1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 */ 5 6 /* 7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 8 * or rs-channels. It also implements echoing, cooked mode etc. 9 * 10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 11 * 12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 13 * tty_struct and tty_queue structures. Previously there was an array 14 * of 256 tty_struct's which was statically allocated, and the 15 * tty_queue structures were allocated at boot time. Both are now 16 * dynamically allocated only when the tty is open. 17 * 18 * Also restructured routines so that there is more of a separation 19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 20 * the low-level tty routines (serial.c, pty.c, console.c). This 21 * makes for cleaner and more compact code. -TYT, 9/17/92 22 * 23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 24 * which can be dynamically activated and de-activated by the line 25 * discipline handling modules (like SLIP). 26 * 27 * NOTE: pay no attention to the line discipline code (yet); its 28 * interface is still subject to change in this version... 29 * -- TYT, 1/31/92 30 * 31 * Added functionality to the OPOST tty handling. No delays, but all 32 * other bits should be there. 33 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 34 * 35 * Rewrote canonical mode and added more termios flags. 36 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 37 * 38 * Reorganized FASYNC support so mouse code can share it. 39 * -- ctm@ardi.com, 9Sep95 40 * 41 * New TIOCLINUX variants added. 42 * -- mj@k332.feld.cvut.cz, 19-Nov-95 43 * 44 * Restrict vt switching via ioctl() 45 * -- grif@cs.ucr.edu, 5-Dec-95 46 * 47 * Move console and virtual terminal code to more appropriate files, 48 * implement CONFIG_VT and generalize console device interface. 49 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 50 * 51 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 52 * -- Bill Hawes <whawes@star.net>, June 97 53 * 54 * Added devfs support. 55 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 56 * 57 * Added support for a Unix98-style ptmx device. 58 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 59 * 60 * Reduced memory usage for older ARM systems 61 * -- Russell King <rmk@arm.linux.org.uk> 62 * 63 * Move do_SAK() into process context. Less stack use in devfs functions. 64 * alloc_tty_struct() always uses kmalloc() 65 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 66 */ 67 68 #include <linux/types.h> 69 #include <linux/major.h> 70 #include <linux/errno.h> 71 #include <linux/signal.h> 72 #include <linux/fcntl.h> 73 #include <linux/sched/signal.h> 74 #include <linux/sched/task.h> 75 #include <linux/interrupt.h> 76 #include <linux/tty.h> 77 #include <linux/tty_driver.h> 78 #include <linux/tty_flip.h> 79 #include <linux/devpts_fs.h> 80 #include <linux/file.h> 81 #include <linux/fdtable.h> 82 #include <linux/console.h> 83 #include <linux/timer.h> 84 #include <linux/ctype.h> 85 #include <linux/kd.h> 86 #include <linux/mm.h> 87 #include <linux/string.h> 88 #include <linux/slab.h> 89 #include <linux/poll.h> 90 #include <linux/ppp-ioctl.h> 91 #include <linux/proc_fs.h> 92 #include <linux/init.h> 93 #include <linux/module.h> 94 #include <linux/device.h> 95 #include <linux/wait.h> 96 #include <linux/bitops.h> 97 #include <linux/delay.h> 98 #include <linux/seq_file.h> 99 #include <linux/serial.h> 100 #include <linux/ratelimit.h> 101 #include <linux/compat.h> 102 103 #include <linux/uaccess.h> 104 105 #include <linux/kbd_kern.h> 106 #include <linux/vt_kern.h> 107 #include <linux/selection.h> 108 109 #include <linux/kmod.h> 110 #include <linux/nsproxy.h> 111 112 #undef TTY_DEBUG_HANGUP 113 #ifdef TTY_DEBUG_HANGUP 114 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args) 115 #else 116 # define tty_debug_hangup(tty, f, args...) do { } while (0) 117 #endif 118 119 #define TTY_PARANOIA_CHECK 1 120 #define CHECK_TTY_COUNT 1 121 122 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 123 .c_iflag = ICRNL | IXON, 124 .c_oflag = OPOST | ONLCR, 125 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 126 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 127 ECHOCTL | ECHOKE | IEXTEN, 128 .c_cc = INIT_C_CC, 129 .c_ispeed = 38400, 130 .c_ospeed = 38400, 131 /* .c_line = N_TTY, */ 132 }; 133 134 EXPORT_SYMBOL(tty_std_termios); 135 136 /* This list gets poked at by procfs and various bits of boot up code. This 137 could do with some rationalisation such as pulling the tty proc function 138 into this file */ 139 140 LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 141 142 /* Mutex to protect creating and releasing a tty */ 143 DEFINE_MUTEX(tty_mutex); 144 145 static ssize_t tty_read(struct kiocb *, struct iov_iter *); 146 static ssize_t tty_write(struct kiocb *, struct iov_iter *); 147 static __poll_t tty_poll(struct file *, poll_table *); 148 static int tty_open(struct inode *, struct file *); 149 #ifdef CONFIG_COMPAT 150 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 151 unsigned long arg); 152 #else 153 #define tty_compat_ioctl NULL 154 #endif 155 static int __tty_fasync(int fd, struct file *filp, int on); 156 static int tty_fasync(int fd, struct file *filp, int on); 157 static void release_tty(struct tty_struct *tty, int idx); 158 159 /** 160 * free_tty_struct - free a disused tty 161 * @tty: tty struct to free 162 * 163 * Free the write buffers, tty queue and tty memory itself. 164 * 165 * Locking: none. Must be called after tty is definitely unused 166 */ 167 168 static void free_tty_struct(struct tty_struct *tty) 169 { 170 tty_ldisc_deinit(tty); 171 put_device(tty->dev); 172 kfree(tty->write_buf); 173 tty->magic = 0xDEADDEAD; 174 kfree(tty); 175 } 176 177 static inline struct tty_struct *file_tty(struct file *file) 178 { 179 return ((struct tty_file_private *)file->private_data)->tty; 180 } 181 182 int tty_alloc_file(struct file *file) 183 { 184 struct tty_file_private *priv; 185 186 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 187 if (!priv) 188 return -ENOMEM; 189 190 file->private_data = priv; 191 192 return 0; 193 } 194 195 /* Associate a new file with the tty structure */ 196 void tty_add_file(struct tty_struct *tty, struct file *file) 197 { 198 struct tty_file_private *priv = file->private_data; 199 200 priv->tty = tty; 201 priv->file = file; 202 203 spin_lock(&tty->files_lock); 204 list_add(&priv->list, &tty->tty_files); 205 spin_unlock(&tty->files_lock); 206 } 207 208 /* 209 * tty_free_file - free file->private_data 210 * 211 * This shall be used only for fail path handling when tty_add_file was not 212 * called yet. 213 */ 214 void tty_free_file(struct file *file) 215 { 216 struct tty_file_private *priv = file->private_data; 217 218 file->private_data = NULL; 219 kfree(priv); 220 } 221 222 /* Delete file from its tty */ 223 static void tty_del_file(struct file *file) 224 { 225 struct tty_file_private *priv = file->private_data; 226 struct tty_struct *tty = priv->tty; 227 228 spin_lock(&tty->files_lock); 229 list_del(&priv->list); 230 spin_unlock(&tty->files_lock); 231 tty_free_file(file); 232 } 233 234 /** 235 * tty_name - return tty naming 236 * @tty: tty structure 237 * 238 * Convert a tty structure into a name. The name reflects the kernel 239 * naming policy and if udev is in use may not reflect user space 240 * 241 * Locking: none 242 */ 243 244 const char *tty_name(const struct tty_struct *tty) 245 { 246 if (!tty) /* Hmm. NULL pointer. That's fun. */ 247 return "NULL tty"; 248 return tty->name; 249 } 250 251 EXPORT_SYMBOL(tty_name); 252 253 const char *tty_driver_name(const struct tty_struct *tty) 254 { 255 if (!tty || !tty->driver) 256 return ""; 257 return tty->driver->name; 258 } 259 260 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 261 const char *routine) 262 { 263 #ifdef TTY_PARANOIA_CHECK 264 if (!tty) { 265 pr_warn("(%d:%d): %s: NULL tty\n", 266 imajor(inode), iminor(inode), routine); 267 return 1; 268 } 269 if (tty->magic != TTY_MAGIC) { 270 pr_warn("(%d:%d): %s: bad magic number\n", 271 imajor(inode), iminor(inode), routine); 272 return 1; 273 } 274 #endif 275 return 0; 276 } 277 278 /* Caller must hold tty_lock */ 279 static int check_tty_count(struct tty_struct *tty, const char *routine) 280 { 281 #ifdef CHECK_TTY_COUNT 282 struct list_head *p; 283 int count = 0, kopen_count = 0; 284 285 spin_lock(&tty->files_lock); 286 list_for_each(p, &tty->tty_files) { 287 count++; 288 } 289 spin_unlock(&tty->files_lock); 290 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 291 tty->driver->subtype == PTY_TYPE_SLAVE && 292 tty->link && tty->link->count) 293 count++; 294 if (tty_port_kopened(tty->port)) 295 kopen_count++; 296 if (tty->count != (count + kopen_count)) { 297 tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n", 298 routine, tty->count, count, kopen_count); 299 return (count + kopen_count); 300 } 301 #endif 302 return 0; 303 } 304 305 /** 306 * get_tty_driver - find device of a tty 307 * @device: device identifier 308 * @index: returns the index of the tty 309 * 310 * This routine returns a tty driver structure, given a device number 311 * and also passes back the index number. 312 * 313 * Locking: caller must hold tty_mutex 314 */ 315 316 static struct tty_driver *get_tty_driver(dev_t device, int *index) 317 { 318 struct tty_driver *p; 319 320 list_for_each_entry(p, &tty_drivers, tty_drivers) { 321 dev_t base = MKDEV(p->major, p->minor_start); 322 if (device < base || device >= base + p->num) 323 continue; 324 *index = device - base; 325 return tty_driver_kref_get(p); 326 } 327 return NULL; 328 } 329 330 /** 331 * tty_dev_name_to_number - return dev_t for device name 332 * @name: user space name of device under /dev 333 * @number: pointer to dev_t that this function will populate 334 * 335 * This function converts device names like ttyS0 or ttyUSB1 into dev_t 336 * like (4, 64) or (188, 1). If no corresponding driver is registered then 337 * the function returns -ENODEV. 338 * 339 * Locking: this acquires tty_mutex to protect the tty_drivers list from 340 * being modified while we are traversing it, and makes sure to 341 * release it before exiting. 342 */ 343 int tty_dev_name_to_number(const char *name, dev_t *number) 344 { 345 struct tty_driver *p; 346 int ret; 347 int index, prefix_length = 0; 348 const char *str; 349 350 for (str = name; *str && !isdigit(*str); str++) 351 ; 352 353 if (!*str) 354 return -EINVAL; 355 356 ret = kstrtoint(str, 10, &index); 357 if (ret) 358 return ret; 359 360 prefix_length = str - name; 361 mutex_lock(&tty_mutex); 362 363 list_for_each_entry(p, &tty_drivers, tty_drivers) 364 if (prefix_length == strlen(p->name) && strncmp(name, 365 p->name, prefix_length) == 0) { 366 if (index < p->num) { 367 *number = MKDEV(p->major, p->minor_start + index); 368 goto out; 369 } 370 } 371 372 /* if here then driver wasn't found */ 373 ret = -ENODEV; 374 out: 375 mutex_unlock(&tty_mutex); 376 return ret; 377 } 378 EXPORT_SYMBOL_GPL(tty_dev_name_to_number); 379 380 #ifdef CONFIG_CONSOLE_POLL 381 382 /** 383 * tty_find_polling_driver - find device of a polled tty 384 * @name: name string to match 385 * @line: pointer to resulting tty line nr 386 * 387 * This routine returns a tty driver structure, given a name 388 * and the condition that the tty driver is capable of polled 389 * operation. 390 */ 391 struct tty_driver *tty_find_polling_driver(char *name, int *line) 392 { 393 struct tty_driver *p, *res = NULL; 394 int tty_line = 0; 395 int len; 396 char *str, *stp; 397 398 for (str = name; *str; str++) 399 if ((*str >= '0' && *str <= '9') || *str == ',') 400 break; 401 if (!