1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 */ 4 5 /* 6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 7 * or rs-channels. It also implements echoing, cooked mode etc. 8 * 9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 10 * 11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 12 * tty_struct and tty_queue structures. Previously there was an array 13 * of 256 tty_struct's which was statically allocated, and the 14 * tty_queue structures were allocated at boot time. Both are now 15 * dynamically allocated only when the tty is open. 16 * 17 * Also restructured routines so that there is more of a separation 18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 19 * the low-level tty routines (serial.c, pty.c, console.c). This 20 * makes for cleaner and more compact code. -TYT, 9/17/92 21 * 22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 23 * which can be dynamically activated and de-activated by the line 24 * discipline handling modules (like SLIP). 25 * 26 * NOTE: pay no attention to the line discipline code (yet); its 27 * interface is still subject to change in this version... 28 * -- TYT, 1/31/92 29 * 30 * Added functionality to the OPOST tty handling. No delays, but all 31 * other bits should be there. 32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 33 * 34 * Rewrote canonical mode and added more termios flags. 35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 36 * 37 * Reorganized FASYNC support so mouse code can share it. 38 * -- ctm@ardi.com, 9Sep95 39 * 40 * New TIOCLINUX variants added. 41 * -- mj@k332.feld.cvut.cz, 19-Nov-95 42 * 43 * Restrict vt switching via ioctl() 44 * -- grif@cs.ucr.edu, 5-Dec-95 45 * 46 * Move console and virtual terminal code to more appropriate files, 47 * implement CONFIG_VT and generalize console device interface. 48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 49 * 50 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 51 * -- Bill Hawes <whawes@star.net>, June 97 52 * 53 * Added devfs support. 54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 55 * 56 * Added support for a Unix98-style ptmx device. 57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 58 * 59 * Reduced memory usage for older ARM systems 60 * -- Russell King <rmk@arm.linux.org.uk> 61 * 62 * Move do_SAK() into process context. Less stack use in devfs functions. 63 * alloc_tty_struct() always uses kmalloc() 64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 65 */ 66 67 #include <linux/types.h> 68 #include <linux/major.h> 69 #include <linux/errno.h> 70 #include <linux/signal.h> 71 #include <linux/fcntl.h> 72 #include <linux/sched.h> 73 #include <linux/interrupt.h> 74 #include <linux/tty.h> 75 #include <linux/tty_driver.h> 76 #include <linux/tty_flip.h> 77 #include <linux/devpts_fs.h> 78 #include <linux/file.h> 79 #include <linux/fdtable.h> 80 #include <linux/console.h> 81 #include <linux/timer.h> 82 #include <linux/ctype.h> 83 #include <linux/kd.h> 84 #include <linux/mm.h> 85 #include <linux/string.h> 86 #include <linux/slab.h> 87 #include <linux/poll.h> 88 #include <linux/proc_fs.h> 89 #include <linux/init.h> 90 #include <linux/module.h> 91 #include <linux/device.h> 92 #include <linux/wait.h> 93 #include <linux/bitops.h> 94 #include <linux/delay.h> 95 #include <linux/seq_file.h> 96 #include <linux/serial.h> 97 #include <linux/ratelimit.h> 98 99 #include <linux/uaccess.h> 100 101 #include <linux/kbd_kern.h> 102 #include <linux/vt_kern.h> 103 #include <linux/selection.h> 104 105 #include <linux/kmod.h> 106 #include <linux/nsproxy.h> 107 108 #undef TTY_DEBUG_HANGUP 109 110 #define TTY_PARANOIA_CHECK 1 111 #define CHECK_TTY_COUNT 1 112 113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 114 .c_iflag = ICRNL | IXON, 115 .c_oflag = OPOST | ONLCR, 116 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 118 ECHOCTL | ECHOKE | IEXTEN, 119 .c_cc = INIT_C_CC, 120 .c_ispeed = 38400, 121 .c_ospeed = 38400 122 }; 123 124 EXPORT_SYMBOL(tty_std_termios); 125 126 /* This list gets poked at by procfs and various bits of boot up code. This 127 could do with some rationalisation such as pulling the tty proc function 128 into this file */ 129 130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 131 132 /* Mutex to protect creating and releasing a tty. This is shared with 133 vt.c for deeply disgusting hack reasons */ 134 DEFINE_MUTEX(tty_mutex); 135 EXPORT_SYMBOL(tty_mutex); 136 137 /* Spinlock to protect the tty->tty_files list */ 138 DEFINE_SPINLOCK(tty_files_lock); 139 140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *); 141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *); 142 ssize_t redirected_tty_write(struct file *, const char __user *, 143 size_t, loff_t *); 144 static unsigned int tty_poll(struct file *, poll_table *); 145 static int tty_open(struct inode *, struct file *); 146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 147 #ifdef CONFIG_COMPAT 148 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 149 unsigned long arg); 150 #else 151 #define tty_compat_ioctl NULL 152 #endif 153 static int __tty_fasync(int fd, struct file *filp, int on); 154 static int tty_fasync(int fd, struct file *filp, int on); 155 static void release_tty(struct tty_struct *tty, int idx); 156 157 /** 158 * free_tty_struct - free a disused tty 159 * @tty: tty struct to free 160 * 161 * Free the write buffers, tty queue and tty memory itself. 162 * 163 * Locking: none. Must be called after tty is definitely unused 164 */ 165 166 void free_tty_struct(struct tty_struct *tty) 167 { 168 if (!tty) 169 return; 170 put_device(tty->dev); 171 kfree(tty->write_buf); 172 tty->magic = 0xDEADDEAD; 173 kfree(tty); 174 } 175 176 static inline struct tty_struct *file_tty(struct file *file) 177 { 178 return ((struct tty_file_private *)file->private_data)->tty; 179 } 180 181 int tty_alloc_file(struct file *file) 182 { 183 struct tty_file_private *priv; 184 185 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 186 if (!priv) 187 return -ENOMEM; 188 189 file->private_data = priv; 190 191 return 0; 192 } 193 194 /* Associate a new file with the tty structure */ 195 void tty_add_file(struct tty_struct *tty, struct file *file) 196 { 197 struct tty_file_private *priv = file->private_data; 198 199 priv->tty = tty; 200 priv->file = file; 201 202 spin_lock(&tty_files_lock); 203 list_add(&priv->list, &tty->tty_files); 204 spin_unlock(&tty_files_lock); 205 } 206 207 /** 208 * tty_free_file - free file->private_data 209 * 210 * This shall be used only for fail path handling when tty_add_file was not 211 * called yet. 212 */ 213 void tty_free_file(struct file *file) 214 { 215 struct tty_file_private *priv = file->private_data; 216 217 file->private_data = NULL; 218 kfree(priv); 219 } 220 221 /* Delete file from its tty */ 222 static void tty_del_file(struct file *file) 223 { 224 struct tty_file_private *priv = file->private_data; 225 226 spin_lock(&tty_files_lock); 227 list_del(&priv->list); 228 spin_unlock(&tty_files_lock); 229 tty_free_file(file); 230 } 231 232 233 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base) 234 235 /** 236 * tty_name - return tty naming 237 * @tty: tty structure 238 * 239 * Convert a tty structure into a name. The name reflects the kernel 240 * naming policy and if udev is in use may not reflect user space 241 * 242 * Locking: none 243 */ 244 245 const char *tty_name(const struct tty_struct *tty) 246 { 247 if (!tty) /* Hmm. NULL pointer. That's fun. */ 248 return "NULL tty"; 249 return tty->name; 250 } 251 252 EXPORT_SYMBOL(tty_name); 253 254 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 255 const char *routine) 256 { 257 #ifdef TTY_PARANOIA_CHECK 258 if (!tty) { 259 printk(KERN_WARNING 260 "null TTY for (%d:%d) in %s\n", 261 imajor(inode), iminor(inode), routine); 262 return 1; 263 } 264 if (tty->magic != TTY_MAGIC) { 265 printk(KERN_WARNING 266 "bad magic number for tty struct (%d:%d) in %s\n", 267 imajor(inode), iminor(inode), routine); 268 return 1; 269 } 270 #endif 271 return 0; 272 } 273 274 /* Caller must hold tty_lock */ 275 static int check_tty_count(struct tty_struct *tty, const char *routine) 276 { 277 #ifdef CHECK_TTY_COUNT 278 struct list_head *p; 279 int count = 0; 280 281 spin_lock(&tty_files_lock); 282 list_for_each(p, &tty->tty_files) { 283 count++; 284 } 285 spin_unlock(&tty_files_lock); 286 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 287 tty->driver->subtype == PTY_TYPE_SLAVE && 288 tty->link && tty->link->count) 289 count++; 290 if (tty->count != count) { 291 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) " 292 "!= #fd's(%d) in %s\n", 293 tty->name, tty->count, count, routine); 294 return count; 295 } 296 #endif 297 return 0; 298 } 299 300 /** 301 * get_tty_driver - find device of a tty 302 * @dev_t: device identifier 303 * @index: returns the index of the tty 304 * 305 * This routine returns a tty driver structure, given a device number 306 * and also passes back the index number. 307 * 308 * Locking: caller must hold tty_mutex 309 */ 310 311 static struct tty_driver *get_tty_driver(dev_t device, int *index) 312 { 313 struct tty_driver *p; 314 315 list_for_each_entry(p, &tty_drivers, tty_drivers) { 316 dev_t base = MKDEV(p->major, p->minor_start); 317 if (device < base || device >= base + p->num) 318 continue; 319 *index = device - base; 320 return tty_driver_kref_get(p); 321 } 322 return NULL; 323 } 324 325 #ifdef CONFIG_CONSOLE_POLL 326 327 /** 328 * tty_find_polling_driver - find device of a polled tty 329 * @name: name string to match 330 * @line: pointer to resulting tty line nr 331 * 332 * This routine returns a tty driver structure, given a name 333 * and the condition that the tty driver is capable of polled 334 * operation. 335 */ 336 struct tty_driver *tty_find_polling_driver(char *name, int *line) 337 { 338 struct tty_driver *p, *res = NULL; 339 int tty_line = 0; 340 int len; 341 char *str, *stp; 342 343 for (str = name; *str; str++) 344 if ((*str >= '0' && *str <= '9') || *str == ',') 345 break; 346 if (!*str) 347 return NULL; 348 349 len = str - name; 350 tty_line = simple_strtoul(str, &str, 10); 351 352 mutex_lock(&tty_mutex); 353 /* Search through the tty devices to look for a match */ 354 list_for_each_entry(p, &tty_drivers, tty_drivers) { 355 if (strncmp(name, p->name, len) != 0) 356 continue; 357 stp = str; 358 if (*stp == ',') 359 stp++; 360 if (*stp == '\0') 361 stp = NULL; 362 363 if (tty_line >= 0 && tty_line < p->num && p->ops && 364 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 365 res = tty_driver_kref_get(p); 366 *line = tty_line; 367 break; 368 } 369 } 370 mutex_unlock(&tty_mutex); 371 372 return res; 373 } 374 EXPORT_SYMBOL_GPL(tty_find_polling_driver); 375 #endif 376 377 /** 378 * tty_check_change - check for POSIX terminal changes 379 * @tty: tty to check 380 * 381 * If we try to write to, or set the state of, a terminal and we're 382 * not in the foreground, send a SIGTTOU. If the signal is blocked or 383 * ignored, go ahead and perform the operation. (POSIX 7.2) 384 * 385 * Locking: ctrl_lock 386 */ 387 388 int tty_check_change(struct tty_struct *tty) 389 { 390 unsigned long flags; 391 int ret = 0; 392 393 if (current->signal->tty != tty) 394 return 0; 395 396 spin_lock_irqsave(&tty->ctrl_lock, flags); 397 398 if (!tty->pgrp) { 399 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n"); 400 goto out_unlock; 401 } 402 if (task_pgrp(current) == tty->pgrp) 403 goto out_unlock; 404 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 405 if (is_ignored(SIGTTOU)) 406 goto out; 407 if (is_current_pgrp_orphaned()) { 408 ret = -EIO; 409 goto out; 410 } 411 kill_pgrp(task_pgrp(current), SIGTTOU, 1); 412 set_thread_flag(TIF_SIGPENDING); 413 ret = -ERESTARTSYS; 414 out: 415 return ret; 416 out_unlock: 417 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 418 return ret; 419 } 420 421 EXPORT_SYMBOL(tty_check_change); 422 423 static ssize_t hung_up_tty_read(struct file *file, char __user *buf, 424 size_t count, loff_t *ppos) 425 { 426 return 0; 427 } 428 429 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf, 430 size_t count, loff_t *ppos) 431 { 432 return -EIO; 433 } 434 435 /* No kernel lock held - none needed ;) */ 436 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait) 437 { 438 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM; 439 } 440 441 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 442 unsigned long arg) 443 { 444 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 445 } 446 447 static long hung_up_tty_compat_ioctl(struct file *file, 448 unsigned int cmd, unsigned long arg) 449 { 450 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 451 } 452 453 static const struct file_operations tty_fops = { 454 .llseek = no_llseek, 455 .read = tty_read, 456 .write = tty_write, 457 .poll = tty_poll, 458 .unlocked_ioctl = tty_ioctl, 459 .compat_ioctl = tty_compat_ioctl, 460 .open = tty_open, 461 .release = tty_release, 462 .fasync = tty_fasync, 463 }; 464 465 static const struct file_operations console_fops = { 466 .llseek = no_llseek, 467 .read = tty_read, 468 .write = redirected_tty_write, 469 .poll = tty_poll, 470 .unlocked_ioctl = tty_ioctl, 471 .compat_ioctl = tty_compat_ioctl, 472 .open = tty_open, 473 .release = tty_release, 474 .fasync = tty_fasync, 475 }; 476 477 static const struct file_operations hung_up_tty_fops = { 478 .llseek = no_llseek, 479 .read = hung_up_tty_read, 480 .write = hung_up_tty_write, 481 .poll = hung_up_tty_poll, 482 .unlocked_ioctl = hung_up_tty_ioctl, 483 .compat_ioctl = hung_up_tty_compat_ioctl, 484 .release = tty_release, 485 }; 486 487 static DEFINE_SPINLOCK(redirect_lock); 488 static struct file *redirect; 489 490 491 void proc_clear_tty(struct task_struct *p) 492 { 493 unsigned long flags; 494 struct tty_struct *tty; 495 spin_lock_irqsave(&p->sighand->siglock, flags); 496 tty = p->signal->tty; 497 p->signal->tty = NULL; 498 spin_unlock_irqrestore(&p->sighand->siglock, flags); 499 tty_kref_put(tty); 500 } 501 502 /** 503 * proc_set_tty - set the controlling terminal 504 * 505 * Only callable by the session leader and only if it does not already have 506 * a controlling terminal. 