xref: /openbmc/linux/drivers/tty/tty_io.c (revision e2f1cf25)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112 
113 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
114 	.c_iflag = ICRNL | IXON,
115 	.c_oflag = OPOST | ONLCR,
116 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 		   ECHOCTL | ECHOKE | IEXTEN,
119 	.c_cc = INIT_C_CC,
120 	.c_ispeed = 38400,
121 	.c_ospeed = 38400
122 };
123 
124 EXPORT_SYMBOL(tty_std_termios);
125 
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129 
130 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
131 
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136 
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139 
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 							size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 				unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 
157 /**
158  *	free_tty_struct		-	free a disused tty
159  *	@tty: tty struct to free
160  *
161  *	Free the write buffers, tty queue and tty memory itself.
162  *
163  *	Locking: none. Must be called after tty is definitely unused
164  */
165 
166 void free_tty_struct(struct tty_struct *tty)
167 {
168 	if (!tty)
169 		return;
170 	put_device(tty->dev);
171 	kfree(tty->write_buf);
172 	tty->magic = 0xDEADDEAD;
173 	kfree(tty);
174 }
175 
176 static inline struct tty_struct *file_tty(struct file *file)
177 {
178 	return ((struct tty_file_private *)file->private_data)->tty;
179 }
180 
181 int tty_alloc_file(struct file *file)
182 {
183 	struct tty_file_private *priv;
184 
185 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
186 	if (!priv)
187 		return -ENOMEM;
188 
189 	file->private_data = priv;
190 
191 	return 0;
192 }
193 
194 /* Associate a new file with the tty structure */
195 void tty_add_file(struct tty_struct *tty, struct file *file)
196 {
197 	struct tty_file_private *priv = file->private_data;
198 
199 	priv->tty = tty;
200 	priv->file = file;
201 
202 	spin_lock(&tty_files_lock);
203 	list_add(&priv->list, &tty->tty_files);
204 	spin_unlock(&tty_files_lock);
205 }
206 
207 /**
208  * tty_free_file - free file->private_data
209  *
210  * This shall be used only for fail path handling when tty_add_file was not
211  * called yet.
212  */
213 void tty_free_file(struct file *file)
214 {
215 	struct tty_file_private *priv = file->private_data;
216 
217 	file->private_data = NULL;
218 	kfree(priv);
219 }
220 
221 /* Delete file from its tty */
222 static void tty_del_file(struct file *file)
223 {
224 	struct tty_file_private *priv = file->private_data;
225 
226 	spin_lock(&tty_files_lock);
227 	list_del(&priv->list);
228 	spin_unlock(&tty_files_lock);
229 	tty_free_file(file);
230 }
231 
232 
233 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
234 
235 /**
236  *	tty_name	-	return tty naming
237  *	@tty: tty structure
238  *
239  *	Convert a tty structure into a name. The name reflects the kernel
240  *	naming policy and if udev is in use may not reflect user space
241  *
242  *	Locking: none
243  */
244 
245 const char *tty_name(const struct tty_struct *tty)
246 {
247 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
248 		return "NULL tty";
249 	return tty->name;
250 }
251 
252 EXPORT_SYMBOL(tty_name);
253 
254 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
255 			      const char *routine)
256 {
257 #ifdef TTY_PARANOIA_CHECK
258 	if (!tty) {
259 		printk(KERN_WARNING
260 			"null TTY for (%d:%d) in %s\n",
261 			imajor(inode), iminor(inode), routine);
262 		return 1;
263 	}
264 	if (tty->magic != TTY_MAGIC) {
265 		printk(KERN_WARNING
266 			"bad magic number for tty struct (%d:%d) in %s\n",
267 			imajor(inode), iminor(inode), routine);
268 		return 1;
269 	}
270 #endif
271 	return 0;
272 }
273 
274 /* Caller must hold tty_lock */
275 static int check_tty_count(struct tty_struct *tty, const char *routine)
276 {
277 #ifdef CHECK_TTY_COUNT
278 	struct list_head *p;
279 	int count = 0;
280 
281 	spin_lock(&tty_files_lock);
282 	list_for_each(p, &tty->tty_files) {
283 		count++;
284 	}
285 	spin_unlock(&tty_files_lock);
286 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
287 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
288 	    tty->link && tty->link->count)
289 		count++;
290 	if (tty->count != count) {
291 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
292 				    "!= #fd's(%d) in %s\n",
293 		       tty->name, tty->count, count, routine);
294 		return count;
295 	}
296 #endif
297 	return 0;
298 }
299 
300 /**
301  *	get_tty_driver		-	find device of a tty
302  *	@dev_t: device identifier
303  *	@index: returns the index of the tty
304  *
305  *	This routine returns a tty driver structure, given a device number
306  *	and also passes back the index number.
307  *
308  *	Locking: caller must hold tty_mutex
309  */
310 
311 static struct tty_driver *get_tty_driver(dev_t device, int *index)
312 {
313 	struct tty_driver *p;
314 
315 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
316 		dev_t base = MKDEV(p->major, p->minor_start);
317 		if (device < base || device >= base + p->num)
318 			continue;
319 		*index = device - base;
320 		return tty_driver_kref_get(p);
321 	}
322 	return NULL;
323 }
324 
325 #ifdef CONFIG_CONSOLE_POLL
326 
327 /**
328  *	tty_find_polling_driver	-	find device of a polled tty
329  *	@name: name string to match
330  *	@line: pointer to resulting tty line nr
331  *
332  *	This routine returns a tty driver structure, given a name
333  *	and the condition that the tty driver is capable of polled
334  *	operation.
335  */
336 struct tty_driver *tty_find_polling_driver(char *name, int *line)
337 {
338 	struct tty_driver *p, *res = NULL;
339 	int tty_line = 0;
340 	int len;
341 	char *str, *stp;
342 
343 	for (str = name; *str; str++)
344 		if ((*str >= '0' && *str <= '9') || *str == ',')
345 			break;
346 	if (!*str)
347 		return NULL;
348 
349 	len = str - name;
350 	tty_line = simple_strtoul(str, &str, 10);
351 
352 	mutex_lock(&tty_mutex);
353 	/* Search through the tty devices to look for a match */
354 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
355 		if (strncmp(name, p->name, len) != 0)
356 			continue;
357 		stp = str;
358 		if (*stp == ',')
359 			stp++;
360 		if (*stp == '\0')
361 			stp = NULL;
362 
363 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
364 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
365 			res = tty_driver_kref_get(p);
366 			*line = tty_line;
367 			break;
368 		}
369 	}
370 	mutex_unlock(&tty_mutex);
371 
372 	return res;
373 }
374 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
375 #endif
376 
377 /**
378  *	tty_check_change	-	check for POSIX terminal changes
379  *	@tty: tty to check
380  *
381  *	If we try to write to, or set the state of, a terminal and we're
382  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
383  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
384  *
385  *	Locking: ctrl_lock
386  */
387 
388 int tty_check_change(struct tty_struct *tty)
389 {
390 	unsigned long flags;
391 	int ret = 0;
392 
393 	if (current->signal->tty != tty)
394 		return 0;
395 
396 	spin_lock_irqsave(&tty->ctrl_lock, flags);
397 
398 	if (!tty->pgrp) {
399 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
400 		goto out_unlock;
401 	}
402 	if (task_pgrp(current) == tty->pgrp)
403 		goto out_unlock;
404 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
405 	if (is_ignored(SIGTTOU))
406 		goto out;
407 	if (is_current_pgrp_orphaned()) {
408 		ret = -EIO;
409 		goto out;
410 	}
411 	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
412 	set_thread_flag(TIF_SIGPENDING);
413 	ret = -ERESTARTSYS;
414 out:
415 	return ret;
416 out_unlock:
417 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
418 	return ret;
419 }
420 
421 EXPORT_SYMBOL(tty_check_change);
422 
423 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
424 				size_t count, loff_t *ppos)
425 {
426 	return 0;
427 }
428 
429 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
430 				 size_t count, loff_t *ppos)
431 {
432 	return -EIO;
433 }
434 
435 /* No kernel lock held - none needed ;) */
436 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
437 {
438 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
439 }
440 
441 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
442 		unsigned long arg)
443 {
444 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
445 }
446 
447 static long hung_up_tty_compat_ioctl(struct file *file,
448 				     unsigned int cmd, unsigned long arg)
449 {
450 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
451 }
452 
453 static const struct file_operations tty_fops = {
454 	.llseek		= no_llseek,
455 	.read		= tty_read,
456 	.write		= tty_write,
457 	.poll		= tty_poll,
458 	.unlocked_ioctl	= tty_ioctl,
459 	.compat_ioctl	= tty_compat_ioctl,
460 	.open		= tty_open,
461 	.release	= tty_release,
462 	.fasync		= tty_fasync,
463 };
464 
465 static const struct file_operations console_fops = {
466 	.llseek		= no_llseek,
467 	.read		= tty_read,
468 	.write		= redirected_tty_write,
469 	.poll		= tty_poll,
470 	.unlocked_ioctl	= tty_ioctl,
471 	.compat_ioctl	= tty_compat_ioctl,
472 	.open		= tty_open,
473 	.release	= tty_release,
474 	.fasync		= tty_fasync,
475 };
476 
477 static const struct file_operations hung_up_tty_fops = {
478 	.llseek		= no_llseek,
479 	.read		= hung_up_tty_read,
480 	.write		= hung_up_tty_write,
481 	.poll		= hung_up_tty_poll,
482 	.unlocked_ioctl	= hung_up_tty_ioctl,
483 	.compat_ioctl	= hung_up_tty_compat_ioctl,
484 	.release	= tty_release,
485 };
486 
487 static DEFINE_SPINLOCK(redirect_lock);
488 static struct file *redirect;
489 
490 
491 void proc_clear_tty(struct task_struct *p)
492 {
493 	unsigned long flags;
494 	struct tty_struct *tty;
495 	spin_lock_irqsave(&p->sighand->siglock, flags);
496 	tty = p->signal->tty;
497 	p->signal->tty = NULL;
498 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
499 	tty_kref_put(tty);
500 }
501 
502 /**
503  * proc_set_tty -  set the controlling terminal
504  *
505  * Only callable by the session leader and only if it does not already have
506  * a controlling terminal.
507  *
508  * Caller must hold:  tty_lock()
509  *		      a readlock on tasklist_lock
510  *		      sighand lock
511  */
512 static void __proc_set_tty(struct tty_struct *tty)
513 {
514 	unsigned long flags;
515 
516 	spin_lock_irqsave(&tty->ctrl_lock, flags);
517 	/*
518 	 * The session and fg pgrp references will be non-NULL if
519 	 * tiocsctty() is stealing the controlling tty
520 	 */
521 	put_pid(tty->session);
522 	put_pid(tty->pgrp);
523 	tty->pgrp = get_pid(task_pgrp(current));
524 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
525 	tty->session = get_pid(task_session(current));
526 	if (current->signal->tty) {
527 		printk(KERN_DEBUG "tty not NULL!!\n");
528 		tty_kref_put(current->signal->tty);
529 	}
530 	put_pid(current->signal->tty_old_pgrp);
531 	current->signal->tty = tty_kref_get(tty);
532 	current->signal->tty_old_pgrp = NULL;
533 }
534 
535 static void proc_set_tty(struct tty_struct *tty)
536 {
537 	spin_lock_irq(&current->sighand->siglock);
538 	__proc_set_tty(tty);
539 	spin_unlock_irq(&current->sighand->siglock);
540 }
541 
542 struct tty_struct *get_current_tty(void)
543 {
544 	struct tty_struct *tty;
545 	unsigned long flags;
546 
547 	spin_lock_irqsave(&current->sighand->siglock, flags);
548 	tty = tty_kref_get(current->signal->tty);
549 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
550 	return tty;
551 }
552 EXPORT_SYMBOL_GPL(get_current_tty);
553 
554 static void session_clear_tty(struct pid *session)
555 {
556 	struct task_struct *p;
557 	do_each_pid_task(session, PIDTYPE_SID, p) {
558 		proc_clear_tty(p);
559 	} while_each_pid_task(session, PIDTYPE_SID, p);
560 }
561 
562 /**
563  *	tty_wakeup	-	request more data
564  *	@tty: terminal
565  *
566  *	Internal and external helper for wakeups of tty. This function
567  *	informs the line discipline if present that the driver is ready
568  *	to receive more output data.
569  */
570 
571 void tty_wakeup(struct tty_struct *tty)
572 {
573 	struct tty_ldisc *ld;
574 
575 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
576 		ld = tty_ldisc_ref(tty);
577 		if (ld) {
578 			if (ld->ops->write_wakeup)
579 				ld->ops->write_wakeup(tty);
580 			tty_ldisc_deref(ld);
581 		}
582 	}
583 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
584 }
585 
586 EXPORT_SYMBOL_GPL(tty_wakeup);
587 
588 /**
589  *	tty_signal_session_leader	- sends SIGHUP to session leader
590  *	@tty		controlling tty
591  *	@exit_session	if non-zero, signal all foreground group processes
592  *
593  *	Send SIGHUP and SIGCONT to the session leader and its process group.
594  *	Optionally, signal all processes in the foreground process group.
595  *
596  *	Returns the number of processes in the session with this tty
597  *	as their controlling terminal. This value is used to drop
598  *	tty references for those processes.
