1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 */ 4 5 /* 6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 7 * or rs-channels. It also implements echoing, cooked mode etc. 8 * 9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 10 * 11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 12 * tty_struct and tty_queue structures. Previously there was an array 13 * of 256 tty_struct's which was statically allocated, and the 14 * tty_queue structures were allocated at boot time. Both are now 15 * dynamically allocated only when the tty is open. 16 * 17 * Also restructured routines so that there is more of a separation 18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 19 * the low-level tty routines (serial.c, pty.c, console.c). This 20 * makes for cleaner and more compact code. -TYT, 9/17/92 21 * 22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 23 * which can be dynamically activated and de-activated by the line 24 * discipline handling modules (like SLIP). 25 * 26 * NOTE: pay no attention to the line discipline code (yet); its 27 * interface is still subject to change in this version... 28 * -- TYT, 1/31/92 29 * 30 * Added functionality to the OPOST tty handling. No delays, but all 31 * other bits should be there. 32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 33 * 34 * Rewrote canonical mode and added more termios flags. 35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 36 * 37 * Reorganized FASYNC support so mouse code can share it. 38 * -- ctm@ardi.com, 9Sep95 39 * 40 * New TIOCLINUX variants added. 41 * -- mj@k332.feld.cvut.cz, 19-Nov-95 42 * 43 * Restrict vt switching via ioctl() 44 * -- grif@cs.ucr.edu, 5-Dec-95 45 * 46 * Move console and virtual terminal code to more appropriate files, 47 * implement CONFIG_VT and generalize console device interface. 48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 49 * 50 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 51 * -- Bill Hawes <whawes@star.net>, June 97 52 * 53 * Added devfs support. 54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 55 * 56 * Added support for a Unix98-style ptmx device. 57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 58 * 59 * Reduced memory usage for older ARM systems 60 * -- Russell King <rmk@arm.linux.org.uk> 61 * 62 * Move do_SAK() into process context. Less stack use in devfs functions. 63 * alloc_tty_struct() always uses kmalloc() 64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 65 */ 66 67 #include <linux/types.h> 68 #include <linux/major.h> 69 #include <linux/errno.h> 70 #include <linux/signal.h> 71 #include <linux/fcntl.h> 72 #include <linux/sched.h> 73 #include <linux/interrupt.h> 74 #include <linux/tty.h> 75 #include <linux/tty_driver.h> 76 #include <linux/tty_flip.h> 77 #include <linux/devpts_fs.h> 78 #include <linux/file.h> 79 #include <linux/fdtable.h> 80 #include <linux/console.h> 81 #include <linux/timer.h> 82 #include <linux/ctype.h> 83 #include <linux/kd.h> 84 #include <linux/mm.h> 85 #include <linux/string.h> 86 #include <linux/slab.h> 87 #include <linux/poll.h> 88 #include <linux/proc_fs.h> 89 #include <linux/init.h> 90 #include <linux/module.h> 91 #include <linux/device.h> 92 #include <linux/wait.h> 93 #include <linux/bitops.h> 94 #include <linux/delay.h> 95 #include <linux/seq_file.h> 96 #include <linux/serial.h> 97 #include <linux/ratelimit.h> 98 99 #include <linux/uaccess.h> 100 101 #include <linux/kbd_kern.h> 102 #include <linux/vt_kern.h> 103 #include <linux/selection.h> 104 105 #include <linux/kmod.h> 106 #include <linux/nsproxy.h> 107 108 #undef TTY_DEBUG_HANGUP 109 110 #define TTY_PARANOIA_CHECK 1 111 #define CHECK_TTY_COUNT 1 112 113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 114 .c_iflag = ICRNL | IXON, 115 .c_oflag = OPOST | ONLCR, 116 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 118 ECHOCTL | ECHOKE | IEXTEN, 119 .c_cc = INIT_C_CC, 120 .c_ispeed = 38400, 121 .c_ospeed = 38400 122 }; 123 124 EXPORT_SYMBOL(tty_std_termios); 125 126 /* This list gets poked at by procfs and various bits of boot up code. This 127 could do with some rationalisation such as pulling the tty proc function 128 into this file */ 129 130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 131 132 /* Mutex to protect creating and releasing a tty. This is shared with 133 vt.c for deeply disgusting hack reasons */ 134 DEFINE_MUTEX(tty_mutex); 135 EXPORT_SYMBOL(tty_mutex); 136 137 /* Spinlock to protect the tty->tty_files list */ 138 DEFINE_SPINLOCK(tty_files_lock); 139 140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *); 141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *); 142 ssize_t redirected_tty_write(struct file *, const char __user *, 143 size_t, loff_t *); 144 static unsigned int tty_poll(struct file *, poll_table *); 145 static int tty_open(struct inode *, struct file *); 146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 147 #ifdef CONFIG_COMPAT 148 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 149 unsigned long arg); 150 #else 151 #define tty_compat_ioctl NULL 152 #endif 153 static int __tty_fasync(int fd, struct file *filp, int on); 154 static int tty_fasync(int fd, struct file *filp, int on); 155 static void release_tty(struct tty_struct *tty, int idx); 156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty); 157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty); 158 159 /** 160 * alloc_tty_struct - allocate a tty object 161 * 162 * Return a new empty tty structure. The data fields have not 163 * been initialized in any way but has been zeroed 164 * 165 * Locking: none 166 */ 167 168 struct tty_struct *alloc_tty_struct(void) 169 { 170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL); 171 } 172 173 /** 174 * free_tty_struct - free a disused tty 175 * @tty: tty struct to free 176 * 177 * Free the write buffers, tty queue and tty memory itself. 178 * 179 * Locking: none. Must be called after tty is definitely unused 180 */ 181 182 void free_tty_struct(struct tty_struct *tty) 183 { 184 if (!tty) 185 return; 186 if (tty->dev) 187 put_device(tty->dev); 188 kfree(tty->write_buf); 189 tty->magic = 0xDEADDEAD; 190 kfree(tty); 191 } 192 193 static inline struct tty_struct *file_tty(struct file *file) 194 { 195 return ((struct tty_file_private *)file->private_data)->tty; 196 } 197 198 int tty_alloc_file(struct file *file) 199 { 200 struct tty_file_private *priv; 201 202 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 203 if (!priv) 204 return -ENOMEM; 205 206 file->private_data = priv; 207 208 return 0; 209 } 210 211 /* Associate a new file with the tty structure */ 212 void tty_add_file(struct tty_struct *tty, struct file *file) 213 { 214 struct tty_file_private *priv = file->private_data; 215 216 priv->tty = tty; 217 priv->file = file; 218 219 spin_lock(&tty_files_lock); 220 list_add(&priv->list, &tty->tty_files); 221 spin_unlock(&tty_files_lock); 222 } 223 224 /** 225 * tty_free_file - free file->private_data 226 * 227 * This shall be used only for fail path handling when tty_add_file was not 228 * called yet. 229 */ 230 void tty_free_file(struct file *file) 231 { 232 struct tty_file_private *priv = file->private_data; 233 234 file->private_data = NULL; 235 kfree(priv); 236 } 237 238 /* Delete file from its tty */ 239 static void tty_del_file(struct file *file) 240 { 241 struct tty_file_private *priv = file->private_data; 242 243 spin_lock(&tty_files_lock); 244 list_del(&priv->list); 245 spin_unlock(&tty_files_lock); 246 tty_free_file(file); 247 } 248 249 250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base) 251 252 /** 253 * tty_name - return tty naming 254 * @tty: tty structure 255 * @buf: buffer for output 256 * 257 * Convert a tty structure into a name. The name reflects the kernel 258 * naming policy and if udev is in use may not reflect user space 259 * 260 * Locking: none 261 */ 262 263 char *tty_name(struct tty_struct *tty, char *buf) 264 { 265 if (!tty) /* Hmm. NULL pointer. That's fun. */ 266 strcpy(buf, "NULL tty"); 267 else 268 strcpy(buf, tty->name); 269 return buf; 270 } 271 272 EXPORT_SYMBOL(tty_name); 273 274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 275 const char *routine) 276 { 277 #ifdef TTY_PARANOIA_CHECK 278 if (!tty) { 279 printk(KERN_WARNING 280 "null TTY for (%d:%d) in %s\n", 281 imajor(inode), iminor(inode), routine); 282 return 1; 283 } 284 if (tty->magic != TTY_MAGIC) { 285 printk(KERN_WARNING 286 "bad magic number for tty struct (%d:%d) in %s\n", 287 imajor(inode), iminor(inode), routine); 288 return 1; 289 } 290 #endif 291 return 0; 292 } 293 294 static int check_tty_count(struct tty_struct *tty, const char *routine) 295 { 296 #ifdef CHECK_TTY_COUNT 297 struct list_head *p; 298 int count = 0; 299 300 spin_lock(&tty_files_lock); 301 list_for_each(p, &tty->tty_files) { 302 count++; 303 } 304 spin_unlock(&tty_files_lock); 305 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 306 tty->driver->subtype == PTY_TYPE_SLAVE && 307 tty->link && tty->link->count) 308 count++; 309 if (tty->count != count) { 310 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) " 311 "!= #fd's(%d) in %s\n", 312 tty->name, tty->count, count, routine); 313 return count; 314 } 315 #endif 316 return 0; 317 } 318 319 /** 320 * get_tty_driver - find device of a tty 321 * @dev_t: device identifier 322 * @index: returns the index of the tty 323 * 324 * This routine returns a tty driver structure, given a device number 325 * and also passes back the index number. 326 * 327 * Locking: caller must hold tty_mutex 328 */ 329 330 static struct tty_driver *get_tty_driver(dev_t device, int *index) 331 { 332 struct tty_driver *p; 333 334 list_for_each_entry(p, &tty_drivers, tty_drivers) { 335 dev_t base = MKDEV(p->major, p->minor_start); 336 if (device < base || device >= base + p->num) 337 continue; 338 *index = device - base; 339 return tty_driver_kref_get(p); 340 } 341 return NULL; 342 } 343 344 #ifdef CONFIG_CONSOLE_POLL 345 346 /** 347 * tty_find_polling_driver - find device of a polled tty 348 * @name: name string to match 349 * @line: pointer to resulting tty line nr 350 * 351 * This routine returns a tty driver structure, given a name 352 * and the condition that the tty driver is capable of polled 353 * operation. 354 */ 355 struct tty_driver *tty_find_polling_driver(char *name, int *line) 356 { 357 struct tty_driver *p, *res = NULL; 358 int tty_line = 0; 359 int len; 360 char *str, *stp; 361 362 for (str = name; *str; str++) 363 if ((*str >= '0' && *str <= '9') || *str == ',') 364 break; 365 if (!*str) 366 return NULL; 367 368 len = str - name; 369 tty_line = simple_strtoul(str, &str, 10); 370 371 mutex_lock(&tty_mutex); 372 /* Search through the tty devices to look for a match */ 373 list_for_each_entry(p, &tty_drivers, tty_drivers) { 374 if (strncmp(name, p->name, len) != 0) 375 continue; 376 stp = str; 377 if (*stp == ',') 378 stp++; 379 if (*stp == '\0') 380 stp = NULL; 381 382 if (tty_line >= 0 && tty_line < p->num && p->ops && 383 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 384 res = tty_driver_kref_get(p); 385 *line = tty_line; 386 break; 387 } 388 } 389 mutex_unlock(&tty_mutex); 390 391 return res; 392 } 393 EXPORT_SYMBOL_GPL(tty_find_polling_driver); 394 #endif 395 396 /** 397 * tty_check_change - check for POSIX terminal changes 398 * @tty: tty to check 399 * 400 * If we try to write to, or set the state of, a terminal and we're 401 * not in the foreground, send a SIGTTOU. If the signal is blocked or 402 * ignored, go ahead and perform the operation. (POSIX 7.2) 403 * 404 * Locking: ctrl_lock 405 */ 406 407 int tty_check_change(struct tty_struct *tty) 408 { 409 unsigned long flags; 410 int ret = 0; 411 412 if (current->signal->tty != tty) 413 return 0; 414 415 spin_lock_irqsave(&tty->ctrl_lock, flags); 416 417 if (!tty->pgrp) { 418 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n"); 419 goto out_unlock; 420 } 421 if (task_pgrp(current) == tty->pgrp) 422 goto out_unlock; 423 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 424 if (is_ignored(SIGTTOU)) 425 goto out; 426 if (is_current_pgrp_orphaned()) { 427 ret = -EIO; 428 goto out; 429 } 430 kill_pgrp(task_pgrp(current), SIGTTOU, 1); 431 set_thread_flag(TIF_SIGPENDING); 432 ret = -ERESTARTSYS; 433 out: 434 return ret; 435 out_unlock: 436 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 437 return ret; 438 } 439 440 EXPORT_SYMBOL(tty_check_change); 441 442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf, 443 size_t count, loff_t *ppos) 444 { 445 return 0; 446 } 447 448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf, 449 size_t count, loff_t *ppos) 450 { 451 return -EIO; 452 } 453 454 /* No kernel lock held - none needed ;) */ 455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait) 