*str) 402 return NULL; 403 404 len = str - name; 405 tty_line = simple_strtoul(str, &str, 10); 406 407 mutex_lock(&tty_mutex); 408 /* Search through the tty devices to look for a match */ 409 list_for_each_entry(p, &tty_drivers, tty_drivers) { 410 if (!len || strncmp(name, p->name, len) != 0) 411 continue; 412 stp = str; 413 if (*stp == ',') 414 stp++; 415 if (*stp == '\0') 416 stp = NULL; 417 418 if (tty_line >= 0 && tty_line < p->num && p->ops && 419 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 420 res = tty_driver_kref_get(p); 421 *line = tty_line; 422 break; 423 } 424 } 425 mutex_unlock(&tty_mutex); 426 427 return res; 428 } 429 EXPORT_SYMBOL_GPL(tty_find_polling_driver); 430 #endif 431 432 static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to) 433 { 434 return 0; 435 } 436 437 static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from) 438 { 439 return -EIO; 440 } 441 442 /* No kernel lock held - none needed ;) */ 443 static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait) 444 { 445 return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM; 446 } 447 448 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 449 unsigned long arg) 450 { 451 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 452 } 453 454 static long hung_up_tty_compat_ioctl(struct file *file, 455 unsigned int cmd, unsigned long arg) 456 { 457 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 458 } 459 460 static int hung_up_tty_fasync(int fd, struct file *file, int on) 461 { 462 return -ENOTTY; 463 } 464 465 static void tty_show_fdinfo(struct seq_file *m, struct file *file) 466 { 467 struct tty_struct *tty = file_tty(file); 468 469 if (tty && tty->ops && tty->ops->show_fdinfo) 470 tty->ops->show_fdinfo(tty, m); 471 } 472 473 static const struct file_operations tty_fops = { 474 .llseek = no_llseek, 475 .read_iter = tty_read, 476 .write_iter = tty_write, 477 .splice_read = generic_file_splice_read, 478 .splice_write = iter_file_splice_write, 479 .poll = tty_poll, 480 .unlocked_ioctl = tty_ioctl, 481 .compat_ioctl = tty_compat_ioctl, 482 .open = tty_open, 483 .release = tty_release, 484 .fasync = tty_fasync, 485 .show_fdinfo = tty_show_fdinfo, 486 }; 487 488 static const struct file_operations console_fops = { 489 .llseek = no_llseek, 490 .read_iter = tty_read, 491 .write_iter = redirected_tty_write, 492 .splice_read = generic_file_splice_read, 493 .splice_write = iter_file_splice_write, 494 .poll = tty_poll, 495 .unlocked_ioctl = tty_ioctl, 496 .compat_ioctl = tty_compat_ioctl, 497 .open = tty_open, 498 .release = tty_release, 499 .fasync = tty_fasync, 500 }; 501 502 static const struct file_operations hung_up_tty_fops = { 503 .llseek = no_llseek, 504 .read_iter = hung_up_tty_read, 505 .write_iter = hung_up_tty_write, 506 .poll = hung_up_tty_poll, 507 .unlocked_ioctl = hung_up_tty_ioctl, 508 .compat_ioctl = hung_up_tty_compat_ioctl, 509 .release = tty_release, 510 .fasync = hung_up_tty_fasync, 511 }; 512 513 static DEFINE_SPINLOCK(redirect_lock); 514 static struct file *redirect; 515 516 /** 517 * tty_wakeup - request more data 518 * @tty: terminal 519 * 520 * Internal and external helper for wakeups of tty. This function 521 * informs the line discipline if present that the driver is ready 522 * to receive more output data. 523 */ 524 525 void tty_wakeup(struct tty_struct *tty) 526 { 527 struct tty_ldisc *ld; 528 529 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 530 ld = tty_ldisc_ref(tty); 531 if (ld) { 532 if (ld->ops->write_wakeup) 533 ld->ops->write_wakeup(tty); 534 tty_ldisc_deref(ld); 535 } 536 } 537 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT); 538 } 539 540 EXPORT_SYMBOL_GPL(tty_wakeup); 541 542 /** 543 * tty_release_redirect - Release a redirect on a pty if present 544 * @tty: tty device 545 * 546 * This is available to the pty code so if the master closes, if the 547 * slave is a redirect it can release the redirect. 548 */ 549 struct file *tty_release_redirect(struct tty_struct *tty) 550 { 551 struct file *f = NULL; 552 553 spin_lock(&redirect_lock); 554 if (redirect && file_tty(redirect) == tty) { 555 f = redirect; 556 redirect = NULL; 557 } 558 spin_unlock(&redirect_lock); 559 560 return f; 561 } 562 EXPORT_SYMBOL_GPL(tty_release_redirect); 563 564 /** 565 * __tty_hangup - actual handler for hangup events 566 * @tty: tty device 567 * @exit_session: if non-zero, signal all foreground group processes 568 * 569 * This can be called by a "kworker" kernel thread. That is process 570 * synchronous but doesn't hold any locks, so we need to make sure we 571 * have the appropriate locks for what we're doing. 572 * 573 * The hangup event clears any pending redirections onto the hung up 574 * device. It ensures future writes will error and it does the needed 575 * line discipline hangup and signal delivery. The tty object itself 576 * remains intact. 577 * 578 * Locking: 579 * BTM 580 * redirect lock for undoing redirection 581 * file list lock for manipulating list of ttys 582 * tty_ldiscs_lock from called functions 583 * termios_rwsem resetting termios data 584 * tasklist_lock to walk task list for hangup event 585 * ->siglock to protect ->signal/->sighand 586 */ 587 static void __tty_hangup(struct tty_struct *tty, int exit_session) 588 { 589 struct file *cons_filp = NULL; 590 struct file *filp, *f; 591 struct tty_file_private *priv; 592 int closecount = 0, n; 593 int refs; 594 595 if (!tty) 596 return; 597 598 f = tty_release_redirect(tty); 599 600 tty_lock(tty); 601 602 if (test_bit(TTY_HUPPED, &tty->flags)) { 603 tty_unlock(tty); 604 return; 605 } 606 607 /* 608 * Some console devices aren't actually hung up for technical and 609 * historical reasons, which can lead to indefinite interruptible 610 * sleep in n_tty_read(). The following explicitly tells 611 * n_tty_read() to abort readers. 612 */ 613 set_bit(TTY_HUPPING, &tty->flags); 614 615 /* inuse_filps is protected by the single tty lock, 616 this really needs to change if we want to flush the 617 workqueue with the lock held */ 618 check_tty_count(tty, "tty_hangup"); 619 620 spin_lock(&tty->files_lock); 621 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 622 list_for_each_entry(priv, &tty->tty_files, list) { 623 filp = priv->file; 624 if (filp->f_op->write_iter == redirected_tty_write) 625 cons_filp = filp; 626 if (filp->f_op->write_iter != tty_write) 627 continue; 628 closecount++; 629 __tty_fasync(-1, filp, 0); /* can't block */ 630 filp->f_op = &hung_up_tty_fops; 631 } 632 spin_unlock(&tty->files_lock); 633 634 refs = tty_signal_session_leader(tty, exit_session); 635 /* Account for the p->signal references we killed */ 636 while (refs--) 637 tty_kref_put(tty); 638 639 tty_ldisc_hangup(tty, cons_filp != NULL); 640 641 spin_lock_irq(&tty->ctrl_lock); 642 clear_bit(TTY_THROTTLED, &tty->flags); 643 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 644 put_pid(tty->session); 645 put_pid(tty->pgrp); 646 tty->session = NULL; 647 tty->pgrp = NULL; 648 tty->ctrl_status = 0; 649 spin_unlock_irq(&tty->ctrl_lock); 650 651 /* 652 * If one of the devices matches a console pointer, we 653 * cannot just call hangup() because that will cause 654 * tty->count and state->count to go out of sync. 655 * So we just call close() the right number of times. 656 */ 657 if (cons_filp) { 658 if (tty->ops->close) 659 for (n = 0; n < closecount; n++) 660 tty->ops->close(tty, cons_filp); 661 } else if (tty->ops->hangup) 662 tty->ops->hangup(tty); 663 /* 664 * We don't want to have driver/ldisc interactions beyond the ones 665 * we did here. The driver layer expects no calls after ->hangup() 666 * from the ldisc side, which is now guaranteed. 667 */ 668 set_bit(TTY_HUPPED, &tty->flags); 669 clear_bit(TTY_HUPPING, &tty->flags); 670 tty_unlock(tty); 671 672 if (f) 673 fput(f); 674 } 675 676 static void do_tty_hangup(struct work_struct *work) 677 { 678 struct tty_struct *tty = 679 container_of(work, struct tty_struct, hangup_work); 680 681 __tty_hangup(tty, 0); 682 } 683 684 /** 685 * tty_hangup - trigger a hangup event 686 * @tty: tty to hangup 687 * 688 * A carrier loss (virtual or otherwise) has occurred on this like 689 * schedule a hangup sequence to run after this event. 690 */ 691 692 void tty_hangup(struct tty_struct *tty) 693 { 694 tty_debug_hangup(tty, "hangup\n"); 695 schedule_work(&tty->hangup_work); 696 } 697 698 EXPORT_SYMBOL(tty_hangup); 699 700 /** 701 * tty_vhangup - process vhangup 702 * @tty: tty to hangup 703 * 704 * The user has asked via system call for the terminal to be hung up. 705 * We do this synchronously so that when the syscall returns the process 706 * is complete. That guarantee is necessary for security reasons. 707 */ 708 709 void tty_vhangup(struct tty_struct *tty) 710 { 711 tty_debug_hangup(tty, "vhangup\n"); 712 __tty_hangup(tty, 0); 713 } 714 715 EXPORT_SYMBOL(tty_vhangup); 716 717 718 /** 719 * tty_vhangup_self - process vhangup for own ctty 720 * 721 * Perform a vhangup on the current controlling tty 722 */ 723 724 void tty_vhangup_self(void) 725 { 726 struct tty_struct *tty; 727 728 tty = get_current_tty(); 729 if (tty) { 730 tty_vhangup(tty); 731 tty_kref_put(tty); 732 } 733 } 734 735 /** 736 * tty_vhangup_session - hangup session leader exit 737 * @tty: tty to hangup 738 * 739 * The session leader is exiting and hanging up its controlling terminal. 740 * Every process in the foreground process group is signalled SIGHUP. 741 * 742 * We do this synchronously so that when the syscall returns the process 743 * is complete. That guarantee is necessary for security reasons. 744 */ 745 746 void tty_vhangup_session(struct tty_struct *tty) 747 { 748 tty_debug_hangup(tty, "session hangup\n"); 749 __tty_hangup(tty, 1); 750 } 751 752 /** 753 * tty_hung_up_p - was tty hung up 754 * @filp: file pointer of tty 755 * 756 * Return true if the tty has been subject to a vhangup or a carrier 757 * loss 758 */ 759 760 int tty_hung_up_p(struct file *filp) 761 { 762 return (filp && filp->f_op == &hung_up_tty_fops); 763 } 764 765 EXPORT_SYMBOL(tty_hung_up_p); 766 767 /** 768 * stop_tty - propagate flow control 769 * @tty: tty to stop 770 * 771 * Perform flow control to the driver. May be called 772 * on an already stopped device and will not re-call the driver 773 * method. 774 * 775 * This functionality is used by both the line disciplines for 776 * halting incoming flow and by the driver. It may therefore be 777 * called from any context, may be under the tty atomic_write_lock 778 * but not always. 779 * 780 * Locking: 781 * flow_lock 782 */ 783 784 void __stop_tty(struct tty_struct *tty) 785 { 786 if (tty->stopped) 787 return; 788 tty->stopped = 1; 789 if (tty->ops->stop) 790 tty->ops->stop(tty); 791 } 792 793 void stop_tty(struct tty_struct *tty) 794 { 795 unsigned long flags; 796 797 spin_lock_irqsave(&tty->flow_lock, flags); 798 __stop_tty(tty); 799 spin_unlock_irqrestore(&tty->flow_lock, flags); 800 } 801 EXPORT_SYMBOL(stop_tty); 802 803 /** 804 * start_tty - propagate flow control 805 * @tty: tty to start 806 * 807 * Start a tty that has been stopped if at all possible. If this 808 * tty was previous stopped and is now being started, the driver 809 * start method is invoked and the line discipline woken. 810 * 811 * Locking: 812 * flow_lock 813 */ 814 815 void __start_tty(struct tty_struct *tty) 816 { 817 if (!tty->stopped || tty->flow_stopped) 818 return; 819 tty->stopped = 0; 820 if (tty->ops->start) 821 tty->ops->start(tty); 822 tty_wakeup(tty); 823 } 824 825 void start_tty(struct tty_struct *tty) 826 { 827 unsigned long flags; 828 829 spin_lock_irqsave(&tty->flow_lock, flags); 830 __start_tty(tty); 831 spin_unlock_irqrestore(&tty->flow_lock, flags); 832 } 833 EXPORT_SYMBOL(start_tty); 834 835 static void tty_update_time(struct timespec64 *time) 836 { 837 time64_t sec = ktime_get_real_seconds(); 838 839 /* 840 * We only care if the two values differ in anything other than the 841 * lower three bits (i.e every 8 seconds). If so, then we can update 842 * the time of the tty device, otherwise it could be construded as a 843 * security leak to let userspace know the exact timing of the tty. 844 */ 845 if ((sec ^ time->tv_sec) & ~7) 846 time->tv_sec = sec; 847 } 848 849 /* 850 * Iterate on the ldisc ->read() function until we've gotten all 851 * the data the ldisc has for us. 852 * 853 * The "cookie" is something that the ldisc read function can fill 854 * in to let us know that there is more data to be had. 855 * 856 * We promise to continue to call the ldisc until it stops returning 857 * data or clears the cookie. The cookie may be something that the 858 * ldisc maintains state for and needs to free. 859 */ 860 static int iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty, 861 struct file *file, struct iov_iter *to) 862 { 863 int retval = 0; 864 void *cookie = NULL; 865 unsigned long offset = 0; 866 char kernel_buf[64]; 867 size_t count = iov_iter_count(to); 868 869 do { 870 int size, copied; 871 872 size = count > sizeof(kernel_buf) ? sizeof(kernel_buf) : count; 873 size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset); 874 if (!size) 875 break; 876 877 if (size < 0) { 878 /* Did we have an earlier error (ie -EFAULT)? */ 879 if (retval) 880 break; 881 retval = size; 882 883 /* 884 * -EOVERFLOW means we didn't have enough space 885 * for a whole packet, and we shouldn't return 886 * a partial result. 887 */ 888 if (retval == -EOVERFLOW) 889 offset = 0; 890 break; 891 } 892 893 copied = copy_to_iter(kernel_buf, size, to); 894 offset += copied; 895 count -= copied; 896 897 /* 898 * If the user copy failed, we still need to do another ->read() 899 * call if we had a cookie to let the ldisc clear up. 900 * 901 * But make sure size is zeroed. 