1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 */ 4 5 /* 6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 7 * or rs-channels. It also implements echoing, cooked mode etc. 8 * 9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 10 * 11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 12 * tty_struct and tty_queue structures. Previously there was an array 13 * of 256 tty_struct's which was statically allocated, and the 14 * tty_queue structures were allocated at boot time. Both are now 15 * dynamically allocated only when the tty is open. 16 * 17 * Also restructured routines so that there is more of a separation 18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 19 * the low-level tty routines (serial.c, pty.c, console.c). This 20 * makes for cleaner and more compact code. -TYT, 9/17/92 21 * 22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 23 * which can be dynamically activated and de-activated by the line 24 * discipline handling modules (like SLIP). 25 * 26 * NOTE: pay no attention to the line discipline code (yet); its 27 * interface is still subject to change in this version... 28 * -- TYT, 1/31/92 29 * 30 * Added functionality to the OPOST tty handling. No delays, but all 31 * other bits should be there. 32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 33 * 34 * Rewrote canonical mode and added more termios flags. 35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 36 * 37 * Reorganized FASYNC support so mouse code can share it. 38 * -- ctm@ardi.com, 9Sep95 39 * 40 * New TIOCLINUX variants added. 41 * -- mj@k332.feld.cvut.cz, 19-Nov-95 42 * 43 * Restrict vt switching via ioctl() 44 * -- grif@cs.ucr.edu, 5-Dec-95 45 * 46 * Move console and virtual terminal code to more appropriate files, 47 * implement CONFIG_VT and generalize console device interface. 48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 49 * 50 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 51 * -- Bill Hawes <whawes@star.net>, June 97 52 * 53 * Added devfs support. 54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 55 * 56 * Added support for a Unix98-style ptmx device. 57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 58 * 59 * Reduced memory usage for older ARM systems 60 * -- Russell King <rmk@arm.linux.org.uk> 61 * 62 * Move do_SAK() into process context. Less stack use in devfs functions. 63 * alloc_tty_struct() always uses kmalloc() 64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 65 */ 66 67 #include <linux/types.h> 68 #include <linux/major.h> 69 #include <linux/errno.h> 70 #include <linux/signal.h> 71 #include <linux/fcntl.h> 72 #include <linux/sched.h> 73 #include <linux/interrupt.h> 74 #include <linux/tty.h> 75 #include <linux/tty_driver.h> 76 #include <linux/tty_flip.h> 77 #include <linux/devpts_fs.h> 78 #include <linux/file.h> 79 #include <linux/fdtable.h> 80 #include <linux/console.h> 81 #include <linux/timer.h> 82 #include <linux/ctype.h> 83 #include <linux/kd.h> 84 #include <linux/mm.h> 85 #include <linux/string.h> 86 #include <linux/slab.h> 87 #include <linux/poll.h> 88 #include <linux/proc_fs.h> 89 #include <linux/init.h> 90 #include <linux/module.h> 91 #include <linux/device.h> 92 #include <linux/wait.h> 93 #include <linux/bitops.h> 94 #include <linux/delay.h> 95 #include <linux/seq_file.h> 96 #include <linux/serial.h> 97 #include <linux/ratelimit.h> 98 99 #include <linux/uaccess.h> 100 101 #include <linux/kbd_kern.h> 102 #include <linux/vt_kern.h> 103 #include <linux/selection.h> 104 105 #include <linux/kmod.h> 106 #include <linux/nsproxy.h> 107 108 #undef TTY_DEBUG_HANGUP 109 110 #define TTY_PARANOIA_CHECK 1 111 #define CHECK_TTY_COUNT 1 112 113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 114 .c_iflag = ICRNL | IXON, 115 .c_oflag = OPOST | ONLCR, 116 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 118 ECHOCTL | ECHOKE | IEXTEN, 119 .c_cc = INIT_C_CC, 120 .c_ispeed = 38400, 121 .c_ospeed = 38400 122 }; 123 124 EXPORT_SYMBOL(tty_std_termios); 125 126 /* This list gets poked at by procfs and various bits of boot up code. This 127 could do with some rationalisation such as pulling the tty proc function 128 into this file */ 129 130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 131 132 /* Mutex to protect creating and releasing a tty. This is shared with 133 vt.c for deeply disgusting hack reasons */ 134 DEFINE_MUTEX(tty_mutex); 135 EXPORT_SYMBOL(tty_mutex); 136 137 /* Spinlock to protect the tty->tty_files list */ 138 DEFINE_SPINLOCK(tty_files_lock); 139 140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *); 141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *); 142 ssize_t redirected_tty_write(struct file *, const char __user *, 143 size_t, loff_t *); 144 static unsigned int tty_poll(struct file *, poll_table *); 145 static int tty_open(struct inode *, struct file *); 146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 147 #ifdef CONFIG_COMPAT 148 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 149 unsigned long arg); 150 #else 151 #define tty_compat_ioctl NULL 152 #endif 153 static int __tty_fasync(int fd, struct file *filp, int on); 154 static int tty_fasync(int fd, struct file *filp, int on); 155 static void release_tty(struct tty_struct *tty, int idx); 156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty); 157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty); 158 159 /** 160 * alloc_tty_struct - allocate a tty object 161 * 162 * Return a new empty tty structure. The data fields have not 163 * been initialized in any way but has been zeroed 164 * 165 * Locking: none 166 */ 167 168 struct tty_struct *alloc_tty_struct(void) 169 { 170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL); 171 } 172 173 /** 174 * free_tty_struct - free a disused tty 175 * @tty: tty struct to free 176 * 177 * Free the write buffers, tty queue and tty memory itself. 178 * 179 * Locking: none. Must be called after tty is definitely unused 180 */ 181 182 void free_tty_struct(struct tty_struct *tty) 183 { 184 if (!tty) 185 return; 186 if (tty->dev) 187 put_device(tty->dev); 188 kfree(tty->write_buf); 189 tty->magic = 0xDEADDEAD; 190 kfree(tty); 191 } 192 193 static inline struct tty_struct *file_tty(struct file *file) 194 { 195 return ((struct tty_file_private *)file->private_data)->tty; 196 } 197 198 int tty_alloc_file(struct file *file) 199 { 200 struct tty_file_private *priv; 201 202 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 203 if (!priv) 204 return -ENOMEM; 205 206 file->private_data = priv; 207 208 return 0; 209 } 210 211 /* Associate a new file with the tty structure */ 212 void tty_add_file(struct tty_struct *tty, struct file *file) 213 { 214 struct tty_file_private *priv = file->private_data; 215 216 priv->tty = tty; 217 priv->file = file; 218 219 spin_lock(&tty_files_lock); 220 list_add(&priv->list, &tty->tty_files); 221 spin_unlock(&tty_files_lock); 222 } 223 224 /** 225 * tty_free_file - free file->private_data 226 * 227 * This shall be used only for fail path handling when tty_add_file was not 228 * called yet. 229 */ 230 void tty_free_file(struct file *file) 231 { 232 struct tty_file_private *priv = file->private_data; 233 234 file->private_data = NULL; 235 kfree(priv); 236 } 237 238 /* Delete file from its tty */ 239 static void tty_del_file(struct file *file) 240 { 241 struct tty_file_private *priv = file->private_data; 242 243 spin_lock(&tty_files_lock); 244 list_del(&priv->list); 245 spin_unlock(&tty_files_lock); 246 tty_free_file(file); 247 } 248 249 250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base) 251 252 /** 253 * tty_name - return tty naming 254 * @tty: tty structure 255 * @buf: buffer for output 256 * 257 * Convert a tty structure into a name. The name reflects the kernel 258 * naming policy and if udev is in use may not reflect user space 259 * 260 * Locking: none 261 */ 262 263 char *tty_name(struct tty_struct *tty, char *buf) 264 { 265 if (!tty) /* Hmm. NULL pointer. That's fun. */ 266 strcpy(buf, "NULL tty"); 267 else 268 strcpy(buf, tty->name); 269 return buf; 270 } 271 272 EXPORT_SYMBOL(tty_name); 273 274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 275 const char *routine) 276 { 277 #ifdef TTY_PARANOIA_CHECK 278 if (!tty) { 279 printk(KERN_WARNING 280 "null TTY for (%d:%d) in %s\n", 281 imajor(inode), iminor(inode), routine); 282 return 1; 283 } 284 if (tty->magic != TTY_MAGIC) { 285 printk(KERN_WARNING 286 "bad magic number for tty struct (%d:%d) in %s\n", 287 imajor(inode), iminor(inode), routine); 288 return 1; 289 } 290 #endif 291 return 0; 292 } 293 294 static int check_tty_count(struct tty_struct *tty, const char *routine) 295 { 296 #ifdef CHECK_TTY_COUNT 297 struct list_head *p; 298 int count = 0; 299 300 spin_lock(&tty_files_lock); 301 list_for_each(p, &tty->tty_files) { 302 count++; 303 } 304 spin_unlock(&tty_files_lock); 305 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 306 tty->driver->subtype == PTY_TYPE_SLAVE && 307 tty->link && tty->link->count) 308 count++; 309 if (tty->count != count) { 310 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) " 311 "!= #fd's(%d) in %s\n", 312 tty->name, tty->count, count, routine); 313 return count; 314 } 315 #endif 316 return 0; 317 } 318 319 /** 320 * get_tty_driver - find device of a tty 321 * @dev_t: device identifier 322 * @index: returns the index of the tty 323 * 324 * This routine returns a tty driver structure, given a device number 325 * and also passes back the index number. 326 * 327 * Locking: caller must hold tty_mutex 328 */ 329 330 static struct tty_driver *get_tty_driver(dev_t device, int *index) 331 { 332 struct tty_driver *p; 333 334 list_for_each_entry(p, &tty_drivers, tty_drivers) { 335 dev_t base = MKDEV(p->major, p->minor_start); 336 if (device < base || device >= base + p->num) 337 continue; 338 *index = device - base; 339 return tty_driver_kref_get(p); 340 } 341 return NULL; 342 } 343 344 #ifdef CONFIG_CONSOLE_POLL 345 346 /** 347 * tty_find_polling_driver - find device of a polled tty 348 * @name: name string to match 349 * @line: pointer to resulting tty line nr 350 * 351 * This routine returns a tty driver structure, given a name 352 * and the condition that the tty driver is capable of polled 353 * operation. 354 */ 355 struct tty_driver *tty_find_polling_driver(char *name, int *line) 356 { 357 struct tty_driver *p, *res = NULL; 358 int tty_line = 0; 359 int len; 360 char *str, *stp; 361 362 for (str = name; *str; str++) 363 if ((*str >= '0' && *str <= '9') || *str == ',') 364 break; 365 if (!*str) 366 return NULL; 367 368 len = str - name; 369 tty_line = simple_strtoul(str, &str, 10); 370 371 mutex_lock(&tty_mutex); 372 /* Search through the tty devices to look for a match */ 373 list_for_each_entry(p, &tty_drivers, tty_drivers) { 374 if (strncmp(name, p->name, len) != 0) 375 continue; 376 stp = str; 377 if (*stp == ',') 378 stp++; 379 if (*stp == '\0') 380 stp = NULL; 381 382 if (tty_line >= 0 && tty_line < p->num && p->ops && 383 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 384 res = tty_driver_kref_get(p); 385 *line = tty_line; 386 break; 387 } 388 } 389 mutex_unlock(&tty_mutex); 390 391 return res; 392 } 393 EXPORT_SYMBOL_GPL(tty_find_polling_driver); 394 #endif 395 396 /** 397 * tty_check_change - check for POSIX terminal changes 398 * @tty: tty to check 399 * 400 * If we try to write to, or set the state of, a terminal and we're 401 * not in the foreground, send a SIGTTOU. If the signal is blocked or 402 * ignored, go ahead and perform the operation. (POSIX 7.2) 403 * 404 * Locking: ctrl_lock 405 */ 406 407 int tty_check_change(struct tty_struct *tty) 408 { 409 unsigned long flags; 410 int ret = 0; 411 412 if (current->signal->tty != tty) 413 return 0; 414 415 spin_lock_irqsave(&tty->ctrl_lock, flags); 416 417 if (!tty->pgrp) { 418 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n"); 419 goto out_unlock; 420 } 421 if (task_pgrp(current) == tty->pgrp) 422 goto out_unlock; 423 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 424 if (is_ignored(SIGTTOU)) 425 goto out; 426 if (is_current_pgrp_orphaned()) { 427 ret = -EIO; 428 goto out; 429 } 430 kill_pgrp(task_pgrp(current), SIGTTOU, 1); 431 set_thread_flag(TIF_SIGPENDING); 432 ret = -ERESTARTSYS; 433 out: 434 return ret; 435 out_unlock: 436 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 437 return ret; 438 } 439 440 EXPORT_SYMBOL(tty_check_change); 441 442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf, 443 size_t count, loff_t *ppos) 444 { 445 return 0; 446 } 447 448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf, 449 size_t count, loff_t *ppos) 450 { 451 return -EIO; 452 } 453 454 /* No kernel lock held - none needed ;) */ 455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait) 456 { 457 