599  */
600 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
601 {
602 	struct task_struct *p;
603 	int refs = 0;
604 	struct pid *tty_pgrp = NULL;
605 
606 	read_lock(&tasklist_lock);
607 	if (tty->session) {
608 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
609 			spin_lock_irq(&p->sighand->siglock);
610 			if (p->signal->tty == tty) {
611 				p->signal->tty = NULL;
612 				/* We defer the dereferences outside fo
613 				   the tasklist lock */
614 				refs++;
615 			}
616 			if (!p->signal->leader) {
617 				spin_unlock_irq(&p->sighand->siglock);
618 				continue;
619 			}
620 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
621 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
622 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
623 			spin_lock(&tty->ctrl_lock);
624 			tty_pgrp = get_pid(tty->pgrp);
625 			if (tty->pgrp)
626 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
627 			spin_unlock(&tty->ctrl_lock);
628 			spin_unlock_irq(&p->sighand->siglock);
629 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
630 	}
631 	read_unlock(&tasklist_lock);
632 
633 	if (tty_pgrp) {
634 		if (exit_session)
635 			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
636 		put_pid(tty_pgrp);
637 	}
638 
639 	return refs;
640 }
641 
642 /**
643  *	__tty_hangup		-	actual handler for hangup events
644  *	@work: tty device
645  *
646  *	This can be called by a "kworker" kernel thread.  That is process
647  *	synchronous but doesn't hold any locks, so we need to make sure we
648  *	have the appropriate locks for what we're doing.
649  *
650  *	The hangup event clears any pending redirections onto the hung up
651  *	device. It ensures future writes will error and it does the needed
652  *	line discipline hangup and signal delivery. The tty object itself
653  *	remains intact.
654  *
655  *	Locking:
656  *		BTM
657  *		  redirect lock for undoing redirection
658  *		  file list lock for manipulating list of ttys
659  *		  tty_ldiscs_lock from called functions
660  *		  termios_rwsem resetting termios data
661  *		  tasklist_lock to walk task list for hangup event
662  *		    ->siglock to protect ->signal/->sighand
663  */
664 static void __tty_hangup(struct tty_struct *tty, int exit_session)
665 {
666 	struct file *cons_filp = NULL;
667 	struct file *filp, *f = NULL;
668 	struct tty_file_private *priv;
669 	int    closecount = 0, n;
670 	int refs;
671 
672 	if (!tty)
673 		return;
674 
675 
676 	spin_lock(&redirect_lock);
677 	if (redirect && file_tty(redirect) == tty) {
678 		f = redirect;
679 		redirect = NULL;
680 	}
681 	spin_unlock(&redirect_lock);
682 
683 	tty_lock(tty);
684 
685 	if (test_bit(TTY_HUPPED, &tty->flags)) {
686 		tty_unlock(tty);
687 		return;
688 	}
689 
690 	/* inuse_filps is protected by the single tty lock,
691 	   this really needs to change if we want to flush the
692 	   workqueue with the lock held */
693 	check_tty_count(tty, "tty_hangup");
694 
695 	spin_lock(&tty_files_lock);
696 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
697 	list_for_each_entry(priv, &tty->tty_files, list) {
698 		filp = priv->file;
699 		if (filp->f_op->write == redirected_tty_write)
700 			cons_filp = filp;
701 		if (filp->f_op->write != tty_write)
702 			continue;
703 		closecount++;
704 		__tty_fasync(-1, filp, 0);	/* can't block */
705 		filp->f_op = &hung_up_tty_fops;
706 	}
707 	spin_unlock(&tty_files_lock);
708 
709 	refs = tty_signal_session_leader(tty, exit_session);
710 	/* Account for the p->signal references we killed */
711 	while (refs--)
712 		tty_kref_put(tty);
713 
714 	tty_ldisc_hangup(tty);
715 
716 	spin_lock_irq(&tty->ctrl_lock);
717 	clear_bit(TTY_THROTTLED, &tty->flags);
718 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
719 	put_pid(tty->session);
720 	put_pid(tty->pgrp);
721 	tty->session = NULL;
722 	tty->pgrp = NULL;
723 	tty->ctrl_status = 0;
724 	spin_unlock_irq(&tty->ctrl_lock);
725 
726 	/*
727 	 * If one of the devices matches a console pointer, we
728 	 * cannot just call hangup() because that will cause
729 	 * tty->count and state->count to go out of sync.
730 	 * So we just call close() the right number of times.
731 	 */
732 	if (cons_filp) {
733 		if (tty->ops->close)
734 			for (n = 0; n < closecount; n++)
735 				tty->ops->close(tty, cons_filp);
736 	} else if (tty->ops->hangup)
737 		tty->ops->hangup(tty);
738 	/*
739 	 * We don't want to have driver/ldisc interactions beyond
740 	 * the ones we did here. The driver layer expects no
741 	 * calls after ->hangup() from the ldisc side. However we
742 	 * can't yet guarantee all that.
743 	 */
744 	set_bit(TTY_HUPPED, &tty->flags);
745 	tty_unlock(tty);
746 
747 	if (f)
748 		fput(f);
749 }
750 
751 static void do_tty_hangup(struct work_struct *work)
752 {
753 	struct tty_struct *tty =
754 		container_of(work, struct tty_struct, hangup_work);
755 
756 	__tty_hangup(tty, 0);
757 }
758 
759 /**
760  *	tty_hangup		-	trigger a hangup event
761  *	@tty: tty to hangup
762  *
763  *	A carrier loss (virtual or otherwise) has occurred on this like
764  *	schedule a hangup sequence to run after this event.
765  */
766 
767 void tty_hangup(struct tty_struct *tty)
768 {
769 #ifdef TTY_DEBUG_HANGUP
770 	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty));
771 #endif
772 	schedule_work(&tty->hangup_work);
773 }
774 
775 EXPORT_SYMBOL(tty_hangup);
776 
777 /**
778  *	tty_vhangup		-	process vhangup
779  *	@tty: tty to hangup
780  *
781  *	The user has asked via system call for the terminal to be hung up.
782  *	We do this synchronously so that when the syscall returns the process
783  *	is complete. That guarantee is necessary for security reasons.
784  */
785 
786 void tty_vhangup(struct tty_struct *tty)
787 {
788 #ifdef TTY_DEBUG_HANGUP
789 	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty));
790 #endif
791 	__tty_hangup(tty, 0);
792 }
793 
794 EXPORT_SYMBOL(tty_vhangup);
795 
796 
797 /**
798  *	tty_vhangup_self	-	process vhangup for own ctty
799  *
800  *	Perform a vhangup on the current controlling tty
801  */
802 
803 void tty_vhangup_self(void)
804 {
805 	struct tty_struct *tty;
806 
807 	tty = get_current_tty();
808 	if (tty) {
809 		tty_vhangup(tty);
810 		tty_kref_put(tty);
811 	}
812 }
813 
814 /**
815  *	tty_vhangup_session		-	hangup session leader exit
816  *	@tty: tty to hangup
817  *
818  *	The session leader is exiting and hanging up its controlling terminal.
819  *	Every process in the foreground process group is signalled SIGHUP.
820  *
821  *	We do this synchronously so that when the syscall returns the process
822  *	is complete. That guarantee is necessary for security reasons.
823  */
824 
825 static void tty_vhangup_session(struct tty_struct *tty)
826 {
827 #ifdef TTY_DEBUG_HANGUP
828 	printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty));
829 #endif
830 	__tty_hangup(tty, 1);
831 }
832 
833 /**
834  *	tty_hung_up_p		-	was tty hung up
835  *	@filp: file pointer of tty
836  *
837  *	Return true if the tty has been subject to a vhangup or a carrier
838  *	loss
839  */
840 
841 int tty_hung_up_p(struct file *filp)
842 {
843 	return (filp->f_op == &hung_up_tty_fops);
844 }
845 
846 EXPORT_SYMBOL(tty_hung_up_p);
847 
848 /**
849  *	disassociate_ctty	-	disconnect controlling tty
850  *	@on_exit: true if exiting so need to "hang up" the session
851  *
852  *	This function is typically called only by the session leader, when
853  *	it wants to disassociate itself from its controlling tty.
854  *
855  *	It performs the following functions:
856  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
857  * 	(2)  Clears the tty from being controlling the session
858  * 	(3)  Clears the controlling tty for all processes in the
859  * 		session group.
860  *
861  *	The argument on_exit is set to 1 if called when a process is
862  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
863  *
864  *	Locking:
865  *		BTM is taken for hysterical raisins, and held when
866  *		  called from no_tty().
867  *		  tty_mutex is taken to protect tty
868  *		  ->siglock is taken to protect ->signal/->sighand
869  *		  tasklist_lock is taken to walk process list for sessions
870  *		    ->siglock is taken to protect ->signal/->sighand
871  */
872 
873 void disassociate_ctty(int on_exit)
874 {
875 	struct tty_struct *tty;
876 
877 	if (!current->signal->leader)
878 		return;
879 
880 	tty = get_current_tty();
881 	if (tty) {
882 		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
883 			tty_vhangup_session(tty);
884 		} else {
885 			struct pid *tty_pgrp = tty_get_pgrp(tty);
886 			if (tty_pgrp) {
887 				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
888 				if (!on_exit)
889 					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
890 				put_pid(tty_pgrp);
891 			}
892 		}
893 		tty_kref_put(tty);
894 
895 	} else if (on_exit) {
896 		struct pid *old_pgrp;
897 		spin_lock_irq(&current->sighand->siglock);
898 		old_pgrp = current->signal->tty_old_pgrp;
899 		current->signal->tty_old_pgrp = NULL;
900 		spin_unlock_irq(&current->sighand->siglock);
901 		if (old_pgrp) {
902 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
903 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
904 			put_pid(old_pgrp);
905 		}
906 		return;
907 	}
908 
909 	spin_lock_irq(&current->sighand->siglock);
910 	put_pid(current->signal->tty_old_pgrp);
911 	current->signal->tty_old_pgrp = NULL;
912 
913 	tty = tty_kref_get(current->signal->tty);
914 	if (tty) {
915 		unsigned long flags;
916 		spin_lock_irqsave(&tty->ctrl_lock, flags);
917 		put_pid(tty->session);
918 		put_pid(tty->pgrp);
919 		tty->session = NULL;
920 		tty->pgrp = NULL;
921 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
922 		tty_kref_put(tty);
923 	} else {
924 #ifdef TTY_DEBUG_HANGUP
925 		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
926 		       " = NULL", tty);
927 #endif
928 	}
929 
930 	spin_unlock_irq(&current->sighand->siglock);
931 	/* Now clear signal->tty under the lock */
932 	read_lock(&tasklist_lock);
933 	session_clear_tty(task_session(current));
934 	read_unlock(&tasklist_lock);
935 }
936 
937 /**
938  *
939  *	no_tty	- Ensure the current process does not have a controlling tty
940  */
941 void no_tty(void)
942 {
943 	/* FIXME: Review locking here. The tty_lock never covered any race
944 	   between a new association and proc_clear_tty but possible we need
945 	   to protect against this anyway */
946 	struct task_struct *tsk = current;
947 	disassociate_ctty(0);
948 	proc_clear_tty(tsk);
949 }
950 
951 
952 /**
953  *	stop_tty	-	propagate flow control
954  *	@tty: tty to stop
955  *
956  *	Perform flow control to the driver. May be called
957  *	on an already stopped device and will not re-call the driver
958  *	method.
959  *
960  *	This functionality is used by both the line disciplines for
961  *	halting incoming flow and by the driver. It may therefore be
962  *	called from any context, may be under the tty atomic_write_lock
963  *	but not always.
964  *
965  *	Locking:
966  *		flow_lock
967  */
968 
969 void __stop_tty(struct tty_struct *tty)
970 {
971 	if (tty->stopped)
972 		return;
973 	tty->stopped = 1;
974 	if (tty->ops->stop)
975 		tty->ops->stop(tty);
976 }
977 
978 void stop_tty(struct tty_struct *tty)
979 {
980 	unsigned long flags;
981 
982 	spin_lock_irqsave(&tty->flow_lock, flags);
983 	__stop_tty(tty);
984 	spin_unlock_irqrestore(&tty->flow_lock, flags);
985 }
986 EXPORT_SYMBOL(stop_tty);
987 
988 /**
989  *	start_tty	-	propagate flow control
990  *	@tty: tty to start
991  *
992  *	Start a tty that has been stopped if at all possible. If this
993  *	tty was previous stopped and is now being started, the driver
994  *	start method is invoked and the line discipline woken.
995  *
996  *	Locking:
997  *		flow_lock
998  */
999 
1000 void __start_tty(struct tty_struct *tty)
1001 {
1002 	if (!tty->stopped || tty->flow_stopped)
1003 		return;
1004 	tty->stopped = 0;
1005 	if (tty->ops->start)
1006 		tty->ops->start(tty);
1007 	tty_wakeup(tty);
1008 }
1009 
1010 void start_tty(struct tty_struct *tty)
1011 {
1012 	unsigned long flags;
1013 
1014 	spin_lock_irqsave(&tty->flow_lock, flags);
1015 	__start_tty(tty);
1016 	spin_unlock_irqrestore(&tty->flow_lock, flags);
1017 }
1018 EXPORT_SYMBOL(start_tty);
1019 
1020 static void tty_update_time(struct timespec *time)
1021 {
1022 	unsigned long sec = get_seconds();
1023 
1024 	/*
1025 	 * We only care if the two values differ in anything other than the
1026 	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1027 	 * the time of the tty device, otherwise it could be construded as a
1028 	 * security leak to let userspace know the exact timing of the tty.
1029 	 */
1030 	if ((sec ^ time->tv_sec) & ~7)
1031 		time->tv_sec = sec;
1032 }
1033 
1034 /**
1035  *	tty_read	-	read method for tty device files
1036  *	@file: pointer to tty file
1037  *	@buf: user buffer
1038  *	@count: size of user buffer
1039  *	@ppos: unused
1040  *
1041  *	Perform the read system call function on this terminal device. Checks
1042  *	for hung up devices before calling the line discipline method.
1043  *
1044  *	Locking:
1045  *		Locks the line discipline internally while needed. Multiple
1046  *	read calls may be outstanding in parallel.
