xref: /openbmc/linux/drivers/tty/tty_io.c (revision fd88d2e5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992  Linus Torvalds
4  */
5 
6 /*
7  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8  * or rs-channels. It also implements echoing, cooked mode etc.
9  *
10  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11  *
12  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13  * tty_struct and tty_queue structures.  Previously there was an array
14  * of 256 tty_struct's which was statically allocated, and the
15  * tty_queue structures were allocated at boot time.  Both are now
16  * dynamically allocated only when the tty is open.
17  *
18  * Also restructured routines so that there is more of a separation
19  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20  * the low-level tty routines (serial.c, pty.c, console.c).  This
21  * makes for cleaner and more compact code.  -TYT, 9/17/92
22  *
23  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24  * which can be dynamically activated and de-activated by the line
25  * discipline handling modules (like SLIP).
26  *
27  * NOTE: pay no attention to the line discipline code (yet); its
28  * interface is still subject to change in this version...
29  * -- TYT, 1/31/92
30  *
31  * Added functionality to the OPOST tty handling.  No delays, but all
32  * other bits should be there.
33  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34  *
35  * Rewrote canonical mode and added more termios flags.
36  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37  *
38  * Reorganized FASYNC support so mouse code can share it.
39  *	-- ctm@ardi.com, 9Sep95
40  *
41  * New TIOCLINUX variants added.
42  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
43  *
44  * Restrict vt switching via ioctl()
45  *      -- grif@cs.ucr.edu, 5-Dec-95
46  *
47  * Move console and virtual terminal code to more appropriate files,
48  * implement CONFIG_VT and generalize console device interface.
49  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50  *
51  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52  *	-- Bill Hawes <whawes@star.net>, June 97
53  *
54  * Added devfs support.
55  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56  *
57  * Added support for a Unix98-style ptmx device.
58  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59  *
60  * Reduced memory usage for older ARM systems
61  *      -- Russell King <rmk@arm.linux.org.uk>
62  *
63  * Move do_SAK() into process context.  Less stack use in devfs functions.
64  * alloc_tty_struct() always uses kmalloc()
65  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66  */
67 
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched/signal.h>
74 #include <linux/sched/task.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/ppp-ioctl.h>
91 #include <linux/proc_fs.h>
92 #include <linux/init.h>
93 #include <linux/module.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99 #include <linux/serial.h>
100 #include <linux/ratelimit.h>
101 #include <linux/compat.h>
102 
103 #include <linux/uaccess.h>
104 
105 #include <linux/kbd_kern.h>
106 #include <linux/vt_kern.h>
107 #include <linux/selection.h>
108 
109 #include <linux/kmod.h>
110 #include <linux/nsproxy.h>
111 #include "tty.h"
112 
113 #undef TTY_DEBUG_HANGUP
114 #ifdef TTY_DEBUG_HANGUP
115 # define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
116 #else
117 # define tty_debug_hangup(tty, f, args...)	do { } while (0)
118 #endif
119 
120 #define TTY_PARANOIA_CHECK 1
121 #define CHECK_TTY_COUNT 1
122 
123 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
124 	.c_iflag = ICRNL | IXON,
125 	.c_oflag = OPOST | ONLCR,
126 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
127 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
128 		   ECHOCTL | ECHOKE | IEXTEN,
129 	.c_cc = INIT_C_CC,
130 	.c_ispeed = 38400,
131 	.c_ospeed = 38400,
132 	/* .c_line = N_TTY, */
133 };
134 
135 EXPORT_SYMBOL(tty_std_termios);
136 
137 /* This list gets poked at by procfs and various bits of boot up code. This
138    could do with some rationalisation such as pulling the tty proc function
139    into this file */
140 
141 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
142 
143 /* Mutex to protect creating and releasing a tty */
144 DEFINE_MUTEX(tty_mutex);
145 
146 static ssize_t tty_read(struct kiocb *, struct iov_iter *);
147 static ssize_t tty_write(struct kiocb *, struct iov_iter *);
148 static __poll_t tty_poll(struct file *, poll_table *);
149 static int tty_open(struct inode *, struct file *);
150 #ifdef CONFIG_COMPAT
151 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
152 				unsigned long arg);
153 #else
154 #define tty_compat_ioctl NULL
155 #endif
156 static int __tty_fasync(int fd, struct file *filp, int on);
157 static int tty_fasync(int fd, struct file *filp, int on);
158 static void release_tty(struct tty_struct *tty, int idx);
159 
160 /**
161  *	free_tty_struct		-	free a disused tty
162  *	@tty: tty struct to free
163  *
164  *	Free the write buffers, tty queue and tty memory itself.
165  *
166  *	Locking: none. Must be called after tty is definitely unused
167  */
168 
169 static void free_tty_struct(struct tty_struct *tty)
170 {
171 	tty_ldisc_deinit(tty);
172 	put_device(tty->dev);
173 	kfree(tty->write_buf);
174 	tty->magic = 0xDEADDEAD;
175 	kfree(tty);
176 }
177 
178 static inline struct tty_struct *file_tty(struct file *file)
179 {
180 	return ((struct tty_file_private *)file->private_data)->tty;
181 }
182 
183 int tty_alloc_file(struct file *file)
184 {
185 	struct tty_file_private *priv;
186 
187 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
188 	if (!priv)
189 		return -ENOMEM;
190 
191 	file->private_data = priv;
192 
193 	return 0;
194 }
195 
196 /* Associate a new file with the tty structure */
197 void tty_add_file(struct tty_struct *tty, struct file *file)
198 {
199 	struct tty_file_private *priv = file->private_data;
200 
201 	priv->tty = tty;
202 	priv->file = file;
203 
204 	spin_lock(&tty->files_lock);
205 	list_add(&priv->list, &tty->tty_files);
206 	spin_unlock(&tty->files_lock);
207 }
208 
209 /*
210  * tty_free_file - free file->private_data
211  *
212  * This shall be used only for fail path handling when tty_add_file was not
213  * called yet.
214  */
215 void tty_free_file(struct file *file)
216 {
217 	struct tty_file_private *priv = file->private_data;
218 
219 	file->private_data = NULL;
220 	kfree(priv);
221 }
222 
223 /* Delete file from its tty */
224 static void tty_del_file(struct file *file)
225 {
226 	struct tty_file_private *priv = file->private_data;
227 	struct tty_struct *tty = priv->tty;
228 
229 	spin_lock(&tty->files_lock);
230 	list_del(&priv->list);
231 	spin_unlock(&tty->files_lock);
232 	tty_free_file(file);
233 }
234 
235 /**
236  *	tty_name	-	return tty naming
237  *	@tty: tty structure
238  *
239  *	Convert a tty structure into a name. The name reflects the kernel
240  *	naming policy and if udev is in use may not reflect user space
241  *
242  *	Locking: none
243  */
244 
245 const char *tty_name(const struct tty_struct *tty)
246 {
247 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
248 		return "NULL tty";
249 	return tty->name;
250 }
251 
252 EXPORT_SYMBOL(tty_name);
253 
254 const char *tty_driver_name(const struct tty_struct *tty)
255 {
256 	if (!tty || !tty->driver)
257 		return "";
258 	return tty->driver->name;
259 }
260 
261 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
262 			      const char *routine)
263 {
264 #ifdef TTY_PARANOIA_CHECK
265 	if (!tty) {
266 		pr_warn("(%d:%d): %s: NULL tty\n",
267 			imajor(inode), iminor(inode), routine);
268 		return 1;
269 	}
270 	if (tty->magic != TTY_MAGIC) {
271 		pr_warn("(%d:%d): %s: bad magic number\n",
272 			imajor(inode), iminor(inode), routine);
273 		return 1;
274 	}
275 #endif
276 	return 0;
277 }
278 
279 /* Caller must hold tty_lock */
280 static int check_tty_count(struct tty_struct *tty, const char *routine)
281 {
282 #ifdef CHECK_TTY_COUNT
283 	struct list_head *p;
284 	int count = 0, kopen_count = 0;
285 
286 	spin_lock(&tty->files_lock);
287 	list_for_each(p, &tty->tty_files) {
288 		count++;
289 	}
290 	spin_unlock(&tty->files_lock);
291 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
293 	    tty->link && tty->link->count)
294 		count++;
295 	if (tty_port_kopened(tty->port))
296 		kopen_count++;
297 	if (tty->count != (count + kopen_count)) {
298 		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
299 			 routine, tty->count, count, kopen_count);
300 		return (count + kopen_count);
301 	}
302 #endif
303 	return 0;
304 }
305 
306 /**
307  *	get_tty_driver		-	find device of a tty
308  *	@device: device identifier
309  *	@index: returns the index of the tty
310  *
311  *	This routine returns a tty driver structure, given a device number
312  *	and also passes back the index number.
313  *
314  *	Locking: caller must hold tty_mutex
315  */
316 
317 static struct tty_driver *get_tty_driver(dev_t device, int *index)
318 {
319 	struct tty_driver *p;
320 
321 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
322 		dev_t base = MKDEV(p->major, p->minor_start);
323 		if (device < base || device >= base + p->num)
324 			continue;
325 		*index = device - base;
326 		return tty_driver_kref_get(p);
327 	}
328 	return NULL;
329 }
330 
331 /**
332  *	tty_dev_name_to_number	-	return dev_t for device name
333  *	@name: user space name of device under /dev
334  *	@number: pointer to dev_t that this function will populate
335  *
336  *	This function converts device names like ttyS0 or ttyUSB1 into dev_t
337  *	like (4, 64) or (188, 1). If no corresponding driver is registered then
338  *	the function returns -ENODEV.
339  *
340  *	Locking: this acquires tty_mutex to protect the tty_drivers list from
341  *		being modified while we are traversing it, and makes sure to
342  *		release it before exiting.
343  */
344 int tty_dev_name_to_number(const char *name, dev_t *number)
345 {
346 	struct tty_driver *p;
347 	int ret;
348 	int index, prefix_length = 0;
349 	const char *str;
350 
351 	for (str = name; *str && !isdigit(*str); str++)
352 		;
353 
354 	if (!*str)
355 		return -EINVAL;
356 
357 	ret = kstrtoint(str, 10, &index);
358 	if (ret)
359 		return ret;
360 
361 	prefix_length = str - name;
362 	mutex_lock(&tty_mutex);
363 
364 	list_for_each_entry(p, &tty_drivers, tty_drivers)
365 		if (prefix_length == strlen(p->name) && strncmp(name,
366 					p->name, prefix_length) == 0) {
367 			if (index < p->num) {
368 				*number = MKDEV(p->major, p->minor_start + index);
369 				goto out;
370 			}
371 		}
372 
373 	/* if here then driver wasn't found */
374 	ret = -ENODEV;
375 out:
376 	mutex_unlock(&tty_mutex);
377 	return ret;
378 }
379 EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
380 
381 #ifdef CONFIG_CONSOLE_POLL
382 
383 /**
384  *	tty_find_polling_driver	-	find device of a polled tty
385  *	@name: name string to match
386  *	@line: pointer to resulting tty line nr
387  *
388  *	This routine returns a tty driver structure, given a name
389  *	and the condition that the tty driver is capable of polled
390  *	operation.
391  */
392 struct tty_driver *tty_find_polling_driver(char *name, int *line)
393 {
394 	struct tty_driver *p, *res = NULL;
395 	int tty_line = 0;
396 	int len;
397 	char *str, *stp;
398 
399 	for (str = name; *str; str++)
400 		if ((*str >= '0' && *str <= '9') || *str == ',')
401 			break;
402 	if (!*str)
403 		return NULL;
404 
405 	len = str - name;
406 	tty_line = simple_strtoul(str, &str, 10);
407 
408 	mutex_lock(&tty_mutex);
409 	/* Search through the tty devices to look for a match */
410 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
411 		if (!len || strncmp(name, p->name, len) != 0)
412 			continue;
413 		stp = str;
414 		if (*stp == ',')
415 			stp++;
416 		if (*stp == '\0')
417 			stp = NULL;
418 
419 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
420 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
421 			res = tty_driver_kref_get(p);
422 			*line = tty_line;
423 			break;
424 		}
425 	}
426 	mutex_unlock(&tty_mutex);
427 
428 	return res;
429 }
430 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
431 #endif
432 
433 static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
434 {
435 	return 0;
436 }
437 
438 static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
439 {
440 	return -EIO;
441 }
442 
443 /* No kernel lock held - none needed ;) */
444 static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
445 {
446 	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
447 }
448 
449 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
450 		unsigned long arg)
451 {
452 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
453 }
454 
455 static long hung_up_tty_compat_ioctl(struct file *file,
456 				     unsigned int cmd, unsigned long arg)
457 {
458 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
459 }
460 
461 static int hung_up_tty_fasync(int fd, struct file *file, int on)
462 {
463 	return -ENOTTY;
464 }
465 
466 static void tty_show_fdinfo(struct seq_file *m, struct file *file)
467 {
468 	struct tty_struct *tty = file_tty(file);
469 
470 	if (tty && tty->ops && tty->ops->show_fdinfo)
471 		tty->ops->show_fdinfo(tty, m);
472 }
473 
474 static const struct file_operations tty_fops = {
475 	.llseek		= no_llseek,
476 	.read_iter	= tty_read,
477 	.write_iter	= tty_write,
478 	.splice_read	= generic_file_splice_read,
479 	.splice_write	= iter_file_splice_write,
480 	.poll		= tty_poll,
481 	.unlocked_ioctl	= tty_ioctl,
482 	.compat_ioctl	= tty_compat_ioctl,
483 	.open		= tty_open,
484 	.release	= tty_release,
485 	.fasync		= tty_fasync,
486 	.show_fdinfo	= tty_show_fdinfo,
487 };
488 
489 static const struct file_operations console_fops = {
490 	.llseek		= no_llseek,
491 	.read_iter	= tty_read,
492 	.write_iter	= redirected_tty_write,
493 	.splice_read	= generic_file_splice_read,
494 	.splice_write	= iter_file_splice_write,
495 	.poll		= tty_poll,
496 	.unlocked_ioctl	= tty_ioctl,
497 	.compat_ioctl	= tty_compat_ioctl,
498 	.open		= tty_open,
499 	.release	= tty_release,
500 	.fasync		= tty_fasync,
501 };
502 
503 static const struct file_operations hung_up_tty_fops = {
504 	.llseek		= no_llseek,
505 	.read_iter	= hung_up_tty_read,
506 	.write_iter	= hung_up_tty_write,
507 	.poll		= hung_up_tty_poll,
508 	.unlocked_ioctl	= hung_up_tty_ioctl,
509 	.compat_ioctl	= hung_up_tty_compat_ioctl,
510 	.release	= tty_release,
511 	.fasync		= hung_up_tty_fasync,
512 };
513 
514 static DEFINE_SPINLOCK(redirect_lock);
515 static struct file *redirect;
516 
517 /**
518  *	tty_wakeup	-	request more data
519  *	@tty: terminal
520  *
521  *	Internal and external helper for wakeups of tty. This function
522  *	informs the line discipline if present that the driver is ready
523  *	to receive more output data.
