timer_sync(&kd_mksound_timer);
258 
259 	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
260 
261 	if (hz && ticks)
262 		mod_timer(&kd_mksound_timer, jiffies + ticks);
263 }
264 EXPORT_SYMBOL(kd_mksound);
265 
266 /*
267  * Setting the keyboard rate.
268  */
269 
270 static int kbd_rate_helper(struct input_handle *handle, void *data)
271 {
272 	struct input_dev *dev = handle->dev;
273 	struct kbd_repeat *rpt = data;
274 
275 	if (test_bit(EV_REP, dev->evbit)) {
276 
277 		if (rpt[0].delay > 0)
278 			input_inject_event(handle,
279 					   EV_REP, REP_DELAY, rpt[0].delay);
280 		if (rpt[0].period > 0)
281 			input_inject_event(handle,
282 					   EV_REP, REP_PERIOD, rpt[0].period);
283 
284 		rpt[1].delay = dev->rep[REP_DELAY];
285 		rpt[1].period = dev->rep[REP_PERIOD];
286 	}
287 
288 	return 0;
289 }
290 
291 int kbd_rate(struct kbd_repeat *rpt)
292 {
293 	struct kbd_repeat data[2] = { *rpt };
294 
295 	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
296 	*rpt = data[1];	/* Copy currently used settings */
297 
298 	return 0;
299 }
300 
301 /*
302  * Helper Functions.
303  */
304 static void put_queue(struct vc_data *vc, int ch)
305 {
306 	tty_insert_flip_char(&vc->port, ch, 0);
307 	tty_schedule_flip(&vc->port);
308 }
309 
310 static void puts_queue(struct vc_data *vc, char *cp)
311 {
312 	while (*cp) {
313 		tty_insert_flip_char(&vc->port, *cp, 0);
314 		cp++;
315 	}
316 	tty_schedule_flip(&vc->port);
317 }
318 
319 static void applkey(struct vc_data *vc, int key, char mode)
320 {
321 	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
322 
323 	buf[1] = (mode ? 'O' : '[');
324 	buf[2] = key;
325 	puts_queue(vc, buf);
326 }
327 
328 /*
329  * Many other routines do put_queue, but I think either
330  * they produce ASCII, or they produce some user-assigned
331  * string, and in both cases we might assume that it is
332  * in utf-8 already.
333  */
334 static void to_utf8(struct vc_data *vc, uint c)
335 {
336 	if (c < 0x80)
337 		/*  0******* */
338 		put_queue(vc, c);
339 	else if (c < 0x800) {
340 		/* 110***** 10****** */
341 		put_queue(vc, 0xc0 | (c >> 6));
342 		put_queue(vc, 0x80 | (c & 0x3f));
343 	} else if (c < 0x10000) {
344 		if (c >= 0xD800 && c < 0xE000)
345 			return;
346 		if (c == 0xFFFF)
347 			return;
348 		/* 1110**** 10****** 10****** */
349 		put_queue(vc, 0xe0 | (c >> 12));
350 		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
351 		put_queue(vc, 0x80 | (c & 0x3f));
352 	} else if (c < 0x110000) {
353 		/* 11110*** 10****** 10****** 10****** */
354 		put_queue(vc, 0xf0 | (c >> 18));
355 		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
356 		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
357 		put_queue(vc, 0x80 | (c & 0x3f));
358 	}
359 }
360 
361 /*
362  * Called after returning from RAW mode or when changing consoles - recompute
363  * shift_down[] and shift_state from key_down[] maybe called when keymap is
364  * undefined, so that shiftkey release is seen. The caller must hold the
365  * kbd_event_lock.
366  */
367 
368 static void do_compute_shiftstate(void)
369 {
370 	unsigned int k, sym, val;
371 
372 	shift_state = 0;
373 	memset(shift_down, 0, sizeof(shift_down));
374 
375 	for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
376 		sym = U(key_maps[0][k]);
377 		if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
378 			continue;
379 
380 		val = KVAL(sym);
381 		if (val == KVAL(K_CAPSSHIFT))
382 			val = KVAL(K_SHIFT);
383 
384 		shift_down[val]++;
385 		shift_state |= BIT(val);
386 	}
387 }
388 
389 /* We still have to export this method to vt.c */
390 void compute_shiftstate(void)
391 {
392 	unsigned long flags;
393 	spin_lock_irqsave(&kbd_event_lock, flags);
394 	do_compute_shiftstate();
395 	spin_unlock_irqrestore(&kbd_event_lock, flags);
396 }
397 
398 /*
399  * We have a combining character DIACR here, followed by the character CH.
400  * If the combination occurs in the table, return the corresponding value.
401  * Otherwise, if CH is a space or equals DIACR, return DIACR.
402  * Otherwise, conclude that DIACR was not combining after all,
403  * queue it and return CH.
404  */
405 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
406 {
407 	unsigned int d = diacr;
408 	unsigned int i;
409 
410 	diacr = 0;
411 
412 	if ((d & ~0xff) == BRL_UC_ROW) {
413 		if ((ch & ~0xff) == BRL_UC_ROW)
414 			return d | ch;
415 	} else {
416 		for (i = 0; i < accent_table_size; i++)
417 			if (accent_table[i].diacr == d && accent_table[i].base == ch)
418 				return accent_table[i].result;
419 	}
420 
421 	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
422 		return d;
423 
424 	if (kbd->kbdmode == VC_UNICODE)
425 		to_utf8(vc, d);
426 	else {
427 		int c = conv_uni_to_8bit(d);
428 		if (c != -1)
429 			put_queue(vc, c);
430 	}
431 
432 	return ch;
433 }
434 
435 /*
436  * Special function handlers
437  */
438 static void fn_enter(struct vc_data *vc)
439 {
440 	if (diacr) {
441 		if (kbd->kbdmode == VC_UNICODE)
442 			to_utf8(vc, diacr);
443 		else {
444 			int c = conv_uni_to_8bit(diacr);
445 			if (c != -1)
446 				put_queue(vc, c);
447 		}
448 		diacr = 0;
449 	}
450 
451 	put_queue(vc, 13);
452 	if (vc_kbd_mode(kbd, VC_CRLF))
453 		put_queue(vc, 10);
454 }
455 
456 static void fn_caps_toggle(struct vc_data *vc)
457 {
458 	if (rep)
459 		return;
460 
461 	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
462 }
463 
464 static void fn_caps_on(struct vc_data *vc)
465 {
466 	if (rep)
467 		return;
468 
469 	set_vc_kbd_led(kbd, VC_CAPSLOCK);
470 }
471 
472 static void fn_show_ptregs(struct vc_data *vc)
473 {
474 	struct pt_regs *regs = get_irq_regs();
475 
476 	if (regs)
477 		show_regs(regs);
478 }
479 
480 static void fn_hold(struct vc_data *vc)
481 {
482 	struct tty_struct *tty = vc->port.tty;
483 
484 	if (rep || !tty)
485 		return;
486 
487 	/*
488 	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
489 	 * these routines are also activated by ^S/^Q.
490 	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
491 	 */
492 	if (tty->stopped)
493 		start_tty(tty);
494 	else
495 		stop_tty(tty);
496 }
497 
498 static void fn_num(struct vc_data *vc)
499 {
500 	if (vc_kbd_mode(kbd, VC_APPLIC))
501 		applkey(vc, 'P', 1);
502 	else
503 		fn_bare_num(vc);
504 }
505 
506 /*
507  * Bind this to Shift-NumLock if you work in application keypad mode
508  * but want to be able to change the NumLock flag.
509  * Bind this to NumLock if you prefer that the NumLock key always
510  * changes the NumLock flag.