1047  */
1048 
1049 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1050 			loff_t *ppos)
1051 {
1052 	int i;
1053 	struct inode *inode = file_inode(file);
1054 	struct tty_struct *tty = file_tty(file);
1055 	struct tty_ldisc *ld;
1056 
1057 	if (tty_paranoia_check(tty, inode, "tty_read"))
1058 		return -EIO;
1059 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1060 		return -EIO;
1061 
1062 	/* We want to wait for the line discipline to sort out in this
1063 	   situation */
1064 	ld = tty_ldisc_ref_wait(tty);
1065 	if (ld->ops->read)
1066 		i = ld->ops->read(tty, file, buf, count);
1067 	else
1068 		i = -EIO;
1069 	tty_ldisc_deref(ld);
1070 
1071 	if (i > 0)
1072 		tty_update_time(&inode->i_atime);
1073 
1074 	return i;
1075 }
1076 
1077 static void tty_write_unlock(struct tty_struct *tty)
1078 {
1079 	mutex_unlock(&tty->atomic_write_lock);
1080 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1081 }
1082 
1083 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1084 {
1085 	if (!mutex_trylock(&tty->atomic_write_lock)) {
1086 		if (ndelay)
1087 			return -EAGAIN;
1088 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1089 			return -ERESTARTSYS;
1090 	}
1091 	return 0;
1092 }
1093 
1094 /*
1095  * Split writes up in sane blocksizes to avoid
1096  * denial-of-service type attacks
1097  */
1098 static inline ssize_t do_tty_write(
1099 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1100 	struct tty_struct *tty,
1101 	struct file *file,
1102 	const char __user *buf,
1103 	size_t count)
1104 {
1105 	ssize_t ret, written = 0;
1106 	unsigned int chunk;
1107 
1108 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1109 	if (ret < 0)
1110 		return ret;
1111 
1112 	/*
1113 	 * We chunk up writes into a temporary buffer. This
1114 	 * simplifies low-level drivers immensely, since they
1115 	 * don't have locking issues and user mode accesses.
1116 	 *
1117 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1118 	 * big chunk-size..
1119 	 *
1120 	 * The default chunk-size is 2kB, because the NTTY
1121 	 * layer has problems with bigger chunks. It will
1122 	 * claim to be able to handle more characters than
1123 	 * it actually does.
1124 	 *
1125 	 * FIXME: This can probably go away now except that 64K chunks
1126 	 * are too likely to fail unless switched to vmalloc...
1127 	 */
1128 	chunk = 2048;
1129 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1130 		chunk = 65536;
1131 	if (count < chunk)
1132 		chunk = count;
1133 
1134 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1135 	if (tty->write_cnt < chunk) {
1136 		unsigned char *buf_chunk;
1137 
1138 		if (chunk < 1024)
1139 			chunk = 1024;
1140 
1141 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1142 		if (!buf_chunk) {
1143 			ret = -ENOMEM;
1144 			goto out;
1145 		}
1146 		kfree(tty->write_buf);
1147 		tty->write_cnt = chunk;
1148 		tty->write_buf = buf_chunk;
1149 	}
1150 
1151 	/* Do the write .. */
1152 	for (;;) {
1153 		size_t size = count;
1154 		if (size > chunk)
1155 			size = chunk;
1156 		ret = -EFAULT;
1157 		if (copy_from_user(tty->write_buf, buf, size))
1158 			break;
1159 		ret = write(tty, file, tty->write_buf, size);
1160 		if (ret <= 0)
1161 			break;
1162 		written += ret;
1163 		buf += ret;
1164 		count -= ret;
1165 		if (!count)
1166 			break;
1167 		ret = -ERESTARTSYS;
1168 		if (signal_pending(current))
1169 			break;
1170 		cond_resched();
1171 	}
1172 	if (written) {
1173 		tty_update_time(&file_inode(file)->i_mtime);
1174 		ret = written;
1175 	}
1176 out:
1177 	tty_write_unlock(tty);
1178 	return ret;
1179 }
1180 
1181 /**
1182  * tty_write_message - write a message to a certain tty, not just the console.
1183  * @tty: the destination tty_struct
1184  * @msg: the message to write
1185  *
1186  * This is used for messages that need to be redirected to a specific tty.
1187  * We don't put it into the syslog queue right now maybe in the future if
1188  * really needed.
1189  *
1190  * We must still hold the BTM and test the CLOSING flag for the moment.
1191  */
1192 
1193 void tty_write_message(struct tty_struct *tty, char *msg)
1194 {
1195 	if (tty) {
1196 		mutex_lock(&tty->atomic_write_lock);
1197 		tty_lock(tty);
1198 		if (tty->ops->write && tty->count > 0) {
1199 			tty_unlock(tty);
1200 			tty->ops->write(tty, msg, strlen(msg));
1201 		} else
1202 			tty_unlock(tty);
1203 		tty_write_unlock(tty);
1204 	}
1205 	return;
1206 }
1207 
1208 
1209 /**
1210  *	tty_write		-	write method for tty device file
1211  *	@file: tty file pointer
1212  *	@buf: user data to write
1213  *	@count: bytes to write
1214  *	@ppos: unused
1215  *
1216  *	Write data to a tty device via the line discipline.
1217  *
1218  *	Locking:
1219  *		Locks the line discipline as required
1220  *		Writes to the tty driver are serialized by the atomic_write_lock
1221  *	and are then processed in chunks to the device. The line discipline
1222  *	write method will not be invoked in parallel for each device.
1223  */
1224 
1225 static ssize_t tty_write(struct file *file, const char __user *buf,
1226 						size_t count, loff_t *ppos)
1227 {
1228 	struct tty_struct *tty = file_tty(file);
1229  	struct tty_ldisc *ld;
1230 	ssize_t ret;
1231 
1232 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1233 		return -EIO;
1234 	if (!tty || !tty->ops->write ||
1235 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1236 			return -EIO;
1237 	/* Short term debug to catch buggy drivers */
1238 	if (tty->ops->write_room == NULL)
1239 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1240 			tty->driver->name);
1241 	ld = tty_ldisc_ref_wait(tty);
1242 	if (!ld->ops->write)
1243 		ret = -EIO;
1244 	else
1245 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1246 	tty_ldisc_deref(ld);
1247 	return ret;
1248 }
1249 
1250 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1251 						size_t count, loff_t *ppos)
1252 {
1253 	struct file *p = NULL;
1254 
1255 	spin_lock(&redirect_lock);
1256 	if (redirect)
1257 		p = get_file(redirect);
1258 	spin_unlock(&redirect_lock);
1259 
1260 	if (p) {
1261 		ssize_t res;
1262 		res = vfs_write(p, buf, count, &p->f_pos);
1263 		fput(p);
1264 		return res;
1265 	}
1266 	return tty_write(file, buf, count, ppos);
1267 }
1268 
1269 /**
1270  *	tty_send_xchar	-	send priority character
1271  *
1272  *	Send a high priority character to the tty even if stopped
1273  *
1274  *	Locking: none for xchar method, write ordering for write method.
1275  */
1276 
1277 int tty_send_xchar(struct tty_struct *tty, char ch)
1278 {
1279 	int	was_stopped = tty->stopped;
1280 
1281 	if (tty->ops->send_xchar) {
1282 		tty->ops->send_xchar(tty, ch);
1283 		return 0;
1284 	}
1285 
1286 	if (tty_write_lock(tty, 0) < 0)
1287 		return -ERESTARTSYS;
1288 
1289 	if (was_stopped)
1290 		start_tty(tty);
1291 	tty->ops->write(tty, &ch, 1);
1292 	if (was_stopped)
1293 		stop_tty(tty);
1294 	tty_write_unlock(tty);
1295 	return 0;
1296 }
1297 
1298 static char ptychar[] = "pqrstuvwxyzabcde";
1299 
1300 /**
1301  *	pty_line_name	-	generate name for a pty
1302  *	@driver: the tty driver in use
1303  *	@index: the minor number
1304  *	@p: output buffer of at least 6 bytes
1305  *
1306  *	Generate a name from a driver reference and write it to the output
1307  *	buffer.
1308  *
1309  *	Locking: None
1310  */
1311 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1312 {
1313 	int i = index + driver->name_base;
1314 	/* ->name is initialized to "ttyp", but "tty" is expected */
1315 	sprintf(p, "%s%c%x",
1316 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1317 		ptychar[i >> 4 & 0xf], i & 0xf);
1318 }
1319 
1320 /**
1321  *	tty_line_name	-	generate name for a tty
1322  *	@driver: the tty driver in use
1323  *	@index: the minor number
1324  *	@p: output buffer of at least 7 bytes
1325  *
1326  *	Generate a name from a driver reference and write it to the output
1327  *	buffer.
1328  *
1329  *	Locking: None
1330  */
1331 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1332 {
1333 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1334 		return sprintf(p, "%s", driver->name);
1335 	else
1336 		return sprintf(p, "%s%d", driver->name,
1337 			       index + driver->name_base);
1338 }
1339 
1340 /**
1341  *	tty_driver_lookup_tty() - find an existing tty, if any
1342  *	@driver: the driver for the tty
1343  *	@idx:	 the minor number
1344  *
1345  *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1346  *	driver lookup() method returns an error.
1347  *
1348  *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1349  */
1350 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1351 		struct inode *inode, int idx)
1352 {
1353 	struct tty_struct *tty;
1354 
1355 	if (driver->ops->lookup)
1356 		tty = driver->ops->lookup(driver, inode, idx);
1357 	else
1358 		tty = driver->ttys[idx];
1359 
1360 	if (!IS_ERR(tty))
1361 		tty_kref_get(tty);
1362 	return tty;
1363 }
1364 
1365 /**
1366  *	tty_init_termios	-  helper for termios setup
1367  *	@tty: the tty to set up
1368  *
1369  *	Initialise the termios structures for this tty. Thus runs under
1370  *	the tty_mutex currently so we can be relaxed about ordering.
1371  */
1372 
1373 int tty_init_termios(struct tty_struct *tty)
1374 {
1375 	struct ktermios *tp;
1376 	int idx = tty->index;
1377 
1378 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1379 		tty->termios = tty->driver->init_termios;
1380 	else {
1381 		/* Check for lazy saved data */
1382 		tp = tty->driver->termios[idx];
1383 		if (tp != NULL)
1384 			tty->termios = *tp;
1385 		else
1386 			tty->termios = tty->driver->init_termios;
1387 	}
1388 	/* Compatibility until drivers always set this */
1389 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1390 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1391 	return 0;
1392 }
1393 EXPORT_SYMBOL_GPL(tty_init_termios);
1394 
1395 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1396 {
1397 	int ret = tty_init_termios(tty);
1398 	if (ret)
1399 		return ret;
1400 
1401 	tty_driver_kref_get(driver);
1402 	tty->count++;
1403 	driver->ttys[tty->index] = tty;
1404 	return 0;
1405 }
1406 EXPORT_SYMBOL_GPL(tty_standard_install);
1407 
1408 /**
1409  *	tty_driver_install_tty() - install a tty entry in the driver
1410  *	@driver: the driver for the tty
1411  *	@tty: the tty
1412  *
1413  *	Install a tty object into the driver tables. The tty->index field
1414  *	will be set by the time this is called. This method is responsible
1415  *	for ensuring any need additional structures are allocated and
1416  *	configured.
1417  *
1418  *	Locking: tty_mutex for now
1419  */
1420 static int tty_driver_install_tty(struct tty_driver *driver,
1421 						struct tty_struct *tty)
1422 {
1423 	return driver->ops->install ? driver->ops->install(driver, tty) :
1424 		tty_standard_install(driver, tty);
1425 }
1426 
1427 /**
1428  *	tty_driver_remove_tty() - remove a tty from the driver tables
1429  *	@driver: the driver for the tty
1430  *	@idx:	 the minor number
1431  *
1432  *	Remvoe a tty object from the driver tables. The tty->index field
1433  *	will be set by the time this is called.
1434  *
1435  *	Locking: tty_mutex for now
1436  */
1437 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1438 {
1439 	if (driver->ops->remove)
1440 		driver->ops->remove(driver, tty);
1441 	else
1442 		driver->ttys[tty->index] = NULL;
1443 }
1444 
1445 /*
1446  * 	tty_reopen()	- fast re-open of an open tty
1447  * 	@tty	- the tty to open
1448  *
1449  *	Return 0 on success, -errno on error.
1450  *	Re-opens on master ptys are not allowed and return -EIO.
1451  *
1452  *	Locking: Caller must hold tty_lock
1453  */
1454 static int tty_reopen(struct tty_struct *tty)
1455 {
1456 	struct tty_driver *driver = tty->driver;
1457 
1458 	if (!tty->count)
1459 		return -EIO;
1460 
1461 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1462 	    driver->subtype == PTY_TYPE_MASTER)
1463 		return -EIO;
1464 
1465 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1466 		return -EBUSY;
1467 
1468 	tty->count++;
1469 
1470 	WARN_ON(!tty->ldisc);
1471 
1472 	return 0;
1473 }
1474 
1475 /**
1476  *	tty_init_dev		-	initialise a tty device
1477  *	@driver: tty driver we are opening a device on
1478  *	@idx: device index
1479  *	@ret_tty: returned tty structure
1480  *
1481  *	Prepare a tty device. This may not be a "new" clean device but
1482  *	could also be an active device. The pty drivers require special
1483  *	handling because of this.
1484  *
1485  *	Locking:
1486  *		The function is called under the tty_mutex, which
1487  *	protects us from the tty struct or driver itself going away.
1488  *
1489  *	On exit the tty device has the line discipline attached and
1490  *	a reference count of 1. If a pair was created for pty/tty use
1491  *	and the other was a pty master then it too has a reference count of 1.