507 * 508 * Caller must hold: tty_lock() 509 * a readlock on tasklist_lock 510 * sighand lock 511 */ 512 static void __proc_set_tty(struct tty_struct *tty) 513 { 514 unsigned long flags; 515 516 spin_lock_irqsave(&tty->ctrl_lock, flags); 517 /* 518 * The session and fg pgrp references will be non-NULL if 519 * tiocsctty() is stealing the controlling tty 520 */ 521 put_pid(tty->session); 522 put_pid(tty->pgrp); 523 tty->pgrp = get_pid(task_pgrp(current)); 524 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 525 tty->session = get_pid(task_session(current)); 526 if (current->signal->tty) { 527 printk(KERN_DEBUG "tty not NULL!!\n"); 528 tty_kref_put(current->signal->tty); 529 } 530 put_pid(current->signal->tty_old_pgrp); 531 current->signal->tty = tty_kref_get(tty); 532 current->signal->tty_old_pgrp = NULL; 533 } 534 535 static void proc_set_tty(struct tty_struct *tty) 536 { 537 spin_lock_irq(¤t->sighand->siglock); 538 __proc_set_tty(tty); 539 spin_unlock_irq(¤t->sighand->siglock); 540 } 541 542 struct tty_struct *get_current_tty(void) 543 { 544 struct tty_struct *tty; 545 unsigned long flags; 546 547 spin_lock_irqsave(¤t->sighand->siglock, flags); 548 tty = tty_kref_get(current->signal->tty); 549 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 550 return tty; 551 } 552 EXPORT_SYMBOL_GPL(get_current_tty); 553 554 static void session_clear_tty(struct pid *session) 555 { 556 struct task_struct *p; 557 do_each_pid_task(session, PIDTYPE_SID, p) { 558 proc_clear_tty(p); 559 } while_each_pid_task(session, PIDTYPE_SID, p); 560 } 561 562 /** 563 * tty_wakeup - request more data 564 * @tty: terminal 565 * 566 * Internal and external helper for wakeups of tty. This function 567 * informs the line discipline if present that the driver is ready 568 * to receive more output data. 569 */ 570 571 void tty_wakeup(struct tty_struct *tty) 572 { 573 struct tty_ldisc *ld; 574 575 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 576 ld = tty_ldisc_ref(tty); 577 if (ld) { 578 if (ld->ops->write_wakeup) 579 ld->ops->write_wakeup(tty); 580 tty_ldisc_deref(ld); 581 } 582 } 583 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 584 } 585 586 EXPORT_SYMBOL_GPL(tty_wakeup); 587 588 /** 589 * tty_signal_session_leader - sends SIGHUP to session leader 590 * @tty controlling tty 591 * @exit_session if non-zero, signal all foreground group processes 592 * 593 * Send SIGHUP and SIGCONT to the session leader and its process group. 594 * Optionally, signal all processes in the foreground process group. 595 * 596 * Returns the number of processes in the session with this tty 597 * as their controlling terminal. This value is used to drop 598 * tty references for those processes. 599 */ 600 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session) 601 { 602 struct task_struct *p; 603 int refs = 0; 604 struct pid *tty_pgrp = NULL; 605 606 read_lock(&tasklist_lock); 607 if (tty->session) { 608 do_each_pid_task(tty->session, PIDTYPE_SID, p) { 609 spin_lock_irq(&p->sighand->siglock); 610 if (p->signal->tty == tty) { 611 p->signal->tty = NULL; 612 /* We defer the dereferences outside fo 613 the tasklist lock */ 614 refs++; 615 } 616 if (!p->signal->leader) { 617 spin_unlock_irq(&p->sighand->siglock); 618 continue; 619 } 620 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p); 621 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p); 622 put_pid(p->signal->tty_old_pgrp); /* A noop */ 623 spin_lock(&tty->ctrl_lock); 624 tty_pgrp = get_pid(tty->pgrp); 625 if (tty->pgrp) 626 p->signal->tty_old_pgrp = get_pid(tty->pgrp); 627 spin_unlock(&tty->ctrl_lock); 628 spin_unlock_irq(&p->sighand->siglock); 629 } while_each_pid_task(tty->session, PIDTYPE_SID, p); 630 } 631 read_unlock(&tasklist_lock); 632 633 if (tty_pgrp) { 634 if (exit_session) 635 kill_pgrp(tty_pgrp, SIGHUP, exit_session); 636 put_pid(tty_pgrp); 637 } 638 639 return refs; 640 } 641 642 /** 643 * __tty_hangup - actual handler for hangup events 644 * @work: tty device 645 * 646 * This can be called by a "kworker" kernel thread. That is process 647 * synchronous but doesn't hold any locks, so we need to make sure we 648 * have the appropriate locks for what we're doing. 649 * 650 * The hangup event clears any pending redirections onto the hung up 651 * device. It ensures future writes will error and it does the needed 652 * line discipline hangup and signal delivery. The tty object itself 653 * remains intact. 654 * 655 * Locking: 656 * BTM 657 * redirect lock for undoing redirection 658 * file list lock for manipulating list of ttys 659 * tty_ldiscs_lock from called functions 660 * termios_rwsem resetting termios data 661 * tasklist_lock to walk task list for hangup event 662 * ->siglock to protect ->signal/->sighand 663 */ 664 static void __tty_hangup(struct tty_struct *tty, int exit_session) 665 { 666 struct file *cons_filp = NULL; 667 struct file *filp, *f = NULL; 668 struct tty_file_private *priv; 669 int closecount = 0, n; 670 int refs; 671 672 if (!tty) 673 return; 674 675 676 spin_lock(&redirect_lock); 677 if (redirect && file_tty(redirect) == tty) { 678 f = redirect; 679 redirect = NULL; 680 } 681 spin_unlock(&redirect_lock); 682 683 tty_lock(tty); 684 685 if (test_bit(TTY_HUPPED, &tty->flags)) { 686 tty_unlock(tty); 687 return; 688 } 689 690 /* inuse_filps is protected by the single tty lock, 691 this really needs to change if we want to flush the 692 workqueue with the lock held */ 693 check_tty_count(tty, "tty_hangup"); 694 695 spin_lock(&tty_files_lock); 696 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 697 list_for_each_entry(priv, &tty->tty_files, list) { 698 filp = priv->file; 699 if (filp->f_op->write == redirected_tty_write) 700 cons_filp = filp; 701 if (filp->f_op->write != tty_write) 702 continue; 703 closecount++; 704 __tty_fasync(-1, filp, 0); /* can't block */ 705 filp->f_op = &hung_up_tty_fops; 706 } 707 spin_unlock(&tty_files_lock); 708 709 refs = tty_signal_session_leader(tty, exit_session); 710 /* Account for the p->signal references we killed */ 711 while (refs--) 712 tty_kref_put(tty); 713 714 tty_ldisc_hangup(tty); 715 716 spin_lock_irq(&tty->ctrl_lock); 717 clear_bit(TTY_THROTTLED, &tty->flags); 718 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 719 put_pid(tty->session); 720 put_pid(tty->pgrp); 721 tty->session = NULL; 722 tty->pgrp = NULL; 723 tty->ctrl_status = 0; 724 spin_unlock_irq(&tty->ctrl_lock); 725 726 /* 727 * If one of the devices matches a console pointer, we 728 * cannot just call hangup() because that will cause 729 * tty->count and state->count to go out of sync. 730 * So we just call close() the right number of times. 731 */ 732 if (cons_filp) { 733 if (tty->ops->close) 734 for (n = 0; n < closecount; n++) 735 tty->ops->close(tty, cons_filp); 736 } else if (tty->ops->hangup) 737 tty->ops->hangup(tty); 738 /* 739 * We don't want to have driver/ldisc interactions beyond 740 * the ones we did here. The driver layer expects no 741 * calls after ->hangup() from the ldisc side. However we 742 * can't yet guarantee all that. 743 */ 744 set_bit(TTY_HUPPED, &tty->flags); 745 tty_unlock(tty); 746 747 if (f) 748 fput(f); 749 } 750 751 static void do_tty_hangup(struct work_struct *work) 752 { 753 struct tty_struct *tty = 754 container_of(work, struct tty_struct, hangup_work); 755 756 __tty_hangup(tty, 0); 757 } 758 759 /** 760 * tty_hangup - trigger a hangup event 761 * @tty: tty to hangup 762 * 763 * A carrier loss (virtual or otherwise) has occurred on this like 764 * schedule a hangup sequence to run after this event. 765 */ 766 767 void tty_hangup(struct tty_struct *tty) 768 { 769 #ifdef TTY_DEBUG_HANGUP 770 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty)); 771 #endif 772 schedule_work(&tty->hangup_work); 773 } 774 775 EXPORT_SYMBOL(tty_hangup); 776 777 /** 778 * tty_vhangup - process vhangup 779 * @tty: tty to hangup 780 * 781 * The user has asked via system call for the terminal to be hung up. 782 * We do this synchronously so that when the syscall returns the process 783 * is complete. That guarantee is necessary for security reasons. 784 */ 785 786 void tty_vhangup(struct tty_struct *tty) 787 { 788 #ifdef TTY_DEBUG_HANGUP 789 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty)); 790 #endif 791 __tty_hangup(tty, 0); 792 } 793 794 EXPORT_SYMBOL(tty_vhangup); 795 796 797 /** 798 * tty_vhangup_self - process vhangup for own ctty 799 * 800 * Perform a vhangup on the current controlling tty 801 */ 802 803 void tty_vhangup_self(void) 804 { 805 struct tty_struct *tty; 806 807 tty = get_current_tty(); 808 if (tty) { 809 tty_vhangup(tty); 810 tty_kref_put(tty); 811 } 812 } 813 814 /** 815 * tty_vhangup_session - hangup session leader exit 816 * @tty: tty to hangup 817 * 818 * The session leader is exiting and hanging up its controlling terminal. 819 * Every process in the foreground process group is signalled SIGHUP. 820 * 821 * We do this synchronously so that when the syscall returns the process 822 * is complete. That guarantee is necessary for security reasons. 823 */ 824 825 static void tty_vhangup_session(struct tty_struct *tty) 826 { 827 #ifdef TTY_DEBUG_HANGUP 828 printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty)); 829 #endif 830 __tty_hangup(tty, 1); 831 } 832 833 /** 834 * tty_hung_up_p - was tty hung up 835 * @filp: file pointer of tty 836 * 837 * Return true if the tty has been subject to a vhangup or a carrier 838 * loss 839 */ 840 841 int tty_hung_up_p(struct file *filp) 842 { 843 return (filp->f_op == &hung_up_tty_fops); 844 } 845 846 EXPORT_SYMBOL(tty_hung_up_p); 847 848 /** 849 * disassociate_ctty - disconnect controlling tty 850 * @on_exit: true if exiting so need to "hang up" the session 851 * 852 * This function is typically called only by the session leader, when 853 * it wants to disassociate itself from its controlling tty. 854 * 855 * It performs the following functions: 856 * (1) Sends a SIGHUP and SIGCONT to the foreground process group 857 * (2) Clears the tty from being controlling the session 858 * (3) Clears the controlling tty for all processes in the 859 * session group. 860 * 861 * The argument on_exit is set to 1 if called when a process is 862 * exiting; it is 0 if called by the ioctl TIOCNOTTY. 863 * 864 * Locking: 865 * BTM is taken for hysterical raisins, and held when 866 * called from no_tty(). 