xref: /openbmc/linux/drivers/tty/tty_io.c (revision e23feb16)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112 
113 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
114 	.c_iflag = ICRNL | IXON,
115 	.c_oflag = OPOST | ONLCR,
116 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 		   ECHOCTL | ECHOKE | IEXTEN,
119 	.c_cc = INIT_C_CC,
120 	.c_ispeed = 38400,
121 	.c_ospeed = 38400
122 };
123 
124 EXPORT_SYMBOL(tty_std_termios);
125 
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129 
130 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
131 
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136 
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139 
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 							size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 				unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 
159 /**
160  *	alloc_tty_struct	-	allocate a tty object
161  *
162  *	Return a new empty tty structure. The data fields have not
163  *	been initialized in any way but has been zeroed
164  *
165  *	Locking: none
166  */
167 
168 struct tty_struct *alloc_tty_struct(void)
169 {
170 	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172 
173 /**
174  *	free_tty_struct		-	free a disused tty
175  *	@tty: tty struct to free
176  *
177  *	Free the write buffers, tty queue and tty memory itself.
178  *
179  *	Locking: none. Must be called after tty is definitely unused
180  */
181 
182 void free_tty_struct(struct tty_struct *tty)
183 {
184 	if (!tty)
185 		return;
186 	if (tty->dev)
187 		put_device(tty->dev);
188 	kfree(tty->write_buf);
189 	tty->magic = 0xDEADDEAD;
190 	kfree(tty);
191 }
192 
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195 	return ((struct tty_file_private *)file->private_data)->tty;
196 }
197 
198 int tty_alloc_file(struct file *file)
199 {
200 	struct tty_file_private *priv;
201 
202 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203 	if (!priv)
204 		return -ENOMEM;
205 
206 	file->private_data = priv;
207 
208 	return 0;
209 }
210 
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214 	struct tty_file_private *priv = file->private_data;
215 
216 	priv->tty = tty;
217 	priv->file = file;
218 
219 	spin_lock(&tty_files_lock);
220 	list_add(&priv->list, &tty->tty_files);
221 	spin_unlock(&tty_files_lock);
222 }
223 
224 /**
225  * tty_free_file - free file->private_data
226  *
227  * This shall be used only for fail path handling when tty_add_file was not
228  * called yet.
229  */
230 void tty_free_file(struct file *file)
231 {
232 	struct tty_file_private *priv = file->private_data;
233 
234 	file->private_data = NULL;
235 	kfree(priv);
236 }
237 
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241 	struct tty_file_private *priv = file->private_data;
242 
243 	spin_lock(&tty_files_lock);
244 	list_del(&priv->list);
245 	spin_unlock(&tty_files_lock);
246 	tty_free_file(file);
247 }
248 
249 
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251 
252 /**
253  *	tty_name	-	return tty naming
254  *	@tty: tty structure
255  *	@buf: buffer for output
256  *
257  *	Convert a tty structure into a name. The name reflects the kernel
258  *	naming policy and if udev is in use may not reflect user space
259  *
260  *	Locking: none
261  */
262 
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
266 		strcpy(buf, "NULL tty");
267 	else
268 		strcpy(buf, tty->name);
269 	return buf;
270 }
271 
272 EXPORT_SYMBOL(tty_name);
273 
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275 			      const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278 	if (!tty) {
279 		printk(KERN_WARNING
280 			"null TTY for (%d:%d) in %s\n",
281 			imajor(inode), iminor(inode), routine);
282 		return 1;
283 	}
284 	if (tty->magic != TTY_MAGIC) {
285 		printk(KERN_WARNING
286 			"bad magic number for tty struct (%d:%d) in %s\n",
287 			imajor(inode), iminor(inode), routine);
288 		return 1;
289 	}
290 #endif
291 	return 0;
292 }
293 
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297 	struct list_head *p;
298 	int count = 0;
299 
300 	spin_lock(&tty_files_lock);
301 	list_for_each(p, &tty->tty_files) {
302 		count++;
303 	}
304 	spin_unlock(&tty_files_lock);
305 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
307 	    tty->link && tty->link->count)
308 		count++;
309 	if (tty->count != count) {
310 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311 				    "!= #fd's(%d) in %s\n",
312 		       tty->name, tty->count, count, routine);
313 		return count;
314 	}
315 #endif
316 	return 0;
317 }
318 
319 /**
320  *	get_tty_driver		-	find device of a tty
321  *	@dev_t: device identifier
322  *	@index: returns the index of the tty
323  *
324  *	This routine returns a tty driver structure, given a device number
325  *	and also passes back the index number.
326  *
327  *	Locking: caller must hold tty_mutex
328  */
329 
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332 	struct tty_driver *p;
333 
334 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
335 		dev_t base = MKDEV(p->major, p->minor_start);
336 		if (device < base || device >= base + p->num)
337 			continue;
338 		*index = device - base;
339 		return tty_driver_kref_get(p);
340 	}
341 	return NULL;
342 }
343 
344 #ifdef CONFIG_CONSOLE_POLL
345 
346 /**
347  *	tty_find_polling_driver	-	find device of a polled tty
348  *	@name: name string to match
349  *	@line: pointer to resulting tty line nr
350  *
351  *	This routine returns a tty driver structure, given a name
352  *	and the condition that the tty driver is capable of polled
353  *	operation.
354  */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357 	struct tty_driver *p, *res = NULL;
358 	int tty_line = 0;
359 	int len;
360 	char *str, *stp;
361 
362 	for (str = name; *str; str++)
363 		if ((*str >= '0' && *str <= '9') || *str == ',')
364 			break;
365 	if (!*str)
366 		return NULL;
367 
368 	len = str - name;
369 	tty_line = simple_strtoul(str, &str, 10);
370 
371 	mutex_lock(&tty_mutex);
372 	/* Search through the tty devices to look for a match */
373 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
374 		if (strncmp(name, p->name, len) != 0)
375 			continue;
376 		stp = str;
377 		if (*stp == ',')
378 			stp++;
379 		if (*stp == '\0')
380 			stp = NULL;
381 
382 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
383 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384 			res = tty_driver_kref_get(p);
385 			*line = tty_line;
386 			break;
387 		}
388 	}
389 	mutex_unlock(&tty_mutex);
390 
391 	return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395 
396 /**
397  *	tty_check_change	-	check for POSIX terminal changes
398  *	@tty: tty to check
399  *
400  *	If we try to write to, or set the state of, a terminal and we're
401  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
402  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
403  *
404  *	Locking: ctrl_lock
405  */
406 
407 int tty_check_change(struct tty_struct *tty)
408 {
409 	unsigned long flags;
410 	int ret = 0;
411 
412 	if (current->signal->tty != tty)
413 		return 0;
414 
415 	spin_lock_irqsave(&tty->ctrl_lock, flags);
416 
417 	if (!tty->pgrp) {
418 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419 		goto out_unlock;
420 	}
421 	if (task_pgrp(current) == tty->pgrp)
422 		goto out_unlock;
423 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424 	if (is_ignored(SIGTTOU))
425 		goto out;
426 	if (is_current_pgrp_orphaned()) {
427 		ret = -EIO;
428 		goto out;
429 	}
430 	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431 	set_thread_flag(TIF_SIGPENDING);
432 	ret = -ERESTARTSYS;
433 out:
434 	return ret;
435 out_unlock:
436 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437 	return ret;
438 }
439 
440 EXPORT_SYMBOL(tty_check_change);
441 
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443 				size_t count, loff_t *ppos)
444 {
445 	return 0;
446 }
447 
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449 				 size_t count, loff_t *ppos)
450 {
451 	return -EIO;
452 }
453 
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459 
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461 		unsigned long arg)
462 {
463 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465 
466 static long hung_up_tty_compat_ioctl(struct file *file,
467 				     unsigned int cmd, unsigned long arg)
468 {
469 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471 
472 static const struct file_operations tty_fops = {
473 	.llseek		= no_llseek,
474 	.read		= tty_read,
475 	.write		= tty_write,
476 	.poll		= tty_poll,
477 	.unlocked_ioctl	= tty_ioctl,
478 	.compat_ioctl	= tty_compat_ioctl,
479 	.open		= tty_open,
480 	.release	= tty_release,
481 	.fasync		= tty_fasync,
482 };
483 
484 static const struct file_operations console_fops = {
485 	.llseek		= no_llseek,
486 	.read		= tty_read,
487 	.write		= redirected_tty_write,
488 	.poll		= tty_poll,
489 	.unlocked_ioctl	= tty_ioctl,
490 	.compat_ioctl	= tty_compat_ioctl,
491 	.open		= tty_open,
492 	.release	= tty_release,
493 	.fasync		= tty_fasync,
494 };
495 
496 static const struct file_operations hung_up_tty_fops = {
497 	.llseek		= no_llseek,
498 	.read		= hung_up_tty_read,
499 	.write		= hung_up_tty_write,
500 	.poll		= hung_up_tty_poll,
501 	.unlocked_ioctl	= hung_up_tty_ioctl,
502 	.compat_ioctl	= hung_up_tty_compat_ioctl,
503 	.release	= tty_release,
504 };
505 
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508 
509 /**
510  *	tty_wakeup	-	request more data
511  *	@tty: terminal
512  *
513  *	Internal and external helper for wakeups of tty. This function
514  *	informs the line discipline if present that the driver is ready
515  *	to receive more output data.
516  */
517 
518 void tty_wakeup(struct tty_struct *tty)
519 {
520 	struct tty_ldisc *ld;
521 
522 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523 		ld = tty_ldisc_ref(tty);
524 		if (ld) {
525 			if (ld->ops->write_wakeup)
526 				ld->ops->write_wakeup(tty);
527 			tty_ldisc_deref(ld);
528 		}
529 	}
530 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532 
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534 
535 /**
536  *	tty_signal_session_leader	- sends SIGHUP to session leader
537  *	@tty		controlling tty
538  *	@exit_session	if non-zero, signal all foreground group processes
539  *
540  *	Send SIGHUP and SIGCONT to the session leader and its process group.
541  *	Optionally, signal all processes in the foreground process group.
542  *
543  *	Returns the number of processes in the session with this tty
544  *	as their controlling terminal. This value is used to drop
545  *	tty references for those processes.