1492  *
1493  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1494  * failed open.  The new code protects the open with a mutex, so it's
1495  * really quite straightforward.  The mutex locking can probably be
1496  * relaxed for the (most common) case of reopening a tty.
1497  */
1498 
1499 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1500 {
1501 	struct tty_struct *tty;
1502 	int retval;
1503 
1504 	/*
1505 	 * First time open is complex, especially for PTY devices.
1506 	 * This code guarantees that either everything succeeds and the
1507 	 * TTY is ready for operation, or else the table slots are vacated
1508 	 * and the allocated memory released.  (Except that the termios
1509 	 * and locked termios may be retained.)
1510 	 */
1511 
1512 	if (!try_module_get(driver->owner))
1513 		return ERR_PTR(-ENODEV);
1514 
1515 	tty = alloc_tty_struct(driver, idx);
1516 	if (!tty) {
1517 		retval = -ENOMEM;
1518 		goto err_module_put;
1519 	}
1520 
1521 	tty_lock(tty);
1522 	retval = tty_driver_install_tty(driver, tty);
1523 	if (retval < 0)
1524 		goto err_deinit_tty;
1525 
1526 	if (!tty->port)
1527 		tty->port = driver->ports[idx];
1528 
1529 	WARN_RATELIMIT(!tty->port,
1530 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1531 			__func__, tty->driver->name);
1532 
1533 	tty->port->itty = tty;
1534 
1535 	/*
1536 	 * Structures all installed ... call the ldisc open routines.
1537 	 * If we fail here just call release_tty to clean up.  No need
1538 	 * to decrement the use counts, as release_tty doesn't care.
1539 	 */
1540 	retval = tty_ldisc_setup(tty, tty->link);
1541 	if (retval)
1542 		goto err_release_tty;
1543 	/* Return the tty locked so that it cannot vanish under the caller */
1544 	return tty;
1545 
1546 err_deinit_tty:
1547 	tty_unlock(tty);
1548 	deinitialize_tty_struct(tty);
1549 	free_tty_struct(tty);
1550 err_module_put:
1551 	module_put(driver->owner);
1552 	return ERR_PTR(retval);
1553 
1554 	/* call the tty release_tty routine to clean out this slot */
1555 err_release_tty:
1556 	tty_unlock(tty);
1557 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1558 				 "clearing slot %d\n", idx);
1559 	release_tty(tty, idx);
1560 	return ERR_PTR(retval);
1561 }
1562 
1563 void tty_free_termios(struct tty_struct *tty)
1564 {
1565 	struct ktermios *tp;
1566 	int idx = tty->index;
1567 
1568 	/* If the port is going to reset then it has no termios to save */
1569 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1570 		return;
1571 
1572 	/* Stash the termios data */
1573 	tp = tty->driver->termios[idx];
1574 	if (tp == NULL) {
1575 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1576 		if (tp == NULL) {
1577 			pr_warn("tty: no memory to save termios state.\n");
1578 			return;
1579 		}
1580 		tty->driver->termios[idx] = tp;
1581 	}
1582 	*tp = tty->termios;
1583 }
1584 EXPORT_SYMBOL(tty_free_termios);
1585 
1586 /**
1587  *	tty_flush_works		-	flush all works of a tty/pty pair
1588  *	@tty: tty device to flush works for (or either end of a pty pair)
1589  *
1590  *	Sync flush all works belonging to @tty (and the 'other' tty).
1591  */
1592 static void tty_flush_works(struct tty_struct *tty)
1593 {
1594 	flush_work(&tty->SAK_work);
1595 	flush_work(&tty->hangup_work);
1596 	if (tty->link) {
1597 		flush_work(&tty->link->SAK_work);
1598 		flush_work(&tty->link->hangup_work);
1599 	}
1600 }
1601 
1602 /**
1603  *	release_one_tty		-	release tty structure memory
1604  *	@kref: kref of tty we are obliterating
1605  *
1606  *	Releases memory associated with a tty structure, and clears out the
1607  *	driver table slots. This function is called when a device is no longer
1608  *	in use. It also gets called when setup of a device fails.
1609  *
1610  *	Locking:
1611  *		takes the file list lock internally when working on the list
1612  *	of ttys that the driver keeps.
1613  *
1614  *	This method gets called from a work queue so that the driver private
1615  *	cleanup ops can sleep (needed for USB at least)
1616  */
1617 static void release_one_tty(struct work_struct *work)
1618 {
1619 	struct tty_struct *tty =
1620 		container_of(work, struct tty_struct, hangup_work);
1621 	struct tty_driver *driver = tty->driver;
1622 	struct module *owner = driver->owner;
1623 
1624 	if (tty->ops->cleanup)
1625 		tty->ops->cleanup(tty);
1626 
1627 	tty->magic = 0;
1628 	tty_driver_kref_put(driver);
1629 	module_put(owner);
1630 
1631 	spin_lock(&tty_files_lock);
1632 	list_del_init(&tty->tty_files);
1633 	spin_unlock(&tty_files_lock);
1634 
1635 	put_pid(tty->pgrp);
1636 	put_pid(tty->session);
1637 	free_tty_struct(tty);
1638 }
1639 
1640 static void queue_release_one_tty(struct kref *kref)
1641 {
1642 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1643 
1644 	/* The hangup queue is now free so we can reuse it rather than
1645 	   waste a chunk of memory for each port */
1646 	INIT_WORK(&tty->hangup_work, release_one_tty);
1647 	schedule_work(&tty->hangup_work);
1648 }
1649 
1650 /**
1651  *	tty_kref_put		-	release a tty kref
1652  *	@tty: tty device
1653  *
1654  *	Release a reference to a tty device and if need be let the kref
1655  *	layer destruct the object for us
1656  */
1657 
1658 void tty_kref_put(struct tty_struct *tty)
1659 {
1660 	if (tty)
1661 		kref_put(&tty->kref, queue_release_one_tty);
1662 }
1663 EXPORT_SYMBOL(tty_kref_put);
1664 
1665 /**
1666  *	release_tty		-	release tty structure memory
1667  *
1668  *	Release both @tty and a possible linked partner (think pty pair),
1669  *	and decrement the refcount of the backing module.
1670  *
1671  *	Locking:
1672  *		tty_mutex
1673  *		takes the file list lock internally when working on the list
1674  *	of ttys that the driver keeps.
1675  *
1676  */
1677 static void release_tty(struct tty_struct *tty, int idx)
1678 {
1679 	/* This should always be true but check for the moment */
1680 	WARN_ON(tty->index != idx);
1681 	WARN_ON(!mutex_is_locked(&tty_mutex));
1682 	if (tty->ops->shutdown)
1683 		tty->ops->shutdown(tty);
1684 	tty_free_termios(tty);
1685 	tty_driver_remove_tty(tty->driver, tty);
1686 	tty->port->itty = NULL;
1687 	if (tty->link)
1688 		tty->link->port->itty = NULL;
1689 	cancel_work_sync(&tty->port->buf.work);
1690 
1691 	tty_kref_put(tty->link);
1692 	tty_kref_put(tty);
1693 }
1694 
1695 /**
1696  *	tty_release_checks - check a tty before real release
1697  *	@tty: tty to check
1698  *	@o_tty: link of @tty (if any)
1699  *	@idx: index of the tty
1700  *
1701  *	Performs some paranoid checking before true release of the @tty.
1702  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1703  */
1704 static int tty_release_checks(struct tty_struct *tty, int idx)
1705 {
1706 #ifdef TTY_PARANOIA_CHECK
1707 	if (idx < 0 || idx >= tty->driver->num) {
1708 		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1709 				__func__, tty->name);
1710 		return -1;
1711 	}
1712 
1713 	/* not much to check for devpts */
1714 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1715 		return 0;
1716 
1717 	if (tty != tty->driver->ttys[idx]) {
1718 		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1719 				__func__, idx, tty->name);
1720 		return -1;
1721 	}
1722 	if (tty->driver->other) {
1723 		struct tty_struct *o_tty = tty->link;
1724 
1725 		if (o_tty != tty->driver->other->ttys[idx]) {
1726 			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1727 					__func__, idx, tty->name);
1728 			return -1;
1729 		}
1730 		if (o_tty->link != tty) {
1731 			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1732 			return -1;
1733 		}
1734 	}
1735 #endif
1736 	return 0;
1737 }
1738 
1739 /**
1740  *	tty_release		-	vfs callback for close
1741  *	@inode: inode of tty
1742  *	@filp: file pointer for handle to tty
1743  *
1744  *	Called the last time each file handle is closed that references
1745  *	this tty. There may however be several such references.
1746  *
1747  *	Locking:
1748  *		Takes bkl. See tty_release_dev
1749  *
1750  * Even releasing the tty structures is a tricky business.. We have
1751  * to be very careful that the structures are all released at the
1752  * same time, as interrupts might otherwise get the wrong pointers.
1753  *
1754  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1755  * lead to double frees or releasing memory still in use.
1756  */
1757 
1758 int tty_release(struct inode *inode, struct file *filp)
1759 {
1760 	struct tty_struct *tty = file_tty(filp);
1761 	struct tty_struct *o_tty = NULL;
1762 	int	do_sleep, final;
1763 	int	idx;
1764 	long	timeout = 0;
1765 	int	once = 1;
1766 
1767 	if (tty_paranoia_check(tty, inode, __func__))
1768 		return 0;
1769 
1770 	tty_lock(tty);
1771 	check_tty_count(tty, __func__);
1772 
1773 	__tty_fasync(-1, filp, 0);
1774 
1775 	idx = tty->index;
1776 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1777 	    tty->driver->subtype == PTY_TYPE_MASTER)
1778 		o_tty = tty->link;
1779 
1780 	if (tty_release_checks(tty, idx)) {
1781 		tty_unlock(tty);
1782 		return 0;
1783 	}
1784 
1785 #ifdef TTY_DEBUG_HANGUP
1786 	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1787 			tty_name(tty), tty->count);
1788 #endif
1789 
1790 	if (tty->ops->close)
1791 		tty->ops->close(tty, filp);
1792 
1793 	/* If tty is pty master, lock the slave pty (stable lock order) */
1794 	tty_lock_slave(o_tty);
1795 
1796 	/*
1797 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1798 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1799 	 * wait queues and kick everyone out _before_ actually starting to
1800 	 * close.  This ensures that we won't block while releasing the tty
1801 	 * structure.
1802 	 *
1803 	 * The test for the o_tty closing is necessary, since the master and
1804 	 * slave sides may close in any order.  If the slave side closes out
1805 	 * first, its count will be one, since the master side holds an open.
1806 	 * Thus this test wouldn't be triggered at the time the slave closed,
1807 	 * so we do it now.
1808 	 */
1809 	while (1) {
1810 		do_sleep = 0;
1811 
1812 		if (tty->count <= 1) {
1813 			if (waitqueue_active(&tty->read_wait)) {
1814 				wake_up_poll(&tty->read_wait, POLLIN);
1815 				do_sleep++;
1816 			}
1817 			if (waitqueue_active(&tty->write_wait)) {
1818 				wake_up_poll(&tty->write_wait, POLLOUT);
1819 				do_sleep++;
1820 			}
1821 		}
1822 		if (o_tty && o_tty->count <= 1) {
1823 			if (waitqueue_active(&o_tty->read_wait)) {
1824 				wake_up_poll(&o_tty->read_wait, POLLIN);
1825 				do_sleep++;
1826 			}
1827 			if (waitqueue_active(&o_tty->write_wait)) {
1828 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1829 				do_sleep++;
1830 			}
1831 		}
1832 		if (!do_sleep)
1833 			break;
1834 
1835 		if (once) {
1836 			once = 0;
1837 			printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1838 			       __func__, tty_name(tty));
1839 		}
1840 		schedule_timeout_killable(timeout);
1841 		if (timeout < 120 * HZ)
1842 			timeout = 2 * timeout + 1;
1843 		else
1844 			timeout = MAX_SCHEDULE_TIMEOUT;
1845 	}
1846 
1847 	if (o_tty) {
1848 		if (--o_tty->count < 0) {
1849 			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1850 				__func__, o_tty->count, tty_name(o_tty));
1851 			o_tty->count = 0;
1852 		}
1853 	}
1854 	if (--tty->count < 0) {
1855 		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1856 				__func__, tty->count, tty_name(tty));
1857 		tty->count = 0;
1858 	}
1859 
1860 	/*
1861 	 * We've decremented tty->count, so we need to remove this file
1862 	 * descriptor off the tty->tty_files list; this serves two
1863 	 * purposes:
1864 	 *  - check_tty_count sees the correct number of file descriptors
1865 	 *    associated with this tty.
1866 	 *  - do_tty_hangup no longer sees this file descriptor as
1867 	 *    something that needs to be handled for hangups.
1868 	 */
1869 	tty_del_file(filp);
1870 
1871 	/*
1872 	 * Perform some housekeeping before deciding whether to return.
1873 	 *
1874 	 * If _either_ side is closing, make sure there aren't any
1875 	 * processes that still think tty or o_tty is their controlling
1876 	 * tty.
1877 	 */
1878 	if (!tty->count) {
1879 		read_lock(&tasklist_lock);
1880 		session_clear_tty(tty->session);
1881 		if (o_tty)
1882 			session_clear_tty(o_tty->session);
1883 		read_unlock(&tasklist_lock);
1884 	}
1885 
1886 	/* check whether both sides are closing ... */
1887 	final = !tty->count && !(o_tty && o_tty->count);
1888 
1889 	tty_unlock_slave(o_tty);
1890 	tty_unlock(tty);
1891 
1892 	/* At this point, the tty->count == 0 should ensure a dead tty
1893 	   cannot be re-opened by a racing opener */
1894 
1895 	if (!final)
1896 		return 0;
1897 
1898 #ifdef TTY_DEBUG_HANGUP
1899 	printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty));
1900 #endif
1901 	/*
1902 	 * Ask the line discipline code to release its structures
1903 	 */
1904 	tty_ldisc_release(tty);
1905 
1906 	/* Wait for pending work before tty destruction commmences */
1907 	tty_flush_works(tty);
1908 
1909 #ifdef TTY_DEBUG_HANGUP
1910 	printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__,
1911 	       tty_name(tty));
1912 #endif
1913 	/*
1914 	 * The release_tty function takes care of the details of clearing
1915 	 * the slots and preserving the termios structure. The tty_unlock_pair
1916 	 * should be safe as we keep a kref while the tty is locked (so the
1917 	 * unlock never unlocks a freed tty).