867 * tty_mutex is taken to protect tty 868 * ->siglock is taken to protect ->signal/->sighand 869 * tasklist_lock is taken to walk process list for sessions 870 * ->siglock is taken to protect ->signal/->sighand 871 */ 872 873 void disassociate_ctty(int on_exit) 874 { 875 struct tty_struct *tty; 876 877 if (!current->signal->leader) 878 return; 879 880 tty = get_current_tty(); 881 if (tty) { 882 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) { 883 tty_vhangup_session(tty); 884 } else { 885 struct pid *tty_pgrp = tty_get_pgrp(tty); 886 if (tty_pgrp) { 887 kill_pgrp(tty_pgrp, SIGHUP, on_exit); 888 if (!on_exit) 889 kill_pgrp(tty_pgrp, SIGCONT, on_exit); 890 put_pid(tty_pgrp); 891 } 892 } 893 tty_kref_put(tty); 894 895 } else if (on_exit) { 896 struct pid *old_pgrp; 897 spin_lock_irq(¤t->sighand->siglock); 898 old_pgrp = current->signal->tty_old_pgrp; 899 current->signal->tty_old_pgrp = NULL; 900 spin_unlock_irq(¤t->sighand->siglock); 901 if (old_pgrp) { 902 kill_pgrp(old_pgrp, SIGHUP, on_exit); 903 kill_pgrp(old_pgrp, SIGCONT, on_exit); 904 put_pid(old_pgrp); 905 } 906 return; 907 } 908 909 spin_lock_irq(¤t->sighand->siglock); 910 put_pid(current->signal->tty_old_pgrp); 911 current->signal->tty_old_pgrp = NULL; 912 913 tty = tty_kref_get(current->signal->tty); 914 if (tty) { 915 unsigned long flags; 916 spin_lock_irqsave(&tty->ctrl_lock, flags); 917 put_pid(tty->session); 918 put_pid(tty->pgrp); 919 tty->session = NULL; 920 tty->pgrp = NULL; 921 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 922 tty_kref_put(tty); 923 } else { 924 #ifdef TTY_DEBUG_HANGUP 925 printk(KERN_DEBUG "error attempted to write to tty [0x%p]" 926 " = NULL", tty); 927 #endif 928 } 929 930 spin_unlock_irq(¤t->sighand->siglock); 931 /* Now clear signal->tty under the lock */ 932 read_lock(&tasklist_lock); 933 session_clear_tty(task_session(current)); 934 read_unlock(&tasklist_lock); 935 } 936 937 /** 938 * 939 * no_tty - Ensure the current process does not have a controlling tty 940 */ 941 void no_tty(void) 942 { 943 /* FIXME: Review locking here. The tty_lock never covered any race 944 between a new association and proc_clear_tty but possible we need 945 to protect against this anyway */ 946 struct task_struct *tsk = current; 947 disassociate_ctty(0); 948 proc_clear_tty(tsk); 949 } 950 951 952 /** 953 * stop_tty - propagate flow control 954 * @tty: tty to stop 955 * 956 * Perform flow control to the driver. May be called 957 * on an already stopped device and will not re-call the driver 958 * method. 959 * 960 * This functionality is used by both the line disciplines for 961 * halting incoming flow and by the driver. It may therefore be 962 * called from any context, may be under the tty atomic_write_lock 963 * but not always. 964 * 965 * Locking: 966 * flow_lock 967 */ 968 969 void __stop_tty(struct tty_struct *tty) 970 { 971 if (tty->stopped) 972 return; 973 tty->stopped = 1; 974 if (tty->ops->stop) 975 tty->ops->stop(tty); 976 } 977 978 void stop_tty(struct tty_struct *tty) 979 { 980 unsigned long flags; 981 982 spin_lock_irqsave(&tty->flow_lock, flags); 983 __stop_tty(tty); 984 spin_unlock_irqrestore(&tty->flow_lock, flags); 985 } 986 EXPORT_SYMBOL(stop_tty); 987 988 /** 989 * start_tty - propagate flow control 990 * @tty: tty to start 991 * 992 * Start a tty that has been stopped if at all possible. If this 993 * tty was previous stopped and is now being started, the driver 994 * start method is invoked and the line discipline woken. 995 * 996 * Locking: 997 * flow_lock 998 */ 999 1000 void __start_tty(struct tty_struct *tty) 1001 { 1002 if (!tty->stopped || tty->flow_stopped) 1003 return; 1004 tty->stopped = 0; 1005 if (tty->ops->start) 1006 tty->ops->start(tty); 1007 tty_wakeup(tty); 1008 } 1009 1010 void start_tty(struct tty_struct *tty) 1011 { 1012 unsigned long flags; 1013 1014 spin_lock_irqsave(&tty->flow_lock, flags); 1015 __start_tty(tty); 1016 spin_unlock_irqrestore(&tty->flow_lock, flags); 1017 } 1018 EXPORT_SYMBOL(start_tty); 1019 1020 static void tty_update_time(struct timespec *time) 1021 { 1022 unsigned long sec = get_seconds(); 1023 1024 /* 1025 * We only care if the two values differ in anything other than the 1026 * lower three bits (i.e every 8 seconds). If so, then we can update 1027 * the time of the tty device, otherwise it could be construded as a 1028 * security leak to let userspace know the exact timing of the tty. 1029 */ 1030 if ((sec ^ time->tv_sec) & ~7) 1031 time->tv_sec = sec; 1032 } 1033 1034 /** 1035 * tty_read - read method for tty device files 1036 * @file: pointer to tty file 1037 * @buf: user buffer 1038 * @count: size of user buffer 1039 * @ppos: unused 1040 * 1041 * Perform the read system call function on this terminal device. Checks 1042 * for hung up devices before calling the line discipline method. 1043 * 1044 * Locking: 1045 * Locks the line discipline internally while needed. Multiple 1046 * read calls may be outstanding in parallel. 1047 */ 1048 1049 static ssize_t tty_read(struct file *file, char __user *buf, size_t count, 1050 loff_t *ppos) 1051 { 1052 int i; 1053 struct inode *inode = file_inode(file); 1054 struct tty_struct *tty = file_tty(file); 1055 struct tty_ldisc *ld; 1056 1057 if (tty_paranoia_check(tty, inode, "tty_read")) 1058 return -EIO; 1059 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags))) 1060 return -EIO; 1061 1062 /* We want to wait for the line discipline to sort out in this 1063 situation */ 1064 ld = tty_ldisc_ref_wait(tty); 1065 if (ld->ops->read) 1066 i = ld->ops->read(tty, file, buf, count); 1067 else 1068 i = -EIO; 1069 tty_ldisc_deref(ld); 1070 1071 if (i > 0) 1072 tty_update_time(&inode->i_atime); 1073 1074 return i; 1075 } 1076 1077 static void tty_write_unlock(struct tty_struct *tty) 1078 { 1079 mutex_unlock(&tty->atomic_write_lock); 1080 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 1081 } 1082 1083 static int tty_write_lock(struct tty_struct *tty, int ndelay) 1084 { 1085 if (!mutex_trylock(&tty->atomic_write_lock)) { 1086 if (ndelay) 1087 return -EAGAIN; 1088 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 1089 return -ERESTARTSYS; 1090 } 1091 return 0; 1092 } 1093 1094 /* 1095 * Split writes up in sane blocksizes to avoid 1096 * denial-of-service type attacks 1097 */ 1098 static inline ssize_t do_tty_write( 1099 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 1100 struct tty_struct *tty, 1101 struct file *file, 1102 const char __user *buf, 1103 size_t count) 1104 { 1105 ssize_t ret, written = 0; 1106 unsigned int chunk; 1107 1108 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 1109 if (ret < 0) 1110 return ret; 1111 1112 /* 1113 * We chunk up writes into a temporary buffer. This 1114 * simplifies low-level drivers immensely, since they 1115 * don't have locking issues and user mode accesses. 1116 * 1117 * But if TTY_NO_WRITE_SPLIT is set, we should use a 1118 * big chunk-size.. 1119 * 1120 * The default chunk-size is 2kB, because the NTTY 1121 * layer has problems with bigger chunks. It will 1122 * claim to be able to handle more characters than 1123 * it actually does. 1124 * 1125 * FIXME: This can probably go away now except that 64K chunks 1126 * are too likely to fail unless switched to vmalloc... 1127 */ 1128 chunk = 2048; 1129 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 1130 chunk = 65536; 1131 if (count < chunk) 1132 chunk = count; 1133 1134 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 1135 if (tty->write_cnt < chunk) { 1136 unsigned char *buf_chunk; 1137 1138 if (chunk < 1024) 1139 chunk = 1024; 1140 1141 buf_chunk = kmalloc(chunk, GFP_KERNEL); 1142 if (!buf_chunk) { 1143 ret = -ENOMEM; 1144 goto out; 1145 } 1146 kfree(tty->write_buf); 1147 tty->write_cnt = chunk; 1148 tty->write_buf = buf_chunk; 1149 } 1150 1151 /* Do the write .. */ 1152 for (;;) { 1153 size_t size = count; 1154 if (size > chunk) 1155 size = chunk; 1156 ret = -EFAULT; 1157 if (copy_from_user(tty->write_buf, buf, size)) 1158 break; 1159 ret = write(tty, file, tty->write_buf, size); 1160 if (ret <= 0) 1161 break; 1162 written += ret; 1163 buf += ret; 1164 count -= ret; 1165 if (!count) 1166 break; 1167 ret = -ERESTARTSYS; 1168 if (signal_pending(current)) 1169 break; 1170 cond_resched(); 1171 } 1172 if (written) { 1173 tty_update_time(&file_inode(file)->i_mtime); 1174 ret = written; 1175 } 1176 out: 1177 tty_write_unlock(tty); 1178 return ret; 1179 } 1180 1181 /** 1182 * tty_write_message - write a message to a certain tty, not just the console. 1183 * @tty: the destination tty_struct 1184 * @msg: the message to write 1185 * 1186 * This is used for messages that need to be redirected to a specific tty. 1187 * We don't put it into the syslog queue right now maybe in the future if 1188 * really needed. 1189 * 1190 * We must still hold the BTM and test the CLOSING flag for the moment. 1191 */ 1192 1193 void tty_write_message(struct tty_struct *tty, char *msg) 1194 { 1195 if (tty) { 1196 mutex_lock(&tty->atomic_write_lock); 1197 tty_lock(tty); 1198 if (tty->ops->write && tty->count > 0) { 1199 tty_unlock(tty); 1200 tty->ops->write(tty, msg, strlen(msg)); 1201 } else 1202 tty_unlock(tty); 1203 tty_write_unlock(tty); 1204 } 1205 return; 1206 } 1207 1208 1209 /** 1210 * tty_write - write method for tty device file 1211 * @file: tty file pointer 1212 * @buf: user data to write 1213 * @count: bytes to write 1214 * @ppos: unused 1215 * 1216 * Write data to a tty device via the line discipline. 1217 * 1218 * Locking: 1219 * Locks the line discipline as required 1220 * Writes to the tty driver are serialized by the atomic_write_lock 1221 * and are then processed in chunks to the device. The line discipline 1222 * write method will not be invoked in parallel for each device. 1223 */ 1224 1225 static ssize_t tty_write(struct file *file, const char __user *buf, 1226 size_t count, loff_t *ppos) 1227 { 1228 struct tty_struct *tty = file_tty(file); 1229 struct tty_ldisc *ld; 1230 ssize_t ret; 1231 1232 if (tty_paranoia_check(tty, file_inode(file), "tty_write")) 1233 return -EIO; 1234 if (!tty || !tty->ops->write || 1235 (test_bit(TTY_IO_ERROR, &tty->flags))) 1236 return -EIO; 1237 /* Short term debug to catch buggy drivers */ 1238 if (tty->ops->write_room == NULL) 1239 printk(KERN_ERR "tty driver %s lacks a write_room method.\n", 1240 tty->driver->name); 1241 ld = tty_ldisc_ref_wait(tty); 1242 if (!ld->ops->write) 1243 ret = -EIO; 1244 else 1245 ret = do_tty_write(ld->ops->write, tty, file, buf, count); 1246 tty_ldisc_deref(ld); 1247 return ret; 1248 } 1249 1250 ssize_t redirected_tty_write(struct file *file, const char __user *buf, 1251 size_t count, loff_t *ppos) 1252 { 1253 struct file *p = NULL; 1254 1255 spin_lock(&redirect_lock); 1256 if (redirect) 1257 p = get_file(redirect); 1258 spin_unlock(&redirect_lock); 1259 1260 if (p) { 1261 ssize_t res; 1262 res = vfs_write(p, buf, count, &p->f_pos); 1263 fput(p); 1264 return res; 1265 } 1266 return tty_write(file, buf, count, ppos); 1267 } 1268 1269 /** 1270 * tty_send_xchar - send priority character 1271 * 1272 * Send a high priority character to the tty even if stopped 1273 * 1274 * Locking: none for xchar method, write ordering for write method. 1275 */ 1276 1277 int tty_send_xchar(struct tty_struct *tty, char ch) 1278 { 1279 int was_stopped = tty->stopped; 1280 1281 if (tty->ops->send_xchar) { 1282 tty->ops->send_xchar(tty, ch); 1283 return 0; 1284 } 1285 1286 if (tty_write_lock(tty, 0) < 0) 1287 return -ERESTARTSYS; 1288 1289 if (was_stopped) 1290 start_tty(tty); 1291 tty->ops->write(tty, &ch, 1); 1292 if (was_stopped) 1293 stop_tty(tty); 1294 tty_write_unlock(tty); 1295 return 0; 1296 } 1297 1298 static char ptychar[] = "pqrstuvwxyzabcde"; 1299 1300 /** 1301 * pty_line_name - generate name for a pty 1302 * @driver: the tty driver in use 1303 * @index: the minor number 1304 * @p: output buffer of at least 6 bytes 1305 * 1306 * Generate a name from a driver reference and write it to the output 1307 * buffer. 1308 * 1309 * Locking: None 1310 */ 1311 static void pty_line_name(struct tty_driver *driver, int index, char *p) 1312 { 1313 int i = index + driver->name_base; 1314 /* ->name is initialized to "ttyp", but "tty" is expected */ 1315 sprintf(p, "%s%c%x", 1316 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1317 ptychar[i >> 4 & 0xf], i & 0xf); 1318 } 1319 1320 /** 1321 * tty_line_name - generate name for a tty 1322 * @driver: the tty driver in use 1323 * @index: the minor number 1324 * @p: output buffer of at least 7 bytes 1325 * 1326 * Generate a name from a driver reference and write it to the output 1327 * buffer. 1328 * 1329 * Locking: None 1330 */ 1331 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p) 1332 { 1333 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE) 1334 return sprintf(p, "%s", driver->name); 1335 else 1336 return sprintf(p, "%s%d", driver->name, 1337 index + driver->name_base); 1338 } 1339 1340 /** 1341 * tty_driver_lookup_tty() - find an existing tty, if any 1342 * @driver: the driver for the tty 1343 * @idx: the minor number 1344 * 1345 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the 1346 * driver lookup() method returns an error. 1347 * 1348 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref. 1349 */ 1350 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1351 struct inode *inode, int idx) 1352 { 1353 struct tty_struct *tty; 1354 1355 if (driver->ops->lookup) 1356 tty = driver->ops->lookup(driver, inode, idx); 1357 else 1358 tty = driver->ttys[idx]; 1359 1360 if (!IS_ERR(tty)) 1361 tty_kref_get(tty); 1362 return tty; 1363 } 1364 1365 /** 1366 * tty_init_termios - helper for termios setup 1367 * @tty: the tty to set up 1368 * 1369 * Initialise the termios structures for this tty. Thus runs under 1370 * the tty_mutex currently so we can be relaxed about ordering. 