902 */ 903 if (unlikely(copied != size)) { 904 count = 0; 905 retval = -EFAULT; 906 } 907 } while (cookie); 908 909 /* We always clear tty buffer in case they contained passwords */ 910 memzero_explicit(kernel_buf, sizeof(kernel_buf)); 911 return offset ? offset : retval; 912 } 913 914 915 /** 916 * tty_read - read method for tty device files 917 * @file: pointer to tty file 918 * @buf: user buffer 919 * @count: size of user buffer 920 * @ppos: unused 921 * 922 * Perform the read system call function on this terminal device. Checks 923 * for hung up devices before calling the line discipline method. 924 * 925 * Locking: 926 * Locks the line discipline internally while needed. Multiple 927 * read calls may be outstanding in parallel. 928 */ 929 930 static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to) 931 { 932 int i; 933 struct file *file = iocb->ki_filp; 934 struct inode *inode = file_inode(file); 935 struct tty_struct *tty = file_tty(file); 936 struct tty_ldisc *ld; 937 938 if (tty_paranoia_check(tty, inode, "tty_read")) 939 return -EIO; 940 if (!tty || tty_io_error(tty)) 941 return -EIO; 942 943 /* We want to wait for the line discipline to sort out in this 944 situation */ 945 ld = tty_ldisc_ref_wait(tty); 946 if (!ld) 947 return hung_up_tty_read(iocb, to); 948 i = -EIO; 949 if (ld->ops->read) 950 i = iterate_tty_read(ld, tty, file, to); 951 tty_ldisc_deref(ld); 952 953 if (i > 0) 954 tty_update_time(&inode->i_atime); 955 956 return i; 957 } 958 959 static void tty_write_unlock(struct tty_struct *tty) 960 { 961 mutex_unlock(&tty->atomic_write_lock); 962 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT); 963 } 964 965 static int tty_write_lock(struct tty_struct *tty, int ndelay) 966 { 967 if (!mutex_trylock(&tty->atomic_write_lock)) { 968 if (ndelay) 969 return -EAGAIN; 970 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 971 return -ERESTARTSYS; 972 } 973 return 0; 974 } 975 976 /* 977 * Split writes up in sane blocksizes to avoid 978 * denial-of-service type attacks 979 */ 980 static inline ssize_t do_tty_write( 981 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 982 struct tty_struct *tty, 983 struct file *file, 984 struct iov_iter *from) 985 { 986 size_t count = iov_iter_count(from); 987 ssize_t ret, written = 0; 988 unsigned int chunk; 989 990 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 991 if (ret < 0) 992 return ret; 993 994 /* 995 * We chunk up writes into a temporary buffer. This 996 * simplifies low-level drivers immensely, since they 997 * don't have locking issues and user mode accesses. 998 * 999 * But if TTY_NO_WRITE_SPLIT is set, we should use a 1000 * big chunk-size.. 1001 * 1002 * The default chunk-size is 2kB, because the NTTY 1003 * layer has problems with bigger chunks. It will 1004 * claim to be able to handle more characters than 1005 * it actually does. 1006 * 1007 * FIXME: This can probably go away now except that 64K chunks 1008 * are too likely to fail unless switched to vmalloc... 1009 */ 1010 chunk = 2048; 1011 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 1012 chunk = 65536; 1013 if (count < chunk) 1014 chunk = count; 1015 1016 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 1017 if (tty->write_cnt < chunk) { 1018 unsigned char *buf_chunk; 1019 1020 if (chunk < 1024) 1021 chunk = 1024; 1022 1023 buf_chunk = kmalloc(chunk, GFP_KERNEL); 1024 if (!buf_chunk) { 1025 ret = -ENOMEM; 1026 goto out; 1027 } 1028 kfree(tty->write_buf); 1029 tty->write_cnt = chunk; 1030 tty->write_buf = buf_chunk; 1031 } 1032 1033 /* Do the write .. */ 1034 for (;;) { 1035 size_t size = count; 1036 if (size > chunk) 1037 size = chunk; 1038 1039 ret = -EFAULT; 1040 if (copy_from_iter(tty->write_buf, size, from) != size) 1041 break; 1042 1043 ret = write(tty, file, tty->write_buf, size); 1044 if (ret <= 0) 1045 break; 1046 1047 written += ret; 1048 if (ret > size) 1049 break; 1050 1051 /* FIXME! Have Al check this! */ 1052 if (ret != size) 1053 iov_iter_revert(from, size-ret); 1054 1055 count -= ret; 1056 if (!count) 1057 break; 1058 ret = -ERESTARTSYS; 1059 if (signal_pending(current)) 1060 break; 1061 cond_resched(); 1062 } 1063 if (written) { 1064 tty_update_time(&file_inode(file)->i_mtime); 1065 ret = written; 1066 } 1067 out: 1068 tty_write_unlock(tty); 1069 return ret; 1070 } 1071 1072 /** 1073 * tty_write_message - write a message to a certain tty, not just the console. 1074 * @tty: the destination tty_struct 1075 * @msg: the message to write 1076 * 1077 * This is used for messages that need to be redirected to a specific tty. 1078 * We don't put it into the syslog queue right now maybe in the future if 1079 * really needed. 1080 * 1081 * We must still hold the BTM and test the CLOSING flag for the moment. 1082 */ 1083 1084 void tty_write_message(struct tty_struct *tty, char *msg) 1085 { 1086 if (tty) { 1087 mutex_lock(&tty->atomic_write_lock); 1088 tty_lock(tty); 1089 if (tty->ops->write && tty->count > 0) 1090 tty->ops->write(tty, msg, strlen(msg)); 1091 tty_unlock(tty); 1092 tty_write_unlock(tty); 1093 } 1094 return; 1095 } 1096 1097 1098 /** 1099 * tty_write - write method for tty device file 1100 * @file: tty file pointer 1101 * @buf: user data to write 1102 * @count: bytes to write 1103 * @ppos: unused 1104 * 1105 * Write data to a tty device via the line discipline. 1106 * 1107 * Locking: 1108 * Locks the line discipline as required 1109 * Writes to the tty driver are serialized by the atomic_write_lock 1110 * and are then processed in chunks to the device. The line discipline 1111 * write method will not be invoked in parallel for each device. 1112 */ 1113 1114 static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from) 1115 { 1116 struct tty_struct *tty = file_tty(file); 1117 struct tty_ldisc *ld; 1118 ssize_t ret; 1119 1120 if (tty_paranoia_check(tty, file_inode(file), "tty_write")) 1121 return -EIO; 1122 if (!tty || !tty->ops->write || tty_io_error(tty)) 1123 return -EIO; 1124 /* Short term debug to catch buggy drivers */ 1125 if (tty->ops->write_room == NULL) 1126 tty_err(tty, "missing write_room method\n"); 1127 ld = tty_ldisc_ref_wait(tty); 1128 if (!ld) 1129 return hung_up_tty_write(iocb, from); 1130 if (!ld->ops->write) 1131 ret = -EIO; 1132 else 1133 ret = do_tty_write(ld->ops->write, tty, file, from); 1134 tty_ldisc_deref(ld); 1135 return ret; 1136 } 1137 1138 static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from) 1139 { 1140 return file_tty_write(iocb->ki_filp, iocb, from); 1141 } 1142 1143 ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter) 1144 { 1145 struct file *p = NULL; 1146 1147 spin_lock(&redirect_lock); 1148 if (redirect) 1149 p = get_file(redirect); 1150 spin_unlock(&redirect_lock); 1151 1152 /* 1153 * We know the redirected tty is just another tty, we can can 1154 * call file_tty_write() directly with that file pointer. 1155 */ 1156 if (p) { 1157 ssize_t res; 1158 res = file_tty_write(p, iocb, iter); 1159 fput(p); 1160 return res; 1161 } 1162 return tty_write(iocb, iter); 1163 } 1164 1165 /* 1166 * tty_send_xchar - send priority character 1167 * 1168 * Send a high priority character to the tty even if stopped 1169 * 1170 * Locking: none for xchar method, write ordering for write method. 1171 */ 1172 1173 int tty_send_xchar(struct tty_struct *tty, char ch) 1174 { 1175 int was_stopped = tty->stopped; 1176 1177 if (tty->ops->send_xchar) { 1178 down_read(&tty->termios_rwsem); 1179 tty->ops->send_xchar(tty, ch); 1180 up_read(&tty->termios_rwsem); 1181 return 0; 1182 } 1183 1184 if (tty_write_lock(tty, 0) < 0) 1185 return -ERESTARTSYS; 1186 1187 down_read(&tty->termios_rwsem); 1188 if (was_stopped) 1189 start_tty(tty); 1190 tty->ops->write(tty, &ch, 1); 1191 if (was_stopped) 1192 stop_tty(tty); 1193 up_read(&tty->termios_rwsem); 1194 tty_write_unlock(tty); 1195 return 0; 1196 } 1197 1198 /** 1199 * pty_line_name - generate name for a pty 1200 * @driver: the tty driver in use 1201 * @index: the minor number 1202 * @p: output buffer of at least 6 bytes 1203 * 1204 * Generate a name from a driver reference and write it to the output 1205 * buffer. 1206 * 1207 * Locking: None 1208 */ 1209 static void pty_line_name(struct tty_driver *driver, int index, char *p) 1210 { 1211 static const char ptychar[] = "pqrstuvwxyzabcde"; 1212 int i = index + driver->name_base; 1213 /* ->name is initialized to "ttyp", but "tty" is expected */ 1214 sprintf(p, "%s%c%x", 1215 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1216 ptychar[i >> 4 & 0xf], i & 0xf); 1217 } 1218 1219 /** 1220 * tty_line_name - generate name for a tty 1221 * @driver: the tty driver in use 1222 * @index: the minor number 1223 * @p: output buffer of at least 7 bytes 1224 * 1225 * Generate a name from a driver reference and write it to the output 1226 * buffer. 1227 * 1228 * Locking: None 1229 */ 1230 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p) 1231 { 1232 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE) 1233 return sprintf(p, "%s", driver->name); 1234 else 1235 return sprintf(p, "%s%d", driver->name, 1236 index + driver->name_base); 1237 } 1238 1239 /** 1240 * tty_driver_lookup_tty() - find an existing tty, if any 1241 * @driver: the driver for the tty 1242 * @file: file object 1243 * @idx: the minor number 1244 * 1245 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the 1246 * driver lookup() method returns an error. 1247 * 1248 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref. 1249 */ 1250 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1251 struct file *file, int idx) 1252 { 1253 struct tty_struct *tty; 1254 1255 if (driver->ops->lookup) 1256 if (!file) 1257 tty = ERR_PTR(-EIO); 1258 else 1259 tty = driver->ops->lookup(driver, file, idx); 1260 else 1261 tty = driver->ttys[idx]; 1262 1263 if (!IS_ERR(tty)) 1264 tty_kref_get(tty); 1265 return tty; 1266 } 1267 1268 /** 1269 * tty_init_termios - helper for termios setup 1270 * @tty: the tty to set up 1271 * 1272 * Initialise the termios structure for this tty. This runs under 1273 * the tty_mutex currently so we can be relaxed about ordering. 1274 */ 1275 1276 void tty_init_termios(struct tty_struct *tty) 1277 { 1278 struct ktermios *tp; 1279 int idx = tty->index; 1280 1281 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1282 tty->termios = tty->driver->init_termios; 1283 else { 1284 /* Check for lazy saved data */ 1285 tp = tty->driver->termios[idx]; 1286 if (tp != NULL) { 1287 tty->termios = *tp; 1288 tty->termios.c_line = tty->driver->init_termios.c_line; 1289 } else 1290 tty->termios = tty->driver->init_termios; 1291 } 1292 /* Compatibility until drivers always set this */ 1293 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios); 1294 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios); 1295 } 1296 EXPORT_SYMBOL_GPL(tty_init_termios); 1297 1298 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1299 { 1300 tty_init_termios(tty); 1301 tty_driver_kref_get(driver); 1302 tty->count++; 1303 driver->ttys[tty->index] = tty; 1304 return 0; 1305 } 1306 EXPORT_SYMBOL_GPL(tty_standard_install); 1307 1308 /** 1309 * tty_driver_install_tty() - install a tty entry in the driver 1310 * @driver: the driver for the tty 1311 * @tty: the tty 1312 * 1313 * Install a tty object into the driver tables. The tty->index field 1314 * will be set by the time this is called. This method is responsible 1315 * for ensuring any need additional structures are allocated and 1316 * configured. 1317 * 1318 * Locking: tty_mutex for now 1319 */ 1320 static int tty_driver_install_tty(struct tty_driver *driver, 1321 struct tty_struct *tty) 1322 { 1323 return driver->ops->install ? driver->ops->install(driver, tty) : 1324 tty_standard_install(driver, tty); 1325 } 1326 1327 /** 1328 * tty_driver_remove_tty() - remove a tty from the driver tables 1329 * @driver: the driver for the tty 1330 * @tty: tty to remove 1331 * 1332 * Remvoe a tty object from the driver tables. The tty->index field 1333 * will be set by the time this is called. 1334 * 1335 * Locking: tty_mutex for now 1336 */ 1337 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1338 { 1339 if (driver->ops->remove) 1340 driver->ops->remove(driver, tty); 1341 else 1342 driver->ttys[tty->index] = NULL; 1343 } 1344 1345 /** 1346 * tty_reopen() - fast re-open of an open tty 1347 * @tty: the tty to open 1348 * 1349 * Return 0 on success, -errno on error. 