456 { 457 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM; 458 } 459 460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 461 unsigned long arg) 462 { 463 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 464 } 465 466 static long hung_up_tty_compat_ioctl(struct file *file, 467 unsigned int cmd, unsigned long arg) 468 { 469 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 470 } 471 472 static const struct file_operations tty_fops = { 473 .llseek = no_llseek, 474 .read = tty_read, 475 .write = tty_write, 476 .poll = tty_poll, 477 .unlocked_ioctl = tty_ioctl, 478 .compat_ioctl = tty_compat_ioctl, 479 .open = tty_open, 480 .release = tty_release, 481 .fasync = tty_fasync, 482 }; 483 484 static const struct file_operations console_fops = { 485 .llseek = no_llseek, 486 .read = tty_read, 487 .write = redirected_tty_write, 488 .poll = tty_poll, 489 .unlocked_ioctl = tty_ioctl, 490 .compat_ioctl = tty_compat_ioctl, 491 .open = tty_open, 492 .release = tty_release, 493 .fasync = tty_fasync, 494 }; 495 496 static const struct file_operations hung_up_tty_fops = { 497 .llseek = no_llseek, 498 .read = hung_up_tty_read, 499 .write = hung_up_tty_write, 500 .poll = hung_up_tty_poll, 501 .unlocked_ioctl = hung_up_tty_ioctl, 502 .compat_ioctl = hung_up_tty_compat_ioctl, 503 .release = tty_release, 504 }; 505 506 static DEFINE_SPINLOCK(redirect_lock); 507 static struct file *redirect; 508 509 /** 510 * tty_wakeup - request more data 511 * @tty: terminal 512 * 513 * Internal and external helper for wakeups of tty. This function 514 * informs the line discipline if present that the driver is ready 515 * to receive more output data. 516 */ 517 518 void tty_wakeup(struct tty_struct *tty) 519 { 520 struct tty_ldisc *ld; 521 522 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 523 ld = tty_ldisc_ref(tty); 524 if (ld) { 525 if (ld->ops->write_wakeup) 526 ld->ops->write_wakeup(tty); 527 tty_ldisc_deref(ld); 528 } 529 } 530 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 531 } 532 533 EXPORT_SYMBOL_GPL(tty_wakeup); 534 535 /** 536 * tty_signal_session_leader - sends SIGHUP to session leader 537 * @tty controlling tty 538 * @exit_session if non-zero, signal all foreground group processes 539 * 540 * Send SIGHUP and SIGCONT to the session leader and its process group. 541 * Optionally, signal all processes in the foreground process group. 542 * 543 * Returns the number of processes in the session with this tty 544 * as their controlling terminal. This value is used to drop 545 * tty references for those processes. 546 */ 547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session) 548 { 549 struct task_struct *p; 550 int refs = 0; 551 struct pid *tty_pgrp = NULL; 552 553 read_lock(&tasklist_lock); 554 if (tty->session) { 555 do_each_pid_task(tty->session, PIDTYPE_SID, p) { 556 spin_lock_irq(&p->sighand->siglock); 557 if (p->signal->tty == tty) { 558 p->signal->tty = NULL; 559 /* We defer the dereferences outside fo 560 the tasklist lock */ 561 refs++; 562 } 563 if (!p->signal->leader) { 564 spin_unlock_irq(&p->sighand->siglock); 565 continue; 566 } 567 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p); 568 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p); 569 put_pid(p->signal->tty_old_pgrp); /* A noop */ 570 spin_lock(&tty->ctrl_lock); 571 tty_pgrp = get_pid(tty->pgrp); 572 if (tty->pgrp) 573 p->signal->tty_old_pgrp = get_pid(tty->pgrp); 574 spin_unlock(&tty->ctrl_lock); 575 spin_unlock_irq(&p->sighand->siglock); 576 } while_each_pid_task(tty->session, PIDTYPE_SID, p); 577 } 578 read_unlock(&tasklist_lock); 579 580 if (tty_pgrp) { 581 if (exit_session) 582 kill_pgrp(tty_pgrp, SIGHUP, exit_session); 583 put_pid(tty_pgrp); 584 } 585 586 return refs; 587 } 588 589 /** 590 * __tty_hangup - actual handler for hangup events 591 * @work: tty device 592 * 593 * This can be called by a "kworker" kernel thread. That is process 594 * synchronous but doesn't hold any locks, so we need to make sure we 595 * have the appropriate locks for what we're doing. 596 * 597 * The hangup event clears any pending redirections onto the hung up 598 * device. It ensures future writes will error and it does the needed 599 * line discipline hangup and signal delivery. The tty object itself 600 * remains intact. 601 * 602 * Locking: 603 * BTM 604 * redirect lock for undoing redirection 605 * file list lock for manipulating list of ttys 606 * tty_ldiscs_lock from called functions 607 * termios_rwsem resetting termios data 608 * tasklist_lock to walk task list for hangup event 609 * ->siglock to protect ->signal/->sighand 610 */ 611 static void __tty_hangup(struct tty_struct *tty, int exit_session) 612 { 613 struct file *cons_filp = NULL; 614 struct file *filp, *f = NULL; 615 struct tty_file_private *priv; 616 int closecount = 0, n; 617 int refs; 618 619 if (!tty) 620 return; 621 622 623 spin_lock(&redirect_lock); 624 if (redirect && file_tty(redirect) == tty) { 625 f = redirect; 626 redirect = NULL; 627 } 628 spin_unlock(&redirect_lock); 629 630 tty_lock(tty); 631 632 if (test_bit(TTY_HUPPED, &tty->flags)) { 633 tty_unlock(tty); 634 return; 635 } 636 637 /* some functions below drop BTM, so we need this bit */ 638 set_bit(TTY_HUPPING, &tty->flags); 639 640 /* inuse_filps is protected by the single tty lock, 641 this really needs to change if we want to flush the 642 workqueue with the lock held */ 643 check_tty_count(tty, "tty_hangup"); 644 645 spin_lock(&tty_files_lock); 646 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 647 list_for_each_entry(priv, &tty->tty_files, list) { 648 filp = priv->file; 649 if (filp->f_op->write == redirected_tty_write) 650 cons_filp = filp; 651 if (filp->f_op->write != tty_write) 652 continue; 653 closecount++; 654 __tty_fasync(-1, filp, 0); /* can't block */ 655 filp->f_op = &hung_up_tty_fops; 656 } 657 spin_unlock(&tty_files_lock); 658 659 refs = tty_signal_session_leader(tty, exit_session); 660 /* Account for the p->signal references we killed */ 661 while (refs--) 662 tty_kref_put(tty); 663 664 /* 665 * it drops BTM and thus races with reopen 666 * we protect the race by TTY_HUPPING 667 */ 668 tty_ldisc_hangup(tty); 669 670 spin_lock_irq(&tty->ctrl_lock); 671 clear_bit(TTY_THROTTLED, &tty->flags); 672 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 673 put_pid(tty->session); 674 put_pid(tty->pgrp); 675 tty->session = NULL; 676 tty->pgrp = NULL; 677 tty->ctrl_status = 0; 678 spin_unlock_irq(&tty->ctrl_lock); 679 680 /* 681 * If one of the devices matches a console pointer, we 682 * cannot just call hangup() because that will cause 683 * tty->count and state->count to go out of sync. 684 * So we just call close() the right number of times. 685 */ 686 if (cons_filp) { 687 if (tty->ops->close) 688 for (n = 0; n < closecount; n++) 689 tty->ops->close(tty, cons_filp); 690 } else if (tty->ops->hangup) 691 (tty->ops->hangup)(tty); 692 /* 693 * We don't want to have driver/ldisc interactions beyond 694 * the ones we did here. The driver layer expects no 695 * calls after ->hangup() from the ldisc side. However we 696 * can't yet guarantee all that. 697 */ 698 set_bit(TTY_HUPPED, &tty->flags); 699 clear_bit(TTY_HUPPING, &tty->flags); 700 701 tty_unlock(tty); 702 703 if (f) 704 fput(f); 705 } 706 707 static void do_tty_hangup(struct work_struct *work) 708 { 709 struct tty_struct *tty = 710 container_of(work, struct tty_struct, hangup_work); 711 712 __tty_hangup(tty, 0); 713 } 714 715 /** 716 * tty_hangup - trigger a hangup event 717 * @tty: tty to hangup 718 * 719 * A carrier loss (virtual or otherwise) has occurred on this like 720 * schedule a hangup sequence to run after this event. 721 */ 722 723 void tty_hangup(struct tty_struct *tty) 724 { 725 #ifdef TTY_DEBUG_HANGUP 726 char buf[64]; 727 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf)); 728 #endif 729 schedule_work(&tty->hangup_work); 730 } 731 732 EXPORT_SYMBOL(tty_hangup); 733 734 /** 735 * tty_vhangup - process vhangup 736 * @tty: tty to hangup 737 * 738 * The user has asked via system call for the terminal to be hung up. 739 * We do this synchronously so that when the syscall returns the process 740 * is complete. That guarantee is necessary for security reasons. 741 */ 742 743 void tty_vhangup(struct tty_struct *tty) 744 { 745 #ifdef TTY_DEBUG_HANGUP 746 char buf[64]; 747 748 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf)); 749 #endif 750 __tty_hangup(tty, 0); 751 } 752 753 EXPORT_SYMBOL(tty_vhangup); 754 755 756 /** 757 * tty_vhangup_self - process vhangup for own ctty 758 * 759 * Perform a vhangup on the current controlling tty 760 */ 761 762 void tty_vhangup_self(void) 763 { 764 struct tty_struct *tty; 765 766 tty = get_current_tty(); 767 if (tty) { 768 tty_vhangup(tty); 769 tty_kref_put(tty); 770 } 771 } 772 773 /** 774 * tty_vhangup_session - hangup session leader exit 775 * @tty: tty to hangup 776 * 777 * The session leader is exiting and hanging up its controlling terminal. 778 * Every process in the foreground process group is signalled SIGHUP. 779 * 780 * We do this synchronously so that when the syscall returns the process 781 * is complete. That guarantee is necessary for security reasons. 782 */ 783 784 static void tty_vhangup_session(struct tty_struct *tty) 785 { 786 #ifdef TTY_DEBUG_HANGUP 787 char buf[64]; 788 789 printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf)); 790 #endif 791 __tty_hangup(tty, 1); 792 } 793 794 /** 795 * tty_hung_up_p - was tty hung up 796 * @filp: file pointer of tty 797 * 798 * Return true if the tty has been subject to a vhangup or a carrier 799 * loss 800 */ 801 802 int tty_hung_up_p(struct file *filp) 803 { 804 return (filp->f_op == &hung_up_tty_fops); 805 } 806 807 EXPORT_SYMBOL(tty_hung_up_p); 808 809 static void session_clear_tty(struct pid *session) 810 { 811 struct task_struct *p; 812 do_each_pid_task(session, PIDTYPE_SID, p) { 813 proc_clear_tty(p); 814 } while_each_pid_task(session, PIDTYPE_SID, p); 815 } 816 817 /** 818 * disassociate_ctty - disconnect controlling tty 819 * @on_exit: true if exiting so need to "hang up" the session 820 * 821 * This function is typically called only by the session leader, when 822 * it wants to disassociate itself from its controlling tty. 823 * 824 * It performs the following functions: 825 * (1) Sends a SIGHUP and SIGCONT to the foreground process group 826 * (2) Clears the tty from being controlling the session 827 * (3) Clears the controlling tty for all processes in the 828 * session group. 829 * 830 * The argument on_exit is set to 1 if called when a process is 831 * exiting; it is 0 if called by the ioctl TIOCNOTTY. 832 * 833 * Locking: 834 * BTM is taken for hysterical raisins, and held when 835 * called from no_tty(). 836 * tty_mutex is taken to protect tty 837 * ->siglock is taken to protect ->signal/->sighand 838 * tasklist_lock is taken to walk process list for sessions 839 * ->siglock is taken to protect ->signal/->sighand 840 */ 841 842 void disassociate_ctty(int on_exit) 843 { 844 struct tty_struct *tty; 845 846 if (!current->signal->leader) 847 return; 848 849 tty = get_current_tty(); 850 if (tty) { 851 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) { 852 tty_vhangup_session(tty); 853 } else { 854 struct pid *tty_pgrp = tty_get_pgrp(tty); 855 if (tty_pgrp) { 856 kill_pgrp(tty_pgrp, SIGHUP, on_exit); 857 if (!on_exit) 858 kill_pgrp(tty_pgrp, SIGCONT, on_exit); 859 put_pid(tty_pgrp); 860 } 861 } 862 tty_kref_put(tty); 863 864 } else if (on_exit) { 865 struct pid *old_pgrp; 866 spin_lock_irq(¤t->sighand->siglock); 867 old_pgrp = current->signal->tty_old_pgrp; 868 current->signal->tty_old_pgrp = NULL; 869 spin_unlock_irq(¤t->sighand->siglock); 870 if (old_pgrp) { 871 kill_pgrp(old_pgrp, SIGHUP, on_exit); 872 kill_pgrp(old_pgrp, SIGCONT, on_exit); 873 put_pid(old_pgrp); 874 } 875 return; 876 } 877 878 spin_lock_irq(¤t->sighand->siglock); 879 put_pid(current->signal->tty_old_pgrp); 880 current->signal->tty_old_pgrp = NULL; 881 spin_unlock_irq(¤t->sighand->siglock); 882 883 tty = get_current_tty(); 884 if (tty) { 885 unsigned long flags; 886 spin_lock_irqsave(&tty->ctrl_lock, flags); 887 put_pid(tty->session); 888 put_pid(tty->pgrp); 889 tty->session = NULL; 890 tty->pgrp = NULL; 891 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 892 tty_kref_put(tty); 893 } else { 894 #ifdef TTY_DEBUG_HANGUP 895 printk(KERN_DEBUG "error attempted to write to tty [0x%p]" 896 " = NULL", tty); 897 #endif 898 } 899 900 /* Now clear signal->tty under the lock */ 901 read_lock(&tasklist_lock); 902 session_clear_tty(task_session(current)); 903 read_unlock(&tasklist_lock); 904 } 905 906 /** 907 * 908 * no_tty - Ensure the current process does not have a controlling tty 909 */ 910 void no_tty(void) 911 { 912 /* FIXME: Review locking here. The tty_lock never covered any race 913 between a new association and proc_clear_tty but possible we need 914 to protect against this anyway */ 915 struct task_struct *tsk = current; 916 disassociate_ctty(0); 917 proc_clear_tty(tsk); 918 } 919 920 921 /** 922 * stop_tty - propagate flow control 923 * @tty: tty to stop 924 * 925 * Perform flow control to the driver. For PTY/TTY pairs we 926 * must also propagate the TIOCKPKT status. May be called 927 * on an already stopped device and will not re-call the driver 928 * method. 