511  */
512 static void fn_bare_num(struct vc_data *vc)
513 {
514 	if (!rep)
515 		chg_vc_kbd_led(kbd, VC_NUMLOCK);
516 }
517 
518 static void fn_lastcons(struct vc_data *vc)
519 {
520 	/* switch to the last used console, ChN */
521 	set_console(last_console);
522 }
523 
524 static void fn_dec_console(struct vc_data *vc)
525 {
526 	int i, cur = fg_console;
527 
528 	/* Currently switching?  Queue this next switch relative to that. */
529 	if (want_console != -1)
530 		cur = want_console;
531 
532 	for (i = cur - 1; i != cur; i--) {
533 		if (i == -1)
534 			i = MAX_NR_CONSOLES - 1;
535 		if (vc_cons_allocated(i))
536 			break;
537 	}
538 	set_console(i);
539 }
540 
541 static void fn_inc_console(struct vc_data *vc)
542 {
543 	int i, cur = fg_console;
544 
545 	/* Currently switching?  Queue this next switch relative to that. */
546 	if (want_console != -1)
547 		cur = want_console;
548 
549 	for (i = cur+1; i != cur; i++) {
550 		if (i == MAX_NR_CONSOLES)
551 			i = 0;
552 		if (vc_cons_allocated(i))
553 			break;
554 	}
555 	set_console(i);
556 }
557 
558 static void fn_send_intr(struct vc_data *vc)
559 {
560 	tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
561 	tty_schedule_flip(&vc->port);
562 }
563 
564 static void fn_scroll_forw(struct vc_data *vc)
565 {
566 	scrollfront(vc, 0);
567 }
568 
569 static void fn_scroll_back(struct vc_data *vc)
570 {
571 	scrollback(vc);
572 }
573 
574 static void fn_show_mem(struct vc_data *vc)
575 {
576 	show_mem(0, NULL);
577 }
578 
579 static void fn_show_state(struct vc_data *vc)
580 {
581 	show_state();
582 }
583 
584 static void fn_boot_it(struct vc_data *vc)
585 {
586 	ctrl_alt_del();
587 }
588 
589 static void fn_compose(struct vc_data *vc)
590 {
591 	dead_key_next = true;
592 }
593 
594 static void fn_spawn_con(struct vc_data *vc)
595 {
596 	spin_lock(&vt_spawn_con.lock);
597 	if (vt_spawn_con.pid)
598 		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
599 			put_pid(vt_spawn_con.pid);
600 			vt_spawn_con.pid = NULL;
601 		}
602 	spin_unlock(&vt_spawn_con.lock);
603 }
604 
605 static void fn_SAK(struct vc_data *vc)
606 {
607 	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
608 	schedule_work(SAK_work);
609 }
610 
611 static void fn_null(struct vc_data *vc)
612 {
613 	do_compute_shiftstate();
614 }
615 
616 /*
617  * Special key handlers
618  */
619 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
620 {
621 }
622 
623 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
624 {
625 	if (up_flag)
626 		return;
627 	if (value >= ARRAY_SIZE(fn_handler))
628 		return;
629 	if ((kbd->kbdmode == VC_RAW ||
630 	     kbd->kbdmode == VC_MEDIUMRAW ||
631 	     kbd->kbdmode == VC_OFF) &&
632 	     value != KVAL(K_SAK))
633 		return;		/* SAK is allowed even in raw mode */
634 	fn_handler[value](vc);
635 }
636 
637 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
638 {
639 	pr_err("k_lowercase was called - impossible\n");
640 }
641 
642 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
643 {
644 	if (up_flag)
645 		return;		/* no action, if this is a key release */
646 
647 	if (diacr)
648 		value = handle_diacr(vc, value);
649 
650 	if (dead_key_next) {
651 		dead_key_next = false;
652 		diacr = value;
653 		return;
654 	}
655 	if (kbd->kbdmode == VC_UNICODE)
656 		to_utf8(vc, value);
657 	else {
658 		int c = conv_uni_to_8bit(value);
659 		if (c != -1)
660 			put_queue(vc, c);
661 	}
662 }
663 
664 /*
665  * Handle dead key. Note that we now may have several
666  * dead keys modifying the same character. Very useful
667  * for Vietnamese.
668  */
669 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
670 {
671 	if (up_flag)
672 		return;
673 
674 	diacr = (diacr ? handle_diacr(vc, value) : value);
675 }
676 
677 static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
678 {
679 	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
680 }
681 
682 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
683 {
684 	k_deadunicode(vc, value, up_flag);
685 }
686 
687 /*
688  * Obsolete - for backwards compatibility only
689  */
690 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
691 {
692 	static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
693 
694 	k_deadunicode(vc, ret_diacr[value], up_flag);
695 }
696 
697 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
698 {
699 	if (up_flag)
700 		return;
701 
702 	set_console(value);
703 }
704 
705 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
706 {
707 	if (up_flag)
708 		return;
709 
710 	if ((unsigned)value < ARRAY_SIZE(func_table)) {
711 		if (func_table[value])
712 			puts_queue(vc, func_table[value]);
713 	} else
714 		pr_err("k_fn called with value=%d\n", value);
715 }
716 
717 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
718 {
719 	static const char cur_chars[] = "BDCA";
720 
721 	if (up_flag)
722 		return;
723 
724 	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
725 }
726 
727 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
728 {
729 	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
730 	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
731 
732 	if (up_flag)
733 		return;		/* no action, if this is a key release */
734 
735 	/* kludge... shift forces cursor/number keys */
736 	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
737 		applkey(vc, app_map[value], 1);
738 		return;
739 	}
740 
741 	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
742 
743 		switch (value) {
744 		case KVAL(K_PCOMMA):
745 		case KVAL(K_PDOT):
746 			k_fn(vc, KVAL(K_REMOVE), 0);
747 			return;
748 		case KVAL(K_P0):
749 			k_fn(vc, KVAL(K_INSERT), 0);
750 			return;
751 		case KVAL(K_P1):
752 			k_fn(vc, KVAL(K_SELECT), 0);
753 			return;
754 		case KVAL(K_P2):
755 			k_cur(vc, KVAL(K_DOWN), 0);
756 			return;
757 		case KVAL(K_P3):
758 			k_fn(vc, KVAL(K_PGDN), 0);
759 			return;
760 		case KVAL(K_P4):
761 			k_cur(vc, KVAL(K_LEFT), 0);
762 			return;
763 		case KVAL(K_P6):
764 			k_cur(vc, KVAL(K_RIGHT), 0);
765 			return;
766 		case KVAL(K_P7):
767 			k_fn(vc, KVAL(K_FIND), 0);
768 			return;
769 		case KVAL(K_P8):
770 			k_cur(vc, KVAL(K_UP), 0);
771 			return;
772 		case KVAL(K_P9):
773 			k_fn(vc, KVAL(K_PGUP), 0);
774 			return;
775 		case KVAL(K_P5):
776 			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
777 			return;
778 		}
779 	}
780 
781 	put_queue(vc, pad_chars[value]);
782 	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
783 		put_queue(vc, 10);
784 }
785 
786 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
787 {
788 	int old_state = shift_state;
789 
790 	if (rep)
791 		return;
792 	/*
793 	 * Mimic typewriter:
794 	 * a CapsShift key acts like Shift but undoes CapsLock
795 	 */
796 	if (value == KVAL(K_CAPSSHIFT)) {
797 		value = KVAL(K_SHIFT);
798 		if (!up_flag)
799 			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
800 	}
801 
802 	if (up_flag) {
803 		/*
804 		 * handle the case that two shift or control
805 		 * keys are depressed simultaneously
806 		 */
807 		if (shift_down[value])
808 			shift_down[value]--;
809 	} else
810 		shift_down[value]++;
811 
812 	if (shift_down[value])
813 		shift_state |= (1 << value);
814 	else
815 		shift_state &= ~(1 << value);
816 
817 	/* kludge */