1350 * Re-opens on master ptys are not allowed and return -EIO. 1351 * 1352 * Locking: Caller must hold tty_lock 1353 */ 1354 static int tty_reopen(struct tty_struct *tty) 1355 { 1356 struct tty_driver *driver = tty->driver; 1357 struct tty_ldisc *ld; 1358 int retval = 0; 1359 1360 if (driver->type == TTY_DRIVER_TYPE_PTY && 1361 driver->subtype == PTY_TYPE_MASTER) 1362 return -EIO; 1363 1364 if (!tty->count) 1365 return -EAGAIN; 1366 1367 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN)) 1368 return -EBUSY; 1369 1370 ld = tty_ldisc_ref_wait(tty); 1371 if (ld) { 1372 tty_ldisc_deref(ld); 1373 } else { 1374 retval = tty_ldisc_lock(tty, 5 * HZ); 1375 if (retval) 1376 return retval; 1377 1378 if (!tty->ldisc) 1379 retval = tty_ldisc_reinit(tty, tty->termios.c_line); 1380 tty_ldisc_unlock(tty); 1381 } 1382 1383 if (retval == 0) 1384 tty->count++; 1385 1386 return retval; 1387 } 1388 1389 /** 1390 * tty_init_dev - initialise a tty device 1391 * @driver: tty driver we are opening a device on 1392 * @idx: device index 1393 * 1394 * Prepare a tty device. This may not be a "new" clean device but 1395 * could also be an active device. The pty drivers require special 1396 * handling because of this. 1397 * 1398 * Locking: 1399 * The function is called under the tty_mutex, which 1400 * protects us from the tty struct or driver itself going away. 1401 * 1402 * On exit the tty device has the line discipline attached and 1403 * a reference count of 1. If a pair was created for pty/tty use 1404 * and the other was a pty master then it too has a reference count of 1. 1405 * 1406 * WSH 06/09/97: Rewritten to remove races and properly clean up after a 1407 * failed open. The new code protects the open with a mutex, so it's 1408 * really quite straightforward. The mutex locking can probably be 1409 * relaxed for the (most common) case of reopening a tty. 1410 * 1411 * Return: returned tty structure 1412 */ 1413 1414 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1415 { 1416 struct tty_struct *tty; 1417 int retval; 1418 1419 /* 1420 * First time open is complex, especially for PTY devices. 1421 * This code guarantees that either everything succeeds and the 1422 * TTY is ready for operation, or else the table slots are vacated 1423 * and the allocated memory released. (Except that the termios 1424 * may be retained.) 1425 */ 1426 1427 if (!try_module_get(driver->owner)) 1428 return ERR_PTR(-ENODEV); 1429 1430 tty = alloc_tty_struct(driver, idx); 1431 if (!tty) { 1432 retval = -ENOMEM; 1433 goto err_module_put; 1434 } 1435 1436 tty_lock(tty); 1437 retval = tty_driver_install_tty(driver, tty); 1438 if (retval < 0) 1439 goto err_free_tty; 1440 1441 if (!tty->port) 1442 tty->port = driver->ports[idx]; 1443 1444 if (WARN_RATELIMIT(!tty->port, 1445 "%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n", 1446 __func__, tty->driver->name)) { 1447 retval = -EINVAL; 1448 goto err_release_lock; 1449 } 1450 1451 retval = tty_ldisc_lock(tty, 5 * HZ); 1452 if (retval) 1453 goto err_release_lock; 1454 tty->port->itty = tty; 1455 1456 /* 1457 * Structures all installed ... call the ldisc open routines. 1458 * If we fail here just call release_tty to clean up. No need 1459 * to decrement the use counts, as release_tty doesn't care. 1460 */ 1461 retval = tty_ldisc_setup(tty, tty->link); 1462 if (retval) 1463 goto err_release_tty; 1464 tty_ldisc_unlock(tty); 1465 /* Return the tty locked so that it cannot vanish under the caller */ 1466 return tty; 1467 1468 err_free_tty: 1469 tty_unlock(tty); 1470 free_tty_struct(tty); 1471 err_module_put: 1472 module_put(driver->owner); 1473 return ERR_PTR(retval); 1474 1475 /* call the tty release_tty routine to clean out this slot */ 1476 err_release_tty: 1477 tty_ldisc_unlock(tty); 1478 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n", 1479 retval, idx); 1480 err_release_lock: 1481 tty_unlock(tty); 1482 release_tty(tty, idx); 1483 return ERR_PTR(retval); 1484 } 1485 1486 /** 1487 * tty_save_termios() - save tty termios data in driver table 1488 * @tty: tty whose termios data to save 1489 * 1490 * Locking: Caller guarantees serialisation with tty_init_termios(). 1491 */ 1492 void tty_save_termios(struct tty_struct *tty) 1493 { 1494 struct ktermios *tp; 1495 int idx = tty->index; 1496 1497 /* If the port is going to reset then it has no termios to save */ 1498 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1499 return; 1500 1501 /* Stash the termios data */ 1502 tp = tty->driver->termios[idx]; 1503 if (tp == NULL) { 1504 tp = kmalloc(sizeof(*tp), GFP_KERNEL); 1505 if (tp == NULL) 1506 return; 1507 tty->driver->termios[idx] = tp; 1508 } 1509 *tp = tty->termios; 1510 } 1511 EXPORT_SYMBOL_GPL(tty_save_termios); 1512 1513 /** 1514 * tty_flush_works - flush all works of a tty/pty pair 1515 * @tty: tty device to flush works for (or either end of a pty pair) 1516 * 1517 * Sync flush all works belonging to @tty (and the 'other' tty). 1518 */ 1519 static void tty_flush_works(struct tty_struct *tty) 1520 { 1521 flush_work(&tty->SAK_work); 1522 flush_work(&tty->hangup_work); 1523 if (tty->link) { 1524 flush_work(&tty->link->SAK_work); 1525 flush_work(&tty->link->hangup_work); 1526 } 1527 } 1528 1529 /** 1530 * release_one_tty - release tty structure memory 1531 * @work: work of tty we are obliterating 1532 * 1533 * Releases memory associated with a tty structure, and clears out the 1534 * driver table slots. This function is called when a device is no longer 1535 * in use. It also gets called when setup of a device fails. 1536 * 1537 * Locking: 1538 * takes the file list lock internally when working on the list 1539 * of ttys that the driver keeps. 1540 * 1541 * This method gets called from a work queue so that the driver private 1542 * cleanup ops can sleep (needed for USB at least) 1543 */ 1544 static void release_one_tty(struct work_struct *work) 1545 { 1546 struct tty_struct *tty = 1547 container_of(work, struct tty_struct, hangup_work); 1548 struct tty_driver *driver = tty->driver; 1549 struct module *owner = driver->owner; 1550 1551 if (tty->ops->cleanup) 1552 tty->ops->cleanup(tty); 1553 1554 tty->magic = 0; 1555 tty_driver_kref_put(driver); 1556 module_put(owner); 1557 1558 spin_lock(&tty->files_lock); 1559 list_del_init(&tty->tty_files); 1560 spin_unlock(&tty->files_lock); 1561 1562 put_pid(tty->pgrp); 1563 put_pid(tty->session); 1564 free_tty_struct(tty); 1565 } 1566 1567 static void queue_release_one_tty(struct kref *kref) 1568 { 1569 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1570 1571 /* The hangup queue is now free so we can reuse it rather than 1572 waste a chunk of memory for each port */ 1573 INIT_WORK(&tty->hangup_work, release_one_tty); 1574 schedule_work(&tty->hangup_work); 1575 } 1576 1577 /** 1578 * tty_kref_put - release a tty kref 1579 * @tty: tty device 1580 * 1581 * Release a reference to a tty device and if need be let the kref 1582 * layer destruct the object for us 1583 */ 1584 1585 void tty_kref_put(struct tty_struct *tty) 1586 { 1587 if (tty) 1588 kref_put(&tty->kref, queue_release_one_tty); 1589 } 1590 EXPORT_SYMBOL(tty_kref_put); 1591 1592 /** 1593 * release_tty - release tty structure memory 1594 * @tty: tty device release 1595 * @idx: index of the tty device release 1596 * 1597 * Release both @tty and a possible linked partner (think pty pair), 1598 * and decrement the refcount of the backing module. 1599 * 1600 * Locking: 1601 * tty_mutex 1602 * takes the file list lock internally when working on the list 1603 * of ttys that the driver keeps. 1604 * 1605 */ 1606 static void release_tty(struct tty_struct *tty, int idx) 1607 { 1608 /* This should always be true but check for the moment */ 1609 WARN_ON(tty->index != idx); 1610 WARN_ON(!mutex_is_locked(&tty_mutex)); 1611 if (tty->ops->shutdown) 1612 tty->ops->shutdown(tty); 1613 tty_save_termios(tty); 1614 tty_driver_remove_tty(tty->driver, tty); 1615 if (tty->port) 1616 tty->port->itty = NULL; 1617 if (tty->link) 1618 tty->link->port->itty = NULL; 1619 if (tty->port) 1620 tty_buffer_cancel_work(tty->port); 1621 if (tty->link) 1622 tty_buffer_cancel_work(tty->link->port); 1623 1624 tty_kref_put(tty->link); 1625 tty_kref_put(tty); 1626 } 1627 1628 /** 1629 * tty_release_checks - check a tty before real release 1630 * @tty: tty to check 1631 * @idx: index of the tty 1632 * 1633 * Performs some paranoid checking before true release of the @tty. 1634 * This is a no-op unless TTY_PARANOIA_CHECK is defined. 1635 */ 1636 static int tty_release_checks(struct tty_struct *tty, int idx) 1637 { 1638 #ifdef TTY_PARANOIA_CHECK 1639 if (idx < 0 || idx >= tty->driver->num) { 1640 tty_debug(tty, "bad idx %d\n", idx); 1641 return -1; 1642 } 1643 1644 /* not much to check for devpts */ 1645 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1646 return 0; 1647 1648 if (tty != tty->driver->ttys[idx]) { 1649 tty_debug(tty, "bad driver table[%d] = %p\n", 1650 idx, tty->driver->ttys[idx]); 1651 return -1; 1652 } 1653 if (tty->driver->other) { 1654 struct tty_struct *o_tty = tty->link; 1655 1656 if (o_tty != tty->driver->other->ttys[idx]) { 1657 tty_debug(tty, "bad other table[%d] = %p\n", 1658 idx, tty->driver->other->ttys[idx]); 1659 return -1; 1660 } 1661 if (o_tty->link != tty) { 1662 tty_debug(tty, "bad link = %p\n", o_tty->link); 1663 return -1; 1664 } 1665 } 1666 #endif 1667 return 0; 1668 } 1669 1670 /** 1671 * tty_kclose - closes tty opened by tty_kopen 1672 * @tty: tty device 1673 * 1674 * Performs the final steps to release and free a tty device. It is the 1675 * same as tty_release_struct except that it also resets TTY_PORT_KOPENED 1676 * flag on tty->port. 1677 */ 1678 void tty_kclose(struct tty_struct *tty) 1679 { 1680 /* 1681 * Ask the line discipline code to release its structures 1682 */ 1683 tty_ldisc_release(tty); 1684 1685 /* Wait for pending work before tty destruction commmences */ 1686 tty_flush_works(tty); 1687 1688 tty_debug_hangup(tty, "freeing structure\n"); 1689 /* 1690 * The release_tty function takes care of the details of clearing 1691 * the slots and preserving the termios structure. 1692 */ 1693 mutex_lock(&tty_mutex); 1694 tty_port_set_kopened(tty->port, 0); 1695 release_tty(tty, tty->index); 1696 mutex_unlock(&tty_mutex); 1697 } 1698 EXPORT_SYMBOL_GPL(tty_kclose); 1699 1700 /** 1701 * tty_release_struct - release a tty struct 1702 * @tty: tty device 1703 * @idx: index of the tty 1704 * 1705 * Performs the final steps to release and free a tty device. It is 1706 * roughly the reverse of tty_init_dev. 1707 */ 1708 void tty_release_struct(struct tty_struct *tty, int idx) 1709 { 1710 /* 1711 * Ask the line discipline code to release its structures 1712 */ 1713 tty_ldisc_release(tty); 1714 1715 /* Wait for pending work before tty destruction commmences */ 1716 tty_flush_works(tty); 1717 1718 tty_debug_hangup(tty, "freeing structure\n"); 1719 /* 1720 * The release_tty function takes care of the details of clearing 1721 * the slots and preserving the termios structure. 1722 */ 1723 mutex_lock(&tty_mutex); 1724 release_tty(tty, idx); 1725 mutex_unlock(&tty_mutex); 1726 } 1727 EXPORT_SYMBOL_GPL(tty_release_struct); 1728 1729 /** 1730 * tty_release - vfs callback for close 1731 * @inode: inode of tty 1732 * @filp: file pointer for handle to tty 1733 * 1734 * Called the last time each file handle is closed that references 1735 * this tty. There may however be several such references. 1736 * 1737 * Locking: 1738 * Takes bkl. See tty_release_dev 1739 * 1740 * Even releasing the tty structures is a tricky business.. We have 1741 * to be very careful that the structures are all released at the 1742 * same time, as interrupts might otherwise get the wrong pointers. 1743 * 1744 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1745 * lead to double frees or releasing memory still in use. 1746 */ 1747 1748 int tty_release(struct inode *inode, struct file *filp) 1749 { 1750 struct tty_struct *tty = file_tty(filp); 1751 struct tty_struct *o_tty = NULL; 1752 int do_sleep, final; 1753 int idx; 1754 long timeout = 0; 1755 int once = 1; 1756 1757 if (tty_paranoia_check(tty, inode, __func__)) 1758 return 0; 1759 1760 tty_lock(tty); 1761 check_tty_count(tty, __func__); 1762 1763 __tty_fasync(-1, filp, 0); 1764 1765 idx = tty->index; 1766 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1767 tty->driver->subtype == PTY_TYPE_MASTER) 1768 o_tty = tty->link; 1769 1770 if (tty_release_checks(tty, idx)) { 1771 tty_unlock(tty); 1772 return 0; 1773 } 1774 1775 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count); 1776 1777 if (tty->ops->close) 1778 tty->ops->close(tty, filp); 1779 1780 /* If tty is pty master, lock the slave pty (stable lock order) */ 1781 tty_lock_slave(o_tty); 1782 1783 /* 1784 * Sanity check: if tty->count is going to zero, there shouldn't be 1785 * any waiters on tty->read_wait or tty->write_wait. We test the 1786 * wait queues and kick everyone out _before_ actually starting to 1787 * close. This ensures that we won't block while releasing the tty 1788 * structure. 