929 * 930 * This functionality is used by both the line disciplines for 931 * halting incoming flow and by the driver. It may therefore be 932 * called from any context, may be under the tty atomic_write_lock 933 * but not always. 934 * 935 * Locking: 936 * Uses the tty control lock internally 937 */ 938 939 void stop_tty(struct tty_struct *tty) 940 { 941 unsigned long flags; 942 spin_lock_irqsave(&tty->ctrl_lock, flags); 943 if (tty->stopped) { 944 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 945 return; 946 } 947 tty->stopped = 1; 948 if (tty->link && tty->link->packet) { 949 tty->ctrl_status &= ~TIOCPKT_START; 950 tty->ctrl_status |= TIOCPKT_STOP; 951 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN); 952 } 953 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 954 if (tty->ops->stop) 955 (tty->ops->stop)(tty); 956 } 957 958 EXPORT_SYMBOL(stop_tty); 959 960 /** 961 * start_tty - propagate flow control 962 * @tty: tty to start 963 * 964 * Start a tty that has been stopped if at all possible. Perform 965 * any necessary wakeups and propagate the TIOCPKT status. If this 966 * is the tty was previous stopped and is being started then the 967 * driver start method is invoked and the line discipline woken. 968 * 969 * Locking: 970 * ctrl_lock 971 */ 972 973 void start_tty(struct tty_struct *tty) 974 { 975 unsigned long flags; 976 spin_lock_irqsave(&tty->ctrl_lock, flags); 977 if (!tty->stopped || tty->flow_stopped) { 978 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 979 return; 980 } 981 tty->stopped = 0; 982 if (tty->link && tty->link->packet) { 983 tty->ctrl_status &= ~TIOCPKT_STOP; 984 tty->ctrl_status |= TIOCPKT_START; 985 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN); 986 } 987 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 988 if (tty->ops->start) 989 (tty->ops->start)(tty); 990 /* If we have a running line discipline it may need kicking */ 991 tty_wakeup(tty); 992 } 993 994 EXPORT_SYMBOL(start_tty); 995 996 /* We limit tty time update visibility to every 8 seconds or so. */ 997 static void tty_update_time(struct timespec *time) 998 { 999 unsigned long sec = get_seconds() & ~7; 1000 if ((long)(sec - time->tv_sec) > 0) 1001 time->tv_sec = sec; 1002 } 1003 1004 /** 1005 * tty_read - read method for tty device files 1006 * @file: pointer to tty file 1007 * @buf: user buffer 1008 * @count: size of user buffer 1009 * @ppos: unused 1010 * 1011 * Perform the read system call function on this terminal device. Checks 1012 * for hung up devices before calling the line discipline method. 1013 * 1014 * Locking: 1015 * Locks the line discipline internally while needed. Multiple 1016 * read calls may be outstanding in parallel. 1017 */ 1018 1019 static ssize_t tty_read(struct file *file, char __user *buf, size_t count, 1020 loff_t *ppos) 1021 { 1022 int i; 1023 struct inode *inode = file_inode(file); 1024 struct tty_struct *tty = file_tty(file); 1025 struct tty_ldisc *ld; 1026 1027 if (tty_paranoia_check(tty, inode, "tty_read")) 1028 return -EIO; 1029 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags))) 1030 return -EIO; 1031 1032 /* We want to wait for the line discipline to sort out in this 1033 situation */ 1034 ld = tty_ldisc_ref_wait(tty); 1035 if (ld->ops->read) 1036 i = (ld->ops->read)(tty, file, buf, count); 1037 else 1038 i = -EIO; 1039 tty_ldisc_deref(ld); 1040 1041 if (i > 0) 1042 tty_update_time(&inode->i_atime); 1043 1044 return i; 1045 } 1046 1047 void tty_write_unlock(struct tty_struct *tty) 1048 __releases(&tty->atomic_write_lock) 1049 { 1050 mutex_unlock(&tty->atomic_write_lock); 1051 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 1052 } 1053 1054 int tty_write_lock(struct tty_struct *tty, int ndelay) 1055 __acquires(&tty->atomic_write_lock) 1056 { 1057 if (!mutex_trylock(&tty->atomic_write_lock)) { 1058 if (ndelay) 1059 return -EAGAIN; 1060 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 1061 return -ERESTARTSYS; 1062 } 1063 return 0; 1064 } 1065 1066 /* 1067 * Split writes up in sane blocksizes to avoid 1068 * denial-of-service type attacks 1069 */ 1070 static inline ssize_t do_tty_write( 1071 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 1072 struct tty_struct *tty, 1073 struct file *file, 1074 const char __user *buf, 1075 size_t count) 1076 { 1077 ssize_t ret, written = 0; 1078 unsigned int chunk; 1079 1080 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 1081 if (ret < 0) 1082 return ret; 1083 1084 /* 1085 * We chunk up writes into a temporary buffer. This 1086 * simplifies low-level drivers immensely, since they 1087 * don't have locking issues and user mode accesses. 1088 * 1089 * But if TTY_NO_WRITE_SPLIT is set, we should use a 1090 * big chunk-size.. 1091 * 1092 * The default chunk-size is 2kB, because the NTTY 1093 * layer has problems with bigger chunks. It will 1094 * claim to be able to handle more characters than 1095 * it actually does. 1096 * 1097 * FIXME: This can probably go away now except that 64K chunks 1098 * are too likely to fail unless switched to vmalloc... 1099 */ 1100 chunk = 2048; 1101 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 1102 chunk = 65536; 1103 if (count < chunk) 1104 chunk = count; 1105 1106 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 1107 if (tty->write_cnt < chunk) { 1108 unsigned char *buf_chunk; 1109 1110 if (chunk < 1024) 1111 chunk = 1024; 1112 1113 buf_chunk = kmalloc(chunk, GFP_KERNEL); 1114 if (!buf_chunk) { 1115 ret = -ENOMEM; 1116 goto out; 1117 } 1118 kfree(tty->write_buf); 1119 tty->write_cnt = chunk; 1120 tty->write_buf = buf_chunk; 1121 } 1122 1123 /* Do the write .. */ 1124 for (;;) { 1125 size_t size = count; 1126 if (size > chunk) 1127 size = chunk; 1128 ret = -EFAULT; 1129 if (copy_from_user(tty->write_buf, buf, size)) 1130 break; 1131 ret = write(tty, file, tty->write_buf, size); 1132 if (ret <= 0) 1133 break; 1134 written += ret; 1135 buf += ret; 1136 count -= ret; 1137 if (!count) 1138 break; 1139 ret = -ERESTARTSYS; 1140 if (signal_pending(current)) 1141 break; 1142 cond_resched(); 1143 } 1144 if (written) { 1145 tty_update_time(&file_inode(file)->i_mtime); 1146 ret = written; 1147 } 1148 out: 1149 tty_write_unlock(tty); 1150 return ret; 1151 } 1152 1153 /** 1154 * tty_write_message - write a message to a certain tty, not just the console. 1155 * @tty: the destination tty_struct 1156 * @msg: the message to write 1157 * 1158 * This is used for messages that need to be redirected to a specific tty. 1159 * We don't put it into the syslog queue right now maybe in the future if 1160 * really needed. 1161 * 1162 * We must still hold the BTM and test the CLOSING flag for the moment. 1163 */ 1164 1165 void tty_write_message(struct tty_struct *tty, char *msg) 1166 { 1167 if (tty) { 1168 mutex_lock(&tty->atomic_write_lock); 1169 tty_lock(tty); 1170 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) { 1171 tty_unlock(tty); 1172 tty->ops->write(tty, msg, strlen(msg)); 1173 } else 1174 tty_unlock(tty); 1175 tty_write_unlock(tty); 1176 } 1177 return; 1178 } 1179 1180 1181 /** 1182 * tty_write - write method for tty device file 1183 * @file: tty file pointer 1184 * @buf: user data to write 1185 * @count: bytes to write 1186 * @ppos: unused 1187 * 1188 * Write data to a tty device via the line discipline. 1189 * 1190 * Locking: 1191 * Locks the line discipline as required 1192 * Writes to the tty driver are serialized by the atomic_write_lock 1193 * and are then processed in chunks to the device. The line discipline 1194 * write method will not be invoked in parallel for each device. 1195 */ 1196 1197 static ssize_t tty_write(struct file *file, const char __user *buf, 1198 size_t count, loff_t *ppos) 1199 { 1200 struct tty_struct *tty = file_tty(file); 1201 struct tty_ldisc *ld; 1202 ssize_t ret; 1203 1204 if (tty_paranoia_check(tty, file_inode(file), "tty_write")) 1205 return -EIO; 1206 if (!tty || !tty->ops->write || 1207 (test_bit(TTY_IO_ERROR, &tty->flags))) 1208 return -EIO; 1209 /* Short term debug to catch buggy drivers */ 1210 if (tty->ops->write_room == NULL) 1211 printk(KERN_ERR "tty driver %s lacks a write_room method.\n", 1212 tty->driver->name); 1213 ld = tty_ldisc_ref_wait(tty); 1214 if (!ld->ops->write) 1215 ret = -EIO; 1216 else 1217 ret = do_tty_write(ld->ops->write, tty, file, buf, count); 1218 tty_ldisc_deref(ld); 1219 return ret; 1220 } 1221 1222 ssize_t redirected_tty_write(struct file *file, const char __user *buf, 1223 size_t count, loff_t *ppos) 1224 { 1225 struct file *p = NULL; 1226 1227 spin_lock(&redirect_lock); 1228 if (redirect) 1229 p = get_file(redirect); 1230 spin_unlock(&redirect_lock); 1231 1232 if (p) { 1233 ssize_t res; 1234 res = vfs_write(p, buf, count, &p->f_pos); 1235 fput(p); 1236 return res; 1237 } 1238 return tty_write(file, buf, count, ppos); 1239 } 1240 1241 static char ptychar[] = "pqrstuvwxyzabcde"; 1242 1243 /** 1244 * pty_line_name - generate name for a pty 1245 * @driver: the tty driver in use 1246 * @index: the minor number 1247 * @p: output buffer of at least 6 bytes 1248 * 1249 * Generate a name from a driver reference and write it to the output 1250 * buffer. 1251 * 1252 * Locking: None 1253 */ 1254 static void pty_line_name(struct tty_driver *driver, int index, char *p) 1255 { 1256 int i = index + driver->name_base; 1257 /* ->name is initialized to "ttyp", but "tty" is expected */ 1258 sprintf(p, "%s%c%x", 1259 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1260 ptychar[i >> 4 & 0xf], i & 0xf); 1261 } 1262 1263 /** 1264 * tty_line_name - generate name for a tty 1265 * @driver: the tty driver in use 1266 * @index: the minor number 1267 * @p: output buffer of at least 7 bytes 1268 * 1269 * Generate a name from a driver reference and write it to the output 1270 * buffer. 1271 * 1272 * Locking: None 1273 */ 1274 static void tty_line_name(struct tty_driver *driver, int index, char *p) 1275 { 1276 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE) 1277 strcpy(p, driver->name); 1278 else 1279 sprintf(p, "%s%d", driver->name, index + driver->name_base); 1280 } 1281 1282 /** 1283 * tty_driver_lookup_tty() - find an existing tty, if any 1284 * @driver: the driver for the tty 1285 * @idx: the minor number 1286 * 1287 * Return the tty, if found or ERR_PTR() otherwise. 1288 * 1289 * Locking: tty_mutex must be held. If tty is found, the mutex must 1290 * be held until the 'fast-open' is also done. Will change once we 1291 * have refcounting in the driver and per driver locking 1292 */ 1293 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1294 struct inode *inode, int idx) 1295 { 1296 if (driver->ops->lookup) 1297 return driver->ops->lookup(driver, inode, idx); 1298 1299 return driver->ttys[idx]; 1300 } 1301 1302 /** 1303 * tty_init_termios - helper for termios setup 1304 * @tty: the tty to set up 1305 * 1306 * Initialise the termios structures for this tty. Thus runs under 1307 * the tty_mutex currently so we can be relaxed about ordering. 1308 */ 1309 1310 int tty_init_termios(struct tty_struct *tty) 1311 { 1312 struct ktermios *tp; 1313 int idx = tty->index; 1314 1315 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1316 tty->termios = tty->driver->init_termios; 1317 else { 1318 /* Check for lazy saved data */ 1319 tp = tty->driver->termios[idx]; 1320 if (tp != NULL) 1321 tty->termios = *tp; 1322 else 1323 tty->termios = tty->driver->init_termios; 1324 } 1325 /* Compatibility until drivers always set this */ 1326 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios); 1327 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios); 1328 return 0; 1329 } 1330 EXPORT_SYMBOL_GPL(tty_init_termios); 1331 1332 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1333 { 1334 int ret = tty_init_termios(tty); 1335 if (ret) 1336 return ret; 1337 1338 tty_driver_kref_get(driver); 1339 tty->count++; 1340 driver->ttys[tty->index] = tty; 1341 return 0; 1342 } 1343 EXPORT_SYMBOL_GPL(tty_standard_install); 1344 1345 /** 1346 * tty_driver_install_tty() - install a tty entry in the driver 1347 * @driver: the driver for the tty 1348 * @tty: the tty 1349 * 1350 * Install a tty object into the driver tables. The tty->index field 1351 * will be set by the time this is called. This method is responsible 1352 * for ensuring any need additional structures are allocated and 1353 * configured. 