818 	if (up_flag && shift_state != old_state && npadch != -1) {
819 		if (kbd->kbdmode == VC_UNICODE)
820 			to_utf8(vc, npadch);
821 		else
822 			put_queue(vc, npadch & 0xff);
823 		npadch = -1;
824 	}
825 }
826 
827 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
828 {
829 	if (up_flag)
830 		return;
831 
832 	if (vc_kbd_mode(kbd, VC_META)) {
833 		put_queue(vc, '\033');
834 		put_queue(vc, value);
835 	} else
836 		put_queue(vc, value | 0x80);
837 }
838 
839 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
840 {
841 	int base;
842 
843 	if (up_flag)
844 		return;
845 
846 	if (value < 10) {
847 		/* decimal input of code, while Alt depressed */
848 		base = 10;
849 	} else {
850 		/* hexadecimal input of code, while AltGr depressed */
851 		value -= 10;
852 		base = 16;
853 	}
854 
855 	if (npadch == -1)
856 		npadch = value;
857 	else
858 		npadch = npadch * base + value;
859 }
860 
861 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
862 {
863 	if (up_flag || rep)
864 		return;
865 
866 	chg_vc_kbd_lock(kbd, value);
867 }
868 
869 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
870 {
871 	k_shift(vc, value, up_flag);
872 	if (up_flag || rep)
873 		return;
874 
875 	chg_vc_kbd_slock(kbd, value);
876 	/* try to make Alt, oops, AltGr and such work */
877 	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
878 		kbd->slockstate = 0;
879 		chg_vc_kbd_slock(kbd, value);
880 	}
881 }
882 
883 /* by default, 300ms interval for combination release */
884 static unsigned brl_timeout = 300;
885 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
886 module_param(brl_timeout, uint, 0644);
887 
888 static unsigned brl_nbchords = 1;
889 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
890 module_param(brl_nbchords, uint, 0644);
891 
892 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
893 {
894 	static unsigned long chords;
895 	static unsigned committed;
896 
897 	if (!brl_nbchords)
898 		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
899 	else {
900 		committed |= pattern;
901 		chords++;
902 		if (chords == brl_nbchords) {
903 			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
904 			chords = 0;
905 			committed = 0;
906 		}
907 	}
908 }
909 
910 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
911 {
912 	static unsigned pressed, committing;
913 	static unsigned long releasestart;
914 
915 	if (kbd->kbdmode != VC_UNICODE) {
916 		if (!up_flag)
917 			pr_warn("keyboard mode must be unicode for braille patterns\n");
918 		return;
919 	}
920 
921 	if (!value) {
922 		k_unicode(vc, BRL_UC_ROW, up_flag);
923 		return;
924 	}
925 
926 	if (value > 8)
927 		return;
928 
929 	if (!up_flag) {
930 		pressed |= 1 << (value - 1);
931 		if (!brl_timeout)
932 			committing = pressed;
933 	} else if (brl_timeout) {
934 		if (!committing ||
935 		    time_after(jiffies,
936 			       releasestart + msecs_to_jiffies(brl_timeout))) {
937 			committing = pressed;
938 			releasestart = jiffies;
939 		}
940 		pressed &= ~(1 << (value - 1));
941 		if (!pressed && committing) {
942 			k_brlcommit(vc, committing, 0);
943 			committing = 0;
944 		}
945 	} else {
946 		if (committing) {
947 			k_brlcommit(vc, committing, 0);
948 			committing = 0;
949 		}
950 		pressed &= ~(1 << (value - 1));
951 	}
952 }
953 
954 #if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
955 
956 struct kbd_led_trigger {
957 	struct led_trigger trigger;
958 	unsigned int mask;
959 };
960 
961 static void kbd_led_trigger_activate(struct led_classdev *cdev)
962 {
963 	struct kbd_led_trigger *trigger =
964 		container_of(cdev->trigger, struct kbd_led_trigger, trigger);
965 
966 	tasklet_disable(&keyboard_tasklet);
967 	if (ledstate != -1U)
968 		led_trigger_event(&trigger->trigger,
969 				  ledstate & trigger->mask ?
970 					LED_FULL : LED_OFF);
971 	tasklet_enable(&keyboard_tasklet);
972 }
973 
974 #define KBD_LED_TRIGGER(_led_bit, _name) {			\
975 		.trigger = {					\
976 			.name = _name,				\
977 			.activate = kbd_led_trigger_activate,	\
978 		},						\
979 		.mask	= BIT(_led_bit),			\
980 	}
981 
982 #define KBD_LOCKSTATE_TRIGGER(_led_bit, _name)		\
983 	KBD_LED_TRIGGER((_led_bit) + 8, _name)
984 
985 static struct kbd_led_trigger kbd_led_triggers[] = {
986 	KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
987 	KBD_LED_TRIGGER(VC_NUMLOCK,   "kbd-numlock"),
988 	KBD_LED_TRIGGER(VC_CAPSLOCK,  "kbd-capslock"),
989 	KBD_LED_TRIGGER(VC_KANALOCK,  "kbd-kanalock"),
990 
991 	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK,  "kbd-shiftlock"),
992 	KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK,  "kbd-altgrlock"),
993 	KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK,   "kbd-ctrllock"),
994 	KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK,    "kbd-altlock"),
995 	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
996 	KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
997 	KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK,  "kbd-ctrlllock"),
998 	KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK,  "kbd-ctrlrlock"),
999 };
1000 
1001 static void kbd_propagate_led_state(unsigned int old_state,
1002 				    unsigned int new_state)
1003 {
1004 	struct kbd_led_trigger *trigger;
1005 	unsigned int changed = old_state ^ new_state;
1006 	int i;
1007 
1008 	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1009 		trigger = &kbd_led_triggers[i];
1010 
1011 		if (changed & trigger->mask)
1012 			led_trigger_event(&trigger->trigger,
1013 					  new_state & trigger->mask ?
1014 						LED_FULL : LED_OFF);
1015 	}
1016 }
1017 
1018 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1019 {
1020 	unsigned int led_state = *(unsigned int *)data;
1021 
1022 	if (test_bit(EV_LED, handle->dev->evbit))
1023 		kbd_propagate_led_state(~led_state, led_state);
1024 
1025 	return 0;
1026 }
1027 
1028 static void kbd_init_leds(void)
1029 {
1030 	int error;
1031 	int i;
1032 
1033 	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1034 		error = led_trigger_register(&kbd_led_triggers[i].trigger);
1035 		if (error)
1036 			pr_err("error %d while registering trigger %s\n",
1037 			       error, kbd_led_triggers[i].trigger.name);
1038 	}
1039 }
1040 
1041 #else
1042 
1043 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1044 {
1045 	unsigned int leds = *(unsigned int *)data;
1046 
1047 	if (test_bit(EV_LED, handle->dev->evbit)) {
1048 		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1049 		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & 0x02));
1050 		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & 0x04));
1051 		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1052 	}
1053 
1054 	return 0;
1055 }
1056 
1057 static void kbd_propagate_led_state(unsigned int old_state,
1058 				    unsigned int new_state)
1059 {
1060 	input_handler_for_each_handle(&kbd_handler, &new_state,
1061 				      kbd_update_leds_helper);
1062 }
1063 
1064 static void kbd_init_leds(void)
1065 {
1066 }
1067 
1068 #endif
1069 
1070 /*
1071  * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1072  * or (ii) whatever pattern of lights people want to show using KDSETLED,
1073  * or (iii) specified bits of specified words in kernel memory.