1789 * 1790 * The test for the o_tty closing is necessary, since the master and 1791 * slave sides may close in any order. If the slave side closes out 1792 * first, its count will be one, since the master side holds an open. 1793 * Thus this test wouldn't be triggered at the time the slave closed, 1794 * so we do it now. 1795 */ 1796 while (1) { 1797 do_sleep = 0; 1798 1799 if (tty->count <= 1) { 1800 if (waitqueue_active(&tty->read_wait)) { 1801 wake_up_poll(&tty->read_wait, EPOLLIN); 1802 do_sleep++; 1803 } 1804 if (waitqueue_active(&tty->write_wait)) { 1805 wake_up_poll(&tty->write_wait, EPOLLOUT); 1806 do_sleep++; 1807 } 1808 } 1809 if (o_tty && o_tty->count <= 1) { 1810 if (waitqueue_active(&o_tty->read_wait)) { 1811 wake_up_poll(&o_tty->read_wait, EPOLLIN); 1812 do_sleep++; 1813 } 1814 if (waitqueue_active(&o_tty->write_wait)) { 1815 wake_up_poll(&o_tty->write_wait, EPOLLOUT); 1816 do_sleep++; 1817 } 1818 } 1819 if (!do_sleep) 1820 break; 1821 1822 if (once) { 1823 once = 0; 1824 tty_warn(tty, "read/write wait queue active!\n"); 1825 } 1826 schedule_timeout_killable(timeout); 1827 if (timeout < 120 * HZ) 1828 timeout = 2 * timeout + 1; 1829 else 1830 timeout = MAX_SCHEDULE_TIMEOUT; 1831 } 1832 1833 if (o_tty) { 1834 if (--o_tty->count < 0) { 1835 tty_warn(tty, "bad slave count (%d)\n", o_tty->count); 1836 o_tty->count = 0; 1837 } 1838 } 1839 if (--tty->count < 0) { 1840 tty_warn(tty, "bad tty->count (%d)\n", tty->count); 1841 tty->count = 0; 1842 } 1843 1844 /* 1845 * We've decremented tty->count, so we need to remove this file 1846 * descriptor off the tty->tty_files list; this serves two 1847 * purposes: 1848 * - check_tty_count sees the correct number of file descriptors 1849 * associated with this tty. 1850 * - do_tty_hangup no longer sees this file descriptor as 1851 * something that needs to be handled for hangups. 1852 */ 1853 tty_del_file(filp); 1854 1855 /* 1856 * Perform some housekeeping before deciding whether to return. 1857 * 1858 * If _either_ side is closing, make sure there aren't any 1859 * processes that still think tty or o_tty is their controlling 1860 * tty. 1861 */ 1862 if (!tty->count) { 1863 read_lock(&tasklist_lock); 1864 session_clear_tty(tty->session); 1865 if (o_tty) 1866 session_clear_tty(o_tty->session); 1867 read_unlock(&tasklist_lock); 1868 } 1869 1870 /* check whether both sides are closing ... */ 1871 final = !tty->count && !(o_tty && o_tty->count); 1872 1873 tty_unlock_slave(o_tty); 1874 tty_unlock(tty); 1875 1876 /* At this point, the tty->count == 0 should ensure a dead tty 1877 cannot be re-opened by a racing opener */ 1878 1879 if (!final) 1880 return 0; 1881 1882 tty_debug_hangup(tty, "final close\n"); 1883 1884 tty_release_struct(tty, idx); 1885 return 0; 1886 } 1887 1888 /** 1889 * tty_open_current_tty - get locked tty of current task 1890 * @device: device number 1891 * @filp: file pointer to tty 1892 * @return: locked tty of the current task iff @device is /dev/tty 1893 * 1894 * Performs a re-open of the current task's controlling tty. 1895 * 1896 * We cannot return driver and index like for the other nodes because 1897 * devpts will not work then. It expects inodes to be from devpts FS. 1898 */ 1899 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1900 { 1901 struct tty_struct *tty; 1902 int retval; 1903 1904 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1905 return NULL; 1906 1907 tty = get_current_tty(); 1908 if (!tty) 1909 return ERR_PTR(-ENXIO); 1910 1911 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1912 /* noctty = 1; */ 1913 tty_lock(tty); 1914 tty_kref_put(tty); /* safe to drop the kref now */ 1915 1916 retval = tty_reopen(tty); 1917 if (retval < 0) { 1918 tty_unlock(tty); 1919 tty = ERR_PTR(retval); 1920 } 1921 return tty; 1922 } 1923 1924 /** 1925 * tty_lookup_driver - lookup a tty driver for a given device file 1926 * @device: device number 1927 * @filp: file pointer to tty 1928 * @index: index for the device in the @return driver 1929 * @return: driver for this inode (with increased refcount) 1930 * 1931 * If @return is not erroneous, the caller is responsible to decrement the 1932 * refcount by tty_driver_kref_put. 1933 * 1934 * Locking: tty_mutex protects get_tty_driver 1935 */ 1936 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1937 int *index) 1938 { 1939 struct tty_driver *driver = NULL; 1940 1941 switch (device) { 1942 #ifdef CONFIG_VT 1943 case MKDEV(TTY_MAJOR, 0): { 1944 extern struct tty_driver *console_driver; 1945 driver = tty_driver_kref_get(console_driver); 1946 *index = fg_console; 1947 break; 1948 } 1949 #endif 1950 case MKDEV(TTYAUX_MAJOR, 1): { 1951 struct tty_driver *console_driver = console_device(index); 1952 if (console_driver) { 1953 driver = tty_driver_kref_get(console_driver); 1954 if (driver && filp) { 1955 /* Don't let /dev/console block */ 1956 filp->f_flags |= O_NONBLOCK; 1957 break; 1958 } 1959 } 1960 if (driver) 1961 tty_driver_kref_put(driver); 1962 return ERR_PTR(-ENODEV); 1963 } 1964 default: 1965 driver = get_tty_driver(device, index); 1966 if (!driver) 1967 return ERR_PTR(-ENODEV); 1968 break; 1969 } 1970 return driver; 1971 } 1972 1973 static struct tty_struct *tty_kopen(dev_t device, int shared) 1974 { 1975 struct tty_struct *tty; 1976 struct tty_driver *driver; 1977 int index = -1; 1978 1979 mutex_lock(&tty_mutex); 1980 driver = tty_lookup_driver(device, NULL, &index); 1981 if (IS_ERR(driver)) { 1982 mutex_unlock(&tty_mutex); 1983 return ERR_CAST(driver); 1984 } 1985 1986 /* check whether we're reopening an existing tty */ 1987 tty = tty_driver_lookup_tty(driver, NULL, index); 1988 if (IS_ERR(tty) || shared) 1989 goto out; 1990 1991 if (tty) { 1992 /* drop kref from tty_driver_lookup_tty() */ 1993 tty_kref_put(tty); 1994 tty = ERR_PTR(-EBUSY); 1995 } else { /* tty_init_dev returns tty with the tty_lock held */ 1996 tty = tty_init_dev(driver, index); 1997 if (IS_ERR(tty)) 1998 goto out; 1999 tty_port_set_kopened(tty->port, 1); 2000 } 2001 out: 2002 mutex_unlock(&tty_mutex); 2003 tty_driver_kref_put(driver); 2004 return tty; 2005 } 2006 2007 /** 2008 * tty_kopen_exclusive - open a tty device for kernel 2009 * @device: dev_t of device to open 2010 * 2011 * Opens tty exclusively for kernel. Performs the driver lookup, 2012 * makes sure it's not already opened and performs the first-time 2013 * tty initialization. 2014 * 2015 * Returns the locked initialized &tty_struct 2016 * 2017 * Claims the global tty_mutex to serialize: 2018 * - concurrent first-time tty initialization 2019 * - concurrent tty driver removal w/ lookup 2020 * - concurrent tty removal from driver table 2021 */ 2022 struct tty_struct *tty_kopen_exclusive(dev_t device) 2023 { 2024 return tty_kopen(device, 0); 2025 } 2026 EXPORT_SYMBOL_GPL(tty_kopen_exclusive); 2027 2028 /** 2029 * tty_kopen_shared - open a tty device for shared in-kernel use 2030 * @device: dev_t of device to open 2031 * 2032 * Opens an already existing tty for in-kernel use. Compared to 2033 * tty_kopen_exclusive() above it doesn't ensure to be the only user. 2034 * 2035 * Locking is identical to tty_kopen() above. 2036 */ 2037 struct tty_struct *tty_kopen_shared(dev_t device) 2038 { 2039 return tty_kopen(device, 1); 2040 } 2041 EXPORT_SYMBOL_GPL(tty_kopen_shared); 2042 2043 /** 2044 * tty_open_by_driver - open a tty device 2045 * @device: dev_t of device to open 2046 * @filp: file pointer to tty 2047 * 2048 * Performs the driver lookup, checks for a reopen, or otherwise 2049 * performs the first-time tty initialization. 2050 * 2051 * Returns the locked initialized or re-opened &tty_struct 2052 * 2053 * Claims the global tty_mutex to serialize: 2054 * - concurrent first-time tty initialization 2055 * - concurrent tty driver removal w/ lookup 2056 * - concurrent tty removal from driver table 2057 */ 2058 static struct tty_struct *tty_open_by_driver(dev_t device, 2059 struct file *filp) 2060 { 2061 struct tty_struct *tty; 2062 struct tty_driver *driver = NULL; 2063 int index = -1; 2064 int retval; 2065 2066 mutex_lock(&tty_mutex); 2067 driver = tty_lookup_driver(device, filp, &index); 2068 if (IS_ERR(driver)) { 2069 mutex_unlock(&tty_mutex); 2070 return ERR_CAST(driver); 2071 } 2072 2073 /* check whether we're reopening an existing tty */ 2074 tty = tty_driver_lookup_tty(driver, filp, index); 2075 if (IS_ERR(tty)) { 2076 mutex_unlock(&tty_mutex); 2077 goto out; 2078 } 2079 2080 if (tty) { 2081 if (tty_port_kopened(tty->port)) { 2082 tty_kref_put(tty); 2083 mutex_unlock(&tty_mutex); 2084 tty = ERR_PTR(-EBUSY); 2085 goto out; 2086 } 2087 mutex_unlock(&tty_mutex); 2088 retval = tty_lock_interruptible(tty); 2089 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */ 2090 if (retval) { 2091 if (retval == -EINTR) 2092 retval = -ERESTARTSYS; 2093 tty = ERR_PTR(retval); 2094 goto out; 2095 } 2096 retval = tty_reopen(tty); 2097 if (retval < 0) { 2098 tty_unlock(tty); 2099 tty = ERR_PTR(retval); 2100 } 2101 } else { /* Returns with the tty_lock held for now */ 2102 tty = tty_init_dev(driver, index); 2103 mutex_unlock(&tty_mutex); 2104 } 2105 out: 2106 tty_driver_kref_put(driver); 2107 return tty; 2108 } 2109 2110 /** 2111 * tty_open - open a tty device 2112 * @inode: inode of device file 2113 * @filp: file pointer to tty 2114 * 2115 * tty_open and tty_release keep up the tty count that contains the 2116 * number of opens done on a tty. We cannot use the inode-count, as 2117 * different inodes might point to the same tty. 2118 * 2119 * Open-counting is needed for pty masters, as well as for keeping 2120 * track of serial lines: DTR is dropped when the last close happens. 2121 * (This is not done solely through tty->count, now. - Ted 1/27/92) 2122 * 2123 * The termios state of a pty is reset on first open so that 2124 * settings don't persist across reuse. 2125 * 2126 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev. 2127 * tty->count should protect the rest. 2128 * ->siglock protects ->signal/->sighand 2129 * 2130 * Note: the tty_unlock/lock cases without a ref are only safe due to 2131 * tty_mutex 2132 */ 2133 2134 static int tty_open(struct inode *inode, struct file *filp) 2135 { 2136 struct tty_struct *tty; 2137 int noctty, retval; 2138 dev_t device = inode->i_rdev; 2139 unsigned saved_flags = filp->f_flags; 2140 2141 nonseekable_open(inode, filp); 2142 2143 retry_open: 2144 retval = tty_alloc_file(filp); 2145 if (retval) 2146 return -ENOMEM; 2147 2148 tty = tty_open_current_tty(device, filp); 2149 if (!tty) 2150 tty = tty_open_by_driver(device, filp); 2151 2152 if (IS_ERR(tty)) { 2153 tty_free_file(filp); 2154 retval = PTR_ERR(tty); 2155 if (retval != -EAGAIN || signal_pending(current)) 2156 return retval; 2157 schedule(); 2158 goto retry_open; 2159 } 2160 2161 tty_add_file(tty, filp); 2162 2163 check_tty_count(tty, __func__); 2164 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count); 2165 2166 if (tty->ops->open) 2167 retval = tty->ops->open(tty, filp); 2168 else 2169 retval = -ENODEV; 2170 filp->f_flags = saved_flags; 2171 2172 if (retval) { 2173 tty_debug_hangup(tty, "open error %d, releasing\n", retval); 2174 2175 tty_unlock(tty); /* need to call tty_release without BTM */ 2176 tty_release(inode, filp); 2177 if (retval != -ERESTARTSYS) 2178 return retval; 2179 2180 if (signal_pending(current)) 2181 return retval; 2182 2183 schedule(); 2184 /* 2185 * Need to reset f_op in case a hangup happened. 2186 */ 2187 if (tty_hung_up_p(filp)) 2188 filp->f_op = &tty_fops; 2189 goto retry_open; 2190 } 2191 clear_bit(TTY_HUPPED, &tty->flags); 2192 2193 noctty = (filp->f_flags & O_NOCTTY) || 2194 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) || 2195 device == MKDEV(TTYAUX_MAJOR, 1) || 2196 (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2197 tty->driver->subtype == PTY_TYPE_MASTER); 2198 if (!noctty) 2199 tty_open_proc_set_tty(filp, tty); 2200 tty_unlock(tty); 2201 return 0; 2202 } 2203 2204 2205 2206 /** 2207 * tty_poll - check tty status 2208 * @filp: file being polled 2209 * @wait: poll wait structures to update 2210 * 2211 * Call the line discipline polling method to obtain the poll 2212 * status of the device. 2213 * 2214 * Locking: locks called line discipline but ldisc poll method 2215 * may be re-entered freely by other callers. 