1371 */ 1372 1373 int tty_init_termios(struct tty_struct *tty) 1374 { 1375 struct ktermios *tp; 1376 int idx = tty->index; 1377 1378 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1379 tty->termios = tty->driver->init_termios; 1380 else { 1381 /* Check for lazy saved data */ 1382 tp = tty->driver->termios[idx]; 1383 if (tp != NULL) 1384 tty->termios = *tp; 1385 else 1386 tty->termios = tty->driver->init_termios; 1387 } 1388 /* Compatibility until drivers always set this */ 1389 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios); 1390 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios); 1391 return 0; 1392 } 1393 EXPORT_SYMBOL_GPL(tty_init_termios); 1394 1395 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1396 { 1397 int ret = tty_init_termios(tty); 1398 if (ret) 1399 return ret; 1400 1401 tty_driver_kref_get(driver); 1402 tty->count++; 1403 driver->ttys[tty->index] = tty; 1404 return 0; 1405 } 1406 EXPORT_SYMBOL_GPL(tty_standard_install); 1407 1408 /** 1409 * tty_driver_install_tty() - install a tty entry in the driver 1410 * @driver: the driver for the tty 1411 * @tty: the tty 1412 * 1413 * Install a tty object into the driver tables. The tty->index field 1414 * will be set by the time this is called. This method is responsible 1415 * for ensuring any need additional structures are allocated and 1416 * configured. 1417 * 1418 * Locking: tty_mutex for now 1419 */ 1420 static int tty_driver_install_tty(struct tty_driver *driver, 1421 struct tty_struct *tty) 1422 { 1423 return driver->ops->install ? driver->ops->install(driver, tty) : 1424 tty_standard_install(driver, tty); 1425 } 1426 1427 /** 1428 * tty_driver_remove_tty() - remove a tty from the driver tables 1429 * @driver: the driver for the tty 1430 * @idx: the minor number 1431 * 1432 * Remvoe a tty object from the driver tables. The tty->index field 1433 * will be set by the time this is called. 1434 * 1435 * Locking: tty_mutex for now 1436 */ 1437 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1438 { 1439 if (driver->ops->remove) 1440 driver->ops->remove(driver, tty); 1441 else 1442 driver->ttys[tty->index] = NULL; 1443 } 1444 1445 /* 1446 * tty_reopen() - fast re-open of an open tty 1447 * @tty - the tty to open 1448 * 1449 * Return 0 on success, -errno on error. 1450 * Re-opens on master ptys are not allowed and return -EIO. 1451 * 1452 * Locking: Caller must hold tty_lock 1453 */ 1454 static int tty_reopen(struct tty_struct *tty) 1455 { 1456 struct tty_driver *driver = tty->driver; 1457 1458 if (!tty->count) 1459 return -EIO; 1460 1461 if (driver->type == TTY_DRIVER_TYPE_PTY && 1462 driver->subtype == PTY_TYPE_MASTER) 1463 return -EIO; 1464 1465 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN)) 1466 return -EBUSY; 1467 1468 tty->count++; 1469 1470 WARN_ON(!tty->ldisc); 1471 1472 return 0; 1473 } 1474 1475 /** 1476 * tty_init_dev - initialise a tty device 1477 * @driver: tty driver we are opening a device on 1478 * @idx: device index 1479 * @ret_tty: returned tty structure 1480 * 1481 * Prepare a tty device. This may not be a "new" clean device but 1482 * could also be an active device. The pty drivers require special 1483 * handling because of this. 1484 * 1485 * Locking: 1486 * The function is called under the tty_mutex, which 1487 * protects us from the tty struct or driver itself going away. 1488 * 1489 * On exit the tty device has the line discipline attached and 1490 * a reference count of 1. If a pair was created for pty/tty use 1491 * and the other was a pty master then it too has a reference count of 1. 1492 * 1493 * WSH 06/09/97: Rewritten to remove races and properly clean up after a 1494 * failed open. The new code protects the open with a mutex, so it's 1495 * really quite straightforward. The mutex locking can probably be 1496 * relaxed for the (most common) case of reopening a tty. 1497 */ 1498 1499 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1500 { 1501 struct tty_struct *tty; 1502 int retval; 1503 1504 /* 1505 * First time open is complex, especially for PTY devices. 1506 * This code guarantees that either everything succeeds and the 1507 * TTY is ready for operation, or else the table slots are vacated 1508 * and the allocated memory released. (Except that the termios 1509 * and locked termios may be retained.) 1510 */ 1511 1512 if (!try_module_get(driver->owner)) 1513 return ERR_PTR(-ENODEV); 1514 1515 tty = alloc_tty_struct(driver, idx); 1516 if (!tty) { 1517 retval = -ENOMEM; 1518 goto err_module_put; 1519 } 1520 1521 tty_lock(tty); 1522 retval = tty_driver_install_tty(driver, tty); 1523 if (retval < 0) 1524 goto err_deinit_tty; 1525 1526 if (!tty->port) 1527 tty->port = driver->ports[idx]; 1528 1529 WARN_RATELIMIT(!tty->port, 1530 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n", 1531 __func__, tty->driver->name); 1532 1533 tty->port->itty = tty; 1534 1535 /* 1536 * Structures all installed ... call the ldisc open routines. 1537 * If we fail here just call release_tty to clean up. No need 1538 * to decrement the use counts, as release_tty doesn't care. 1539 */ 1540 retval = tty_ldisc_setup(tty, tty->link); 1541 if (retval) 1542 goto err_release_tty; 1543 /* Return the tty locked so that it cannot vanish under the caller */ 1544 return tty; 1545 1546 err_deinit_tty: 1547 tty_unlock(tty); 1548 deinitialize_tty_struct(tty); 1549 free_tty_struct(tty); 1550 err_module_put: 1551 module_put(driver->owner); 1552 return ERR_PTR(retval); 1553 1554 /* call the tty release_tty routine to clean out this slot */ 1555 err_release_tty: 1556 tty_unlock(tty); 1557 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, " 1558 "clearing slot %d\n", idx); 1559 release_tty(tty, idx); 1560 return ERR_PTR(retval); 1561 } 1562 1563 void tty_free_termios(struct tty_struct *tty) 1564 { 1565 struct ktermios *tp; 1566 int idx = tty->index; 1567 1568 /* If the port is going to reset then it has no termios to save */ 1569 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1570 return; 1571 1572 /* Stash the termios data */ 1573 tp = tty->driver->termios[idx]; 1574 if (tp == NULL) { 1575 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL); 1576 if (tp == NULL) { 1577 pr_warn("tty: no memory to save termios state.\n"); 1578 return; 1579 } 1580 tty->driver->termios[idx] = tp; 1581 } 1582 *tp = tty->termios; 1583 } 1584 EXPORT_SYMBOL(tty_free_termios); 1585 1586 /** 1587 * tty_flush_works - flush all works of a tty/pty pair 1588 * @tty: tty device to flush works for (or either end of a pty pair) 1589 * 1590 * Sync flush all works belonging to @tty (and the 'other' tty). 1591 */ 1592 static void tty_flush_works(struct tty_struct *tty) 1593 { 1594 flush_work(&tty->SAK_work); 1595 flush_work(&tty->hangup_work); 1596 if (tty->link) { 1597 flush_work(&tty->link->SAK_work); 1598 flush_work(&tty->link->hangup_work); 1599 } 1600 } 1601 1602 /** 1603 * release_one_tty - release tty structure memory 1604 * @kref: kref of tty we are obliterating 1605 * 1606 * Releases memory associated with a tty structure, and clears out the 1607 * driver table slots. This function is called when a device is no longer 1608 * in use. It also gets called when setup of a device fails. 1609 * 1610 * Locking: 1611 * takes the file list lock internally when working on the list 1612 * of ttys that the driver keeps. 1613 * 1614 * This method gets called from a work queue so that the driver private 1615 * cleanup ops can sleep (needed for USB at least) 1616 */ 1617 static void release_one_tty(struct work_struct *work) 1618 { 1619 struct tty_struct *tty = 1620 container_of(work, struct tty_struct, hangup_work); 1621 struct tty_driver *driver = tty->driver; 1622 struct module *owner = driver->owner; 1623 1624 if (tty->ops->cleanup) 1625 tty->ops->cleanup(tty); 1626 1627 tty->magic = 0; 1628 tty_driver_kref_put(driver); 1629 module_put(owner); 1630 1631 spin_lock(&tty_files_lock); 1632 list_del_init(&tty->tty_files); 1633 spin_unlock(&tty_files_lock); 1634 1635 put_pid(tty->pgrp); 1636 put_pid(tty->session); 1637 free_tty_struct(tty); 1638 } 1639 1640 static void queue_release_one_tty(struct kref *kref) 1641 { 1642 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1643 1644 /* The hangup queue is now free so we can reuse it rather than 1645 waste a chunk of memory for each port */ 1646 INIT_WORK(&tty->hangup_work, release_one_tty); 1647 schedule_work(&tty->hangup_work); 1648 } 1649 1650 /** 1651 * tty_kref_put - release a tty kref 1652 * @tty: tty device 1653 * 1654 * Release a reference to a tty device and if need be let the kref 1655 * layer destruct the object for us 1656 */ 1657 1658 void tty_kref_put(struct tty_struct *tty) 1659 { 1660 if (tty) 1661 kref_put(&tty->kref, queue_release_one_tty); 1662 } 1663 EXPORT_SYMBOL(tty_kref_put); 1664 1665 /** 1666 * release_tty - release tty structure memory 1667 * 1668 * Release both @tty and a possible linked partner (think pty pair), 1669 * and decrement the refcount of the backing module. 1670 * 1671 * Locking: 1672 * tty_mutex 1673 * takes the file list lock internally when working on the list 1674 * of ttys that the driver keeps. 1675 * 1676 */ 1677 static void release_tty(struct tty_struct *tty, int idx) 1678 { 1679 /* This should always be true but check for the moment */ 1680 WARN_ON(tty->index != idx); 1681 WARN_ON(!mutex_is_locked(&tty_mutex)); 1682 if (tty->ops->shutdown) 1683 tty->ops->shutdown(tty); 1684 tty_free_termios(tty); 1685 tty_driver_remove_tty(tty->driver, tty); 1686 tty->port->itty = NULL; 1687 if (tty->link) 1688 tty->link->port->itty = NULL; 1689 cancel_work_sync(&tty->port->buf.work); 1690 1691 tty_kref_put(tty->link); 1692 tty_kref_put(tty); 1693 } 1694 1695 /** 1696 * tty_release_checks - check a tty before real release 1697 * @tty: tty to check 1698 * @o_tty: link of @tty (if any) 1699 * @idx: index of the tty 1700 * 1701 * Performs some paranoid checking before true release of the @tty. 1702 * This is a no-op unless TTY_PARANOIA_CHECK is defined. 1703 */ 1704 static int tty_release_checks(struct tty_struct *tty, int idx) 1705 { 1706 #ifdef TTY_PARANOIA_CHECK 1707 if (idx < 0 || idx >= tty->driver->num) { 1708 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n", 1709 __func__, tty->name); 1710 return -1; 1711 } 1712 1713 /* not much to check for devpts */ 1714 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1715 return 0; 1716 1717 if (tty != tty->driver->ttys[idx]) { 1718 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n", 1719 __func__, idx, tty->name); 1720 return -1; 1721 } 1722 if (tty->driver->other) { 1723 struct tty_struct *o_tty = tty->link; 1724 1725 if (o_tty != tty->driver->other->ttys[idx]) { 1726 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n", 1727 __func__, idx, tty->name); 1728 return -1; 1729 } 1730 if (o_tty->link != tty) { 1731 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__); 1732 return -1; 1733 } 1734 } 1735 #endif 1736 return 0; 1737 } 1738 1739 /** 1740 * tty_release - vfs callback for close 1741 * @inode: inode of tty 1742 * @filp: file pointer for handle to tty 1743 * 1744 * Called the last time each file handle is closed that references 1745 * this tty. There may however be several such references. 1746 * 1747 * Locking: 1748 * Takes bkl. See tty_release_dev 1749 * 1750 * Even releasing the tty structures is a tricky business.. We have 1751 * to be very careful that the structures are all released at the 1752 * same time, as interrupts might otherwise get the wrong pointers. 1753 * 1754 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1755 * lead to double frees or releasing memory still in use. 1756 */ 1757 1758 int tty_release(struct inode *inode, struct file *filp) 1759 { 1760 struct tty_struct *tty = file_tty(filp); 1761 struct tty_struct *o_tty = NULL; 1762 int do_sleep, final; 1763 int idx; 1764 long timeout = 0; 1765 int once = 1; 1766 1767 if (tty_paranoia_check(tty, inode, __func__)) 1768 return 0; 1769 1770 tty_lock(tty); 1771 check_tty_count(tty, __func__); 1772 1773 __tty_fasync(-1, filp, 0); 1774 1775 idx = tty->index; 1776 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1777 tty->driver->subtype == PTY_TYPE_MASTER) 1778 o_tty = tty->link; 1779 1780 if (tty_release_checks(tty, idx)) { 1781 tty_unlock(tty); 1782 return 0; 1783 } 1784 1785 #ifdef TTY_DEBUG_HANGUP 1786 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__, 1787 tty_name(tty), tty->count); 1788 #endif 1789 1790 if (tty->ops->close) 1791 tty->ops->close(tty, filp); 1792 1793 /* If tty is pty master, lock the slave pty (stable lock order) */ 1794 tty_lock_slave(o_tty); 1795 1796 /* 1797 * Sanity check: if tty->count is going to zero, there shouldn't be 1798 * any waiters on tty->read_wait or tty->write_wait. We test the 1799 * wait queues and kick everyone out _before_ actually starting to 1800 * close. This ensures that we won't block while releasing the tty 1801 * structure. 