546  */
547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
548 {
549 	struct task_struct *p;
550 	int refs = 0;
551 	struct pid *tty_pgrp = NULL;
552 
553 	read_lock(&tasklist_lock);
554 	if (tty->session) {
555 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
556 			spin_lock_irq(&p->sighand->siglock);
557 			if (p->signal->tty == tty) {
558 				p->signal->tty = NULL;
559 				/* We defer the dereferences outside fo
560 				   the tasklist lock */
561 				refs++;
562 			}
563 			if (!p->signal->leader) {
564 				spin_unlock_irq(&p->sighand->siglock);
565 				continue;
566 			}
567 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
568 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
569 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
570 			spin_lock(&tty->ctrl_lock);
571 			tty_pgrp = get_pid(tty->pgrp);
572 			if (tty->pgrp)
573 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
574 			spin_unlock(&tty->ctrl_lock);
575 			spin_unlock_irq(&p->sighand->siglock);
576 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
577 	}
578 	read_unlock(&tasklist_lock);
579 
580 	if (tty_pgrp) {
581 		if (exit_session)
582 			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
583 		put_pid(tty_pgrp);
584 	}
585 
586 	return refs;
587 }
588 
589 /**
590  *	__tty_hangup		-	actual handler for hangup events
591  *	@work: tty device
592  *
593  *	This can be called by a "kworker" kernel thread.  That is process
594  *	synchronous but doesn't hold any locks, so we need to make sure we
595  *	have the appropriate locks for what we're doing.
596  *
597  *	The hangup event clears any pending redirections onto the hung up
598  *	device. It ensures future writes will error and it does the needed
599  *	line discipline hangup and signal delivery. The tty object itself
600  *	remains intact.
601  *
602  *	Locking:
603  *		BTM
604  *		  redirect lock for undoing redirection
605  *		  file list lock for manipulating list of ttys
606  *		  tty_ldiscs_lock from called functions
607  *		  termios_rwsem resetting termios data
608  *		  tasklist_lock to walk task list for hangup event
609  *		    ->siglock to protect ->signal/->sighand
610  */
611 static void __tty_hangup(struct tty_struct *tty, int exit_session)
612 {
613 	struct file *cons_filp = NULL;
614 	struct file *filp, *f = NULL;
615 	struct tty_file_private *priv;
616 	int    closecount = 0, n;
617 	int refs;
618 
619 	if (!tty)
620 		return;
621 
622 
623 	spin_lock(&redirect_lock);
624 	if (redirect && file_tty(redirect) == tty) {
625 		f = redirect;
626 		redirect = NULL;
627 	}
628 	spin_unlock(&redirect_lock);
629 
630 	tty_lock(tty);
631 
632 	if (test_bit(TTY_HUPPED, &tty->flags)) {
633 		tty_unlock(tty);
634 		return;
635 	}
636 
637 	/* some functions below drop BTM, so we need this bit */
638 	set_bit(TTY_HUPPING, &tty->flags);
639 
640 	/* inuse_filps is protected by the single tty lock,
641 	   this really needs to change if we want to flush the
642 	   workqueue with the lock held */
643 	check_tty_count(tty, "tty_hangup");
644 
645 	spin_lock(&tty_files_lock);
646 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
647 	list_for_each_entry(priv, &tty->tty_files, list) {
648 		filp = priv->file;
649 		if (filp->f_op->write == redirected_tty_write)
650 			cons_filp = filp;
651 		if (filp->f_op->write != tty_write)
652 			continue;
653 		closecount++;
654 		__tty_fasync(-1, filp, 0);	/* can't block */
655 		filp->f_op = &hung_up_tty_fops;
656 	}
657 	spin_unlock(&tty_files_lock);
658 
659 	refs = tty_signal_session_leader(tty, exit_session);
660 	/* Account for the p->signal references we killed */
661 	while (refs--)
662 		tty_kref_put(tty);
663 
664 	/*
665 	 * it drops BTM and thus races with reopen
666 	 * we protect the race by TTY_HUPPING
667 	 */
668 	tty_ldisc_hangup(tty);
669 
670 	spin_lock_irq(&tty->ctrl_lock);
671 	clear_bit(TTY_THROTTLED, &tty->flags);
672 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
673 	put_pid(tty->session);
674 	put_pid(tty->pgrp);
675 	tty->session = NULL;
676 	tty->pgrp = NULL;
677 	tty->ctrl_status = 0;
678 	spin_unlock_irq(&tty->ctrl_lock);
679 
680 	/*
681 	 * If one of the devices matches a console pointer, we
682 	 * cannot just call hangup() because that will cause
683 	 * tty->count and state->count to go out of sync.
684 	 * So we just call close() the right number of times.
685 	 */
686 	if (cons_filp) {
687 		if (tty->ops->close)
688 			for (n = 0; n < closecount; n++)
689 				tty->ops->close(tty, cons_filp);
690 	} else if (tty->ops->hangup)
691 		(tty->ops->hangup)(tty);
692 	/*
693 	 * We don't want to have driver/ldisc interactions beyond
694 	 * the ones we did here. The driver layer expects no
695 	 * calls after ->hangup() from the ldisc side. However we
696 	 * can't yet guarantee all that.
697 	 */
698 	set_bit(TTY_HUPPED, &tty->flags);
699 	clear_bit(TTY_HUPPING, &tty->flags);
700 
701 	tty_unlock(tty);
702 
703 	if (f)
704 		fput(f);
705 }
706 
707 static void do_tty_hangup(struct work_struct *work)
708 {
709 	struct tty_struct *tty =
710 		container_of(work, struct tty_struct, hangup_work);
711 
712 	__tty_hangup(tty, 0);
713 }
714 
715 /**
716  *	tty_hangup		-	trigger a hangup event
717  *	@tty: tty to hangup
718  *
719  *	A carrier loss (virtual or otherwise) has occurred on this like
720  *	schedule a hangup sequence to run after this event.
721  */
722 
723 void tty_hangup(struct tty_struct *tty)
724 {
725 #ifdef TTY_DEBUG_HANGUP
726 	char	buf[64];
727 	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
728 #endif
729 	schedule_work(&tty->hangup_work);
730 }
731 
732 EXPORT_SYMBOL(tty_hangup);
733 
734 /**
735  *	tty_vhangup		-	process vhangup
736  *	@tty: tty to hangup
737  *
738  *	The user has asked via system call for the terminal to be hung up.
739  *	We do this synchronously so that when the syscall returns the process
740  *	is complete. That guarantee is necessary for security reasons.
741  */
742 
743 void tty_vhangup(struct tty_struct *tty)
744 {
745 #ifdef TTY_DEBUG_HANGUP
746 	char	buf[64];
747 
748 	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
749 #endif
750 	__tty_hangup(tty, 0);
751 }
752 
753 EXPORT_SYMBOL(tty_vhangup);
754 
755 
756 /**
757  *	tty_vhangup_self	-	process vhangup for own ctty
758  *
759  *	Perform a vhangup on the current controlling tty
760  */
761 
762 void tty_vhangup_self(void)
763 {
764 	struct tty_struct *tty;
765 
766 	tty = get_current_tty();
767 	if (tty) {
768 		tty_vhangup(tty);
769 		tty_kref_put(tty);
770 	}
771 }
772 
773 /**
774  *	tty_vhangup_session		-	hangup session leader exit
775  *	@tty: tty to hangup
776  *
777  *	The session leader is exiting and hanging up its controlling terminal.
778  *	Every process in the foreground process group is signalled SIGHUP.
779  *
780  *	We do this synchronously so that when the syscall returns the process
781  *	is complete. That guarantee is necessary for security reasons.
782  */
783 
784 static void tty_vhangup_session(struct tty_struct *tty)
785 {
786 #ifdef TTY_DEBUG_HANGUP
787 	char	buf[64];
788 
789 	printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
790 #endif
791 	__tty_hangup(tty, 1);
792 }
793 
794 /**
795  *	tty_hung_up_p		-	was tty hung up
796  *	@filp: file pointer of tty
797  *
798  *	Return true if the tty has been subject to a vhangup or a carrier
799  *	loss
800  */
801 
802 int tty_hung_up_p(struct file *filp)
803 {
804 	return (filp->f_op == &hung_up_tty_fops);
805 }
806 
807 EXPORT_SYMBOL(tty_hung_up_p);
808 
809 static void session_clear_tty(struct pid *session)
810 {
811 	struct task_struct *p;
812 	do_each_pid_task(session, PIDTYPE_SID, p) {
813 		proc_clear_tty(p);
814 	} while_each_pid_task(session, PIDTYPE_SID, p);
815 }
816 
817 /**
818  *	disassociate_ctty	-	disconnect controlling tty
819  *	@on_exit: true if exiting so need to "hang up" the session
820  *
821  *	This function is typically called only by the session leader, when
822  *	it wants to disassociate itself from its controlling tty.
823  *
824  *	It performs the following functions:
825  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
826  * 	(2)  Clears the tty from being controlling the session
827  * 	(3)  Clears the controlling tty for all processes in the
828  * 		session group.
829  *
830  *	The argument on_exit is set to 1 if called when a process is
831  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
832  *
833  *	Locking:
834  *		BTM is taken for hysterical raisins, and held when
835  *		  called from no_tty().
836  *		  tty_mutex is taken to protect tty
837  *		  ->siglock is taken to protect ->signal/->sighand
838  *		  tasklist_lock is taken to walk process list for sessions
839  *		    ->siglock is taken to protect ->signal/->sighand
840  */
841 
842 void disassociate_ctty(int on_exit)
843 {
844 	struct tty_struct *tty;
845 
846 	if (!current->signal->leader)
847 		return;
848 
849 	tty = get_current_tty();
850 	if (tty) {
851 		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
852 			tty_vhangup_session(tty);
853 		} else {
854 			struct pid *tty_pgrp = tty_get_pgrp(tty);
855 			if (tty_pgrp) {
856 				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
857 				if (!on_exit)
858 					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
859 				put_pid(tty_pgrp);
860 			}
861 		}
862 		tty_kref_put(tty);
863 
864 	} else if (on_exit) {
865 		struct pid *old_pgrp;
866 		spin_lock_irq(&current->sighand->siglock);
867 		old_pgrp = current->signal->tty_old_pgrp;
868 		current->signal->tty_old_pgrp = NULL;
869 		spin_unlock_irq(&current->sighand->siglock);
870 		if (old_pgrp) {
871 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
872 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
873 			put_pid(old_pgrp);
874 		}
875 		return;
876 	}
877 
878 	spin_lock_irq(&current->sighand->siglock);
879 	put_pid(current->signal->tty_old_pgrp);
880 	current->signal->tty_old_pgrp = NULL;
881 	spin_unlock_irq(&current->sighand->siglock);
882 
883 	tty = get_current_tty();
884 	if (tty) {
885 		unsigned long flags;
886 		spin_lock_irqsave(&tty->ctrl_lock, flags);
887 		put_pid(tty->session);
888 		put_pid(tty->pgrp);
889 		tty->session = NULL;
890 		tty->pgrp = NULL;
891 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
892 		tty_kref_put(tty);
893 	} else {
894 #ifdef TTY_DEBUG_HANGUP
895 		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
896 		       " = NULL", tty);
897 #endif
898 	}
899 
900 	/* Now clear signal->tty under the lock */
901 	read_lock(&tasklist_lock);
902 	session_clear_tty(task_session(current));
903 	read_unlock(&tasklist_lock);
904 }
905 
906 /**
907  *
908  *	no_tty	- Ensure the current process does not have a controlling tty
909  */
910 void no_tty(void)
911 {
912 	/* FIXME: Review locking here. The tty_lock never covered any race
913 	   between a new association and proc_clear_tty but possible we need
914 	   to protect against this anyway */
915 	struct task_struct *tsk = current;
916 	disassociate_ctty(0);
917 	proc_clear_tty(tsk);
918 }
919 
920 
921 /**
922  *	stop_tty	-	propagate flow control
923  *	@tty: tty to stop
924  *
925  *	Perform flow control to the driver. For PTY/TTY pairs we
926  *	must also propagate the TIOCKPKT status. May be called
927  *	on an already stopped device and will not re-call the driver
928  *	method.