2216 */ 2217 2218 static __poll_t tty_poll(struct file *filp, poll_table *wait) 2219 { 2220 struct tty_struct *tty = file_tty(filp); 2221 struct tty_ldisc *ld; 2222 __poll_t ret = 0; 2223 2224 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll")) 2225 return 0; 2226 2227 ld = tty_ldisc_ref_wait(tty); 2228 if (!ld) 2229 return hung_up_tty_poll(filp, wait); 2230 if (ld->ops->poll) 2231 ret = ld->ops->poll(tty, filp, wait); 2232 tty_ldisc_deref(ld); 2233 return ret; 2234 } 2235 2236 static int __tty_fasync(int fd, struct file *filp, int on) 2237 { 2238 struct tty_struct *tty = file_tty(filp); 2239 unsigned long flags; 2240 int retval = 0; 2241 2242 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync")) 2243 goto out; 2244 2245 retval = fasync_helper(fd, filp, on, &tty->fasync); 2246 if (retval <= 0) 2247 goto out; 2248 2249 if (on) { 2250 enum pid_type type; 2251 struct pid *pid; 2252 2253 spin_lock_irqsave(&tty->ctrl_lock, flags); 2254 if (tty->pgrp) { 2255 pid = tty->pgrp; 2256 type = PIDTYPE_PGID; 2257 } else { 2258 pid = task_pid(current); 2259 type = PIDTYPE_TGID; 2260 } 2261 get_pid(pid); 2262 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2263 __f_setown(filp, pid, type, 0); 2264 put_pid(pid); 2265 retval = 0; 2266 } 2267 out: 2268 return retval; 2269 } 2270 2271 static int tty_fasync(int fd, struct file *filp, int on) 2272 { 2273 struct tty_struct *tty = file_tty(filp); 2274 int retval = -ENOTTY; 2275 2276 tty_lock(tty); 2277 if (!tty_hung_up_p(filp)) 2278 retval = __tty_fasync(fd, filp, on); 2279 tty_unlock(tty); 2280 2281 return retval; 2282 } 2283 2284 /** 2285 * tiocsti - fake input character 2286 * @tty: tty to fake input into 2287 * @p: pointer to character 2288 * 2289 * Fake input to a tty device. Does the necessary locking and 2290 * input management. 2291 * 2292 * FIXME: does not honour flow control ?? 2293 * 2294 * Locking: 2295 * Called functions take tty_ldiscs_lock 2296 * current->signal->tty check is safe without locks 2297 * 2298 * FIXME: may race normal receive processing 2299 */ 2300 2301 static int tiocsti(struct tty_struct *tty, char __user *p) 2302 { 2303 char ch, mbz = 0; 2304 struct tty_ldisc *ld; 2305 2306 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2307 return -EPERM; 2308 if (get_user(ch, p)) 2309 return -EFAULT; 2310 tty_audit_tiocsti(tty, ch); 2311 ld = tty_ldisc_ref_wait(tty); 2312 if (!ld) 2313 return -EIO; 2314 if (ld->ops->receive_buf) 2315 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2316 tty_ldisc_deref(ld); 2317 return 0; 2318 } 2319 2320 /** 2321 * tiocgwinsz - implement window query ioctl 2322 * @tty: tty 2323 * @arg: user buffer for result 2324 * 2325 * Copies the kernel idea of the window size into the user buffer. 2326 * 2327 * Locking: tty->winsize_mutex is taken to ensure the winsize data 2328 * is consistent. 2329 */ 2330 2331 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2332 { 2333 int err; 2334 2335 mutex_lock(&tty->winsize_mutex); 2336 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2337 mutex_unlock(&tty->winsize_mutex); 2338 2339 return err ? -EFAULT: 0; 2340 } 2341 2342 /** 2343 * tty_do_resize - resize event 2344 * @tty: tty being resized 2345 * @ws: new dimensions 2346 * 2347 * Update the termios variables and send the necessary signals to 2348 * peform a terminal resize correctly 2349 */ 2350 2351 int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2352 { 2353 struct pid *pgrp; 2354 2355 /* Lock the tty */ 2356 mutex_lock(&tty->winsize_mutex); 2357 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2358 goto done; 2359 2360 /* Signal the foreground process group */ 2361 pgrp = tty_get_pgrp(tty); 2362 if (pgrp) 2363 kill_pgrp(pgrp, SIGWINCH, 1); 2364 put_pid(pgrp); 2365 2366 tty->winsize = *ws; 2367 done: 2368 mutex_unlock(&tty->winsize_mutex); 2369 return 0; 2370 } 2371 EXPORT_SYMBOL(tty_do_resize); 2372 2373 /** 2374 * tiocswinsz - implement window size set ioctl 2375 * @tty: tty side of tty 2376 * @arg: user buffer for result 2377 * 2378 * Copies the user idea of the window size to the kernel. Traditionally 2379 * this is just advisory information but for the Linux console it 2380 * actually has driver level meaning and triggers a VC resize. 2381 * 2382 * Locking: 2383 * Driver dependent. The default do_resize method takes the 2384 * tty termios mutex and ctrl_lock. The console takes its own lock 2385 * then calls into the default method. 2386 */ 2387 2388 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2389 { 2390 struct winsize tmp_ws; 2391 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2392 return -EFAULT; 2393 2394 if (tty->ops->resize) 2395 return tty->ops->resize(tty, &tmp_ws); 2396 else 2397 return tty_do_resize(tty, &tmp_ws); 2398 } 2399 2400 /** 2401 * tioccons - allow admin to move logical console 2402 * @file: the file to become console 2403 * 2404 * Allow the administrator to move the redirected console device 2405 * 2406 * Locking: uses redirect_lock to guard the redirect information 2407 */ 2408 2409 static int tioccons(struct file *file) 2410 { 2411 if (!capable(CAP_SYS_ADMIN)) 2412 return -EPERM; 2413 if (file->f_op->write_iter == redirected_tty_write) { 2414 struct file *f; 2415 spin_lock(&redirect_lock); 2416 f = redirect; 2417 redirect = NULL; 2418 spin_unlock(&redirect_lock); 2419 if (f) 2420 fput(f); 2421 return 0; 2422 } 2423 if (file->f_op->write_iter != tty_write) 2424 return -ENOTTY; 2425 if (!(file->f_mode & FMODE_WRITE)) 2426 return -EBADF; 2427 if (!(file->f_mode & FMODE_CAN_WRITE)) 2428 return -EINVAL; 2429 spin_lock(&redirect_lock); 2430 if (redirect) { 2431 spin_unlock(&redirect_lock); 2432 return -EBUSY; 2433 } 2434 redirect = get_file(file); 2435 spin_unlock(&redirect_lock); 2436 return 0; 2437 } 2438 2439 /** 2440 * tiocsetd - set line discipline 2441 * @tty: tty device 2442 * @p: pointer to user data 2443 * 2444 * Set the line discipline according to user request. 2445 * 2446 * Locking: see tty_set_ldisc, this function is just a helper 2447 */ 2448 2449 static int tiocsetd(struct tty_struct *tty, int __user *p) 2450 { 2451 int disc; 2452 int ret; 2453 2454 if (get_user(disc, p)) 2455 return -EFAULT; 2456 2457 ret = tty_set_ldisc(tty, disc); 2458 2459 return ret; 2460 } 2461 2462 /** 2463 * tiocgetd - get line discipline 2464 * @tty: tty device 2465 * @p: pointer to user data 2466 * 2467 * Retrieves the line discipline id directly from the ldisc. 2468 * 2469 * Locking: waits for ldisc reference (in case the line discipline 2470 * is changing or the tty is being hungup) 2471 */ 2472 2473 static int tiocgetd(struct tty_struct *tty, int __user *p) 2474 { 2475 struct tty_ldisc *ld; 2476 int ret; 2477 2478 ld = tty_ldisc_ref_wait(tty); 2479 if (!ld) 2480 return -EIO; 2481 ret = put_user(ld->ops->num, p); 2482 tty_ldisc_deref(ld); 2483 return ret; 2484 } 2485 2486 /** 2487 * send_break - performed time break 2488 * @tty: device to break on 2489 * @duration: timeout in mS 2490 * 2491 * Perform a timed break on hardware that lacks its own driver level 2492 * timed break functionality. 2493 * 2494 * Locking: 2495 * atomic_write_lock serializes 2496 * 2497 */ 2498 2499 static int send_break(struct tty_struct *tty, unsigned int duration) 2500 { 2501 int retval; 2502 2503 if (tty->ops->break_ctl == NULL) 2504 return 0; 2505 2506 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2507 retval = tty->ops->break_ctl(tty, duration); 2508 else { 2509 /* Do the work ourselves */ 2510 if (tty_write_lock(tty, 0) < 0) 2511 return -EINTR; 2512 retval = tty->ops->break_ctl(tty, -1); 2513 if (retval) 2514 goto out; 2515 if (!signal_pending(current)) 2516 msleep_interruptible(duration); 2517 retval = tty->ops->break_ctl(tty, 0); 2518 out: 2519 tty_write_unlock(tty); 2520 if (signal_pending(current)) 2521 retval = -EINTR; 2522 } 2523 return retval; 2524 } 2525 2526 /** 2527 * tty_tiocmget - get modem status 2528 * @tty: tty device 2529 * @p: pointer to result 2530 * 2531 * Obtain the modem status bits from the tty driver if the feature 2532 * is supported. Return -EINVAL if it is not available. 2533 * 2534 * Locking: none (up to the driver) 2535 */ 2536 2537 static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2538 { 2539 int retval = -EINVAL; 2540 2541 if (tty->ops->tiocmget) { 2542 retval = tty->ops->tiocmget(tty); 2543 2544 if (retval >= 0) 2545 retval = put_user(retval, p); 2546 } 2547 return retval; 2548 } 2549 2550 /** 2551 * tty_tiocmset - set modem status 2552 * @tty: tty device 2553 * @cmd: command - clear bits, set bits or set all 2554 * @p: pointer to desired bits 2555 * 2556 * Set the modem status bits from the tty driver if the feature 2557 * is supported. Return -EINVAL if it is not available. 2558 * 2559 * Locking: none (up to the driver) 2560 */ 2561 2562 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2563 unsigned __user *p) 2564 { 2565 int retval; 2566 unsigned int set, clear, val; 2567 2568 if (tty->ops->tiocmset == NULL) 2569 return -EINVAL; 2570 2571 retval = get_user(val, p); 2572 if (retval) 2573 return retval; 2574 set = clear = 0; 2575 switch (cmd) { 2576 case TIOCMBIS: 2577 set = val; 2578 break; 2579 case TIOCMBIC: 2580 clear = val; 2581 break; 2582 case TIOCMSET: 2583 set = val; 2584 clear = ~val; 2585 break; 2586 } 2587 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2588 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2589 return tty->ops->tiocmset(tty, set, clear); 2590 } 2591 2592 /** 2593 * tty_get_icount - get tty statistics 2594 * @tty: tty device 2595 * @icount: output parameter 2596 * 2597 * Gets a copy of the tty's icount statistics. 2598 * 2599 * Locking: none (up to the driver) 2600 */ 2601 int tty_get_icount(struct tty_struct *tty, 2602 struct serial_icounter_struct *icount) 2603 { 2604 memset(icount, 0, sizeof(*icount)); 2605 2606 if (tty->ops->get_icount) 2607 return tty->ops->get_icount(tty, icount); 2608 else 2609 return -EINVAL; 2610 } 2611 EXPORT_SYMBOL_GPL(tty_get_icount); 2612 2613 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2614 { 2615 struct serial_icounter_struct icount; 2616 int retval; 2617 2618 retval = tty_get_icount(tty, &icount); 2619 if (retval != 0) 2620 return retval; 2621 2622 if (copy_to_user(arg, &icount, sizeof(icount))) 2623 return -EFAULT; 2624 return 0; 2625 } 2626 2627 static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss) 2628 { 2629 static DEFINE_RATELIMIT_STATE(depr_flags, 2630 DEFAULT_RATELIMIT_INTERVAL, 2631 DEFAULT_RATELIMIT_BURST); 2632 char comm[TASK_COMM_LEN]; 2633 struct serial_struct v; 2634 int flags; 2635 2636 if (copy_from_user(&v, ss, sizeof(*ss))) 2637 return -EFAULT; 2638 2639 flags = v.flags & ASYNC_DEPRECATED; 2640 2641 if (flags && __ratelimit(&depr_flags)) 2642 pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n", 2643 __func__, get_task_comm(comm, current), flags); 2644 if (!tty->ops->set_serial) 2645 return -ENOTTY; 2646 return tty->ops->set_serial(tty, &v); 2647 } 2648 2649 static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss) 2650 { 2651 struct serial_struct v; 2652 int err; 2653 2654 memset(&v, 0, sizeof(v)); 2655 if (!tty->ops->get_serial) 2656 return -ENOTTY; 2657 err = tty->ops->get_serial(tty, &v); 2658 if (!err && copy_to_user(ss, &v, sizeof(v))) 2659 err = -EFAULT; 2660 return err; 2661 } 2662 2663 /* 2664 * if pty, return the slave side (real_tty) 2665 * otherwise, return self 2666 */ 2667 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2668 { 2669 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2670 tty->driver->subtype == PTY_TYPE_MASTER) 2671 tty = tty->link; 2672 return tty; 2673 } 2674 2675 /* 2676 * Split this up, as gcc can choke on it otherwise.. 2677 */ 2678 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2679 { 2680 struct tty_struct *tty = file_tty(file); 2681 struct tty_struct *real_tty; 2682 void __user *p = (void __user *)arg; 2683 int retval; 2684 struct tty_ldisc *ld; 2685 2686 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2687 return -EINVAL; 2688 2689 real_tty = tty_pair_get_tty(tty); 2690 2691 /* 2692 * Factor out some common prep work 2693 */ 2694 switch (cmd) { 2695 case TIOCSETD: 2696 case TIOCSBRK: 2697 case TIOCCBRK: 2698 case TCSBRK: 2699 case TCSBRKP: 2700 retval = tty_check_change(tty); 2701 if (retval) 2702 return retval; 2703 if (cmd != TIOCCBRK) { 2704 tty_wait_until_sent(tty, 0); 2705 if (signal_pending(current)) 2706 return -EINTR; 2707 } 2708 break; 2709 } 2710 2711 /* 2712 * Now do the stuff. 2713 */ 2714 switch (cmd) { 2715 case TIOCSTI: 2716 return tiocsti(tty, p); 2717 case TIOCGWINSZ: 2718 return tiocgwinsz(real_tty, p); 2719 case TIOCSWINSZ: 2720 return tiocswinsz(real_tty, p); 2721 case TIOCCONS: 2722 return real_tty != tty ? -EINVAL : tioccons(file); 2723 case TIOCEXCL: 2724 set_bit(TTY_EXCLUSIVE, &tty->flags); 2725 return 0; 2726 case TIOCNXCL: 2727 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2728 return 0; 2729 case TIOCGEXCL: 2730 { 2731 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags); 2732 return put_user(excl, (int __user *)p); 2733 } 2734 case TIOCGETD: 2735 return tiocgetd(tty, p); 2736 case TIOCSETD: 2737 return tiocsetd(tty, p); 2738 case TIOCVHANGUP: 2739 if (!capable(CAP_SYS_ADMIN)) 2740 return -EPERM; 2741 tty_vhangup(tty); 2742 return 0; 2743 case TIOCGDEV: 2744 { 2745 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2746 return put_user(ret, (unsigned int __user *)p); 2747 } 2748 /* 2749 * Break handling 2750 */ 2751 case TIOCSBRK: /* Turn break on, unconditionally */ 2752 if (tty->ops->break_ctl) 2753 return tty->ops->break_ctl(tty, -1); 2754 return 0; 2755 case TIOCCBRK: /* Turn break off, unconditionally */ 2756 if (tty->ops->break_ctl) 2757 return tty->ops->break_ctl(tty, 0); 2758 return 0; 2759 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2760 /* non-zero arg means wait for all output data 2761 * to be sent (performed above) but don't send break. 