524  */
525 
526 void tty_wakeup(struct tty_struct *tty)
527 {
528 	struct tty_ldisc *ld;
529 
530 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
531 		ld = tty_ldisc_ref(tty);
532 		if (ld) {
533 			if (ld->ops->write_wakeup)
534 				ld->ops->write_wakeup(tty);
535 			tty_ldisc_deref(ld);
536 		}
537 	}
538 	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
539 }
540 
541 EXPORT_SYMBOL_GPL(tty_wakeup);
542 
543 /**
544  *	tty_release_redirect	-	Release a redirect on a pty if present
545  *	@tty: tty device
546  *
547  *	This is available to the pty code so if the master closes, if the
548  *	slave is a redirect it can release the redirect.
549  */
550 static struct file *tty_release_redirect(struct tty_struct *tty)
551 {
552 	struct file *f = NULL;
553 
554 	spin_lock(&redirect_lock);
555 	if (redirect && file_tty(redirect) == tty) {
556 		f = redirect;
557 		redirect = NULL;
558 	}
559 	spin_unlock(&redirect_lock);
560 
561 	return f;
562 }
563 
564 /**
565  *	__tty_hangup		-	actual handler for hangup events
566  *	@tty: tty device
567  *	@exit_session: if non-zero, signal all foreground group processes
568  *
569  *	This can be called by a "kworker" kernel thread.  That is process
570  *	synchronous but doesn't hold any locks, so we need to make sure we
571  *	have the appropriate locks for what we're doing.
572  *
573  *	The hangup event clears any pending redirections onto the hung up
574  *	device. It ensures future writes will error and it does the needed
575  *	line discipline hangup and signal delivery. The tty object itself
576  *	remains intact.
577  *
578  *	Locking:
579  *		BTM
580  *		  redirect lock for undoing redirection
581  *		  file list lock for manipulating list of ttys
582  *		  tty_ldiscs_lock from called functions
583  *		  termios_rwsem resetting termios data
584  *		  tasklist_lock to walk task list for hangup event
585  *		    ->siglock to protect ->signal/->sighand
586  */
587 static void __tty_hangup(struct tty_struct *tty, int exit_session)
588 {
589 	struct file *cons_filp = NULL;
590 	struct file *filp, *f;
591 	struct tty_file_private *priv;
592 	int    closecount = 0, n;
593 	int refs;
594 
595 	if (!tty)
596 		return;
597 
598 	f = tty_release_redirect(tty);
599 
600 	tty_lock(tty);
601 
602 	if (test_bit(TTY_HUPPED, &tty->flags)) {
603 		tty_unlock(tty);
604 		return;
605 	}
606 
607 	/*
608 	 * Some console devices aren't actually hung up for technical and
609 	 * historical reasons, which can lead to indefinite interruptible
610 	 * sleep in n_tty_read().  The following explicitly tells
611 	 * n_tty_read() to abort readers.
612 	 */
613 	set_bit(TTY_HUPPING, &tty->flags);
614 
615 	/* inuse_filps is protected by the single tty lock,
616 	   this really needs to change if we want to flush the
617 	   workqueue with the lock held */
618 	check_tty_count(tty, "tty_hangup");
619 
620 	spin_lock(&tty->files_lock);
621 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
622 	list_for_each_entry(priv, &tty->tty_files, list) {
623 		filp = priv->file;
624 		if (filp->f_op->write_iter == redirected_tty_write)
625 			cons_filp = filp;
626 		if (filp->f_op->write_iter != tty_write)
627 			continue;
628 		closecount++;
629 		__tty_fasync(-1, filp, 0);	/* can't block */
630 		filp->f_op = &hung_up_tty_fops;
631 	}
632 	spin_unlock(&tty->files_lock);
633 
634 	refs = tty_signal_session_leader(tty, exit_session);
635 	/* Account for the p->signal references we killed */
636 	while (refs--)
637 		tty_kref_put(tty);
638 
639 	tty_ldisc_hangup(tty, cons_filp != NULL);
640 
641 	spin_lock_irq(&tty->ctrl_lock);
642 	clear_bit(TTY_THROTTLED, &tty->flags);
643 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
644 	put_pid(tty->session);
645 	put_pid(tty->pgrp);
646 	tty->session = NULL;
647 	tty->pgrp = NULL;
648 	tty->ctrl_status = 0;
649 	spin_unlock_irq(&tty->ctrl_lock);
650 
651 	/*
652 	 * If one of the devices matches a console pointer, we
653 	 * cannot just call hangup() because that will cause
654 	 * tty->count and state->count to go out of sync.
655 	 * So we just call close() the right number of times.
656 	 */
657 	if (cons_filp) {
658 		if (tty->ops->close)
659 			for (n = 0; n < closecount; n++)
660 				tty->ops->close(tty, cons_filp);
661 	} else if (tty->ops->hangup)
662 		tty->ops->hangup(tty);
663 	/*
664 	 * We don't want to have driver/ldisc interactions beyond the ones
665 	 * we did here. The driver layer expects no calls after ->hangup()
666 	 * from the ldisc side, which is now guaranteed.
667 	 */
668 	set_bit(TTY_HUPPED, &tty->flags);
669 	clear_bit(TTY_HUPPING, &tty->flags);
670 	tty_unlock(tty);
671 
672 	if (f)
673 		fput(f);
674 }
675 
676 static void do_tty_hangup(struct work_struct *work)
677 {
678 	struct tty_struct *tty =
679 		container_of(work, struct tty_struct, hangup_work);
680 
681 	__tty_hangup(tty, 0);
682 }
683 
684 /**
685  *	tty_hangup		-	trigger a hangup event
686  *	@tty: tty to hangup
687  *
688  *	A carrier loss (virtual or otherwise) has occurred on this like
689  *	schedule a hangup sequence to run after this event.
690  */
691 
692 void tty_hangup(struct tty_struct *tty)
693 {
694 	tty_debug_hangup(tty, "hangup\n");
695 	schedule_work(&tty->hangup_work);
696 }
697 
698 EXPORT_SYMBOL(tty_hangup);
699 
700 /**
701  *	tty_vhangup		-	process vhangup
702  *	@tty: tty to hangup
703  *
704  *	The user has asked via system call for the terminal to be hung up.
705  *	We do this synchronously so that when the syscall returns the process
706  *	is complete. That guarantee is necessary for security reasons.
707  */
708 
709 void tty_vhangup(struct tty_struct *tty)
710 {
711 	tty_debug_hangup(tty, "vhangup\n");
712 	__tty_hangup(tty, 0);
713 }
714 
715 EXPORT_SYMBOL(tty_vhangup);
716 
717 
718 /**
719  *	tty_vhangup_self	-	process vhangup for own ctty
720  *
721  *	Perform a vhangup on the current controlling tty
722  */
723 
724 void tty_vhangup_self(void)
725 {
726 	struct tty_struct *tty;
727 
728 	tty = get_current_tty();
729 	if (tty) {
730 		tty_vhangup(tty);
731 		tty_kref_put(tty);
732 	}
733 }
734 
735 /**
736  *	tty_vhangup_session		-	hangup session leader exit
737  *	@tty: tty to hangup
738  *
739  *	The session leader is exiting and hanging up its controlling terminal.
740  *	Every process in the foreground process group is signalled SIGHUP.
741  *
742  *	We do this synchronously so that when the syscall returns the process
743  *	is complete. That guarantee is necessary for security reasons.
744  */
745 
746 void tty_vhangup_session(struct tty_struct *tty)
747 {
748 	tty_debug_hangup(tty, "session hangup\n");
749 	__tty_hangup(tty, 1);
750 }
751 
752 /**
753  *	tty_hung_up_p		-	was tty hung up
754  *	@filp: file pointer of tty
755  *
756  *	Return true if the tty has been subject to a vhangup or a carrier
757  *	loss
758  */
759 
760 int tty_hung_up_p(struct file *filp)
761 {
762 	return (filp && filp->f_op == &hung_up_tty_fops);
763 }
764 
765 EXPORT_SYMBOL(tty_hung_up_p);
766 
767 /**
768  *	stop_tty	-	propagate flow control
769  *	@tty: tty to stop
770  *
771  *	Perform flow control to the driver. May be called
772  *	on an already stopped device and will not re-call the driver
773  *	method.
774  *
775  *	This functionality is used by both the line disciplines for
776  *	halting incoming flow and by the driver. It may therefore be
777  *	called from any context, may be under the tty atomic_write_lock
778  *	but not always.
779  *
780  *	Locking:
781  *		flow_lock
782  */
783 
784 void __stop_tty(struct tty_struct *tty)
785 {
786 	if (tty->stopped)
787 		return;
788 	tty->stopped = 1;
789 	if (tty->ops->stop)
790 		tty->ops->stop(tty);
791 }
792 
793 void stop_tty(struct tty_struct *tty)
794 {
795 	unsigned long flags;
796 
797 	spin_lock_irqsave(&tty->flow_lock, flags);
798 	__stop_tty(tty);
799 	spin_unlock_irqrestore(&tty->flow_lock, flags);
800 }
801 EXPORT_SYMBOL(stop_tty);
802 
803 /**
804  *	start_tty	-	propagate flow control
805  *	@tty: tty to start
806  *
807  *	Start a tty that has been stopped if at all possible. If this
808  *	tty was previous stopped and is now being started, the driver
809  *	start method is invoked and the line discipline woken.
810  *
811  *	Locking:
812  *		flow_lock
813  */
814 
815 void __start_tty(struct tty_struct *tty)
816 {
817 	if (!tty->stopped || tty->flow_stopped)
818 		return;
819 	tty->stopped = 0;
820 	if (tty->ops->start)
821 		tty->ops->start(tty);
822 	tty_wakeup(tty);
823 }
824 
825 void start_tty(struct tty_struct *tty)
826 {
827 	unsigned long flags;
828 
829 	spin_lock_irqsave(&tty->flow_lock, flags);
830 	__start_tty(tty);
831 	spin_unlock_irqrestore(&tty->flow_lock, flags);
832 }
833 EXPORT_SYMBOL(start_tty);
834 
835 static void tty_update_time(struct timespec64 *time)
836 {
837 	time64_t sec = ktime_get_real_seconds();
838 
839 	/*
840 	 * We only care if the two values differ in anything other than the
841 	 * lower three bits (i.e every 8 seconds).  If so, then we can update
842 	 * the time of the tty device, otherwise it could be construded as a
843 	 * security leak to let userspace know the exact timing of the tty.
844 	 */
845 	if ((sec ^ time->tv_sec) & ~7)
846 		time->tv_sec = sec;
847 }
848 
849 /*
850  * Iterate on the ldisc ->read() function until we've gotten all
851  * the data the ldisc has for us.
852  *
853  * The "cookie" is something that the ldisc read function can fill
854  * in to let us know that there is more data to be had.
855  *
856  * We promise to continue to call the ldisc until it stops returning
857  * data or clears the cookie. The cookie may be something that the
858  * ldisc maintains state for and needs to free.
859  */
860 static int iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
861 		struct file *file, struct iov_iter *to)
862 {
863 	int retval = 0;
864 	void *cookie = NULL;
865 	unsigned long offset = 0;
866 	char kernel_buf[64];
867 	size_t count = iov_iter_count(to);
868 
869 	do {
870 		int size, copied;
871 
872 		size = count > sizeof(kernel_buf) ? sizeof(kernel_buf) : count;
873 		size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
874 		if (!size)
875 			break;
876 
877 		if (size < 0) {
878 			/* Did we have an earlier error (ie -EFAULT)? */
879 			if (retval)
880 				break;
881 			retval = size;
882 
883 			/*
884 			 * -EOVERFLOW means we didn't have enough space
885 			 * for a whole packet, and we shouldn't return
886 			 * a partial result.
887 			 */
888 			if (retval == -EOVERFLOW)
889 				offset = 0;
890 			break;
891 		}
892 
893 		copied = copy_to_iter(kernel_buf, size, to);
894 		offset += copied;
895 		count -= copied;
896 
897 		/*
898 		 * If the user copy failed, we still need to do another ->read()
899 		 * call if we had a cookie to let the ldisc clear up.
900 		 *
901 		 * But make sure size is zeroed.
902 		 */
903 		if (unlikely(copied != size)) {
904 			count = 0;
905 			retval = -EFAULT;
906 		}
907 	} while (cookie);
908 
909 	/* We always clear tty buffer in case they contained passwords */
910 	memzero_explicit(kernel_buf, sizeof(kernel_buf));
911 	return offset ? offset : retval;
912 }
913 
914 
915 /**
916  *	tty_read	-	read method for tty device files
917  *	@file: pointer to tty file
918  *	@buf: user buffer
919  *	@count: size of user buffer
920  *	@ppos: unused
921  *
922  *	Perform the read system call function on this terminal device. Checks
923  *	for hung up devices before calling the line discipline method.
924  *
925  *	Locking:
926  *		Locks the line discipline internally while needed. Multiple
927  *	read calls may be outstanding in parallel.