1354 * 1355 * Locking: tty_mutex for now 1356 */ 1357 static int tty_driver_install_tty(struct tty_driver *driver, 1358 struct tty_struct *tty) 1359 { 1360 return driver->ops->install ? driver->ops->install(driver, tty) : 1361 tty_standard_install(driver, tty); 1362 } 1363 1364 /** 1365 * tty_driver_remove_tty() - remove a tty from the driver tables 1366 * @driver: the driver for the tty 1367 * @idx: the minor number 1368 * 1369 * Remvoe a tty object from the driver tables. The tty->index field 1370 * will be set by the time this is called. 1371 * 1372 * Locking: tty_mutex for now 1373 */ 1374 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1375 { 1376 if (driver->ops->remove) 1377 driver->ops->remove(driver, tty); 1378 else 1379 driver->ttys[tty->index] = NULL; 1380 } 1381 1382 /* 1383 * tty_reopen() - fast re-open of an open tty 1384 * @tty - the tty to open 1385 * 1386 * Return 0 on success, -errno on error. 1387 * 1388 * Locking: tty_mutex must be held from the time the tty was found 1389 * till this open completes. 1390 */ 1391 static int tty_reopen(struct tty_struct *tty) 1392 { 1393 struct tty_driver *driver = tty->driver; 1394 1395 if (test_bit(TTY_CLOSING, &tty->flags) || 1396 test_bit(TTY_HUPPING, &tty->flags)) 1397 return -EIO; 1398 1399 if (driver->type == TTY_DRIVER_TYPE_PTY && 1400 driver->subtype == PTY_TYPE_MASTER) { 1401 /* 1402 * special case for PTY masters: only one open permitted, 1403 * and the slave side open count is incremented as well. 1404 */ 1405 if (tty->count) 1406 return -EIO; 1407 1408 tty->link->count++; 1409 } 1410 tty->count++; 1411 1412 WARN_ON(!tty->ldisc); 1413 1414 return 0; 1415 } 1416 1417 /** 1418 * tty_init_dev - initialise a tty device 1419 * @driver: tty driver we are opening a device on 1420 * @idx: device index 1421 * @ret_tty: returned tty structure 1422 * 1423 * Prepare a tty device. This may not be a "new" clean device but 1424 * could also be an active device. The pty drivers require special 1425 * handling because of this. 1426 * 1427 * Locking: 1428 * The function is called under the tty_mutex, which 1429 * protects us from the tty struct or driver itself going away. 1430 * 1431 * On exit the tty device has the line discipline attached and 1432 * a reference count of 1. If a pair was created for pty/tty use 1433 * and the other was a pty master then it too has a reference count of 1. 1434 * 1435 * WSH 06/09/97: Rewritten to remove races and properly clean up after a 1436 * failed open. The new code protects the open with a mutex, so it's 1437 * really quite straightforward. The mutex locking can probably be 1438 * relaxed for the (most common) case of reopening a tty. 1439 */ 1440 1441 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1442 { 1443 struct tty_struct *tty; 1444 int retval; 1445 1446 /* 1447 * First time open is complex, especially for PTY devices. 1448 * This code guarantees that either everything succeeds and the 1449 * TTY is ready for operation, or else the table slots are vacated 1450 * and the allocated memory released. (Except that the termios 1451 * and locked termios may be retained.) 1452 */ 1453 1454 if (!try_module_get(driver->owner)) 1455 return ERR_PTR(-ENODEV); 1456 1457 tty = alloc_tty_struct(); 1458 if (!tty) { 1459 retval = -ENOMEM; 1460 goto err_module_put; 1461 } 1462 initialize_tty_struct(tty, driver, idx); 1463 1464 tty_lock(tty); 1465 retval = tty_driver_install_tty(driver, tty); 1466 if (retval < 0) 1467 goto err_deinit_tty; 1468 1469 if (!tty->port) 1470 tty->port = driver->ports[idx]; 1471 1472 WARN_RATELIMIT(!tty->port, 1473 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n", 1474 __func__, tty->driver->name); 1475 1476 tty->port->itty = tty; 1477 1478 /* 1479 * Structures all installed ... call the ldisc open routines. 1480 * If we fail here just call release_tty to clean up. No need 1481 * to decrement the use counts, as release_tty doesn't care. 1482 */ 1483 retval = tty_ldisc_setup(tty, tty->link); 1484 if (retval) 1485 goto err_release_tty; 1486 /* Return the tty locked so that it cannot vanish under the caller */ 1487 return tty; 1488 1489 err_deinit_tty: 1490 tty_unlock(tty); 1491 deinitialize_tty_struct(tty); 1492 free_tty_struct(tty); 1493 err_module_put: 1494 module_put(driver->owner); 1495 return ERR_PTR(retval); 1496 1497 /* call the tty release_tty routine to clean out this slot */ 1498 err_release_tty: 1499 tty_unlock(tty); 1500 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, " 1501 "clearing slot %d\n", idx); 1502 release_tty(tty, idx); 1503 return ERR_PTR(retval); 1504 } 1505 1506 void tty_free_termios(struct tty_struct *tty) 1507 { 1508 struct ktermios *tp; 1509 int idx = tty->index; 1510 1511 /* If the port is going to reset then it has no termios to save */ 1512 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1513 return; 1514 1515 /* Stash the termios data */ 1516 tp = tty->driver->termios[idx]; 1517 if (tp == NULL) { 1518 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL); 1519 if (tp == NULL) { 1520 pr_warn("tty: no memory to save termios state.\n"); 1521 return; 1522 } 1523 tty->driver->termios[idx] = tp; 1524 } 1525 *tp = tty->termios; 1526 } 1527 EXPORT_SYMBOL(tty_free_termios); 1528 1529 /** 1530 * tty_flush_works - flush all works of a tty 1531 * @tty: tty device to flush works for 1532 * 1533 * Sync flush all works belonging to @tty. 1534 */ 1535 static void tty_flush_works(struct tty_struct *tty) 1536 { 1537 flush_work(&tty->SAK_work); 1538 flush_work(&tty->hangup_work); 1539 } 1540 1541 /** 1542 * release_one_tty - release tty structure memory 1543 * @kref: kref of tty we are obliterating 1544 * 1545 * Releases memory associated with a tty structure, and clears out the 1546 * driver table slots. This function is called when a device is no longer 1547 * in use. It also gets called when setup of a device fails. 1548 * 1549 * Locking: 1550 * takes the file list lock internally when working on the list 1551 * of ttys that the driver keeps. 1552 * 1553 * This method gets called from a work queue so that the driver private 1554 * cleanup ops can sleep (needed for USB at least) 1555 */ 1556 static void release_one_tty(struct work_struct *work) 1557 { 1558 struct tty_struct *tty = 1559 container_of(work, struct tty_struct, hangup_work); 1560 struct tty_driver *driver = tty->driver; 1561 1562 if (tty->ops->cleanup) 1563 tty->ops->cleanup(tty); 1564 1565 tty->magic = 0; 1566 tty_driver_kref_put(driver); 1567 module_put(driver->owner); 1568 1569 spin_lock(&tty_files_lock); 1570 list_del_init(&tty->tty_files); 1571 spin_unlock(&tty_files_lock); 1572 1573 put_pid(tty->pgrp); 1574 put_pid(tty->session); 1575 free_tty_struct(tty); 1576 } 1577 1578 static void queue_release_one_tty(struct kref *kref) 1579 { 1580 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1581 1582 /* The hangup queue is now free so we can reuse it rather than 1583 waste a chunk of memory for each port */ 1584 INIT_WORK(&tty->hangup_work, release_one_tty); 1585 schedule_work(&tty->hangup_work); 1586 } 1587 1588 /** 1589 * tty_kref_put - release a tty kref 1590 * @tty: tty device 1591 * 1592 * Release a reference to a tty device and if need be let the kref 1593 * layer destruct the object for us 1594 */ 1595 1596 void tty_kref_put(struct tty_struct *tty) 1597 { 1598 if (tty) 1599 kref_put(&tty->kref, queue_release_one_tty); 1600 } 1601 EXPORT_SYMBOL(tty_kref_put); 1602 1603 /** 1604 * release_tty - release tty structure memory 1605 * 1606 * Release both @tty and a possible linked partner (think pty pair), 1607 * and decrement the refcount of the backing module. 1608 * 1609 * Locking: 1610 * tty_mutex 1611 * takes the file list lock internally when working on the list 1612 * of ttys that the driver keeps. 1613 * 1614 */ 1615 static void release_tty(struct tty_struct *tty, int idx) 1616 { 1617 /* This should always be true but check for the moment */ 1618 WARN_ON(tty->index != idx); 1619 WARN_ON(!mutex_is_locked(&tty_mutex)); 1620 if (tty->ops->shutdown) 1621 tty->ops->shutdown(tty); 1622 tty_free_termios(tty); 1623 tty_driver_remove_tty(tty->driver, tty); 1624 tty->port->itty = NULL; 1625 if (tty->link) 1626 tty->link->port->itty = NULL; 1627 cancel_work_sync(&tty->port->buf.work); 1628 1629 if (tty->link) 1630 tty_kref_put(tty->link); 1631 tty_kref_put(tty); 1632 } 1633 1634 /** 1635 * tty_release_checks - check a tty before real release 1636 * @tty: tty to check 1637 * @o_tty: link of @tty (if any) 1638 * @idx: index of the tty 1639 * 1640 * Performs some paranoid checking before true release of the @tty. 1641 * This is a no-op unless TTY_PARANOIA_CHECK is defined. 1642 */ 1643 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty, 1644 int idx) 1645 { 1646 #ifdef TTY_PARANOIA_CHECK 1647 if (idx < 0 || idx >= tty->driver->num) { 1648 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n", 1649 __func__, tty->name); 1650 return -1; 1651 } 1652 1653 /* not much to check for devpts */ 1654 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1655 return 0; 1656 1657 if (tty != tty->driver->ttys[idx]) { 1658 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n", 1659 __func__, idx, tty->name); 1660 return -1; 1661 } 1662 if (tty->driver->other) { 1663 if (o_tty != tty->driver->other->ttys[idx]) { 1664 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n", 1665 __func__, idx, tty->name); 1666 return -1; 1667 } 1668 if (o_tty->link != tty) { 1669 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__); 1670 return -1; 1671 } 1672 } 1673 #endif 1674 return 0; 1675 } 1676 1677 /** 1678 * tty_release - vfs callback for close 1679 * @inode: inode of tty 1680 * @filp: file pointer for handle to tty 1681 * 1682 * Called the last time each file handle is closed that references 1683 * this tty. There may however be several such references. 1684 * 1685 * Locking: 1686 * Takes bkl. See tty_release_dev 1687 * 1688 * Even releasing the tty structures is a tricky business.. We have 1689 * to be very careful that the structures are all released at the 1690 * same time, as interrupts might otherwise get the wrong pointers. 1691 * 1692 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1693 * lead to double frees or releasing memory still in use. 1694 */ 1695 1696 int tty_release(struct inode *inode, struct file *filp) 1697 { 1698 struct tty_struct *tty = file_tty(filp); 1699 struct tty_struct *o_tty; 1700 int pty_master, tty_closing, o_tty_closing, do_sleep; 1701 int idx; 1702 char buf[64]; 1703 1704 if (tty_paranoia_check(tty, inode, __func__)) 1705 return 0; 1706 1707 tty_lock(tty); 1708 check_tty_count(tty, __func__); 1709 1710 __tty_fasync(-1, filp, 0); 1711 1712 idx = tty->index; 1713 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1714 tty->driver->subtype == PTY_TYPE_MASTER); 1715 /* Review: parallel close */ 1716 o_tty = tty->link; 1717 1718 if (tty_release_checks(tty, o_tty, idx)) { 1719 tty_unlock(tty); 1720 return 0; 1721 } 1722 1723 #ifdef TTY_DEBUG_HANGUP 1724 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__, 1725 tty_name(tty, buf), tty->count); 1726 #endif 1727 1728 if (tty->ops->close) 1729 tty->ops->close(tty, filp); 1730 1731 tty_unlock(tty); 1732 /* 1733 * Sanity check: if tty->count is going to zero, there shouldn't be 1734 * any waiters on tty->read_wait or tty->write_wait. We test the 1735 * wait queues and kick everyone out _before_ actually starting to 1736 * close. This ensures that we won't block while releasing the tty 1737 * structure. 1738 * 1739 * The test for the o_tty closing is necessary, since the master and 1740 * slave sides may close in any order. If the slave side closes out 1741 * first, its count will be one, since the master side holds an open. 1742 * Thus this test wouldn't be triggered at the time the slave closes, 1743 * so we do it now. 1744 * 1745 * Note that it's possible for the tty to be opened again while we're 1746 * flushing out waiters. By recalculating the closing flags before 1747 * each iteration we avoid any problems. 1748 */ 1749 while (1) { 1750 /* Guard against races with tty->count changes elsewhere and 1751 opens on /dev/tty */ 1752 1753 mutex_lock(&tty_mutex); 1754 tty_lock_pair(tty, o_tty); 1755 tty_closing = tty->count <= 1; 1756 o_tty_closing = o_tty && 1757 (o_tty->count <= (pty_master ? 