1074  */
1075 static unsigned char getledstate(void)
1076 {
1077 	return ledstate & 0xff;
1078 }
1079 
1080 void setledstate(struct kbd_struct *kb, unsigned int led)
1081 {
1082         unsigned long flags;
1083         spin_lock_irqsave(&led_lock, flags);
1084 	if (!(led & ~7)) {
1085 		ledioctl = led;
1086 		kb->ledmode = LED_SHOW_IOCTL;
1087 	} else
1088 		kb->ledmode = LED_SHOW_FLAGS;
1089 
1090 	set_leds();
1091 	spin_unlock_irqrestore(&led_lock, flags);
1092 }
1093 
1094 static inline unsigned char getleds(void)
1095 {
1096 	struct kbd_struct *kb = kbd_table + fg_console;
1097 
1098 	if (kb->ledmode == LED_SHOW_IOCTL)
1099 		return ledioctl;
1100 
1101 	return kb->ledflagstate;
1102 }
1103 
1104 /**
1105  *	vt_get_leds	-	helper for braille console
1106  *	@console: console to read
1107  *	@flag: flag we want to check
1108  *
1109  *	Check the status of a keyboard led flag and report it back
1110  */
1111 int vt_get_leds(int console, int flag)
1112 {
1113 	struct kbd_struct *kb = kbd_table + console;
1114 	int ret;
1115 	unsigned long flags;
1116 
1117 	spin_lock_irqsave(&led_lock, flags);
1118 	ret = vc_kbd_led(kb, flag);
1119 	spin_unlock_irqrestore(&led_lock, flags);
1120 
1121 	return ret;
1122 }
1123 EXPORT_SYMBOL_GPL(vt_get_leds);
1124 
1125 /**
1126  *	vt_set_led_state	-	set LED state of a console
1127  *	@console: console to set
1128  *	@leds: LED bits
1129  *
1130  *	Set the LEDs on a console. This is a wrapper for the VT layer
1131  *	so that we can keep kbd knowledge internal
1132  */
1133 void vt_set_led_state(int console, int leds)
1134 {
1135 	struct kbd_struct *kb = kbd_table + console;
1136 	setledstate(kb, leds);
1137 }
1138 
1139 /**
1140  *	vt_kbd_con_start	-	Keyboard side of console start
1141  *	@console: console
1142  *
1143  *	Handle console start. This is a wrapper for the VT layer
1144  *	so that we can keep kbd knowledge internal
1145  *
1146  *	FIXME: We eventually need to hold the kbd lock here to protect
1147  *	the LED updating. We can't do it yet because fn_hold calls stop_tty
1148  *	and start_tty under the kbd_event_lock, while normal tty paths
1149  *	don't hold the lock. We probably need to split out an LED lock
1150  *	but not during an -rc release!
1151  */
1152 void vt_kbd_con_start(int console)
1153 {
1154 	struct kbd_struct *kb = kbd_table + console;
1155 	unsigned long flags;
1156 	spin_lock_irqsave(&led_lock, flags);
1157 	clr_vc_kbd_led(kb, VC_SCROLLOCK);
1158 	set_leds();
1159 	spin_unlock_irqrestore(&led_lock, flags);
1160 }
1161 
1162 /**
1163  *	vt_kbd_con_stop		-	Keyboard side of console stop
1164  *	@console: console
1165  *
1166  *	Handle console stop. This is a wrapper for the VT layer
1167  *	so that we can keep kbd knowledge internal
1168  */
1169 void vt_kbd_con_stop(int console)
1170 {
1171 	struct kbd_struct *kb = kbd_table + console;
1172 	unsigned long flags;
1173 	spin_lock_irqsave(&led_lock, flags);
1174 	set_vc_kbd_led(kb, VC_SCROLLOCK);
1175 	set_leds();
1176 	spin_unlock_irqrestore(&led_lock, flags);
1177 }
1178 
1179 /*
1180  * This is the tasklet that updates LED state of LEDs using standard
1181  * keyboard triggers. The reason we use tasklet is that we need to
1182  * handle the scenario when keyboard handler is not registered yet
1183  * but we already getting updates from the VT to update led state.
1184  */
1185 static void kbd_bh(unsigned long dummy)
1186 {
1187 	unsigned int leds;
1188 	unsigned long flags;
1189 
1190 	spin_lock_irqsave(&led_lock, flags);
1191 	leds = getleds();
1192 	leds |= (unsigned int)kbd->lockstate << 8;
1193 	spin_unlock_irqrestore(&led_lock, flags);
1194 
1195 	if (leds != ledstate) {
1196 		kbd_propagate_led_state(ledstate, leds);
1197 		ledstate = leds;
1198 	}
1199 }
1200 
1201 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1202 
1203 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1204     defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1205     defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1206     (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1207     defined(CONFIG_AVR32)
1208 
1209 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1210 			((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1211 
1212 static const unsigned short x86_keycodes[256] =
1213 	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1214 	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1215 	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1216 	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1217 	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1218 	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1219 	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1220 	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1221 	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1222 	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1223 	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1224 	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1225 	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1226 	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1227 	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1228 
1229 #ifdef CONFIG_SPARC
1230 static int sparc_l1_a_state;
1231 extern void sun_do_break(void);
1232 #endif
1233 
1234 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1235 		       unsigned char up_flag)
1236 {
1237 	int code;
1238 
1239 	switch (keycode) {
1240 
1241 	case KEY_PAUSE:
1242 		put_queue(vc, 0xe1);
1243 		put_queue(vc, 0x1d | up_flag);
1244 		put_queue(vc, 0x45 | up_flag);
1245 		break;
1246 
1247 	case KEY_HANGEUL:
1248 		if (!up_flag)
1249 			put_queue(vc, 0xf2);
1250 		break;
1251 
1252 	case KEY_HANJA:
1253 		if (!up_flag)
1254 			put_queue(vc, 0xf1);
1255 		break;
1256 
1257 	case KEY_SYSRQ:
1258 		/*
1259 		 * Real AT keyboards (that's what we're trying
1260 		 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1261 		 * pressing PrtSc/SysRq alone, but simply 0x54
1262 		 * when pressing Alt+PrtSc/SysRq.
1263 		 */
1264 		if (test_bit(KEY_LEFTALT, key_down) ||
1265 		    test_bit(KEY_RIGHTALT, key_down)) {
1266 			put_queue(vc, 0x54 | up_flag);
1267 		} else {
1268 			put_queue(vc, 0xe0);
1269 			put_queue(vc, 0x2a | up_flag);
1270 			put_queue(vc, 0xe0);
1271 			put_queue(vc, 0x37 | up_flag);
1272 		}
1273 		break;
1274 
1275 	default:
1276 		if (keycode > 255)
1277 			return -1;
1278 
1279 		code = x86_keycodes[keycode];
1280 		if (!code)
1281 			return -1;
1282 
1283 		if (code & 0x100)
1284 			put_queue(vc, 0xe0);
1285 		put_queue(vc, (code & 0x7f) | up_flag);
1286 
1287 		break;
1288 	}
1289 
1290 	return 0;
1291 }
1292 
1293 #else
1294 
1295 #define HW_RAW(dev)	0
1296 
1297 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1298 {
1299 	if (keycode > 127)
1300 		return -1;
1301 
1302 	put_queue(vc, keycode | up_flag);
1303 	return 0;
1304 }
1305 #endif
1306 
1307 static void kbd_rawcode(unsigned char data)
1308 {
1309 	struct vc_data *vc = vc_cons[fg_console].d;
1310 
1311 	kbd = kbd_table + vc->vc_num;
1312 	if (kbd->kbdmode == VC_RAW)
1313 		put_queue(vc, data);
1314 }
1315 
1316 static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1317 {
1318 	struct vc_data *vc = vc_cons[fg_console].d;
1319 	unsigned short keysym, *key_map;
1320 	unsigned char type;
1321 	bool raw_mode;
1322 	struct tty_struct *tty;
1323 	int shift_final;
1324 	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1325 	int rc;
1326 
1327 	tty = vc->port.tty;
1328 
1329 	if (tty && (!tty->driver_data)) {
1330 		/* No driver data? Strange. Okay we fix it then. */
1331 		tty->driver_data = vc;
1332 	}
1333 
1334 	kbd = kbd_table + vc->vc_num;
1335 
1336 #ifdef CONFIG_SPARC
1337 	if (keycode == KEY_STOP)
1338 		sparc_l1_a_state = down;
1339 #endif
1340 
1341 	rep = (down == 2);
1342 
1343 	raw_mode = (kbd->kbdmode == VC_RAW);
1344 	if (raw_mode && !hw_raw)
1345 		if (emulate_raw(vc, keycode, !down << 7))
1346 			if (keycode < BTN_MISC && printk_ratelimit())
1347 				pr_warn("can't emulate rawmode for keycode %d\n",
1348 					keycode);
1349 
1350 #ifdef CONFIG_SPARC
1351 	if (keycode == KEY_A && sparc_l1_a_state) {
1352 		sparc_l1_a_state = false;
1353 		sun_do_break();
1354 	}
1355 #endif
1356 
1357 	if (kbd->kbdmode == VC_MEDIUMRAW) {
1358 		/*
1359 		 * This is extended medium raw mode, with keys above 127
1360 		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1361 		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1362 		 * interfere with anything else. The two bytes after 0 will
1363 		 * always have the up flag set not to interfere with older
1364 		 * applications. This allows for 16384 different keycodes,
1365 		 * which should be enough.