928  */
929 
930 static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
931 {
932 	int i;
933 	struct file *file = iocb->ki_filp;
934 	struct inode *inode = file_inode(file);
935 	struct tty_struct *tty = file_tty(file);
936 	struct tty_ldisc *ld;
937 
938 	if (tty_paranoia_check(tty, inode, "tty_read"))
939 		return -EIO;
940 	if (!tty || tty_io_error(tty))
941 		return -EIO;
942 
943 	/* We want to wait for the line discipline to sort out in this
944 	   situation */
945 	ld = tty_ldisc_ref_wait(tty);
946 	if (!ld)
947 		return hung_up_tty_read(iocb, to);
948 	i = -EIO;
949 	if (ld->ops->read)
950 		i = iterate_tty_read(ld, tty, file, to);
951 	tty_ldisc_deref(ld);
952 
953 	if (i > 0)
954 		tty_update_time(&inode->i_atime);
955 
956 	return i;
957 }
958 
959 static void tty_write_unlock(struct tty_struct *tty)
960 {
961 	mutex_unlock(&tty->atomic_write_lock);
962 	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
963 }
964 
965 static int tty_write_lock(struct tty_struct *tty, int ndelay)
966 {
967 	if (!mutex_trylock(&tty->atomic_write_lock)) {
968 		if (ndelay)
969 			return -EAGAIN;
970 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
971 			return -ERESTARTSYS;
972 	}
973 	return 0;
974 }
975 
976 /*
977  * Split writes up in sane blocksizes to avoid
978  * denial-of-service type attacks
979  */
980 static inline ssize_t do_tty_write(
981 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
982 	struct tty_struct *tty,
983 	struct file *file,
984 	struct iov_iter *from)
985 {
986 	size_t count = iov_iter_count(from);
987 	ssize_t ret, written = 0;
988 	unsigned int chunk;
989 
990 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
991 	if (ret < 0)
992 		return ret;
993 
994 	/*
995 	 * We chunk up writes into a temporary buffer. This
996 	 * simplifies low-level drivers immensely, since they
997 	 * don't have locking issues and user mode accesses.
998 	 *
999 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1000 	 * big chunk-size..
1001 	 *
1002 	 * The default chunk-size is 2kB, because the NTTY
1003 	 * layer has problems with bigger chunks. It will
1004 	 * claim to be able to handle more characters than
1005 	 * it actually does.
1006 	 *
1007 	 * FIXME: This can probably go away now except that 64K chunks
1008 	 * are too likely to fail unless switched to vmalloc...
1009 	 */
1010 	chunk = 2048;
1011 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1012 		chunk = 65536;
1013 	if (count < chunk)
1014 		chunk = count;
1015 
1016 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1017 	if (tty->write_cnt < chunk) {
1018 		unsigned char *buf_chunk;
1019 
1020 		if (chunk < 1024)
1021 			chunk = 1024;
1022 
1023 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1024 		if (!buf_chunk) {
1025 			ret = -ENOMEM;
1026 			goto out;
1027 		}
1028 		kfree(tty->write_buf);
1029 		tty->write_cnt = chunk;
1030 		tty->write_buf = buf_chunk;
1031 	}
1032 
1033 	/* Do the write .. */
1034 	for (;;) {
1035 		size_t size = count;
1036 		if (size > chunk)
1037 			size = chunk;
1038 
1039 		ret = -EFAULT;
1040 		if (copy_from_iter(tty->write_buf, size, from) != size)
1041 			break;
1042 
1043 		ret = write(tty, file, tty->write_buf, size);
1044 		if (ret <= 0)
1045 			break;
1046 
1047 		written += ret;
1048 		if (ret > size)
1049 			break;
1050 
1051 		/* FIXME! Have Al check this! */
1052 		if (ret != size)
1053 			iov_iter_revert(from, size-ret);
1054 
1055 		count -= ret;
1056 		if (!count)
1057 			break;
1058 		ret = -ERESTARTSYS;
1059 		if (signal_pending(current))
1060 			break;
1061 		cond_resched();
1062 	}
1063 	if (written) {
1064 		tty_update_time(&file_inode(file)->i_mtime);
1065 		ret = written;
1066 	}
1067 out:
1068 	tty_write_unlock(tty);
1069 	return ret;
1070 }
1071 
1072 /**
1073  * tty_write_message - write a message to a certain tty, not just the console.
1074  * @tty: the destination tty_struct
1075  * @msg: the message to write
1076  *
1077  * This is used for messages that need to be redirected to a specific tty.
1078  * We don't put it into the syslog queue right now maybe in the future if
1079  * really needed.
1080  *
1081  * We must still hold the BTM and test the CLOSING flag for the moment.
1082  */
1083 
1084 void tty_write_message(struct tty_struct *tty, char *msg)
1085 {
1086 	if (tty) {
1087 		mutex_lock(&tty->atomic_write_lock);
1088 		tty_lock(tty);
1089 		if (tty->ops->write && tty->count > 0)
1090 			tty->ops->write(tty, msg, strlen(msg));
1091 		tty_unlock(tty);
1092 		tty_write_unlock(tty);
1093 	}
1094 	return;
1095 }
1096 
1097 
1098 /**
1099  *	tty_write		-	write method for tty device file
1100  *	@file: tty file pointer
1101  *	@buf: user data to write
1102  *	@count: bytes to write
1103  *	@ppos: unused
1104  *
1105  *	Write data to a tty device via the line discipline.
1106  *
1107  *	Locking:
1108  *		Locks the line discipline as required
1109  *		Writes to the tty driver are serialized by the atomic_write_lock
1110  *	and are then processed in chunks to the device. The line discipline
1111  *	write method will not be invoked in parallel for each device.
1112  */
1113 
1114 static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
1115 {
1116 	struct tty_struct *tty = file_tty(file);
1117  	struct tty_ldisc *ld;
1118 	ssize_t ret;
1119 
1120 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1121 		return -EIO;
1122 	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1123 			return -EIO;
1124 	/* Short term debug to catch buggy drivers */
1125 	if (tty->ops->write_room == NULL)
1126 		tty_err(tty, "missing write_room method\n");
1127 	ld = tty_ldisc_ref_wait(tty);
1128 	if (!ld)
1129 		return hung_up_tty_write(iocb, from);
1130 	if (!ld->ops->write)
1131 		ret = -EIO;
1132 	else
1133 		ret = do_tty_write(ld->ops->write, tty, file, from);
1134 	tty_ldisc_deref(ld);
1135 	return ret;
1136 }
1137 
1138 static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1139 {
1140 	return file_tty_write(iocb->ki_filp, iocb, from);
1141 }
1142 
1143 ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1144 {
1145 	struct file *p = NULL;
1146 
1147 	spin_lock(&redirect_lock);
1148 	if (redirect)
1149 		p = get_file(redirect);
1150 	spin_unlock(&redirect_lock);
1151 
1152 	/*
1153 	 * We know the redirected tty is just another tty, we can can
1154 	 * call file_tty_write() directly with that file pointer.
1155 	 */
1156 	if (p) {
1157 		ssize_t res;
1158 		res = file_tty_write(p, iocb, iter);
1159 		fput(p);
1160 		return res;
1161 	}
1162 	return tty_write(iocb, iter);
1163 }
1164 
1165 /*
1166  *	tty_send_xchar	-	send priority character
1167  *
1168  *	Send a high priority character to the tty even if stopped
1169  *
1170  *	Locking: none for xchar method, write ordering for write method.
1171  */
1172 
1173 int tty_send_xchar(struct tty_struct *tty, char ch)
1174 {
1175 	int	was_stopped = tty->stopped;
1176 
1177 	if (tty->ops->send_xchar) {
1178 		down_read(&tty->termios_rwsem);
1179 		tty->ops->send_xchar(tty, ch);
1180 		up_read(&tty->termios_rwsem);
1181 		return 0;
1182 	}
1183 
1184 	if (tty_write_lock(tty, 0) < 0)
1185 		return -ERESTARTSYS;
1186 
1187 	down_read(&tty->termios_rwsem);
1188 	if (was_stopped)
1189 		start_tty(tty);
1190 	tty->ops->write(tty, &ch, 1);
1191 	if (was_stopped)
1192 		stop_tty(tty);
1193 	up_read(&tty->termios_rwsem);
1194 	tty_write_unlock(tty);
1195 	return 0;
1196 }
1197 
1198 /**
1199  *	pty_line_name	-	generate name for a pty
1200  *	@driver: the tty driver in use
1201  *	@index: the minor number
1202  *	@p: output buffer of at least 6 bytes
1203  *
1204  *	Generate a name from a driver reference and write it to the output
1205  *	buffer.
1206  *
1207  *	Locking: None
1208  */
1209 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1210 {
1211 	static const char ptychar[] = "pqrstuvwxyzabcde";
1212 	int i = index + driver->name_base;
1213 	/* ->name is initialized to "ttyp", but "tty" is expected */
1214 	sprintf(p, "%s%c%x",
1215 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1216 		ptychar[i >> 4 & 0xf], i & 0xf);
1217 }
1218 
1219 /**
1220  *	tty_line_name	-	generate name for a tty
1221  *	@driver: the tty driver in use
1222  *	@index: the minor number
1223  *	@p: output buffer of at least 7 bytes
1224  *
1225  *	Generate a name from a driver reference and write it to the output
1226  *	buffer.
1227  *
1228  *	Locking: None
1229  */
1230 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1231 {
1232 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1233 		return sprintf(p, "%s", driver->name);
1234 	else
1235 		return sprintf(p, "%s%d", driver->name,
1236 			       index + driver->name_base);
1237 }
1238 
1239 /**
1240  *	tty_driver_lookup_tty() - find an existing tty, if any
1241  *	@driver: the driver for the tty
1242  *	@file:   file object
1243  *	@idx:	 the minor number
1244  *
1245  *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1246  *	driver lookup() method returns an error.
1247  *
1248  *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1249  */
1250 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1251 		struct file *file, int idx)
1252 {
1253 	struct tty_struct *tty;
1254 
1255 	if (driver->ops->lookup)
1256 		if (!file)
1257 			tty = ERR_PTR(-EIO);
1258 		else
1259 			tty = driver->ops->lookup(driver, file, idx);
1260 	else
1261 		tty = driver->ttys[idx];
1262 
1263 	if (!IS_ERR(tty))
1264 		tty_kref_get(tty);
1265 	return tty;
1266 }
1267 
1268 /**
1269  *	tty_init_termios	-  helper for termios setup
1270  *	@tty: the tty to set up
1271  *
1272  *	Initialise the termios structure for this tty. This runs under
1273  *	the tty_mutex currently so we can be relaxed about ordering.
1274  */
1275 
1276 void tty_init_termios(struct tty_struct *tty)
1277 {
1278 	struct ktermios *tp;
1279 	int idx = tty->index;
1280 
1281 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1282 		tty->termios = tty->driver->init_termios;
1283 	else {
1284 		/* Check for lazy saved data */
1285 		tp = tty->driver->termios[idx];
1286 		if (tp != NULL) {
1287 			tty->termios = *tp;
1288 			tty->termios.c_line  = tty->driver->init_termios.c_line;
1289 		} else
1290 			tty->termios = tty->driver->init_termios;
1291 	}
1292 	/* Compatibility until drivers always set this */
1293 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1294 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1295 }
1296 EXPORT_SYMBOL_GPL(tty_init_termios);
1297 
1298 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1299 {
1300 	tty_init_termios(tty);
1301 	tty_driver_kref_get(driver);
1302 	tty->count++;
1303 	driver->ttys[tty->index] = tty;
1304 	return 0;
1305 }
1306 EXPORT_SYMBOL_GPL(tty_standard_install);
1307 
1308 /**
1309  *	tty_driver_install_tty() - install a tty entry in the driver
1310  *	@driver: the driver for the tty
1311  *	@tty: the tty
1312  *
1313  *	Install a tty object into the driver tables. The tty->index field
1314  *	will be set by the time this is called. This method is responsible
1315  *	for ensuring any need additional structures are allocated and
1316  *	configured.
1317  *
1318  *	Locking: tty_mutex for now
1319  */
1320 static int tty_driver_install_tty(struct tty_driver *driver,
1321 						struct tty_struct *tty)
1322 {
1323 	return driver->ops->install ? driver->ops->install(driver, tty) :
1324 		tty_standard_install(driver, tty);
1325 }
1326 
1327 /**
1328  *	tty_driver_remove_tty() - remove a tty from the driver tables
1329  *	@driver: the driver for the tty
1330  *	@tty: tty to remove
1331  *
1332  *	Remvoe a tty object from the driver tables. The tty->index field
1333  *	will be set by the time this is called.
1334  *
1335  *	Locking: tty_mutex for now
1336  */
1337 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1338 {
1339 	if (driver->ops->remove)
1340 		driver->ops->remove(driver, tty);
1341 	else
1342 		driver->ttys[tty->index] = NULL;
1343 }
1344 
1345 /**
1346  *	tty_reopen()	- fast re-open of an open tty
1347  *	@tty: the tty to open
1348  *
1349  *	Return 0 on success, -errno on error.
1350  *	Re-opens on master ptys are not allowed and return -EIO.
1351  *
1352  *	Locking: Caller must hold tty_lock
1353  */
1354 static int tty_reopen(struct tty_struct *tty)
1355 {
1356 	struct tty_driver *driver = tty->driver;
1357 	struct tty_ldisc *ld;
1358 	int retval = 0;
1359 
1360 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1361 	    driver->subtype == PTY_TYPE_MASTER)
1362 		return -EIO;
1363 
1364 	if (!tty->count)
1365 		return -EAGAIN;
1366 
1367 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1368 		return -EBUSY;
1369 
1370 	ld = tty_ldisc_ref_wait(tty);
1371 	if (ld) {
1372 		tty_ldisc_deref(ld);
1373 	} else {
1374 		retval = tty_ldisc_lock(tty, 5 * HZ);
1375 		if (retval)
1376 			return retval;
1377 
1378 		if (!tty->ldisc)
1379 			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1380 		tty_ldisc_unlock(tty);
1381 	}
1382 
1383 	if (retval == 0)
1384 		tty->count++;
1385 
1386 	return retval;
1387 }
1388 
1389 /**
1390  *	tty_init_dev		-	initialise a tty device
1391  *	@driver: tty driver we are opening a device on
1392  *	@idx: device index
1393  *
1394  *	Prepare a tty device. This may not be a "new" clean device but
1395  *	could also be an active device. The pty drivers require special
1396  *	handling because of this.
1397  *
1398  *	Locking:
1399  *		The function is called under the tty_mutex, which
1400  *	protects us from the tty struct or driver itself going away.
1401  *
1402  *	On exit the tty device has the line discipline attached and
1403  *	a reference count of 1. If a pair was created for pty/tty use
1404  *	and the other was a pty master then it too has a reference count of 1.
1405  *
1406  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1407  * failed open.  The new code protects the open with a mutex, so it's
1408  * really quite straightforward.  The mutex locking can probably be
1409  * relaxed for the (most common) case of reopening a tty.
1410  *
1411  *	Return: returned tty structure
1412  */
1413 
1414 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1415 {
1416 	struct tty_struct *tty;
1417 	int retval;
1418 
1419 	/*
1420 	 * First time open is complex, especially for PTY devices.
1421 	 * This code guarantees that either everything succeeds and the
1422 	 * TTY is ready for operation, or else the table slots are vacated
1423 	 * and the allocated memory released.  (Except that the termios
1424 	 * may be retained.)