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM; 458 } 459 460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 461 unsigned long arg) 462 { 463 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 464 } 465 466 static long hung_up_tty_compat_ioctl(struct file *file, 467 unsigned int cmd, unsigned long arg) 468 { 469 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 470 } 471 472 static const struct file_operations tty_fops = { 473 .llseek = no_llseek, 474 .read = tty_read, 475 .write = tty_write, 476 .poll = tty_poll, 477 .unlocked_ioctl = tty_ioctl, 478 .compat_ioctl = tty_compat_ioctl, 479 .open = tty_open, 480 .release = tty_release, 481 .fasync = tty_fasync, 482 }; 483 484 static const struct file_operations console_fops = { 485 .llseek = no_llseek, 486 .read = tty_read, 487 .write = redirected_tty_write, 488 .poll = tty_poll, 489 .unlocked_ioctl = tty_ioctl, 490 .compat_ioctl = tty_compat_ioctl, 491 .open = tty_open, 492 .release = tty_release, 493 .fasync = tty_fasync, 494 }; 495 496 static const struct file_operations hung_up_tty_fops = { 497 .llseek = no_llseek, 498 .read = hung_up_tty_read, 499 .write = hung_up_tty_write, 500 .poll = hung_up_tty_poll, 501 .unlocked_ioctl = hung_up_tty_ioctl, 502 .compat_ioctl = hung_up_tty_compat_ioctl, 503 .release = tty_release, 504 }; 505 506 static DEFINE_SPINLOCK(redirect_lock); 507 static struct file *redirect; 508 509 /** 510 * tty_wakeup - request more data 511 * @tty: terminal 512 * 513 * Internal and external helper for wakeups of tty. This function 514 * informs the line discipline if present that the driver is ready 515 * to receive more output data. 516 */ 517 518 void tty_wakeup(struct tty_struct *tty) 519 { 520 struct tty_ldisc *ld; 521 522 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 523 ld = tty_ldisc_ref(tty); 524 if (ld) { 525 if (ld->ops->write_wakeup) 526 ld->ops->write_wakeup(tty); 527 tty_ldisc_deref(ld); 528 } 529 } 530 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 531 } 532 533 EXPORT_SYMBOL_GPL(tty_wakeup); 534 535 /** 536 * tty_signal_session_leader - sends SIGHUP to session leader 537 * @tty controlling tty 538 * @exit_session if non-zero, signal all foreground group processes 539 * 540 * Send SIGHUP and SIGCONT to the session leader and its process group. 541 * Optionally, signal all processes in the foreground process group. 542 * 543 * Returns the number of processes in the session with this tty 544 * as their controlling terminal. This value is used to drop 545 * tty references for those processes. 546 */ 547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session) 548 { 549 struct task_struct *p; 550 int refs = 0; 551 struct pid *tty_pgrp = NULL; 552 553 read_lock(&tasklist_lock); 554 if (tty->session) { 555 do_each_pid_task(tty->session, PIDTYPE_SID, p) { 556 spin_lock_irq(&p->sighand->siglock); 557 if (p->signal->tty == tty) { 558 p->signal->tty = NULL; 559 /* We defer the dereferences outside fo 560 the tasklist lock */ 561 refs++; 562 } 563 if (!p->signal->leader) { 564 spin_unlock_irq(&p->sighand->siglock); 565 continue; 566 } 567 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p); 568 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p); 569 put_pid(p->signal->tty_old_pgrp); /* A noop */ 570 spin_lock(&tty->ctrl_lock); 571 tty_pgrp = get_pid(tty->pgrp); 572 if (tty->pgrp) 573 p->signal->tty_old_pgrp = get_pid(tty->pgrp); 574 spin_unlock(&tty->ctrl_lock); 575 spin_unlock_irq(&p->sighand->siglock); 576 } while_each_pid_task(tty->session, PIDTYPE_SID, p); 577 } 578 read_unlock(&tasklist_lock); 579 580 if (tty_pgrp) { 581 if (exit_session) 582 kill_pgrp(tty_pgrp, SIGHUP, exit_session); 583 put_pid(tty_pgrp); 584 } 585 586 return refs; 587 } 588 589 /** 590 * __tty_hangup - actual handler for hangup events 591 * @work: tty device 592 * 593 * This can be called by a "kworker" kernel thread. That is process 594 * synchronous but doesn't hold any locks, so we need to make sure we 595 * have the appropriate locks for what we're doing. 596 * 597 * The hangup event clears any pending redirections onto the hung up 598 * device. It ensures future writes will error and it does the needed 599 * line discipline hangup and signal delivery. The tty object itself 600 * remains intact. 601 * 602 * Locking: 603 * BTM 604 * redirect lock for undoing redirection 605 * file list lock for manipulating list of ttys 606 * tty_ldiscs_lock from called functions 607 * termios_rwsem resetting termios data 608 * tasklist_lock to walk task list for hangup event 609 * ->siglock to protect ->signal/->sighand 610 */ 611 static void __tty_hangup(struct tty_struct *tty, int exit_session) 612 { 613 struct file *cons_filp = NULL; 614 struct file *filp, *f = NULL; 615 struct tty_file_private *priv; 616 int closecount = 0, n; 617 int refs; 618 619 if (!tty) 620 return; 621 622 623 spin_lock(&redirect_lock); 624 if (redirect && file_tty(redirect) == tty) { 625 f = redirect; 626 redirect = NULL; 627 } 628 spin_unlock(&redirect_lock); 629 630 tty_lock(tty); 631 632 if (test_bit(TTY_HUPPED, &tty->flags)) { 633 tty_unlock(tty); 634 return; 635 } 636 637 /* some functions below drop BTM, so we need this bit */ 638 set_bit(TTY_HUPPING, &tty->flags); 639 640 /* inuse_filps is protected by the single tty lock, 641 this really needs to change if we want to flush the 642 workqueue with the lock held */ 643 check_tty_count(tty, "tty_hangup"); 644 645 spin_lock(&tty_files_lock); 646 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 647 list_for_each_entry(priv, &tty->tty_files, list) { 648 filp = priv->file; 649 if (filp->f_op->write == redirected_tty_write) 650 cons_filp = filp; 651 if (filp->f_op->write != tty_write) 652 continue; 653 closecount++; 654 __tty_fasync(-1, filp, 0); /* can't block */ 655 filp->f_op = &hung_up_tty_fops; 656 } 657 spin_unlock(&tty_files_lock); 658 659 refs = tty_signal_session_leader(tty, exit_session); 660 /* Account for the p->signal references we killed */ 661 while (refs--) 662 tty_kref_put(tty); 663 664 /* 665 * it drops BTM and thus races with reopen 666 * we protect the race by TTY_HUPPING 667 */ 668 tty_ldisc_hangup(tty); 669 670 spin_lock_irq(&tty->ctrl_lock); 671 clear_bit(TTY_THROTTLED, &tty->flags); 672 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 673 put_pid(tty->session); 674 put_pid(tty->pgrp); 675 tty->session = NULL; 676 tty->pgrp = NULL; 677 tty->ctrl_status = 0; 678 spin_unlock_irq(&tty->ctrl_lock); 679 680 /* 681 * If one of the devices matches a console pointer, we 682 * cannot just call hangup() because that will cause 683 * tty->count and state->count to go out of sync. 684 * So we just call close() the right number of times. 685 */ 686 if (cons_filp) { 687 if (tty->ops->close) 688 for (n = 0; n < closecount; n++) 689 tty->ops->close(tty, cons_filp); 690 } else if (tty->ops->hangup) 691 (tty->ops->hangup)(tty); 692 /* 693 * We don't want to have driver/ldisc interactions beyond 694 * the ones we did here. The driver layer expects no 695 * calls after ->hangup() from the ldisc side. However we 696 * can't yet guarantee all that. 697 */ 698 set_bit(TTY_HUPPED, &tty->flags); 699 clear_bit(TTY_HUPPING, &tty->flags); 700 701 tty_unlock(tty); 702 703 if (f) 704 fput(f); 705 } 706 707 static void do_tty_hangup(struct work_struct *work) 708 { 709 struct tty_struct *tty = 710 container_of(work, struct tty_struct, hangup_work); 711 712 __tty_hangup(tty, 0); 713 } 714 715 /** 716 * tty_hangup - trigger a hangup event 717 * @tty: tty to hangup 718 * 719 * A carrier loss (virtual or otherwise) has occurred on this like 720 * schedule a hangup sequence to run after this event. 721 */ 722 723 void tty_hangup(struct tty_struct *tty) 724 { 725 #ifdef TTY_DEBUG_HANGUP 726 char buf[64]; 727 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf)); 728 #endif 729 schedule_work(&tty->hangup_work); 730 } 731 732 EXPORT_SYMBOL(tty_hangup); 733 734 /** 735 * tty_vhangup - process vhangup 736 * @tty: tty to hangup 737 * 738 * The user has asked via system call for the terminal to be hung up. 739 * We do this synchronously so that when the syscall returns the process 740 * is complete. That guarantee is necessary for security reasons. 741 */ 742 743 void tty_vhangup(struct tty_struct *tty) 744 { 745 #ifdef TTY_DEBUG_HANGUP 746 char buf[64]; 747 748 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf)); 749 #endif 750 __tty_hangup(tty, 0); 751 } 752 753 EXPORT_SYMBOL(tty_vhangup); 754 755 756 /** 757 * tty_vhangup_self - process vhangup for own ctty 758 * 759 * Perform a vhangup on the current controlling tty 760 */ 761 762 void tty_vhangup_self(void) 763 { 764 struct tty_struct *tty; 765 766 tty = get_current_tty(); 767 if (tty) { 768 tty_vhangup(tty); 769 tty_kref_put(tty); 770 } 771 } 772 773 /** 774 * tty_vhangup_session - hangup session leader exit 775 * @tty: tty to hangup 776 * 777 * The session leader is exiting and hanging up its controlling terminal. 778 * Every process in the foreground process group is signalled SIGHUP. 779 * 780 * We do this synchronously so that when the syscall returns the process 781 * is complete. That guarantee is necessary for security reasons. 782 */ 783 784 static void tty_vhangup_session(struct tty_struct *tty) 785 { 786 #ifdef TTY_DEBUG_HANGUP 787 char buf[64]; 788 789 printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf)); 790 #endif 791 __tty_hangup(tty, 1); 792 } 793 794 /** 795 * tty_hung_up_p - was tty hung up 796 * @filp: file pointer of tty 797 * 798 * Return true if the tty has been subject to a vhangup or a carrier 799 * loss 800 */ 801 802 int tty_hung_up_p(struct file *filp) 803 { 804 return (filp->f_op == &hung_up_tty_fops); 805 } 806 807 EXPORT_SYMBOL(tty_hung_up_p); 808 809 static void session_clear_tty(struct pid *session) 810 { 811 struct task_struct *p; 812 do_each_pid_task(session, PIDTYPE_SID, p) { 813 proc_clear_tty(p); 814 } while_each_pid_task(session, PIDTYPE_SID, p); 815 } 816 817 /** 818 * disassociate_ctty - disconnect controlling tty 819 * @on_exit: true if exiting so need to "hang up" the session 820 * 821 * This function is typically called only by the session leader, when 822 * it wants to disassociate itself from its controlling tty. 823 * 824 * It performs the following functions: 825 * (1) Sends a SIGHUP and SIGCONT to the foreground process group 826 * (2) Clears the tty from being controlling the session 827 * (3) Clears the controlling tty for all processes in the 828 * session group. 829 * 830 * The argument on_exit is set to 1 if called when a process is 831 * exiting; it is 0 if called by the ioctl TIOCNOTTY. 832 * 833 * Locking: 834 * BTM is taken for hysterical raisins, and held when 835 * called from no_tty(). 836 * tty_mutex is taken to protect tty 837 * ->siglock is taken to protect ->signal/->sighand 838 * tasklist_lock is taken to walk process list for sessions 839 * ->siglock is taken to protect ->signal/->sighand 840 */ 841 842 void disassociate_ctty(int on_exit) 843 { 844 struct tty_struct *tty; 845 846 if (!current->signal->leader) 847 return; 848 849 tty = get_current_tty(); 850 if (tty) { 851 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) { 852 tty_vhangup_session(tty); 853 } else { 854 struct pid *tty_pgrp = tty_get_pgrp(tty); 855 if (tty_pgrp) { 856 kill_pgrp(tty_pgrp, SIGHUP, on_exit); 857 if (!on_exit) 858 kill_pgrp(tty_pgrp, SIGCONT, on_exit); 859 put_pid(tty_pgrp); 860 } 861 } 862 tty_kref_put(tty); 863 864 } else if (on_exit) { 865 struct pid *old_pgrp; 866 spin_lock_irq(¤t->sighand->siglock); 867 old_pgrp = current->signal->tty_old_pgrp; 868 current->signal->tty_old_pgrp = NULL; 869 spin_unlock_irq(¤t->sighand->siglock); 870 if (old_pgrp) { 871 kill_pgrp(old_pgrp, SIGHUP, on_exit); 872 kill_pgrp(old_pgrp, SIGCONT, on_exit); 873 put_pid(old_pgrp); 874 } 875 return; 876 } 877 878 spin_lock_irq(¤t->sighand->siglock); 879 put_pid(current->signal->tty_old_pgrp); 880 current->signal->tty_old_pgrp = NULL; 881 spin_unlock_irq(¤t->sighand->siglock); 882 883 tty = get_current_tty(); 884 if (tty) { 885 unsigned long flags; 886 spin_lock_irqsave(&tty->ctrl_lock, flags); 887 put_pid(tty->session); 888 put_pid(tty->pgrp); 889 tty->session = NULL; 890 tty->pgrp = NULL; 891 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 892 tty_kref_put(tty); 893 } else { 894 #ifdef TTY_DEBUG_HANGUP 895 printk(KERN_DEBUG "error attempted to write to tty [0x%p]" 896 " = NULL", tty); 897 #endif 898 } 899 900 /* Now clear signal->tty under the lock */ 901 read_lock(&tasklist_lock); 902 session_clear_tty(task_session(current)); 903 read_unlock(&tasklist_lock); 904 } 905 906 /** 907 * 908 * no_tty - Ensure the current process does not have a controlling tty 909 */ 910 void no_tty(void) 911 { 912 /* FIXME: Review locking here. The tty_lock never covered any race 913 between a new association and proc_clear_tty but possible we need 914 to protect against this anyway */ 915 struct task_struct *tsk = current; 916 disassociate_ctty(0); 917 proc_clear_tty(tsk); 918 } 919 920 921 /** 922 * stop_tty - propagate flow control 923 * @tty: tty to stop 924 * 925 * Perform flow control to the driver. For PTY/TTY pairs we 926 * must also propagate the TIOCKPKT status. May be called 927 * on an already stopped device and will not re-call the driver 928 * method. 