1802 * 1803 * The test for the o_tty closing is necessary, since the master and 1804 * slave sides may close in any order. If the slave side closes out 1805 * first, its count will be one, since the master side holds an open. 1806 * Thus this test wouldn't be triggered at the time the slave closed, 1807 * so we do it now. 1808 */ 1809 while (1) { 1810 do_sleep = 0; 1811 1812 if (tty->count <= 1) { 1813 if (waitqueue_active(&tty->read_wait)) { 1814 wake_up_poll(&tty->read_wait, POLLIN); 1815 do_sleep++; 1816 } 1817 if (waitqueue_active(&tty->write_wait)) { 1818 wake_up_poll(&tty->write_wait, POLLOUT); 1819 do_sleep++; 1820 } 1821 } 1822 if (o_tty && o_tty->count <= 1) { 1823 if (waitqueue_active(&o_tty->read_wait)) { 1824 wake_up_poll(&o_tty->read_wait, POLLIN); 1825 do_sleep++; 1826 } 1827 if (waitqueue_active(&o_tty->write_wait)) { 1828 wake_up_poll(&o_tty->write_wait, POLLOUT); 1829 do_sleep++; 1830 } 1831 } 1832 if (!do_sleep) 1833 break; 1834 1835 if (once) { 1836 once = 0; 1837 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n", 1838 __func__, tty_name(tty)); 1839 } 1840 schedule_timeout_killable(timeout); 1841 if (timeout < 120 * HZ) 1842 timeout = 2 * timeout + 1; 1843 else 1844 timeout = MAX_SCHEDULE_TIMEOUT; 1845 } 1846 1847 if (o_tty) { 1848 if (--o_tty->count < 0) { 1849 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n", 1850 __func__, o_tty->count, tty_name(o_tty)); 1851 o_tty->count = 0; 1852 } 1853 } 1854 if (--tty->count < 0) { 1855 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n", 1856 __func__, tty->count, tty_name(tty)); 1857 tty->count = 0; 1858 } 1859 1860 /* 1861 * We've decremented tty->count, so we need to remove this file 1862 * descriptor off the tty->tty_files list; this serves two 1863 * purposes: 1864 * - check_tty_count sees the correct number of file descriptors 1865 * associated with this tty. 1866 * - do_tty_hangup no longer sees this file descriptor as 1867 * something that needs to be handled for hangups. 1868 */ 1869 tty_del_file(filp); 1870 1871 /* 1872 * Perform some housekeeping before deciding whether to return. 1873 * 1874 * If _either_ side is closing, make sure there aren't any 1875 * processes that still think tty or o_tty is their controlling 1876 * tty. 1877 */ 1878 if (!tty->count) { 1879 read_lock(&tasklist_lock); 1880 session_clear_tty(tty->session); 1881 if (o_tty) 1882 session_clear_tty(o_tty->session); 1883 read_unlock(&tasklist_lock); 1884 } 1885 1886 /* check whether both sides are closing ... */ 1887 final = !tty->count && !(o_tty && o_tty->count); 1888 1889 tty_unlock_slave(o_tty); 1890 tty_unlock(tty); 1891 1892 /* At this point, the tty->count == 0 should ensure a dead tty 1893 cannot be re-opened by a racing opener */ 1894 1895 if (!final) 1896 return 0; 1897 1898 #ifdef TTY_DEBUG_HANGUP 1899 printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty)); 1900 #endif 1901 /* 1902 * Ask the line discipline code to release its structures 1903 */ 1904 tty_ldisc_release(tty); 1905 1906 /* Wait for pending work before tty destruction commmences */ 1907 tty_flush_works(tty); 1908 1909 #ifdef TTY_DEBUG_HANGUP 1910 printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, 1911 tty_name(tty)); 1912 #endif 1913 /* 1914 * The release_tty function takes care of the details of clearing 1915 * the slots and preserving the termios structure. The tty_unlock_pair 1916 * should be safe as we keep a kref while the tty is locked (so the 1917 * unlock never unlocks a freed tty). 1918 */ 1919 mutex_lock(&tty_mutex); 1920 release_tty(tty, idx); 1921 mutex_unlock(&tty_mutex); 1922 1923 return 0; 1924 } 1925 1926 /** 1927 * tty_open_current_tty - get locked tty of current task 1928 * @device: device number 1929 * @filp: file pointer to tty 1930 * @return: locked tty of the current task iff @device is /dev/tty 1931 * 1932 * Performs a re-open of the current task's controlling tty. 1933 * 1934 * We cannot return driver and index like for the other nodes because 1935 * devpts will not work then. It expects inodes to be from devpts FS. 1936 */ 1937 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1938 { 1939 struct tty_struct *tty; 1940 int retval; 1941 1942 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1943 return NULL; 1944 1945 tty = get_current_tty(); 1946 if (!tty) 1947 return ERR_PTR(-ENXIO); 1948 1949 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1950 /* noctty = 1; */ 1951 tty_lock(tty); 1952 tty_kref_put(tty); /* safe to drop the kref now */ 1953 1954 retval = tty_reopen(tty); 1955 if (retval < 0) { 1956 tty_unlock(tty); 1957 tty = ERR_PTR(retval); 1958 } 1959 return tty; 1960 } 1961 1962 /** 1963 * tty_lookup_driver - lookup a tty driver for a given device file 1964 * @device: device number 1965 * @filp: file pointer to tty 1966 * @noctty: set if the device should not become a controlling tty 1967 * @index: index for the device in the @return driver 1968 * @return: driver for this inode (with increased refcount) 1969 * 1970 * If @return is not erroneous, the caller is responsible to decrement the 1971 * refcount by tty_driver_kref_put. 1972 * 1973 * Locking: tty_mutex protects get_tty_driver 1974 */ 1975 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1976 int *noctty, int *index) 1977 { 1978 struct tty_driver *driver; 1979 1980 switch (device) { 1981 #ifdef CONFIG_VT 1982 case MKDEV(TTY_MAJOR, 0): { 1983 extern struct tty_driver *console_driver; 1984 driver = tty_driver_kref_get(console_driver); 1985 *index = fg_console; 1986 *noctty = 1; 1987 break; 1988 } 1989 #endif 1990 case MKDEV(TTYAUX_MAJOR, 1): { 1991 struct tty_driver *console_driver = console_device(index); 1992 if (console_driver) { 1993 driver = tty_driver_kref_get(console_driver); 1994 if (driver) { 1995 /* Don't let /dev/console block */ 1996 filp->f_flags |= O_NONBLOCK; 1997 *noctty = 1; 1998 break; 1999 } 2000 } 2001 return ERR_PTR(-ENODEV); 2002 } 2003 default: 2004 driver = get_tty_driver(device, index); 2005 if (!driver) 2006 return ERR_PTR(-ENODEV); 2007 break; 2008 } 2009 return driver; 2010 } 2011 2012 /** 2013 * tty_open - open a tty device 2014 * @inode: inode of device file 2015 * @filp: file pointer to tty 2016 * 2017 * tty_open and tty_release keep up the tty count that contains the 2018 * number of opens done on a tty. We cannot use the inode-count, as 2019 * different inodes might point to the same tty. 2020 * 2021 * Open-counting is needed for pty masters, as well as for keeping 2022 * track of serial lines: DTR is dropped when the last close happens. 2023 * (This is not done solely through tty->count, now. - Ted 1/27/92) 2024 * 2025 * The termios state of a pty is reset on first open so that 2026 * settings don't persist across reuse. 2027 * 2028 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev. 2029 * tty->count should protect the rest. 2030 * ->siglock protects ->signal/->sighand 2031 * 2032 * Note: the tty_unlock/lock cases without a ref are only safe due to 2033 * tty_mutex 2034 */ 2035 2036 static int tty_open(struct inode *inode, struct file *filp) 2037 { 2038 struct tty_struct *tty; 2039 int noctty, retval; 2040 struct tty_driver *driver = NULL; 2041 int index; 2042 dev_t device = inode->i_rdev; 2043 unsigned saved_flags = filp->f_flags; 2044 2045 nonseekable_open(inode, filp); 2046 2047 retry_open: 2048 retval = tty_alloc_file(filp); 2049 if (retval) 2050 return -ENOMEM; 2051 2052 noctty = filp->f_flags & O_NOCTTY; 2053 index = -1; 2054 retval = 0; 2055 2056 tty = tty_open_current_tty(device, filp); 2057 if (!tty) { 2058 mutex_lock(&tty_mutex); 2059 driver = tty_lookup_driver(device, filp, &noctty, &index); 2060 if (IS_ERR(driver)) { 2061 retval = PTR_ERR(driver); 2062 goto err_unlock; 2063 } 2064 2065 /* check whether we're reopening an existing tty */ 2066 tty = tty_driver_lookup_tty(driver, inode, index); 2067 if (IS_ERR(tty)) { 2068 retval = PTR_ERR(tty); 2069 goto err_unlock; 2070 } 2071 2072 if (tty) { 2073 mutex_unlock(&tty_mutex); 2074 tty_lock(tty); 2075 /* safe to drop the kref from tty_driver_lookup_tty() */ 2076 tty_kref_put(tty); 2077 retval = tty_reopen(tty); 2078 if (retval < 0) { 2079 tty_unlock(tty); 2080 tty = ERR_PTR(retval); 2081 } 2082 } else { /* Returns with the tty_lock held for now */ 2083 tty = tty_init_dev(driver, index); 2084 mutex_unlock(&tty_mutex); 2085 } 2086 2087 tty_driver_kref_put(driver); 2088 } 2089 2090 if (IS_ERR(tty)) { 2091 retval = PTR_ERR(tty); 2092 goto err_file; 2093 } 2094 2095 tty_add_file(tty, filp); 2096 2097 check_tty_count(tty, __func__); 2098 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2099 tty->driver->subtype == PTY_TYPE_MASTER) 2100 noctty = 1; 2101 #ifdef TTY_DEBUG_HANGUP 2102 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name); 2103 #endif 2104 if (tty->ops->open) 2105 retval = tty->ops->open(tty, filp); 2106 else 2107 retval = -ENODEV; 2108 filp->f_flags = saved_flags; 2109 2110 if (retval) { 2111 #ifdef TTY_DEBUG_HANGUP 2112 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__, 2113 retval, tty->name); 2114 #endif 2115 tty_unlock(tty); /* need to call tty_release without BTM */ 2116 tty_release(inode, filp); 2117 if (retval != -ERESTARTSYS) 2118 return retval; 2119 2120 if (signal_pending(current)) 2121 return retval; 2122 2123 schedule(); 2124 /* 2125 * Need to reset f_op in case a hangup happened. 2126 */ 2127 if (tty_hung_up_p(filp)) 2128 filp->f_op = &tty_fops; 2129 goto retry_open; 2130 } 2131 clear_bit(TTY_HUPPED, &tty->flags); 2132 2133 2134 read_lock(&tasklist_lock); 2135 spin_lock_irq(¤t->sighand->siglock); 2136 if (!noctty && 2137 current->signal->leader && 2138 !current->signal->tty && 2139 tty->session == NULL) 2140 __proc_set_tty(tty); 2141 spin_unlock_irq(¤t->sighand->siglock); 2142 read_unlock(&tasklist_lock); 2143 tty_unlock(tty); 2144 return 0; 2145 err_unlock: 2146 mutex_unlock(&tty_mutex); 2147 /* after locks to avoid deadlock */ 2148 if (!IS_ERR_OR_NULL(driver)) 2149 tty_driver_kref_put(driver); 2150 err_file: 2151 tty_free_file(filp); 2152 return retval; 2153 } 2154 2155 2156 2157 /** 2158 * tty_poll - check tty status 2159 * @filp: file being polled 2160 * @wait: poll wait structures to update 2161 * 2162 * Call the line discipline polling method to obtain the poll 2163 * status of the device. 2164 * 2165 * Locking: locks called line discipline but ldisc poll method 2166 * may be re-entered freely by other callers. 2167 */ 2168 2169 static unsigned int tty_poll(struct file *filp, poll_table *wait) 2170 { 2171 struct tty_struct *tty = file_tty(filp); 2172 struct tty_ldisc *ld; 2173 int ret = 0; 2174 2175 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll")) 2176 return 0; 2177 2178 ld = tty_ldisc_ref_wait(tty); 2179 if (ld->ops->poll) 2180 ret = ld->ops->poll(tty, filp, wait); 2181 tty_ldisc_deref(ld); 2182 return ret; 2183 } 2184 2185 static int __tty_fasync(int fd, struct file *filp, int on) 2186 { 2187 struct tty_struct *tty = file_tty(filp); 2188 struct tty_ldisc *ldisc; 2189 unsigned long flags; 2190 int retval = 0; 2191 2192 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync")) 2193 goto out; 2194 2195 retval = fasync_helper(fd, filp, on, &tty->fasync); 2196 if (retval <= 0) 2197 goto out; 2198 2199 ldisc = tty_ldisc_ref(tty); 2200 if (ldisc) { 2201 if (ldisc->ops->fasync) 2202 ldisc->ops->fasync(tty, on); 2203 tty_ldisc_deref(ldisc); 2204 } 2205 2206 if (on) { 2207 enum pid_type type; 2208 struct pid *pid; 2209 2210 spin_lock_irqsave(&tty->ctrl_lock, flags); 2211 if (tty->pgrp) { 2212 pid = tty->pgrp; 2213 type = PIDTYPE_PGID; 2214 } else { 2215 pid = task_pid(current); 2216 type = PIDTYPE_PID; 2217 } 2218 get_pid(pid); 2219 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2220 __f_setown(filp, pid, type, 0); 2221 put_pid(pid); 2222 retval = 0; 2223 } 2224 out: 2225 return retval; 2226 } 2227 2228 static int tty_fasync(int fd, struct file *filp, int on) 2229 { 2230 struct tty_struct *tty = file_tty(filp); 2231 int retval; 2232 2233 tty_lock(tty); 2234 retval = __tty_fasync(fd, filp, on); 2235 tty_unlock(tty); 2236 2237 return retval; 2238 } 2239 2240 /** 2241 * tiocsti - fake input character 2242 * @tty: tty to fake input into 2243 * @p: pointer to character 2244 * 2245 * Fake input to a tty device. Does the necessary locking and 2246 * input management. 2247 * 2248 * FIXME: does not honour flow control ?? 