1425 	 */
1426 
1427 	if (!try_module_get(driver->owner))
1428 		return ERR_PTR(-ENODEV);
1429 
1430 	tty = alloc_tty_struct(driver, idx);
1431 	if (!tty) {
1432 		retval = -ENOMEM;
1433 		goto err_module_put;
1434 	}
1435 
1436 	tty_lock(tty);
1437 	retval = tty_driver_install_tty(driver, tty);
1438 	if (retval < 0)
1439 		goto err_free_tty;
1440 
1441 	if (!tty->port)
1442 		tty->port = driver->ports[idx];
1443 
1444 	if (WARN_RATELIMIT(!tty->port,
1445 			"%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1446 			__func__, tty->driver->name)) {
1447 		retval = -EINVAL;
1448 		goto err_release_lock;
1449 	}
1450 
1451 	retval = tty_ldisc_lock(tty, 5 * HZ);
1452 	if (retval)
1453 		goto err_release_lock;
1454 	tty->port->itty = tty;
1455 
1456 	/*
1457 	 * Structures all installed ... call the ldisc open routines.
1458 	 * If we fail here just call release_tty to clean up.  No need
1459 	 * to decrement the use counts, as release_tty doesn't care.
1460 	 */
1461 	retval = tty_ldisc_setup(tty, tty->link);
1462 	if (retval)
1463 		goto err_release_tty;
1464 	tty_ldisc_unlock(tty);
1465 	/* Return the tty locked so that it cannot vanish under the caller */
1466 	return tty;
1467 
1468 err_free_tty:
1469 	tty_unlock(tty);
1470 	free_tty_struct(tty);
1471 err_module_put:
1472 	module_put(driver->owner);
1473 	return ERR_PTR(retval);
1474 
1475 	/* call the tty release_tty routine to clean out this slot */
1476 err_release_tty:
1477 	tty_ldisc_unlock(tty);
1478 	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1479 			     retval, idx);
1480 err_release_lock:
1481 	tty_unlock(tty);
1482 	release_tty(tty, idx);
1483 	return ERR_PTR(retval);
1484 }
1485 
1486 /**
1487  * tty_save_termios() - save tty termios data in driver table
1488  * @tty: tty whose termios data to save
1489  *
1490  * Locking: Caller guarantees serialisation with tty_init_termios().
1491  */
1492 void tty_save_termios(struct tty_struct *tty)
1493 {
1494 	struct ktermios *tp;
1495 	int idx = tty->index;
1496 
1497 	/* If the port is going to reset then it has no termios to save */
1498 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1499 		return;
1500 
1501 	/* Stash the termios data */
1502 	tp = tty->driver->termios[idx];
1503 	if (tp == NULL) {
1504 		tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1505 		if (tp == NULL)
1506 			return;
1507 		tty->driver->termios[idx] = tp;
1508 	}
1509 	*tp = tty->termios;
1510 }
1511 EXPORT_SYMBOL_GPL(tty_save_termios);
1512 
1513 /**
1514  *	tty_flush_works		-	flush all works of a tty/pty pair
1515  *	@tty: tty device to flush works for (or either end of a pty pair)
1516  *
1517  *	Sync flush all works belonging to @tty (and the 'other' tty).
1518  */
1519 static void tty_flush_works(struct tty_struct *tty)
1520 {
1521 	flush_work(&tty->SAK_work);
1522 	flush_work(&tty->hangup_work);
1523 	if (tty->link) {
1524 		flush_work(&tty->link->SAK_work);
1525 		flush_work(&tty->link->hangup_work);
1526 	}
1527 }
1528 
1529 /**
1530  *	release_one_tty		-	release tty structure memory
1531  *	@work: work of tty we are obliterating
1532  *
1533  *	Releases memory associated with a tty structure, and clears out the
1534  *	driver table slots. This function is called when a device is no longer
1535  *	in use. It also gets called when setup of a device fails.
1536  *
1537  *	Locking:
1538  *		takes the file list lock internally when working on the list
1539  *	of ttys that the driver keeps.
1540  *
1541  *	This method gets called from a work queue so that the driver private
1542  *	cleanup ops can sleep (needed for USB at least)
1543  */
1544 static void release_one_tty(struct work_struct *work)
1545 {
1546 	struct tty_struct *tty =
1547 		container_of(work, struct tty_struct, hangup_work);
1548 	struct tty_driver *driver = tty->driver;
1549 	struct module *owner = driver->owner;
1550 
1551 	if (tty->ops->cleanup)
1552 		tty->ops->cleanup(tty);
1553 
1554 	tty->magic = 0;
1555 	tty_driver_kref_put(driver);
1556 	module_put(owner);
1557 
1558 	spin_lock(&tty->files_lock);
1559 	list_del_init(&tty->tty_files);
1560 	spin_unlock(&tty->files_lock);
1561 
1562 	put_pid(tty->pgrp);
1563 	put_pid(tty->session);
1564 	free_tty_struct(tty);
1565 }
1566 
1567 static void queue_release_one_tty(struct kref *kref)
1568 {
1569 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1570 
1571 	/* The hangup queue is now free so we can reuse it rather than
1572 	   waste a chunk of memory for each port */
1573 	INIT_WORK(&tty->hangup_work, release_one_tty);
1574 	schedule_work(&tty->hangup_work);
1575 }
1576 
1577 /**
1578  *	tty_kref_put		-	release a tty kref
1579  *	@tty: tty device
1580  *
1581  *	Release a reference to a tty device and if need be let the kref
1582  *	layer destruct the object for us
1583  */
1584 
1585 void tty_kref_put(struct tty_struct *tty)
1586 {
1587 	if (tty)
1588 		kref_put(&tty->kref, queue_release_one_tty);
1589 }
1590 EXPORT_SYMBOL(tty_kref_put);
1591 
1592 /**
1593  *	release_tty		-	release tty structure memory
1594  *	@tty: tty device release
1595  *	@idx: index of the tty device release
1596  *
1597  *	Release both @tty and a possible linked partner (think pty pair),
1598  *	and decrement the refcount of the backing module.
1599  *
1600  *	Locking:
1601  *		tty_mutex
1602  *		takes the file list lock internally when working on the list
1603  *	of ttys that the driver keeps.
1604  *
1605  */
1606 static void release_tty(struct tty_struct *tty, int idx)
1607 {
1608 	/* This should always be true but check for the moment */
1609 	WARN_ON(tty->index != idx);
1610 	WARN_ON(!mutex_is_locked(&tty_mutex));
1611 	if (tty->ops->shutdown)
1612 		tty->ops->shutdown(tty);
1613 	tty_save_termios(tty);
1614 	tty_driver_remove_tty(tty->driver, tty);
1615 	if (tty->port)
1616 		tty->port->itty = NULL;
1617 	if (tty->link)
1618 		tty->link->port->itty = NULL;
1619 	if (tty->port)
1620 		tty_buffer_cancel_work(tty->port);
1621 	if (tty->link)
1622 		tty_buffer_cancel_work(tty->link->port);
1623 
1624 	tty_kref_put(tty->link);
1625 	tty_kref_put(tty);
1626 }
1627 
1628 /**
1629  *	tty_release_checks - check a tty before real release
1630  *	@tty: tty to check
1631  *	@idx: index of the tty
1632  *
1633  *	Performs some paranoid checking before true release of the @tty.
1634  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1635  */
1636 static int tty_release_checks(struct tty_struct *tty, int idx)
1637 {
1638 #ifdef TTY_PARANOIA_CHECK
1639 	if (idx < 0 || idx >= tty->driver->num) {
1640 		tty_debug(tty, "bad idx %d\n", idx);
1641 		return -1;
1642 	}
1643 
1644 	/* not much to check for devpts */
1645 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1646 		return 0;
1647 
1648 	if (tty != tty->driver->ttys[idx]) {
1649 		tty_debug(tty, "bad driver table[%d] = %p\n",
1650 			  idx, tty->driver->ttys[idx]);
1651 		return -1;
1652 	}
1653 	if (tty->driver->other) {
1654 		struct tty_struct *o_tty = tty->link;
1655 
1656 		if (o_tty != tty->driver->other->ttys[idx]) {
1657 			tty_debug(tty, "bad other table[%d] = %p\n",
1658 				  idx, tty->driver->other->ttys[idx]);
1659 			return -1;
1660 		}
1661 		if (o_tty->link != tty) {
1662 			tty_debug(tty, "bad link = %p\n", o_tty->link);
1663 			return -1;
1664 		}
1665 	}
1666 #endif
1667 	return 0;
1668 }
1669 
1670 /**
1671  *      tty_kclose      -       closes tty opened by tty_kopen
1672  *      @tty: tty device
1673  *
1674  *      Performs the final steps to release and free a tty device. It is the
1675  *      same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1676  *      flag on tty->port.
1677  */
1678 void tty_kclose(struct tty_struct *tty)
1679 {
1680 	/*
1681 	 * Ask the line discipline code to release its structures
1682 	 */
1683 	tty_ldisc_release(tty);
1684 
1685 	/* Wait for pending work before tty destruction commmences */
1686 	tty_flush_works(tty);
1687 
1688 	tty_debug_hangup(tty, "freeing structure\n");
1689 	/*
1690 	 * The release_tty function takes care of the details of clearing
1691 	 * the slots and preserving the termios structure.
1692 	 */
1693 	mutex_lock(&tty_mutex);
1694 	tty_port_set_kopened(tty->port, 0);
1695 	release_tty(tty, tty->index);
1696 	mutex_unlock(&tty_mutex);
1697 }
1698 EXPORT_SYMBOL_GPL(tty_kclose);
1699 
1700 /**
1701  *	tty_release_struct	-	release a tty struct
1702  *	@tty: tty device
1703  *	@idx: index of the tty
1704  *
1705  *	Performs the final steps to release and free a tty device. It is
1706  *	roughly the reverse of tty_init_dev.
1707  */
1708 void tty_release_struct(struct tty_struct *tty, int idx)
1709 {
1710 	/*
1711 	 * Ask the line discipline code to release its structures
1712 	 */
1713 	tty_ldisc_release(tty);
1714 
1715 	/* Wait for pending work before tty destruction commmences */
1716 	tty_flush_works(tty);
1717 
1718 	tty_debug_hangup(tty, "freeing structure\n");
1719 	/*
1720 	 * The release_tty function takes care of the details of clearing
1721 	 * the slots and preserving the termios structure.
1722 	 */
1723 	mutex_lock(&tty_mutex);
1724 	release_tty(tty, idx);
1725 	mutex_unlock(&tty_mutex);
1726 }
1727 EXPORT_SYMBOL_GPL(tty_release_struct);
1728 
1729 /**
1730  *	tty_release		-	vfs callback for close
1731  *	@inode: inode of tty
1732  *	@filp: file pointer for handle to tty
1733  *
1734  *	Called the last time each file handle is closed that references
1735  *	this tty. There may however be several such references.
1736  *
1737  *	Locking:
1738  *		Takes bkl. See tty_release_dev
1739  *
1740  * Even releasing the tty structures is a tricky business.. We have
1741  * to be very careful that the structures are all released at the
1742  * same time, as interrupts might otherwise get the wrong pointers.
1743  *
1744  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1745  * lead to double frees or releasing memory still in use.
1746  */
1747 
1748 int tty_release(struct inode *inode, struct file *filp)
1749 {
1750 	struct tty_struct *tty = file_tty(filp);
1751 	struct tty_struct *o_tty = NULL;
1752 	int	do_sleep, final;
1753 	int	idx;
1754 	long	timeout = 0;
1755 	int	once = 1;
1756 
1757 	if (tty_paranoia_check(tty, inode, __func__))
1758 		return 0;
1759 
1760 	tty_lock(tty);
1761 	check_tty_count(tty, __func__);
1762 
1763 	__tty_fasync(-1, filp, 0);
1764 
1765 	idx = tty->index;
1766 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1767 	    tty->driver->subtype == PTY_TYPE_MASTER)
1768 		o_tty = tty->link;
1769 
1770 	if (tty_release_checks(tty, idx)) {
1771 		tty_unlock(tty);
1772 		return 0;
1773 	}
1774 
1775 	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1776 
1777 	if (tty->ops->close)
1778 		tty->ops->close(tty, filp);
1779 
1780 	/* If tty is pty master, lock the slave pty (stable lock order) */
1781 	tty_lock_slave(o_tty);
1782 
1783 	/*
1784 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1785 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1786 	 * wait queues and kick everyone out _before_ actually starting to
1787 	 * close.  This ensures that we won't block while releasing the tty
1788 	 * structure.
1789 	 *
1790 	 * The test for the o_tty closing is necessary, since the master and
1791 	 * slave sides may close in any order.  If the slave side closes out
1792 	 * first, its count will be one, since the master side holds an open.
1793 	 * Thus this test wouldn't be triggered at the time the slave closed,
1794 	 * so we do it now.
1795 	 */
1796 	while (1) {
1797 		do_sleep = 0;
1798 
1799 		if (tty->count <= 1) {
1800 			if (waitqueue_active(&tty->read_wait)) {
1801 				wake_up_poll(&tty->read_wait, EPOLLIN);
1802 				do_sleep++;
1803 			}
1804 			if (waitqueue_active(&tty->write_wait)) {
1805 				wake_up_poll(&tty->write_wait, EPOLLOUT);
1806 				do_sleep++;
1807 			}
1808 		}
1809 		if (o_tty && o_tty->count <= 1) {
1810 			if (waitqueue_active(&o_tty->read_wait)) {
1811 				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1812 				do_sleep++;
1813 			}
1814 			if (waitqueue_active(&o_tty->write_wait)) {
1815 				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1816 				do_sleep++;
1817 			}
1818 		}
1819 		if (!do_sleep)
1820 			break;
1821 
1822 		if (once) {
1823 			once = 0;
1824 			tty_warn(tty, "read/write wait queue active!\n");
1825 		}
1826 		schedule_timeout_killable(timeout);
1827 		if (timeout < 120 * HZ)
1828 			timeout = 2 * timeout + 1;
1829 		else
1830 			timeout = MAX_SCHEDULE_TIMEOUT;
1831 	}
1832 
1833 	if (o_tty) {
1834 		if (--o_tty->count < 0) {
1835 			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1836 			o_tty->count = 0;
1837 		}
1838 	}
1839 	if (--tty->count < 0) {
1840 		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1841 		tty->count = 0;
1842 	}
1843 
1844 	/*
1845 	 * We've decremented tty->count, so we need to remove this file
1846 	 * descriptor off the tty->tty_files list; this serves two
1847 	 * purposes:
1848 	 *  - check_tty_count sees the correct number of file descriptors
1849 	 *    associated with this tty.