1366 		 */
1367 		if (keycode < 128) {
1368 			put_queue(vc, keycode | (!down << 7));
1369 		} else {
1370 			put_queue(vc, !down << 7);
1371 			put_queue(vc, (keycode >> 7) | 0x80);
1372 			put_queue(vc, keycode | 0x80);
1373 		}
1374 		raw_mode = true;
1375 	}
1376 
1377 	if (down)
1378 		set_bit(keycode, key_down);
1379 	else
1380 		clear_bit(keycode, key_down);
1381 
1382 	if (rep &&
1383 	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1384 	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1385 		/*
1386 		 * Don't repeat a key if the input buffers are not empty and the
1387 		 * characters get aren't echoed locally. This makes key repeat
1388 		 * usable with slow applications and under heavy loads.
1389 		 */
1390 		return;
1391 	}
1392 
1393 	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1394 	param.ledstate = kbd->ledflagstate;
1395 	key_map = key_maps[shift_final];
1396 
1397 	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1398 					KBD_KEYCODE, &param);
1399 	if (rc == NOTIFY_STOP || !key_map) {
1400 		atomic_notifier_call_chain(&keyboard_notifier_list,
1401 					   KBD_UNBOUND_KEYCODE, &param);
1402 		do_compute_shiftstate();
1403 		kbd->slockstate = 0;
1404 		return;
1405 	}
1406 
1407 	if (keycode < NR_KEYS)
1408 		keysym = key_map[keycode];
1409 	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1410 		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1411 	else
1412 		return;
1413 
1414 	type = KTYP(keysym);
1415 
1416 	if (type < 0xf0) {
1417 		param.value = keysym;
1418 		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1419 						KBD_UNICODE, &param);
1420 		if (rc != NOTIFY_STOP)
1421 			if (down && !raw_mode)
1422 				to_utf8(vc, keysym);
1423 		return;
1424 	}
1425 
1426 	type -= 0xf0;
1427 
1428 	if (type == KT_LETTER) {
1429 		type = KT_LATIN;
1430 		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1431 			key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1432 			if (key_map)
1433 				keysym = key_map[keycode];
1434 		}
1435 	}
1436 
1437 	param.value = keysym;
1438 	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1439 					KBD_KEYSYM, &param);
1440 	if (rc == NOTIFY_STOP)
1441 		return;
1442 
1443 	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1444 		return;
1445 
1446 	(*k_handler[type])(vc, keysym & 0xff, !down);
1447 
1448 	param.ledstate = kbd->ledflagstate;
1449 	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1450 
1451 	if (type != KT_SLOCK)
1452 		kbd->slockstate = 0;
1453 }
1454 
1455 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1456 		      unsigned int event_code, int value)
1457 {
1458 	/* We are called with interrupts disabled, just take the lock */
1459 	spin_lock(&kbd_event_lock);
1460 
1461 	if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1462 		kbd_rawcode(value);
1463 	if (event_type == EV_KEY)
1464 		kbd_keycode(event_code, value, HW_RAW(handle->dev));
1465 
1466 	spin_unlock(&kbd_event_lock);
1467 
1468 	tasklet_schedule(&keyboard_tasklet);
1469 	do_poke_blanked_console = 1;
1470 	schedule_console_callback();
1471 }
1472 
1473 static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1474 {
1475 	int i;
1476 
1477 	if (test_bit(EV_SND, dev->evbit))
1478 		return true;
1479 
1480 	if (test_bit(EV_KEY, dev->evbit)) {
1481 		for (i = KEY_RESERVED; i < BTN_MISC; i++)
1482 			if (test_bit(i, dev->keybit))
1483 				return true;
1484 		for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1485 			if (test_bit(i, dev->keybit))
1486 				return true;
1487 	}
1488 
1489 	return false;
1490 }
1491 
1492 /*
1493  * When a keyboard (or other input device) is found, the kbd_connect
1494  * function is called. The function then looks at the device, and if it
1495  * likes it, it can open it and get events from it. In this (kbd_connect)
1496  * function, we should decide which VT to bind that keyboard to initially.
1497  */
1498 static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1499 			const struct input_device_id *id)
1500 {
1501 	struct input_handle *handle;
1502 	int error;
1503 
1504 	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1505 	if (!handle)
1506 		return -ENOMEM;
1507 
1508 	handle->dev = dev;
1509 	handle->handler = handler;
1510 	handle->name = "kbd";
1511 
1512 	error = input_register_handle(handle);
1513 	if (error)
1514 		goto err_free_handle;
1515 
1516 	error = input_open_device(handle);
1517 	if (error)
1518 		goto err_unregister_handle;
1519 
1520 	return 0;
1521 
1522  err_unregister_handle:
1523 	input_unregister_handle(handle);
1524  err_free_handle:
1525 	kfree(handle);
1526 	return error;
1527 }
1528 
1529 static void kbd_disconnect(struct input_handle *handle)
1530 {
1531 	input_close_device(handle);
1532 	input_unregister_handle(handle);
1533 	kfree(handle);
1534 }
1535 
1536 /*
1537  * Start keyboard handler on the new keyboard by refreshing LED state to
1538  * match the rest of the system.