2249 * 2250 * Locking: 2251 * Called functions take tty_ldiscs_lock 2252 * current->signal->tty check is safe without locks 2253 * 2254 * FIXME: may race normal receive processing 2255 */ 2256 2257 static int tiocsti(struct tty_struct *tty, char __user *p) 2258 { 2259 char ch, mbz = 0; 2260 struct tty_ldisc *ld; 2261 2262 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2263 return -EPERM; 2264 if (get_user(ch, p)) 2265 return -EFAULT; 2266 tty_audit_tiocsti(tty, ch); 2267 ld = tty_ldisc_ref_wait(tty); 2268 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2269 tty_ldisc_deref(ld); 2270 return 0; 2271 } 2272 2273 /** 2274 * tiocgwinsz - implement window query ioctl 2275 * @tty; tty 2276 * @arg: user buffer for result 2277 * 2278 * Copies the kernel idea of the window size into the user buffer. 2279 * 2280 * Locking: tty->winsize_mutex is taken to ensure the winsize data 2281 * is consistent. 2282 */ 2283 2284 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2285 { 2286 int err; 2287 2288 mutex_lock(&tty->winsize_mutex); 2289 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2290 mutex_unlock(&tty->winsize_mutex); 2291 2292 return err ? -EFAULT: 0; 2293 } 2294 2295 /** 2296 * tty_do_resize - resize event 2297 * @tty: tty being resized 2298 * @rows: rows (character) 2299 * @cols: cols (character) 2300 * 2301 * Update the termios variables and send the necessary signals to 2302 * peform a terminal resize correctly 2303 */ 2304 2305 int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2306 { 2307 struct pid *pgrp; 2308 2309 /* Lock the tty */ 2310 mutex_lock(&tty->winsize_mutex); 2311 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2312 goto done; 2313 2314 /* Signal the foreground process group */ 2315 pgrp = tty_get_pgrp(tty); 2316 if (pgrp) 2317 kill_pgrp(pgrp, SIGWINCH, 1); 2318 put_pid(pgrp); 2319 2320 tty->winsize = *ws; 2321 done: 2322 mutex_unlock(&tty->winsize_mutex); 2323 return 0; 2324 } 2325 EXPORT_SYMBOL(tty_do_resize); 2326 2327 /** 2328 * tiocswinsz - implement window size set ioctl 2329 * @tty; tty side of tty 2330 * @arg: user buffer for result 2331 * 2332 * Copies the user idea of the window size to the kernel. Traditionally 2333 * this is just advisory information but for the Linux console it 2334 * actually has driver level meaning and triggers a VC resize. 2335 * 2336 * Locking: 2337 * Driver dependent. The default do_resize method takes the 2338 * tty termios mutex and ctrl_lock. The console takes its own lock 2339 * then calls into the default method. 2340 */ 2341 2342 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2343 { 2344 struct winsize tmp_ws; 2345 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2346 return -EFAULT; 2347 2348 if (tty->ops->resize) 2349 return tty->ops->resize(tty, &tmp_ws); 2350 else 2351 return tty_do_resize(tty, &tmp_ws); 2352 } 2353 2354 /** 2355 * tioccons - allow admin to move logical console 2356 * @file: the file to become console 2357 * 2358 * Allow the administrator to move the redirected console device 2359 * 2360 * Locking: uses redirect_lock to guard the redirect information 2361 */ 2362 2363 static int tioccons(struct file *file) 2364 { 2365 if (!capable(CAP_SYS_ADMIN)) 2366 return -EPERM; 2367 if (file->f_op->write == redirected_tty_write) { 2368 struct file *f; 2369 spin_lock(&redirect_lock); 2370 f = redirect; 2371 redirect = NULL; 2372 spin_unlock(&redirect_lock); 2373 if (f) 2374 fput(f); 2375 return 0; 2376 } 2377 spin_lock(&redirect_lock); 2378 if (redirect) { 2379 spin_unlock(&redirect_lock); 2380 return -EBUSY; 2381 } 2382 redirect = get_file(file); 2383 spin_unlock(&redirect_lock); 2384 return 0; 2385 } 2386 2387 /** 2388 * fionbio - non blocking ioctl 2389 * @file: file to set blocking value 2390 * @p: user parameter 2391 * 2392 * Historical tty interfaces had a blocking control ioctl before 2393 * the generic functionality existed. This piece of history is preserved 2394 * in the expected tty API of posix OS's. 2395 * 2396 * Locking: none, the open file handle ensures it won't go away. 2397 */ 2398 2399 static int fionbio(struct file *file, int __user *p) 2400 { 2401 int nonblock; 2402 2403 if (get_user(nonblock, p)) 2404 return -EFAULT; 2405 2406 spin_lock(&file->f_lock); 2407 if (nonblock) 2408 file->f_flags |= O_NONBLOCK; 2409 else 2410 file->f_flags &= ~O_NONBLOCK; 2411 spin_unlock(&file->f_lock); 2412 return 0; 2413 } 2414 2415 /** 2416 * tiocsctty - set controlling tty 2417 * @tty: tty structure 2418 * @arg: user argument 2419 * 2420 * This ioctl is used to manage job control. It permits a session 2421 * leader to set this tty as the controlling tty for the session. 2422 * 2423 * Locking: 2424 * Takes tty_lock() to serialize proc_set_tty() for this tty 2425 * Takes tasklist_lock internally to walk sessions 2426 * Takes ->siglock() when updating signal->tty 2427 */ 2428 2429 static int tiocsctty(struct tty_struct *tty, int arg) 2430 { 2431 int ret = 0; 2432 2433 tty_lock(tty); 2434 read_lock(&tasklist_lock); 2435 2436 if (current->signal->leader && (task_session(current) == tty->session)) 2437 goto unlock; 2438 2439 /* 2440 * The process must be a session leader and 2441 * not have a controlling tty already. 2442 */ 2443 if (!current->signal->leader || current->signal->tty) { 2444 ret = -EPERM; 2445 goto unlock; 2446 } 2447 2448 if (tty->session) { 2449 /* 2450 * This tty is already the controlling 2451 * tty for another session group! 2452 */ 2453 if (arg == 1 && capable(CAP_SYS_ADMIN)) { 2454 /* 2455 * Steal it away 2456 */ 2457 session_clear_tty(tty->session); 2458 } else { 2459 ret = -EPERM; 2460 goto unlock; 2461 } 2462 } 2463 proc_set_tty(tty); 2464 unlock: 2465 read_unlock(&tasklist_lock); 2466 tty_unlock(tty); 2467 return ret; 2468 } 2469 2470 /** 2471 * tty_get_pgrp - return a ref counted pgrp pid 2472 * @tty: tty to read 2473 * 2474 * Returns a refcounted instance of the pid struct for the process 2475 * group controlling the tty. 2476 */ 2477 2478 struct pid *tty_get_pgrp(struct tty_struct *tty) 2479 { 2480 unsigned long flags; 2481 struct pid *pgrp; 2482 2483 spin_lock_irqsave(&tty->ctrl_lock, flags); 2484 pgrp = get_pid(tty->pgrp); 2485 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2486 2487 return pgrp; 2488 } 2489 EXPORT_SYMBOL_GPL(tty_get_pgrp); 2490 2491 /* 2492 * This checks not only the pgrp, but falls back on the pid if no 2493 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 2494 * without this... 2495 * 2496 * The caller must hold rcu lock or the tasklist lock. 2497 */ 2498 static struct pid *session_of_pgrp(struct pid *pgrp) 2499 { 2500 struct task_struct *p; 2501 struct pid *sid = NULL; 2502 2503 p = pid_task(pgrp, PIDTYPE_PGID); 2504 if (p == NULL) 2505 p = pid_task(pgrp, PIDTYPE_PID); 2506 if (p != NULL) 2507 sid = task_session(p); 2508 2509 return sid; 2510 } 2511 2512 /** 2513 * tiocgpgrp - get process group 2514 * @tty: tty passed by user 2515 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2516 * @p: returned pid 2517 * 2518 * Obtain the process group of the tty. If there is no process group 2519 * return an error. 2520 * 2521 * Locking: none. Reference to current->signal->tty is safe. 2522 */ 2523 2524 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2525 { 2526 struct pid *pid; 2527 int ret; 2528 /* 2529 * (tty == real_tty) is a cheap way of 2530 * testing if the tty is NOT a master pty. 2531 */ 2532 if (tty == real_tty && current->signal->tty != real_tty) 2533 return -ENOTTY; 2534 pid = tty_get_pgrp(real_tty); 2535 ret = put_user(pid_vnr(pid), p); 2536 put_pid(pid); 2537 return ret; 2538 } 2539 2540 /** 2541 * tiocspgrp - attempt to set process group 2542 * @tty: tty passed by user 2543 * @real_tty: tty side device matching tty passed by user 2544 * @p: pid pointer 2545 * 2546 * Set the process group of the tty to the session passed. Only 2547 * permitted where the tty session is our session. 2548 * 2549 * Locking: RCU, ctrl lock 2550 */ 2551 2552 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2553 { 2554 struct pid *pgrp; 2555 pid_t pgrp_nr; 2556 int retval = tty_check_change(real_tty); 2557 unsigned long flags; 2558 2559 if (retval == -EIO) 2560 return -ENOTTY; 2561 if (retval) 2562 return retval; 2563 if (!current->signal->tty || 2564 (current->signal->tty != real_tty) || 2565 (real_tty->session != task_session(current))) 2566 return -ENOTTY; 2567 if (get_user(pgrp_nr, p)) 2568 return -EFAULT; 2569 if (pgrp_nr < 0) 2570 return -EINVAL; 2571 rcu_read_lock(); 2572 pgrp = find_vpid(pgrp_nr); 2573 retval = -ESRCH; 2574 if (!pgrp) 2575 goto out_unlock; 2576 retval = -EPERM; 2577 if (session_of_pgrp(pgrp) != task_session(current)) 2578 goto out_unlock; 2579 retval = 0; 2580 spin_lock_irqsave(&tty->ctrl_lock, flags); 2581 put_pid(real_tty->pgrp); 2582 real_tty->pgrp = get_pid(pgrp); 2583 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2584 out_unlock: 2585 rcu_read_unlock(); 2586 return retval; 2587 } 2588 2589 /** 2590 * tiocgsid - get session id 2591 * @tty: tty passed by user 2592 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2593 * @p: pointer to returned session id 2594 * 2595 * Obtain the session id of the tty. If there is no session 2596 * return an error. 2597 * 2598 * Locking: none. Reference to current->signal->tty is safe. 2599 */ 2600 2601 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2602 { 2603 /* 2604 * (tty == real_tty) is a cheap way of 2605 * testing if the tty is NOT a master pty. 2606 */ 2607 if (tty == real_tty && current->signal->tty != real_tty) 2608 return -ENOTTY; 2609 if (!real_tty->session) 2610 return -ENOTTY; 2611 return put_user(pid_vnr(real_tty->session), p); 2612 } 2613 2614 /** 2615 * tiocsetd - set line discipline 2616 * @tty: tty device 2617 * @p: pointer to user data 2618 * 2619 * Set the line discipline according to user request. 2620 * 2621 * Locking: see tty_set_ldisc, this function is just a helper 2622 */ 2623 2624 static int tiocsetd(struct tty_struct *tty, int __user *p) 2625 { 2626 int ldisc; 2627 int ret; 2628 2629 if (get_user(ldisc, p)) 2630 return -EFAULT; 2631 2632 ret = tty_set_ldisc(tty, ldisc); 2633 2634 return ret; 2635 } 2636 2637 /** 2638 * send_break - performed time break 2639 * @tty: device to break on 2640 * @duration: timeout in mS 2641 * 2642 * Perform a timed break on hardware that lacks its own driver level 2643 * timed break functionality. 2644 * 2645 * Locking: 2646 * atomic_write_lock serializes 2647 * 2648 */ 2649 2650 static int send_break(struct tty_struct *tty, unsigned int duration) 2651 { 2652 int retval; 2653 2654 if (tty->ops->break_ctl == NULL) 2655 return 0; 2656 2657 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2658 retval = tty->ops->break_ctl(tty, duration); 2659 else { 2660 /* Do the work ourselves */ 2661 if (tty_write_lock(tty, 0) < 0) 2662 return -EINTR; 2663 retval = tty->ops->break_ctl(tty, -1); 2664 if (retval) 2665 goto out; 2666 if (!signal_pending(current)) 2667 msleep_interruptible(duration); 2668 retval = tty->ops->break_ctl(tty, 0); 2669 out: 2670 tty_write_unlock(tty); 2671 if (signal_pending(current)) 2672 retval = -EINTR; 2673 } 2674 return retval; 2675 } 2676 2677 /** 2678 * tty_tiocmget - get modem status 2679 * @tty: tty device 2680 * @file: user file pointer 2681 * @p: pointer to result 2682 * 2683 * Obtain the modem status bits from the tty driver if the feature 2684 * is supported. Return -EINVAL if it is not available. 2685 * 2686 * Locking: none (up to the driver) 2687 */ 2688 2689 static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2690 { 2691 int retval = -EINVAL; 2692 2693 if (tty->ops->tiocmget) { 2694 retval = tty->ops->tiocmget(tty); 2695 2696 if (retval >= 0) 2697 retval = put_user(retval, p); 2698 } 2699 return retval; 2700 } 2701 2702 /** 2703 * tty_tiocmset - set modem status 2704 * @tty: tty device 2705 * @cmd: command - clear bits, set bits or set all 2706 * @p: pointer to desired bits 2707 * 2708 * Set the modem status bits from the tty driver if the feature 2709 * is supported. Return -EINVAL if it is not available. 