1 : 0)); 1758 do_sleep = 0; 1759 1760 if (tty_closing) { 1761 if (waitqueue_active(&tty->read_wait)) { 1762 wake_up_poll(&tty->read_wait, POLLIN); 1763 do_sleep++; 1764 } 1765 if (waitqueue_active(&tty->write_wait)) { 1766 wake_up_poll(&tty->write_wait, POLLOUT); 1767 do_sleep++; 1768 } 1769 } 1770 if (o_tty_closing) { 1771 if (waitqueue_active(&o_tty->read_wait)) { 1772 wake_up_poll(&o_tty->read_wait, POLLIN); 1773 do_sleep++; 1774 } 1775 if (waitqueue_active(&o_tty->write_wait)) { 1776 wake_up_poll(&o_tty->write_wait, POLLOUT); 1777 do_sleep++; 1778 } 1779 } 1780 if (!do_sleep) 1781 break; 1782 1783 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n", 1784 __func__, tty_name(tty, buf)); 1785 tty_unlock_pair(tty, o_tty); 1786 mutex_unlock(&tty_mutex); 1787 schedule(); 1788 } 1789 1790 /* 1791 * The closing flags are now consistent with the open counts on 1792 * both sides, and we've completed the last operation that could 1793 * block, so it's safe to proceed with closing. 1794 * 1795 * We must *not* drop the tty_mutex until we ensure that a further 1796 * entry into tty_open can not pick up this tty. 1797 */ 1798 if (pty_master) { 1799 if (--o_tty->count < 0) { 1800 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n", 1801 __func__, o_tty->count, tty_name(o_tty, buf)); 1802 o_tty->count = 0; 1803 } 1804 } 1805 if (--tty->count < 0) { 1806 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n", 1807 __func__, tty->count, tty_name(tty, buf)); 1808 tty->count = 0; 1809 } 1810 1811 /* 1812 * We've decremented tty->count, so we need to remove this file 1813 * descriptor off the tty->tty_files list; this serves two 1814 * purposes: 1815 * - check_tty_count sees the correct number of file descriptors 1816 * associated with this tty. 1817 * - do_tty_hangup no longer sees this file descriptor as 1818 * something that needs to be handled for hangups. 1819 */ 1820 tty_del_file(filp); 1821 1822 /* 1823 * Perform some housekeeping before deciding whether to return. 1824 * 1825 * Set the TTY_CLOSING flag if this was the last open. In the 1826 * case of a pty we may have to wait around for the other side 1827 * to close, and TTY_CLOSING makes sure we can't be reopened. 1828 */ 1829 if (tty_closing) 1830 set_bit(TTY_CLOSING, &tty->flags); 1831 if (o_tty_closing) 1832 set_bit(TTY_CLOSING, &o_tty->flags); 1833 1834 /* 1835 * If _either_ side is closing, make sure there aren't any 1836 * processes that still think tty or o_tty is their controlling 1837 * tty. 1838 */ 1839 if (tty_closing || o_tty_closing) { 1840 read_lock(&tasklist_lock); 1841 session_clear_tty(tty->session); 1842 if (o_tty) 1843 session_clear_tty(o_tty->session); 1844 read_unlock(&tasklist_lock); 1845 } 1846 1847 mutex_unlock(&tty_mutex); 1848 tty_unlock_pair(tty, o_tty); 1849 /* At this point the TTY_CLOSING flag should ensure a dead tty 1850 cannot be re-opened by a racing opener */ 1851 1852 /* check whether both sides are closing ... */ 1853 if (!tty_closing || (o_tty && !o_tty_closing)) 1854 return 0; 1855 1856 #ifdef TTY_DEBUG_HANGUP 1857 printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf)); 1858 #endif 1859 /* 1860 * Ask the line discipline code to release its structures 1861 */ 1862 tty_ldisc_release(tty, o_tty); 1863 1864 /* Wait for pending work before tty destruction commmences */ 1865 tty_flush_works(tty); 1866 if (o_tty) 1867 tty_flush_works(o_tty); 1868 1869 #ifdef TTY_DEBUG_HANGUP 1870 printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf)); 1871 #endif 1872 /* 1873 * The release_tty function takes care of the details of clearing 1874 * the slots and preserving the termios structure. The tty_unlock_pair 1875 * should be safe as we keep a kref while the tty is locked (so the 1876 * unlock never unlocks a freed tty). 1877 */ 1878 mutex_lock(&tty_mutex); 1879 release_tty(tty, idx); 1880 mutex_unlock(&tty_mutex); 1881 1882 return 0; 1883 } 1884 1885 /** 1886 * tty_open_current_tty - get tty of current task for open 1887 * @device: device number 1888 * @filp: file pointer to tty 1889 * @return: tty of the current task iff @device is /dev/tty 1890 * 1891 * We cannot return driver and index like for the other nodes because 1892 * devpts will not work then. It expects inodes to be from devpts FS. 1893 * 1894 * We need to move to returning a refcounted object from all the lookup 1895 * paths including this one. 1896 */ 1897 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1898 { 1899 struct tty_struct *tty; 1900 1901 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1902 return NULL; 1903 1904 tty = get_current_tty(); 1905 if (!tty) 1906 return ERR_PTR(-ENXIO); 1907 1908 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1909 /* noctty = 1; */ 1910 tty_kref_put(tty); 1911 /* FIXME: we put a reference and return a TTY! */ 1912 /* This is only safe because the caller holds tty_mutex */ 1913 return tty; 1914 } 1915 1916 /** 1917 * tty_lookup_driver - lookup a tty driver for a given device file 1918 * @device: device number 1919 * @filp: file pointer to tty 1920 * @noctty: set if the device should not become a controlling tty 1921 * @index: index for the device in the @return driver 1922 * @return: driver for this inode (with increased refcount) 1923 * 1924 * If @return is not erroneous, the caller is responsible to decrement the 1925 * refcount by tty_driver_kref_put. 1926 * 1927 * Locking: tty_mutex protects get_tty_driver 1928 */ 1929 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1930 int *noctty, int *index) 1931 { 1932 struct tty_driver *driver; 1933 1934 switch (device) { 1935 #ifdef CONFIG_VT 1936 case MKDEV(TTY_MAJOR, 0): { 1937 extern struct tty_driver *console_driver; 1938 driver = tty_driver_kref_get(console_driver); 1939 *index = fg_console; 1940 *noctty = 1; 1941 break; 1942 } 1943 #endif 1944 case MKDEV(TTYAUX_MAJOR, 1): { 1945 struct tty_driver *console_driver = console_device(index); 1946 if (console_driver) { 1947 driver = tty_driver_kref_get(console_driver); 1948 if (driver) { 1949 /* Don't let /dev/console block */ 1950 filp->f_flags |= O_NONBLOCK; 1951 *noctty = 1; 1952 break; 1953 } 1954 } 1955 return ERR_PTR(-ENODEV); 1956 } 1957 default: 1958 driver = get_tty_driver(device, index); 1959 if (!driver) 1960 return ERR_PTR(-ENODEV); 1961 break; 1962 } 1963 return driver; 1964 } 1965 1966 /** 1967 * tty_open - open a tty device 1968 * @inode: inode of device file 1969 * @filp: file pointer to tty 1970 * 1971 * tty_open and tty_release keep up the tty count that contains the 1972 * number of opens done on a tty. We cannot use the inode-count, as 1973 * different inodes might point to the same tty. 1974 * 1975 * Open-counting is needed for pty masters, as well as for keeping 1976 * track of serial lines: DTR is dropped when the last close happens. 1977 * (This is not done solely through tty->count, now. - Ted 1/27/92) 1978 * 1979 * The termios state of a pty is reset on first open so that 1980 * settings don't persist across reuse. 1981 * 1982 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev. 1983 * tty->count should protect the rest. 1984 * ->siglock protects ->signal/->sighand 1985 * 1986 * Note: the tty_unlock/lock cases without a ref are only safe due to 1987 * tty_mutex 1988 */ 1989 1990 static int tty_open(struct inode *inode, struct file *filp) 1991 { 1992 struct tty_struct *tty; 1993 int noctty, retval; 1994 struct tty_driver *driver = NULL; 1995 int index; 1996 dev_t device = inode->i_rdev; 1997 unsigned saved_flags = filp->f_flags; 1998 1999 nonseekable_open(inode, filp); 2000 2001 retry_open: 2002 retval = tty_alloc_file(filp); 2003 if (retval) 2004 return -ENOMEM; 2005 2006 noctty = filp->f_flags & O_NOCTTY; 2007 index = -1; 2008 retval = 0; 2009 2010 mutex_lock(&tty_mutex); 2011 /* This is protected by the tty_mutex */ 2012 tty = tty_open_current_tty(device, filp); 2013 if (IS_ERR(tty)) { 2014 retval = PTR_ERR(tty); 2015 goto err_unlock; 2016 } else if (!tty) { 2017 driver = tty_lookup_driver(device, filp, &noctty, &index); 2018 if (IS_ERR(driver)) { 2019 retval = PTR_ERR(driver); 2020 goto err_unlock; 2021 } 2022 2023 /* check whether we're reopening an existing tty */ 2024 tty = tty_driver_lookup_tty(driver, inode, index); 2025 if (IS_ERR(tty)) { 2026 retval = PTR_ERR(tty); 2027 goto err_unlock; 2028 } 2029 } 2030 2031 if (tty) { 2032 tty_lock(tty); 2033 retval = tty_reopen(tty); 2034 if (retval < 0) { 2035 tty_unlock(tty); 2036 tty = ERR_PTR(retval); 2037 } 2038 } else /* Returns with the tty_lock held for now */ 2039 tty = tty_init_dev(driver, index); 2040 2041 mutex_unlock(&tty_mutex); 2042 if (driver) 2043 tty_driver_kref_put(driver); 2044 if (IS_ERR(tty)) { 2045 retval = PTR_ERR(tty); 2046 goto err_file; 2047 } 2048 2049 tty_add_file(tty, filp); 2050 2051 check_tty_count(tty, __func__); 2052 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2053 tty->driver->subtype == PTY_TYPE_MASTER) 2054 noctty = 1; 2055 #ifdef TTY_DEBUG_HANGUP 2056 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name); 2057 #endif 2058 if (tty->ops->open) 2059 retval = tty->ops->open(tty, filp); 2060 else 2061 retval = -ENODEV; 2062 filp->f_flags = saved_flags; 2063 2064 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && 2065 !capable(CAP_SYS_ADMIN)) 2066 retval = -EBUSY; 2067 2068 if (retval) { 2069 #ifdef TTY_DEBUG_HANGUP 2070 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__, 2071 retval, tty->name); 2072 #endif 2073 tty_unlock(tty); /* need to call tty_release without BTM */ 2074 tty_release(inode, filp); 2075 if (retval != -ERESTARTSYS) 2076 return retval; 2077 2078 if (signal_pending(current)) 2079 return retval; 2080 2081 schedule(); 2082 /* 2083 * Need to reset f_op in case a hangup happened. 2084 */ 2085 if (filp->f_op == &hung_up_tty_fops) 2086 filp->f_op = &tty_fops; 2087 goto retry_open; 2088 } 2089 tty_unlock(tty); 2090 2091 2092 mutex_lock(&tty_mutex); 2093 tty_lock(tty); 2094 spin_lock_irq(¤t->sighand->siglock); 2095 if (!noctty && 2096 current->signal->leader && 2097 !current->signal->tty && 2098 tty->session == NULL) 2099 __proc_set_tty(current, tty); 2100 spin_unlock_irq(¤t->sighand->siglock); 2101 tty_unlock(tty); 2102 mutex_unlock(&tty_mutex); 2103 return 0; 2104 err_unlock: 2105 mutex_unlock(&tty_mutex); 2106 /* after locks to avoid deadlock */ 2107 if (!IS_ERR_OR_NULL(driver)) 2108 tty_driver_kref_put(driver); 2109 err_file: 2110 tty_free_file(filp); 2111 return retval; 2112 } 2113 2114 2115 2116 /** 2117 * tty_poll - check tty status 2118 * @filp: file being polled 2119 * @wait: poll wait structures to update 2120 * 2121 * Call the line discipline polling method to obtain the poll 2122 * status of the device. 2123 * 2124 * Locking: locks called line discipline but ldisc poll method 2125 * may be re-entered freely by other callers. 2126 */ 2127 2128 static unsigned int tty_poll(struct file *filp, poll_table *wait) 2129 { 2130 struct tty_struct *tty = file_tty(filp); 2131 struct tty_ldisc *ld; 2132 int ret = 0; 2133 2134 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll")) 2135 return 0; 2136 2137 ld = tty_ldisc_ref_wait(tty); 2138 if (ld->ops->poll) 2139 ret = (ld->ops->poll)(tty, filp, wait); 2140 tty_ldisc_deref(ld); 2141 return ret; 2142 } 2143 2144 static int __tty_fasync(int fd, struct file *filp, int on) 2145 { 2146 struct tty_struct *tty = file_tty(filp); 2147 struct tty_ldisc *ldisc; 2148 unsigned long flags; 2149 int retval = 0; 2150 2151 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync")) 2152 goto out; 2153 2154 retval = fasync_helper(fd, filp, on, &tty->fasync); 2155 if (retval <= 0) 2156 goto out; 2157 2158 ldisc = tty_ldisc_ref(tty); 2159 if (ldisc) { 2160 if (ldisc->ops->fasync) 2161 ldisc->ops->fasync(tty, on); 2162 tty_ldisc_deref(ldisc); 2163 } 2164 2165 if (on) { 2166 enum pid_type type; 2167 struct pid *pid; 2168 2169 spin_lock_irqsave(&tty->ctrl_lock, flags); 2170 if (tty->pgrp) { 2171 pid = tty->pgrp; 2172 type = PIDTYPE_PGID; 2173 } else { 2174 pid = task_pid(current); 2175 type = PIDTYPE_PID; 2176 } 2177 get_pid(pid); 2178 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2179 retval = __f_setown(filp, pid, type, 0); 2180 put_pid(pid); 2181 } 2182 out: 2183 return retval; 2184 } 2185 2186 static int tty_fasync(int fd, struct file *filp, int on) 2187 { 2188 struct tty_struct *tty = file_tty(filp); 2189 int retval; 2190 2191 tty_lock(tty); 2192 retval = __tty_fasync(fd, filp, on); 2193 tty_unlock(tty); 2194 2195 return retval; 2196 } 2197 2198 /** 2199 * tiocsti - fake input character 2200 * @tty: tty to fake input into 2201 * @p: pointer to character 2202 * 2203 * Fake input to a tty device. Does the necessary locking and 2204 * input management. 2205 * 2206 * FIXME: does not honour flow control ?? 