1539  */
1540 static void kbd_start(struct input_handle *handle)
1541 {
1542 	tasklet_disable(&keyboard_tasklet);
1543 
1544 	if (ledstate != -1U)
1545 		kbd_update_leds_helper(handle, &ledstate);
1546 
1547 	tasklet_enable(&keyboard_tasklet);
1548 }
1549 
1550 static const struct input_device_id kbd_ids[] = {
1551 	{
1552 		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1553 		.evbit = { BIT_MASK(EV_KEY) },
1554 	},
1555 
1556 	{
1557 		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1558 		.evbit = { BIT_MASK(EV_SND) },
1559 	},
1560 
1561 	{ },    /* Terminating entry */
1562 };
1563 
1564 MODULE_DEVICE_TABLE(input, kbd_ids);
1565 
1566 static struct input_handler kbd_handler = {
1567 	.event		= kbd_event,
1568 	.match		= kbd_match,
1569 	.connect	= kbd_connect,
1570 	.disconnect	= kbd_disconnect,
1571 	.start		= kbd_start,
1572 	.name		= "kbd",
1573 	.id_table	= kbd_ids,
1574 };
1575 
1576 int __init kbd_init(void)
1577 {
1578 	int i;
1579 	int error;
1580 
1581 	for (i = 0; i < MAX_NR_CONSOLES; i++) {
1582 		kbd_table[i].ledflagstate = kbd_defleds();
1583 		kbd_table[i].default_ledflagstate = kbd_defleds();
1584 		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1585 		kbd_table[i].lockstate = KBD_DEFLOCK;
1586 		kbd_table[i].slockstate = 0;
1587 		kbd_table[i].modeflags = KBD_DEFMODE;
1588 		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1589 	}
1590 
1591 	kbd_init_leds();
1592 
1593 	error = input_register_handler(&kbd_handler);
1594 	if (error)
1595 		return error;
1596 
1597 	tasklet_enable(&keyboard_tasklet);
1598 	tasklet_schedule(&keyboard_tasklet);
1599 
1600 	return 0;
1601 }
1602 
1603 /* Ioctl support code */
1604 
1605 /**
1606  *	vt_do_diacrit		-	diacritical table updates
1607  *	@cmd: ioctl request
1608  *	@udp: pointer to user data for ioctl
1609  *	@perm: permissions check computed by caller
1610  *
1611  *	Update the diacritical tables atomically and safely. Lock them
1612  *	against simultaneous keypresses
1613  */
1614 int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1615 {
1616 	unsigned long flags;
1617 	int asize;
1618 	int ret = 0;
1619 
1620 	switch (cmd) {
1621 	case KDGKBDIACR:
1622 	{
1623 		struct kbdiacrs __user *a = udp;
1624 		struct kbdiacr *dia;
1625 		int i;
1626 
1627 		dia = kmalloc(MAX_DIACR * sizeof(struct kbdiacr),
1628 								GFP_KERNEL);
1629 		if (!dia)
1630 			return -ENOMEM;
1631 
1632 		/* Lock the diacriticals table, make a copy and then
1633 		   copy it after we unlock */
1634 		spin_lock_irqsave(&kbd_event_lock, flags);
1635 
1636 		asize = accent_table_size;
1637 		for (i = 0; i < asize; i++) {
1638 			dia[i].diacr = conv_uni_to_8bit(
1639 						accent_table[i].diacr);
1640 			dia[i].base = conv_uni_to_8bit(
1641 						accent_table[i].base);
1642 			dia[i].result = conv_uni_to_8bit(
1643 						accent_table[i].result);
1644 		}
1645 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1646 
1647 		if (put_user(asize, &a->kb_cnt))
1648 			ret = -EFAULT;
1649 		else  if (copy_to_user(a->kbdiacr, dia,
1650 				asize * sizeof(struct kbdiacr)))
1651 			ret = -EFAULT;
1652 		kfree(dia);
1653 		return ret;
1654 	}
1655 	case KDGKBDIACRUC:
1656 	{
1657 		struct kbdiacrsuc __user *a = udp;
1658 		void *buf;
1659 
1660 		buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc),
1661 								GFP_KERNEL);
1662 		if (buf == NULL)
1663 			return -ENOMEM;
1664 
1665 		/* Lock the diacriticals table, make a copy and then
1666 		   copy it after we unlock */
1667 		spin_lock_irqsave(&kbd_event_lock, flags);
1668 
1669 		asize = accent_table_size;
1670 		memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1671 
1672 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1673 
1674 		if (put_user(asize, &a->kb_cnt))
1675 			ret = -EFAULT;
1676 		else if (copy_to_user(a->kbdiacruc, buf,
1677 				asize*sizeof(struct kbdiacruc)))
1678 			ret = -EFAULT;
1679 		kfree(buf);
1680 		return ret;
1681 	}
1682 
1683 	case KDSKBDIACR:
1684 	{
1685 		struct kbdiacrs __user *a = udp;
1686 		struct kbdiacr *dia = NULL;
1687 		unsigned int ct;
1688 		int i;
1689 
1690 		if (!perm)
1691 			return -EPERM;
1692 		if (get_user(ct, &a->kb_cnt))
1693 			return -EFAULT;
1694 		if (ct >= MAX_DIACR)
1695 			return -EINVAL;
1696 
1697 		if (ct) {
1698 
1699 			dia = memdup_user(a->kbdiacr,
1700 					sizeof(struct kbdiacr) * ct);
1701 			if (IS_ERR(dia))
1702 				return PTR_ERR(dia);
1703 
1704 		}
1705 
1706 		spin_lock_irqsave(&kbd_event_lock, flags);
1707 		accent_table_size = ct;
1708 		for (i = 0; i < ct; i++) {
1709 			accent_table[i].diacr =
1710 					conv_8bit_to_uni(dia[i].diacr);
1711 			accent_table[i].base =
1712 					conv_8bit_to_uni(dia[i].base);
1713 			accent_table[i].result =
1714 					conv_8bit_to_uni(dia[i].result);
1715 		}
1716 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1717 		kfree(dia);
1718 		return 0;
1719 	}
1720 
1721 	case KDSKBDIACRUC:
1722 	{
1723 		struct kbdiacrsuc __user *a = udp;
1724 		unsigned int ct;
1725 		void *buf = NULL;
1726 
1727 		if (!perm)
1728 			return -EPERM;
1729 
1730 		if (get_user(ct, &a->kb_cnt))
1731 			return -EFAULT;
1732 
1733 		if (ct >= MAX_DIACR)
1734 			return -EINVAL;
1735 
1736 		if (ct) {
1737 			buf = memdup_user(a->kbdiacruc,
1738 					  ct * sizeof(struct kbdiacruc));
1739 			if (IS_ERR(buf))
1740 				return PTR_ERR(buf);
1741 		}
1742 		spin_lock_irqsave(&kbd_event_lock, flags);
1743 		if (ct)
1744 			memcpy(accent_table, buf,
1745 					ct * sizeof(struct kbdiacruc));
1746 		accent_table_size = ct;
1747 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1748 		kfree(buf);
1749 		return 0;
1750 	}
1751 	}
1752 	return ret;
1753 }
1754 
1755 /**
1756  *	vt_do_kdskbmode		-	set keyboard mode ioctl
1757  *	@console: the console to use
1758  *	@arg: the requested mode
1759  *
1760  *	Update the keyboard mode bits while holding the correct locks.
1761  *	Return 0 for success or an error code.
1762  */
1763 int vt_do_kdskbmode(int console, unsigned int arg)
1764 {
1765 	struct kbd_struct *kb = kbd_table + console;
1766 	int ret = 0;
1767 	unsigned long flags;
1768 
1769 	spin_lock_irqsave(&kbd_event_lock, flags);
1770 	switch(arg) {
1771 	case K_RAW:
1772 		kb->kbdmode = VC_RAW;
1773 		break;
1774 	case K_MEDIUMRAW:
1775 		kb->kbdmode = VC_MEDIUMRAW;
1776 		break;
1777 	case K_XLATE:
1778 		kb->kbdmode = VC_XLATE;
1779 		do_compute_shiftstate();
1780 		break;
1781 	case K_UNICODE:
1782 		kb->kbdmode = VC_UNICODE;
1783 		do_compute_shiftstate();
1784 		break;
1785 	case K_OFF:
1786 		kb->kbdmode = VC_OFF;
1787 		break;
1788 	default:
1789 		ret = -EINVAL;
1790 	}
1791 	spin_unlock_irqrestore(&kbd_event_lock, flags);
1792 	return ret;
1793 }
1794 
1795 /**
1796  *	vt_do_kdskbmeta		-	set keyboard meta state
1797  *	@console: the console to use
1798  *	@arg: the requested meta state
1799  *
1800  *	Update the keyboard meta bits while holding the correct locks.