1918 	 */
1919 	mutex_lock(&tty_mutex);
1920 	release_tty(tty, idx);
1921 	mutex_unlock(&tty_mutex);
1922 
1923 	return 0;
1924 }
1925 
1926 /**
1927  *	tty_open_current_tty - get locked tty of current task
1928  *	@device: device number
1929  *	@filp: file pointer to tty
1930  *	@return: locked tty of the current task iff @device is /dev/tty
1931  *
1932  *	Performs a re-open of the current task's controlling tty.
1933  *
1934  *	We cannot return driver and index like for the other nodes because
1935  *	devpts will not work then. It expects inodes to be from devpts FS.
1936  */
1937 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1938 {
1939 	struct tty_struct *tty;
1940 	int retval;
1941 
1942 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1943 		return NULL;
1944 
1945 	tty = get_current_tty();
1946 	if (!tty)
1947 		return ERR_PTR(-ENXIO);
1948 
1949 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1950 	/* noctty = 1; */
1951 	tty_lock(tty);
1952 	tty_kref_put(tty);	/* safe to drop the kref now */
1953 
1954 	retval = tty_reopen(tty);
1955 	if (retval < 0) {
1956 		tty_unlock(tty);
1957 		tty = ERR_PTR(retval);
1958 	}
1959 	return tty;
1960 }
1961 
1962 /**
1963  *	tty_lookup_driver - lookup a tty driver for a given device file
1964  *	@device: device number
1965  *	@filp: file pointer to tty
1966  *	@noctty: set if the device should not become a controlling tty
1967  *	@index: index for the device in the @return driver
1968  *	@return: driver for this inode (with increased refcount)
1969  *
1970  * 	If @return is not erroneous, the caller is responsible to decrement the
1971  * 	refcount by tty_driver_kref_put.
1972  *
1973  *	Locking: tty_mutex protects get_tty_driver
1974  */
1975 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1976 		int *noctty, int *index)
1977 {
1978 	struct tty_driver *driver;
1979 
1980 	switch (device) {
1981 #ifdef CONFIG_VT
1982 	case MKDEV(TTY_MAJOR, 0): {
1983 		extern struct tty_driver *console_driver;
1984 		driver = tty_driver_kref_get(console_driver);
1985 		*index = fg_console;
1986 		*noctty = 1;
1987 		break;
1988 	}
1989 #endif
1990 	case MKDEV(TTYAUX_MAJOR, 1): {
1991 		struct tty_driver *console_driver = console_device(index);
1992 		if (console_driver) {
1993 			driver = tty_driver_kref_get(console_driver);
1994 			if (driver) {
1995 				/* Don't let /dev/console block */
1996 				filp->f_flags |= O_NONBLOCK;
1997 				*noctty = 1;
1998 				break;
1999 			}
2000 		}
2001 		return ERR_PTR(-ENODEV);
2002 	}
2003 	default:
2004 		driver = get_tty_driver(device, index);
2005 		if (!driver)
2006 			return ERR_PTR(-ENODEV);
2007 		break;
2008 	}
2009 	return driver;
2010 }
2011 
2012 /**
2013  *	tty_open		-	open a tty device
2014  *	@inode: inode of device file
2015  *	@filp: file pointer to tty
2016  *
2017  *	tty_open and tty_release keep up the tty count that contains the
2018  *	number of opens done on a tty. We cannot use the inode-count, as
2019  *	different inodes might point to the same tty.
2020  *
2021  *	Open-counting is needed for pty masters, as well as for keeping
2022  *	track of serial lines: DTR is dropped when the last close happens.
2023  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2024  *
2025  *	The termios state of a pty is reset on first open so that
2026  *	settings don't persist across reuse.
2027  *
2028  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2029  *		 tty->count should protect the rest.
2030  *		 ->siglock protects ->signal/->sighand
2031  *
2032  *	Note: the tty_unlock/lock cases without a ref are only safe due to
2033  *	tty_mutex
2034  */
2035 
2036 static int tty_open(struct inode *inode, struct file *filp)
2037 {
2038 	struct tty_struct *tty;
2039 	int noctty, retval;
2040 	struct tty_driver *driver = NULL;
2041 	int index;
2042 	dev_t device = inode->i_rdev;
2043 	unsigned saved_flags = filp->f_flags;
2044 
2045 	nonseekable_open(inode, filp);
2046 
2047 retry_open:
2048 	retval = tty_alloc_file(filp);
2049 	if (retval)
2050 		return -ENOMEM;
2051 
2052 	noctty = filp->f_flags & O_NOCTTY;
2053 	index  = -1;
2054 	retval = 0;
2055 
2056 	tty = tty_open_current_tty(device, filp);
2057 	if (!tty) {
2058 		mutex_lock(&tty_mutex);
2059 		driver = tty_lookup_driver(device, filp, &noctty, &index);
2060 		if (IS_ERR(driver)) {
2061 			retval = PTR_ERR(driver);
2062 			goto err_unlock;
2063 		}
2064 
2065 		/* check whether we're reopening an existing tty */
2066 		tty = tty_driver_lookup_tty(driver, inode, index);
2067 		if (IS_ERR(tty)) {
2068 			retval = PTR_ERR(tty);
2069 			goto err_unlock;
2070 		}
2071 
2072 		if (tty) {
2073 			mutex_unlock(&tty_mutex);
2074 			tty_lock(tty);
2075 			/* safe to drop the kref from tty_driver_lookup_tty() */
2076 			tty_kref_put(tty);
2077 			retval = tty_reopen(tty);
2078 			if (retval < 0) {
2079 				tty_unlock(tty);
2080 				tty = ERR_PTR(retval);
2081 			}
2082 		} else { /* Returns with the tty_lock held for now */
2083 			tty = tty_init_dev(driver, index);
2084 			mutex_unlock(&tty_mutex);
2085 		}
2086 
2087 		tty_driver_kref_put(driver);
2088 	}
2089 
2090 	if (IS_ERR(tty)) {
2091 		retval = PTR_ERR(tty);
2092 		goto err_file;
2093 	}
2094 
2095 	tty_add_file(tty, filp);
2096 
2097 	check_tty_count(tty, __func__);
2098 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2099 	    tty->driver->subtype == PTY_TYPE_MASTER)
2100 		noctty = 1;
2101 #ifdef TTY_DEBUG_HANGUP
2102 	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2103 #endif
2104 	if (tty->ops->open)
2105 		retval = tty->ops->open(tty, filp);
2106 	else
2107 		retval = -ENODEV;
2108 	filp->f_flags = saved_flags;
2109 
2110 	if (retval) {
2111 #ifdef TTY_DEBUG_HANGUP
2112 		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2113 				retval, tty->name);
2114 #endif
2115 		tty_unlock(tty); /* need to call tty_release without BTM */
2116 		tty_release(inode, filp);
2117 		if (retval != -ERESTARTSYS)
2118 			return retval;
2119 
2120 		if (signal_pending(current))
2121 			return retval;
2122 
2123 		schedule();
2124 		/*
2125 		 * Need to reset f_op in case a hangup happened.
2126 		 */
2127 		if (tty_hung_up_p(filp))
2128 			filp->f_op = &tty_fops;
2129 		goto retry_open;
2130 	}
2131 	clear_bit(TTY_HUPPED, &tty->flags);
2132 
2133 
2134 	read_lock(&tasklist_lock);
2135 	spin_lock_irq(&current->sighand->siglock);
2136 	if (!noctty &&
2137 	    current->signal->leader &&
2138 	    !current->signal->tty &&
2139 	    tty->session == NULL)
2140 		__proc_set_tty(tty);
2141 	spin_unlock_irq(&current->sighand->siglock);
2142 	read_unlock(&tasklist_lock);
2143 	tty_unlock(tty);
2144 	return 0;
2145 err_unlock:
2146 	mutex_unlock(&tty_mutex);
2147 	/* after locks to avoid deadlock */
2148 	if (!IS_ERR_OR_NULL(driver))
2149 		tty_driver_kref_put(driver);
2150 err_file:
2151 	tty_free_file(filp);
2152 	return retval;
2153 }
2154 
2155 
2156 
2157 /**
2158  *	tty_poll	-	check tty status
2159  *	@filp: file being polled
2160  *	@wait: poll wait structures to update
2161  *
2162  *	Call the line discipline polling method to obtain the poll
2163  *	status of the device.
2164  *
2165  *	Locking: locks called line discipline but ldisc poll method
2166  *	may be re-entered freely by other callers.
2167  */
2168 
2169 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2170 {
2171 	struct tty_struct *tty = file_tty(filp);
2172 	struct tty_ldisc *ld;
2173 	int ret = 0;
2174 
2175 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2176 		return 0;
2177 
2178 	ld = tty_ldisc_ref_wait(tty);
2179 	if (ld->ops->poll)
2180 		ret = ld->ops->poll(tty, filp, wait);
2181 	tty_ldisc_deref(ld);
2182 	return ret;
2183 }
2184 
2185 static int __tty_fasync(int fd, struct file *filp, int on)
2186 {
2187 	struct tty_struct *tty = file_tty(filp);
2188 	struct tty_ldisc *ldisc;
2189 	unsigned long flags;
2190 	int retval = 0;
2191 
2192 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2193 		goto out;
2194 
2195 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2196 	if (retval <= 0)
2197 		goto out;
2198 
2199 	ldisc = tty_ldisc_ref(tty);
2200 	if (ldisc) {
2201 		if (ldisc->ops->fasync)
2202 			ldisc->ops->fasync(tty, on);
2203 		tty_ldisc_deref(ldisc);
2204 	}
2205 
2206 	if (on) {
2207 		enum pid_type type;
2208 		struct pid *pid;
2209 
2210 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2211 		if (tty->pgrp) {
2212 			pid = tty->pgrp;
2213 			type = PIDTYPE_PGID;
2214 		} else {
2215 			pid = task_pid(current);
2216 			type = PIDTYPE_PID;
2217 		}
2218 		get_pid(pid);
2219 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2220 		__f_setown(filp, pid, type, 0);
2221 		put_pid(pid);
2222 		retval = 0;
2223 	}
2224 out:
2225 	return retval;
2226 }
2227 
2228 static int tty_fasync(int fd, struct file *filp, int on)
2229 {
2230 	struct tty_struct *tty = file_tty(filp);
2231 	int retval;
2232 
2233 	tty_lock(tty);
2234 	retval = __tty_fasync(fd, filp, on);
2235 	tty_unlock(tty);
2236 
2237 	return retval;
2238 }
2239 
2240 /**
2241  *	tiocsti			-	fake input character
2242  *	@tty: tty to fake input into
2243  *	@p: pointer to character
2244  *
2245  *	Fake input to a tty device. Does the necessary locking and
2246  *	input management.
2247  *
2248  *	FIXME: does not honour flow control ??
2249  *
2250  *	Locking:
2251  *		Called functions take tty_ldiscs_lock
2252  *		current->signal->tty check is safe without locks
2253  *
2254  *	FIXME: may race normal receive processing
2255  */
2256 
2257 static int tiocsti(struct tty_struct *tty, char __user *p)
2258 {
2259 	char ch, mbz = 0;
2260 	struct tty_ldisc *ld;
2261 
2262 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2263 		return -EPERM;
2264 	if (get_user(ch, p))
2265 		return -EFAULT;
2266 	tty_audit_tiocsti(tty, ch);
2267 	ld = tty_ldisc_ref_wait(tty);
2268 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2269 	tty_ldisc_deref(ld);
2270 	return 0;
2271 }
2272 
2273 /**
2274  *	tiocgwinsz		-	implement window query ioctl
2275  *	@tty; tty
2276  *	@arg: user buffer for result
2277  *
2278  *	Copies the kernel idea of the window size into the user buffer.
2279  *
2280  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2281  *		is consistent.
2282  */
2283 
2284 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2285 {
2286 	int err;
2287 
2288 	mutex_lock(&tty->winsize_mutex);
2289 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2290 	mutex_unlock(&tty->winsize_mutex);
2291 
2292 	return err ? -EFAULT: 0;
2293 }
2294 
2295 /**
2296  *	tty_do_resize		-	resize event
2297  *	@tty: tty being resized
2298  *	@rows: rows (character)
2299  *	@cols: cols (character)
2300  *
2301  *	Update the termios variables and send the necessary signals to
2302  *	peform a terminal resize correctly
2303  */
2304 
2305 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2306 {
2307 	struct pid *pgrp;
2308 
2309 	/* Lock the tty */
2310 	mutex_lock(&tty->winsize_mutex);
2311 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2312 		goto done;
2313 
2314 	/* Signal the foreground process group */
2315 	pgrp = tty_get_pgrp(tty);
2316 	if (pgrp)
2317 		kill_pgrp(pgrp, SIGWINCH, 1);
2318 	put_pid(pgrp);
2319 
2320 	tty->winsize = *ws;
2321 done:
2322 	mutex_unlock(&tty->winsize_mutex);
2323 	return 0;
2324 }
2325 EXPORT_SYMBOL(tty_do_resize);
2326 
2327 /**
2328  *	tiocswinsz		-	implement window size set ioctl
2329  *	@tty; tty side of tty
2330  *	@arg: user buffer for result
2331  *
2332  *	Copies the user idea of the window size to the kernel. Traditionally
2333  *	this is just advisory information but for the Linux console it
2334  *	actually has driver level meaning and triggers a VC resize.