929  *
930  *	This functionality is used by both the line disciplines for
931  *	halting incoming flow and by the driver. It may therefore be
932  *	called from any context, may be under the tty atomic_write_lock
933  *	but not always.
934  *
935  *	Locking:
936  *		Uses the tty control lock internally
937  */
938 
939 void stop_tty(struct tty_struct *tty)
940 {
941 	unsigned long flags;
942 	spin_lock_irqsave(&tty->ctrl_lock, flags);
943 	if (tty->stopped) {
944 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
945 		return;
946 	}
947 	tty->stopped = 1;
948 	if (tty->link && tty->link->packet) {
949 		tty->ctrl_status &= ~TIOCPKT_START;
950 		tty->ctrl_status |= TIOCPKT_STOP;
951 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
952 	}
953 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
954 	if (tty->ops->stop)
955 		(tty->ops->stop)(tty);
956 }
957 
958 EXPORT_SYMBOL(stop_tty);
959 
960 /**
961  *	start_tty	-	propagate flow control
962  *	@tty: tty to start
963  *
964  *	Start a tty that has been stopped if at all possible. Perform
965  *	any necessary wakeups and propagate the TIOCPKT status. If this
966  *	is the tty was previous stopped and is being started then the
967  *	driver start method is invoked and the line discipline woken.
968  *
969  *	Locking:
970  *		ctrl_lock
971  */
972 
973 void start_tty(struct tty_struct *tty)
974 {
975 	unsigned long flags;
976 	spin_lock_irqsave(&tty->ctrl_lock, flags);
977 	if (!tty->stopped || tty->flow_stopped) {
978 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
979 		return;
980 	}
981 	tty->stopped = 0;
982 	if (tty->link && tty->link->packet) {
983 		tty->ctrl_status &= ~TIOCPKT_STOP;
984 		tty->ctrl_status |= TIOCPKT_START;
985 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
986 	}
987 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
988 	if (tty->ops->start)
989 		(tty->ops->start)(tty);
990 	/* If we have a running line discipline it may need kicking */
991 	tty_wakeup(tty);
992 }
993 
994 EXPORT_SYMBOL(start_tty);
995 
996 /* We limit tty time update visibility to every 8 seconds or so. */
997 static void tty_update_time(struct timespec *time)
998 {
999 	unsigned long sec = get_seconds() & ~7;
1000 	if ((long)(sec - time->tv_sec) > 0)
1001 		time->tv_sec = sec;
1002 }
1003 
1004 /**
1005  *	tty_read	-	read method for tty device files
1006  *	@file: pointer to tty file
1007  *	@buf: user buffer
1008  *	@count: size of user buffer
1009  *	@ppos: unused
1010  *
1011  *	Perform the read system call function on this terminal device. Checks
1012  *	for hung up devices before calling the line discipline method.
1013  *
1014  *	Locking:
1015  *		Locks the line discipline internally while needed. Multiple
1016  *	read calls may be outstanding in parallel.
1017  */
1018 
1019 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1020 			loff_t *ppos)
1021 {
1022 	int i;
1023 	struct inode *inode = file_inode(file);
1024 	struct tty_struct *tty = file_tty(file);
1025 	struct tty_ldisc *ld;
1026 
1027 	if (tty_paranoia_check(tty, inode, "tty_read"))
1028 		return -EIO;
1029 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1030 		return -EIO;
1031 
1032 	/* We want to wait for the line discipline to sort out in this
1033 	   situation */
1034 	ld = tty_ldisc_ref_wait(tty);
1035 	if (ld->ops->read)
1036 		i = (ld->ops->read)(tty, file, buf, count);
1037 	else
1038 		i = -EIO;
1039 	tty_ldisc_deref(ld);
1040 
1041 	if (i > 0)
1042 		tty_update_time(&inode->i_atime);
1043 
1044 	return i;
1045 }
1046 
1047 void tty_write_unlock(struct tty_struct *tty)
1048 	__releases(&tty->atomic_write_lock)
1049 {
1050 	mutex_unlock(&tty->atomic_write_lock);
1051 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1052 }
1053 
1054 int tty_write_lock(struct tty_struct *tty, int ndelay)
1055 	__acquires(&tty->atomic_write_lock)
1056 {
1057 	if (!mutex_trylock(&tty->atomic_write_lock)) {
1058 		if (ndelay)
1059 			return -EAGAIN;
1060 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1061 			return -ERESTARTSYS;
1062 	}
1063 	return 0;
1064 }
1065 
1066 /*
1067  * Split writes up in sane blocksizes to avoid
1068  * denial-of-service type attacks
1069  */
1070 static inline ssize_t do_tty_write(
1071 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1072 	struct tty_struct *tty,
1073 	struct file *file,
1074 	const char __user *buf,
1075 	size_t count)
1076 {
1077 	ssize_t ret, written = 0;
1078 	unsigned int chunk;
1079 
1080 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1081 	if (ret < 0)
1082 		return ret;
1083 
1084 	/*
1085 	 * We chunk up writes into a temporary buffer. This
1086 	 * simplifies low-level drivers immensely, since they
1087 	 * don't have locking issues and user mode accesses.
1088 	 *
1089 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1090 	 * big chunk-size..
1091 	 *
1092 	 * The default chunk-size is 2kB, because the NTTY
1093 	 * layer has problems with bigger chunks. It will
1094 	 * claim to be able to handle more characters than
1095 	 * it actually does.
1096 	 *
1097 	 * FIXME: This can probably go away now except that 64K chunks
1098 	 * are too likely to fail unless switched to vmalloc...
1099 	 */
1100 	chunk = 2048;
1101 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1102 		chunk = 65536;
1103 	if (count < chunk)
1104 		chunk = count;
1105 
1106 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1107 	if (tty->write_cnt < chunk) {
1108 		unsigned char *buf_chunk;
1109 
1110 		if (chunk < 1024)
1111 			chunk = 1024;
1112 
1113 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1114 		if (!buf_chunk) {
1115 			ret = -ENOMEM;
1116 			goto out;
1117 		}
1118 		kfree(tty->write_buf);
1119 		tty->write_cnt = chunk;
1120 		tty->write_buf = buf_chunk;
1121 	}
1122 
1123 	/* Do the write .. */
1124 	for (;;) {
1125 		size_t size = count;
1126 		if (size > chunk)
1127 			size = chunk;
1128 		ret = -EFAULT;
1129 		if (copy_from_user(tty->write_buf, buf, size))
1130 			break;
1131 		ret = write(tty, file, tty->write_buf, size);
1132 		if (ret <= 0)
1133 			break;
1134 		written += ret;
1135 		buf += ret;
1136 		count -= ret;
1137 		if (!count)
1138 			break;
1139 		ret = -ERESTARTSYS;
1140 		if (signal_pending(current))
1141 			break;
1142 		cond_resched();
1143 	}
1144 	if (written) {
1145 		tty_update_time(&file_inode(file)->i_mtime);
1146 		ret = written;
1147 	}
1148 out:
1149 	tty_write_unlock(tty);
1150 	return ret;
1151 }
1152 
1153 /**
1154  * tty_write_message - write a message to a certain tty, not just the console.
1155  * @tty: the destination tty_struct
1156  * @msg: the message to write
1157  *
1158  * This is used for messages that need to be redirected to a specific tty.
1159  * We don't put it into the syslog queue right now maybe in the future if
1160  * really needed.
1161  *
1162  * We must still hold the BTM and test the CLOSING flag for the moment.
1163  */
1164 
1165 void tty_write_message(struct tty_struct *tty, char *msg)
1166 {
1167 	if (tty) {
1168 		mutex_lock(&tty->atomic_write_lock);
1169 		tty_lock(tty);
1170 		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1171 			tty_unlock(tty);
1172 			tty->ops->write(tty, msg, strlen(msg));
1173 		} else
1174 			tty_unlock(tty);
1175 		tty_write_unlock(tty);
1176 	}
1177 	return;
1178 }
1179 
1180 
1181 /**
1182  *	tty_write		-	write method for tty device file
1183  *	@file: tty file pointer
1184  *	@buf: user data to write
1185  *	@count: bytes to write
1186  *	@ppos: unused
1187  *
1188  *	Write data to a tty device via the line discipline.
1189  *
1190  *	Locking:
1191  *		Locks the line discipline as required
1192  *		Writes to the tty driver are serialized by the atomic_write_lock
1193  *	and are then processed in chunks to the device. The line discipline
1194  *	write method will not be invoked in parallel for each device.
1195  */
1196 
1197 static ssize_t tty_write(struct file *file, const char __user *buf,
1198 						size_t count, loff_t *ppos)
1199 {
1200 	struct tty_struct *tty = file_tty(file);
1201  	struct tty_ldisc *ld;
1202 	ssize_t ret;
1203 
1204 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1205 		return -EIO;
1206 	if (!tty || !tty->ops->write ||
1207 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1208 			return -EIO;
1209 	/* Short term debug to catch buggy drivers */
1210 	if (tty->ops->write_room == NULL)
1211 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1212 			tty->driver->name);
1213 	ld = tty_ldisc_ref_wait(tty);
1214 	if (!ld->ops->write)
1215 		ret = -EIO;
1216 	else
1217 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1218 	tty_ldisc_deref(ld);
1219 	return ret;
1220 }
1221 
1222 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1223 						size_t count, loff_t *ppos)
1224 {
1225 	struct file *p = NULL;
1226 
1227 	spin_lock(&redirect_lock);
1228 	if (redirect)
1229 		p = get_file(redirect);
1230 	spin_unlock(&redirect_lock);
1231 
1232 	if (p) {
1233 		ssize_t res;
1234 		res = vfs_write(p, buf, count, &p->f_pos);
1235 		fput(p);
1236 		return res;
1237 	}
1238 	return tty_write(file, buf, count, ppos);
1239 }
1240 
1241 static char ptychar[] = "pqrstuvwxyzabcde";
1242 
1243 /**
1244  *	pty_line_name	-	generate name for a pty
1245  *	@driver: the tty driver in use
1246  *	@index: the minor number
1247  *	@p: output buffer of at least 6 bytes
1248  *
1249  *	Generate a name from a driver reference and write it to the output
1250  *	buffer.