2207 * 2208 * Locking: 2209 * Called functions take tty_ldiscs_lock 2210 * current->signal->tty check is safe without locks 2211 * 2212 * FIXME: may race normal receive processing 2213 */ 2214 2215 static int tiocsti(struct tty_struct *tty, char __user *p) 2216 { 2217 char ch, mbz = 0; 2218 struct tty_ldisc *ld; 2219 2220 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2221 return -EPERM; 2222 if (get_user(ch, p)) 2223 return -EFAULT; 2224 tty_audit_tiocsti(tty, ch); 2225 ld = tty_ldisc_ref_wait(tty); 2226 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2227 tty_ldisc_deref(ld); 2228 return 0; 2229 } 2230 2231 /** 2232 * tiocgwinsz - implement window query ioctl 2233 * @tty; tty 2234 * @arg: user buffer for result 2235 * 2236 * Copies the kernel idea of the window size into the user buffer. 2237 * 2238 * Locking: tty->winsize_mutex is taken to ensure the winsize data 2239 * is consistent. 2240 */ 2241 2242 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2243 { 2244 int err; 2245 2246 mutex_lock(&tty->winsize_mutex); 2247 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2248 mutex_unlock(&tty->winsize_mutex); 2249 2250 return err ? -EFAULT: 0; 2251 } 2252 2253 /** 2254 * tty_do_resize - resize event 2255 * @tty: tty being resized 2256 * @rows: rows (character) 2257 * @cols: cols (character) 2258 * 2259 * Update the termios variables and send the necessary signals to 2260 * peform a terminal resize correctly 2261 */ 2262 2263 int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2264 { 2265 struct pid *pgrp; 2266 unsigned long flags; 2267 2268 /* Lock the tty */ 2269 mutex_lock(&tty->winsize_mutex); 2270 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2271 goto done; 2272 /* Get the PID values and reference them so we can 2273 avoid holding the tty ctrl lock while sending signals */ 2274 spin_lock_irqsave(&tty->ctrl_lock, flags); 2275 pgrp = get_pid(tty->pgrp); 2276 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2277 2278 if (pgrp) 2279 kill_pgrp(pgrp, SIGWINCH, 1); 2280 put_pid(pgrp); 2281 2282 tty->winsize = *ws; 2283 done: 2284 mutex_unlock(&tty->winsize_mutex); 2285 return 0; 2286 } 2287 EXPORT_SYMBOL(tty_do_resize); 2288 2289 /** 2290 * tiocswinsz - implement window size set ioctl 2291 * @tty; tty side of tty 2292 * @arg: user buffer for result 2293 * 2294 * Copies the user idea of the window size to the kernel. Traditionally 2295 * this is just advisory information but for the Linux console it 2296 * actually has driver level meaning and triggers a VC resize. 2297 * 2298 * Locking: 2299 * Driver dependent. The default do_resize method takes the 2300 * tty termios mutex and ctrl_lock. The console takes its own lock 2301 * then calls into the default method. 2302 */ 2303 2304 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2305 { 2306 struct winsize tmp_ws; 2307 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2308 return -EFAULT; 2309 2310 if (tty->ops->resize) 2311 return tty->ops->resize(tty, &tmp_ws); 2312 else 2313 return tty_do_resize(tty, &tmp_ws); 2314 } 2315 2316 /** 2317 * tioccons - allow admin to move logical console 2318 * @file: the file to become console 2319 * 2320 * Allow the administrator to move the redirected console device 2321 * 2322 * Locking: uses redirect_lock to guard the redirect information 2323 */ 2324 2325 static int tioccons(struct file *file) 2326 { 2327 if (!capable(CAP_SYS_ADMIN)) 2328 return -EPERM; 2329 if (file->f_op->write == redirected_tty_write) { 2330 struct file *f; 2331 spin_lock(&redirect_lock); 2332 f = redirect; 2333 redirect = NULL; 2334 spin_unlock(&redirect_lock); 2335 if (f) 2336 fput(f); 2337 return 0; 2338 } 2339 spin_lock(&redirect_lock); 2340 if (redirect) { 2341 spin_unlock(&redirect_lock); 2342 return -EBUSY; 2343 } 2344 redirect = get_file(file); 2345 spin_unlock(&redirect_lock); 2346 return 0; 2347 } 2348 2349 /** 2350 * fionbio - non blocking ioctl 2351 * @file: file to set blocking value 2352 * @p: user parameter 2353 * 2354 * Historical tty interfaces had a blocking control ioctl before 2355 * the generic functionality existed. This piece of history is preserved 2356 * in the expected tty API of posix OS's. 2357 * 2358 * Locking: none, the open file handle ensures it won't go away. 2359 */ 2360 2361 static int fionbio(struct file *file, int __user *p) 2362 { 2363 int nonblock; 2364 2365 if (get_user(nonblock, p)) 2366 return -EFAULT; 2367 2368 spin_lock(&file->f_lock); 2369 if (nonblock) 2370 file->f_flags |= O_NONBLOCK; 2371 else 2372 file->f_flags &= ~O_NONBLOCK; 2373 spin_unlock(&file->f_lock); 2374 return 0; 2375 } 2376 2377 /** 2378 * tiocsctty - set controlling tty 2379 * @tty: tty structure 2380 * @arg: user argument 2381 * 2382 * This ioctl is used to manage job control. It permits a session 2383 * leader to set this tty as the controlling tty for the session. 2384 * 2385 * Locking: 2386 * Takes tty_mutex() to protect tty instance 2387 * Takes tasklist_lock internally to walk sessions 2388 * Takes ->siglock() when updating signal->tty 2389 */ 2390 2391 static int tiocsctty(struct tty_struct *tty, int arg) 2392 { 2393 int ret = 0; 2394 if (current->signal->leader && (task_session(current) == tty->session)) 2395 return ret; 2396 2397 mutex_lock(&tty_mutex); 2398 /* 2399 * The process must be a session leader and 2400 * not have a controlling tty already. 2401 */ 2402 if (!current->signal->leader || current->signal->tty) { 2403 ret = -EPERM; 2404 goto unlock; 2405 } 2406 2407 if (tty->session) { 2408 /* 2409 * This tty is already the controlling 2410 * tty for another session group! 2411 */ 2412 if (arg == 1 && capable(CAP_SYS_ADMIN)) { 2413 /* 2414 * Steal it away 2415 */ 2416 read_lock(&tasklist_lock); 2417 session_clear_tty(tty->session); 2418 read_unlock(&tasklist_lock); 2419 } else { 2420 ret = -EPERM; 2421 goto unlock; 2422 } 2423 } 2424 proc_set_tty(current, tty); 2425 unlock: 2426 mutex_unlock(&tty_mutex); 2427 return ret; 2428 } 2429 2430 /** 2431 * tty_get_pgrp - return a ref counted pgrp pid 2432 * @tty: tty to read 2433 * 2434 * Returns a refcounted instance of the pid struct for the process 2435 * group controlling the tty. 2436 */ 2437 2438 struct pid *tty_get_pgrp(struct tty_struct *tty) 2439 { 2440 unsigned long flags; 2441 struct pid *pgrp; 2442 2443 spin_lock_irqsave(&tty->ctrl_lock, flags); 2444 pgrp = get_pid(tty->pgrp); 2445 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2446 2447 return pgrp; 2448 } 2449 EXPORT_SYMBOL_GPL(tty_get_pgrp); 2450 2451 /** 2452 * tiocgpgrp - get process group 2453 * @tty: tty passed by user 2454 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2455 * @p: returned pid 2456 * 2457 * Obtain the process group of the tty. If there is no process group 2458 * return an error. 2459 * 2460 * Locking: none. Reference to current->signal->tty is safe. 2461 */ 2462 2463 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2464 { 2465 struct pid *pid; 2466 int ret; 2467 /* 2468 * (tty == real_tty) is a cheap way of 2469 * testing if the tty is NOT a master pty. 2470 */ 2471 if (tty == real_tty && current->signal->tty != real_tty) 2472 return -ENOTTY; 2473 pid = tty_get_pgrp(real_tty); 2474 ret = put_user(pid_vnr(pid), p); 2475 put_pid(pid); 2476 return ret; 2477 } 2478 2479 /** 2480 * tiocspgrp - attempt to set process group 2481 * @tty: tty passed by user 2482 * @real_tty: tty side device matching tty passed by user 2483 * @p: pid pointer 2484 * 2485 * Set the process group of the tty to the session passed. Only 2486 * permitted where the tty session is our session. 2487 * 2488 * Locking: RCU, ctrl lock 2489 */ 2490 2491 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2492 { 2493 struct pid *pgrp; 2494 pid_t pgrp_nr; 2495 int retval = tty_check_change(real_tty); 2496 unsigned long flags; 2497 2498 if (retval == -EIO) 2499 return -ENOTTY; 2500 if (retval) 2501 return retval; 2502 if (!current->signal->tty || 2503 (current->signal->tty != real_tty) || 2504 (real_tty->session != task_session(current))) 2505 return -ENOTTY; 2506 if (get_user(pgrp_nr, p)) 2507 return -EFAULT; 2508 if (pgrp_nr < 0) 2509 return -EINVAL; 2510 rcu_read_lock(); 2511 pgrp = find_vpid(pgrp_nr); 2512 retval = -ESRCH; 2513 if (!pgrp) 2514 goto out_unlock; 2515 retval = -EPERM; 2516 if (session_of_pgrp(pgrp) != task_session(current)) 2517 goto out_unlock; 2518 retval = 0; 2519 spin_lock_irqsave(&tty->ctrl_lock, flags); 2520 put_pid(real_tty->pgrp); 2521 real_tty->pgrp = get_pid(pgrp); 2522 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2523 out_unlock: 2524 rcu_read_unlock(); 2525 return retval; 2526 } 2527 2528 /** 2529 * tiocgsid - get session id 2530 * @tty: tty passed by user 2531 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2532 * @p: pointer to returned session id 2533 * 2534 * Obtain the session id of the tty. If there is no session 2535 * return an error. 2536 * 2537 * Locking: none. Reference to current->signal->tty is safe. 2538 */ 2539 2540 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2541 { 2542 /* 2543 * (tty == real_tty) is a cheap way of 2544 * testing if the tty is NOT a master pty. 2545 */ 2546 if (tty == real_tty && current->signal->tty != real_tty) 2547 return -ENOTTY; 2548 if (!real_tty->session) 2549 return -ENOTTY; 2550 return put_user(pid_vnr(real_tty->session), p); 2551 } 2552 2553 /** 2554 * tiocsetd - set line discipline 2555 * @tty: tty device 2556 * @p: pointer to user data 2557 * 2558 * Set the line discipline according to user request. 2559 * 2560 * Locking: see tty_set_ldisc, this function is just a helper 2561 */ 2562 2563 static int tiocsetd(struct tty_struct *tty, int __user *p) 2564 { 2565 int ldisc; 2566 int ret; 2567 2568 if (get_user(ldisc, p)) 2569 return -EFAULT; 2570 2571 ret = tty_set_ldisc(tty, ldisc); 2572 2573 return ret; 2574 } 2575 2576 /** 2577 * send_break - performed time break 2578 * @tty: device to break on 2579 * @duration: timeout in mS 2580 * 2581 * Perform a timed break on hardware that lacks its own driver level 2582 * timed break functionality. 2583 * 2584 * Locking: 2585 * atomic_write_lock serializes 2586 * 2587 */ 2588 2589 static int send_break(struct tty_struct *tty, unsigned int duration) 2590 { 2591 int retval; 2592 2593 if (tty->ops->break_ctl == NULL) 2594 return 0; 2595 2596 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2597 retval = tty->ops->break_ctl(tty, duration); 2598 else { 2599 /* Do the work ourselves */ 2600 if (tty_write_lock(tty, 0) < 0) 2601 return -EINTR; 2602 retval = tty->ops->break_ctl(tty, -1); 2603 if (retval) 2604 goto out; 2605 if (!signal_pending(current)) 2606 msleep_interruptible(duration); 2607 retval = tty->ops->break_ctl(tty, 0); 2608 out: 2609 tty_write_unlock(tty); 2610 if (signal_pending(current)) 2611 retval = -EINTR; 2612 } 2613 return retval; 2614 } 2615 2616 /** 2617 * tty_tiocmget - get modem status 2618 * @tty: tty device 2619 * @file: user file pointer 2620 * @p: pointer to result 2621 * 2622 * Obtain the modem status bits from the tty driver if the feature 2623 * is supported. Return -EINVAL if it is not available. 2624 * 2625 * Locking: none (up to the driver) 2626 */ 2627 2628 static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2629 { 2630 int retval = -EINVAL; 2631 2632 if (tty->ops->tiocmget) { 2633 retval = tty->ops->tiocmget(tty); 2634 2635 if (retval >= 0) 2636 retval = put_user(retval, p); 2637 } 2638 return retval; 2639 } 2640 2641 /** 2642 * tty_tiocmset - set modem status 2643 * @tty: tty device 2644 * @cmd: command - clear bits, set bits or set all 2645 * @p: pointer to desired bits 2646 * 2647 * Set the modem status bits from the tty driver if the feature 2648 * is supported. Return -EINVAL if it is not available. 2649 * 2650 * Locking: none (up to the driver) 2651 */ 2652 2653 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2654 unsigned __user *p) 2655 { 2656 int retval; 2657 unsigned int set, clear, val; 2658 2659 if (tty->ops->tiocmset == NULL) 2660 return -EINVAL; 2661 2662 retval = get_user(val, p); 2663 if (retval) 2664 return retval; 2665 set = clear = 0; 2666 switch (cmd) { 2667 case TIOCMBIS: 2668 set = val; 2669 break; 2670 case TIOCMBIC: 2671 clear = val; 2672 break; 2673 case TIOCMSET: 2674 set = val; 2675 clear = ~val; 2676 break; 2677 } 2678 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2679 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2680 return tty->ops->tiocmset(tty, set, clear); 2681 } 2682 2683 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2684 { 2685 int retval = -EINVAL; 2686 struct serial_icounter_struct icount; 2687 memset(&icount, 0, sizeof(icount)); 2688 if (tty->ops->get_icount) 2689 retval = tty->ops->get_icount(tty, &icount); 2690 if (retval != 0) 2691 return retval; 2692 if (copy_to_user(arg, &icount, sizeof(icount))) 2693 return -EFAULT; 2694 return 0; 2695 } 2696 2697 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2698 { 2699 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2700 tty->driver->subtype == PTY_TYPE_MASTER) 2701 tty = tty->link; 2702 return tty; 2703 } 2704 EXPORT_SYMBOL(tty_pair_get_tty); 2705 2706 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty) 2707 { 2708 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2709 tty->driver->subtype == PTY_TYPE_MASTER) 2710 return tty; 2711 return tty->link; 2712 } 2713 EXPORT_SYMBOL(tty_pair_get_pty); 2714 2715 /* 2716 * Split this up, as gcc can choke on it otherwise.. 