2335  *
2336  *	Locking:
2337  *		Driver dependent. The default do_resize method takes the
2338  *	tty termios mutex and ctrl_lock. The console takes its own lock
2339  *	then calls into the default method.
2340  */
2341 
2342 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2343 {
2344 	struct winsize tmp_ws;
2345 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2346 		return -EFAULT;
2347 
2348 	if (tty->ops->resize)
2349 		return tty->ops->resize(tty, &tmp_ws);
2350 	else
2351 		return tty_do_resize(tty, &tmp_ws);
2352 }
2353 
2354 /**
2355  *	tioccons	-	allow admin to move logical console
2356  *	@file: the file to become console
2357  *
2358  *	Allow the administrator to move the redirected console device
2359  *
2360  *	Locking: uses redirect_lock to guard the redirect information
2361  */
2362 
2363 static int tioccons(struct file *file)
2364 {
2365 	if (!capable(CAP_SYS_ADMIN))
2366 		return -EPERM;
2367 	if (file->f_op->write == redirected_tty_write) {
2368 		struct file *f;
2369 		spin_lock(&redirect_lock);
2370 		f = redirect;
2371 		redirect = NULL;
2372 		spin_unlock(&redirect_lock);
2373 		if (f)
2374 			fput(f);
2375 		return 0;
2376 	}
2377 	spin_lock(&redirect_lock);
2378 	if (redirect) {
2379 		spin_unlock(&redirect_lock);
2380 		return -EBUSY;
2381 	}
2382 	redirect = get_file(file);
2383 	spin_unlock(&redirect_lock);
2384 	return 0;
2385 }
2386 
2387 /**
2388  *	fionbio		-	non blocking ioctl
2389  *	@file: file to set blocking value
2390  *	@p: user parameter
2391  *
2392  *	Historical tty interfaces had a blocking control ioctl before
2393  *	the generic functionality existed. This piece of history is preserved
2394  *	in the expected tty API of posix OS's.
2395  *
2396  *	Locking: none, the open file handle ensures it won't go away.
2397  */
2398 
2399 static int fionbio(struct file *file, int __user *p)
2400 {
2401 	int nonblock;
2402 
2403 	if (get_user(nonblock, p))
2404 		return -EFAULT;
2405 
2406 	spin_lock(&file->f_lock);
2407 	if (nonblock)
2408 		file->f_flags |= O_NONBLOCK;
2409 	else
2410 		file->f_flags &= ~O_NONBLOCK;
2411 	spin_unlock(&file->f_lock);
2412 	return 0;
2413 }
2414 
2415 /**
2416  *	tiocsctty	-	set controlling tty
2417  *	@tty: tty structure
2418  *	@arg: user argument
2419  *
2420  *	This ioctl is used to manage job control. It permits a session
2421  *	leader to set this tty as the controlling tty for the session.
2422  *
2423  *	Locking:
2424  *		Takes tty_lock() to serialize proc_set_tty() for this tty
2425  *		Takes tasklist_lock internally to walk sessions
2426  *		Takes ->siglock() when updating signal->tty
2427  */
2428 
2429 static int tiocsctty(struct tty_struct *tty, int arg)
2430 {
2431 	int ret = 0;
2432 
2433 	tty_lock(tty);
2434 	read_lock(&tasklist_lock);
2435 
2436 	if (current->signal->leader && (task_session(current) == tty->session))
2437 		goto unlock;
2438 
2439 	/*
2440 	 * The process must be a session leader and
2441 	 * not have a controlling tty already.
2442 	 */
2443 	if (!current->signal->leader || current->signal->tty) {
2444 		ret = -EPERM;
2445 		goto unlock;
2446 	}
2447 
2448 	if (tty->session) {
2449 		/*
2450 		 * This tty is already the controlling
2451 		 * tty for another session group!
2452 		 */
2453 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2454 			/*
2455 			 * Steal it away
2456 			 */
2457 			session_clear_tty(tty->session);
2458 		} else {
2459 			ret = -EPERM;
2460 			goto unlock;
2461 		}
2462 	}
2463 	proc_set_tty(tty);
2464 unlock:
2465 	read_unlock(&tasklist_lock);
2466 	tty_unlock(tty);
2467 	return ret;
2468 }
2469 
2470 /**
2471  *	tty_get_pgrp	-	return a ref counted pgrp pid
2472  *	@tty: tty to read
2473  *
2474  *	Returns a refcounted instance of the pid struct for the process
2475  *	group controlling the tty.
2476  */
2477 
2478 struct pid *tty_get_pgrp(struct tty_struct *tty)
2479 {
2480 	unsigned long flags;
2481 	struct pid *pgrp;
2482 
2483 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2484 	pgrp = get_pid(tty->pgrp);
2485 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2486 
2487 	return pgrp;
2488 }
2489 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2490 
2491 /*
2492  * This checks not only the pgrp, but falls back on the pid if no
2493  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2494  * without this...
2495  *
2496  * The caller must hold rcu lock or the tasklist lock.
2497  */
2498 static struct pid *session_of_pgrp(struct pid *pgrp)
2499 {
2500 	struct task_struct *p;
2501 	struct pid *sid = NULL;
2502 
2503 	p = pid_task(pgrp, PIDTYPE_PGID);
2504 	if (p == NULL)
2505 		p = pid_task(pgrp, PIDTYPE_PID);
2506 	if (p != NULL)
2507 		sid = task_session(p);
2508 
2509 	return sid;
2510 }
2511 
2512 /**
2513  *	tiocgpgrp		-	get process group
2514  *	@tty: tty passed by user
2515  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2516  *	@p: returned pid
2517  *
2518  *	Obtain the process group of the tty. If there is no process group
2519  *	return an error.
2520  *
2521  *	Locking: none. Reference to current->signal->tty is safe.
2522  */
2523 
2524 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2525 {
2526 	struct pid *pid;
2527 	int ret;
2528 	/*
2529 	 * (tty == real_tty) is a cheap way of
2530 	 * testing if the tty is NOT a master pty.
2531 	 */
2532 	if (tty == real_tty && current->signal->tty != real_tty)
2533 		return -ENOTTY;
2534 	pid = tty_get_pgrp(real_tty);
2535 	ret =  put_user(pid_vnr(pid), p);
2536 	put_pid(pid);
2537 	return ret;
2538 }
2539 
2540 /**
2541  *	tiocspgrp		-	attempt to set process group
2542  *	@tty: tty passed by user
2543  *	@real_tty: tty side device matching tty passed by user
2544  *	@p: pid pointer
2545  *
2546  *	Set the process group of the tty to the session passed. Only
2547  *	permitted where the tty session is our session.
2548  *
2549  *	Locking: RCU, ctrl lock
2550  */
2551 
2552 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2553 {
2554 	struct pid *pgrp;
2555 	pid_t pgrp_nr;
2556 	int retval = tty_check_change(real_tty);
2557 	unsigned long flags;
2558 
2559 	if (retval == -EIO)
2560 		return -ENOTTY;
2561 	if (retval)
2562 		return retval;
2563 	if (!current->signal->tty ||
2564 	    (current->signal->tty != real_tty) ||
2565 	    (real_tty->session != task_session(current)))
2566 		return -ENOTTY;
2567 	if (get_user(pgrp_nr, p))
2568 		return -EFAULT;
2569 	if (pgrp_nr < 0)
2570 		return -EINVAL;
2571 	rcu_read_lock();
2572 	pgrp = find_vpid(pgrp_nr);
2573 	retval = -ESRCH;
2574 	if (!pgrp)
2575 		goto out_unlock;
2576 	retval = -EPERM;
2577 	if (session_of_pgrp(pgrp) != task_session(current))
2578 		goto out_unlock;
2579 	retval = 0;
2580 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2581 	put_pid(real_tty->pgrp);
2582 	real_tty->pgrp = get_pid(pgrp);
2583 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2584 out_unlock:
2585 	rcu_read_unlock();
2586 	return retval;
2587 }
2588 
2589 /**
2590  *	tiocgsid		-	get session id
2591  *	@tty: tty passed by user
2592  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2593  *	@p: pointer to returned session id
2594  *
2595  *	Obtain the session id of the tty. If there is no session
2596  *	return an error.
2597  *
2598  *	Locking: none. Reference to current->signal->tty is safe.
2599  */
2600 
2601 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2602 {
2603 	/*
2604 	 * (tty == real_tty) is a cheap way of
2605 	 * testing if the tty is NOT a master pty.
2606 	*/
2607 	if (tty == real_tty && current->signal->tty != real_tty)
2608 		return -ENOTTY;
2609 	if (!real_tty->session)
2610 		return -ENOTTY;
2611 	return put_user(pid_vnr(real_tty->session), p);
2612 }
2613 
2614 /**
2615  *	tiocsetd	-	set line discipline
2616  *	@tty: tty device
2617  *	@p: pointer to user data
2618  *
2619  *	Set the line discipline according to user request.
2620  *
2621  *	Locking: see tty_set_ldisc, this function is just a helper
2622  */
2623 
2624 static int tiocsetd(struct tty_struct *tty, int __user *p)
2625 {
2626 	int ldisc;
2627 	int ret;
2628 
2629 	if (get_user(ldisc, p))
2630 		return -EFAULT;
2631 
2632 	ret = tty_set_ldisc(tty, ldisc);
2633 
2634 	return ret;
2635 }
2636 
2637 /**
2638  *	send_break	-	performed time break
2639  *	@tty: device to break on
2640  *	@duration: timeout in mS
2641  *
2642  *	Perform a timed break on hardware that lacks its own driver level
2643  *	timed break functionality.
2644  *
2645  *	Locking:
2646  *		atomic_write_lock serializes
2647  *
2648  */
2649 
2650 static int send_break(struct tty_struct *tty, unsigned int duration)
2651 {
2652 	int retval;
2653 
2654 	if (tty->ops->break_ctl == NULL)
2655 		return 0;
2656 
2657 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2658 		retval = tty->ops->break_ctl(tty, duration);
2659 	else {
2660 		/* Do the work ourselves */
2661 		if (tty_write_lock(tty, 0) < 0)
2662 			return -EINTR;
2663 		retval = tty->ops->break_ctl(tty, -1);
2664 		if (retval)
2665 			goto out;
2666 		if (!signal_pending(current))
2667 			msleep_interruptible(duration);
2668 		retval = tty->ops->break_ctl(tty, 0);
2669 out:
2670 		tty_write_unlock(tty);
2671 		if (signal_pending(current))
2672 			retval = -EINTR;
2673 	}
2674 	return retval;
2675 }
2676 
2677 /**
2678  *	tty_tiocmget		-	get modem status
2679  *	@tty: tty device
2680  *	@file: user file pointer
2681  *	@p: pointer to result
2682  *
2683  *	Obtain the modem status bits from the tty driver if the feature
2684  *	is supported. Return -EINVAL if it is not available.
2685  *
2686  *	Locking: none (up to the driver)
2687  */
2688 
2689 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2690 {
2691 	int retval = -EINVAL;
2692 
2693 	if (tty->ops->tiocmget) {
2694 		retval = tty->ops->tiocmget(tty);
2695 
2696 		if (retval >= 0)
2697 			retval = put_user(retval, p);
2698 	}
2699 	return retval;
2700 }
2701 
2702 /**
2703  *	tty_tiocmset		-	set modem status
2704  *	@tty: tty device
2705  *	@cmd: command - clear bits, set bits or set all
2706  *	@p: pointer to desired bits
2707  *
2708  *	Set the modem status bits from the tty driver if the feature
2709  *	is supported. Return -EINVAL if it is not available.
2710  *
2711  *	Locking: none (up to the driver)
2712  */
2713 
2714 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2715 	     unsigned __user *p)
2716 {
2717 	int retval;
2718 	unsigned int set, clear, val;
2719 
2720 	if (tty->ops->tiocmset == NULL)
2721 		return -EINVAL;
2722 
2723 	retval = get_user(val, p);
2724 	if (retval)
2725 		return retval;
2726 	set = clear = 0;
2727 	switch (cmd) {
2728 	case TIOCMBIS:
2729 		set = val;
2730 		break;
2731 	case TIOCMBIC:
2732 		clear = val;
2733 		break;
2734 	case TIOCMSET:
2735 		set = val;
2736 		clear = ~val;
2737 		break;
2738 	}
2739 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2740 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2741 	return tty->ops->tiocmset(tty, set, clear);
2742 }
2743 
2744 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2745 {
2746 	int retval = -EINVAL;
2747 	struct serial_icounter_struct icount;
2748 	memset(&icount, 0, sizeof(icount));
2749 	if (tty->ops->get_icount)
2750 		retval = tty->ops->get_icount(tty, &icount);
2751 	if (retval != 0)
2752 		return retval;
2753 	if (copy_to_user(arg, &icount, sizeof(icount)))
2754 		return -EFAULT;
2755 	return 0;
2756 }
2757 
2758 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2759 {
2760 	static DEFINE_RATELIMIT_STATE(depr_flags,
2761 			DEFAULT_RATELIMIT_INTERVAL,
2762 			DEFAULT_RATELIMIT_BURST);
2763 	char comm[TASK_COMM_LEN];
2764 	int flags;
2765 
2766 	if (get_user(flags, &ss->flags))
2767 		return;
2768 
2769 	flags &= ASYNC_DEPRECATED;
2770 
2771 	if (flags && __ratelimit(&depr_flags))
2772 		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2773 				__func__, get_task_comm(comm, current), flags);
2774 }
2775 
2776 /*
2777  * if pty, return the slave side (real_tty)
2778  * otherwise, return self
2779  */
2780 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2781 {
2782 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2783 	    tty->driver->subtype == PTY_TYPE_MASTER)
2784 		tty = tty->link;
2785 	return tty;
2786 }
2787 
2788 /*
2789  * Split this up, as gcc can choke on it otherwise..