929 * 930 * This functionality is used by both the line disciplines for 931 * halting incoming flow and by the driver. It may therefore be 932 * called from any context, may be under the tty atomic_write_lock 933 * but not always. 934 * 935 * Locking: 936 * Uses the tty control lock internally 937 */ 938 939 void stop_tty(struct tty_struct *tty) 940 { 941 unsigned long flags; 942 spin_lock_irqsave(&tty->ctrl_lock, flags); 943 if (tty->stopped) { 944 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 945 return; 946 } 947 tty->stopped = 1; 948 if (tty->link && tty->link->packet) { 949 tty->ctrl_status &= ~TIOCPKT_START; 950 tty->ctrl_status |= TIOCPKT_STOP; 951 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN); 952 } 953 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 954 if (tty->ops->stop) 955 (tty->ops->stop)(tty); 956 } 957 958 EXPORT_SYMBOL(stop_tty); 959 960 /** 961 * start_tty - propagate flow control 962 * @tty: tty to start 963 * 964 * Start a tty that has been stopped if at all possible. Perform 965 * any necessary wakeups and propagate the TIOCPKT status. If this 966 * is the tty was previous stopped and is being started then the 967 * driver start method is invoked and the line discipline woken. 968 * 969 * Locking: 970 * ctrl_lock 971 */ 972 973 void start_tty(struct tty_struct *tty) 974 { 975 unsigned long flags; 976 spin_lock_irqsave(&tty->ctrl_lock, flags); 977 if (!tty->stopped || tty->flow_stopped) { 978 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 979 return; 980 } 981 tty->stopped = 0; 982 if (tty->link && tty->link->packet) { 983 tty->ctrl_status &= ~TIOCPKT_STOP; 984 tty->ctrl_status |= TIOCPKT_START; 985 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN); 986 } 987 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 988 if (tty->ops->start) 989 (tty->ops->start)(tty); 990 /* If we have a running line discipline it may need kicking */ 991 tty_wakeup(tty); 992 } 993 994 EXPORT_SYMBOL(start_tty); 995 996 /* We limit tty time update visibility to every 8 seconds or so. */ 997 static void tty_update_time(struct timespec *time) 998 { 999 unsigned long sec = get_seconds() & ~7; 1000 if ((long)(sec - time->tv_sec) > 0) 1001 time->tv_sec = sec; 1002 } 1003 1004 /** 1005 * tty_read - read method for tty device files 1006 * @file: pointer to tty file 1007 * @buf: user buffer 1008 * @count: size of user buffer 1009 * @ppos: unused 1010 * 1011 * Perform the read system call function on this terminal device. Checks 1012 * for hung up devices before calling the line discipline method. 1013 * 1014 * Locking: 1015 * Locks the line discipline internally while needed. Multiple 1016 * read calls may be outstanding in parallel. 1017 */ 1018 1019 static ssize_t tty_read(struct file *file, char __user *buf, size_t count, 1020 loff_t *ppos) 1021 { 1022 int i; 1023 struct inode *inode = file_inode(file); 1024 struct tty_struct *tty = file_tty(file); 1025 struct tty_ldisc *ld; 1026 1027 if (tty_paranoia_check(tty, inode, "tty_read")) 1028 return -EIO; 1029 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags))) 1030 return -EIO; 1031 1032 /* We want to wait for the line discipline to sort out in this 1033 situation */ 1034 ld = tty_ldisc_ref_wait(tty); 1035 if (ld->ops->read) 1036 i = (ld->ops->read)(tty, file, buf, count); 1037 else 1038 i = -EIO; 1039 tty_ldisc_deref(ld); 1040 1041 if (i > 0) 1042 tty_update_time(&inode->i_atime); 1043 1044 return i; 1045 } 1046 1047 void tty_write_unlock(struct tty_struct *tty) 1048 __releases(&tty->atomic_write_lock) 1049 { 1050 mutex_unlock(&tty->atomic_write_lock); 1051 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 1052 } 1053 1054 int tty_write_lock(struct tty_struct *tty, int ndelay) 1055 __acquires(&tty->atomic_write_lock) 1056 { 1057 if (!mutex_trylock(&tty->atomic_write_lock)) { 1058 if (ndelay) 1059 return -EAGAIN; 1060 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 1061 return -ERESTARTSYS; 1062 } 1063 return 0; 1064 } 1065 1066 /* 1067 * Split writes up in sane blocksizes to avoid 1068 * denial-of-service type attacks 1069 */ 1070 static inline ssize_t do_tty_write( 1071 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 1072 struct tty_struct *tty, 1073 struct file *file, 1074 const char __user *buf, 1075 size_t count) 1076 { 1077 ssize_t ret, written = 0; 1078 unsigned int chunk; 1079 1080 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 1081 if (ret < 0) 1082 return ret; 1083 1084 /* 1085 * We chunk up writes into a temporary buffer. This 1086 * simplifies low-level drivers immensely, since they 1087 * don't have locking issues and user mode accesses. 1088 * 1089 * But if TTY_NO_WRITE_SPLIT is set, we should use a 1090 * big chunk-size.. 1091 * 1092 * The default chunk-size is 2kB, because the NTTY 1093 * layer has problems with bigger chunks. It will 1094 * claim to be able to handle more characters than 1095 * it actually does. 1096 * 1097 * FIXME: This can probably go away now except that 64K chunks 1098 * are too likely to fail unless switched to vmalloc... 1099 */ 1100 chunk = 2048; 1101 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 1102 chunk = 65536; 1103 if (count < chunk) 1104 chunk = count; 1105 1106 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 1107 if (tty->write_cnt < chunk) { 1108 unsigned char *buf_chunk; 1109 1110 if (chunk < 1024) 1111 chunk = 1024; 1112 1113 buf_chunk = kmalloc(chunk, GFP_KERNEL); 1114 if (!buf_chunk) { 1115 ret = -ENOMEM; 1116 goto out; 1117 } 1118 kfree(tty->write_buf); 1119 tty->write_cnt = chunk; 1120 tty->write_buf = buf_chunk; 1121 } 1122 1123 /* Do the write .. */ 1124 for (;;) { 1125 size_t size = count; 1126 if (size > chunk) 1127 size = chunk; 1128 ret = -EFAULT; 1129 if (copy_from_user(tty->write_buf, buf, size)) 1130 break; 1131 ret = write(tty, file, tty->write_buf, size); 1132 if (ret <= 0) 1133 break; 1134 written += ret; 1135 buf += ret; 1136 count -= ret; 1137 if (!count) 1138 break; 1139 ret = -ERESTARTSYS; 1140 if (signal_pending(current)) 1141 break; 1142 cond_resched(); 1143 } 1144 if (written) { 1145 tty_update_time(&file_inode(file)->i_mtime); 1146 ret = written; 1147 } 1148 out: 1149 tty_write_unlock(tty); 1150 return ret; 1151 } 1152 1153 /** 1154 * tty_write_message - write a message to a certain tty, not just the console. 1155 * @tty: the destination tty_struct 1156 * @msg: the message to write 1157 * 1158 * This is used for messages that need to be redirected to a specific tty. 1159 * We don't put it into the syslog queue right now maybe in the future if 1160 * really needed. 1161 * 1162 * We must still hold the BTM and test the CLOSING flag for the moment. 1163 */ 1164 1165 void tty_write_message(struct tty_struct *tty, char *msg) 1166 { 1167 if (tty) { 1168 mutex_lock(&tty->atomic_write_lock); 1169 tty_lock(tty); 1170 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) { 1171 tty_unlock(tty); 1172 tty->ops->write(tty, msg, strlen(msg)); 1173 } else 1174 tty_unlock(tty); 1175 tty_write_unlock(tty); 1176 } 1177 return; 1178 } 1179 1180 1181 /** 1182 * tty_write - write method for tty device file 1183 * @file: tty file pointer 1184 * @buf: user data to write 1185 * @count: bytes to write 1186 * @ppos: unused 1187 * 1188 * Write data to a tty device via the line discipline. 1189 * 1190 * Locking: 1191 * Locks the line discipline as required 1192 * Writes to the tty driver are serialized by the atomic_write_lock 1193 * and are then processed in chunks to the device. The line discipline 1194 * write method will not be invoked in parallel for each device. 1195 */ 1196 1197 static ssize_t tty_write(struct file *file, const char __user *buf, 1198 size_t count, loff_t *ppos) 1199 { 1200 struct tty_struct *tty = file_tty(file); 1201 struct tty_ldisc *ld; 1202 ssize_t ret; 1203 1204 if (tty_paranoia_check(tty, file_inode(file), "tty_write")) 1205 return -EIO; 1206 if (!tty || !tty->ops->write || 1207 (test_bit(TTY_IO_ERROR, &tty->flags))) 1208 return -EIO; 1209 /* Short term debug to catch buggy drivers */ 1210 if (tty->ops->write_room == NULL) 1211 printk(KERN_ERR "tty driver %s lacks a write_room method.\n", 1212 tty->driver->name); 1213 ld = tty_ldisc_ref_wait(tty); 1214 if (!ld->ops->write) 1215 ret = -EIO; 1216 else 1217 ret = do_tty_write(ld->ops->write, tty, file, buf, count); 1218 tty_ldisc_deref(ld); 1219 return ret; 1220 } 1221 1222 ssize_t redirected_tty_write(struct file *file, const char __user *buf, 1223 size_t count, loff_t *ppos) 1224 { 1225 struct file *p = NULL; 1226 1227 spin_lock(&redirect_lock); 1228 if (redirect) 1229 p = get_file(redirect); 1230 spin_unlock(&redirect_lock); 1231 1232 if (p) { 1233 ssize_t res; 1234 res = vfs_write(p, buf, count, &p->f_pos); 1235 fput(p); 1236 return res; 1237 } 1238 return tty_write(file, buf, count, ppos); 1239 } 1240 1241 static char ptychar[] = "pqrstuvwxyzabcde"; 1242 1243 /** 1244 * pty_line_name - generate name for a pty 1245 * @driver: the tty driver in use 1246 * @index: the minor number 1247 * @p: output buffer of at least 6 bytes 1248 * 1249 * Generate a name from a driver reference and write it to the output 1250 * buffer. 1251 * 1252 * Locking: None 1253 */ 1254 static void pty_line_name(struct tty_driver *driver, int index, char *p) 1255 { 1256 int i = index + driver->name_base; 1257 /* ->name is initialized to "ttyp", but "tty" is expected */ 1258 sprintf(p, "%s%c%x", 1259 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1260 ptychar[i >> 4 & 0xf], i & 0xf); 1261 } 1262 1263 /** 1264 * tty_line_name - generate name for a tty 1265 * @driver: the tty driver in use 1266 * @index: the minor number 1267 * @p: output buffer of at least 7 bytes 1268 * 1269 * Generate a name from a driver reference and write it to the output 1270 * buffer. Return the number of bytes written. 1271 * 1272 * Locking: None 1273 */ 1274 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p) 1275 { 1276 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE) 1277 return sprintf(p, "%s", driver->name); 1278 else 1279 return sprintf(p, "%s%d", driver->name, 1280 index + driver->name_base); 1281 } 1282 1283 /** 1284 * tty_driver_lookup_tty() - find an existing tty, if any 1285 * @driver: the driver for the tty 1286 * @idx: the minor number 1287 * 1288 * Return the tty, if found or ERR_PTR() otherwise. 1289 * 1290 * Locking: tty_mutex must be held. If tty is found, the mutex must 1291 * be held until the 'fast-open' is also done. Will change once we 1292 * have refcounting in the driver and per driver locking 1293 */ 1294 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1295 struct inode *inode, int idx) 1296 { 1297 if (driver->ops->lookup) 1298 return driver->ops->lookup(driver, inode, idx); 1299 1300 return driver->ttys[idx]; 1301 } 1302 1303 /** 1304 * tty_init_termios - helper for termios setup 1305 * @tty: the tty to set up 1306 * 1307 * Initialise the termios structures for this tty. Thus runs under 1308 * the tty_mutex currently so we can be relaxed about ordering. 1309 */ 1310 1311 int tty_init_termios(struct tty_struct *tty) 1312 { 1313 struct ktermios *tp; 1314 int idx = tty->index; 1315 1316 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1317 tty->termios = tty->driver->init_termios; 1318 else { 1319 /* Check for lazy saved data */ 1320 tp = tty->driver->termios[idx]; 1321 if (tp != NULL) 1322 tty->termios = *tp; 1323 else 1324 tty->termios = tty->driver->init_termios; 1325 } 1326 /* Compatibility until drivers always set this */ 1327 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios); 1328 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios); 1329 return 0; 1330 } 1331 EXPORT_SYMBOL_GPL(tty_init_termios); 1332 1333 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1334 { 1335 int ret = tty_init_termios(tty); 1336 if (ret) 1337 return ret; 1338 1339 tty_driver_kref_get(driver); 1340 tty->count++; 1341 driver->ttys[tty->index] = tty; 1342 return 0; 1343 } 1344 EXPORT_SYMBOL_GPL(tty_standard_install); 1345 1346 /** 1347 * tty_driver_install_tty() - install a tty entry in the driver 1348 * @driver: the driver for the tty 1349 * @tty: the tty 1350 * 1351 * Install a tty object into the driver tables. The tty->index field 1352 * will be set by the time this is called. This method is responsible 1353 * for ensuring any need additional structures are allocated and 1354 * configured. 