1251  *
1252  *	Locking: None
1253  */
1254 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1255 {
1256 	int i = index + driver->name_base;
1257 	/* ->name is initialized to "ttyp", but "tty" is expected */
1258 	sprintf(p, "%s%c%x",
1259 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1260 		ptychar[i >> 4 & 0xf], i & 0xf);
1261 }
1262 
1263 /**
1264  *	tty_line_name	-	generate name for a tty
1265  *	@driver: the tty driver in use
1266  *	@index: the minor number
1267  *	@p: output buffer of at least 7 bytes
1268  *
1269  *	Generate a name from a driver reference and write it to the output
1270  *	buffer.
1271  *
1272  *	Locking: None
1273  */
1274 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1275 {
1276 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1277 		strcpy(p, driver->name);
1278 	else
1279 		sprintf(p, "%s%d", driver->name, index + driver->name_base);
1280 }
1281 
1282 /**
1283  *	tty_driver_lookup_tty() - find an existing tty, if any
1284  *	@driver: the driver for the tty
1285  *	@idx:	 the minor number
1286  *
1287  *	Return the tty, if found or ERR_PTR() otherwise.
1288  *
1289  *	Locking: tty_mutex must be held. If tty is found, the mutex must
1290  *	be held until the 'fast-open' is also done. Will change once we
1291  *	have refcounting in the driver and per driver locking
1292  */
1293 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1294 		struct inode *inode, int idx)
1295 {
1296 	if (driver->ops->lookup)
1297 		return driver->ops->lookup(driver, inode, idx);
1298 
1299 	return driver->ttys[idx];
1300 }
1301 
1302 /**
1303  *	tty_init_termios	-  helper for termios setup
1304  *	@tty: the tty to set up
1305  *
1306  *	Initialise the termios structures for this tty. Thus runs under
1307  *	the tty_mutex currently so we can be relaxed about ordering.
1308  */
1309 
1310 int tty_init_termios(struct tty_struct *tty)
1311 {
1312 	struct ktermios *tp;
1313 	int idx = tty->index;
1314 
1315 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1316 		tty->termios = tty->driver->init_termios;
1317 	else {
1318 		/* Check for lazy saved data */
1319 		tp = tty->driver->termios[idx];
1320 		if (tp != NULL)
1321 			tty->termios = *tp;
1322 		else
1323 			tty->termios = tty->driver->init_termios;
1324 	}
1325 	/* Compatibility until drivers always set this */
1326 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1327 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1328 	return 0;
1329 }
1330 EXPORT_SYMBOL_GPL(tty_init_termios);
1331 
1332 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1333 {
1334 	int ret = tty_init_termios(tty);
1335 	if (ret)
1336 		return ret;
1337 
1338 	tty_driver_kref_get(driver);
1339 	tty->count++;
1340 	driver->ttys[tty->index] = tty;
1341 	return 0;
1342 }
1343 EXPORT_SYMBOL_GPL(tty_standard_install);
1344 
1345 /**
1346  *	tty_driver_install_tty() - install a tty entry in the driver
1347  *	@driver: the driver for the tty
1348  *	@tty: the tty
1349  *
1350  *	Install a tty object into the driver tables. The tty->index field
1351  *	will be set by the time this is called. This method is responsible
1352  *	for ensuring any need additional structures are allocated and
1353  *	configured.
1354  *
1355  *	Locking: tty_mutex for now
1356  */
1357 static int tty_driver_install_tty(struct tty_driver *driver,
1358 						struct tty_struct *tty)
1359 {
1360 	return driver->ops->install ? driver->ops->install(driver, tty) :
1361 		tty_standard_install(driver, tty);
1362 }
1363 
1364 /**
1365  *	tty_driver_remove_tty() - remove a tty from the driver tables
1366  *	@driver: the driver for the tty
1367  *	@idx:	 the minor number
1368  *
1369  *	Remvoe a tty object from the driver tables. The tty->index field
1370  *	will be set by the time this is called.
1371  *
1372  *	Locking: tty_mutex for now
1373  */
1374 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1375 {
1376 	if (driver->ops->remove)
1377 		driver->ops->remove(driver, tty);
1378 	else
1379 		driver->ttys[tty->index] = NULL;
1380 }
1381 
1382 /*
1383  * 	tty_reopen()	- fast re-open of an open tty
1384  * 	@tty	- the tty to open
1385  *
1386  *	Return 0 on success, -errno on error.
1387  *
1388  *	Locking: tty_mutex must be held from the time the tty was found
1389  *		 till this open completes.
1390  */
1391 static int tty_reopen(struct tty_struct *tty)
1392 {
1393 	struct tty_driver *driver = tty->driver;
1394 
1395 	if (test_bit(TTY_CLOSING, &tty->flags) ||
1396 			test_bit(TTY_HUPPING, &tty->flags))
1397 		return -EIO;
1398 
1399 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1400 	    driver->subtype == PTY_TYPE_MASTER) {
1401 		/*
1402 		 * special case for PTY masters: only one open permitted,
1403 		 * and the slave side open count is incremented as well.
1404 		 */
1405 		if (tty->count)
1406 			return -EIO;
1407 
1408 		tty->link->count++;
1409 	}
1410 	tty->count++;
1411 
1412 	WARN_ON(!tty->ldisc);
1413 
1414 	return 0;
1415 }
1416 
1417 /**
1418  *	tty_init_dev		-	initialise a tty device
1419  *	@driver: tty driver we are opening a device on
1420  *	@idx: device index
1421  *	@ret_tty: returned tty structure
1422  *
1423  *	Prepare a tty device. This may not be a "new" clean device but
1424  *	could also be an active device. The pty drivers require special
1425  *	handling because of this.
1426  *
1427  *	Locking:
1428  *		The function is called under the tty_mutex, which
1429  *	protects us from the tty struct or driver itself going away.
1430  *
1431  *	On exit the tty device has the line discipline attached and
1432  *	a reference count of 1. If a pair was created for pty/tty use
1433  *	and the other was a pty master then it too has a reference count of 1.
1434  *
1435  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1436  * failed open.  The new code protects the open with a mutex, so it's
1437  * really quite straightforward.  The mutex locking can probably be
1438  * relaxed for the (most common) case of reopening a tty.
1439  */
1440 
1441 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1442 {
1443 	struct tty_struct *tty;
1444 	int retval;
1445 
1446 	/*
1447 	 * First time open is complex, especially for PTY devices.
1448 	 * This code guarantees that either everything succeeds and the
1449 	 * TTY is ready for operation, or else the table slots are vacated
1450 	 * and the allocated memory released.  (Except that the termios
1451 	 * and locked termios may be retained.)
1452 	 */
1453 
1454 	if (!try_module_get(driver->owner))
1455 		return ERR_PTR(-ENODEV);
1456 
1457 	tty = alloc_tty_struct();
1458 	if (!tty) {
1459 		retval = -ENOMEM;
1460 		goto err_module_put;
1461 	}
1462 	initialize_tty_struct(tty, driver, idx);
1463 
1464 	tty_lock(tty);
1465 	retval = tty_driver_install_tty(driver, tty);
1466 	if (retval < 0)
1467 		goto err_deinit_tty;
1468 
1469 	if (!tty->port)
1470 		tty->port = driver->ports[idx];
1471 
1472 	WARN_RATELIMIT(!tty->port,
1473 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1474 			__func__, tty->driver->name);
1475 
1476 	tty->port->itty = tty;
1477 
1478 	/*
1479 	 * Structures all installed ... call the ldisc open routines.
1480 	 * If we fail here just call release_tty to clean up.  No need
1481 	 * to decrement the use counts, as release_tty doesn't care.
1482 	 */
1483 	retval = tty_ldisc_setup(tty, tty->link);
1484 	if (retval)
1485 		goto err_release_tty;
1486 	/* Return the tty locked so that it cannot vanish under the caller */
1487 	return tty;
1488 
1489 err_deinit_tty:
1490 	tty_unlock(tty);
1491 	deinitialize_tty_struct(tty);
1492 	free_tty_struct(tty);
1493 err_module_put:
1494 	module_put(driver->owner);
1495 	return ERR_PTR(retval);
1496 
1497 	/* call the tty release_tty routine to clean out this slot */
1498 err_release_tty:
1499 	tty_unlock(tty);
1500 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1501 				 "clearing slot %d\n", idx);
1502 	release_tty(tty, idx);
1503 	return ERR_PTR(retval);
1504 }
1505 
1506 void tty_free_termios(struct tty_struct *tty)
1507 {
1508 	struct ktermios *tp;
1509 	int idx = tty->index;
1510 
1511 	/* If the port is going to reset then it has no termios to save */
1512 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1513 		return;
1514 
1515 	/* Stash the termios data */
1516 	tp = tty->driver->termios[idx];
1517 	if (tp == NULL) {
1518 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1519 		if (tp == NULL) {
1520 			pr_warn("tty: no memory to save termios state.\n");
1521 			return;
1522 		}
1523 		tty->driver->termios[idx] = tp;
1524 	}
1525 	*tp = tty->termios;
1526 }
1527 EXPORT_SYMBOL(tty_free_termios);
1528 
1529 /**
1530  *	tty_flush_works		-	flush all works of a tty
1531  *	@tty: tty device to flush works for
1532  *
1533  *	Sync flush all works belonging to @tty.
1534  */
1535 static void tty_flush_works(struct tty_struct *tty)
1536 {
1537 	flush_work(&tty->SAK_work);
1538 	flush_work(&tty->hangup_work);
1539 }
1540 
1541 /**
1542  *	release_one_tty		-	release tty structure memory
1543  *	@kref: kref of tty we are obliterating
1544  *
1545  *	Releases memory associated with a tty structure, and clears out the
1546  *	driver table slots. This function is called when a device is no longer
1547  *	in use. It also gets called when setup of a device fails.
1548  *
1549  *	Locking:
1550  *		takes the file list lock internally when working on the list
1551  *	of ttys that the driver keeps.