1850 	 *  - do_tty_hangup no longer sees this file descriptor as
1851 	 *    something that needs to be handled for hangups.
1852 	 */
1853 	tty_del_file(filp);
1854 
1855 	/*
1856 	 * Perform some housekeeping before deciding whether to return.
1857 	 *
1858 	 * If _either_ side is closing, make sure there aren't any
1859 	 * processes that still think tty or o_tty is their controlling
1860 	 * tty.
1861 	 */
1862 	if (!tty->count) {
1863 		read_lock(&tasklist_lock);
1864 		session_clear_tty(tty->session);
1865 		if (o_tty)
1866 			session_clear_tty(o_tty->session);
1867 		read_unlock(&tasklist_lock);
1868 	}
1869 
1870 	/* check whether both sides are closing ... */
1871 	final = !tty->count && !(o_tty && o_tty->count);
1872 
1873 	tty_unlock_slave(o_tty);
1874 	tty_unlock(tty);
1875 
1876 	/* At this point, the tty->count == 0 should ensure a dead tty
1877 	   cannot be re-opened by a racing opener */
1878 
1879 	if (!final)
1880 		return 0;
1881 
1882 	tty_debug_hangup(tty, "final close\n");
1883 
1884 	tty_release_struct(tty, idx);
1885 	return 0;
1886 }
1887 
1888 /**
1889  *	tty_open_current_tty - get locked tty of current task
1890  *	@device: device number
1891  *	@filp: file pointer to tty
1892  *	@return: locked tty of the current task iff @device is /dev/tty
1893  *
1894  *	Performs a re-open of the current task's controlling tty.
1895  *
1896  *	We cannot return driver and index like for the other nodes because
1897  *	devpts will not work then. It expects inodes to be from devpts FS.
1898  */
1899 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1900 {
1901 	struct tty_struct *tty;
1902 	int retval;
1903 
1904 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1905 		return NULL;
1906 
1907 	tty = get_current_tty();
1908 	if (!tty)
1909 		return ERR_PTR(-ENXIO);
1910 
1911 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1912 	/* noctty = 1; */
1913 	tty_lock(tty);
1914 	tty_kref_put(tty);	/* safe to drop the kref now */
1915 
1916 	retval = tty_reopen(tty);
1917 	if (retval < 0) {
1918 		tty_unlock(tty);
1919 		tty = ERR_PTR(retval);
1920 	}
1921 	return tty;
1922 }
1923 
1924 /**
1925  *	tty_lookup_driver - lookup a tty driver for a given device file
1926  *	@device: device number
1927  *	@filp: file pointer to tty
1928  *	@index: index for the device in the @return driver
1929  *	@return: driver for this inode (with increased refcount)
1930  *
1931  * 	If @return is not erroneous, the caller is responsible to decrement the
1932  * 	refcount by tty_driver_kref_put.
1933  *
1934  *	Locking: tty_mutex protects get_tty_driver
1935  */
1936 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1937 		int *index)
1938 {
1939 	struct tty_driver *driver = NULL;
1940 
1941 	switch (device) {
1942 #ifdef CONFIG_VT
1943 	case MKDEV(TTY_MAJOR, 0): {
1944 		extern struct tty_driver *console_driver;
1945 		driver = tty_driver_kref_get(console_driver);
1946 		*index = fg_console;
1947 		break;
1948 	}
1949 #endif
1950 	case MKDEV(TTYAUX_MAJOR, 1): {
1951 		struct tty_driver *console_driver = console_device(index);
1952 		if (console_driver) {
1953 			driver = tty_driver_kref_get(console_driver);
1954 			if (driver && filp) {
1955 				/* Don't let /dev/console block */
1956 				filp->f_flags |= O_NONBLOCK;
1957 				break;
1958 			}
1959 		}
1960 		if (driver)
1961 			tty_driver_kref_put(driver);
1962 		return ERR_PTR(-ENODEV);
1963 	}
1964 	default:
1965 		driver = get_tty_driver(device, index);
1966 		if (!driver)
1967 			return ERR_PTR(-ENODEV);
1968 		break;
1969 	}
1970 	return driver;
1971 }
1972 
1973 static struct tty_struct *tty_kopen(dev_t device, int shared)
1974 {
1975 	struct tty_struct *tty;
1976 	struct tty_driver *driver;
1977 	int index = -1;
1978 
1979 	mutex_lock(&tty_mutex);
1980 	driver = tty_lookup_driver(device, NULL, &index);
1981 	if (IS_ERR(driver)) {
1982 		mutex_unlock(&tty_mutex);
1983 		return ERR_CAST(driver);
1984 	}
1985 
1986 	/* check whether we're reopening an existing tty */
1987 	tty = tty_driver_lookup_tty(driver, NULL, index);
1988 	if (IS_ERR(tty) || shared)
1989 		goto out;
1990 
1991 	if (tty) {
1992 		/* drop kref from tty_driver_lookup_tty() */
1993 		tty_kref_put(tty);
1994 		tty = ERR_PTR(-EBUSY);
1995 	} else { /* tty_init_dev returns tty with the tty_lock held */
1996 		tty = tty_init_dev(driver, index);
1997 		if (IS_ERR(tty))
1998 			goto out;
1999 		tty_port_set_kopened(tty->port, 1);
2000 	}
2001 out:
2002 	mutex_unlock(&tty_mutex);
2003 	tty_driver_kref_put(driver);
2004 	return tty;
2005 }
2006 
2007 /**
2008  *	tty_kopen_exclusive	-	open a tty device for kernel
2009  *	@device: dev_t of device to open
2010  *
2011  *	Opens tty exclusively for kernel. Performs the driver lookup,
2012  *	makes sure it's not already opened and performs the first-time
2013  *	tty initialization.
2014  *
2015  *	Returns the locked initialized &tty_struct
2016  *
2017  *	Claims the global tty_mutex to serialize:
2018  *	  - concurrent first-time tty initialization
2019  *	  - concurrent tty driver removal w/ lookup
2020  *	  - concurrent tty removal from driver table
2021  */
2022 struct tty_struct *tty_kopen_exclusive(dev_t device)
2023 {
2024 	return tty_kopen(device, 0);
2025 }
2026 EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2027 
2028 /**
2029  *	tty_kopen_shared	-	open a tty device for shared in-kernel use
2030  *	@device: dev_t of device to open
2031  *
2032  *	Opens an already existing tty for in-kernel use. Compared to
2033  *	tty_kopen_exclusive() above it doesn't ensure to be the only user.
2034  *
2035  *	Locking is identical to tty_kopen() above.
2036  */
2037 struct tty_struct *tty_kopen_shared(dev_t device)
2038 {
2039 	return tty_kopen(device, 1);
2040 }
2041 EXPORT_SYMBOL_GPL(tty_kopen_shared);
2042 
2043 /**
2044  *	tty_open_by_driver	-	open a tty device
2045  *	@device: dev_t of device to open
2046  *	@filp: file pointer to tty
2047  *
2048  *	Performs the driver lookup, checks for a reopen, or otherwise
2049  *	performs the first-time tty initialization.
2050  *
2051  *	Returns the locked initialized or re-opened &tty_struct
2052  *
2053  *	Claims the global tty_mutex to serialize:
2054  *	  - concurrent first-time tty initialization
2055  *	  - concurrent tty driver removal w/ lookup
2056  *	  - concurrent tty removal from driver table
2057  */
2058 static struct tty_struct *tty_open_by_driver(dev_t device,
2059 					     struct file *filp)
2060 {
2061 	struct tty_struct *tty;
2062 	struct tty_driver *driver = NULL;
2063 	int index = -1;
2064 	int retval;
2065 
2066 	mutex_lock(&tty_mutex);
2067 	driver = tty_lookup_driver(device, filp, &index);
2068 	if (IS_ERR(driver)) {
2069 		mutex_unlock(&tty_mutex);
2070 		return ERR_CAST(driver);
2071 	}
2072 
2073 	/* check whether we're reopening an existing tty */
2074 	tty = tty_driver_lookup_tty(driver, filp, index);
2075 	if (IS_ERR(tty)) {
2076 		mutex_unlock(&tty_mutex);
2077 		goto out;
2078 	}
2079 
2080 	if (tty) {
2081 		if (tty_port_kopened(tty->port)) {
2082 			tty_kref_put(tty);
2083 			mutex_unlock(&tty_mutex);
2084 			tty = ERR_PTR(-EBUSY);
2085 			goto out;
2086 		}
2087 		mutex_unlock(&tty_mutex);
2088 		retval = tty_lock_interruptible(tty);
2089 		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2090 		if (retval) {
2091 			if (retval == -EINTR)
2092 				retval = -ERESTARTSYS;
2093 			tty = ERR_PTR(retval);
2094 			goto out;
2095 		}
2096 		retval = tty_reopen(tty);
2097 		if (retval < 0) {
2098 			tty_unlock(tty);
2099 			tty = ERR_PTR(retval);
2100 		}
2101 	} else { /* Returns with the tty_lock held for now */
2102 		tty = tty_init_dev(driver, index);
2103 		mutex_unlock(&tty_mutex);
2104 	}
2105 out:
2106 	tty_driver_kref_put(driver);
2107 	return tty;
2108 }
2109 
2110 /**
2111  *	tty_open		-	open a tty device
2112  *	@inode: inode of device file
2113  *	@filp: file pointer to tty
2114  *
2115  *	tty_open and tty_release keep up the tty count that contains the
2116  *	number of opens done on a tty. We cannot use the inode-count, as
2117  *	different inodes might point to the same tty.
2118  *
2119  *	Open-counting is needed for pty masters, as well as for keeping
2120  *	track of serial lines: DTR is dropped when the last close happens.
2121  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2122  *
2123  *	The termios state of a pty is reset on first open so that
2124  *	settings don't persist across reuse.
2125  *
2126  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2127  *		 tty->count should protect the rest.
2128  *		 ->siglock protects ->signal/->sighand
2129  *
2130  *	Note: the tty_unlock/lock cases without a ref are only safe due to
2131  *	tty_mutex
2132  */
2133 
2134 static int tty_open(struct inode *inode, struct file *filp)
2135 {
2136 	struct tty_struct *tty;
2137 	int noctty, retval;
2138 	dev_t device = inode->i_rdev;
2139 	unsigned saved_flags = filp->f_flags;
2140 
2141 	nonseekable_open(inode, filp);
2142 
2143 retry_open:
2144 	retval = tty_alloc_file(filp);
2145 	if (retval)
2146 		return -ENOMEM;
2147 
2148 	tty = tty_open_current_tty(device, filp);
2149 	if (!tty)
2150 		tty = tty_open_by_driver(device, filp);
2151 
2152 	if (IS_ERR(tty)) {
2153 		tty_free_file(filp);
2154 		retval = PTR_ERR(tty);
2155 		if (retval != -EAGAIN || signal_pending(current))
2156 			return retval;
2157 		schedule();
2158 		goto retry_open;
2159 	}
2160 
2161 	tty_add_file(tty, filp);
2162 
2163 	check_tty_count(tty, __func__);
2164 	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2165 
2166 	if (tty->ops->open)
2167 		retval = tty->ops->open(tty, filp);
2168 	else
2169 		retval = -ENODEV;
2170 	filp->f_flags = saved_flags;
2171 
2172 	if (retval) {
2173 		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2174 
2175 		tty_unlock(tty); /* need to call tty_release without BTM */
2176 		tty_release(inode, filp);
2177 		if (retval != -ERESTARTSYS)
2178 			return retval;
2179 
2180 		if (signal_pending(current))
2181 			return retval;
2182 
2183 		schedule();
2184 		/*
2185 		 * Need to reset f_op in case a hangup happened.
2186 		 */
2187 		if (tty_hung_up_p(filp))
2188 			filp->f_op = &tty_fops;
2189 		goto retry_open;
2190 	}
2191 	clear_bit(TTY_HUPPED, &tty->flags);
2192 
2193 	noctty = (filp->f_flags & O_NOCTTY) ||
2194 		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2195 		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2196 		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2197 		  tty->driver->subtype == PTY_TYPE_MASTER);
2198 	if (!noctty)
2199 		tty_open_proc_set_tty(filp, tty);
2200 	tty_unlock(tty);
2201 	return 0;
2202 }
2203 
2204 
2205 
2206 /**
2207  *	tty_poll	-	check tty status
2208  *	@filp: file being polled
2209  *	@wait: poll wait structures to update
2210  *
2211  *	Call the line discipline polling method to obtain the poll
2212  *	status of the device.
2213  *
2214  *	Locking: locks called line discipline but ldisc poll method
2215  *	may be re-entered freely by other callers.
2216  */
2217 
2218 static __poll_t tty_poll(struct file *filp, poll_table *wait)
2219 {
2220 	struct tty_struct *tty = file_tty(filp);
2221 	struct tty_ldisc *ld;
2222 	__poll_t ret = 0;
2223 
2224 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2225 		return 0;
2226 
2227 	ld = tty_ldisc_ref_wait(tty);
2228 	if (!ld)
2229 		return hung_up_tty_poll(filp, wait);
2230 	if (ld->ops->poll)
2231 		ret = ld->ops->poll(tty, filp, wait);
2232 	tty_ldisc_deref(ld);
2233 	return ret;
2234 }
2235 
2236 static int __tty_fasync(int fd, struct file *filp, int on)
2237 {
2238 	struct tty_struct *tty = file_tty(filp);
2239 	unsigned long flags;
2240 	int retval = 0;
2241 
2242 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2243 		goto out;
2244 
2245 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2246 	if (retval <= 0)
2247 		goto out;
2248 
2249 	if (on) {
2250 		enum pid_type type;
2251 		struct pid *pid;
2252 
2253 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2254 		if (tty->pgrp) {
2255 			pid = tty->pgrp;
2256 			type = PIDTYPE_PGID;
2257 		} else {
2258 			pid = task_pid(current);
2259 			type = PIDTYPE_TGID;
2260 		}
2261 		get_pid(pid);
2262 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2263 		__f_setown(filp, pid, type, 0);
2264 		put_pid(pid);
2265 		retval = 0;
2266 	}
2267 out:
2268 	return retval;
2269 }
2270 
2271 static int tty_fasync(int fd, struct file *filp, int on)
2272 {
2273 	struct tty_struct *tty = file_tty(filp);
2274 	int retval = -ENOTTY;
2275 
2276 	tty_lock(tty);
2277 	if (!tty_hung_up_p(filp))
2278 		retval = __tty_fasync(fd, filp, on);
2279 	tty_unlock(tty);
2280 
2281 	return retval;
2282 }
2283 
2284 /**
2285  *	tiocsti			-	fake input character
2286  *	@tty: tty to fake input into
2287  *	@p: pointer to character
2288  *
2289  *	Fake input to a tty device. Does the necessary locking and
2290  *	input management.