1355 * 1356 * Locking: tty_mutex for now 1357 */ 1358 static int tty_driver_install_tty(struct tty_driver *driver, 1359 struct tty_struct *tty) 1360 { 1361 return driver->ops->install ? driver->ops->install(driver, tty) : 1362 tty_standard_install(driver, tty); 1363 } 1364 1365 /** 1366 * tty_driver_remove_tty() - remove a tty from the driver tables 1367 * @driver: the driver for the tty 1368 * @idx: the minor number 1369 * 1370 * Remvoe a tty object from the driver tables. The tty->index field 1371 * will be set by the time this is called. 1372 * 1373 * Locking: tty_mutex for now 1374 */ 1375 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1376 { 1377 if (driver->ops->remove) 1378 driver->ops->remove(driver, tty); 1379 else 1380 driver->ttys[tty->index] = NULL; 1381 } 1382 1383 /* 1384 * tty_reopen() - fast re-open of an open tty 1385 * @tty - the tty to open 1386 * 1387 * Return 0 on success, -errno on error. 1388 * 1389 * Locking: tty_mutex must be held from the time the tty was found 1390 * till this open completes. 1391 */ 1392 static int tty_reopen(struct tty_struct *tty) 1393 { 1394 struct tty_driver *driver = tty->driver; 1395 1396 if (test_bit(TTY_CLOSING, &tty->flags) || 1397 test_bit(TTY_HUPPING, &tty->flags)) 1398 return -EIO; 1399 1400 if (driver->type == TTY_DRIVER_TYPE_PTY && 1401 driver->subtype == PTY_TYPE_MASTER) { 1402 /* 1403 * special case for PTY masters: only one open permitted, 1404 * and the slave side open count is incremented as well. 1405 */ 1406 if (tty->count) 1407 return -EIO; 1408 1409 tty->link->count++; 1410 } 1411 tty->count++; 1412 1413 WARN_ON(!tty->ldisc); 1414 1415 return 0; 1416 } 1417 1418 /** 1419 * tty_init_dev - initialise a tty device 1420 * @driver: tty driver we are opening a device on 1421 * @idx: device index 1422 * @ret_tty: returned tty structure 1423 * 1424 * Prepare a tty device. This may not be a "new" clean device but 1425 * could also be an active device. The pty drivers require special 1426 * handling because of this. 1427 * 1428 * Locking: 1429 * The function is called under the tty_mutex, which 1430 * protects us from the tty struct or driver itself going away. 1431 * 1432 * On exit the tty device has the line discipline attached and 1433 * a reference count of 1. If a pair was created for pty/tty use 1434 * and the other was a pty master then it too has a reference count of 1. 1435 * 1436 * WSH 06/09/97: Rewritten to remove races and properly clean up after a 1437 * failed open. The new code protects the open with a mutex, so it's 1438 * really quite straightforward. The mutex locking can probably be 1439 * relaxed for the (most common) case of reopening a tty. 1440 */ 1441 1442 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1443 { 1444 struct tty_struct *tty; 1445 int retval; 1446 1447 /* 1448 * First time open is complex, especially for PTY devices. 1449 * This code guarantees that either everything succeeds and the 1450 * TTY is ready for operation, or else the table slots are vacated 1451 * and the allocated memory released. (Except that the termios 1452 * and locked termios may be retained.) 1453 */ 1454 1455 if (!try_module_get(driver->owner)) 1456 return ERR_PTR(-ENODEV); 1457 1458 tty = alloc_tty_struct(); 1459 if (!tty) { 1460 retval = -ENOMEM; 1461 goto err_module_put; 1462 } 1463 initialize_tty_struct(tty, driver, idx); 1464 1465 tty_lock(tty); 1466 retval = tty_driver_install_tty(driver, tty); 1467 if (retval < 0) 1468 goto err_deinit_tty; 1469 1470 if (!tty->port) 1471 tty->port = driver->ports[idx]; 1472 1473 WARN_RATELIMIT(!tty->port, 1474 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n", 1475 __func__, tty->driver->name); 1476 1477 tty->port->itty = tty; 1478 1479 /* 1480 * Structures all installed ... call the ldisc open routines. 1481 * If we fail here just call release_tty to clean up. No need 1482 * to decrement the use counts, as release_tty doesn't care. 1483 */ 1484 retval = tty_ldisc_setup(tty, tty->link); 1485 if (retval) 1486 goto err_release_tty; 1487 /* Return the tty locked so that it cannot vanish under the caller */ 1488 return tty; 1489 1490 err_deinit_tty: 1491 tty_unlock(tty); 1492 deinitialize_tty_struct(tty); 1493 free_tty_struct(tty); 1494 err_module_put: 1495 module_put(driver->owner); 1496 return ERR_PTR(retval); 1497 1498 /* call the tty release_tty routine to clean out this slot */ 1499 err_release_tty: 1500 tty_unlock(tty); 1501 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, " 1502 "clearing slot %d\n", idx); 1503 release_tty(tty, idx); 1504 return ERR_PTR(retval); 1505 } 1506 1507 void tty_free_termios(struct tty_struct *tty) 1508 { 1509 struct ktermios *tp; 1510 int idx = tty->index; 1511 1512 /* If the port is going to reset then it has no termios to save */ 1513 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1514 return; 1515 1516 /* Stash the termios data */ 1517 tp = tty->driver->termios[idx]; 1518 if (tp == NULL) { 1519 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL); 1520 if (tp == NULL) { 1521 pr_warn("tty: no memory to save termios state.\n"); 1522 return; 1523 } 1524 tty->driver->termios[idx] = tp; 1525 } 1526 *tp = tty->termios; 1527 } 1528 EXPORT_SYMBOL(tty_free_termios); 1529 1530 /** 1531 * tty_flush_works - flush all works of a tty 1532 * @tty: tty device to flush works for 1533 * 1534 * Sync flush all works belonging to @tty. 1535 */ 1536 static void tty_flush_works(struct tty_struct *tty) 1537 { 1538 flush_work(&tty->SAK_work); 1539 flush_work(&tty->hangup_work); 1540 } 1541 1542 /** 1543 * release_one_tty - release tty structure memory 1544 * @kref: kref of tty we are obliterating 1545 * 1546 * Releases memory associated with a tty structure, and clears out the 1547 * driver table slots. This function is called when a device is no longer 1548 * in use. It also gets called when setup of a device fails. 1549 * 1550 * Locking: 1551 * takes the file list lock internally when working on the list 1552 * of ttys that the driver keeps. 1553 * 1554 * This method gets called from a work queue so that the driver private 1555 * cleanup ops can sleep (needed for USB at least) 1556 */ 1557 static void release_one_tty(struct work_struct *work) 1558 { 1559 struct tty_struct *tty = 1560 container_of(work, struct tty_struct, hangup_work); 1561 struct tty_driver *driver = tty->driver; 1562 1563 if (tty->ops->cleanup) 1564 tty->ops->cleanup(tty); 1565 1566 tty->magic = 0; 1567 tty_driver_kref_put(driver); 1568 module_put(driver->owner); 1569 1570 spin_lock(&tty_files_lock); 1571 list_del_init(&tty->tty_files); 1572 spin_unlock(&tty_files_lock); 1573 1574 put_pid(tty->pgrp); 1575 put_pid(tty->session); 1576 free_tty_struct(tty); 1577 } 1578 1579 static void queue_release_one_tty(struct kref *kref) 1580 { 1581 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1582 1583 /* The hangup queue is now free so we can reuse it rather than 1584 waste a chunk of memory for each port */ 1585 INIT_WORK(&tty->hangup_work, release_one_tty); 1586 schedule_work(&tty->hangup_work); 1587 } 1588 1589 /** 1590 * tty_kref_put - release a tty kref 1591 * @tty: tty device 1592 * 1593 * Release a reference to a tty device and if need be let the kref 1594 * layer destruct the object for us 1595 */ 1596 1597 void tty_kref_put(struct tty_struct *tty) 1598 { 1599 if (tty) 1600 kref_put(&tty->kref, queue_release_one_tty); 1601 } 1602 EXPORT_SYMBOL(tty_kref_put); 1603 1604 /** 1605 * release_tty - release tty structure memory 1606 * 1607 * Release both @tty and a possible linked partner (think pty pair), 1608 * and decrement the refcount of the backing module. 1609 * 1610 * Locking: 1611 * tty_mutex 1612 * takes the file list lock internally when working on the list 1613 * of ttys that the driver keeps. 1614 * 1615 */ 1616 static void release_tty(struct tty_struct *tty, int idx) 1617 { 1618 /* This should always be true but check for the moment */ 1619 WARN_ON(tty->index != idx); 1620 WARN_ON(!mutex_is_locked(&tty_mutex)); 1621 if (tty->ops->shutdown) 1622 tty->ops->shutdown(tty); 1623 tty_free_termios(tty); 1624 tty_driver_remove_tty(tty->driver, tty); 1625 tty->port->itty = NULL; 1626 if (tty->link) 1627 tty->link->port->itty = NULL; 1628 cancel_work_sync(&tty->port->buf.work); 1629 1630 if (tty->link) 1631 tty_kref_put(tty->link); 1632 tty_kref_put(tty); 1633 } 1634 1635 /** 1636 * tty_release_checks - check a tty before real release 1637 * @tty: tty to check 1638 * @o_tty: link of @tty (if any) 1639 * @idx: index of the tty 1640 * 1641 * Performs some paranoid checking before true release of the @tty. 1642 * This is a no-op unless TTY_PARANOIA_CHECK is defined. 1643 */ 1644 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty, 1645 int idx) 1646 { 1647 #ifdef TTY_PARANOIA_CHECK 1648 if (idx < 0 || idx >= tty->driver->num) { 1649 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n", 1650 __func__, tty->name); 1651 return -1; 1652 } 1653 1654 /* not much to check for devpts */ 1655 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1656 return 0; 1657 1658 if (tty != tty->driver->ttys[idx]) { 1659 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n", 1660 __func__, idx, tty->name); 1661 return -1; 1662 } 1663 if (tty->driver->other) { 1664 if (o_tty != tty->driver->other->ttys[idx]) { 1665 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n", 1666 __func__, idx, tty->name); 1667 return -1; 1668 } 1669 if (o_tty->link != tty) { 1670 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__); 1671 return -1; 1672 } 1673 } 1674 #endif 1675 return 0; 1676 } 1677 1678 /** 1679 * tty_release - vfs callback for close 1680 * @inode: inode of tty 1681 * @filp: file pointer for handle to tty 1682 * 1683 * Called the last time each file handle is closed that references 1684 * this tty. There may however be several such references. 1685 * 1686 * Locking: 1687 * Takes bkl. See tty_release_dev 1688 * 1689 * Even releasing the tty structures is a tricky business.. We have 1690 * to be very careful that the structures are all released at the 1691 * same time, as interrupts might otherwise get the wrong pointers. 1692 * 1693 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1694 * lead to double frees or releasing memory still in use. 1695 */ 1696 1697 int tty_release(struct inode *inode, struct file *filp) 1698 { 1699 struct tty_struct *tty = file_tty(filp); 1700 struct tty_struct *o_tty; 1701 int pty_master, tty_closing, o_tty_closing, do_sleep; 1702 int idx; 1703 char buf[64]; 1704 1705 if (tty_paranoia_check(tty, inode, __func__)) 1706 return 0; 1707 1708 tty_lock(tty); 1709 check_tty_count(tty, __func__); 1710 1711 __tty_fasync(-1, filp, 0); 1712 1713 idx = tty->index; 1714 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1715 tty->driver->subtype == PTY_TYPE_MASTER); 1716 /* Review: parallel close */ 1717 o_tty = tty->link; 1718 1719 if (tty_release_checks(tty, o_tty, idx)) { 1720 tty_unlock(tty); 1721 return 0; 1722 } 1723 1724 #ifdef TTY_DEBUG_HANGUP 1725 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__, 1726 tty_name(tty, buf), tty->count); 1727 #endif 1728 1729 if (tty->ops->close) 1730 tty->ops->close(tty, filp); 1731 1732 tty_unlock(tty); 1733 /* 1734 * Sanity check: if tty->count is going to zero, there shouldn't be 1735 * any waiters on tty->read_wait or tty->write_wait. We test the 1736 * wait queues and kick everyone out _before_ actually starting to 1737 * close. This ensures that we won't block while releasing the tty 1738 * structure. 1739 * 1740 * The test for the o_tty closing is necessary, since the master and 1741 * slave sides may close in any order. If the slave side closes out 1742 * first, its count will be one, since the master side holds an open. 1743 * Thus this test wouldn't be triggered at the time the slave closes, 1744 * so we do it now. 1745 * 1746 * Note that it's possible for the tty to be opened again while we're 1747 * flushing out waiters. By recalculating the closing flags before 1748 * each iteration we avoid any problems. 1749 */ 1750 while (1) { 1751 /* Guard against races with tty->count changes elsewhere and 1752 opens on /dev/tty */ 1753 1754 mutex_lock(&tty_mutex); 1755 tty_lock_pair(tty, o_tty); 1756 tty_closing = tty->count <= 1; 1757 o_tty_closing = o_tty && 1758 (o_tty->count <= (pty_master ? 