1552  *
1553  *	This method gets called from a work queue so that the driver private
1554  *	cleanup ops can sleep (needed for USB at least)
1555  */
1556 static void release_one_tty(struct work_struct *work)
1557 {
1558 	struct tty_struct *tty =
1559 		container_of(work, struct tty_struct, hangup_work);
1560 	struct tty_driver *driver = tty->driver;
1561 
1562 	if (tty->ops->cleanup)
1563 		tty->ops->cleanup(tty);
1564 
1565 	tty->magic = 0;
1566 	tty_driver_kref_put(driver);
1567 	module_put(driver->owner);
1568 
1569 	spin_lock(&tty_files_lock);
1570 	list_del_init(&tty->tty_files);
1571 	spin_unlock(&tty_files_lock);
1572 
1573 	put_pid(tty->pgrp);
1574 	put_pid(tty->session);
1575 	free_tty_struct(tty);
1576 }
1577 
1578 static void queue_release_one_tty(struct kref *kref)
1579 {
1580 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1581 
1582 	/* The hangup queue is now free so we can reuse it rather than
1583 	   waste a chunk of memory for each port */
1584 	INIT_WORK(&tty->hangup_work, release_one_tty);
1585 	schedule_work(&tty->hangup_work);
1586 }
1587 
1588 /**
1589  *	tty_kref_put		-	release a tty kref
1590  *	@tty: tty device
1591  *
1592  *	Release a reference to a tty device and if need be let the kref
1593  *	layer destruct the object for us
1594  */
1595 
1596 void tty_kref_put(struct tty_struct *tty)
1597 {
1598 	if (tty)
1599 		kref_put(&tty->kref, queue_release_one_tty);
1600 }
1601 EXPORT_SYMBOL(tty_kref_put);
1602 
1603 /**
1604  *	release_tty		-	release tty structure memory
1605  *
1606  *	Release both @tty and a possible linked partner (think pty pair),
1607  *	and decrement the refcount of the backing module.
1608  *
1609  *	Locking:
1610  *		tty_mutex
1611  *		takes the file list lock internally when working on the list
1612  *	of ttys that the driver keeps.
1613  *
1614  */
1615 static void release_tty(struct tty_struct *tty, int idx)
1616 {
1617 	/* This should always be true but check for the moment */
1618 	WARN_ON(tty->index != idx);
1619 	WARN_ON(!mutex_is_locked(&tty_mutex));
1620 	if (tty->ops->shutdown)
1621 		tty->ops->shutdown(tty);
1622 	tty_free_termios(tty);
1623 	tty_driver_remove_tty(tty->driver, tty);
1624 	tty->port->itty = NULL;
1625 	if (tty->link)
1626 		tty->link->port->itty = NULL;
1627 	cancel_work_sync(&tty->port->buf.work);
1628 
1629 	if (tty->link)
1630 		tty_kref_put(tty->link);
1631 	tty_kref_put(tty);
1632 }
1633 
1634 /**
1635  *	tty_release_checks - check a tty before real release
1636  *	@tty: tty to check
1637  *	@o_tty: link of @tty (if any)
1638  *	@idx: index of the tty
1639  *
1640  *	Performs some paranoid checking before true release of the @tty.
1641  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1642  */
1643 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1644 		int idx)
1645 {
1646 #ifdef TTY_PARANOIA_CHECK
1647 	if (idx < 0 || idx >= tty->driver->num) {
1648 		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1649 				__func__, tty->name);
1650 		return -1;
1651 	}
1652 
1653 	/* not much to check for devpts */
1654 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1655 		return 0;
1656 
1657 	if (tty != tty->driver->ttys[idx]) {
1658 		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1659 				__func__, idx, tty->name);
1660 		return -1;
1661 	}
1662 	if (tty->driver->other) {
1663 		if (o_tty != tty->driver->other->ttys[idx]) {
1664 			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1665 					__func__, idx, tty->name);
1666 			return -1;
1667 		}
1668 		if (o_tty->link != tty) {
1669 			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1670 			return -1;
1671 		}
1672 	}
1673 #endif
1674 	return 0;
1675 }
1676 
1677 /**
1678  *	tty_release		-	vfs callback for close
1679  *	@inode: inode of tty
1680  *	@filp: file pointer for handle to tty
1681  *
1682  *	Called the last time each file handle is closed that references
1683  *	this tty. There may however be several such references.
1684  *
1685  *	Locking:
1686  *		Takes bkl. See tty_release_dev
1687  *
1688  * Even releasing the tty structures is a tricky business.. We have
1689  * to be very careful that the structures are all released at the
1690  * same time, as interrupts might otherwise get the wrong pointers.
1691  *
1692  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1693  * lead to double frees or releasing memory still in use.
1694  */
1695 
1696 int tty_release(struct inode *inode, struct file *filp)
1697 {
1698 	struct tty_struct *tty = file_tty(filp);
1699 	struct tty_struct *o_tty;
1700 	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1701 	int	idx;
1702 	char	buf[64];
1703 
1704 	if (tty_paranoia_check(tty, inode, __func__))
1705 		return 0;
1706 
1707 	tty_lock(tty);
1708 	check_tty_count(tty, __func__);
1709 
1710 	__tty_fasync(-1, filp, 0);
1711 
1712 	idx = tty->index;
1713 	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1714 		      tty->driver->subtype == PTY_TYPE_MASTER);
1715 	/* Review: parallel close */
1716 	o_tty = tty->link;
1717 
1718 	if (tty_release_checks(tty, o_tty, idx)) {
1719 		tty_unlock(tty);
1720 		return 0;
1721 	}
1722 
1723 #ifdef TTY_DEBUG_HANGUP
1724 	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1725 			tty_name(tty, buf), tty->count);
1726 #endif
1727 
1728 	if (tty->ops->close)
1729 		tty->ops->close(tty, filp);
1730 
1731 	tty_unlock(tty);
1732 	/*
1733 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1734 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1735 	 * wait queues and kick everyone out _before_ actually starting to
1736 	 * close.  This ensures that we won't block while releasing the tty
1737 	 * structure.
1738 	 *
1739 	 * The test for the o_tty closing is necessary, since the master and
1740 	 * slave sides may close in any order.  If the slave side closes out
1741 	 * first, its count will be one, since the master side holds an open.
1742 	 * Thus this test wouldn't be triggered at the time the slave closes,
1743 	 * so we do it now.
1744 	 *
1745 	 * Note that it's possible for the tty to be opened again while we're
1746 	 * flushing out waiters.  By recalculating the closing flags before
1747 	 * each iteration we avoid any problems.
1748 	 */
1749 	while (1) {
1750 		/* Guard against races with tty->count changes elsewhere and
1751 		   opens on /dev/tty */
1752 
1753 		mutex_lock(&tty_mutex);
1754 		tty_lock_pair(tty, o_tty);
1755 		tty_closing = tty->count <= 1;
1756 		o_tty_closing = o_tty &&
1757 			(o_tty->count <= (pty_master ? 1 : 0));
1758 		do_sleep = 0;
1759 
1760 		if (tty_closing) {
1761 			if (waitqueue_active(&tty->read_wait)) {
1762 				wake_up_poll(&tty->read_wait, POLLIN);
1763 				do_sleep++;
1764 			}
1765 			if (waitqueue_active(&tty->write_wait)) {
1766 				wake_up_poll(&tty->write_wait, POLLOUT);
1767 				do_sleep++;
1768 			}
1769 		}
1770 		if (o_tty_closing) {
1771 			if (waitqueue_active(&o_tty->read_wait)) {
1772 				wake_up_poll(&o_tty->read_wait, POLLIN);
1773 				do_sleep++;
1774 			}
1775 			if (waitqueue_active(&o_tty->write_wait)) {
1776 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1777 				do_sleep++;
1778 			}
1779 		}
1780 		if (!do_sleep)
1781 			break;
1782 
1783 		printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1784 				__func__, tty_name(tty, buf));
1785 		tty_unlock_pair(tty, o_tty);
1786 		mutex_unlock(&tty_mutex);
1787 		schedule();
1788 	}
1789 
1790 	/*
1791 	 * The closing flags are now consistent with the open counts on
1792 	 * both sides, and we've completed the last operation that could
1793 	 * block, so it's safe to proceed with closing.
1794 	 *
1795 	 * We must *not* drop the tty_mutex until we ensure that a further
1796 	 * entry into tty_open can not pick up this tty.
1797 	 */
1798 	if (pty_master) {
1799 		if (--o_tty->count < 0) {
1800 			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1801 				__func__, o_tty->count, tty_name(o_tty, buf));
1802 			o_tty->count = 0;
1803 		}
1804 	}
1805 	if (--tty->count < 0) {
1806 		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1807 				__func__, tty->count, tty_name(tty, buf));
1808 		tty->count = 0;
1809 	}
1810 
1811 	/*
1812 	 * We've decremented tty->count, so we need to remove this file
1813 	 * descriptor off the tty->tty_files list; this serves two
1814 	 * purposes:
1815 	 *  - check_tty_count sees the correct number of file descriptors
1816 	 *    associated with this tty.
1817 	 *  - do_tty_hangup no longer sees this file descriptor as
1818 	 *    something that needs to be handled for hangups.
1819 	 */
1820 	tty_del_file(filp);
1821 
1822 	/*
1823 	 * Perform some housekeeping before deciding whether to return.
1824 	 *
1825 	 * Set the TTY_CLOSING flag if this was the last open.  In the
1826 	 * case of a pty we may have to wait around for the other side
1827 	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1828 	 */
1829 	if (tty_closing)
1830 		set_bit(TTY_CLOSING, &tty->flags);
1831 	if (o_tty_closing)
1832 		set_bit(TTY_CLOSING, &o_tty->flags);
1833 
1834 	/*
1835 	 * If _either_ side is closing, make sure there aren't any
1836 	 * processes that still think tty or o_tty is their controlling
1837 	 * tty.
1838 	 */
1839 	if (tty_closing || o_tty_closing) {
1840 		read_lock(&tasklist_lock);
1841 		session_clear_tty(tty->session);
1842 		if (o_tty)
1843 			session_clear_tty(o_tty->session);
1844 		read_unlock(&tasklist_lock);
1845 	}
1846 
1847 	mutex_unlock(&tty_mutex);
1848 	tty_unlock_pair(tty, o_tty);
1849 	/* At this point the TTY_CLOSING flag should ensure a dead tty
1850 	   cannot be re-opened by a racing opener */
1851 
1852 	/* check whether both sides are closing ... */
1853 	if (!tty_closing || (o_tty && !o_tty_closing))
1854 		return 0;
1855 
1856 #ifdef TTY_DEBUG_HANGUP
1857 	printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1858 #endif
1859 	/*
1860 	 * Ask the line discipline code to release its structures
1861 	 */
1862 	tty_ldisc_release(tty, o_tty);
1863 
1864 	/* Wait for pending work before tty destruction commmences */
1865 	tty_flush_works(tty);
1866 	if (o_tty)
1867 		tty_flush_works(o_tty);
1868 
1869 #ifdef TTY_DEBUG_HANGUP
1870 	printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1871 #endif
1872 	/*
1873 	 * The release_tty function takes care of the details of clearing
1874 	 * the slots and preserving the termios structure. The tty_unlock_pair
1875 	 * should be safe as we keep a kref while the tty is locked (so the
1876 	 * unlock never unlocks a freed tty).