2790  */
2791 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2792 {
2793 	struct tty_struct *tty = file_tty(file);
2794 	struct tty_struct *real_tty;
2795 	void __user *p = (void __user *)arg;
2796 	int retval;
2797 	struct tty_ldisc *ld;
2798 
2799 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2800 		return -EINVAL;
2801 
2802 	real_tty = tty_pair_get_tty(tty);
2803 
2804 	/*
2805 	 * Factor out some common prep work
2806 	 */
2807 	switch (cmd) {
2808 	case TIOCSETD:
2809 	case TIOCSBRK:
2810 	case TIOCCBRK:
2811 	case TCSBRK:
2812 	case TCSBRKP:
2813 		retval = tty_check_change(tty);
2814 		if (retval)
2815 			return retval;
2816 		if (cmd != TIOCCBRK) {
2817 			tty_wait_until_sent(tty, 0);
2818 			if (signal_pending(current))
2819 				return -EINTR;
2820 		}
2821 		break;
2822 	}
2823 
2824 	/*
2825 	 *	Now do the stuff.
2826 	 */
2827 	switch (cmd) {
2828 	case TIOCSTI:
2829 		return tiocsti(tty, p);
2830 	case TIOCGWINSZ:
2831 		return tiocgwinsz(real_tty, p);
2832 	case TIOCSWINSZ:
2833 		return tiocswinsz(real_tty, p);
2834 	case TIOCCONS:
2835 		return real_tty != tty ? -EINVAL : tioccons(file);
2836 	case FIONBIO:
2837 		return fionbio(file, p);
2838 	case TIOCEXCL:
2839 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2840 		return 0;
2841 	case TIOCNXCL:
2842 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2843 		return 0;
2844 	case TIOCGEXCL:
2845 	{
2846 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2847 		return put_user(excl, (int __user *)p);
2848 	}
2849 	case TIOCNOTTY:
2850 		if (current->signal->tty != tty)
2851 			return -ENOTTY;
2852 		no_tty();
2853 		return 0;
2854 	case TIOCSCTTY:
2855 		return tiocsctty(tty, arg);
2856 	case TIOCGPGRP:
2857 		return tiocgpgrp(tty, real_tty, p);
2858 	case TIOCSPGRP:
2859 		return tiocspgrp(tty, real_tty, p);
2860 	case TIOCGSID:
2861 		return tiocgsid(tty, real_tty, p);
2862 	case TIOCGETD:
2863 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2864 	case TIOCSETD:
2865 		return tiocsetd(tty, p);
2866 	case TIOCVHANGUP:
2867 		if (!capable(CAP_SYS_ADMIN))
2868 			return -EPERM;
2869 		tty_vhangup(tty);
2870 		return 0;
2871 	case TIOCGDEV:
2872 	{
2873 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2874 		return put_user(ret, (unsigned int __user *)p);
2875 	}
2876 	/*
2877 	 * Break handling
2878 	 */
2879 	case TIOCSBRK:	/* Turn break on, unconditionally */
2880 		if (tty->ops->break_ctl)
2881 			return tty->ops->break_ctl(tty, -1);
2882 		return 0;
2883 	case TIOCCBRK:	/* Turn break off, unconditionally */
2884 		if (tty->ops->break_ctl)
2885 			return tty->ops->break_ctl(tty, 0);
2886 		return 0;
2887 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2888 		/* non-zero arg means wait for all output data
2889 		 * to be sent (performed above) but don't send break.
2890 		 * This is used by the tcdrain() termios function.
2891 		 */
2892 		if (!arg)
2893 			return send_break(tty, 250);
2894 		return 0;
2895 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2896 		return send_break(tty, arg ? arg*100 : 250);
2897 
2898 	case TIOCMGET:
2899 		return tty_tiocmget(tty, p);
2900 	case TIOCMSET:
2901 	case TIOCMBIC:
2902 	case TIOCMBIS:
2903 		return tty_tiocmset(tty, cmd, p);
2904 	case TIOCGICOUNT:
2905 		retval = tty_tiocgicount(tty, p);
2906 		/* For the moment allow fall through to the old method */
2907         	if (retval != -EINVAL)
2908 			return retval;
2909 		break;
2910 	case TCFLSH:
2911 		switch (arg) {
2912 		case TCIFLUSH:
2913 		case TCIOFLUSH:
2914 		/* flush tty buffer and allow ldisc to process ioctl */
2915 			tty_buffer_flush(tty, NULL);
2916 			break;
2917 		}
2918 		break;
2919 	case TIOCSSERIAL:
2920 		tty_warn_deprecated_flags(p);
2921 		break;
2922 	}
2923 	if (tty->ops->ioctl) {
2924 		retval = tty->ops->ioctl(tty, cmd, arg);
2925 		if (retval != -ENOIOCTLCMD)
2926 			return retval;
2927 	}
2928 	ld = tty_ldisc_ref_wait(tty);
2929 	retval = -EINVAL;
2930 	if (ld->ops->ioctl) {
2931 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2932 		if (retval == -ENOIOCTLCMD)
2933 			retval = -ENOTTY;
2934 	}
2935 	tty_ldisc_deref(ld);
2936 	return retval;
2937 }
2938 
2939 #ifdef CONFIG_COMPAT
2940 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2941 				unsigned long arg)
2942 {
2943 	struct tty_struct *tty = file_tty(file);
2944 	struct tty_ldisc *ld;
2945 	int retval = -ENOIOCTLCMD;
2946 
2947 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2948 		return -EINVAL;
2949 
2950 	if (tty->ops->compat_ioctl) {
2951 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2952 		if (retval != -ENOIOCTLCMD)
2953 			return retval;
2954 	}
2955 
2956 	ld = tty_ldisc_ref_wait(tty);
2957 	if (ld->ops->compat_ioctl)
2958 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2959 	else
2960 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2961 	tty_ldisc_deref(ld);
2962 
2963 	return retval;
2964 }
2965 #endif
2966 
2967 static int this_tty(const void *t, struct file *file, unsigned fd)
2968 {
2969 	if (likely(file->f_op->read != tty_read))
2970 		return 0;
2971 	return file_tty(file) != t ? 0 : fd + 1;
2972 }
2973 
2974 /*
2975  * This implements the "Secure Attention Key" ---  the idea is to
2976  * prevent trojan horses by killing all processes associated with this
2977  * tty when the user hits the "Secure Attention Key".  Required for
2978  * super-paranoid applications --- see the Orange Book for more details.
2979  *
2980  * This code could be nicer; ideally it should send a HUP, wait a few
2981  * seconds, then send a INT, and then a KILL signal.  But you then
2982  * have to coordinate with the init process, since all processes associated
2983  * with the current tty must be dead before the new getty is allowed
2984  * to spawn.
2985  *
2986  * Now, if it would be correct ;-/ The current code has a nasty hole -
2987  * it doesn't catch files in flight. We may send the descriptor to ourselves
2988  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2989  *
2990  * Nasty bug: do_SAK is being called in interrupt context.  This can
2991  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2992  */
2993 void __do_SAK(struct tty_struct *tty)
2994 {
2995 #ifdef TTY_SOFT_SAK
2996 	tty_hangup(tty);
2997 #else
2998 	struct task_struct *g, *p;
2999 	struct pid *session;
3000 	int		i;
3001 
3002 	if (!tty)
3003 		return;
3004 	session = tty->session;
3005 
3006 	tty_ldisc_flush(tty);
3007 
3008 	tty_driver_flush_buffer(tty);
3009 
3010 	read_lock(&tasklist_lock);
3011 	/* Kill the entire session */
3012 	do_each_pid_task(session, PIDTYPE_SID, p) {
3013 		printk(KERN_NOTICE "SAK: killed process %d"
3014 			" (%s): task_session(p)==tty->session\n",
3015 			task_pid_nr(p), p->comm);
3016 		send_sig(SIGKILL, p, 1);
3017 	} while_each_pid_task(session, PIDTYPE_SID, p);
3018 	/* Now kill any processes that happen to have the
3019 	 * tty open.
3020 	 */
3021 	do_each_thread(g, p) {
3022 		if (p->signal->tty == tty) {
3023 			printk(KERN_NOTICE "SAK: killed process %d"
3024 			    " (%s): task_session(p)==tty->session\n",
3025 			    task_pid_nr(p), p->comm);
3026 			send_sig(SIGKILL, p, 1);
3027 			continue;
3028 		}
3029 		task_lock(p);
3030 		i = iterate_fd(p->files, 0, this_tty, tty);
3031 		if (i != 0) {
3032 			printk(KERN_NOTICE "SAK: killed process %d"
3033 			    " (%s): fd#%d opened to the tty\n",
3034 				    task_pid_nr(p), p->comm, i - 1);
3035 			force_sig(SIGKILL, p);
3036 		}
3037 		task_unlock(p);
3038 	} while_each_thread(g, p);
3039 	read_unlock(&tasklist_lock);
3040 #endif
3041 }
3042 
3043 static void do_SAK_work(struct work_struct *work)
3044 {
3045 	struct tty_struct *tty =
3046 		container_of(work, struct tty_struct, SAK_work);
3047 	__do_SAK(tty);
3048 }
3049 
3050 /*
3051  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3052  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3053  * the values which we write to it will be identical to the values which it
3054  * already has. --akpm
3055  */
3056 void do_SAK(struct tty_struct *tty)
3057 {
3058 	if (!tty)
3059 		return;
3060 	schedule_work(&tty->SAK_work);
3061 }
3062 
3063 EXPORT_SYMBOL(do_SAK);
3064 
3065 static int dev_match_devt(struct device *dev, const void *data)
3066 {
3067 	const dev_t *devt = data;
3068 	return dev->devt == *devt;
3069 }
3070 
3071 /* Must put_device() after it's unused! */
3072 static struct device *tty_get_device(struct tty_struct *tty)
3073 {
3074 	dev_t devt = tty_devnum(tty);
3075 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3076 }
3077 
3078 
3079 /**
3080  *	alloc_tty_struct
3081  *
3082  *	This subroutine allocates and initializes a tty structure.
3083  *
3084  *	Locking: none - tty in question is not exposed at this point
3085  */
3086 
3087 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3088 {
3089 	struct tty_struct *tty;
3090 
3091 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3092 	if (!tty)
3093 		return NULL;
3094 
3095 	kref_init(&tty->kref);
3096 	tty->magic = TTY_MAGIC;
3097 	tty_ldisc_init(tty);
3098 	tty->session = NULL;
3099 	tty->pgrp = NULL;
3100 	mutex_init(&tty->legacy_mutex);
3101 	mutex_init(&tty->throttle_mutex);
3102 	init_rwsem(&tty->termios_rwsem);
3103 	mutex_init(&tty->winsize_mutex);
3104 	init_ldsem(&tty->ldisc_sem);
3105 	init_waitqueue_head(&tty->write_wait);
3106 	init_waitqueue_head(&tty->read_wait);
3107 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3108 	mutex_init(&tty->atomic_write_lock);
3109 	spin_lock_init(&tty->ctrl_lock);
3110 	spin_lock_init(&tty->flow_lock);
3111 	INIT_LIST_HEAD(&tty->tty_files);
3112 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3113 
3114 	tty->driver = driver;
3115 	tty->ops = driver->ops;
3116 	tty->index = idx;
3117 	tty_line_name(driver, idx, tty->name);
3118 	tty->dev = tty_get_device(tty);
3119 
3120 	return tty;
3121 }
3122 
3123 /**
3124  *	deinitialize_tty_struct
3125  *	@tty: tty to deinitialize
3126  *
3127  *	This subroutine deinitializes a tty structure that has been newly
3128  *	allocated but tty_release cannot be called on that yet.
3129  *
3130  *	Locking: none - tty in question must not be exposed at this point
3131  */
3132 void deinitialize_tty_struct(struct tty_struct *tty)
3133 {
3134 	tty_ldisc_deinit(tty);
3135 }
3136 
3137 /**
3138  *	tty_put_char	-	write one character to a tty
3139  *	@tty: tty
3140  *	@ch: character
3141  *
3142  *	Write one byte to the tty using the provided put_char method
3143  *	if present. Returns the number of characters successfully output.
3144  *
3145  *	Note: the specific put_char operation in the driver layer may go
3146  *	away soon. Don't call it directly, use this method
3147  */
3148 
3149 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3150 {
3151 	if (tty->ops->put_char)
3152 		return tty->ops->put_char(tty, ch);
3153 	return tty->ops->write(tty, &ch, 1);
3154 }
3155 EXPORT_SYMBOL_GPL(tty_put_char);
3156 
3157 struct class *tty_class;
3158 
3159 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3160 		unsigned int index, unsigned int count)
3161 {
3162 	/* init here, since reused cdevs cause crashes */
3163 	cdev_init(&driver->cdevs[index], &tty_fops);
3164 	driver->cdevs[index].owner = driver->owner;
3165 	return cdev_add(&driver->cdevs[index], dev, count);
3166 }
3167 
3168 /**
3169  *	tty_register_device - register a tty device
3170  *	@driver: the tty driver that describes the tty device
3171  *	@index: the index in the tty driver for this tty device
3172  *	@device: a struct device that is associated with this tty device.
3173  *		This field is optional, if there is no known struct device
3174  *		for this tty device it can be set to NULL safely.
3175  *
3176  *	Returns a pointer to the struct device for this tty device
3177  *	(or ERR_PTR(-EFOO) on error).