2291  *
2292  *	FIXME: does not honour flow control ??
2293  *
2294  *	Locking:
2295  *		Called functions take tty_ldiscs_lock
2296  *		current->signal->tty check is safe without locks
2297  *
2298  *	FIXME: may race normal receive processing
2299  */
2300 
2301 static int tiocsti(struct tty_struct *tty, char __user *p)
2302 {
2303 	char ch, mbz = 0;
2304 	struct tty_ldisc *ld;
2305 
2306 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2307 		return -EPERM;
2308 	if (get_user(ch, p))
2309 		return -EFAULT;
2310 	tty_audit_tiocsti(tty, ch);
2311 	ld = tty_ldisc_ref_wait(tty);
2312 	if (!ld)
2313 		return -EIO;
2314 	if (ld->ops->receive_buf)
2315 		ld->ops->receive_buf(tty, &ch, &mbz, 1);
2316 	tty_ldisc_deref(ld);
2317 	return 0;
2318 }
2319 
2320 /**
2321  *	tiocgwinsz		-	implement window query ioctl
2322  *	@tty: tty
2323  *	@arg: user buffer for result
2324  *
2325  *	Copies the kernel idea of the window size into the user buffer.
2326  *
2327  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2328  *		is consistent.
2329  */
2330 
2331 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2332 {
2333 	int err;
2334 
2335 	mutex_lock(&tty->winsize_mutex);
2336 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2337 	mutex_unlock(&tty->winsize_mutex);
2338 
2339 	return err ? -EFAULT: 0;
2340 }
2341 
2342 /**
2343  *	tty_do_resize		-	resize event
2344  *	@tty: tty being resized
2345  *	@ws: new dimensions
2346  *
2347  *	Update the termios variables and send the necessary signals to
2348  *	peform a terminal resize correctly
2349  */
2350 
2351 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2352 {
2353 	struct pid *pgrp;
2354 
2355 	/* Lock the tty */
2356 	mutex_lock(&tty->winsize_mutex);
2357 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2358 		goto done;
2359 
2360 	/* Signal the foreground process group */
2361 	pgrp = tty_get_pgrp(tty);
2362 	if (pgrp)
2363 		kill_pgrp(pgrp, SIGWINCH, 1);
2364 	put_pid(pgrp);
2365 
2366 	tty->winsize = *ws;
2367 done:
2368 	mutex_unlock(&tty->winsize_mutex);
2369 	return 0;
2370 }
2371 EXPORT_SYMBOL(tty_do_resize);
2372 
2373 /**
2374  *	tiocswinsz		-	implement window size set ioctl
2375  *	@tty: tty side of tty
2376  *	@arg: user buffer for result
2377  *
2378  *	Copies the user idea of the window size to the kernel. Traditionally
2379  *	this is just advisory information but for the Linux console it
2380  *	actually has driver level meaning and triggers a VC resize.
2381  *
2382  *	Locking:
2383  *		Driver dependent. The default do_resize method takes the
2384  *	tty termios mutex and ctrl_lock. The console takes its own lock
2385  *	then calls into the default method.
2386  */
2387 
2388 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2389 {
2390 	struct winsize tmp_ws;
2391 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2392 		return -EFAULT;
2393 
2394 	if (tty->ops->resize)
2395 		return tty->ops->resize(tty, &tmp_ws);
2396 	else
2397 		return tty_do_resize(tty, &tmp_ws);
2398 }
2399 
2400 /**
2401  *	tioccons	-	allow admin to move logical console
2402  *	@file: the file to become console
2403  *
2404  *	Allow the administrator to move the redirected console device
2405  *
2406  *	Locking: uses redirect_lock to guard the redirect information
2407  */
2408 
2409 static int tioccons(struct file *file)
2410 {
2411 	if (!capable(CAP_SYS_ADMIN))
2412 		return -EPERM;
2413 	if (file->f_op->write_iter == redirected_tty_write) {
2414 		struct file *f;
2415 		spin_lock(&redirect_lock);
2416 		f = redirect;
2417 		redirect = NULL;
2418 		spin_unlock(&redirect_lock);
2419 		if (f)
2420 			fput(f);
2421 		return 0;
2422 	}
2423 	if (file->f_op->write_iter != tty_write)
2424 		return -ENOTTY;
2425 	if (!(file->f_mode & FMODE_WRITE))
2426 		return -EBADF;
2427 	if (!(file->f_mode & FMODE_CAN_WRITE))
2428 		return -EINVAL;
2429 	spin_lock(&redirect_lock);
2430 	if (redirect) {
2431 		spin_unlock(&redirect_lock);
2432 		return -EBUSY;
2433 	}
2434 	redirect = get_file(file);
2435 	spin_unlock(&redirect_lock);
2436 	return 0;
2437 }
2438 
2439 /**
2440  *	tiocsetd	-	set line discipline
2441  *	@tty: tty device
2442  *	@p: pointer to user data
2443  *
2444  *	Set the line discipline according to user request.
2445  *
2446  *	Locking: see tty_set_ldisc, this function is just a helper
2447  */
2448 
2449 static int tiocsetd(struct tty_struct *tty, int __user *p)
2450 {
2451 	int disc;
2452 	int ret;
2453 
2454 	if (get_user(disc, p))
2455 		return -EFAULT;
2456 
2457 	ret = tty_set_ldisc(tty, disc);
2458 
2459 	return ret;
2460 }
2461 
2462 /**
2463  *	tiocgetd	-	get line discipline
2464  *	@tty: tty device
2465  *	@p: pointer to user data
2466  *
2467  *	Retrieves the line discipline id directly from the ldisc.
2468  *
2469  *	Locking: waits for ldisc reference (in case the line discipline
2470  *		is changing or the tty is being hungup)
2471  */
2472 
2473 static int tiocgetd(struct tty_struct *tty, int __user *p)
2474 {
2475 	struct tty_ldisc *ld;
2476 	int ret;
2477 
2478 	ld = tty_ldisc_ref_wait(tty);
2479 	if (!ld)
2480 		return -EIO;
2481 	ret = put_user(ld->ops->num, p);
2482 	tty_ldisc_deref(ld);
2483 	return ret;
2484 }
2485 
2486 /**
2487  *	send_break	-	performed time break
2488  *	@tty: device to break on
2489  *	@duration: timeout in mS
2490  *
2491  *	Perform a timed break on hardware that lacks its own driver level
2492  *	timed break functionality.
2493  *
2494  *	Locking:
2495  *		atomic_write_lock serializes
2496  *
2497  */
2498 
2499 static int send_break(struct tty_struct *tty, unsigned int duration)
2500 {
2501 	int retval;
2502 
2503 	if (tty->ops->break_ctl == NULL)
2504 		return 0;
2505 
2506 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2507 		retval = tty->ops->break_ctl(tty, duration);
2508 	else {
2509 		/* Do the work ourselves */
2510 		if (tty_write_lock(tty, 0) < 0)
2511 			return -EINTR;
2512 		retval = tty->ops->break_ctl(tty, -1);
2513 		if (retval)
2514 			goto out;
2515 		if (!signal_pending(current))
2516 			msleep_interruptible(duration);
2517 		retval = tty->ops->break_ctl(tty, 0);
2518 out:
2519 		tty_write_unlock(tty);
2520 		if (signal_pending(current))
2521 			retval = -EINTR;
2522 	}
2523 	return retval;
2524 }
2525 
2526 /**
2527  *	tty_tiocmget		-	get modem status
2528  *	@tty: tty device
2529  *	@p: pointer to result
2530  *
2531  *	Obtain the modem status bits from the tty driver if the feature
2532  *	is supported. Return -ENOTTY if it is not available.
2533  *
2534  *	Locking: none (up to the driver)
2535  */
2536 
2537 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2538 {
2539 	int retval = -ENOTTY;
2540 
2541 	if (tty->ops->tiocmget) {
2542 		retval = tty->ops->tiocmget(tty);
2543 
2544 		if (retval >= 0)
2545 			retval = put_user(retval, p);
2546 	}
2547 	return retval;
2548 }
2549 
2550 /**
2551  *	tty_tiocmset		-	set modem status
2552  *	@tty: tty device
2553  *	@cmd: command - clear bits, set bits or set all
2554  *	@p: pointer to desired bits
2555  *
2556  *	Set the modem status bits from the tty driver if the feature
2557  *	is supported. Return -ENOTTY if it is not available.
2558  *
2559  *	Locking: none (up to the driver)
2560  */
2561 
2562 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2563 	     unsigned __user *p)
2564 {
2565 	int retval;
2566 	unsigned int set, clear, val;
2567 
2568 	if (tty->ops->tiocmset == NULL)
2569 		return -ENOTTY;
2570 
2571 	retval = get_user(val, p);
2572 	if (retval)
2573 		return retval;
2574 	set = clear = 0;
2575 	switch (cmd) {
2576 	case TIOCMBIS:
2577 		set = val;
2578 		break;
2579 	case TIOCMBIC:
2580 		clear = val;
2581 		break;
2582 	case TIOCMSET:
2583 		set = val;
2584 		clear = ~val;
2585 		break;
2586 	}
2587 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2588 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2589 	return tty->ops->tiocmset(tty, set, clear);
2590 }
2591 
2592 /**
2593  *	tty_get_icount		-	get tty statistics
2594  *	@tty: tty device
2595  *	@icount: output parameter
2596  *
2597  *	Gets a copy of the tty's icount statistics.
2598  *
2599  *	Locking: none (up to the driver)
2600  */
2601 int tty_get_icount(struct tty_struct *tty,
2602 		   struct serial_icounter_struct *icount)
2603 {
2604 	memset(icount, 0, sizeof(*icount));
2605 
2606 	if (tty->ops->get_icount)
2607 		return tty->ops->get_icount(tty, icount);
2608 	else
2609 		return -ENOTTY;
2610 }
2611 EXPORT_SYMBOL_GPL(tty_get_icount);
2612 
2613 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2614 {
2615 	struct serial_icounter_struct icount;
2616 	int retval;
2617 
2618 	retval = tty_get_icount(tty, &icount);
2619 	if (retval != 0)
2620 		return retval;
2621 
2622 	if (copy_to_user(arg, &icount, sizeof(icount)))
2623 		return -EFAULT;
2624 	return 0;
2625 }
2626 
2627 static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss)
2628 {
2629 	char comm[TASK_COMM_LEN];
2630 	int flags;
2631 
2632 	flags = ss->flags & ASYNC_DEPRECATED;
2633 
2634 	if (flags)
2635 		pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2636 				__func__, get_task_comm(comm, current), flags);
2637 
2638 	if (!tty->ops->set_serial)
2639 		return -ENOTTY;
2640 
2641 	return tty->ops->set_serial(tty, ss);
2642 }
2643 
2644 static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2645 {
2646 	struct serial_struct v;
2647 
2648 	if (copy_from_user(&v, ss, sizeof(*ss)))
2649 		return -EFAULT;
2650 
2651 	return tty_set_serial(tty, &v);
2652 }
2653 
2654 static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2655 {
2656 	struct serial_struct v;
2657 	int err;
2658 
2659 	memset(&v, 0, sizeof(v));
2660 	if (!tty->ops->get_serial)
2661 		return -ENOTTY;
2662 	err = tty->ops->get_serial(tty, &v);
2663 	if (!err && copy_to_user(ss, &v, sizeof(v)))
2664 		err = -EFAULT;
2665 	return err;
2666 }
2667 
2668 /*
2669  * if pty, return the slave side (real_tty)
2670  * otherwise, return self
2671  */
2672 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2673 {
2674 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2675 	    tty->driver->subtype == PTY_TYPE_MASTER)
2676 		tty = tty->link;
2677 	return tty;
2678 }
2679 
2680 /*
2681  * Split this up, as gcc can choke on it otherwise..
2682  */
2683 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2684 {
2685 	struct tty_struct *tty = file_tty(file);
2686 	struct tty_struct *real_tty;
2687 	void __user *p = (void __user *)arg;
2688 	int retval;
2689 	struct tty_ldisc *ld;
2690 
2691 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2692 		return -EINVAL;
2693 
2694 	real_tty = tty_pair_get_tty(tty);
2695 
2696 	/*
2697 	 * Factor out some common prep work
2698 	 */
2699 	switch (cmd) {
2700 	case TIOCSETD:
2701 	case TIOCSBRK:
2702 	case TIOCCBRK:
2703 	case TCSBRK:
2704 	case TCSBRKP:
2705 		retval = tty_check_change(tty);
2706 		if (retval)
2707 			return retval;
2708 		if (cmd != TIOCCBRK) {
2709 			tty_wait_until_sent(tty, 0);
2710 			if (signal_pending(current))
2711 				return -EINTR;
2712 		}
2713 		break;
2714 	}
2715 
2716 	/*
2717 	 *	Now do the stuff.
2718 	 */
2719 	switch (cmd) {
2720 	case TIOCSTI:
2721 		return tiocsti(tty, p);
2722 	case TIOCGWINSZ:
2723 		return tiocgwinsz(real_tty, p);
2724 	case TIOCSWINSZ:
2725 		return tiocswinsz(real_tty, p);
2726 	case TIOCCONS:
2727 		return real_tty != tty ? -EINVAL : tioccons(file);
2728 	case TIOCEXCL:
2729 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2730 		return 0;
2731 	case TIOCNXCL:
2732 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2733 		return 0;
2734 	case TIOCGEXCL:
2735 	{
2736 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2737 		return put_user(excl, (int __user *)p);
2738 	}
2739 	case TIOCGETD:
2740 		return tiocgetd(tty, p);
2741 	case TIOCSETD:
2742 		return tiocsetd(tty, p);
2743 	case TIOCVHANGUP:
2744 		if (!capable(CAP_SYS_ADMIN))
2745 			return -EPERM;
2746 		tty_vhangup(tty);
2747 		return 0;
2748 	case TIOCGDEV:
2749 	{
2750 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2751 		return put_user(ret, (unsigned int __user *)p);
2752 	}
2753 	/*
2754 	 * Break handling
2755 	 */
2756 	case TIOCSBRK:	/* Turn break on, unconditionally */
2757 		if (tty->ops->break_ctl)
2758 			return tty->ops->break_ctl(tty, -1);
2759 		return 0;
2760 	case TIOCCBRK:	/* Turn break off, unconditionally */
2761 		if (tty->ops->break_ctl)
2762 			return tty->ops->break_ctl(tty, 0);
2763 		return 0;
2764 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2765 		/* non-zero arg means wait for all output data
2766 		 * to be sent (performed above) but don't send break.