1801  *	Return 0 for success or an error code.
1802  */
1803 int vt_do_kdskbmeta(int console, unsigned int arg)
1804 {
1805 	struct kbd_struct *kb = kbd_table + console;
1806 	int ret = 0;
1807 	unsigned long flags;
1808 
1809 	spin_lock_irqsave(&kbd_event_lock, flags);
1810 	switch(arg) {
1811 	case K_METABIT:
1812 		clr_vc_kbd_mode(kb, VC_META);
1813 		break;
1814 	case K_ESCPREFIX:
1815 		set_vc_kbd_mode(kb, VC_META);
1816 		break;
1817 	default:
1818 		ret = -EINVAL;
1819 	}
1820 	spin_unlock_irqrestore(&kbd_event_lock, flags);
1821 	return ret;
1822 }
1823 
1824 int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1825 								int perm)
1826 {
1827 	struct kbkeycode tmp;
1828 	int kc = 0;
1829 
1830 	if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1831 		return -EFAULT;
1832 	switch (cmd) {
1833 	case KDGETKEYCODE:
1834 		kc = getkeycode(tmp.scancode);
1835 		if (kc >= 0)
1836 			kc = put_user(kc, &user_kbkc->keycode);
1837 		break;
1838 	case KDSETKEYCODE:
1839 		if (!perm)
1840 			return -EPERM;
1841 		kc = setkeycode(tmp.scancode, tmp.keycode);
1842 		break;
1843 	}
1844 	return kc;
1845 }
1846 
1847 #define i (tmp.kb_index)
1848 #define s (tmp.kb_table)
1849 #define v (tmp.kb_value)
1850 
1851 int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1852 						int console)
1853 {
1854 	struct kbd_struct *kb = kbd_table + console;
1855 	struct kbentry tmp;
1856 	ushort *key_map, *new_map, val, ov;
1857 	unsigned long flags;
1858 
1859 	if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1860 		return -EFAULT;
1861 
1862 	if (!capable(CAP_SYS_TTY_CONFIG))
1863 		perm = 0;
1864 
1865 	switch (cmd) {
1866 	case KDGKBENT:
1867 		/* Ensure another thread doesn't free it under us */
1868 		spin_lock_irqsave(&kbd_event_lock, flags);
1869 		key_map = key_maps[s];
1870 		if (key_map) {
1871 		    val = U(key_map[i]);
1872 		    if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1873 			val = K_HOLE;
1874 		} else
1875 		    val = (i ? K_HOLE : K_NOSUCHMAP);
1876 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1877 		return put_user(val, &user_kbe->kb_value);
1878 	case KDSKBENT:
1879 		if (!perm)
1880 			return -EPERM;
1881 		if (!i && v == K_NOSUCHMAP) {
1882 			spin_lock_irqsave(&kbd_event_lock, flags);
1883 			/* deallocate map */
1884 			key_map = key_maps[s];
1885 			if (s && key_map) {
1886 			    key_maps[s] = NULL;
1887 			    if (key_map[0] == U(K_ALLOCATED)) {
1888 					kfree(key_map);
1889 					keymap_count--;
1890 			    }
1891 			}
1892 			spin_unlock_irqrestore(&kbd_event_lock, flags);
1893 			break;
1894 		}
1895 
1896 		if (KTYP(v) < NR_TYPES) {
1897 		    if (KVAL(v) > max_vals[KTYP(v)])
1898 				return -EINVAL;
1899 		} else
1900 		    if (kb->kbdmode != VC_UNICODE)
1901 				return -EINVAL;
1902 
1903 		/* ++Geert: non-PC keyboards may generate keycode zero */
1904 #if !defined(__mc68000__) && !defined(__powerpc__)
1905 		/* assignment to entry 0 only tests validity of args */
1906 		if (!i)
1907 			break;
1908 #endif
1909 
1910 		new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1911 		if (!new_map)
1912 			return -ENOMEM;
1913 		spin_lock_irqsave(&kbd_event_lock, flags);
1914 		key_map = key_maps[s];
1915 		if (key_map == NULL) {
1916 			int j;
1917 
1918 			if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1919 			    !capable(CAP_SYS_RESOURCE)) {
1920 				spin_unlock_irqrestore(&kbd_event_lock, flags);
1921 				kfree(new_map);
1922 				return -EPERM;
1923 			}
1924 			key_maps[s] = new_map;
1925 			key_map = new_map;
1926 			key_map[0] = U(K_ALLOCATED);
1927 			for (j = 1; j < NR_KEYS; j++)
1928 				key_map[j] = U(K_HOLE);
1929 			keymap_count++;
1930 		} else
1931 			kfree(new_map);
1932 
1933 		ov = U(key_map[i]);
1934 		if (v == ov)
1935 			goto out;
1936 		/*
1937 		 * Attention Key.
1938 		 */
1939 		if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1940 			spin_unlock_irqrestore(&kbd_event_lock, flags);
1941 			return -EPERM;
1942 		}
1943 		key_map[i] = U(v);
1944 		if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1945 			do_compute_shiftstate();
1946 out:
1947 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1948 		break;
1949 	}
1950 	return 0;
1951 }
1952 #undef i
1953 #undef s
1954 #undef v
1955 
1956 /* FIXME: This one needs untangling and locking */
1957 int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1958 {
1959 	struct kbsentry *kbs;
1960 	char *p;
1961 	u_char *q;
1962 	u_char __user *up;
1963 	int sz;
1964 	int delta;
1965 	char *first_free, *fj, *fnw;
1966 	int i, j, k;
1967 	int ret;
1968 
1969 	if (!capable(CAP_SYS_TTY_CONFIG))
1970 		perm = 0;
1971 
1972 	kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
1973 	if (!kbs) {
1974 		ret = -ENOMEM;
1975 		goto reterr;
1976 	}
1977 
1978 	/* we mostly copy too much here (512bytes), but who cares ;) */
1979 	if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
1980 		ret = -EFAULT;
1981 		goto reterr;
1982 	}
1983 	kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
1984 	i = kbs->kb_func;
1985 
1986 	switch (cmd) {
1987 	case KDGKBSENT:
1988 		sz = sizeof(kbs->kb_string) - 1; /* sz should have been
1989 						  a struct member */
1990 		up = user_kdgkb->kb_string;
1991 		p = func_table[i];
1992 		if(p)
1993 			for ( ; *p && sz; p++, sz--)
1994 				if (put_user(*p, up++)) {
1995 					ret = -EFAULT;
1996 					goto reterr;
1997 				}
1998 		if (put_user('\0', up)) {
1999 			ret = -EFAULT;
2000 			goto reterr;
2001 		}
2002 		kfree(kbs);
2003 		return ((p && *p) ? -EOVERFLOW : 0);
2004 	case KDSKBSENT:
2005 		if (!perm) {
2006 			ret = -EPERM;
2007 			goto reterr;
2008 		}
2009 
2010 		q = func_table[i];
2011 		first_free = funcbufptr + (funcbufsize - funcbufleft);
2012 		for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2013 			;
2014 		if (j < MAX_NR_FUNC)
2015 			fj = func_table[j];
2016 		else
2017 			fj = first_free;
2018 
2019 		delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2020 		if (delta <= funcbufleft) { 	/* it fits in current buf */
2021 		    if (j < MAX_NR_FUNC) {
2022 			memmove(fj + delta, fj, first_free - fj);
2023 			for (k = j; k < MAX_NR_FUNC; k++)
2024 			    if (func_table[k])
2025 				func_table[k] += delta;
2026 		    }
2027 		    if (!q)
2028 		      func_table[i] = fj;
2029 		    funcbufleft -= delta;
2030 		} else {			/* allocate a larger buffer */
2031 		    sz = 256;
2032 		    while (sz < funcbufsize - funcbufleft + delta)
2033 		      sz <<= 1;
2034 		    fnw = kmalloc(sz, GFP_KERNEL);