2762 * This is used by the tcdrain() termios function. 2763 */ 2764 if (!arg) 2765 return send_break(tty, 250); 2766 return 0; 2767 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2768 return send_break(tty, arg ? arg*100 : 250); 2769 2770 case TIOCMGET: 2771 return tty_tiocmget(tty, p); 2772 case TIOCMSET: 2773 case TIOCMBIC: 2774 case TIOCMBIS: 2775 return tty_tiocmset(tty, cmd, p); 2776 case TIOCGICOUNT: 2777 return tty_tiocgicount(tty, p); 2778 case TCFLSH: 2779 switch (arg) { 2780 case TCIFLUSH: 2781 case TCIOFLUSH: 2782 /* flush tty buffer and allow ldisc to process ioctl */ 2783 tty_buffer_flush(tty, NULL); 2784 break; 2785 } 2786 break; 2787 case TIOCSSERIAL: 2788 return tty_tiocsserial(tty, p); 2789 case TIOCGSERIAL: 2790 return tty_tiocgserial(tty, p); 2791 case TIOCGPTPEER: 2792 /* Special because the struct file is needed */ 2793 return ptm_open_peer(file, tty, (int)arg); 2794 default: 2795 retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg); 2796 if (retval != -ENOIOCTLCMD) 2797 return retval; 2798 } 2799 if (tty->ops->ioctl) { 2800 retval = tty->ops->ioctl(tty, cmd, arg); 2801 if (retval != -ENOIOCTLCMD) 2802 return retval; 2803 } 2804 ld = tty_ldisc_ref_wait(tty); 2805 if (!ld) 2806 return hung_up_tty_ioctl(file, cmd, arg); 2807 retval = -EINVAL; 2808 if (ld->ops->ioctl) { 2809 retval = ld->ops->ioctl(tty, file, cmd, arg); 2810 if (retval == -ENOIOCTLCMD) 2811 retval = -ENOTTY; 2812 } 2813 tty_ldisc_deref(ld); 2814 return retval; 2815 } 2816 2817 #ifdef CONFIG_COMPAT 2818 2819 struct serial_struct32 { 2820 compat_int_t type; 2821 compat_int_t line; 2822 compat_uint_t port; 2823 compat_int_t irq; 2824 compat_int_t flags; 2825 compat_int_t xmit_fifo_size; 2826 compat_int_t custom_divisor; 2827 compat_int_t baud_base; 2828 unsigned short close_delay; 2829 char io_type; 2830 char reserved_char; 2831 compat_int_t hub6; 2832 unsigned short closing_wait; /* time to wait before closing */ 2833 unsigned short closing_wait2; /* no longer used... */ 2834 compat_uint_t iomem_base; 2835 unsigned short iomem_reg_shift; 2836 unsigned int port_high; 2837 /* compat_ulong_t iomap_base FIXME */ 2838 compat_int_t reserved; 2839 }; 2840 2841 static int compat_tty_tiocsserial(struct tty_struct *tty, 2842 struct serial_struct32 __user *ss) 2843 { 2844 static DEFINE_RATELIMIT_STATE(depr_flags, 2845 DEFAULT_RATELIMIT_INTERVAL, 2846 DEFAULT_RATELIMIT_BURST); 2847 char comm[TASK_COMM_LEN]; 2848 struct serial_struct32 v32; 2849 struct serial_struct v; 2850 int flags; 2851 2852 if (copy_from_user(&v32, ss, sizeof(*ss))) 2853 return -EFAULT; 2854 2855 memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base)); 2856 v.iomem_base = compat_ptr(v32.iomem_base); 2857 v.iomem_reg_shift = v32.iomem_reg_shift; 2858 v.port_high = v32.port_high; 2859 v.iomap_base = 0; 2860 2861 flags = v.flags & ASYNC_DEPRECATED; 2862 2863 if (flags && __ratelimit(&depr_flags)) 2864 pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n", 2865 __func__, get_task_comm(comm, current), flags); 2866 if (!tty->ops->set_serial) 2867 return -ENOTTY; 2868 return tty->ops->set_serial(tty, &v); 2869 } 2870 2871 static int compat_tty_tiocgserial(struct tty_struct *tty, 2872 struct serial_struct32 __user *ss) 2873 { 2874 struct serial_struct32 v32; 2875 struct serial_struct v; 2876 int err; 2877 2878 memset(&v, 0, sizeof(v)); 2879 memset(&v32, 0, sizeof(v32)); 2880 2881 if (!tty->ops->get_serial) 2882 return -ENOTTY; 2883 err = tty->ops->get_serial(tty, &v); 2884 if (!err) { 2885 memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base)); 2886 v32.iomem_base = (unsigned long)v.iomem_base >> 32 ? 2887 0xfffffff : ptr_to_compat(v.iomem_base); 2888 v32.iomem_reg_shift = v.iomem_reg_shift; 2889 v32.port_high = v.port_high; 2890 if (copy_to_user(ss, &v32, sizeof(v32))) 2891 err = -EFAULT; 2892 } 2893 return err; 2894 } 2895 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 2896 unsigned long arg) 2897 { 2898 struct tty_struct *tty = file_tty(file); 2899 struct tty_ldisc *ld; 2900 int retval = -ENOIOCTLCMD; 2901 2902 switch (cmd) { 2903 case TIOCOUTQ: 2904 case TIOCSTI: 2905 case TIOCGWINSZ: 2906 case TIOCSWINSZ: 2907 case TIOCGEXCL: 2908 case TIOCGETD: 2909 case TIOCSETD: 2910 case TIOCGDEV: 2911 case TIOCMGET: 2912 case TIOCMSET: 2913 case TIOCMBIC: 2914 case TIOCMBIS: 2915 case TIOCGICOUNT: 2916 case TIOCGPGRP: 2917 case TIOCSPGRP: 2918 case TIOCGSID: 2919 case TIOCSERGETLSR: 2920 case TIOCGRS485: 2921 case TIOCSRS485: 2922 #ifdef TIOCGETP 2923 case TIOCGETP: 2924 case TIOCSETP: 2925 case TIOCSETN: 2926 #endif 2927 #ifdef TIOCGETC 2928 case TIOCGETC: 2929 case TIOCSETC: 2930 #endif 2931 #ifdef TIOCGLTC 2932 case TIOCGLTC: 2933 case TIOCSLTC: 2934 #endif 2935 case TCSETSF: 2936 case TCSETSW: 2937 case TCSETS: 2938 case TCGETS: 2939 #ifdef TCGETS2 2940 case TCGETS2: 2941 case TCSETSF2: 2942 case TCSETSW2: 2943 case TCSETS2: 2944 #endif 2945 case TCGETA: 2946 case TCSETAF: 2947 case TCSETAW: 2948 case TCSETA: 2949 case TIOCGLCKTRMIOS: 2950 case TIOCSLCKTRMIOS: 2951 #ifdef TCGETX 2952 case TCGETX: 2953 case TCSETX: 2954 case TCSETXW: 2955 case TCSETXF: 2956 #endif 2957 case TIOCGSOFTCAR: 2958 case TIOCSSOFTCAR: 2959 2960 case PPPIOCGCHAN: 2961 case PPPIOCGUNIT: 2962 return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg)); 2963 case TIOCCONS: 2964 case TIOCEXCL: 2965 case TIOCNXCL: 2966 case TIOCVHANGUP: 2967 case TIOCSBRK: 2968 case TIOCCBRK: 2969 case TCSBRK: 2970 case TCSBRKP: 2971 case TCFLSH: 2972 case TIOCGPTPEER: 2973 case TIOCNOTTY: 2974 case TIOCSCTTY: 2975 case TCXONC: 2976 case TIOCMIWAIT: 2977 case TIOCSERCONFIG: 2978 return tty_ioctl(file, cmd, arg); 2979 } 2980 2981 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2982 return -EINVAL; 2983 2984 switch (cmd) { 2985 case TIOCSSERIAL: 2986 return compat_tty_tiocsserial(tty, compat_ptr(arg)); 2987 case TIOCGSERIAL: 2988 return compat_tty_tiocgserial(tty, compat_ptr(arg)); 2989 } 2990 if (tty->ops->compat_ioctl) { 2991 retval = tty->ops->compat_ioctl(tty, cmd, arg); 2992 if (retval != -ENOIOCTLCMD) 2993 return retval; 2994 } 2995 2996 ld = tty_ldisc_ref_wait(tty); 2997 if (!ld) 2998 return hung_up_tty_compat_ioctl(file, cmd, arg); 2999 if (ld->ops->compat_ioctl) 3000 retval = ld->ops->compat_ioctl(tty, file, cmd, arg); 3001 if (retval == -ENOIOCTLCMD && ld->ops->ioctl) 3002 retval = ld->ops->ioctl(tty, file, 3003 (unsigned long)compat_ptr(cmd), arg); 3004 tty_ldisc_deref(ld); 3005 3006 return retval; 3007 } 3008 #endif 3009 3010 static int this_tty(const void *t, struct file *file, unsigned fd) 3011 { 3012 if (likely(file->f_op->read_iter != tty_read)) 3013 return 0; 3014 return file_tty(file) != t ? 0 : fd + 1; 3015 } 3016 3017 /* 3018 * This implements the "Secure Attention Key" --- the idea is to 3019 * prevent trojan horses by killing all processes associated with this 3020 * tty when the user hits the "Secure Attention Key". Required for 3021 * super-paranoid applications --- see the Orange Book for more details. 3022 * 3023 * This code could be nicer; ideally it should send a HUP, wait a few 3024 * seconds, then send a INT, and then a KILL signal. But you then 3025 * have to coordinate with the init process, since all processes associated 3026 * with the current tty must be dead before the new getty is allowed 3027 * to spawn. 3028 * 3029 * Now, if it would be correct ;-/ The current code has a nasty hole - 3030 * it doesn't catch files in flight. We may send the descriptor to ourselves 3031 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 3032 * 3033 * Nasty bug: do_SAK is being called in interrupt context. This can 3034 * deadlock. We punt it up to process context. AKPM - 16Mar2001 3035 */ 3036 void __do_SAK(struct tty_struct *tty) 3037 { 3038 #ifdef TTY_SOFT_SAK 3039 tty_hangup(tty); 3040 #else 3041 struct task_struct *g, *p; 3042 struct pid *session; 3043 int i; 3044 unsigned long flags; 3045 3046 if (!tty) 3047 return; 3048 3049 spin_lock_irqsave(&tty->ctrl_lock, flags); 3050 session = get_pid(tty->session); 3051 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 3052 3053 tty_ldisc_flush(tty); 3054 3055 tty_driver_flush_buffer(tty); 3056 3057 read_lock(&tasklist_lock); 3058 /* Kill the entire session */ 3059 do_each_pid_task(session, PIDTYPE_SID, p) { 3060 tty_notice(tty, "SAK: killed process %d (%s): by session\n", 3061 task_pid_nr(p), p->comm); 3062 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID); 3063 } while_each_pid_task(session, PIDTYPE_SID, p); 3064 3065 /* Now kill any processes that happen to have the tty open */ 3066 do_each_thread(g, p) { 3067 if (p->signal->tty == tty) { 3068 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n", 3069 task_pid_nr(p), p->comm); 3070 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID); 3071 continue; 3072 } 3073 task_lock(p); 3074 i = iterate_fd(p->files, 0, this_tty, tty); 3075 if (i != 0) { 3076 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n", 3077 task_pid_nr(p), p->comm, i - 1); 3078 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID); 3079 } 3080 task_unlock(p); 3081 } while_each_thread(g, p); 3082 read_unlock(&tasklist_lock); 3083 put_pid(session); 3084 #endif 3085 } 3086 3087 static void do_SAK_work(struct work_struct *work) 3088 { 3089 struct tty_struct *tty = 3090 container_of(work, struct tty_struct, SAK_work); 3091 __do_SAK(tty); 3092 } 3093 3094 /* 3095 * The tq handling here is a little racy - tty->SAK_work may already be queued. 3096 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 3097 * the values which we write to it will be identical to the values which it 3098 * already has. --akpm 3099 */ 3100 void do_SAK(struct tty_struct *tty) 3101 { 3102 if (!tty) 3103 return; 3104 schedule_work(&tty->SAK_work); 3105 } 3106 3107 EXPORT_SYMBOL(do_SAK); 3108 3109 /* Must put_device() after it's unused! */ 3110 static struct device *tty_get_device(struct tty_struct *tty) 3111 { 3112 dev_t devt = tty_devnum(tty); 3113 return class_find_device_by_devt(tty_class, devt); 3114 } 3115 3116 3117 /* 3118 * alloc_tty_struct 3119 * 3120 * This subroutine allocates and initializes a tty structure. 3121 * 3122 * Locking: none - tty in question is not exposed at this point 3123 */ 3124 3125 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx) 3126 { 3127 struct tty_struct *tty; 3128 3129 tty = kzalloc(sizeof(*tty), GFP_KERNEL); 3130 if (!tty) 3131 return NULL; 3132 3133 kref_init(&tty->kref); 3134 tty->magic = TTY_MAGIC; 3135 if (tty_ldisc_init(tty)) { 3136 kfree(tty); 3137 return NULL; 3138 } 3139 tty->session = NULL; 3140 tty->pgrp = NULL; 3141 mutex_init(&tty->legacy_mutex); 3142 mutex_init(&tty->throttle_mutex); 3143 init_rwsem(&tty->termios_rwsem); 3144 mutex_init(&tty->winsize_mutex); 3145 init_ldsem(&tty->ldisc_sem); 3146 init_waitqueue_head(&tty->write_wait); 3147 init_waitqueue_head(&tty->read_wait); 3148 INIT_WORK(&tty->hangup_work, do_tty_hangup); 3149 mutex_init(&tty->atomic_write_lock); 3150 spin_lock_init(&tty->ctrl_lock); 3151 spin_lock_init(&tty->flow_lock); 3152 spin_lock_init(&tty->files_lock); 3153 INIT_LIST_HEAD(&tty->tty_files); 3154 INIT_WORK(&tty->SAK_work, do_SAK_work); 3155 3156 tty->driver = driver; 3157 tty->ops = driver->ops; 3158 tty->index = idx; 3159 tty_line_name(driver, idx, tty->name); 3160 tty->dev = tty_get_device(tty); 3161 3162 return tty; 3163 } 3164 3165 /** 3166 * tty_put_char - write one character to a tty 3167 * @tty: tty 3168 * @ch: character 3169 * 3170 * Write one byte to the tty using the provided put_char method 3171 * if present. Returns the number of characters successfully output. 3172 * 3173 * Note: the specific put_char operation in the driver layer may go 3174 * away soon. Don't call it directly, use this method 3175 */ 3176 3177 int tty_put_char(struct tty_struct *tty, unsigned char ch) 3178 { 3179 if (tty->ops->put_char) 3180 return tty->ops->put_char(tty, ch); 3181 return tty->ops->write(tty, &ch, 1); 3182 } 3183 EXPORT_SYMBOL_GPL(tty_put_char); 3184 3185 struct class *tty_class; 3186 3187 static int tty_cdev_add(struct tty_driver *driver, dev_t dev, 3188 unsigned int index, unsigned int count) 3189 { 3190 int err; 3191 3192 /* init here, since reused cdevs cause crashes */ 3193 driver->cdevs[index] = cdev_alloc(); 3194 if (!driver->cdevs[index]) 3195 return -ENOMEM; 3196 driver->cdevs[index]->ops = &tty_fops; 3197 driver->cdevs[index]->owner = driver->owner; 3198 err = cdev_add(driver->cdevs[index], dev, count); 3199 if (err) 3200 kobject_put(&driver->cdevs[index]->kobj); 3201 return err; 3202 } 3203 3204 /** 3205 * tty_register_device - register a tty device 3206 * @driver: the tty driver that describes the tty device 3207 * @index: the index in the tty driver for this tty device 3208 * @device: a struct device that is associated with this tty device. 