2767 		 * This is used by the tcdrain() termios function.
2768 		 */
2769 		if (!arg)
2770 			return send_break(tty, 250);
2771 		return 0;
2772 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2773 		return send_break(tty, arg ? arg*100 : 250);
2774 
2775 	case TIOCMGET:
2776 		return tty_tiocmget(tty, p);
2777 	case TIOCMSET:
2778 	case TIOCMBIC:
2779 	case TIOCMBIS:
2780 		return tty_tiocmset(tty, cmd, p);
2781 	case TIOCGICOUNT:
2782 		return tty_tiocgicount(tty, p);
2783 	case TCFLSH:
2784 		switch (arg) {
2785 		case TCIFLUSH:
2786 		case TCIOFLUSH:
2787 		/* flush tty buffer and allow ldisc to process ioctl */
2788 			tty_buffer_flush(tty, NULL);
2789 			break;
2790 		}
2791 		break;
2792 	case TIOCSSERIAL:
2793 		return tty_tiocsserial(tty, p);
2794 	case TIOCGSERIAL:
2795 		return tty_tiocgserial(tty, p);
2796 	case TIOCGPTPEER:
2797 		/* Special because the struct file is needed */
2798 		return ptm_open_peer(file, tty, (int)arg);
2799 	default:
2800 		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2801 		if (retval != -ENOIOCTLCMD)
2802 			return retval;
2803 	}
2804 	if (tty->ops->ioctl) {
2805 		retval = tty->ops->ioctl(tty, cmd, arg);
2806 		if (retval != -ENOIOCTLCMD)
2807 			return retval;
2808 	}
2809 	ld = tty_ldisc_ref_wait(tty);
2810 	if (!ld)
2811 		return hung_up_tty_ioctl(file, cmd, arg);
2812 	retval = -EINVAL;
2813 	if (ld->ops->ioctl) {
2814 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2815 		if (retval == -ENOIOCTLCMD)
2816 			retval = -ENOTTY;
2817 	}
2818 	tty_ldisc_deref(ld);
2819 	return retval;
2820 }
2821 
2822 #ifdef CONFIG_COMPAT
2823 
2824 struct serial_struct32 {
2825 	compat_int_t    type;
2826 	compat_int_t    line;
2827 	compat_uint_t   port;
2828 	compat_int_t    irq;
2829 	compat_int_t    flags;
2830 	compat_int_t    xmit_fifo_size;
2831 	compat_int_t    custom_divisor;
2832 	compat_int_t    baud_base;
2833 	unsigned short  close_delay;
2834 	char    io_type;
2835 	char    reserved_char;
2836 	compat_int_t    hub6;
2837 	unsigned short  closing_wait; /* time to wait before closing */
2838 	unsigned short  closing_wait2; /* no longer used... */
2839 	compat_uint_t   iomem_base;
2840 	unsigned short  iomem_reg_shift;
2841 	unsigned int    port_high;
2842 	/* compat_ulong_t  iomap_base FIXME */
2843 	compat_int_t    reserved;
2844 };
2845 
2846 static int compat_tty_tiocsserial(struct tty_struct *tty,
2847 		struct serial_struct32 __user *ss)
2848 {
2849 	struct serial_struct32 v32;
2850 	struct serial_struct v;
2851 
2852 	if (copy_from_user(&v32, ss, sizeof(*ss)))
2853 		return -EFAULT;
2854 
2855 	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2856 	v.iomem_base = compat_ptr(v32.iomem_base);
2857 	v.iomem_reg_shift = v32.iomem_reg_shift;
2858 	v.port_high = v32.port_high;
2859 	v.iomap_base = 0;
2860 
2861 	return tty_set_serial(tty, &v);
2862 }
2863 
2864 static int compat_tty_tiocgserial(struct tty_struct *tty,
2865 			struct serial_struct32 __user *ss)
2866 {
2867 	struct serial_struct32 v32;
2868 	struct serial_struct v;
2869 	int err;
2870 
2871 	memset(&v, 0, sizeof(v));
2872 	memset(&v32, 0, sizeof(v32));
2873 
2874 	if (!tty->ops->get_serial)
2875 		return -ENOTTY;
2876 	err = tty->ops->get_serial(tty, &v);
2877 	if (!err) {
2878 		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2879 		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2880 			0xfffffff : ptr_to_compat(v.iomem_base);
2881 		v32.iomem_reg_shift = v.iomem_reg_shift;
2882 		v32.port_high = v.port_high;
2883 		if (copy_to_user(ss, &v32, sizeof(v32)))
2884 			err = -EFAULT;
2885 	}
2886 	return err;
2887 }
2888 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2889 				unsigned long arg)
2890 {
2891 	struct tty_struct *tty = file_tty(file);
2892 	struct tty_ldisc *ld;
2893 	int retval = -ENOIOCTLCMD;
2894 
2895 	switch (cmd) {
2896 	case TIOCOUTQ:
2897 	case TIOCSTI:
2898 	case TIOCGWINSZ:
2899 	case TIOCSWINSZ:
2900 	case TIOCGEXCL:
2901 	case TIOCGETD:
2902 	case TIOCSETD:
2903 	case TIOCGDEV:
2904 	case TIOCMGET:
2905 	case TIOCMSET:
2906 	case TIOCMBIC:
2907 	case TIOCMBIS:
2908 	case TIOCGICOUNT:
2909 	case TIOCGPGRP:
2910 	case TIOCSPGRP:
2911 	case TIOCGSID:
2912 	case TIOCSERGETLSR:
2913 	case TIOCGRS485:
2914 	case TIOCSRS485:
2915 #ifdef TIOCGETP
2916 	case TIOCGETP:
2917 	case TIOCSETP:
2918 	case TIOCSETN:
2919 #endif
2920 #ifdef TIOCGETC
2921 	case TIOCGETC:
2922 	case TIOCSETC:
2923 #endif
2924 #ifdef TIOCGLTC
2925 	case TIOCGLTC:
2926 	case TIOCSLTC:
2927 #endif
2928 	case TCSETSF:
2929 	case TCSETSW:
2930 	case TCSETS:
2931 	case TCGETS:
2932 #ifdef TCGETS2
2933 	case TCGETS2:
2934 	case TCSETSF2:
2935 	case TCSETSW2:
2936 	case TCSETS2:
2937 #endif
2938 	case TCGETA:
2939 	case TCSETAF:
2940 	case TCSETAW:
2941 	case TCSETA:
2942 	case TIOCGLCKTRMIOS:
2943 	case TIOCSLCKTRMIOS:
2944 #ifdef TCGETX
2945 	case TCGETX:
2946 	case TCSETX:
2947 	case TCSETXW:
2948 	case TCSETXF:
2949 #endif
2950 	case TIOCGSOFTCAR:
2951 	case TIOCSSOFTCAR:
2952 
2953 	case PPPIOCGCHAN:
2954 	case PPPIOCGUNIT:
2955 		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2956 	case TIOCCONS:
2957 	case TIOCEXCL:
2958 	case TIOCNXCL:
2959 	case TIOCVHANGUP:
2960 	case TIOCSBRK:
2961 	case TIOCCBRK:
2962 	case TCSBRK:
2963 	case TCSBRKP:
2964 	case TCFLSH:
2965 	case TIOCGPTPEER:
2966 	case TIOCNOTTY:
2967 	case TIOCSCTTY:
2968 	case TCXONC:
2969 	case TIOCMIWAIT:
2970 	case TIOCSERCONFIG:
2971 		return tty_ioctl(file, cmd, arg);
2972 	}
2973 
2974 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2975 		return -EINVAL;
2976 
2977 	switch (cmd) {
2978 	case TIOCSSERIAL:
2979 		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2980 	case TIOCGSERIAL:
2981 		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2982 	}
2983 	if (tty->ops->compat_ioctl) {
2984 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2985 		if (retval != -ENOIOCTLCMD)
2986 			return retval;
2987 	}
2988 
2989 	ld = tty_ldisc_ref_wait(tty);
2990 	if (!ld)
2991 		return hung_up_tty_compat_ioctl(file, cmd, arg);
2992 	if (ld->ops->compat_ioctl)
2993 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2994 	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2995 		retval = ld->ops->ioctl(tty, file,
2996 				(unsigned long)compat_ptr(cmd), arg);
2997 	tty_ldisc_deref(ld);
2998 
2999 	return retval;
3000 }
3001 #endif
3002 
3003 static int this_tty(const void *t, struct file *file, unsigned fd)
3004 {
3005 	if (likely(file->f_op->read_iter != tty_read))
3006 		return 0;
3007 	return file_tty(file) != t ? 0 : fd + 1;
3008 }
3009 
3010 /*
3011  * This implements the "Secure Attention Key" ---  the idea is to
3012  * prevent trojan horses by killing all processes associated with this
3013  * tty when the user hits the "Secure Attention Key".  Required for
3014  * super-paranoid applications --- see the Orange Book for more details.
3015  *
3016  * This code could be nicer; ideally it should send a HUP, wait a few
3017  * seconds, then send a INT, and then a KILL signal.  But you then
3018  * have to coordinate with the init process, since all processes associated
3019  * with the current tty must be dead before the new getty is allowed
3020  * to spawn.
3021  *
3022  * Now, if it would be correct ;-/ The current code has a nasty hole -
3023  * it doesn't catch files in flight. We may send the descriptor to ourselves
3024  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3025  *
3026  * Nasty bug: do_SAK is being called in interrupt context.  This can
3027  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3028  */
3029 void __do_SAK(struct tty_struct *tty)
3030 {
3031 #ifdef TTY_SOFT_SAK
3032 	tty_hangup(tty);
3033 #else
3034 	struct task_struct *g, *p;
3035 	struct pid *session;
3036 	int		i;
3037 	unsigned long flags;
3038 
3039 	if (!tty)
3040 		return;
3041 
3042 	spin_lock_irqsave(&tty->ctrl_lock, flags);
3043 	session = get_pid(tty->session);
3044 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3045 
3046 	tty_ldisc_flush(tty);
3047 
3048 	tty_driver_flush_buffer(tty);
3049 
3050 	read_lock(&tasklist_lock);
3051 	/* Kill the entire session */
3052 	do_each_pid_task(session, PIDTYPE_SID, p) {
3053 		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3054 			   task_pid_nr(p), p->comm);
3055 		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3056 	} while_each_pid_task(session, PIDTYPE_SID, p);
3057 
3058 	/* Now kill any processes that happen to have the tty open */
3059 	do_each_thread(g, p) {
3060 		if (p->signal->tty == tty) {
3061 			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3062 				   task_pid_nr(p), p->comm);
3063 			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3064 			continue;
3065 		}
3066 		task_lock(p);
3067 		i = iterate_fd(p->files, 0, this_tty, tty);
3068 		if (i != 0) {
3069 			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3070 				   task_pid_nr(p), p->comm, i - 1);
3071 			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3072 		}
3073 		task_unlock(p);
3074 	} while_each_thread(g, p);
3075 	read_unlock(&tasklist_lock);
3076 	put_pid(session);
3077 #endif
3078 }
3079 
3080 static void do_SAK_work(struct work_struct *work)
3081 {
3082 	struct tty_struct *tty =
3083 		container_of(work, struct tty_struct, SAK_work);
3084 	__do_SAK(tty);
3085 }
3086 
3087 /*
3088  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3089  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3090  * the values which we write to it will be identical to the values which it
3091  * already has. --akpm
3092  */
3093 void do_SAK(struct tty_struct *tty)
3094 {
3095 	if (!tty)
3096 		return;
3097 	schedule_work(&tty->SAK_work);
3098 }
3099 
3100 EXPORT_SYMBOL(do_SAK);
3101 
3102 /* Must put_device() after it's unused! */
3103 static struct device *tty_get_device(struct tty_struct *tty)
3104 {
3105 	dev_t devt = tty_devnum(tty);
3106 	return class_find_device_by_devt(tty_class, devt);
3107 }
3108 
3109 
3110 /*
3111  *	alloc_tty_struct
3112  *
3113  *	This subroutine allocates and initializes a tty structure.
3114  *
3115  *	Locking: none - tty in question is not exposed at this point
3116  */
3117 
3118 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3119 {
3120 	struct tty_struct *tty;
3121 
3122 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3123 	if (!tty)
3124 		return NULL;
3125 
3126 	kref_init(&tty->kref);
3127 	tty->magic = TTY_MAGIC;
3128 	if (tty_ldisc_init(tty)) {
3129 		kfree(tty);
3130 		return NULL;
3131 	}
3132 	tty->session = NULL;
3133 	tty->pgrp = NULL;
3134 	mutex_init(&tty->legacy_mutex);
3135 	mutex_init(&tty->throttle_mutex);
3136 	init_rwsem(&tty->termios_rwsem);
3137 	mutex_init(&tty->winsize_mutex);
3138 	init_ldsem(&tty->ldisc_sem);
3139 	init_waitqueue_head(&tty->write_wait);
3140 	init_waitqueue_head(&tty->read_wait);
3141 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3142 	mutex_init(&tty->atomic_write_lock);
3143 	spin_lock_init(&tty->ctrl_lock);
3144 	spin_lock_init(&tty->flow_lock);
3145 	spin_lock_init(&tty->files_lock);
3146 	INIT_LIST_HEAD(&tty->tty_files);
3147 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3148 
3149 	tty->driver = driver;
3150 	tty->ops = driver->ops;
3151 	tty->index = idx;
3152 	tty_line_name(driver, idx, tty->name);
3153 	tty->dev = tty_get_device(tty);
3154 
3155 	return tty;
3156 }
3157 
3158 /**
3159  *	tty_put_char	-	write one character to a tty
3160  *	@tty: tty
3161  *	@ch: character
3162  *
3163  *	Write one byte to the tty using the provided put_char method
3164  *	if present. Returns the number of characters successfully output.