2035 		    if(!fnw) {
2036 		      ret = -ENOMEM;
2037 		      goto reterr;
2038 		    }
2039 
2040 		    if (!q)
2041 		      func_table[i] = fj;
2042 		    if (fj > funcbufptr)
2043 			memmove(fnw, funcbufptr, fj - funcbufptr);
2044 		    for (k = 0; k < j; k++)
2045 		      if (func_table[k])
2046 			func_table[k] = fnw + (func_table[k] - funcbufptr);
2047 
2048 		    if (first_free > fj) {
2049 			memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2050 			for (k = j; k < MAX_NR_FUNC; k++)
2051 			  if (func_table[k])
2052 			    func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2053 		    }
2054 		    if (funcbufptr != func_buf)
2055 		      kfree(funcbufptr);
2056 		    funcbufptr = fnw;
2057 		    funcbufleft = funcbufleft - delta + sz - funcbufsize;
2058 		    funcbufsize = sz;
2059 		}
2060 		strcpy(func_table[i], kbs->kb_string);
2061 		break;
2062 	}
2063 	ret = 0;
2064 reterr:
2065 	kfree(kbs);
2066 	return ret;
2067 }
2068 
2069 int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2070 {
2071 	struct kbd_struct *kb = kbd_table + console;
2072         unsigned long flags;
2073 	unsigned char ucval;
2074 
2075         switch(cmd) {
2076 	/* the ioctls below read/set the flags usually shown in the leds */
2077 	/* don't use them - they will go away without warning */
2078 	case KDGKBLED:
2079                 spin_lock_irqsave(&kbd_event_lock, flags);
2080 		ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2081                 spin_unlock_irqrestore(&kbd_event_lock, flags);
2082 		return put_user(ucval, (char __user *)arg);
2083 
2084 	case KDSKBLED:
2085 		if (!perm)
2086 			return -EPERM;
2087 		if (arg & ~0x77)
2088 			return -EINVAL;
2089                 spin_lock_irqsave(&led_lock, flags);
2090 		kb->ledflagstate = (arg & 7);
2091 		kb->default_ledflagstate = ((arg >> 4) & 7);
2092 		set_leds();
2093                 spin_unlock_irqrestore(&led_lock, flags);
2094 		return 0;
2095 
2096 	/* the ioctls below only set the lights, not the functions */
2097 	/* for those, see KDGKBLED and KDSKBLED above */
2098 	case KDGETLED:
2099 		ucval = getledstate();
2100 		return put_user(ucval, (char __user *)arg);
2101 
2102 	case KDSETLED:
2103 		if (!perm)
2104 			return -EPERM;
2105 		setledstate(kb, arg);
2106 		return 0;
2107         }
2108         return -ENOIOCTLCMD;
2109 }
2110 
2111 int vt_do_kdgkbmode(int console)
2112 {
2113 	struct kbd_struct *kb = kbd_table + console;
2114 	/* This is a spot read so needs no locking */
2115 	switch (kb->kbdmode) {
2116 	case VC_RAW:
2117 		return K_RAW;
2118 	case VC_MEDIUMRAW:
2119 		return K_MEDIUMRAW;
2120 	case VC_UNICODE:
2121 		return K_UNICODE;
2122 	case VC_OFF:
2123 		return K_OFF;
2124 	default:
2125 		return K_XLATE;
2126 	}
2127 }
2128 
2129 /**
2130  *	vt_do_kdgkbmeta		-	report meta status
2131  *	@console: console to report
2132  *
2133  *	Report the meta flag status of this console
2134  */
2135 int vt_do_kdgkbmeta(int console)
2136 {
2137 	struct kbd_struct *kb = kbd_table + console;
2138         /* Again a spot read so no locking */
2139 	return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2140 }
2141 
2142 /**
2143  *	vt_reset_unicode	-	reset the unicode status
2144  *	@console: console being reset
2145  *
2146  *	Restore the unicode console state to its default
2147  */
2148 void vt_reset_unicode(int console)
2149 {
2150 	unsigned long flags;
2151 
2152 	spin_lock_irqsave(&kbd_event_lock, flags);
2153 	kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2154 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2155 }
2156 
2157 /**
2158  *	vt_get_shiftstate	-	shift bit state
2159  *
2160  *	Report the shift bits from the keyboard state. We have to export
2161  *	this to support some oddities in the vt layer.
2162  */
2163 int vt_get_shift_state(void)
2164 {
2165         /* Don't lock as this is a transient report */
2166         return shift_state;
2167 }
2168 
2169 /**
2170  *	vt_reset_keyboard	-	reset keyboard state
2171  *	@console: console to reset
2172  *
2173  *	Reset the keyboard bits for a console as part of a general console
2174  *	reset event
2175  */
2176 void vt_reset_keyboard(int console)
2177 {
2178 	struct kbd_struct *kb = kbd_table + console;
2179 	unsigned long flags;
2180 
2181 	spin_lock_irqsave(&kbd_event_lock, flags);
2182 	set_vc_kbd_mode(kb, VC_REPEAT);
2183 	clr_vc_kbd_mode(kb, VC_CKMODE);
2184 	clr_vc_kbd_mode(kb, VC_APPLIC);
2185 	clr_vc_kbd_mode(kb, VC_CRLF);
2186 	kb->lockstate = 0;
2187 	kb->slockstate = 0;
2188 	spin_lock(&led_lock);
2189 	kb->ledmode = LED_SHOW_FLAGS;
2190 	kb->ledflagstate = kb->default_ledflagstate;
2191 	spin_unlock(&led_lock);
2192 	/* do not do set_leds here because this causes an endless tasklet loop
2193 	   when the keyboard hasn't been initialized yet */
2194 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2195 }
2196 
2197 /**
2198  *	vt_get_kbd_mode_bit	-	read keyboard status bits
2199  *	@console: console to read from
2200  *	@bit: mode bit to read
2201  *
2202  *	Report back a vt mode bit. We do this without locking so the
2203  *	caller must be sure that there are no synchronization needs
2204  */
2205 
2206 int vt_get_kbd_mode_bit(int console, int bit)
2207 {
2208 	struct kbd_struct *kb = kbd_table + console;
2209 	return vc_kbd_mode(kb, bit);
2210 }
2211 
2212 /**
2213  *	vt_set_kbd_mode_bit	-	read keyboard status bits
2214  *	@console: console to read from
2215  *	@bit: mode bit to read
2216  *
2217  *	Set a vt mode bit. We do this without locking so the
2218  *	caller must be sure that there are no synchronization needs
2219  */
2220 
2221 void vt_set_kbd_mode_bit(int console, int bit)
2222 {
2223 	struct kbd_struct *kb = kbd_table + console;
2224 	unsigned long flags;
2225 
2226 	spin_lock_irqsave(&kbd_event_lock, flags);
2227 	set_vc_kbd_mode(kb, bit);
2228 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2229 }
2230 
2231 /**
2232  *	vt_clr_kbd_mode_bit	-	read keyboard status bits
2233  *	@console: console to read from
2234  *	@bit: mode bit to read
2235  *
2236  *	Report back a vt mode bit. We do this without locking so the
2237  *	caller must be sure that there are no synchronization needs
2238  */
2239 
2240 void vt_clr_kbd_mode_bit(int console, int bit)
2241 {
2242 	struct kbd_struct *kb = kbd_table + console;
2243 	unsigned long flags;
2244 
2245 	spin_lock_irqsave(&kbd_event_lock, flags);
2246 	clr_vc_kbd_mode(kb, bit);
2247 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2248 }
2249