3209 * This field is optional, if there is no known struct device 3210 * for this tty device it can be set to NULL safely. 3211 * 3212 * Returns a pointer to the struct device for this tty device 3213 * (or ERR_PTR(-EFOO) on error). 3214 * 3215 * This call is required to be made to register an individual tty device 3216 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3217 * that bit is not set, this function should not be called by a tty 3218 * driver. 3219 * 3220 * Locking: ?? 3221 */ 3222 3223 struct device *tty_register_device(struct tty_driver *driver, unsigned index, 3224 struct device *device) 3225 { 3226 return tty_register_device_attr(driver, index, device, NULL, NULL); 3227 } 3228 EXPORT_SYMBOL(tty_register_device); 3229 3230 static void tty_device_create_release(struct device *dev) 3231 { 3232 dev_dbg(dev, "releasing...\n"); 3233 kfree(dev); 3234 } 3235 3236 /** 3237 * tty_register_device_attr - register a tty device 3238 * @driver: the tty driver that describes the tty device 3239 * @index: the index in the tty driver for this tty device 3240 * @device: a struct device that is associated with this tty device. 3241 * This field is optional, if there is no known struct device 3242 * for this tty device it can be set to NULL safely. 3243 * @drvdata: Driver data to be set to device. 3244 * @attr_grp: Attribute group to be set on device. 3245 * 3246 * Returns a pointer to the struct device for this tty device 3247 * (or ERR_PTR(-EFOO) on error). 3248 * 3249 * This call is required to be made to register an individual tty device 3250 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3251 * that bit is not set, this function should not be called by a tty 3252 * driver. 3253 * 3254 * Locking: ?? 3255 */ 3256 struct device *tty_register_device_attr(struct tty_driver *driver, 3257 unsigned index, struct device *device, 3258 void *drvdata, 3259 const struct attribute_group **attr_grp) 3260 { 3261 char name[64]; 3262 dev_t devt = MKDEV(driver->major, driver->minor_start) + index; 3263 struct ktermios *tp; 3264 struct device *dev; 3265 int retval; 3266 3267 if (index >= driver->num) { 3268 pr_err("%s: Attempt to register invalid tty line number (%d)\n", 3269 driver->name, index); 3270 return ERR_PTR(-EINVAL); 3271 } 3272 3273 if (driver->type == TTY_DRIVER_TYPE_PTY) 3274 pty_line_name(driver, index, name); 3275 else 3276 tty_line_name(driver, index, name); 3277 3278 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3279 if (!dev) 3280 return ERR_PTR(-ENOMEM); 3281 3282 dev->devt = devt; 3283 dev->class = tty_class; 3284 dev->parent = device; 3285 dev->release = tty_device_create_release; 3286 dev_set_name(dev, "%s", name); 3287 dev->groups = attr_grp; 3288 dev_set_drvdata(dev, drvdata); 3289 3290 dev_set_uevent_suppress(dev, 1); 3291 3292 retval = device_register(dev); 3293 if (retval) 3294 goto err_put; 3295 3296 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3297 /* 3298 * Free any saved termios data so that the termios state is 3299 * reset when reusing a minor number. 3300 */ 3301 tp = driver->termios[index]; 3302 if (tp) { 3303 driver->termios[index] = NULL; 3304 kfree(tp); 3305 } 3306 3307 retval = tty_cdev_add(driver, devt, index, 1); 3308 if (retval) 3309 goto err_del; 3310 } 3311 3312 dev_set_uevent_suppress(dev, 0); 3313 kobject_uevent(&dev->kobj, KOBJ_ADD); 3314 3315 return dev; 3316 3317 err_del: 3318 device_del(dev); 3319 err_put: 3320 put_device(dev); 3321 3322 return ERR_PTR(retval); 3323 } 3324 EXPORT_SYMBOL_GPL(tty_register_device_attr); 3325 3326 /** 3327 * tty_unregister_device - unregister a tty device 3328 * @driver: the tty driver that describes the tty device 3329 * @index: the index in the tty driver for this tty device 3330 * 3331 * If a tty device is registered with a call to tty_register_device() then 3332 * this function must be called when the tty device is gone. 3333 * 3334 * Locking: ?? 3335 */ 3336 3337 void tty_unregister_device(struct tty_driver *driver, unsigned index) 3338 { 3339 device_destroy(tty_class, 3340 MKDEV(driver->major, driver->minor_start) + index); 3341 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3342 cdev_del(driver->cdevs[index]); 3343 driver->cdevs[index] = NULL; 3344 } 3345 } 3346 EXPORT_SYMBOL(tty_unregister_device); 3347 3348 /** 3349 * __tty_alloc_driver -- allocate tty driver 3350 * @lines: count of lines this driver can handle at most 3351 * @owner: module which is responsible for this driver 3352 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags 3353 * 3354 * This should not be called directly, some of the provided macros should be 3355 * used instead. Use IS_ERR and friends on @retval. 3356 */ 3357 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner, 3358 unsigned long flags) 3359 { 3360 struct tty_driver *driver; 3361 unsigned int cdevs = 1; 3362 int err; 3363 3364 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1)) 3365 return ERR_PTR(-EINVAL); 3366 3367 driver = kzalloc(sizeof(*driver), GFP_KERNEL); 3368 if (!driver) 3369 return ERR_PTR(-ENOMEM); 3370 3371 kref_init(&driver->kref); 3372 driver->magic = TTY_DRIVER_MAGIC; 3373 driver->num = lines; 3374 driver->owner = owner; 3375 driver->flags = flags; 3376 3377 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) { 3378 driver->ttys = kcalloc(lines, sizeof(*driver->ttys), 3379 GFP_KERNEL); 3380 driver->termios = kcalloc(lines, sizeof(*driver->termios), 3381 GFP_KERNEL); 3382 if (!driver->ttys || !driver->termios) { 3383 err = -ENOMEM; 3384 goto err_free_all; 3385 } 3386 } 3387 3388 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3389 driver->ports = kcalloc(lines, sizeof(*driver->ports), 3390 GFP_KERNEL); 3391 if (!driver->ports) { 3392 err = -ENOMEM; 3393 goto err_free_all; 3394 } 3395 cdevs = lines; 3396 } 3397 3398 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL); 3399 if (!driver->cdevs) { 3400 err = -ENOMEM; 3401 goto err_free_all; 3402 } 3403 3404 return driver; 3405 err_free_all: 3406 kfree(driver->ports); 3407 kfree(driver->ttys); 3408 kfree(driver->termios); 3409 kfree(driver->cdevs); 3410 kfree(driver); 3411 return ERR_PTR(err); 3412 } 3413 EXPORT_SYMBOL(__tty_alloc_driver); 3414 3415 static void destruct_tty_driver(struct kref *kref) 3416 { 3417 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3418 int i; 3419 struct ktermios *tp; 3420 3421 if (driver->flags & TTY_DRIVER_INSTALLED) { 3422 for (i = 0; i < driver->num; i++) { 3423 tp = driver->termios[i]; 3424 if (tp) { 3425 driver->termios[i] = NULL; 3426 kfree(tp); 3427 } 3428 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3429 tty_unregister_device(driver, i); 3430 } 3431 proc_tty_unregister_driver(driver); 3432 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) 3433 cdev_del(driver->cdevs[0]); 3434 } 3435 kfree(driver->cdevs); 3436 kfree(driver->ports); 3437 kfree(driver->termios); 3438 kfree(driver->ttys); 3439 kfree(driver); 3440 } 3441 3442 void tty_driver_kref_put(struct tty_driver *driver) 3443 { 3444 kref_put(&driver->kref, destruct_tty_driver); 3445 } 3446 EXPORT_SYMBOL(tty_driver_kref_put); 3447 3448 void tty_set_operations(struct tty_driver *driver, 3449 const struct tty_operations *op) 3450 { 3451 driver->ops = op; 3452 }; 3453 EXPORT_SYMBOL(tty_set_operations); 3454 3455 void put_tty_driver(struct tty_driver *d) 3456 { 3457 tty_driver_kref_put(d); 3458 } 3459 EXPORT_SYMBOL(put_tty_driver); 3460 3461 /* 3462 * Called by a tty driver to register itself. 3463 */ 3464 int tty_register_driver(struct tty_driver *driver) 3465 { 3466 int error; 3467 int i; 3468 dev_t dev; 3469 struct device *d; 3470 3471 if (!driver->major) { 3472 error = alloc_chrdev_region(&dev, driver->minor_start, 3473 driver->num, driver->name); 3474 if (!error) { 3475 driver->major = MAJOR(dev); 3476 driver->minor_start = MINOR(dev); 3477 } 3478 } else { 3479 dev = MKDEV(driver->major, driver->minor_start); 3480 error = register_chrdev_region(dev, driver->num, driver->name); 3481 } 3482 if (error < 0) 3483 goto err; 3484 3485 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) { 3486 error = tty_cdev_add(driver, dev, 0, driver->num); 3487 if (error) 3488 goto err_unreg_char; 3489 } 3490 3491 mutex_lock(&tty_mutex); 3492 list_add(&driver->tty_drivers, &tty_drivers); 3493 mutex_unlock(&tty_mutex); 3494 3495 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3496 for (i = 0; i < driver->num; i++) { 3497 d = tty_register_device(driver, i, NULL); 3498 if (IS_ERR(d)) { 3499 error = PTR_ERR(d); 3500 goto err_unreg_devs; 3501 } 3502 } 3503 } 3504 proc_tty_register_driver(driver); 3505 driver->flags |= TTY_DRIVER_INSTALLED; 3506 return 0; 3507 3508 err_unreg_devs: 3509 for (i--; i >= 0; i--) 3510 tty_unregister_device(driver, i); 3511 3512 mutex_lock(&tty_mutex); 3513 list_del(&driver->tty_drivers); 3514 mutex_unlock(&tty_mutex); 3515 3516 err_unreg_char: 3517 unregister_chrdev_region(dev, driver->num); 3518 err: 3519 return error; 3520 } 3521 EXPORT_SYMBOL(tty_register_driver); 3522 3523 /* 3524 * Called by a tty driver to unregister itself. 3525 */ 3526 void tty_unregister_driver(struct tty_driver *driver) 3527 { 3528 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3529 driver->num); 3530 mutex_lock(&tty_mutex); 3531 list_del(&driver->tty_drivers); 3532 mutex_unlock(&tty_mutex); 3533 } 3534 EXPORT_SYMBOL(tty_unregister_driver); 3535 3536 dev_t tty_devnum(struct tty_struct *tty) 3537 { 3538 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3539 } 3540 EXPORT_SYMBOL(tty_devnum); 3541 3542 void tty_default_fops(struct file_operations *fops) 3543 { 3544 *fops = tty_fops; 3545 } 3546 3547 static char *tty_devnode(struct device *dev, umode_t *mode) 3548 { 3549 if (!mode) 3550 return NULL; 3551 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3552 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3553 *mode = 0666; 3554 return NULL; 3555 } 3556 3557 static int __init tty_class_init(void) 3558 { 3559 tty_class = class_create(THIS_MODULE, "tty"); 3560 if (IS_ERR(tty_class)) 3561 return PTR_ERR(tty_class); 3562 tty_class->devnode = tty_devnode; 3563 return 0; 3564 } 3565 3566 postcore_initcall(tty_class_init); 3567 3568 /* 3/2004 jmc: why do these devices exist? */ 3569 static struct cdev tty_cdev, console_cdev; 3570 3571 static ssize_t show_cons_active(struct device *dev, 3572 struct device_attribute *attr, char *buf) 3573 { 3574 struct console *cs[16]; 3575 int i = 0; 3576 struct console *c; 3577 ssize_t count = 0; 3578 3579 console_lock(); 3580 for_each_console(c) { 3581 if (!c->device) 3582 continue; 3583 if (!c->write) 3584 continue; 3585 if ((c->flags & CON_ENABLED) == 0) 3586 continue; 3587 cs[i++] = c; 3588 if (i >= ARRAY_SIZE(cs)) 3589 break; 3590 } 3591 while (i--) { 3592 int index = cs[i]->index; 3593 struct tty_driver *drv = cs[i]->device(cs[i], &index); 3594 3595 /* don't resolve tty0 as some programs depend on it */ 3596 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR)) 3597 count += tty_line_name(drv, index, buf + count); 3598 else 3599 count += sprintf(buf + count, "%s%d", 3600 cs[i]->name, cs[i]->index); 3601 3602 count += sprintf(buf + count, "%c", i ? ' ':'\n'); 3603 } 3604 console_unlock(); 3605 3606 return count; 3607 } 3608 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3609 3610 static struct attribute *cons_dev_attrs[] = { 3611 &dev_attr_active.attr, 3612 NULL 3613 }; 3614 3615 ATTRIBUTE_GROUPS(cons_dev); 3616 3617 static struct device *consdev; 3618 3619 void console_sysfs_notify(void) 3620 { 3621 if (consdev) 3622 sysfs_notify(&consdev->kobj, NULL, "active"); 3623 } 3624 3625 /* 3626 * Ok, now we can initialize the rest of the tty devices and can count 3627 * on memory allocations, interrupts etc.. 3628 */ 3629 int __init tty_init(void) 3630 { 3631 tty_sysctl_init(); 3632 cdev_init(&tty_cdev, &tty_fops); 3633 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3634 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3635 panic("Couldn't register /dev/tty driver\n"); 3636 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3637 3638 cdev_init(&console_cdev, &console_fops); 3639 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3640 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3641 panic("Couldn't register /dev/console driver\n"); 3642 consdev = device_create_with_groups(tty_class, NULL, 3643 MKDEV(TTYAUX_MAJOR, 1), NULL, 3644 cons_dev_groups, "console"); 3645 if (IS_ERR(consdev)) 3646 consdev = NULL; 3647 3648 #ifdef CONFIG_VT 3649 vty_init(&console_fops); 3650 #endif 3651 return 0; 3652 } 3653 3654