1 : 0)); 1759 do_sleep = 0; 1760 1761 if (tty_closing) { 1762 if (waitqueue_active(&tty->read_wait)) { 1763 wake_up_poll(&tty->read_wait, POLLIN); 1764 do_sleep++; 1765 } 1766 if (waitqueue_active(&tty->write_wait)) { 1767 wake_up_poll(&tty->write_wait, POLLOUT); 1768 do_sleep++; 1769 } 1770 } 1771 if (o_tty_closing) { 1772 if (waitqueue_active(&o_tty->read_wait)) { 1773 wake_up_poll(&o_tty->read_wait, POLLIN); 1774 do_sleep++; 1775 } 1776 if (waitqueue_active(&o_tty->write_wait)) { 1777 wake_up_poll(&o_tty->write_wait, POLLOUT); 1778 do_sleep++; 1779 } 1780 } 1781 if (!do_sleep) 1782 break; 1783 1784 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n", 1785 __func__, tty_name(tty, buf)); 1786 tty_unlock_pair(tty, o_tty); 1787 mutex_unlock(&tty_mutex); 1788 schedule(); 1789 } 1790 1791 /* 1792 * The closing flags are now consistent with the open counts on 1793 * both sides, and we've completed the last operation that could 1794 * block, so it's safe to proceed with closing. 1795 * 1796 * We must *not* drop the tty_mutex until we ensure that a further 1797 * entry into tty_open can not pick up this tty. 1798 */ 1799 if (pty_master) { 1800 if (--o_tty->count < 0) { 1801 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n", 1802 __func__, o_tty->count, tty_name(o_tty, buf)); 1803 o_tty->count = 0; 1804 } 1805 } 1806 if (--tty->count < 0) { 1807 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n", 1808 __func__, tty->count, tty_name(tty, buf)); 1809 tty->count = 0; 1810 } 1811 1812 /* 1813 * We've decremented tty->count, so we need to remove this file 1814 * descriptor off the tty->tty_files list; this serves two 1815 * purposes: 1816 * - check_tty_count sees the correct number of file descriptors 1817 * associated with this tty. 1818 * - do_tty_hangup no longer sees this file descriptor as 1819 * something that needs to be handled for hangups. 1820 */ 1821 tty_del_file(filp); 1822 1823 /* 1824 * Perform some housekeeping before deciding whether to return. 1825 * 1826 * Set the TTY_CLOSING flag if this was the last open. In the 1827 * case of a pty we may have to wait around for the other side 1828 * to close, and TTY_CLOSING makes sure we can't be reopened. 1829 */ 1830 if (tty_closing) 1831 set_bit(TTY_CLOSING, &tty->flags); 1832 if (o_tty_closing) 1833 set_bit(TTY_CLOSING, &o_tty->flags); 1834 1835 /* 1836 * If _either_ side is closing, make sure there aren't any 1837 * processes that still think tty or o_tty is their controlling 1838 * tty. 1839 */ 1840 if (tty_closing || o_tty_closing) { 1841 read_lock(&tasklist_lock); 1842 session_clear_tty(tty->session); 1843 if (o_tty) 1844 session_clear_tty(o_tty->session); 1845 read_unlock(&tasklist_lock); 1846 } 1847 1848 mutex_unlock(&tty_mutex); 1849 tty_unlock_pair(tty, o_tty); 1850 /* At this point the TTY_CLOSING flag should ensure a dead tty 1851 cannot be re-opened by a racing opener */ 1852 1853 /* check whether both sides are closing ... */ 1854 if (!tty_closing || (o_tty && !o_tty_closing)) 1855 return 0; 1856 1857 #ifdef TTY_DEBUG_HANGUP 1858 printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf)); 1859 #endif 1860 /* 1861 * Ask the line discipline code to release its structures 1862 */ 1863 tty_ldisc_release(tty, o_tty); 1864 1865 /* Wait for pending work before tty destruction commmences */ 1866 tty_flush_works(tty); 1867 if (o_tty) 1868 tty_flush_works(o_tty); 1869 1870 #ifdef TTY_DEBUG_HANGUP 1871 printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf)); 1872 #endif 1873 /* 1874 * The release_tty function takes care of the details of clearing 1875 * the slots and preserving the termios structure. The tty_unlock_pair 1876 * should be safe as we keep a kref while the tty is locked (so the 1877 * unlock never unlocks a freed tty). 1878 */ 1879 mutex_lock(&tty_mutex); 1880 release_tty(tty, idx); 1881 mutex_unlock(&tty_mutex); 1882 1883 return 0; 1884 } 1885 1886 /** 1887 * tty_open_current_tty - get tty of current task for open 1888 * @device: device number 1889 * @filp: file pointer to tty 1890 * @return: tty of the current task iff @device is /dev/tty 1891 * 1892 * We cannot return driver and index like for the other nodes because 1893 * devpts will not work then. It expects inodes to be from devpts FS. 1894 * 1895 * We need to move to returning a refcounted object from all the lookup 1896 * paths including this one. 1897 */ 1898 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1899 { 1900 struct tty_struct *tty; 1901 1902 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1903 return NULL; 1904 1905 tty = get_current_tty(); 1906 if (!tty) 1907 return ERR_PTR(-ENXIO); 1908 1909 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1910 /* noctty = 1; */ 1911 tty_kref_put(tty); 1912 /* FIXME: we put a reference and return a TTY! */ 1913 /* This is only safe because the caller holds tty_mutex */ 1914 return tty; 1915 } 1916 1917 /** 1918 * tty_lookup_driver - lookup a tty driver for a given device file 1919 * @device: device number 1920 * @filp: file pointer to tty 1921 * @noctty: set if the device should not become a controlling tty 1922 * @index: index for the device in the @return driver 1923 * @return: driver for this inode (with increased refcount) 1924 * 1925 * If @return is not erroneous, the caller is responsible to decrement the 1926 * refcount by tty_driver_kref_put. 1927 * 1928 * Locking: tty_mutex protects get_tty_driver 1929 */ 1930 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1931 int *noctty, int *index) 1932 { 1933 struct tty_driver *driver; 1934 1935 switch (device) { 1936 #ifdef CONFIG_VT 1937 case MKDEV(TTY_MAJOR, 0): { 1938 extern struct tty_driver *console_driver; 1939 driver = tty_driver_kref_get(console_driver); 1940 *index = fg_console; 1941 *noctty = 1; 1942 break; 1943 } 1944 #endif 1945 case MKDEV(TTYAUX_MAJOR, 1): { 1946 struct tty_driver *console_driver = console_device(index); 1947 if (console_driver) { 1948 driver = tty_driver_kref_get(console_driver); 1949 if (driver) { 1950 /* Don't let /dev/console block */ 1951 filp->f_flags |= O_NONBLOCK; 1952 *noctty = 1; 1953 break; 1954 } 1955 } 1956 return ERR_PTR(-ENODEV); 1957 } 1958 default: 1959 driver = get_tty_driver(device, index); 1960 if (!driver) 1961 return ERR_PTR(-ENODEV); 1962 break; 1963 } 1964 return driver; 1965 } 1966 1967 /** 1968 * tty_open - open a tty device 1969 * @inode: inode of device file 1970 * @filp: file pointer to tty 1971 * 1972 * tty_open and tty_release keep up the tty count that contains the 1973 * number of opens done on a tty. We cannot use the inode-count, as 1974 * different inodes might point to the same tty. 1975 * 1976 * Open-counting is needed for pty masters, as well as for keeping 1977 * track of serial lines: DTR is dropped when the last close happens. 1978 * (This is not done solely through tty->count, now. - Ted 1/27/92) 1979 * 1980 * The termios state of a pty is reset on first open so that 1981 * settings don't persist across reuse. 1982 * 1983 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev. 1984 * tty->count should protect the rest. 1985 * ->siglock protects ->signal/->sighand 1986 * 1987 * Note: the tty_unlock/lock cases without a ref are only safe due to 1988 * tty_mutex 1989 */ 1990 1991 static int tty_open(struct inode *inode, struct file *filp) 1992 { 1993 struct tty_struct *tty; 1994 int noctty, retval; 1995 struct tty_driver *driver = NULL; 1996 int index; 1997 dev_t device = inode->i_rdev; 1998 unsigned saved_flags = filp->f_flags; 1999 2000 nonseekable_open(inode, filp); 2001 2002 retry_open: 2003 retval = tty_alloc_file(filp); 2004 if (retval) 2005 return -ENOMEM; 2006 2007 noctty = filp->f_flags & O_NOCTTY; 2008 index = -1; 2009 retval = 0; 2010 2011 mutex_lock(&tty_mutex); 2012 /* This is protected by the tty_mutex */ 2013 tty = tty_open_current_tty(device, filp); 2014 if (IS_ERR(tty)) { 2015 retval = PTR_ERR(tty); 2016 goto err_unlock; 2017 } else if (!tty) { 2018 driver = tty_lookup_driver(device, filp, &noctty, &index); 2019 if (IS_ERR(driver)) { 2020 retval = PTR_ERR(driver); 2021 goto err_unlock; 2022 } 2023 2024 /* check whether we're reopening an existing tty */ 2025 tty = tty_driver_lookup_tty(driver, inode, index); 2026 if (IS_ERR(tty)) { 2027 retval = PTR_ERR(tty); 2028 goto err_unlock; 2029 } 2030 } 2031 2032 if (tty) { 2033 tty_lock(tty); 2034 retval = tty_reopen(tty); 2035 if (retval < 0) { 2036 tty_unlock(tty); 2037 tty = ERR_PTR(retval); 2038 } 2039 } else /* Returns with the tty_lock held for now */ 2040 tty = tty_init_dev(driver, index); 2041 2042 mutex_unlock(&tty_mutex); 2043 if (driver) 2044 tty_driver_kref_put(driver); 2045 if (IS_ERR(tty)) { 2046 retval = PTR_ERR(tty); 2047 goto err_file; 2048 } 2049 2050 tty_add_file(tty, filp); 2051 2052 check_tty_count(tty, __func__); 2053 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2054 tty->driver->subtype == PTY_TYPE_MASTER) 2055 noctty = 1; 2056 #ifdef TTY_DEBUG_HANGUP 2057 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name); 2058 #endif 2059 if (tty->ops->open) 2060 retval = tty->ops->open(tty, filp); 2061 else 2062 retval = -ENODEV; 2063 filp->f_flags = saved_flags; 2064 2065 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && 2066 !capable(CAP_SYS_ADMIN)) 2067 retval = -EBUSY; 2068 2069 if (retval) { 2070 #ifdef TTY_DEBUG_HANGUP 2071 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__, 2072 retval, tty->name); 2073 #endif 2074 tty_unlock(tty); /* need to call tty_release without BTM */ 2075 tty_release(inode, filp); 2076 if (retval != -ERESTARTSYS) 2077 return retval; 2078 2079 if (signal_pending(current)) 2080 return retval; 2081 2082 schedule(); 2083 /* 2084 * Need to reset f_op in case a hangup happened. 2085 */ 2086 if (filp->f_op == &hung_up_tty_fops) 2087 filp->f_op = &tty_fops; 2088 goto retry_open; 2089 } 2090 clear_bit(TTY_HUPPED, &tty->flags); 2091 tty_unlock(tty); 2092 2093 2094 mutex_lock(&tty_mutex); 2095 tty_lock(tty); 2096 spin_lock_irq(¤t->sighand->siglock); 2097 if (!noctty && 2098 current->signal->leader && 2099 !current->signal->tty && 2100 tty->session == NULL) 2101 __proc_set_tty(current, tty); 2102 spin_unlock_irq(¤t->sighand->siglock); 2103 tty_unlock(tty); 2104 mutex_unlock(&tty_mutex); 2105 return 0; 2106 err_unlock: 2107 mutex_unlock(&tty_mutex); 2108 /* after locks to avoid deadlock */ 2109 if (!IS_ERR_OR_NULL(driver)) 2110 tty_driver_kref_put(driver); 2111 err_file: 2112 tty_free_file(filp); 2113 return retval; 2114 } 2115 2116 2117 2118 /** 2119 * tty_poll - check tty status 2120 * @filp: file being polled 2121 * @wait: poll wait structures to update 2122 * 2123 * Call the line discipline polling method to obtain the poll 2124 * status of the device. 2125 * 2126 * Locking: locks called line discipline but ldisc poll method 2127 * may be re-entered freely by other callers. 2128 */ 2129 2130 static unsigned int tty_poll(struct file *filp, poll_table *wait) 2131 { 2132 struct tty_struct *tty = file_tty(filp); 2133 struct tty_ldisc *ld; 2134 int ret = 0; 2135 2136 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll")) 2137 return 0; 2138 2139 ld = tty_ldisc_ref_wait(tty); 2140 if (ld->ops->poll) 2141 ret = (ld->ops->poll)(tty, filp, wait); 2142 tty_ldisc_deref(ld); 2143 return ret; 2144 } 2145 2146 static int __tty_fasync(int fd, struct file *filp, int on) 2147 { 2148 struct tty_struct *tty = file_tty(filp); 2149 struct tty_ldisc *ldisc; 2150 unsigned long flags; 2151 int retval = 0; 2152 2153 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync")) 2154 goto out; 2155 2156 retval = fasync_helper(fd, filp, on, &tty->fasync); 2157 if (retval <= 0) 2158 goto out; 2159 2160 ldisc = tty_ldisc_ref(tty); 2161 if (ldisc) { 2162 if (ldisc->ops->fasync) 2163 ldisc->ops->fasync(tty, on); 2164 tty_ldisc_deref(ldisc); 2165 } 2166 2167 if (on) { 2168 enum pid_type type; 2169 struct pid *pid; 2170 2171 spin_lock_irqsave(&tty->ctrl_lock, flags); 2172 if (tty->pgrp) { 2173 pid = tty->pgrp; 2174 type = PIDTYPE_PGID; 2175 } else { 2176 pid = task_pid(current); 2177 type = PIDTYPE_PID; 2178 } 2179 get_pid(pid); 2180 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2181 retval = __f_setown(filp, pid, type, 0); 2182 put_pid(pid); 2183 } 2184 out: 2185 return retval; 2186 } 2187 2188 static int tty_fasync(int fd, struct file *filp, int on) 2189 { 2190 struct tty_struct *tty = file_tty(filp); 2191 int retval; 2192 2193 tty_lock(tty); 2194 retval = __tty_fasync(fd, filp, on); 2195 tty_unlock(tty); 2196 2197 return retval; 2198 } 2199 2200 /** 2201 * tiocsti - fake input character 2202 * @tty: tty to fake input into 2203 * @p: pointer to character 2204 * 2205 * Fake input to a tty device. Does the necessary locking and 2206 * input management. 2207 * 2208 * FIXME: does not honour flow control ?? 2209 * 2210 * Locking: 2211 * Called functions take tty_ldiscs_lock 2212 * current->signal->tty check is safe without locks 2213 * 2214 * FIXME: may race normal receive processing 2215 */ 2216 2217 static int tiocsti(struct tty_struct *tty, char __user *p) 2218 { 2219 char ch, mbz = 0; 2220 struct tty_ldisc *ld; 2221 2222 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2223 return -EPERM; 2224 if (get_user(ch, p)) 2225 return -EFAULT; 2226 tty_audit_tiocsti(tty, ch); 2227 ld = tty_ldisc_ref_wait(tty); 2228 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2229 tty_ldisc_deref(ld); 2230 return 0; 2231 } 2232 2233 /** 2234 * tiocgwinsz - implement window query ioctl 2235 * @tty; tty 2236 * @arg: user buffer for result 2237 * 2238 * Copies the kernel idea of the window size into the user buffer. 