2717 */ 2718 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2719 { 2720 struct tty_struct *tty = file_tty(file); 2721 struct tty_struct *real_tty; 2722 void __user *p = (void __user *)arg; 2723 int retval; 2724 struct tty_ldisc *ld; 2725 2726 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2727 return -EINVAL; 2728 2729 real_tty = tty_pair_get_tty(tty); 2730 2731 /* 2732 * Factor out some common prep work 2733 */ 2734 switch (cmd) { 2735 case TIOCSETD: 2736 case TIOCSBRK: 2737 case TIOCCBRK: 2738 case TCSBRK: 2739 case TCSBRKP: 2740 retval = tty_check_change(tty); 2741 if (retval) 2742 return retval; 2743 if (cmd != TIOCCBRK) { 2744 tty_wait_until_sent(tty, 0); 2745 if (signal_pending(current)) 2746 return -EINTR; 2747 } 2748 break; 2749 } 2750 2751 /* 2752 * Now do the stuff. 2753 */ 2754 switch (cmd) { 2755 case TIOCSTI: 2756 return tiocsti(tty, p); 2757 case TIOCGWINSZ: 2758 return tiocgwinsz(real_tty, p); 2759 case TIOCSWINSZ: 2760 return tiocswinsz(real_tty, p); 2761 case TIOCCONS: 2762 return real_tty != tty ? -EINVAL : tioccons(file); 2763 case FIONBIO: 2764 return fionbio(file, p); 2765 case TIOCEXCL: 2766 set_bit(TTY_EXCLUSIVE, &tty->flags); 2767 return 0; 2768 case TIOCNXCL: 2769 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2770 return 0; 2771 case TIOCGEXCL: 2772 { 2773 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags); 2774 return put_user(excl, (int __user *)p); 2775 } 2776 case TIOCNOTTY: 2777 if (current->signal->tty != tty) 2778 return -ENOTTY; 2779 no_tty(); 2780 return 0; 2781 case TIOCSCTTY: 2782 return tiocsctty(tty, arg); 2783 case TIOCGPGRP: 2784 return tiocgpgrp(tty, real_tty, p); 2785 case TIOCSPGRP: 2786 return tiocspgrp(tty, real_tty, p); 2787 case TIOCGSID: 2788 return tiocgsid(tty, real_tty, p); 2789 case TIOCGETD: 2790 return put_user(tty->ldisc->ops->num, (int __user *)p); 2791 case TIOCSETD: 2792 return tiocsetd(tty, p); 2793 case TIOCVHANGUP: 2794 if (!capable(CAP_SYS_ADMIN)) 2795 return -EPERM; 2796 tty_vhangup(tty); 2797 return 0; 2798 case TIOCGDEV: 2799 { 2800 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2801 return put_user(ret, (unsigned int __user *)p); 2802 } 2803 /* 2804 * Break handling 2805 */ 2806 case TIOCSBRK: /* Turn break on, unconditionally */ 2807 if (tty->ops->break_ctl) 2808 return tty->ops->break_ctl(tty, -1); 2809 return 0; 2810 case TIOCCBRK: /* Turn break off, unconditionally */ 2811 if (tty->ops->break_ctl) 2812 return tty->ops->break_ctl(tty, 0); 2813 return 0; 2814 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2815 /* non-zero arg means wait for all output data 2816 * to be sent (performed above) but don't send break. 2817 * This is used by the tcdrain() termios function. 2818 */ 2819 if (!arg) 2820 return send_break(tty, 250); 2821 return 0; 2822 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2823 return send_break(tty, arg ? arg*100 : 250); 2824 2825 case TIOCMGET: 2826 return tty_tiocmget(tty, p); 2827 case TIOCMSET: 2828 case TIOCMBIC: 2829 case TIOCMBIS: 2830 return tty_tiocmset(tty, cmd, p); 2831 case TIOCGICOUNT: 2832 retval = tty_tiocgicount(tty, p); 2833 /* For the moment allow fall through to the old method */ 2834 if (retval != -EINVAL) 2835 return retval; 2836 break; 2837 case TCFLSH: 2838 switch (arg) { 2839 case TCIFLUSH: 2840 case TCIOFLUSH: 2841 /* flush tty buffer and allow ldisc to process ioctl */ 2842 tty_buffer_flush(tty); 2843 break; 2844 } 2845 break; 2846 } 2847 if (tty->ops->ioctl) { 2848 retval = (tty->ops->ioctl)(tty, cmd, arg); 2849 if (retval != -ENOIOCTLCMD) 2850 return retval; 2851 } 2852 ld = tty_ldisc_ref_wait(tty); 2853 retval = -EINVAL; 2854 if (ld->ops->ioctl) { 2855 retval = ld->ops->ioctl(tty, file, cmd, arg); 2856 if (retval == -ENOIOCTLCMD) 2857 retval = -ENOTTY; 2858 } 2859 tty_ldisc_deref(ld); 2860 return retval; 2861 } 2862 2863 #ifdef CONFIG_COMPAT 2864 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 2865 unsigned long arg) 2866 { 2867 struct tty_struct *tty = file_tty(file); 2868 struct tty_ldisc *ld; 2869 int retval = -ENOIOCTLCMD; 2870 2871 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2872 return -EINVAL; 2873 2874 if (tty->ops->compat_ioctl) { 2875 retval = (tty->ops->compat_ioctl)(tty, cmd, arg); 2876 if (retval != -ENOIOCTLCMD) 2877 return retval; 2878 } 2879 2880 ld = tty_ldisc_ref_wait(tty); 2881 if (ld->ops->compat_ioctl) 2882 retval = ld->ops->compat_ioctl(tty, file, cmd, arg); 2883 else 2884 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg); 2885 tty_ldisc_deref(ld); 2886 2887 return retval; 2888 } 2889 #endif 2890 2891 static int this_tty(const void *t, struct file *file, unsigned fd) 2892 { 2893 if (likely(file->f_op->read != tty_read)) 2894 return 0; 2895 return file_tty(file) != t ? 0 : fd + 1; 2896 } 2897 2898 /* 2899 * This implements the "Secure Attention Key" --- the idea is to 2900 * prevent trojan horses by killing all processes associated with this 2901 * tty when the user hits the "Secure Attention Key". Required for 2902 * super-paranoid applications --- see the Orange Book for more details. 2903 * 2904 * This code could be nicer; ideally it should send a HUP, wait a few 2905 * seconds, then send a INT, and then a KILL signal. But you then 2906 * have to coordinate with the init process, since all processes associated 2907 * with the current tty must be dead before the new getty is allowed 2908 * to spawn. 2909 * 2910 * Now, if it would be correct ;-/ The current code has a nasty hole - 2911 * it doesn't catch files in flight. We may send the descriptor to ourselves 2912 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 2913 * 2914 * Nasty bug: do_SAK is being called in interrupt context. This can 2915 * deadlock. We punt it up to process context. AKPM - 16Mar2001 2916 */ 2917 void __do_SAK(struct tty_struct *tty) 2918 { 2919 #ifdef TTY_SOFT_SAK 2920 tty_hangup(tty); 2921 #else 2922 struct task_struct *g, *p; 2923 struct pid *session; 2924 int i; 2925 2926 if (!tty) 2927 return; 2928 session = tty->session; 2929 2930 tty_ldisc_flush(tty); 2931 2932 tty_driver_flush_buffer(tty); 2933 2934 read_lock(&tasklist_lock); 2935 /* Kill the entire session */ 2936 do_each_pid_task(session, PIDTYPE_SID, p) { 2937 printk(KERN_NOTICE "SAK: killed process %d" 2938 " (%s): task_session(p)==tty->session\n", 2939 task_pid_nr(p), p->comm); 2940 send_sig(SIGKILL, p, 1); 2941 } while_each_pid_task(session, PIDTYPE_SID, p); 2942 /* Now kill any processes that happen to have the 2943 * tty open. 2944 */ 2945 do_each_thread(g, p) { 2946 if (p->signal->tty == tty) { 2947 printk(KERN_NOTICE "SAK: killed process %d" 2948 " (%s): task_session(p)==tty->session\n", 2949 task_pid_nr(p), p->comm); 2950 send_sig(SIGKILL, p, 1); 2951 continue; 2952 } 2953 task_lock(p); 2954 i = iterate_fd(p->files, 0, this_tty, tty); 2955 if (i != 0) { 2956 printk(KERN_NOTICE "SAK: killed process %d" 2957 " (%s): fd#%d opened to the tty\n", 2958 task_pid_nr(p), p->comm, i - 1); 2959 force_sig(SIGKILL, p); 2960 } 2961 task_unlock(p); 2962 } while_each_thread(g, p); 2963 read_unlock(&tasklist_lock); 2964 #endif 2965 } 2966 2967 static void do_SAK_work(struct work_struct *work) 2968 { 2969 struct tty_struct *tty = 2970 container_of(work, struct tty_struct, SAK_work); 2971 __do_SAK(tty); 2972 } 2973 2974 /* 2975 * The tq handling here is a little racy - tty->SAK_work may already be queued. 2976 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 2977 * the values which we write to it will be identical to the values which it 2978 * already has. --akpm 2979 */ 2980 void do_SAK(struct tty_struct *tty) 2981 { 2982 if (!tty) 2983 return; 2984 schedule_work(&tty->SAK_work); 2985 } 2986 2987 EXPORT_SYMBOL(do_SAK); 2988 2989 static int dev_match_devt(struct device *dev, const void *data) 2990 { 2991 const dev_t *devt = data; 2992 return dev->devt == *devt; 2993 } 2994 2995 /* Must put_device() after it's unused! */ 2996 static struct device *tty_get_device(struct tty_struct *tty) 2997 { 2998 dev_t devt = tty_devnum(tty); 2999 return class_find_device(tty_class, NULL, &devt, dev_match_devt); 3000 } 3001 3002 3003 /** 3004 * initialize_tty_struct 3005 * @tty: tty to initialize 3006 * 3007 * This subroutine initializes a tty structure that has been newly 3008 * allocated. 3009 * 3010 * Locking: none - tty in question must not be exposed at this point 3011 */ 3012 3013 void initialize_tty_struct(struct tty_struct *tty, 3014 struct tty_driver *driver, int idx) 3015 { 3016 memset(tty, 0, sizeof(struct tty_struct)); 3017 kref_init(&tty->kref); 3018 tty->magic = TTY_MAGIC; 3019 tty_ldisc_init(tty); 3020 tty->session = NULL; 3021 tty->pgrp = NULL; 3022 mutex_init(&tty->legacy_mutex); 3023 mutex_init(&tty->throttle_mutex); 3024 init_rwsem(&tty->termios_rwsem); 3025 mutex_init(&tty->winsize_mutex); 3026 init_ldsem(&tty->ldisc_sem); 3027 init_waitqueue_head(&tty->write_wait); 3028 init_waitqueue_head(&tty->read_wait); 3029 INIT_WORK(&tty->hangup_work, do_tty_hangup); 3030 mutex_init(&tty->atomic_write_lock); 3031 spin_lock_init(&tty->ctrl_lock); 3032 INIT_LIST_HEAD(&tty->tty_files); 3033 INIT_WORK(&tty->SAK_work, do_SAK_work); 3034 3035 tty->driver = driver; 3036 tty->ops = driver->ops; 3037 tty->index = idx; 3038 tty_line_name(driver, idx, tty->name); 3039 tty->dev = tty_get_device(tty); 3040 } 3041 3042 /** 3043 * deinitialize_tty_struct 3044 * @tty: tty to deinitialize 3045 * 3046 * This subroutine deinitializes a tty structure that has been newly 3047 * allocated but tty_release cannot be called on that yet. 3048 * 3049 * Locking: none - tty in question must not be exposed at this point 3050 */ 3051 void deinitialize_tty_struct(struct tty_struct *tty) 3052 { 3053 tty_ldisc_deinit(tty); 3054 } 3055 3056 /** 3057 * tty_put_char - write one character to a tty 3058 * @tty: tty 3059 * @ch: character 3060 * 3061 * Write one byte to the tty using the provided put_char method 3062 * if present. Returns the number of characters successfully output. 3063 * 3064 * Note: the specific put_char operation in the driver layer may go 3065 * away soon. Don't call it directly, use this method 3066 */ 3067 3068 int tty_put_char(struct tty_struct *tty, unsigned char ch) 3069 { 3070 if (tty->ops->put_char) 3071 return tty->ops->put_char(tty, ch); 3072 return tty->ops->write(tty, &ch, 1); 3073 } 3074 EXPORT_SYMBOL_GPL(tty_put_char); 3075 3076 struct class *tty_class; 3077 3078 static int tty_cdev_add(struct tty_driver *driver, dev_t dev, 3079 unsigned int index, unsigned int count) 3080 { 3081 /* init here, since reused cdevs cause crashes */ 3082 cdev_init(&driver->cdevs[index], &tty_fops); 3083 driver->cdevs[index].owner = driver->owner; 3084 return cdev_add(&driver->cdevs[index], dev, count); 3085 } 3086 3087 /** 3088 * tty_register_device - register a tty device 3089 * @driver: the tty driver that describes the tty device 3090 * @index: the index in the tty driver for this tty device 3091 * @device: a struct device that is associated with this tty device. 3092 * This field is optional, if there is no known struct device 3093 * for this tty device it can be set to NULL safely. 3094 * 3095 * Returns a pointer to the struct device for this tty device 3096 * (or ERR_PTR(-EFOO) on error). 3097 * 3098 * This call is required to be made to register an individual tty device 3099 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3100 * that bit is not set, this function should not be called by a tty 3101 * driver. 3102 * 3103 * Locking: ?? 3104 */ 3105 3106 struct device *tty_register_device(struct tty_driver *driver, unsigned index, 3107 struct device *device) 3108 { 3109 return tty_register_device_attr(driver, index, device, NULL, NULL); 3110 } 3111 EXPORT_SYMBOL(tty_register_device); 3112 3113 static void tty_device_create_release(struct device *dev) 3114 { 3115 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3116 kfree(dev); 3117 } 3118 3119 /** 3120 * tty_register_device_attr - register a tty device 3121 * @driver: the tty driver that describes the tty device 3122 * @index: the index in the tty driver for this tty device 3123 * @device: a struct device that is associated with this tty device. 3124 * This field is optional, if there is no known struct device 3125 * for this tty device it can be set to NULL safely. 3126 * @drvdata: Driver data to be set to device. 3127 * @attr_grp: Attribute group to be set on device. 