1877 	 */
1878 	mutex_lock(&tty_mutex);
1879 	release_tty(tty, idx);
1880 	mutex_unlock(&tty_mutex);
1881 
1882 	return 0;
1883 }
1884 
1885 /**
1886  *	tty_open_current_tty - get tty of current task for open
1887  *	@device: device number
1888  *	@filp: file pointer to tty
1889  *	@return: tty of the current task iff @device is /dev/tty
1890  *
1891  *	We cannot return driver and index like for the other nodes because
1892  *	devpts will not work then. It expects inodes to be from devpts FS.
1893  *
1894  *	We need to move to returning a refcounted object from all the lookup
1895  *	paths including this one.
1896  */
1897 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1898 {
1899 	struct tty_struct *tty;
1900 
1901 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1902 		return NULL;
1903 
1904 	tty = get_current_tty();
1905 	if (!tty)
1906 		return ERR_PTR(-ENXIO);
1907 
1908 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1909 	/* noctty = 1; */
1910 	tty_kref_put(tty);
1911 	/* FIXME: we put a reference and return a TTY! */
1912 	/* This is only safe because the caller holds tty_mutex */
1913 	return tty;
1914 }
1915 
1916 /**
1917  *	tty_lookup_driver - lookup a tty driver for a given device file
1918  *	@device: device number
1919  *	@filp: file pointer to tty
1920  *	@noctty: set if the device should not become a controlling tty
1921  *	@index: index for the device in the @return driver
1922  *	@return: driver for this inode (with increased refcount)
1923  *
1924  * 	If @return is not erroneous, the caller is responsible to decrement the
1925  * 	refcount by tty_driver_kref_put.
1926  *
1927  *	Locking: tty_mutex protects get_tty_driver
1928  */
1929 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1930 		int *noctty, int *index)
1931 {
1932 	struct tty_driver *driver;
1933 
1934 	switch (device) {
1935 #ifdef CONFIG_VT
1936 	case MKDEV(TTY_MAJOR, 0): {
1937 		extern struct tty_driver *console_driver;
1938 		driver = tty_driver_kref_get(console_driver);
1939 		*index = fg_console;
1940 		*noctty = 1;
1941 		break;
1942 	}
1943 #endif
1944 	case MKDEV(TTYAUX_MAJOR, 1): {
1945 		struct tty_driver *console_driver = console_device(index);
1946 		if (console_driver) {
1947 			driver = tty_driver_kref_get(console_driver);
1948 			if (driver) {
1949 				/* Don't let /dev/console block */
1950 				filp->f_flags |= O_NONBLOCK;
1951 				*noctty = 1;
1952 				break;
1953 			}
1954 		}
1955 		return ERR_PTR(-ENODEV);
1956 	}
1957 	default:
1958 		driver = get_tty_driver(device, index);
1959 		if (!driver)
1960 			return ERR_PTR(-ENODEV);
1961 		break;
1962 	}
1963 	return driver;
1964 }
1965 
1966 /**
1967  *	tty_open		-	open a tty device
1968  *	@inode: inode of device file
1969  *	@filp: file pointer to tty
1970  *
1971  *	tty_open and tty_release keep up the tty count that contains the
1972  *	number of opens done on a tty. We cannot use the inode-count, as
1973  *	different inodes might point to the same tty.
1974  *
1975  *	Open-counting is needed for pty masters, as well as for keeping
1976  *	track of serial lines: DTR is dropped when the last close happens.
1977  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1978  *
1979  *	The termios state of a pty is reset on first open so that
1980  *	settings don't persist across reuse.
1981  *
1982  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1983  *		 tty->count should protect the rest.
1984  *		 ->siglock protects ->signal/->sighand
1985  *
1986  *	Note: the tty_unlock/lock cases without a ref are only safe due to
1987  *	tty_mutex
1988  */
1989 
1990 static int tty_open(struct inode *inode, struct file *filp)
1991 {
1992 	struct tty_struct *tty;
1993 	int noctty, retval;
1994 	struct tty_driver *driver = NULL;
1995 	int index;
1996 	dev_t device = inode->i_rdev;
1997 	unsigned saved_flags = filp->f_flags;
1998 
1999 	nonseekable_open(inode, filp);
2000 
2001 retry_open:
2002 	retval = tty_alloc_file(filp);
2003 	if (retval)
2004 		return -ENOMEM;
2005 
2006 	noctty = filp->f_flags & O_NOCTTY;
2007 	index  = -1;
2008 	retval = 0;
2009 
2010 	mutex_lock(&tty_mutex);
2011 	/* This is protected by the tty_mutex */
2012 	tty = tty_open_current_tty(device, filp);
2013 	if (IS_ERR(tty)) {
2014 		retval = PTR_ERR(tty);
2015 		goto err_unlock;
2016 	} else if (!tty) {
2017 		driver = tty_lookup_driver(device, filp, &noctty, &index);
2018 		if (IS_ERR(driver)) {
2019 			retval = PTR_ERR(driver);
2020 			goto err_unlock;
2021 		}
2022 
2023 		/* check whether we're reopening an existing tty */
2024 		tty = tty_driver_lookup_tty(driver, inode, index);
2025 		if (IS_ERR(tty)) {
2026 			retval = PTR_ERR(tty);
2027 			goto err_unlock;
2028 		}
2029 	}
2030 
2031 	if (tty) {
2032 		tty_lock(tty);
2033 		retval = tty_reopen(tty);
2034 		if (retval < 0) {
2035 			tty_unlock(tty);
2036 			tty = ERR_PTR(retval);
2037 		}
2038 	} else	/* Returns with the tty_lock held for now */
2039 		tty = tty_init_dev(driver, index);
2040 
2041 	mutex_unlock(&tty_mutex);
2042 	if (driver)
2043 		tty_driver_kref_put(driver);
2044 	if (IS_ERR(tty)) {
2045 		retval = PTR_ERR(tty);
2046 		goto err_file;
2047 	}
2048 
2049 	tty_add_file(tty, filp);
2050 
2051 	check_tty_count(tty, __func__);
2052 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2053 	    tty->driver->subtype == PTY_TYPE_MASTER)
2054 		noctty = 1;
2055 #ifdef TTY_DEBUG_HANGUP
2056 	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2057 #endif
2058 	if (tty->ops->open)
2059 		retval = tty->ops->open(tty, filp);
2060 	else
2061 		retval = -ENODEV;
2062 	filp->f_flags = saved_flags;
2063 
2064 	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2065 						!capable(CAP_SYS_ADMIN))
2066 		retval = -EBUSY;
2067 
2068 	if (retval) {
2069 #ifdef TTY_DEBUG_HANGUP
2070 		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2071 				retval, tty->name);
2072 #endif
2073 		tty_unlock(tty); /* need to call tty_release without BTM */
2074 		tty_release(inode, filp);
2075 		if (retval != -ERESTARTSYS)
2076 			return retval;
2077 
2078 		if (signal_pending(current))
2079 			return retval;
2080 
2081 		schedule();
2082 		/*
2083 		 * Need to reset f_op in case a hangup happened.
2084 		 */
2085 		if (filp->f_op == &hung_up_tty_fops)
2086 			filp->f_op = &tty_fops;
2087 		goto retry_open;
2088 	}
2089 	tty_unlock(tty);
2090 
2091 
2092 	mutex_lock(&tty_mutex);
2093 	tty_lock(tty);
2094 	spin_lock_irq(&current->sighand->siglock);
2095 	if (!noctty &&
2096 	    current->signal->leader &&
2097 	    !current->signal->tty &&
2098 	    tty->session == NULL)
2099 		__proc_set_tty(current, tty);
2100 	spin_unlock_irq(&current->sighand->siglock);
2101 	tty_unlock(tty);
2102 	mutex_unlock(&tty_mutex);
2103 	return 0;
2104 err_unlock:
2105 	mutex_unlock(&tty_mutex);
2106 	/* after locks to avoid deadlock */
2107 	if (!IS_ERR_OR_NULL(driver))
2108 		tty_driver_kref_put(driver);
2109 err_file:
2110 	tty_free_file(filp);
2111 	return retval;
2112 }
2113 
2114 
2115 
2116 /**
2117  *	tty_poll	-	check tty status
2118  *	@filp: file being polled
2119  *	@wait: poll wait structures to update
2120  *
2121  *	Call the line discipline polling method to obtain the poll
2122  *	status of the device.
2123  *
2124  *	Locking: locks called line discipline but ldisc poll method
2125  *	may be re-entered freely by other callers.
2126  */
2127 
2128 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2129 {
2130 	struct tty_struct *tty = file_tty(filp);
2131 	struct tty_ldisc *ld;
2132 	int ret = 0;
2133 
2134 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2135 		return 0;
2136 
2137 	ld = tty_ldisc_ref_wait(tty);
2138 	if (ld->ops->poll)
2139 		ret = (ld->ops->poll)(tty, filp, wait);
2140 	tty_ldisc_deref(ld);
2141 	return ret;
2142 }
2143 
2144 static int __tty_fasync(int fd, struct file *filp, int on)
2145 {
2146 	struct tty_struct *tty = file_tty(filp);
2147 	struct tty_ldisc *ldisc;
2148 	unsigned long flags;
2149 	int retval = 0;
2150 
2151 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2152 		goto out;
2153 
2154 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2155 	if (retval <= 0)
2156 		goto out;
2157 
2158 	ldisc = tty_ldisc_ref(tty);
2159 	if (ldisc) {
2160 		if (ldisc->ops->fasync)
2161 			ldisc->ops->fasync(tty, on);
2162 		tty_ldisc_deref(ldisc);
2163 	}
2164 
2165 	if (on) {
2166 		enum pid_type type;
2167 		struct pid *pid;
2168 
2169 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2170 		if (tty->pgrp) {
2171 			pid = tty->pgrp;
2172 			type = PIDTYPE_PGID;
2173 		} else {
2174 			pid = task_pid(current);
2175 			type = PIDTYPE_PID;
2176 		}
2177 		get_pid(pid);
2178 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2179 		retval = __f_setown(filp, pid, type, 0);
2180 		put_pid(pid);
2181 	}
2182 out:
2183 	return retval;
2184 }
2185 
2186 static int tty_fasync(int fd, struct file *filp, int on)
2187 {
2188 	struct tty_struct *tty = file_tty(filp);
2189 	int retval;
2190 
2191 	tty_lock(tty);
2192 	retval = __tty_fasync(fd, filp, on);
2193 	tty_unlock(tty);
2194 
2195 	return retval;
2196 }
2197 
2198 /**
2199  *	tiocsti			-	fake input character
2200  *	@tty: tty to fake input into
2201  *	@p: pointer to character
2202  *
2203  *	Fake input to a tty device. Does the necessary locking and
2204  *	input management.