2239 * 2240 * Locking: tty->winsize_mutex is taken to ensure the winsize data 2241 * is consistent. 2242 */ 2243 2244 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2245 { 2246 int err; 2247 2248 mutex_lock(&tty->winsize_mutex); 2249 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2250 mutex_unlock(&tty->winsize_mutex); 2251 2252 return err ? -EFAULT: 0; 2253 } 2254 2255 /** 2256 * tty_do_resize - resize event 2257 * @tty: tty being resized 2258 * @rows: rows (character) 2259 * @cols: cols (character) 2260 * 2261 * Update the termios variables and send the necessary signals to 2262 * peform a terminal resize correctly 2263 */ 2264 2265 int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2266 { 2267 struct pid *pgrp; 2268 unsigned long flags; 2269 2270 /* Lock the tty */ 2271 mutex_lock(&tty->winsize_mutex); 2272 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2273 goto done; 2274 /* Get the PID values and reference them so we can 2275 avoid holding the tty ctrl lock while sending signals */ 2276 spin_lock_irqsave(&tty->ctrl_lock, flags); 2277 pgrp = get_pid(tty->pgrp); 2278 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2279 2280 if (pgrp) 2281 kill_pgrp(pgrp, SIGWINCH, 1); 2282 put_pid(pgrp); 2283 2284 tty->winsize = *ws; 2285 done: 2286 mutex_unlock(&tty->winsize_mutex); 2287 return 0; 2288 } 2289 EXPORT_SYMBOL(tty_do_resize); 2290 2291 /** 2292 * tiocswinsz - implement window size set ioctl 2293 * @tty; tty side of tty 2294 * @arg: user buffer for result 2295 * 2296 * Copies the user idea of the window size to the kernel. Traditionally 2297 * this is just advisory information but for the Linux console it 2298 * actually has driver level meaning and triggers a VC resize. 2299 * 2300 * Locking: 2301 * Driver dependent. The default do_resize method takes the 2302 * tty termios mutex and ctrl_lock. The console takes its own lock 2303 * then calls into the default method. 2304 */ 2305 2306 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2307 { 2308 struct winsize tmp_ws; 2309 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2310 return -EFAULT; 2311 2312 if (tty->ops->resize) 2313 return tty->ops->resize(tty, &tmp_ws); 2314 else 2315 return tty_do_resize(tty, &tmp_ws); 2316 } 2317 2318 /** 2319 * tioccons - allow admin to move logical console 2320 * @file: the file to become console 2321 * 2322 * Allow the administrator to move the redirected console device 2323 * 2324 * Locking: uses redirect_lock to guard the redirect information 2325 */ 2326 2327 static int tioccons(struct file *file) 2328 { 2329 if (!capable(CAP_SYS_ADMIN)) 2330 return -EPERM; 2331 if (file->f_op->write == redirected_tty_write) { 2332 struct file *f; 2333 spin_lock(&redirect_lock); 2334 f = redirect; 2335 redirect = NULL; 2336 spin_unlock(&redirect_lock); 2337 if (f) 2338 fput(f); 2339 return 0; 2340 } 2341 spin_lock(&redirect_lock); 2342 if (redirect) { 2343 spin_unlock(&redirect_lock); 2344 return -EBUSY; 2345 } 2346 redirect = get_file(file); 2347 spin_unlock(&redirect_lock); 2348 return 0; 2349 } 2350 2351 /** 2352 * fionbio - non blocking ioctl 2353 * @file: file to set blocking value 2354 * @p: user parameter 2355 * 2356 * Historical tty interfaces had a blocking control ioctl before 2357 * the generic functionality existed. This piece of history is preserved 2358 * in the expected tty API of posix OS's. 2359 * 2360 * Locking: none, the open file handle ensures it won't go away. 2361 */ 2362 2363 static int fionbio(struct file *file, int __user *p) 2364 { 2365 int nonblock; 2366 2367 if (get_user(nonblock, p)) 2368 return -EFAULT; 2369 2370 spin_lock(&file->f_lock); 2371 if (nonblock) 2372 file->f_flags |= O_NONBLOCK; 2373 else 2374 file->f_flags &= ~O_NONBLOCK; 2375 spin_unlock(&file->f_lock); 2376 return 0; 2377 } 2378 2379 /** 2380 * tiocsctty - set controlling tty 2381 * @tty: tty structure 2382 * @arg: user argument 2383 * 2384 * This ioctl is used to manage job control. It permits a session 2385 * leader to set this tty as the controlling tty for the session. 2386 * 2387 * Locking: 2388 * Takes tty_mutex() to protect tty instance 2389 * Takes tasklist_lock internally to walk sessions 2390 * Takes ->siglock() when updating signal->tty 2391 */ 2392 2393 static int tiocsctty(struct tty_struct *tty, int arg) 2394 { 2395 int ret = 0; 2396 if (current->signal->leader && (task_session(current) == tty->session)) 2397 return ret; 2398 2399 mutex_lock(&tty_mutex); 2400 /* 2401 * The process must be a session leader and 2402 * not have a controlling tty already. 2403 */ 2404 if (!current->signal->leader || current->signal->tty) { 2405 ret = -EPERM; 2406 goto unlock; 2407 } 2408 2409 if (tty->session) { 2410 /* 2411 * This tty is already the controlling 2412 * tty for another session group! 2413 */ 2414 if (arg == 1 && capable(CAP_SYS_ADMIN)) { 2415 /* 2416 * Steal it away 2417 */ 2418 read_lock(&tasklist_lock); 2419 session_clear_tty(tty->session); 2420 read_unlock(&tasklist_lock); 2421 } else { 2422 ret = -EPERM; 2423 goto unlock; 2424 } 2425 } 2426 proc_set_tty(current, tty); 2427 unlock: 2428 mutex_unlock(&tty_mutex); 2429 return ret; 2430 } 2431 2432 /** 2433 * tty_get_pgrp - return a ref counted pgrp pid 2434 * @tty: tty to read 2435 * 2436 * Returns a refcounted instance of the pid struct for the process 2437 * group controlling the tty. 2438 */ 2439 2440 struct pid *tty_get_pgrp(struct tty_struct *tty) 2441 { 2442 unsigned long flags; 2443 struct pid *pgrp; 2444 2445 spin_lock_irqsave(&tty->ctrl_lock, flags); 2446 pgrp = get_pid(tty->pgrp); 2447 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2448 2449 return pgrp; 2450 } 2451 EXPORT_SYMBOL_GPL(tty_get_pgrp); 2452 2453 /** 2454 * tiocgpgrp - get process group 2455 * @tty: tty passed by user 2456 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2457 * @p: returned pid 2458 * 2459 * Obtain the process group of the tty. If there is no process group 2460 * return an error. 2461 * 2462 * Locking: none. Reference to current->signal->tty is safe. 2463 */ 2464 2465 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2466 { 2467 struct pid *pid; 2468 int ret; 2469 /* 2470 * (tty == real_tty) is a cheap way of 2471 * testing if the tty is NOT a master pty. 2472 */ 2473 if (tty == real_tty && current->signal->tty != real_tty) 2474 return -ENOTTY; 2475 pid = tty_get_pgrp(real_tty); 2476 ret = put_user(pid_vnr(pid), p); 2477 put_pid(pid); 2478 return ret; 2479 } 2480 2481 /** 2482 * tiocspgrp - attempt to set process group 2483 * @tty: tty passed by user 2484 * @real_tty: tty side device matching tty passed by user 2485 * @p: pid pointer 2486 * 2487 * Set the process group of the tty to the session passed. Only 2488 * permitted where the tty session is our session. 2489 * 2490 * Locking: RCU, ctrl lock 2491 */ 2492 2493 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2494 { 2495 struct pid *pgrp; 2496 pid_t pgrp_nr; 2497 int retval = tty_check_change(real_tty); 2498 unsigned long flags; 2499 2500 if (retval == -EIO) 2501 return -ENOTTY; 2502 if (retval) 2503 return retval; 2504 if (!current->signal->tty || 2505 (current->signal->tty != real_tty) || 2506 (real_tty->session != task_session(current))) 2507 return -ENOTTY; 2508 if (get_user(pgrp_nr, p)) 2509 return -EFAULT; 2510 if (pgrp_nr < 0) 2511 return -EINVAL; 2512 rcu_read_lock(); 2513 pgrp = find_vpid(pgrp_nr); 2514 retval = -ESRCH; 2515 if (!pgrp) 2516 goto out_unlock; 2517 retval = -EPERM; 2518 if (session_of_pgrp(pgrp) != task_session(current)) 2519 goto out_unlock; 2520 retval = 0; 2521 spin_lock_irqsave(&tty->ctrl_lock, flags); 2522 put_pid(real_tty->pgrp); 2523 real_tty->pgrp = get_pid(pgrp); 2524 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2525 out_unlock: 2526 rcu_read_unlock(); 2527 return retval; 2528 } 2529 2530 /** 2531 * tiocgsid - get session id 2532 * @tty: tty passed by user 2533 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2534 * @p: pointer to returned session id 2535 * 2536 * Obtain the session id of the tty. If there is no session 2537 * return an error. 2538 * 2539 * Locking: none. Reference to current->signal->tty is safe. 2540 */ 2541 2542 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2543 { 2544 /* 2545 * (tty == real_tty) is a cheap way of 2546 * testing if the tty is NOT a master pty. 2547 */ 2548 if (tty == real_tty && current->signal->tty != real_tty) 2549 return -ENOTTY; 2550 if (!real_tty->session) 2551 return -ENOTTY; 2552 return put_user(pid_vnr(real_tty->session), p); 2553 } 2554 2555 /** 2556 * tiocsetd - set line discipline 2557 * @tty: tty device 2558 * @p: pointer to user data 2559 * 2560 * Set the line discipline according to user request. 2561 * 2562 * Locking: see tty_set_ldisc, this function is just a helper 2563 */ 2564 2565 static int tiocsetd(struct tty_struct *tty, int __user *p) 2566 { 2567 int ldisc; 2568 int ret; 2569 2570 if (get_user(ldisc, p)) 2571 return -EFAULT; 2572 2573 ret = tty_set_ldisc(tty, ldisc); 2574 2575 return ret; 2576 } 2577 2578 /** 2579 * send_break - performed time break 2580 * @tty: device to break on 2581 * @duration: timeout in mS 2582 * 2583 * Perform a timed break on hardware that lacks its own driver level 2584 * timed break functionality. 2585 * 2586 * Locking: 2587 * atomic_write_lock serializes 2588 * 2589 */ 2590 2591 static int send_break(struct tty_struct *tty, unsigned int duration) 2592 { 2593 int retval; 2594 2595 if (tty->ops->break_ctl == NULL) 2596 return 0; 2597 2598 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2599 retval = tty->ops->break_ctl(tty, duration); 2600 else { 2601 /* Do the work ourselves */ 2602 if (tty_write_lock(tty, 0) < 0) 2603 return -EINTR; 2604 retval = tty->ops->break_ctl(tty, -1); 2605 if (retval) 2606 goto out; 2607 if (!signal_pending(current)) 2608 msleep_interruptible(duration); 2609 retval = tty->ops->break_ctl(tty, 0); 2610 out: 2611 tty_write_unlock(tty); 2612 if (signal_pending(current)) 2613 retval = -EINTR; 2614 } 2615 return retval; 2616 } 2617 2618 /** 2619 * tty_tiocmget - get modem status 2620 * @tty: tty device 2621 * @file: user file pointer 2622 * @p: pointer to result 2623 * 2624 * Obtain the modem status bits from the tty driver if the feature 2625 * is supported. Return -EINVAL if it is not available. 2626 * 2627 * Locking: none (up to the driver) 2628 */ 2629 2630 static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2631 { 2632 int retval = -EINVAL; 2633 2634 if (tty->ops->tiocmget) { 2635 retval = tty->ops->tiocmget(tty); 2636 2637 if (retval >= 0) 2638 retval = put_user(retval, p); 2639 } 2640 return retval; 2641 } 2642 2643 /** 2644 * tty_tiocmset - set modem status 2645 * @tty: tty device 2646 * @cmd: command - clear bits, set bits or set all 2647 * @p: pointer to desired bits 2648 * 2649 * Set the modem status bits from the tty driver if the feature 2650 * is supported. Return -EINVAL if it is not available. 2651 * 2652 * Locking: none (up to the driver) 2653 */ 2654 2655 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2656 unsigned __user *p) 2657 { 2658 int retval; 2659 unsigned int set, clear, val; 2660 2661 if (tty->ops->tiocmset == NULL) 2662 return -EINVAL; 2663 2664 retval = get_user(val, p); 2665 if (retval) 2666 return retval; 2667 set = clear = 0; 2668 switch (cmd) { 2669 case TIOCMBIS: 2670 set = val; 2671 break; 2672 case TIOCMBIC: 2673 clear = val; 2674 break; 2675 case TIOCMSET: 2676 set = val; 2677 clear = ~val; 2678 break; 2679 } 2680 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2681 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2682 return tty->ops->tiocmset(tty, set, clear); 2683 } 2684 2685 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2686 { 2687 int retval = -EINVAL; 2688 struct serial_icounter_struct icount; 2689 memset(&icount, 0, sizeof(icount)); 2690 if (tty->ops->get_icount) 2691 retval = tty->ops->get_icount(tty, &icount); 2692 if (retval != 0) 2693 return retval; 2694 if (copy_to_user(arg, &icount, sizeof(icount))) 2695 return -EFAULT; 2696 return 0; 2697 } 2698 2699 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2700 { 2701 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2702 tty->driver->subtype == PTY_TYPE_MASTER) 2703 tty = tty->link; 2704 return tty; 2705 } 2706 EXPORT_SYMBOL(tty_pair_get_tty); 2707 2708 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty) 2709 { 2710 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2711 tty->driver->subtype == PTY_TYPE_MASTER) 2712 return tty; 2713 return tty->link; 2714 } 2715 EXPORT_SYMBOL(tty_pair_get_pty); 2716 2717 /* 2718 * Split this up, as gcc can choke on it otherwise.. 