3165  *
3166  *	Note: the specific put_char operation in the driver layer may go
3167  *	away soon. Don't call it directly, use this method
3168  */
3169 
3170 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3171 {
3172 	if (tty->ops->put_char)
3173 		return tty->ops->put_char(tty, ch);
3174 	return tty->ops->write(tty, &ch, 1);
3175 }
3176 EXPORT_SYMBOL_GPL(tty_put_char);
3177 
3178 struct class *tty_class;
3179 
3180 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3181 		unsigned int index, unsigned int count)
3182 {
3183 	int err;
3184 
3185 	/* init here, since reused cdevs cause crashes */
3186 	driver->cdevs[index] = cdev_alloc();
3187 	if (!driver->cdevs[index])
3188 		return -ENOMEM;
3189 	driver->cdevs[index]->ops = &tty_fops;
3190 	driver->cdevs[index]->owner = driver->owner;
3191 	err = cdev_add(driver->cdevs[index], dev, count);
3192 	if (err)
3193 		kobject_put(&driver->cdevs[index]->kobj);
3194 	return err;
3195 }
3196 
3197 /**
3198  *	tty_register_device - register a tty device
3199  *	@driver: the tty driver that describes the tty device
3200  *	@index: the index in the tty driver for this tty device
3201  *	@device: a struct device that is associated with this tty device.
3202  *		This field is optional, if there is no known struct device
3203  *		for this tty device it can be set to NULL safely.
3204  *
3205  *	Returns a pointer to the struct device for this tty device
3206  *	(or ERR_PTR(-EFOO) on error).
3207  *
3208  *	This call is required to be made to register an individual tty device
3209  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3210  *	that bit is not set, this function should not be called by a tty
3211  *	driver.
3212  *
3213  *	Locking: ??
3214  */
3215 
3216 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3217 				   struct device *device)
3218 {
3219 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3220 }
3221 EXPORT_SYMBOL(tty_register_device);
3222 
3223 static void tty_device_create_release(struct device *dev)
3224 {
3225 	dev_dbg(dev, "releasing...\n");
3226 	kfree(dev);
3227 }
3228 
3229 /**
3230  *	tty_register_device_attr - register a tty device
3231  *	@driver: the tty driver that describes the tty device
3232  *	@index: the index in the tty driver for this tty device
3233  *	@device: a struct device that is associated with this tty device.
3234  *		This field is optional, if there is no known struct device
3235  *		for this tty device it can be set to NULL safely.
3236  *	@drvdata: Driver data to be set to device.
3237  *	@attr_grp: Attribute group to be set on device.
3238  *
3239  *	Returns a pointer to the struct device for this tty device
3240  *	(or ERR_PTR(-EFOO) on error).
3241  *
3242  *	This call is required to be made to register an individual tty device
3243  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3244  *	that bit is not set, this function should not be called by a tty
3245  *	driver.
3246  *
3247  *	Locking: ??
3248  */
3249 struct device *tty_register_device_attr(struct tty_driver *driver,
3250 				   unsigned index, struct device *device,
3251 				   void *drvdata,
3252 				   const struct attribute_group **attr_grp)
3253 {
3254 	char name[64];
3255 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3256 	struct ktermios *tp;
3257 	struct device *dev;
3258 	int retval;
3259 
3260 	if (index >= driver->num) {
3261 		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3262 		       driver->name, index);
3263 		return ERR_PTR(-EINVAL);
3264 	}
3265 
3266 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3267 		pty_line_name(driver, index, name);
3268 	else
3269 		tty_line_name(driver, index, name);
3270 
3271 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3272 	if (!dev)
3273 		return ERR_PTR(-ENOMEM);
3274 
3275 	dev->devt = devt;
3276 	dev->class = tty_class;
3277 	dev->parent = device;
3278 	dev->release = tty_device_create_release;
3279 	dev_set_name(dev, "%s", name);
3280 	dev->groups = attr_grp;
3281 	dev_set_drvdata(dev, drvdata);
3282 
3283 	dev_set_uevent_suppress(dev, 1);
3284 
3285 	retval = device_register(dev);
3286 	if (retval)
3287 		goto err_put;
3288 
3289 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3290 		/*
3291 		 * Free any saved termios data so that the termios state is
3292 		 * reset when reusing a minor number.
3293 		 */
3294 		tp = driver->termios[index];
3295 		if (tp) {
3296 			driver->termios[index] = NULL;
3297 			kfree(tp);
3298 		}
3299 
3300 		retval = tty_cdev_add(driver, devt, index, 1);
3301 		if (retval)
3302 			goto err_del;
3303 	}
3304 
3305 	dev_set_uevent_suppress(dev, 0);
3306 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3307 
3308 	return dev;
3309 
3310 err_del:
3311 	device_del(dev);
3312 err_put:
3313 	put_device(dev);
3314 
3315 	return ERR_PTR(retval);
3316 }
3317 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3318 
3319 /**
3320  * 	tty_unregister_device - unregister a tty device
3321  * 	@driver: the tty driver that describes the tty device
3322  * 	@index: the index in the tty driver for this tty device
3323  *
3324  * 	If a tty device is registered with a call to tty_register_device() then
3325  *	this function must be called when the tty device is gone.
3326  *
3327  *	Locking: ??
3328  */
3329 
3330 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3331 {
3332 	device_destroy(tty_class,
3333 		MKDEV(driver->major, driver->minor_start) + index);
3334 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3335 		cdev_del(driver->cdevs[index]);
3336 		driver->cdevs[index] = NULL;
3337 	}
3338 }
3339 EXPORT_SYMBOL(tty_unregister_device);
3340 
3341 /**
3342  * __tty_alloc_driver -- allocate tty driver
3343  * @lines: count of lines this driver can handle at most
3344  * @owner: module which is responsible for this driver
3345  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3346  *
3347  * This should not be called directly, some of the provided macros should be
3348  * used instead. Use IS_ERR and friends on @retval.
3349  */
3350 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3351 		unsigned long flags)
3352 {
3353 	struct tty_driver *driver;
3354 	unsigned int cdevs = 1;
3355 	int err;
3356 
3357 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3358 		return ERR_PTR(-EINVAL);
3359 
3360 	driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3361 	if (!driver)
3362 		return ERR_PTR(-ENOMEM);
3363 
3364 	kref_init(&driver->kref);
3365 	driver->magic = TTY_DRIVER_MAGIC;
3366 	driver->num = lines;
3367 	driver->owner = owner;
3368 	driver->flags = flags;
3369 
3370 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3371 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3372 				GFP_KERNEL);
3373 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3374 				GFP_KERNEL);
3375 		if (!driver->ttys || !driver->termios) {
3376 			err = -ENOMEM;
3377 			goto err_free_all;
3378 		}
3379 	}
3380 
3381 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3382 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3383 				GFP_KERNEL);
3384 		if (!driver->ports) {
3385 			err = -ENOMEM;
3386 			goto err_free_all;
3387 		}
3388 		cdevs = lines;
3389 	}
3390 
3391 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3392 	if (!driver->cdevs) {
3393 		err = -ENOMEM;
3394 		goto err_free_all;
3395 	}
3396 
3397 	return driver;
3398 err_free_all:
3399 	kfree(driver->ports);
3400 	kfree(driver->ttys);
3401 	kfree(driver->termios);
3402 	kfree(driver->cdevs);
3403 	kfree(driver);
3404 	return ERR_PTR(err);
3405 }
3406 EXPORT_SYMBOL(__tty_alloc_driver);
3407 
3408 static void destruct_tty_driver(struct kref *kref)
3409 {
3410 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3411 	int i;
3412 	struct ktermios *tp;
3413 
3414 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3415 		for (i = 0; i < driver->num; i++) {
3416 			tp = driver->termios[i];
3417 			if (tp) {
3418 				driver->termios[i] = NULL;
3419 				kfree(tp);
3420 			}
3421 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3422 				tty_unregister_device(driver, i);
3423 		}
3424 		proc_tty_unregister_driver(driver);
3425 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3426 			cdev_del(driver->cdevs[0]);
3427 	}
3428 	kfree(driver->cdevs);
3429 	kfree(driver->ports);
3430 	kfree(driver->termios);
3431 	kfree(driver->ttys);
3432 	kfree(driver);
3433 }
3434 
3435 void tty_driver_kref_put(struct tty_driver *driver)
3436 {
3437 	kref_put(&driver->kref, destruct_tty_driver);
3438 }
3439 EXPORT_SYMBOL(tty_driver_kref_put);
3440 
3441 void tty_set_operations(struct tty_driver *driver,
3442 			const struct tty_operations *op)
3443 {
3444 	driver->ops = op;
3445 };
3446 EXPORT_SYMBOL(tty_set_operations);
3447 
3448 void put_tty_driver(struct tty_driver *d)
3449 {
3450 	tty_driver_kref_put(d);
3451 }
3452 EXPORT_SYMBOL(put_tty_driver);
3453 
3454 /*
3455  * Called by a tty driver to register itself.
3456  */
3457 int tty_register_driver(struct tty_driver *driver)
3458 {
3459 	int error;
3460 	int i;
3461 	dev_t dev;
3462 	struct device *d;
3463 
3464 	if (!driver->major) {
3465 		error = alloc_chrdev_region(&dev, driver->minor_start,
3466 						driver->num, driver->name);
3467 		if (!error) {
3468 			driver->major = MAJOR(dev);
3469 			driver->minor_start = MINOR(dev);
3470 		}
3471 	} else {
3472 		dev = MKDEV(driver->major, driver->minor_start);
3473 		error = register_chrdev_region(dev, driver->num, driver->name);
3474 	}
3475 	if (error < 0)
3476 		goto err;
3477 
3478 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3479 		error = tty_cdev_add(driver, dev, 0, driver->num);
3480 		if (error)
3481 			goto err_unreg_char;
3482 	}
3483 
3484 	mutex_lock(&tty_mutex);
3485 	list_add(&driver->tty_drivers, &tty_drivers);
3486 	mutex_unlock(&tty_mutex);
3487 
3488 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3489 		for (i = 0; i < driver->num; i++) {
3490 			d = tty_register_device(driver, i, NULL);
3491 			if (IS_ERR(d)) {
3492 				error = PTR_ERR(d);
3493 				goto err_unreg_devs;
3494 			}
3495 		}
3496 	}
3497 	proc_tty_register_driver(driver);
3498 	driver->flags |= TTY_DRIVER_INSTALLED;
3499 	return 0;
3500 
3501 err_unreg_devs:
3502 	for (i--; i >= 0; i--)
3503 		tty_unregister_device(driver, i);
3504 
3505 	mutex_lock(&tty_mutex);
3506 	list_del(&driver->tty_drivers);
3507 	mutex_unlock(&tty_mutex);
3508 
3509 err_unreg_char:
3510 	unregister_chrdev_region(dev, driver->num);
3511 err:
3512 	return error;
3513 }
3514 EXPORT_SYMBOL(tty_register_driver);
3515 
3516 /*
3517  * Called by a tty driver to unregister itself.
3518  */
3519 void tty_unregister_driver(struct tty_driver *driver)
3520 {
3521 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3522 				driver->num);
3523 	mutex_lock(&tty_mutex);
3524 	list_del(&driver->tty_drivers);
3525 	mutex_unlock(&tty_mutex);
3526 }
3527 EXPORT_SYMBOL(tty_unregister_driver);
3528 
3529 dev_t tty_devnum(struct tty_struct *tty)
3530 {
3531 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3532 }
3533 EXPORT_SYMBOL(tty_devnum);
3534 
3535 void tty_default_fops(struct file_operations *fops)
3536 {
3537 	*fops = tty_fops;
3538 }
3539 
3540 static char *tty_devnode(struct device *dev, umode_t *mode)
3541 {
3542 	if (!mode)
3543 		return NULL;
3544 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3545 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3546 		*mode = 0666;
3547 	return NULL;
3548 }
3549 
3550 static int __init tty_class_init(void)
3551 {
3552 	tty_class = class_create(THIS_MODULE, "tty");
3553 	if (IS_ERR(tty_class))
3554 		return PTR_ERR(tty_class);
3555 	tty_class->devnode = tty_devnode;
3556 	return 0;
3557 }
3558 
3559 postcore_initcall(tty_class_init);
3560 
3561 /* 3/2004 jmc: why do these devices exist? */
3562 static struct cdev tty_cdev, console_cdev;
3563 
3564 static ssize_t show_cons_active(struct device *dev,
3565 				struct device_attribute *attr, char *buf)
3566 {
3567 	struct console *cs[16];
3568 	int i = 0;
3569 	struct console *c;
3570 	ssize_t count = 0;
3571 
3572 	console_lock();
3573 	for_each_console(c) {
3574 		if (!c->device)
3575 			continue;
3576 		if (!c->write)
3577 			continue;
3578 		if ((c->flags & CON_ENABLED) == 0)
3579 			continue;
3580 		cs[i++] = c;
3581 		if (i >= ARRAY_SIZE(cs))
3582 			break;
3583 	}
3584 	while (i--) {
3585 		int index = cs[i]->index;
3586 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3587 
3588 		/* don't resolve tty0 as some programs depend on it */
3589 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3590 			count += tty_line_name(drv, index, buf + count);
3591 		else
3592 			count += sprintf(buf + count, "%s%d",
3593 					 cs[i]->name, cs[i]->index);
3594 
3595 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3596 	}
3597 	console_unlock();
3598 
3599 	return count;
3600 }
3601 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3602 
3603 static struct attribute *cons_dev_attrs[] = {
3604 	&dev_attr_active.attr,
3605 	NULL
3606 };
3607 
3608 ATTRIBUTE_GROUPS(cons_dev);
3609 
3610 static struct device *consdev;
3611 
3612 void console_sysfs_notify(void)
3613 {
3614 	if (consdev)
3615 		sysfs_notify(&consdev->kobj, NULL, "active");
3616 }
3617 
3618 /*
3619  * Ok, now we can initialize the rest of the tty devices and can count
3620  * on memory allocations, interrupts etc..
3621  */
3622 int __init tty_init(void)
3623 {
3624 	tty_sysctl_init();
3625 	cdev_init(&tty_cdev, &tty_fops);
3626 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3627 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3628 		panic("Couldn't register /dev/tty driver\n");
3629 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3630 
3631 	cdev_init(&console_cdev, &console_fops);
3632 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3633 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3634 		panic("Couldn't register /dev/console driver\n");
3635 	consdev = device_create_with_groups(tty_class, NULL,
3636 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3637 					    cons_dev_groups, "console");
3638 	if (IS_ERR(consdev))
3639 		consdev = NULL;
3640 
3641 #ifdef CONFIG_VT
3642 	vty_init(&console_fops);
3643 #endif
3644 	return 0;
3645 }
3646 
3647