2710 * 2711 * Locking: none (up to the driver) 2712 */ 2713 2714 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2715 unsigned __user *p) 2716 { 2717 int retval; 2718 unsigned int set, clear, val; 2719 2720 if (tty->ops->tiocmset == NULL) 2721 return -EINVAL; 2722 2723 retval = get_user(val, p); 2724 if (retval) 2725 return retval; 2726 set = clear = 0; 2727 switch (cmd) { 2728 case TIOCMBIS: 2729 set = val; 2730 break; 2731 case TIOCMBIC: 2732 clear = val; 2733 break; 2734 case TIOCMSET: 2735 set = val; 2736 clear = ~val; 2737 break; 2738 } 2739 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2740 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2741 return tty->ops->tiocmset(tty, set, clear); 2742 } 2743 2744 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2745 { 2746 int retval = -EINVAL; 2747 struct serial_icounter_struct icount; 2748 memset(&icount, 0, sizeof(icount)); 2749 if (tty->ops->get_icount) 2750 retval = tty->ops->get_icount(tty, &icount); 2751 if (retval != 0) 2752 return retval; 2753 if (copy_to_user(arg, &icount, sizeof(icount))) 2754 return -EFAULT; 2755 return 0; 2756 } 2757 2758 static void tty_warn_deprecated_flags(struct serial_struct __user *ss) 2759 { 2760 static DEFINE_RATELIMIT_STATE(depr_flags, 2761 DEFAULT_RATELIMIT_INTERVAL, 2762 DEFAULT_RATELIMIT_BURST); 2763 char comm[TASK_COMM_LEN]; 2764 int flags; 2765 2766 if (get_user(flags, &ss->flags)) 2767 return; 2768 2769 flags &= ASYNC_DEPRECATED; 2770 2771 if (flags && __ratelimit(&depr_flags)) 2772 pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n", 2773 __func__, get_task_comm(comm, current), flags); 2774 } 2775 2776 /* 2777 * if pty, return the slave side (real_tty) 2778 * otherwise, return self 2779 */ 2780 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2781 { 2782 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2783 tty->driver->subtype == PTY_TYPE_MASTER) 2784 tty = tty->link; 2785 return tty; 2786 } 2787 2788 /* 2789 * Split this up, as gcc can choke on it otherwise.. 2790 */ 2791 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2792 { 2793 struct tty_struct *tty = file_tty(file); 2794 struct tty_struct *real_tty; 2795 void __user *p = (void __user *)arg; 2796 int retval; 2797 struct tty_ldisc *ld; 2798 2799 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2800 return -EINVAL; 2801 2802 real_tty = tty_pair_get_tty(tty); 2803 2804 /* 2805 * Factor out some common prep work 2806 */ 2807 switch (cmd) { 2808 case TIOCSETD: 2809 case TIOCSBRK: 2810 case TIOCCBRK: 2811 case TCSBRK: 2812 case TCSBRKP: 2813 retval = tty_check_change(tty); 2814 if (retval) 2815 return retval; 2816 if (cmd != TIOCCBRK) { 2817 tty_wait_until_sent(tty, 0); 2818 if (signal_pending(current)) 2819 return -EINTR; 2820 } 2821 break; 2822 } 2823 2824 /* 2825 * Now do the stuff. 2826 */ 2827 switch (cmd) { 2828 case TIOCSTI: 2829 return tiocsti(tty, p); 2830 case TIOCGWINSZ: 2831 return tiocgwinsz(real_tty, p); 2832 case TIOCSWINSZ: 2833 return tiocswinsz(real_tty, p); 2834 case TIOCCONS: 2835 return real_tty != tty ? -EINVAL : tioccons(file); 2836 case FIONBIO: 2837 return fionbio(file, p); 2838 case TIOCEXCL: 2839 set_bit(TTY_EXCLUSIVE, &tty->flags); 2840 return 0; 2841 case TIOCNXCL: 2842 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2843 return 0; 2844 case TIOCGEXCL: 2845 { 2846 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags); 2847 return put_user(excl, (int __user *)p); 2848 } 2849 case TIOCNOTTY: 2850 if (current->signal->tty != tty) 2851 return -ENOTTY; 2852 no_tty(); 2853 return 0; 2854 case TIOCSCTTY: 2855 return tiocsctty(tty, arg); 2856 case TIOCGPGRP: 2857 return tiocgpgrp(tty, real_tty, p); 2858 case TIOCSPGRP: 2859 return tiocspgrp(tty, real_tty, p); 2860 case TIOCGSID: 2861 return tiocgsid(tty, real_tty, p); 2862 case TIOCGETD: 2863 return put_user(tty->ldisc->ops->num, (int __user *)p); 2864 case TIOCSETD: 2865 return tiocsetd(tty, p); 2866 case TIOCVHANGUP: 2867 if (!capable(CAP_SYS_ADMIN)) 2868 return -EPERM; 2869 tty_vhangup(tty); 2870 return 0; 2871 case TIOCGDEV: 2872 { 2873 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2874 return put_user(ret, (unsigned int __user *)p); 2875 } 2876 /* 2877 * Break handling 2878 */ 2879 case TIOCSBRK: /* Turn break on, unconditionally */ 2880 if (tty->ops->break_ctl) 2881 return tty->ops->break_ctl(tty, -1); 2882 return 0; 2883 case TIOCCBRK: /* Turn break off, unconditionally */ 2884 if (tty->ops->break_ctl) 2885 return tty->ops->break_ctl(tty, 0); 2886 return 0; 2887 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2888 /* non-zero arg means wait for all output data 2889 * to be sent (performed above) but don't send break. 2890 * This is used by the tcdrain() termios function. 2891 */ 2892 if (!arg) 2893 return send_break(tty, 250); 2894 return 0; 2895 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2896 return send_break(tty, arg ? arg*100 : 250); 2897 2898 case TIOCMGET: 2899 return tty_tiocmget(tty, p); 2900 case TIOCMSET: 2901 case TIOCMBIC: 2902 case TIOCMBIS: 2903 return tty_tiocmset(tty, cmd, p); 2904 case TIOCGICOUNT: 2905 retval = tty_tiocgicount(tty, p); 2906 /* For the moment allow fall through to the old method */ 2907 if (retval != -EINVAL) 2908 return retval; 2909 break; 2910 case TCFLSH: 2911 switch (arg) { 2912 case TCIFLUSH: 2913 case TCIOFLUSH: 2914 /* flush tty buffer and allow ldisc to process ioctl */ 2915 tty_buffer_flush(tty, NULL); 2916 break; 2917 } 2918 break; 2919 case TIOCSSERIAL: 2920 tty_warn_deprecated_flags(p); 2921 break; 2922 } 2923 if (tty->ops->ioctl) { 2924 retval = tty->ops->ioctl(tty, cmd, arg); 2925 if (retval != -ENOIOCTLCMD) 2926 return retval; 2927 } 2928 ld = tty_ldisc_ref_wait(tty); 2929 retval = -EINVAL; 2930 if (ld->ops->ioctl) { 2931 retval = ld->ops->ioctl(tty, file, cmd, arg); 2932 if (retval == -ENOIOCTLCMD) 2933 retval = -ENOTTY; 2934 } 2935 tty_ldisc_deref(ld); 2936 return retval; 2937 } 2938 2939 #ifdef CONFIG_COMPAT 2940 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 2941 unsigned long arg) 2942 { 2943 struct tty_struct *tty = file_tty(file); 2944 struct tty_ldisc *ld; 2945 int retval = -ENOIOCTLCMD; 2946 2947 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2948 return -EINVAL; 2949 2950 if (tty->ops->compat_ioctl) { 2951 retval = tty->ops->compat_ioctl(tty, cmd, arg); 2952 if (retval != -ENOIOCTLCMD) 2953 return retval; 2954 } 2955 2956 ld = tty_ldisc_ref_wait(tty); 2957 if (ld->ops->compat_ioctl) 2958 retval = ld->ops->compat_ioctl(tty, file, cmd, arg); 2959 else 2960 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg); 2961 tty_ldisc_deref(ld); 2962 2963 return retval; 2964 } 2965 #endif 2966 2967 static int this_tty(const void *t, struct file *file, unsigned fd) 2968 { 2969 if (likely(file->f_op->read != tty_read)) 2970 return 0; 2971 return file_tty(file) != t ? 0 : fd + 1; 2972 } 2973 2974 /* 2975 * This implements the "Secure Attention Key" --- the idea is to 2976 * prevent trojan horses by killing all processes associated with this 2977 * tty when the user hits the "Secure Attention Key". Required for 2978 * super-paranoid applications --- see the Orange Book for more details. 2979 * 2980 * This code could be nicer; ideally it should send a HUP, wait a few 2981 * seconds, then send a INT, and then a KILL signal. But you then 2982 * have to coordinate with the init process, since all processes associated 2983 * with the current tty must be dead before the new getty is allowed 2984 * to spawn. 2985 * 2986 * Now, if it would be correct ;-/ The current code has a nasty hole - 2987 * it doesn't catch files in flight. We may send the descriptor to ourselves 2988 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 2989 * 2990 * Nasty bug: do_SAK is being called in interrupt context. This can 2991 * deadlock. We punt it up to process context. AKPM - 16Mar2001 2992 */ 2993 void __do_SAK(struct tty_struct *tty) 2994 { 2995 #ifdef TTY_SOFT_SAK 2996 tty_hangup(tty); 2997 #else 2998 struct task_struct *g, *p; 2999 struct pid *session; 3000 int i; 3001 3002 if (!tty) 3003 return; 3004 session = tty->session; 3005 3006 tty_ldisc_flush(tty); 3007 3008 tty_driver_flush_buffer(tty); 3009 3010 read_lock(&tasklist_lock); 3011 /* Kill the entire session */ 3012 do_each_pid_task(session, PIDTYPE_SID, p) { 3013 printk(KERN_NOTICE "SAK: killed process %d" 3014 " (%s): task_session(p)==tty->session\n", 3015 task_pid_nr(p), p->comm); 3016 send_sig(SIGKILL, p, 1); 3017 } while_each_pid_task(session, PIDTYPE_SID, p); 3018 /* Now kill any processes that happen to have the 3019 * tty open. 3020 */ 3021 do_each_thread(g, p) { 3022 if (p->signal->tty == tty) { 3023 printk(KERN_NOTICE "SAK: killed process %d" 3024 " (%s): task_session(p)==tty->session\n", 3025 task_pid_nr(p), p->comm); 3026 send_sig(SIGKILL, p, 1); 3027 continue; 3028 } 3029 task_lock(p); 3030 i = iterate_fd(p->files, 0, this_tty, tty); 3031 if (i != 0) { 3032 printk(KERN_NOTICE "SAK: killed process %d" 3033 " (%s): fd#%d opened to the tty\n", 3034 task_pid_nr(p), p->comm, i - 1); 3035 force_sig(SIGKILL, p); 3036 } 3037 task_unlock(p); 3038 } while_each_thread(g, p); 3039 read_unlock(&tasklist_lock); 3040 #endif 3041 } 3042 3043 static void do_SAK_work(struct work_struct *work) 3044 { 3045 struct tty_struct *tty = 3046 container_of(work, struct tty_struct, SAK_work); 3047 __do_SAK(tty); 3048 } 3049 3050 /* 3051 * The tq handling here is a little racy - tty->SAK_work may already be queued. 3052 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 3053 * the values which we write to it will be identical to the values which it 3054 * already has. --akpm 3055 */ 3056 void do_SAK(struct tty_struct *tty) 3057 { 3058 if (!tty) 3059 return; 3060 schedule_work(&tty->SAK_work); 3061 } 3062 3063 EXPORT_SYMBOL(do_SAK); 3064 3065 static int dev_match_devt(struct device *dev, const void *data) 3066 { 3067 const dev_t *devt = data; 3068 return dev->devt == *devt; 3069 } 3070 3071 /* Must put_device() after it's unused! */ 3072 static struct device *tty_get_device(struct tty_struct *tty) 3073 { 3074 dev_t devt = tty_devnum(tty); 3075 return class_find_device(tty_class, NULL, &devt, dev_match_devt); 3076 } 3077 3078 3079 /** 3080 * alloc_tty_struct 3081 * 3082 * This subroutine allocates and initializes a tty structure. 3083 * 3084 * Locking: none - tty in question is not exposed at this point 3085 */ 3086 3087 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx) 3088 { 3089 struct tty_struct *tty; 3090 3091 tty = kzalloc(sizeof(*tty), GFP_KERNEL); 3092 if (!tty) 3093 return NULL; 3094 3095 kref_init(&tty->kref); 3096 tty->magic = TTY_MAGIC; 3097 tty_ldisc_init(tty); 3098 tty->session = NULL; 3099 tty->pgrp = NULL; 3100 mutex_init(&tty->legacy_mutex); 3101 mutex_init(&tty->throttle_mutex); 3102 init_rwsem(&tty->termios_rwsem); 3103 mutex_init(&tty->winsize_mutex); 3104 init_ldsem(&tty->ldisc_sem); 3105 init_waitqueue_head(&tty->write_wait); 3106 init_waitqueue_head(&tty->read_wait); 3107 INIT_WORK(&tty->hangup_work, do_tty_hangup); 3108 mutex_init(&tty->atomic_write_lock); 3109 spin_lock_init(&tty->ctrl_lock); 3110 spin_lock_init(&tty->flow_lock); 3111 INIT_LIST_HEAD(&tty->tty_files); 3112 INIT_WORK(&tty->SAK_work, do_SAK_work); 3113 3114 tty->driver = driver; 3115 tty->ops = driver->ops; 3116 tty->index = idx; 3117 tty_line_name(driver, idx, tty->name); 3118 tty->dev = tty_get_device(tty); 3119 3120 return tty; 3121 } 3122 3123 /** 3124 * deinitialize_tty_struct 3125 * @tty: tty to deinitialize 3126 * 3127 * This subroutine deinitializes a tty structure that has been newly 3128 * allocated but tty_release cannot be called on that yet. 3129 * 3130 * Locking: none - tty in question must not be exposed at this point 3131 */ 3132 void deinitialize_tty_struct(struct tty_struct *tty) 3133 { 3134 tty_ldisc_deinit(tty); 3135 } 3136 3137 /** 3138 * tty_put_char - write one character to a tty 3139 * @tty: tty 3140 * @ch: character 3141 * 3142 * Write one byte to the tty using the provided put_char method 3143 * if present. Returns the number of characters successfully output. 3144 * 3145 * Note: the specific put_char operation in the driver layer may go 3146 * away soon. Don't call it directly, use this method 3147 */ 3148 3149 int tty_put_char(struct tty_struct *tty, unsigned char ch) 3150 { 3151 if (tty->ops->put_char) 3152 return tty->ops->put_char(tty, ch); 3153 return tty->ops->write(tty, &ch, 1); 3154 } 3155 EXPORT_SYMBOL_GPL(tty_put_char); 3156 3157 struct class *tty_class; 3158 3159 static int tty_cdev_add(struct tty_driver *driver, dev_t dev, 3160 unsigned int index, unsigned int count) 3161 { 3162 /* init here, since reused cdevs cause crashes */ 3163 cdev_init(&driver->cdevs[index], &tty_fops); 3164 driver->cdevs[index].owner = driver->owner; 3165 return cdev_add(&driver->cdevs[index], dev, count); 3166 } 3167 3168 /** 3169 * tty_register_device - register a tty device 3170 * @driver: the tty driver that describes the tty device 3171 * @index: the index in the tty driver for this tty device 3172 * @device: a struct device that is associated with this tty device. 3173 * This field is optional, if there is no known struct device 3174 * for this tty device it can be set to NULL safely. 3175 * 3176 * Returns a pointer to the struct device for this tty device 3177 * (or ERR_PTR(-EFOO) on error). 