2719 */ 2720 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2721 { 2722 struct tty_struct *tty = file_tty(file); 2723 struct tty_struct *real_tty; 2724 void __user *p = (void __user *)arg; 2725 int retval; 2726 struct tty_ldisc *ld; 2727 2728 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2729 return -EINVAL; 2730 2731 real_tty = tty_pair_get_tty(tty); 2732 2733 /* 2734 * Factor out some common prep work 2735 */ 2736 switch (cmd) { 2737 case TIOCSETD: 2738 case TIOCSBRK: 2739 case TIOCCBRK: 2740 case TCSBRK: 2741 case TCSBRKP: 2742 retval = tty_check_change(tty); 2743 if (retval) 2744 return retval; 2745 if (cmd != TIOCCBRK) { 2746 tty_wait_until_sent(tty, 0); 2747 if (signal_pending(current)) 2748 return -EINTR; 2749 } 2750 break; 2751 } 2752 2753 /* 2754 * Now do the stuff. 2755 */ 2756 switch (cmd) { 2757 case TIOCSTI: 2758 return tiocsti(tty, p); 2759 case TIOCGWINSZ: 2760 return tiocgwinsz(real_tty, p); 2761 case TIOCSWINSZ: 2762 return tiocswinsz(real_tty, p); 2763 case TIOCCONS: 2764 return real_tty != tty ? -EINVAL : tioccons(file); 2765 case FIONBIO: 2766 return fionbio(file, p); 2767 case TIOCEXCL: 2768 set_bit(TTY_EXCLUSIVE, &tty->flags); 2769 return 0; 2770 case TIOCNXCL: 2771 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2772 return 0; 2773 case TIOCGEXCL: 2774 { 2775 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags); 2776 return put_user(excl, (int __user *)p); 2777 } 2778 case TIOCNOTTY: 2779 if (current->signal->tty != tty) 2780 return -ENOTTY; 2781 no_tty(); 2782 return 0; 2783 case TIOCSCTTY: 2784 return tiocsctty(tty, arg); 2785 case TIOCGPGRP: 2786 return tiocgpgrp(tty, real_tty, p); 2787 case TIOCSPGRP: 2788 return tiocspgrp(tty, real_tty, p); 2789 case TIOCGSID: 2790 return tiocgsid(tty, real_tty, p); 2791 case TIOCGETD: 2792 return put_user(tty->ldisc->ops->num, (int __user *)p); 2793 case TIOCSETD: 2794 return tiocsetd(tty, p); 2795 case TIOCVHANGUP: 2796 if (!capable(CAP_SYS_ADMIN)) 2797 return -EPERM; 2798 tty_vhangup(tty); 2799 return 0; 2800 case TIOCGDEV: 2801 { 2802 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2803 return put_user(ret, (unsigned int __user *)p); 2804 } 2805 /* 2806 * Break handling 2807 */ 2808 case TIOCSBRK: /* Turn break on, unconditionally */ 2809 if (tty->ops->break_ctl) 2810 return tty->ops->break_ctl(tty, -1); 2811 return 0; 2812 case TIOCCBRK: /* Turn break off, unconditionally */ 2813 if (tty->ops->break_ctl) 2814 return tty->ops->break_ctl(tty, 0); 2815 return 0; 2816 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2817 /* non-zero arg means wait for all output data 2818 * to be sent (performed above) but don't send break. 2819 * This is used by the tcdrain() termios function. 2820 */ 2821 if (!arg) 2822 return send_break(tty, 250); 2823 return 0; 2824 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2825 return send_break(tty, arg ? arg*100 : 250); 2826 2827 case TIOCMGET: 2828 return tty_tiocmget(tty, p); 2829 case TIOCMSET: 2830 case TIOCMBIC: 2831 case TIOCMBIS: 2832 return tty_tiocmset(tty, cmd, p); 2833 case TIOCGICOUNT: 2834 retval = tty_tiocgicount(tty, p); 2835 /* For the moment allow fall through to the old method */ 2836 if (retval != -EINVAL) 2837 return retval; 2838 break; 2839 case TCFLSH: 2840 switch (arg) { 2841 case TCIFLUSH: 2842 case TCIOFLUSH: 2843 /* flush tty buffer and allow ldisc to process ioctl */ 2844 tty_buffer_flush(tty); 2845 break; 2846 } 2847 break; 2848 } 2849 if (tty->ops->ioctl) { 2850 retval = (tty->ops->ioctl)(tty, cmd, arg); 2851 if (retval != -ENOIOCTLCMD) 2852 return retval; 2853 } 2854 ld = tty_ldisc_ref_wait(tty); 2855 retval = -EINVAL; 2856 if (ld->ops->ioctl) { 2857 retval = ld->ops->ioctl(tty, file, cmd, arg); 2858 if (retval == -ENOIOCTLCMD) 2859 retval = -ENOTTY; 2860 } 2861 tty_ldisc_deref(ld); 2862 return retval; 2863 } 2864 2865 #ifdef CONFIG_COMPAT 2866 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 2867 unsigned long arg) 2868 { 2869 struct tty_struct *tty = file_tty(file); 2870 struct tty_ldisc *ld; 2871 int retval = -ENOIOCTLCMD; 2872 2873 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2874 return -EINVAL; 2875 2876 if (tty->ops->compat_ioctl) { 2877 retval = (tty->ops->compat_ioctl)(tty, cmd, arg); 2878 if (retval != -ENOIOCTLCMD) 2879 return retval; 2880 } 2881 2882 ld = tty_ldisc_ref_wait(tty); 2883 if (ld->ops->compat_ioctl) 2884 retval = ld->ops->compat_ioctl(tty, file, cmd, arg); 2885 else 2886 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg); 2887 tty_ldisc_deref(ld); 2888 2889 return retval; 2890 } 2891 #endif 2892 2893 static int this_tty(const void *t, struct file *file, unsigned fd) 2894 { 2895 if (likely(file->f_op->read != tty_read)) 2896 return 0; 2897 return file_tty(file) != t ? 0 : fd + 1; 2898 } 2899 2900 /* 2901 * This implements the "Secure Attention Key" --- the idea is to 2902 * prevent trojan horses by killing all processes associated with this 2903 * tty when the user hits the "Secure Attention Key". Required for 2904 * super-paranoid applications --- see the Orange Book for more details. 2905 * 2906 * This code could be nicer; ideally it should send a HUP, wait a few 2907 * seconds, then send a INT, and then a KILL signal. But you then 2908 * have to coordinate with the init process, since all processes associated 2909 * with the current tty must be dead before the new getty is allowed 2910 * to spawn. 2911 * 2912 * Now, if it would be correct ;-/ The current code has a nasty hole - 2913 * it doesn't catch files in flight. We may send the descriptor to ourselves 2914 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 2915 * 2916 * Nasty bug: do_SAK is being called in interrupt context. This can 2917 * deadlock. We punt it up to process context. AKPM - 16Mar2001 2918 */ 2919 void __do_SAK(struct tty_struct *tty) 2920 { 2921 #ifdef TTY_SOFT_SAK 2922 tty_hangup(tty); 2923 #else 2924 struct task_struct *g, *p; 2925 struct pid *session; 2926 int i; 2927 2928 if (!tty) 2929 return; 2930 session = tty->session; 2931 2932 tty_ldisc_flush(tty); 2933 2934 tty_driver_flush_buffer(tty); 2935 2936 read_lock(&tasklist_lock); 2937 /* Kill the entire session */ 2938 do_each_pid_task(session, PIDTYPE_SID, p) { 2939 printk(KERN_NOTICE "SAK: killed process %d" 2940 " (%s): task_session(p)==tty->session\n", 2941 task_pid_nr(p), p->comm); 2942 send_sig(SIGKILL, p, 1); 2943 } while_each_pid_task(session, PIDTYPE_SID, p); 2944 /* Now kill any processes that happen to have the 2945 * tty open. 2946 */ 2947 do_each_thread(g, p) { 2948 if (p->signal->tty == tty) { 2949 printk(KERN_NOTICE "SAK: killed process %d" 2950 " (%s): task_session(p)==tty->session\n", 2951 task_pid_nr(p), p->comm); 2952 send_sig(SIGKILL, p, 1); 2953 continue; 2954 } 2955 task_lock(p); 2956 i = iterate_fd(p->files, 0, this_tty, tty); 2957 if (i != 0) { 2958 printk(KERN_NOTICE "SAK: killed process %d" 2959 " (%s): fd#%d opened to the tty\n", 2960 task_pid_nr(p), p->comm, i - 1); 2961 force_sig(SIGKILL, p); 2962 } 2963 task_unlock(p); 2964 } while_each_thread(g, p); 2965 read_unlock(&tasklist_lock); 2966 #endif 2967 } 2968 2969 static void do_SAK_work(struct work_struct *work) 2970 { 2971 struct tty_struct *tty = 2972 container_of(work, struct tty_struct, SAK_work); 2973 __do_SAK(tty); 2974 } 2975 2976 /* 2977 * The tq handling here is a little racy - tty->SAK_work may already be queued. 2978 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 2979 * the values which we write to it will be identical to the values which it 2980 * already has. --akpm 2981 */ 2982 void do_SAK(struct tty_struct *tty) 2983 { 2984 if (!tty) 2985 return; 2986 schedule_work(&tty->SAK_work); 2987 } 2988 2989 EXPORT_SYMBOL(do_SAK); 2990 2991 static int dev_match_devt(struct device *dev, const void *data) 2992 { 2993 const dev_t *devt = data; 2994 return dev->devt == *devt; 2995 } 2996 2997 /* Must put_device() after it's unused! */ 2998 static struct device *tty_get_device(struct tty_struct *tty) 2999 { 3000 dev_t devt = tty_devnum(tty); 3001 return class_find_device(tty_class, NULL, &devt, dev_match_devt); 3002 } 3003 3004 3005 /** 3006 * initialize_tty_struct 3007 * @tty: tty to initialize 3008 * 3009 * This subroutine initializes a tty structure that has been newly 3010 * allocated. 3011 * 3012 * Locking: none - tty in question must not be exposed at this point 3013 */ 3014 3015 void initialize_tty_struct(struct tty_struct *tty, 3016 struct tty_driver *driver, int idx) 3017 { 3018 memset(tty, 0, sizeof(struct tty_struct)); 3019 kref_init(&tty->kref); 3020 tty->magic = TTY_MAGIC; 3021 tty_ldisc_init(tty); 3022 tty->session = NULL; 3023 tty->pgrp = NULL; 3024 mutex_init(&tty->legacy_mutex); 3025 mutex_init(&tty->throttle_mutex); 3026 init_rwsem(&tty->termios_rwsem); 3027 mutex_init(&tty->winsize_mutex); 3028 init_ldsem(&tty->ldisc_sem); 3029 init_waitqueue_head(&tty->write_wait); 3030 init_waitqueue_head(&tty->read_wait); 3031 INIT_WORK(&tty->hangup_work, do_tty_hangup); 3032 mutex_init(&tty->atomic_write_lock); 3033 spin_lock_init(&tty->ctrl_lock); 3034 INIT_LIST_HEAD(&tty->tty_files); 3035 INIT_WORK(&tty->SAK_work, do_SAK_work); 3036 3037 tty->driver = driver; 3038 tty->ops = driver->ops; 3039 tty->index = idx; 3040 tty_line_name(driver, idx, tty->name); 3041 tty->dev = tty_get_device(tty); 3042 } 3043 3044 /** 3045 * deinitialize_tty_struct 3046 * @tty: tty to deinitialize 3047 * 3048 * This subroutine deinitializes a tty structure that has been newly 3049 * allocated but tty_release cannot be called on that yet. 3050 * 3051 * Locking: none - tty in question must not be exposed at this point 3052 */ 3053 void deinitialize_tty_struct(struct tty_struct *tty) 3054 { 3055 tty_ldisc_deinit(tty); 3056 } 3057 3058 /** 3059 * tty_put_char - write one character to a tty 3060 * @tty: tty 3061 * @ch: character 3062 * 3063 * Write one byte to the tty using the provided put_char method 3064 * if present. Returns the number of characters successfully output. 3065 * 3066 * Note: the specific put_char operation in the driver layer may go 3067 * away soon. Don't call it directly, use this method 3068 */ 3069 3070 int tty_put_char(struct tty_struct *tty, unsigned char ch) 3071 { 3072 if (tty->ops->put_char) 3073 return tty->ops->put_char(tty, ch); 3074 return tty->ops->write(tty, &ch, 1); 3075 } 3076 EXPORT_SYMBOL_GPL(tty_put_char); 3077 3078 struct class *tty_class; 3079 3080 static int tty_cdev_add(struct tty_driver *driver, dev_t dev, 3081 unsigned int index, unsigned int count) 3082 { 3083 /* init here, since reused cdevs cause crashes */ 3084 cdev_init(&driver->cdevs[index], &tty_fops); 3085 driver->cdevs[index].owner = driver->owner; 3086 return cdev_add(&driver->cdevs[index], dev, count); 3087 } 3088 3089 /** 3090 * tty_register_device - register a tty device 3091 * @driver: the tty driver that describes the tty device 3092 * @index: the index in the tty driver for this tty device 3093 * @device: a struct device that is associated with this tty device. 3094 * This field is optional, if there is no known struct device 3095 * for this tty device it can be set to NULL safely. 3096 * 3097 * Returns a pointer to the struct device for this tty device 3098 * (or ERR_PTR(-EFOO) on error). 3099 * 3100 * This call is required to be made to register an individual tty device 3101 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3102 * that bit is not set, this function should not be called by a tty 3103 * driver. 3104 * 3105 * Locking: ?? 3106 */ 3107 3108 struct device *tty_register_device(struct tty_driver *driver, unsigned index, 3109 struct device *device) 3110 { 3111 return tty_register_device_attr(driver, index, device, NULL, NULL); 3112 } 3113 EXPORT_SYMBOL(tty_register_device); 3114 3115 static void tty_device_create_release(struct device *dev) 3116 { 3117 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3118 kfree(dev); 3119 } 3120 3121 /** 3122 * tty_register_device_attr - register a tty device 3123 * @driver: the tty driver that describes the tty device 3124 * @index: the index in the tty driver for this tty device 3125 * @device: a struct device that is associated with this tty device. 3126 * This field is optional, if there is no known struct device 3127 * for this tty device it can be set to NULL safely. 3128 * @drvdata: Driver data to be set to device. 3129 * @attr_grp: Attribute group to be set on device. 3130 * 3131 * Returns a pointer to the struct device for this tty device 3132 * (or ERR_PTR(-EFOO) on error). 3133 * 3134 * This call is required to be made to register an individual tty device 3135 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3136 * that bit is not set, this function should not be called by a tty 3137 * driver. 