3128 * 3129 * Returns a pointer to the struct device for this tty device 3130 * (or ERR_PTR(-EFOO) on error). 3131 * 3132 * This call is required to be made to register an individual tty device 3133 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3134 * that bit is not set, this function should not be called by a tty 3135 * driver. 3136 * 3137 * Locking: ?? 3138 */ 3139 struct device *tty_register_device_attr(struct tty_driver *driver, 3140 unsigned index, struct device *device, 3141 void *drvdata, 3142 const struct attribute_group **attr_grp) 3143 { 3144 char name[64]; 3145 dev_t devt = MKDEV(driver->major, driver->minor_start) + index; 3146 struct device *dev = NULL; 3147 int retval = -ENODEV; 3148 bool cdev = false; 3149 3150 if (index >= driver->num) { 3151 printk(KERN_ERR "Attempt to register invalid tty line number " 3152 " (%d).\n", index); 3153 return ERR_PTR(-EINVAL); 3154 } 3155 3156 if (driver->type == TTY_DRIVER_TYPE_PTY) 3157 pty_line_name(driver, index, name); 3158 else 3159 tty_line_name(driver, index, name); 3160 3161 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3162 retval = tty_cdev_add(driver, devt, index, 1); 3163 if (retval) 3164 goto error; 3165 cdev = true; 3166 } 3167 3168 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3169 if (!dev) { 3170 retval = -ENOMEM; 3171 goto error; 3172 } 3173 3174 dev->devt = devt; 3175 dev->class = tty_class; 3176 dev->parent = device; 3177 dev->release = tty_device_create_release; 3178 dev_set_name(dev, "%s", name); 3179 dev->groups = attr_grp; 3180 dev_set_drvdata(dev, drvdata); 3181 3182 retval = device_register(dev); 3183 if (retval) 3184 goto error; 3185 3186 return dev; 3187 3188 error: 3189 put_device(dev); 3190 if (cdev) 3191 cdev_del(&driver->cdevs[index]); 3192 return ERR_PTR(retval); 3193 } 3194 EXPORT_SYMBOL_GPL(tty_register_device_attr); 3195 3196 /** 3197 * tty_unregister_device - unregister a tty device 3198 * @driver: the tty driver that describes the tty device 3199 * @index: the index in the tty driver for this tty device 3200 * 3201 * If a tty device is registered with a call to tty_register_device() then 3202 * this function must be called when the tty device is gone. 3203 * 3204 * Locking: ?? 3205 */ 3206 3207 void tty_unregister_device(struct tty_driver *driver, unsigned index) 3208 { 3209 device_destroy(tty_class, 3210 MKDEV(driver->major, driver->minor_start) + index); 3211 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) 3212 cdev_del(&driver->cdevs[index]); 3213 } 3214 EXPORT_SYMBOL(tty_unregister_device); 3215 3216 /** 3217 * __tty_alloc_driver -- allocate tty driver 3218 * @lines: count of lines this driver can handle at most 3219 * @owner: module which is repsonsible for this driver 3220 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags 3221 * 3222 * This should not be called directly, some of the provided macros should be 3223 * used instead. Use IS_ERR and friends on @retval. 3224 */ 3225 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner, 3226 unsigned long flags) 3227 { 3228 struct tty_driver *driver; 3229 unsigned int cdevs = 1; 3230 int err; 3231 3232 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1)) 3233 return ERR_PTR(-EINVAL); 3234 3235 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL); 3236 if (!driver) 3237 return ERR_PTR(-ENOMEM); 3238 3239 kref_init(&driver->kref); 3240 driver->magic = TTY_DRIVER_MAGIC; 3241 driver->num = lines; 3242 driver->owner = owner; 3243 driver->flags = flags; 3244 3245 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) { 3246 driver->ttys = kcalloc(lines, sizeof(*driver->ttys), 3247 GFP_KERNEL); 3248 driver->termios = kcalloc(lines, sizeof(*driver->termios), 3249 GFP_KERNEL); 3250 if (!driver->ttys || !driver->termios) { 3251 err = -ENOMEM; 3252 goto err_free_all; 3253 } 3254 } 3255 3256 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3257 driver->ports = kcalloc(lines, sizeof(*driver->ports), 3258 GFP_KERNEL); 3259 if (!driver->ports) { 3260 err = -ENOMEM; 3261 goto err_free_all; 3262 } 3263 cdevs = lines; 3264 } 3265 3266 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL); 3267 if (!driver->cdevs) { 3268 err = -ENOMEM; 3269 goto err_free_all; 3270 } 3271 3272 return driver; 3273 err_free_all: 3274 kfree(driver->ports); 3275 kfree(driver->ttys); 3276 kfree(driver->termios); 3277 kfree(driver); 3278 return ERR_PTR(err); 3279 } 3280 EXPORT_SYMBOL(__tty_alloc_driver); 3281 3282 static void destruct_tty_driver(struct kref *kref) 3283 { 3284 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3285 int i; 3286 struct ktermios *tp; 3287 3288 if (driver->flags & TTY_DRIVER_INSTALLED) { 3289 /* 3290 * Free the termios and termios_locked structures because 3291 * we don't want to get memory leaks when modular tty 3292 * drivers are removed from the kernel. 3293 */ 3294 for (i = 0; i < driver->num; i++) { 3295 tp = driver->termios[i]; 3296 if (tp) { 3297 driver->termios[i] = NULL; 3298 kfree(tp); 3299 } 3300 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3301 tty_unregister_device(driver, i); 3302 } 3303 proc_tty_unregister_driver(driver); 3304 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) 3305 cdev_del(&driver->cdevs[0]); 3306 } 3307 kfree(driver->cdevs); 3308 kfree(driver->ports); 3309 kfree(driver->termios); 3310 kfree(driver->ttys); 3311 kfree(driver); 3312 } 3313 3314 void tty_driver_kref_put(struct tty_driver *driver) 3315 { 3316 kref_put(&driver->kref, destruct_tty_driver); 3317 } 3318 EXPORT_SYMBOL(tty_driver_kref_put); 3319 3320 void tty_set_operations(struct tty_driver *driver, 3321 const struct tty_operations *op) 3322 { 3323 driver->ops = op; 3324 }; 3325 EXPORT_SYMBOL(tty_set_operations); 3326 3327 void put_tty_driver(struct tty_driver *d) 3328 { 3329 tty_driver_kref_put(d); 3330 } 3331 EXPORT_SYMBOL(put_tty_driver); 3332 3333 /* 3334 * Called by a tty driver to register itself. 3335 */ 3336 int tty_register_driver(struct tty_driver *driver) 3337 { 3338 int error; 3339 int i; 3340 dev_t dev; 3341 struct device *d; 3342 3343 if (!driver->major) { 3344 error = alloc_chrdev_region(&dev, driver->minor_start, 3345 driver->num, driver->name); 3346 if (!error) { 3347 driver->major = MAJOR(dev); 3348 driver->minor_start = MINOR(dev); 3349 } 3350 } else { 3351 dev = MKDEV(driver->major, driver->minor_start); 3352 error = register_chrdev_region(dev, driver->num, driver->name); 3353 } 3354 if (error < 0) 3355 goto err; 3356 3357 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) { 3358 error = tty_cdev_add(driver, dev, 0, driver->num); 3359 if (error) 3360 goto err_unreg_char; 3361 } 3362 3363 mutex_lock(&tty_mutex); 3364 list_add(&driver->tty_drivers, &tty_drivers); 3365 mutex_unlock(&tty_mutex); 3366 3367 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3368 for (i = 0; i < driver->num; i++) { 3369 d = tty_register_device(driver, i, NULL); 3370 if (IS_ERR(d)) { 3371 error = PTR_ERR(d); 3372 goto err_unreg_devs; 3373 } 3374 } 3375 } 3376 proc_tty_register_driver(driver); 3377 driver->flags |= TTY_DRIVER_INSTALLED; 3378 return 0; 3379 3380 err_unreg_devs: 3381 for (i--; i >= 0; i--) 3382 tty_unregister_device(driver, i); 3383 3384 mutex_lock(&tty_mutex); 3385 list_del(&driver->tty_drivers); 3386 mutex_unlock(&tty_mutex); 3387 3388 err_unreg_char: 3389 unregister_chrdev_region(dev, driver->num); 3390 err: 3391 return error; 3392 } 3393 EXPORT_SYMBOL(tty_register_driver); 3394 3395 /* 3396 * Called by a tty driver to unregister itself. 3397 */ 3398 int tty_unregister_driver(struct tty_driver *driver) 3399 { 3400 #if 0 3401 /* FIXME */ 3402 if (driver->refcount) 3403 return -EBUSY; 3404 #endif 3405 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3406 driver->num); 3407 mutex_lock(&tty_mutex); 3408 list_del(&driver->tty_drivers); 3409 mutex_unlock(&tty_mutex); 3410 return 0; 3411 } 3412 3413 EXPORT_SYMBOL(tty_unregister_driver); 3414 3415 dev_t tty_devnum(struct tty_struct *tty) 3416 { 3417 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3418 } 3419 EXPORT_SYMBOL(tty_devnum); 3420 3421 void proc_clear_tty(struct task_struct *p) 3422 { 3423 unsigned long flags; 3424 struct tty_struct *tty; 3425 spin_lock_irqsave(&p->sighand->siglock, flags); 3426 tty = p->signal->tty; 3427 p->signal->tty = NULL; 3428 spin_unlock_irqrestore(&p->sighand->siglock, flags); 3429 tty_kref_put(tty); 3430 } 3431 3432 /* Called under the sighand lock */ 3433 3434 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty) 3435 { 3436 if (tty) { 3437 unsigned long flags; 3438 /* We should not have a session or pgrp to put here but.... */ 3439 spin_lock_irqsave(&tty->ctrl_lock, flags); 3440 put_pid(tty->session); 3441 put_pid(tty->pgrp); 3442 tty->pgrp = get_pid(task_pgrp(tsk)); 3443 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 3444 tty->session = get_pid(task_session(tsk)); 3445 if (tsk->signal->tty) { 3446 printk(KERN_DEBUG "tty not NULL!!\n"); 3447 tty_kref_put(tsk->signal->tty); 3448 } 3449 } 3450 put_pid(tsk->signal->tty_old_pgrp); 3451 tsk->signal->tty = tty_kref_get(tty); 3452 tsk->signal->tty_old_pgrp = NULL; 3453 } 3454 3455 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty) 3456 { 3457 spin_lock_irq(&tsk->sighand->siglock); 3458 __proc_set_tty(tsk, tty); 3459 spin_unlock_irq(&tsk->sighand->siglock); 3460 } 3461 3462 struct tty_struct *get_current_tty(void) 3463 { 3464 struct tty_struct *tty; 3465 unsigned long flags; 3466 3467 spin_lock_irqsave(¤t->sighand->siglock, flags); 3468 tty = tty_kref_get(current->signal->tty); 3469 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 3470 return tty; 3471 } 3472 EXPORT_SYMBOL_GPL(get_current_tty); 3473 3474 void tty_default_fops(struct file_operations *fops) 3475 { 3476 *fops = tty_fops; 3477 } 3478 3479 /* 3480 * Initialize the console device. This is called *early*, so 3481 * we can't necessarily depend on lots of kernel help here. 3482 * Just do some early initializations, and do the complex setup 3483 * later. 3484 */ 3485 void __init console_init(void) 3486 { 3487 initcall_t *call; 3488 3489 /* Setup the default TTY line discipline. */ 3490 tty_ldisc_begin(); 3491 3492 /* 3493 * set up the console device so that later boot sequences can 3494 * inform about problems etc.. 3495 */ 3496 call = __con_initcall_start; 3497 while (call < __con_initcall_end) { 3498 (*call)(); 3499 call++; 3500 } 3501 } 3502 3503 static char *tty_devnode(struct device *dev, umode_t *mode) 3504 { 3505 if (!mode) 3506 return NULL; 3507 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3508 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3509 *mode = 0666; 3510 return NULL; 3511 } 3512 3513 static int __init tty_class_init(void) 3514 { 3515 tty_class = class_create(THIS_MODULE, "tty"); 3516 if (IS_ERR(tty_class)) 3517 return PTR_ERR(tty_class); 3518 tty_class->devnode = tty_devnode; 3519 return 0; 3520 } 3521 3522 postcore_initcall(tty_class_init); 3523 3524 /* 3/2004 jmc: why do these devices exist? */ 3525 static struct cdev tty_cdev, console_cdev; 3526 3527 static ssize_t show_cons_active(struct device *dev, 3528 struct device_attribute *attr, char *buf) 3529 { 3530 struct console *cs[16]; 3531 int i = 0; 3532 struct console *c; 3533 ssize_t count = 0; 3534 3535 console_lock(); 3536 for_each_console(c) { 3537 if (!c->device) 3538 continue; 3539 if (!c->write) 3540 continue; 3541 if ((c->flags & CON_ENABLED) == 0) 3542 continue; 3543 cs[i++] = c; 3544 if (i >= ARRAY_SIZE(cs)) 3545 break; 3546 } 3547 while (i--) 3548 count += sprintf(buf + count, "%s%d%c", 3549 cs[i]->name, cs[i]->index, i ? ' ':'\n'); 3550 console_unlock(); 3551 3552 return count; 3553 } 3554 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3555 3556 static struct device *consdev; 3557 3558 void console_sysfs_notify(void) 3559 { 3560 if (consdev) 3561 sysfs_notify(&consdev->kobj, NULL, "active"); 3562 } 3563 3564 /* 3565 * Ok, now we can initialize the rest of the tty devices and can count 3566 * on memory allocations, interrupts etc.. 3567 */ 3568 int __init tty_init(void) 3569 { 3570 cdev_init(&tty_cdev, &tty_fops); 3571 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3572 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3573 panic("Couldn't register /dev/tty driver\n"); 3574 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3575 3576 cdev_init(&console_cdev, &console_fops); 3577 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3578 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3579 panic("Couldn't register /dev/console driver\n"); 3580 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL, 3581 "console"); 3582 if (IS_ERR(consdev)) 3583 consdev = NULL; 3584 else 3585 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0); 3586 3587 #ifdef CONFIG_VT 3588 vty_init(&console_fops); 3589 #endif 3590 return 0; 3591 } 3592 3593