2205  *
2206  *	FIXME: does not honour flow control ??
2207  *
2208  *	Locking:
2209  *		Called functions take tty_ldiscs_lock
2210  *		current->signal->tty check is safe without locks
2211  *
2212  *	FIXME: may race normal receive processing
2213  */
2214 
2215 static int tiocsti(struct tty_struct *tty, char __user *p)
2216 {
2217 	char ch, mbz = 0;
2218 	struct tty_ldisc *ld;
2219 
2220 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2221 		return -EPERM;
2222 	if (get_user(ch, p))
2223 		return -EFAULT;
2224 	tty_audit_tiocsti(tty, ch);
2225 	ld = tty_ldisc_ref_wait(tty);
2226 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2227 	tty_ldisc_deref(ld);
2228 	return 0;
2229 }
2230 
2231 /**
2232  *	tiocgwinsz		-	implement window query ioctl
2233  *	@tty; tty
2234  *	@arg: user buffer for result
2235  *
2236  *	Copies the kernel idea of the window size into the user buffer.
2237  *
2238  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2239  *		is consistent.
2240  */
2241 
2242 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2243 {
2244 	int err;
2245 
2246 	mutex_lock(&tty->winsize_mutex);
2247 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2248 	mutex_unlock(&tty->winsize_mutex);
2249 
2250 	return err ? -EFAULT: 0;
2251 }
2252 
2253 /**
2254  *	tty_do_resize		-	resize event
2255  *	@tty: tty being resized
2256  *	@rows: rows (character)
2257  *	@cols: cols (character)
2258  *
2259  *	Update the termios variables and send the necessary signals to
2260  *	peform a terminal resize correctly
2261  */
2262 
2263 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2264 {
2265 	struct pid *pgrp;
2266 	unsigned long flags;
2267 
2268 	/* Lock the tty */
2269 	mutex_lock(&tty->winsize_mutex);
2270 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2271 		goto done;
2272 	/* Get the PID values and reference them so we can
2273 	   avoid holding the tty ctrl lock while sending signals */
2274 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2275 	pgrp = get_pid(tty->pgrp);
2276 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2277 
2278 	if (pgrp)
2279 		kill_pgrp(pgrp, SIGWINCH, 1);
2280 	put_pid(pgrp);
2281 
2282 	tty->winsize = *ws;
2283 done:
2284 	mutex_unlock(&tty->winsize_mutex);
2285 	return 0;
2286 }
2287 EXPORT_SYMBOL(tty_do_resize);
2288 
2289 /**
2290  *	tiocswinsz		-	implement window size set ioctl
2291  *	@tty; tty side of tty
2292  *	@arg: user buffer for result
2293  *
2294  *	Copies the user idea of the window size to the kernel. Traditionally
2295  *	this is just advisory information but for the Linux console it
2296  *	actually has driver level meaning and triggers a VC resize.
2297  *
2298  *	Locking:
2299  *		Driver dependent. The default do_resize method takes the
2300  *	tty termios mutex and ctrl_lock. The console takes its own lock
2301  *	then calls into the default method.
2302  */
2303 
2304 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2305 {
2306 	struct winsize tmp_ws;
2307 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2308 		return -EFAULT;
2309 
2310 	if (tty->ops->resize)
2311 		return tty->ops->resize(tty, &tmp_ws);
2312 	else
2313 		return tty_do_resize(tty, &tmp_ws);
2314 }
2315 
2316 /**
2317  *	tioccons	-	allow admin to move logical console
2318  *	@file: the file to become console
2319  *
2320  *	Allow the administrator to move the redirected console device
2321  *
2322  *	Locking: uses redirect_lock to guard the redirect information
2323  */
2324 
2325 static int tioccons(struct file *file)
2326 {
2327 	if (!capable(CAP_SYS_ADMIN))
2328 		return -EPERM;
2329 	if (file->f_op->write == redirected_tty_write) {
2330 		struct file *f;
2331 		spin_lock(&redirect_lock);
2332 		f = redirect;
2333 		redirect = NULL;
2334 		spin_unlock(&redirect_lock);
2335 		if (f)
2336 			fput(f);
2337 		return 0;
2338 	}
2339 	spin_lock(&redirect_lock);
2340 	if (redirect) {
2341 		spin_unlock(&redirect_lock);
2342 		return -EBUSY;
2343 	}
2344 	redirect = get_file(file);
2345 	spin_unlock(&redirect_lock);
2346 	return 0;
2347 }
2348 
2349 /**
2350  *	fionbio		-	non blocking ioctl
2351  *	@file: file to set blocking value
2352  *	@p: user parameter
2353  *
2354  *	Historical tty interfaces had a blocking control ioctl before
2355  *	the generic functionality existed. This piece of history is preserved
2356  *	in the expected tty API of posix OS's.
2357  *
2358  *	Locking: none, the open file handle ensures it won't go away.
2359  */
2360 
2361 static int fionbio(struct file *file, int __user *p)
2362 {
2363 	int nonblock;
2364 
2365 	if (get_user(nonblock, p))
2366 		return -EFAULT;
2367 
2368 	spin_lock(&file->f_lock);
2369 	if (nonblock)
2370 		file->f_flags |= O_NONBLOCK;
2371 	else
2372 		file->f_flags &= ~O_NONBLOCK;
2373 	spin_unlock(&file->f_lock);
2374 	return 0;
2375 }
2376 
2377 /**
2378  *	tiocsctty	-	set controlling tty
2379  *	@tty: tty structure
2380  *	@arg: user argument
2381  *
2382  *	This ioctl is used to manage job control. It permits a session
2383  *	leader to set this tty as the controlling tty for the session.
2384  *
2385  *	Locking:
2386  *		Takes tty_mutex() to protect tty instance
2387  *		Takes tasklist_lock internally to walk sessions
2388  *		Takes ->siglock() when updating signal->tty
2389  */
2390 
2391 static int tiocsctty(struct tty_struct *tty, int arg)
2392 {
2393 	int ret = 0;
2394 	if (current->signal->leader && (task_session(current) == tty->session))
2395 		return ret;
2396 
2397 	mutex_lock(&tty_mutex);
2398 	/*
2399 	 * The process must be a session leader and
2400 	 * not have a controlling tty already.
2401 	 */
2402 	if (!current->signal->leader || current->signal->tty) {
2403 		ret = -EPERM;
2404 		goto unlock;
2405 	}
2406 
2407 	if (tty->session) {
2408 		/*
2409 		 * This tty is already the controlling
2410 		 * tty for another session group!
2411 		 */
2412 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2413 			/*
2414 			 * Steal it away
2415 			 */
2416 			read_lock(&tasklist_lock);
2417 			session_clear_tty(tty->session);
2418 			read_unlock(&tasklist_lock);
2419 		} else {
2420 			ret = -EPERM;
2421 			goto unlock;
2422 		}
2423 	}
2424 	proc_set_tty(current, tty);
2425 unlock:
2426 	mutex_unlock(&tty_mutex);
2427 	return ret;
2428 }
2429 
2430 /**
2431  *	tty_get_pgrp	-	return a ref counted pgrp pid
2432  *	@tty: tty to read
2433  *
2434  *	Returns a refcounted instance of the pid struct for the process
2435  *	group controlling the tty.
2436  */
2437 
2438 struct pid *tty_get_pgrp(struct tty_struct *tty)
2439 {
2440 	unsigned long flags;
2441 	struct pid *pgrp;
2442 
2443 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2444 	pgrp = get_pid(tty->pgrp);
2445 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2446 
2447 	return pgrp;
2448 }
2449 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2450 
2451 /**
2452  *	tiocgpgrp		-	get process group
2453  *	@tty: tty passed by user
2454  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2455  *	@p: returned pid
2456  *
2457  *	Obtain the process group of the tty. If there is no process group
2458  *	return an error.
2459  *
2460  *	Locking: none. Reference to current->signal->tty is safe.
2461  */
2462 
2463 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2464 {
2465 	struct pid *pid;
2466 	int ret;
2467 	/*
2468 	 * (tty == real_tty) is a cheap way of
2469 	 * testing if the tty is NOT a master pty.
2470 	 */
2471 	if (tty == real_tty && current->signal->tty != real_tty)
2472 		return -ENOTTY;
2473 	pid = tty_get_pgrp(real_tty);
2474 	ret =  put_user(pid_vnr(pid), p);
2475 	put_pid(pid);
2476 	return ret;
2477 }
2478 
2479 /**
2480  *	tiocspgrp		-	attempt to set process group
2481  *	@tty: tty passed by user
2482  *	@real_tty: tty side device matching tty passed by user
2483  *	@p: pid pointer
2484  *
2485  *	Set the process group of the tty to the session passed. Only
2486  *	permitted where the tty session is our session.
2487  *
2488  *	Locking: RCU, ctrl lock
2489  */
2490 
2491 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2492 {
2493 	struct pid *pgrp;
2494 	pid_t pgrp_nr;
2495 	int retval = tty_check_change(real_tty);
2496 	unsigned long flags;
2497 
2498 	if (retval == -EIO)
2499 		return -ENOTTY;
2500 	if (retval)
2501 		return retval;
2502 	if (!current->signal->tty ||
2503 	    (current->signal->tty != real_tty) ||
2504 	    (real_tty->session != task_session(current)))
2505 		return -ENOTTY;
2506 	if (get_user(pgrp_nr, p))
2507 		return -EFAULT;
2508 	if (pgrp_nr < 0)
2509 		return -EINVAL;
2510 	rcu_read_lock();
2511 	pgrp = find_vpid(pgrp_nr);
2512 	retval = -ESRCH;
2513 	if (!pgrp)
2514 		goto out_unlock;
2515 	retval = -EPERM;
2516 	if (session_of_pgrp(pgrp) != task_session(current))
2517 		goto out_unlock;
2518 	retval = 0;
2519 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2520 	put_pid(real_tty->pgrp);
2521 	real_tty->pgrp = get_pid(pgrp);
2522 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2523 out_unlock:
2524 	rcu_read_unlock();
2525 	return retval;
2526 }
2527 
2528 /**
2529  *	tiocgsid		-	get session id
2530  *	@tty: tty passed by user
2531  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2532  *	@p: pointer to returned session id
2533  *
2534  *	Obtain the session id of the tty. If there is no session
2535  *	return an error.