3138 * 3139 * Locking: ?? 3140 */ 3141 struct device *tty_register_device_attr(struct tty_driver *driver, 3142 unsigned index, struct device *device, 3143 void *drvdata, 3144 const struct attribute_group **attr_grp) 3145 { 3146 char name[64]; 3147 dev_t devt = MKDEV(driver->major, driver->minor_start) + index; 3148 struct device *dev = NULL; 3149 int retval = -ENODEV; 3150 bool cdev = false; 3151 3152 if (index >= driver->num) { 3153 printk(KERN_ERR "Attempt to register invalid tty line number " 3154 " (%d).\n", index); 3155 return ERR_PTR(-EINVAL); 3156 } 3157 3158 if (driver->type == TTY_DRIVER_TYPE_PTY) 3159 pty_line_name(driver, index, name); 3160 else 3161 tty_line_name(driver, index, name); 3162 3163 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3164 retval = tty_cdev_add(driver, devt, index, 1); 3165 if (retval) 3166 goto error; 3167 cdev = true; 3168 } 3169 3170 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3171 if (!dev) { 3172 retval = -ENOMEM; 3173 goto error; 3174 } 3175 3176 dev->devt = devt; 3177 dev->class = tty_class; 3178 dev->parent = device; 3179 dev->release = tty_device_create_release; 3180 dev_set_name(dev, "%s", name); 3181 dev->groups = attr_grp; 3182 dev_set_drvdata(dev, drvdata); 3183 3184 retval = device_register(dev); 3185 if (retval) 3186 goto error; 3187 3188 return dev; 3189 3190 error: 3191 put_device(dev); 3192 if (cdev) 3193 cdev_del(&driver->cdevs[index]); 3194 return ERR_PTR(retval); 3195 } 3196 EXPORT_SYMBOL_GPL(tty_register_device_attr); 3197 3198 /** 3199 * tty_unregister_device - unregister a tty device 3200 * @driver: the tty driver that describes the tty device 3201 * @index: the index in the tty driver for this tty device 3202 * 3203 * If a tty device is registered with a call to tty_register_device() then 3204 * this function must be called when the tty device is gone. 3205 * 3206 * Locking: ?? 3207 */ 3208 3209 void tty_unregister_device(struct tty_driver *driver, unsigned index) 3210 { 3211 device_destroy(tty_class, 3212 MKDEV(driver->major, driver->minor_start) + index); 3213 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) 3214 cdev_del(&driver->cdevs[index]); 3215 } 3216 EXPORT_SYMBOL(tty_unregister_device); 3217 3218 /** 3219 * __tty_alloc_driver -- allocate tty driver 3220 * @lines: count of lines this driver can handle at most 3221 * @owner: module which is repsonsible for this driver 3222 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags 3223 * 3224 * This should not be called directly, some of the provided macros should be 3225 * used instead. Use IS_ERR and friends on @retval. 3226 */ 3227 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner, 3228 unsigned long flags) 3229 { 3230 struct tty_driver *driver; 3231 unsigned int cdevs = 1; 3232 int err; 3233 3234 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1)) 3235 return ERR_PTR(-EINVAL); 3236 3237 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL); 3238 if (!driver) 3239 return ERR_PTR(-ENOMEM); 3240 3241 kref_init(&driver->kref); 3242 driver->magic = TTY_DRIVER_MAGIC; 3243 driver->num = lines; 3244 driver->owner = owner; 3245 driver->flags = flags; 3246 3247 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) { 3248 driver->ttys = kcalloc(lines, sizeof(*driver->ttys), 3249 GFP_KERNEL); 3250 driver->termios = kcalloc(lines, sizeof(*driver->termios), 3251 GFP_KERNEL); 3252 if (!driver->ttys || !driver->termios) { 3253 err = -ENOMEM; 3254 goto err_free_all; 3255 } 3256 } 3257 3258 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3259 driver->ports = kcalloc(lines, sizeof(*driver->ports), 3260 GFP_KERNEL); 3261 if (!driver->ports) { 3262 err = -ENOMEM; 3263 goto err_free_all; 3264 } 3265 cdevs = lines; 3266 } 3267 3268 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL); 3269 if (!driver->cdevs) { 3270 err = -ENOMEM; 3271 goto err_free_all; 3272 } 3273 3274 return driver; 3275 err_free_all: 3276 kfree(driver->ports); 3277 kfree(driver->ttys); 3278 kfree(driver->termios); 3279 kfree(driver); 3280 return ERR_PTR(err); 3281 } 3282 EXPORT_SYMBOL(__tty_alloc_driver); 3283 3284 static void destruct_tty_driver(struct kref *kref) 3285 { 3286 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3287 int i; 3288 struct ktermios *tp; 3289 3290 if (driver->flags & TTY_DRIVER_INSTALLED) { 3291 /* 3292 * Free the termios and termios_locked structures because 3293 * we don't want to get memory leaks when modular tty 3294 * drivers are removed from the kernel. 3295 */ 3296 for (i = 0; i < driver->num; i++) { 3297 tp = driver->termios[i]; 3298 if (tp) { 3299 driver->termios[i] = NULL; 3300 kfree(tp); 3301 } 3302 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3303 tty_unregister_device(driver, i); 3304 } 3305 proc_tty_unregister_driver(driver); 3306 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) 3307 cdev_del(&driver->cdevs[0]); 3308 } 3309 kfree(driver->cdevs); 3310 kfree(driver->ports); 3311 kfree(driver->termios); 3312 kfree(driver->ttys); 3313 kfree(driver); 3314 } 3315 3316 void tty_driver_kref_put(struct tty_driver *driver) 3317 { 3318 kref_put(&driver->kref, destruct_tty_driver); 3319 } 3320 EXPORT_SYMBOL(tty_driver_kref_put); 3321 3322 void tty_set_operations(struct tty_driver *driver, 3323 const struct tty_operations *op) 3324 { 3325 driver->ops = op; 3326 }; 3327 EXPORT_SYMBOL(tty_set_operations); 3328 3329 void put_tty_driver(struct tty_driver *d) 3330 { 3331 tty_driver_kref_put(d); 3332 } 3333 EXPORT_SYMBOL(put_tty_driver); 3334 3335 /* 3336 * Called by a tty driver to register itself. 3337 */ 3338 int tty_register_driver(struct tty_driver *driver) 3339 { 3340 int error; 3341 int i; 3342 dev_t dev; 3343 struct device *d; 3344 3345 if (!driver->major) { 3346 error = alloc_chrdev_region(&dev, driver->minor_start, 3347 driver->num, driver->name); 3348 if (!error) { 3349 driver->major = MAJOR(dev); 3350 driver->minor_start = MINOR(dev); 3351 } 3352 } else { 3353 dev = MKDEV(driver->major, driver->minor_start); 3354 error = register_chrdev_region(dev, driver->num, driver->name); 3355 } 3356 if (error < 0) 3357 goto err; 3358 3359 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) { 3360 error = tty_cdev_add(driver, dev, 0, driver->num); 3361 if (error) 3362 goto err_unreg_char; 3363 } 3364 3365 mutex_lock(&tty_mutex); 3366 list_add(&driver->tty_drivers, &tty_drivers); 3367 mutex_unlock(&tty_mutex); 3368 3369 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3370 for (i = 0; i < driver->num; i++) { 3371 d = tty_register_device(driver, i, NULL); 3372 if (IS_ERR(d)) { 3373 error = PTR_ERR(d); 3374 goto err_unreg_devs; 3375 } 3376 } 3377 } 3378 proc_tty_register_driver(driver); 3379 driver->flags |= TTY_DRIVER_INSTALLED; 3380 return 0; 3381 3382 err_unreg_devs: 3383 for (i--; i >= 0; i--) 3384 tty_unregister_device(driver, i); 3385 3386 mutex_lock(&tty_mutex); 3387 list_del(&driver->tty_drivers); 3388 mutex_unlock(&tty_mutex); 3389 3390 err_unreg_char: 3391 unregister_chrdev_region(dev, driver->num); 3392 err: 3393 return error; 3394 } 3395 EXPORT_SYMBOL(tty_register_driver); 3396 3397 /* 3398 * Called by a tty driver to unregister itself. 3399 */ 3400 int tty_unregister_driver(struct tty_driver *driver) 3401 { 3402 #if 0 3403 /* FIXME */ 3404 if (driver->refcount) 3405 return -EBUSY; 3406 #endif 3407 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3408 driver->num); 3409 mutex_lock(&tty_mutex); 3410 list_del(&driver->tty_drivers); 3411 mutex_unlock(&tty_mutex); 3412 return 0; 3413 } 3414 3415 EXPORT_SYMBOL(tty_unregister_driver); 3416 3417 dev_t tty_devnum(struct tty_struct *tty) 3418 { 3419 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3420 } 3421 EXPORT_SYMBOL(tty_devnum); 3422 3423 void proc_clear_tty(struct task_struct *p) 3424 { 3425 unsigned long flags; 3426 struct tty_struct *tty; 3427 spin_lock_irqsave(&p->sighand->siglock, flags); 3428 tty = p->signal->tty; 3429 p->signal->tty = NULL; 3430 spin_unlock_irqrestore(&p->sighand->siglock, flags); 3431 tty_kref_put(tty); 3432 } 3433 3434 /* Called under the sighand lock */ 3435 3436 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty) 3437 { 3438 if (tty) { 3439 unsigned long flags; 3440 /* We should not have a session or pgrp to put here but.... */ 3441 spin_lock_irqsave(&tty->ctrl_lock, flags); 3442 put_pid(tty->session); 3443 put_pid(tty->pgrp); 3444 tty->pgrp = get_pid(task_pgrp(tsk)); 3445 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 3446 tty->session = get_pid(task_session(tsk)); 3447 if (tsk->signal->tty) { 3448 printk(KERN_DEBUG "tty not NULL!!\n"); 3449 tty_kref_put(tsk->signal->tty); 3450 } 3451 } 3452 put_pid(tsk->signal->tty_old_pgrp); 3453 tsk->signal->tty = tty_kref_get(tty); 3454 tsk->signal->tty_old_pgrp = NULL; 3455 } 3456 3457 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty) 3458 { 3459 spin_lock_irq(&tsk->sighand->siglock); 3460 __proc_set_tty(tsk, tty); 3461 spin_unlock_irq(&tsk->sighand->siglock); 3462 } 3463 3464 struct tty_struct *get_current_tty(void) 3465 { 3466 struct tty_struct *tty; 3467 unsigned long flags; 3468 3469 spin_lock_irqsave(¤t->sighand->siglock, flags); 3470 tty = tty_kref_get(current->signal->tty); 3471 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 3472 return tty; 3473 } 3474 EXPORT_SYMBOL_GPL(get_current_tty); 3475 3476 void tty_default_fops(struct file_operations *fops) 3477 { 3478 *fops = tty_fops; 3479 } 3480 3481 /* 3482 * Initialize the console device. This is called *early*, so 3483 * we can't necessarily depend on lots of kernel help here. 3484 * Just do some early initializations, and do the complex setup 3485 * later. 3486 */ 3487 void __init console_init(void) 3488 { 3489 initcall_t *call; 3490 3491 /* Setup the default TTY line discipline. */ 3492 tty_ldisc_begin(); 3493 3494 /* 3495 * set up the console device so that later boot sequences can 3496 * inform about problems etc.. 3497 */ 3498 call = __con_initcall_start; 3499 while (call < __con_initcall_end) { 3500 (*call)(); 3501 call++; 3502 } 3503 } 3504 3505 static char *tty_devnode(struct device *dev, umode_t *mode) 3506 { 3507 if (!mode) 3508 return NULL; 3509 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3510 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3511 *mode = 0666; 3512 return NULL; 3513 } 3514 3515 static int __init tty_class_init(void) 3516 { 3517 tty_class = class_create(THIS_MODULE, "tty"); 3518 if (IS_ERR(tty_class)) 3519 return PTR_ERR(tty_class); 3520 tty_class->devnode = tty_devnode; 3521 return 0; 3522 } 3523 3524 postcore_initcall(tty_class_init); 3525 3526 /* 3/2004 jmc: why do these devices exist? */ 3527 static struct cdev tty_cdev, console_cdev; 3528 3529 static ssize_t show_cons_active(struct device *dev, 3530 struct device_attribute *attr, char *buf) 3531 { 3532 struct console *cs[16]; 3533 int i = 0; 3534 struct console *c; 3535 ssize_t count = 0; 3536 3537 console_lock(); 3538 for_each_console(c) { 3539 if (!c->device) 3540 continue; 3541 if (!c->write) 3542 continue; 3543 if ((c->flags & CON_ENABLED) == 0) 3544 continue; 3545 cs[i++] = c; 3546 if (i >= ARRAY_SIZE(cs)) 3547 break; 3548 } 3549 while (i--) { 3550 struct tty_driver *driver; 3551 const char *name = cs[i]->name; 3552 int index = cs[i]->index; 3553 3554 driver = cs[i]->device(cs[i], &index); 3555 if (driver) { 3556 count += tty_line_name(driver, index, buf + count); 3557 count += sprintf(buf + count, "%c", i ? ' ':'\n'); 3558 } else 3559 count += sprintf(buf + count, "%s%d%c", 3560 name, index, i ? ' ':'\n'); 3561 } 3562 console_unlock(); 3563 3564 return count; 3565 } 3566 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3567 3568 static struct device *consdev; 3569 3570 void console_sysfs_notify(void) 3571 { 3572 if (consdev) 3573 sysfs_notify(&consdev->kobj, NULL, "active"); 3574 } 3575 3576 /* 3577 * Ok, now we can initialize the rest of the tty devices and can count 3578 * on memory allocations, interrupts etc.. 3579 */ 3580 int __init tty_init(void) 3581 { 3582 cdev_init(&tty_cdev, &tty_fops); 3583 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3584 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3585 panic("Couldn't register /dev/tty driver\n"); 3586 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3587 3588 cdev_init(&console_cdev, &console_fops); 3589 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3590 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3591 panic("Couldn't register /dev/console driver\n"); 3592 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL, 3593 "console"); 3594 if (IS_ERR(consdev)) 3595 consdev = NULL; 3596 else 3597 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0); 3598 3599 #ifdef CONFIG_VT 3600 vty_init(&console_fops); 3601 #endif 3602 return 0; 3603 } 3604 3605