3178 * 3179 * This call is required to be made to register an individual tty device 3180 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3181 * that bit is not set, this function should not be called by a tty 3182 * driver. 3183 * 3184 * Locking: ?? 3185 */ 3186 3187 struct device *tty_register_device(struct tty_driver *driver, unsigned index, 3188 struct device *device) 3189 { 3190 return tty_register_device_attr(driver, index, device, NULL, NULL); 3191 } 3192 EXPORT_SYMBOL(tty_register_device); 3193 3194 static void tty_device_create_release(struct device *dev) 3195 { 3196 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3197 kfree(dev); 3198 } 3199 3200 /** 3201 * tty_register_device_attr - register a tty device 3202 * @driver: the tty driver that describes the tty device 3203 * @index: the index in the tty driver for this tty device 3204 * @device: a struct device that is associated with this tty device. 3205 * This field is optional, if there is no known struct device 3206 * for this tty device it can be set to NULL safely. 3207 * @drvdata: Driver data to be set to device. 3208 * @attr_grp: Attribute group to be set on device. 3209 * 3210 * Returns a pointer to the struct device for this tty device 3211 * (or ERR_PTR(-EFOO) on error). 3212 * 3213 * This call is required to be made to register an individual tty device 3214 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3215 * that bit is not set, this function should not be called by a tty 3216 * driver. 3217 * 3218 * Locking: ?? 3219 */ 3220 struct device *tty_register_device_attr(struct tty_driver *driver, 3221 unsigned index, struct device *device, 3222 void *drvdata, 3223 const struct attribute_group **attr_grp) 3224 { 3225 char name[64]; 3226 dev_t devt = MKDEV(driver->major, driver->minor_start) + index; 3227 struct device *dev = NULL; 3228 int retval = -ENODEV; 3229 bool cdev = false; 3230 3231 if (index >= driver->num) { 3232 printk(KERN_ERR "Attempt to register invalid tty line number " 3233 " (%d).\n", index); 3234 return ERR_PTR(-EINVAL); 3235 } 3236 3237 if (driver->type == TTY_DRIVER_TYPE_PTY) 3238 pty_line_name(driver, index, name); 3239 else 3240 tty_line_name(driver, index, name); 3241 3242 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3243 retval = tty_cdev_add(driver, devt, index, 1); 3244 if (retval) 3245 goto error; 3246 cdev = true; 3247 } 3248 3249 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3250 if (!dev) { 3251 retval = -ENOMEM; 3252 goto error; 3253 } 3254 3255 dev->devt = devt; 3256 dev->class = tty_class; 3257 dev->parent = device; 3258 dev->release = tty_device_create_release; 3259 dev_set_name(dev, "%s", name); 3260 dev->groups = attr_grp; 3261 dev_set_drvdata(dev, drvdata); 3262 3263 retval = device_register(dev); 3264 if (retval) 3265 goto error; 3266 3267 return dev; 3268 3269 error: 3270 put_device(dev); 3271 if (cdev) 3272 cdev_del(&driver->cdevs[index]); 3273 return ERR_PTR(retval); 3274 } 3275 EXPORT_SYMBOL_GPL(tty_register_device_attr); 3276 3277 /** 3278 * tty_unregister_device - unregister a tty device 3279 * @driver: the tty driver that describes the tty device 3280 * @index: the index in the tty driver for this tty device 3281 * 3282 * If a tty device is registered with a call to tty_register_device() then 3283 * this function must be called when the tty device is gone. 3284 * 3285 * Locking: ?? 3286 */ 3287 3288 void tty_unregister_device(struct tty_driver *driver, unsigned index) 3289 { 3290 device_destroy(tty_class, 3291 MKDEV(driver->major, driver->minor_start) + index); 3292 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) 3293 cdev_del(&driver->cdevs[index]); 3294 } 3295 EXPORT_SYMBOL(tty_unregister_device); 3296 3297 /** 3298 * __tty_alloc_driver -- allocate tty driver 3299 * @lines: count of lines this driver can handle at most 3300 * @owner: module which is repsonsible for this driver 3301 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags 3302 * 3303 * This should not be called directly, some of the provided macros should be 3304 * used instead. Use IS_ERR and friends on @retval. 3305 */ 3306 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner, 3307 unsigned long flags) 3308 { 3309 struct tty_driver *driver; 3310 unsigned int cdevs = 1; 3311 int err; 3312 3313 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1)) 3314 return ERR_PTR(-EINVAL); 3315 3316 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL); 3317 if (!driver) 3318 return ERR_PTR(-ENOMEM); 3319 3320 kref_init(&driver->kref); 3321 driver->magic = TTY_DRIVER_MAGIC; 3322 driver->num = lines; 3323 driver->owner = owner; 3324 driver->flags = flags; 3325 3326 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) { 3327 driver->ttys = kcalloc(lines, sizeof(*driver->ttys), 3328 GFP_KERNEL); 3329 driver->termios = kcalloc(lines, sizeof(*driver->termios), 3330 GFP_KERNEL); 3331 if (!driver->ttys || !driver->termios) { 3332 err = -ENOMEM; 3333 goto err_free_all; 3334 } 3335 } 3336 3337 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3338 driver->ports = kcalloc(lines, sizeof(*driver->ports), 3339 GFP_KERNEL); 3340 if (!driver->ports) { 3341 err = -ENOMEM; 3342 goto err_free_all; 3343 } 3344 cdevs = lines; 3345 } 3346 3347 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL); 3348 if (!driver->cdevs) { 3349 err = -ENOMEM; 3350 goto err_free_all; 3351 } 3352 3353 return driver; 3354 err_free_all: 3355 kfree(driver->ports); 3356 kfree(driver->ttys); 3357 kfree(driver->termios); 3358 kfree(driver); 3359 return ERR_PTR(err); 3360 } 3361 EXPORT_SYMBOL(__tty_alloc_driver); 3362 3363 static void destruct_tty_driver(struct kref *kref) 3364 { 3365 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3366 int i; 3367 struct ktermios *tp; 3368 3369 if (driver->flags & TTY_DRIVER_INSTALLED) { 3370 /* 3371 * Free the termios and termios_locked structures because 3372 * we don't want to get memory leaks when modular tty 3373 * drivers are removed from the kernel. 3374 */ 3375 for (i = 0; i < driver->num; i++) { 3376 tp = driver->termios[i]; 3377 if (tp) { 3378 driver->termios[i] = NULL; 3379 kfree(tp); 3380 } 3381 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3382 tty_unregister_device(driver, i); 3383 } 3384 proc_tty_unregister_driver(driver); 3385 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) 3386 cdev_del(&driver->cdevs[0]); 3387 } 3388 kfree(driver->cdevs); 3389 kfree(driver->ports); 3390 kfree(driver->termios); 3391 kfree(driver->ttys); 3392 kfree(driver); 3393 } 3394 3395 void tty_driver_kref_put(struct tty_driver *driver) 3396 { 3397 kref_put(&driver->kref, destruct_tty_driver); 3398 } 3399 EXPORT_SYMBOL(tty_driver_kref_put); 3400 3401 void tty_set_operations(struct tty_driver *driver, 3402 const struct tty_operations *op) 3403 { 3404 driver->ops = op; 3405 }; 3406 EXPORT_SYMBOL(tty_set_operations); 3407 3408 void put_tty_driver(struct tty_driver *d) 3409 { 3410 tty_driver_kref_put(d); 3411 } 3412 EXPORT_SYMBOL(put_tty_driver); 3413 3414 /* 3415 * Called by a tty driver to register itself. 3416 */ 3417 int tty_register_driver(struct tty_driver *driver) 3418 { 3419 int error; 3420 int i; 3421 dev_t dev; 3422 struct device *d; 3423 3424 if (!driver->major) { 3425 error = alloc_chrdev_region(&dev, driver->minor_start, 3426 driver->num, driver->name); 3427 if (!error) { 3428 driver->major = MAJOR(dev); 3429 driver->minor_start = MINOR(dev); 3430 } 3431 } else { 3432 dev = MKDEV(driver->major, driver->minor_start); 3433 error = register_chrdev_region(dev, driver->num, driver->name); 3434 } 3435 if (error < 0) 3436 goto err; 3437 3438 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) { 3439 error = tty_cdev_add(driver, dev, 0, driver->num); 3440 if (error) 3441 goto err_unreg_char; 3442 } 3443 3444 mutex_lock(&tty_mutex); 3445 list_add(&driver->tty_drivers, &tty_drivers); 3446 mutex_unlock(&tty_mutex); 3447 3448 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3449 for (i = 0; i < driver->num; i++) { 3450 d = tty_register_device(driver, i, NULL); 3451 if (IS_ERR(d)) { 3452 error = PTR_ERR(d); 3453 goto err_unreg_devs; 3454 } 3455 } 3456 } 3457 proc_tty_register_driver(driver); 3458 driver->flags |= TTY_DRIVER_INSTALLED; 3459 return 0; 3460 3461 err_unreg_devs: 3462 for (i--; i >= 0; i--) 3463 tty_unregister_device(driver, i); 3464 3465 mutex_lock(&tty_mutex); 3466 list_del(&driver->tty_drivers); 3467 mutex_unlock(&tty_mutex); 3468 3469 err_unreg_char: 3470 unregister_chrdev_region(dev, driver->num); 3471 err: 3472 return error; 3473 } 3474 EXPORT_SYMBOL(tty_register_driver); 3475 3476 /* 3477 * Called by a tty driver to unregister itself. 3478 */ 3479 int tty_unregister_driver(struct tty_driver *driver) 3480 { 3481 #if 0 3482 /* FIXME */ 3483 if (driver->refcount) 3484 return -EBUSY; 3485 #endif 3486 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3487 driver->num); 3488 mutex_lock(&tty_mutex); 3489 list_del(&driver->tty_drivers); 3490 mutex_unlock(&tty_mutex); 3491 return 0; 3492 } 3493 3494 EXPORT_SYMBOL(tty_unregister_driver); 3495 3496 dev_t tty_devnum(struct tty_struct *tty) 3497 { 3498 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3499 } 3500 EXPORT_SYMBOL(tty_devnum); 3501 3502 void tty_default_fops(struct file_operations *fops) 3503 { 3504 *fops = tty_fops; 3505 } 3506 3507 /* 3508 * Initialize the console device. This is called *early*, so 3509 * we can't necessarily depend on lots of kernel help here. 3510 * Just do some early initializations, and do the complex setup 3511 * later. 3512 */ 3513 void __init console_init(void) 3514 { 3515 initcall_t *call; 3516 3517 /* Setup the default TTY line discipline. */ 3518 tty_ldisc_begin(); 3519 3520 /* 3521 * set up the console device so that later boot sequences can 3522 * inform about problems etc.. 3523 */ 3524 call = __con_initcall_start; 3525 while (call < __con_initcall_end) { 3526 (*call)(); 3527 call++; 3528 } 3529 } 3530 3531 static char *tty_devnode(struct device *dev, umode_t *mode) 3532 { 3533 if (!mode) 3534 return NULL; 3535 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3536 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3537 *mode = 0666; 3538 return NULL; 3539 } 3540 3541 static int __init tty_class_init(void) 3542 { 3543 tty_class = class_create(THIS_MODULE, "tty"); 3544 if (IS_ERR(tty_class)) 3545 return PTR_ERR(tty_class); 3546 tty_class->devnode = tty_devnode; 3547 return 0; 3548 } 3549 3550 postcore_initcall(tty_class_init); 3551 3552 /* 3/2004 jmc: why do these devices exist? */ 3553 static struct cdev tty_cdev, console_cdev; 3554 3555 static ssize_t show_cons_active(struct device *dev, 3556 struct device_attribute *attr, char *buf) 3557 { 3558 struct console *cs[16]; 3559 int i = 0; 3560 struct console *c; 3561 ssize_t count = 0; 3562 3563 console_lock(); 3564 for_each_console(c) { 3565 if (!c->device) 3566 continue; 3567 if (!c->write) 3568 continue; 3569 if ((c->flags & CON_ENABLED) == 0) 3570 continue; 3571 cs[i++] = c; 3572 if (i >= ARRAY_SIZE(cs)) 3573 break; 3574 } 3575 while (i--) { 3576 int index = cs[i]->index; 3577 struct tty_driver *drv = cs[i]->device(cs[i], &index); 3578 3579 /* don't resolve tty0 as some programs depend on it */ 3580 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR)) 3581 count += tty_line_name(drv, index, buf + count); 3582 else 3583 count += sprintf(buf + count, "%s%d", 3584 cs[i]->name, cs[i]->index); 3585 3586 count += sprintf(buf + count, "%c", i ? ' ':'\n'); 3587 } 3588 console_unlock(); 3589 3590 return count; 3591 } 3592 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3593 3594 static struct attribute *cons_dev_attrs[] = { 3595 &dev_attr_active.attr, 3596 NULL 3597 }; 3598 3599 ATTRIBUTE_GROUPS(cons_dev); 3600 3601 static struct device *consdev; 3602 3603 void console_sysfs_notify(void) 3604 { 3605 if (consdev) 3606 sysfs_notify(&consdev->kobj, NULL, "active"); 3607 } 3608 3609 /* 3610 * Ok, now we can initialize the rest of the tty devices and can count 3611 * on memory allocations, interrupts etc.. 3612 */ 3613 int __init tty_init(void) 3614 { 3615 cdev_init(&tty_cdev, &tty_fops); 3616 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3617 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3618 panic("Couldn't register /dev/tty driver\n"); 3619 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3620 3621 cdev_init(&console_cdev, &console_fops); 3622 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3623 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3624 panic("Couldn't register /dev/console driver\n"); 3625 consdev = device_create_with_groups(tty_class, NULL, 3626 MKDEV(TTYAUX_MAJOR, 1), NULL, 3627 cons_dev_groups, "console"); 3628 if (IS_ERR(consdev)) 3629 consdev = NULL; 3630 3631 #ifdef CONFIG_VT 3632 vty_init(&console_fops); 3633 #endif 3634 return 0; 3635 } 3636 3637