3178  *
3179  *	This call is required to be made to register an individual tty device
3180  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3181  *	that bit is not set, this function should not be called by a tty
3182  *	driver.
3183  *
3184  *	Locking: ??
3185  */
3186 
3187 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3188 				   struct device *device)
3189 {
3190 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3191 }
3192 EXPORT_SYMBOL(tty_register_device);
3193 
3194 static void tty_device_create_release(struct device *dev)
3195 {
3196 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3197 	kfree(dev);
3198 }
3199 
3200 /**
3201  *	tty_register_device_attr - register a tty device
3202  *	@driver: the tty driver that describes the tty device
3203  *	@index: the index in the tty driver for this tty device
3204  *	@device: a struct device that is associated with this tty device.
3205  *		This field is optional, if there is no known struct device
3206  *		for this tty device it can be set to NULL safely.
3207  *	@drvdata: Driver data to be set to device.
3208  *	@attr_grp: Attribute group to be set on device.
3209  *
3210  *	Returns a pointer to the struct device for this tty device
3211  *	(or ERR_PTR(-EFOO) on error).
3212  *
3213  *	This call is required to be made to register an individual tty device
3214  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3215  *	that bit is not set, this function should not be called by a tty
3216  *	driver.
3217  *
3218  *	Locking: ??
3219  */
3220 struct device *tty_register_device_attr(struct tty_driver *driver,
3221 				   unsigned index, struct device *device,
3222 				   void *drvdata,
3223 				   const struct attribute_group **attr_grp)
3224 {
3225 	char name[64];
3226 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3227 	struct device *dev = NULL;
3228 	int retval = -ENODEV;
3229 	bool cdev = false;
3230 
3231 	if (index >= driver->num) {
3232 		printk(KERN_ERR "Attempt to register invalid tty line number "
3233 		       " (%d).\n", index);
3234 		return ERR_PTR(-EINVAL);
3235 	}
3236 
3237 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3238 		pty_line_name(driver, index, name);
3239 	else
3240 		tty_line_name(driver, index, name);
3241 
3242 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3243 		retval = tty_cdev_add(driver, devt, index, 1);
3244 		if (retval)
3245 			goto error;
3246 		cdev = true;
3247 	}
3248 
3249 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3250 	if (!dev) {
3251 		retval = -ENOMEM;
3252 		goto error;
3253 	}
3254 
3255 	dev->devt = devt;
3256 	dev->class = tty_class;
3257 	dev->parent = device;
3258 	dev->release = tty_device_create_release;
3259 	dev_set_name(dev, "%s", name);
3260 	dev->groups = attr_grp;
3261 	dev_set_drvdata(dev, drvdata);
3262 
3263 	retval = device_register(dev);
3264 	if (retval)
3265 		goto error;
3266 
3267 	return dev;
3268 
3269 error:
3270 	put_device(dev);
3271 	if (cdev)
3272 		cdev_del(&driver->cdevs[index]);
3273 	return ERR_PTR(retval);
3274 }
3275 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3276 
3277 /**
3278  * 	tty_unregister_device - unregister a tty device
3279  * 	@driver: the tty driver that describes the tty device
3280  * 	@index: the index in the tty driver for this tty device
3281  *
3282  * 	If a tty device is registered with a call to tty_register_device() then
3283  *	this function must be called when the tty device is gone.
3284  *
3285  *	Locking: ??
3286  */
3287 
3288 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3289 {
3290 	device_destroy(tty_class,
3291 		MKDEV(driver->major, driver->minor_start) + index);
3292 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3293 		cdev_del(&driver->cdevs[index]);
3294 }
3295 EXPORT_SYMBOL(tty_unregister_device);
3296 
3297 /**
3298  * __tty_alloc_driver -- allocate tty driver
3299  * @lines: count of lines this driver can handle at most
3300  * @owner: module which is repsonsible for this driver
3301  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3302  *
3303  * This should not be called directly, some of the provided macros should be
3304  * used instead. Use IS_ERR and friends on @retval.
3305  */
3306 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3307 		unsigned long flags)
3308 {
3309 	struct tty_driver *driver;
3310 	unsigned int cdevs = 1;
3311 	int err;
3312 
3313 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3314 		return ERR_PTR(-EINVAL);
3315 
3316 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3317 	if (!driver)
3318 		return ERR_PTR(-ENOMEM);
3319 
3320 	kref_init(&driver->kref);
3321 	driver->magic = TTY_DRIVER_MAGIC;
3322 	driver->num = lines;
3323 	driver->owner = owner;
3324 	driver->flags = flags;
3325 
3326 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3327 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3328 				GFP_KERNEL);
3329 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3330 				GFP_KERNEL);
3331 		if (!driver->ttys || !driver->termios) {
3332 			err = -ENOMEM;
3333 			goto err_free_all;
3334 		}
3335 	}
3336 
3337 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3338 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3339 				GFP_KERNEL);
3340 		if (!driver->ports) {
3341 			err = -ENOMEM;
3342 			goto err_free_all;
3343 		}
3344 		cdevs = lines;
3345 	}
3346 
3347 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3348 	if (!driver->cdevs) {
3349 		err = -ENOMEM;
3350 		goto err_free_all;
3351 	}
3352 
3353 	return driver;
3354 err_free_all:
3355 	kfree(driver->ports);
3356 	kfree(driver->ttys);
3357 	kfree(driver->termios);
3358 	kfree(driver);
3359 	return ERR_PTR(err);
3360 }
3361 EXPORT_SYMBOL(__tty_alloc_driver);
3362 
3363 static void destruct_tty_driver(struct kref *kref)
3364 {
3365 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3366 	int i;
3367 	struct ktermios *tp;
3368 
3369 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3370 		/*
3371 		 * Free the termios and termios_locked structures because
3372 		 * we don't want to get memory leaks when modular tty
3373 		 * drivers are removed from the kernel.
3374 		 */
3375 		for (i = 0; i < driver->num; i++) {
3376 			tp = driver->termios[i];
3377 			if (tp) {
3378 				driver->termios[i] = NULL;
3379 				kfree(tp);
3380 			}
3381 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3382 				tty_unregister_device(driver, i);
3383 		}
3384 		proc_tty_unregister_driver(driver);
3385 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3386 			cdev_del(&driver->cdevs[0]);
3387 	}
3388 	kfree(driver->cdevs);
3389 	kfree(driver->ports);
3390 	kfree(driver->termios);
3391 	kfree(driver->ttys);
3392 	kfree(driver);
3393 }
3394 
3395 void tty_driver_kref_put(struct tty_driver *driver)
3396 {
3397 	kref_put(&driver->kref, destruct_tty_driver);
3398 }
3399 EXPORT_SYMBOL(tty_driver_kref_put);
3400 
3401 void tty_set_operations(struct tty_driver *driver,
3402 			const struct tty_operations *op)
3403 {
3404 	driver->ops = op;
3405 };
3406 EXPORT_SYMBOL(tty_set_operations);
3407 
3408 void put_tty_driver(struct tty_driver *d)
3409 {
3410 	tty_driver_kref_put(d);
3411 }
3412 EXPORT_SYMBOL(put_tty_driver);
3413 
3414 /*
3415  * Called by a tty driver to register itself.
3416  */
3417 int tty_register_driver(struct tty_driver *driver)
3418 {
3419 	int error;
3420 	int i;
3421 	dev_t dev;
3422 	struct device *d;
3423 
3424 	if (!driver->major) {
3425 		error = alloc_chrdev_region(&dev, driver->minor_start,
3426 						driver->num, driver->name);
3427 		if (!error) {
3428 			driver->major = MAJOR(dev);
3429 			driver->minor_start = MINOR(dev);
3430 		}
3431 	} else {
3432 		dev = MKDEV(driver->major, driver->minor_start);
3433 		error = register_chrdev_region(dev, driver->num, driver->name);
3434 	}
3435 	if (error < 0)
3436 		goto err;
3437 
3438 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3439 		error = tty_cdev_add(driver, dev, 0, driver->num);
3440 		if (error)
3441 			goto err_unreg_char;
3442 	}
3443 
3444 	mutex_lock(&tty_mutex);
3445 	list_add(&driver->tty_drivers, &tty_drivers);
3446 	mutex_unlock(&tty_mutex);
3447 
3448 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3449 		for (i = 0; i < driver->num; i++) {
3450 			d = tty_register_device(driver, i, NULL);
3451 			if (IS_ERR(d)) {
3452 				error = PTR_ERR(d);
3453 				goto err_unreg_devs;
3454 			}
3455 		}
3456 	}
3457 	proc_tty_register_driver(driver);
3458 	driver->flags |= TTY_DRIVER_INSTALLED;
3459 	return 0;
3460 
3461 err_unreg_devs:
3462 	for (i--; i >= 0; i--)
3463 		tty_unregister_device(driver, i);
3464 
3465 	mutex_lock(&tty_mutex);
3466 	list_del(&driver->tty_drivers);
3467 	mutex_unlock(&tty_mutex);
3468 
3469 err_unreg_char:
3470 	unregister_chrdev_region(dev, driver->num);
3471 err:
3472 	return error;
3473 }
3474 EXPORT_SYMBOL(tty_register_driver);
3475 
3476 /*
3477  * Called by a tty driver to unregister itself.
3478  */
3479 int tty_unregister_driver(struct tty_driver *driver)
3480 {
3481 #if 0
3482 	/* FIXME */
3483 	if (driver->refcount)
3484 		return -EBUSY;
3485 #endif
3486 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3487 				driver->num);
3488 	mutex_lock(&tty_mutex);
3489 	list_del(&driver->tty_drivers);
3490 	mutex_unlock(&tty_mutex);
3491 	return 0;
3492 }
3493 
3494 EXPORT_SYMBOL(tty_unregister_driver);
3495 
3496 dev_t tty_devnum(struct tty_struct *tty)
3497 {
3498 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3499 }
3500 EXPORT_SYMBOL(tty_devnum);
3501 
3502 void tty_default_fops(struct file_operations *fops)
3503 {
3504 	*fops = tty_fops;
3505 }
3506 
3507 /*
3508  * Initialize the console device. This is called *early*, so
3509  * we can't necessarily depend on lots of kernel help here.
3510  * Just do some early initializations, and do the complex setup
3511  * later.
3512  */
3513 void __init console_init(void)
3514 {
3515 	initcall_t *call;
3516 
3517 	/* Setup the default TTY line discipline. */
3518 	tty_ldisc_begin();
3519 
3520 	/*
3521 	 * set up the console device so that later boot sequences can
3522 	 * inform about problems etc..
3523 	 */
3524 	call = __con_initcall_start;
3525 	while (call < __con_initcall_end) {
3526 		(*call)();
3527 		call++;
3528 	}
3529 }
3530 
3531 static char *tty_devnode(struct device *dev, umode_t *mode)
3532 {
3533 	if (!mode)
3534 		return NULL;
3535 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3536 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3537 		*mode = 0666;
3538 	return NULL;
3539 }
3540 
3541 static int __init tty_class_init(void)
3542 {
3543 	tty_class = class_create(THIS_MODULE, "tty");
3544 	if (IS_ERR(tty_class))
3545 		return PTR_ERR(tty_class);
3546 	tty_class->devnode = tty_devnode;
3547 	return 0;
3548 }
3549 
3550 postcore_initcall(tty_class_init);
3551 
3552 /* 3/2004 jmc: why do these devices exist? */
3553 static struct cdev tty_cdev, console_cdev;
3554 
3555 static ssize_t show_cons_active(struct device *dev,
3556 				struct device_attribute *attr, char *buf)
3557 {
3558 	struct console *cs[16];
3559 	int i = 0;
3560 	struct console *c;
3561 	ssize_t count = 0;
3562 
3563 	console_lock();
3564 	for_each_console(c) {
3565 		if (!c->device)
3566 			continue;
3567 		if (!c->write)
3568 			continue;
3569 		if ((c->flags & CON_ENABLED) == 0)
3570 			continue;
3571 		cs[i++] = c;
3572 		if (i >= ARRAY_SIZE(cs))
3573 			break;
3574 	}
3575 	while (i--) {
3576 		int index = cs[i]->index;
3577 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3578 
3579 		/* don't resolve tty0 as some programs depend on it */
3580 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3581 			count += tty_line_name(drv, index, buf + count);
3582 		else
3583 			count += sprintf(buf + count, "%s%d",
3584 					 cs[i]->name, cs[i]->index);
3585 
3586 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3587 	}
3588 	console_unlock();
3589 
3590 	return count;
3591 }
3592 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3593 
3594 static struct attribute *cons_dev_attrs[] = {
3595 	&dev_attr_active.attr,
3596 	NULL
3597 };
3598 
3599 ATTRIBUTE_GROUPS(cons_dev);
3600 
3601 static struct device *consdev;
3602 
3603 void console_sysfs_notify(void)
3604 {
3605 	if (consdev)
3606 		sysfs_notify(&consdev->kobj, NULL, "active");
3607 }
3608 
3609 /*
3610  * Ok, now we can initialize the rest of the tty devices and can count
3611  * on memory allocations, interrupts etc..
3612  */
3613 int __init tty_init(void)
3614 {
3615 	cdev_init(&tty_cdev, &tty_fops);
3616 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3617 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3618 		panic("Couldn't register /dev/tty driver\n");
3619 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3620 
3621 	cdev_init(&console_cdev, &console_fops);
3622 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3623 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3624 		panic("Couldn't register /dev/console driver\n");
3625 	consdev = device_create_with_groups(tty_class, NULL,
3626 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3627 					    cons_dev_groups, "console");
3628 	if (IS_ERR(consdev))
3629 		consdev = NULL;
3630 
3631 #ifdef CONFIG_VT
3632 	vty_init(&console_fops);
3633 #endif
3634 	return 0;
3635 }
3636 
3637