2536  *
2537  *	Locking: none. Reference to current->signal->tty is safe.
2538  */
2539 
2540 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2541 {
2542 	/*
2543 	 * (tty == real_tty) is a cheap way of
2544 	 * testing if the tty is NOT a master pty.
2545 	*/
2546 	if (tty == real_tty && current->signal->tty != real_tty)
2547 		return -ENOTTY;
2548 	if (!real_tty->session)
2549 		return -ENOTTY;
2550 	return put_user(pid_vnr(real_tty->session), p);
2551 }
2552 
2553 /**
2554  *	tiocsetd	-	set line discipline
2555  *	@tty: tty device
2556  *	@p: pointer to user data
2557  *
2558  *	Set the line discipline according to user request.
2559  *
2560  *	Locking: see tty_set_ldisc, this function is just a helper
2561  */
2562 
2563 static int tiocsetd(struct tty_struct *tty, int __user *p)
2564 {
2565 	int ldisc;
2566 	int ret;
2567 
2568 	if (get_user(ldisc, p))
2569 		return -EFAULT;
2570 
2571 	ret = tty_set_ldisc(tty, ldisc);
2572 
2573 	return ret;
2574 }
2575 
2576 /**
2577  *	send_break	-	performed time break
2578  *	@tty: device to break on
2579  *	@duration: timeout in mS
2580  *
2581  *	Perform a timed break on hardware that lacks its own driver level
2582  *	timed break functionality.
2583  *
2584  *	Locking:
2585  *		atomic_write_lock serializes
2586  *
2587  */
2588 
2589 static int send_break(struct tty_struct *tty, unsigned int duration)
2590 {
2591 	int retval;
2592 
2593 	if (tty->ops->break_ctl == NULL)
2594 		return 0;
2595 
2596 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2597 		retval = tty->ops->break_ctl(tty, duration);
2598 	else {
2599 		/* Do the work ourselves */
2600 		if (tty_write_lock(tty, 0) < 0)
2601 			return -EINTR;
2602 		retval = tty->ops->break_ctl(tty, -1);
2603 		if (retval)
2604 			goto out;
2605 		if (!signal_pending(current))
2606 			msleep_interruptible(duration);
2607 		retval = tty->ops->break_ctl(tty, 0);
2608 out:
2609 		tty_write_unlock(tty);
2610 		if (signal_pending(current))
2611 			retval = -EINTR;
2612 	}
2613 	return retval;
2614 }
2615 
2616 /**
2617  *	tty_tiocmget		-	get modem status
2618  *	@tty: tty device
2619  *	@file: user file pointer
2620  *	@p: pointer to result
2621  *
2622  *	Obtain the modem status bits from the tty driver if the feature
2623  *	is supported. Return -EINVAL if it is not available.
2624  *
2625  *	Locking: none (up to the driver)
2626  */
2627 
2628 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2629 {
2630 	int retval = -EINVAL;
2631 
2632 	if (tty->ops->tiocmget) {
2633 		retval = tty->ops->tiocmget(tty);
2634 
2635 		if (retval >= 0)
2636 			retval = put_user(retval, p);
2637 	}
2638 	return retval;
2639 }
2640 
2641 /**
2642  *	tty_tiocmset		-	set modem status
2643  *	@tty: tty device
2644  *	@cmd: command - clear bits, set bits or set all
2645  *	@p: pointer to desired bits
2646  *
2647  *	Set the modem status bits from the tty driver if the feature
2648  *	is supported. Return -EINVAL if it is not available.
2649  *
2650  *	Locking: none (up to the driver)
2651  */
2652 
2653 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2654 	     unsigned __user *p)
2655 {
2656 	int retval;
2657 	unsigned int set, clear, val;
2658 
2659 	if (tty->ops->tiocmset == NULL)
2660 		return -EINVAL;
2661 
2662 	retval = get_user(val, p);
2663 	if (retval)
2664 		return retval;
2665 	set = clear = 0;
2666 	switch (cmd) {
2667 	case TIOCMBIS:
2668 		set = val;
2669 		break;
2670 	case TIOCMBIC:
2671 		clear = val;
2672 		break;
2673 	case TIOCMSET:
2674 		set = val;
2675 		clear = ~val;
2676 		break;
2677 	}
2678 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2679 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2680 	return tty->ops->tiocmset(tty, set, clear);
2681 }
2682 
2683 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2684 {
2685 	int retval = -EINVAL;
2686 	struct serial_icounter_struct icount;
2687 	memset(&icount, 0, sizeof(icount));
2688 	if (tty->ops->get_icount)
2689 		retval = tty->ops->get_icount(tty, &icount);
2690 	if (retval != 0)
2691 		return retval;
2692 	if (copy_to_user(arg, &icount, sizeof(icount)))
2693 		return -EFAULT;
2694 	return 0;
2695 }
2696 
2697 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2698 {
2699 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2700 	    tty->driver->subtype == PTY_TYPE_MASTER)
2701 		tty = tty->link;
2702 	return tty;
2703 }
2704 EXPORT_SYMBOL(tty_pair_get_tty);
2705 
2706 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2707 {
2708 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2709 	    tty->driver->subtype == PTY_TYPE_MASTER)
2710 	    return tty;
2711 	return tty->link;
2712 }
2713 EXPORT_SYMBOL(tty_pair_get_pty);
2714 
2715 /*
2716  * Split this up, as gcc can choke on it otherwise..
2717  */
2718 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2719 {
2720 	struct tty_struct *tty = file_tty(file);
2721 	struct tty_struct *real_tty;
2722 	void __user *p = (void __user *)arg;
2723 	int retval;
2724 	struct tty_ldisc *ld;
2725 
2726 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2727 		return -EINVAL;
2728 
2729 	real_tty = tty_pair_get_tty(tty);
2730 
2731 	/*
2732 	 * Factor out some common prep work
2733 	 */
2734 	switch (cmd) {
2735 	case TIOCSETD:
2736 	case TIOCSBRK:
2737 	case TIOCCBRK:
2738 	case TCSBRK:
2739 	case TCSBRKP:
2740 		retval = tty_check_change(tty);
2741 		if (retval)
2742 			return retval;
2743 		if (cmd != TIOCCBRK) {
2744 			tty_wait_until_sent(tty, 0);
2745 			if (signal_pending(current))
2746 				return -EINTR;
2747 		}
2748 		break;
2749 	}
2750 
2751 	/*
2752 	 *	Now do the stuff.
2753 	 */
2754 	switch (cmd) {
2755 	case TIOCSTI:
2756 		return tiocsti(tty, p);
2757 	case TIOCGWINSZ:
2758 		return tiocgwinsz(real_tty, p);
2759 	case TIOCSWINSZ:
2760 		return tiocswinsz(real_tty, p);
2761 	case TIOCCONS:
2762 		return real_tty != tty ? -EINVAL : tioccons(file);
2763 	case FIONBIO:
2764 		return fionbio(file, p);
2765 	case TIOCEXCL:
2766 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2767 		return 0;
2768 	case TIOCNXCL:
2769 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2770 		return 0;
2771 	case TIOCGEXCL:
2772 	{
2773 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2774 		return put_user(excl, (int __user *)p);
2775 	}
2776 	case TIOCNOTTY:
2777 		if (current->signal->tty != tty)
2778 			return -ENOTTY;
2779 		no_tty();
2780 		return 0;
2781 	case TIOCSCTTY:
2782 		return tiocsctty(tty, arg);
2783 	case TIOCGPGRP:
2784 		return tiocgpgrp(tty, real_tty, p);
2785 	case TIOCSPGRP:
2786 		return tiocspgrp(tty, real_tty, p);
2787 	case TIOCGSID:
2788 		return tiocgsid(tty, real_tty, p);
2789 	case TIOCGETD:
2790 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2791 	case TIOCSETD:
2792 		return tiocsetd(tty, p);
2793 	case TIOCVHANGUP:
2794 		if (!capable(CAP_SYS_ADMIN))
2795 			return -EPERM;
2796 		tty_vhangup(tty);
2797 		return 0;
2798 	case TIOCGDEV:
2799 	{
2800 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2801 		return put_user(ret, (unsigned int __user *)p);
2802 	}
2803 	/*
2804 	 * Break handling
2805 	 */
2806 	case TIOCSBRK:	/* Turn break on, unconditionally */
2807 		if (tty->ops->break_ctl)
2808 			return tty->ops->break_ctl(tty, -1);
2809 		return 0;
2810 	case TIOCCBRK:	/* Turn break off, unconditionally */
2811 		if (tty->ops->break_ctl)
2812 			return tty->ops->break_ctl(tty, 0);
2813 		return 0;
2814 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2815 		/* non-zero arg means wait for all output data
2816 		 * to be sent (performed above) but don't send break.
2817 		 * This is used by the tcdrain() termios function.
2818 		 */
2819 		if (!arg)
2820 			return send_break(tty, 250);
2821 		return 0;
2822 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2823 		return send_break(tty, arg ? arg*100 : 250);
2824 
2825 	case TIOCMGET:
2826 		return tty_tiocmget(tty, p);
2827 	case TIOCMSET:
2828 	case TIOCMBIC:
2829 	case TIOCMBIS:
2830 		return tty_tiocmset(tty, cmd, p);
2831 	case TIOCGICOUNT:
2832 		retval = tty_tiocgicount(tty, p);
2833 		/* For the moment allow fall through to the old method */
2834         	if (retval != -EINVAL)
2835 			return retval;
2836 		break;
2837 	case TCFLSH:
2838 		switch (arg) {
2839 		case TCIFLUSH:
2840 		case TCIOFLUSH:
2841 		/* flush tty buffer and allow ldisc to process ioctl */
2842 			tty_buffer_flush(tty);
2843 			break;
2844 		}
2845 		break;
2846 	}
2847 	if (tty->ops->ioctl) {
2848 		retval = (tty->ops->ioctl)(tty, cmd, arg);
2849 		if (retval != -ENOIOCTLCMD)
2850 			return retval;
2851 	}
2852 	ld = tty_ldisc_ref_wait(tty);
2853 	retval = -EINVAL;
2854 	if (ld->ops->ioctl) {
2855 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2856 		if (retval == -ENOIOCTLCMD)
2857 			retval = -ENOTTY;
2858 	}
2859 	tty_ldisc_deref(ld);
2860 	return retval;
2861 }
2862 
2863 #ifdef CONFIG_COMPAT
2864 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2865 				unsigned long arg)
2866 {
2867 	struct tty_struct *tty = file_tty(file);
2868 	struct tty_ldisc *ld;
2869 	int retval = -ENOIOCTLCMD;
2870 
2871 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2872 		return -EINVAL;
2873 
2874 	if (tty->ops->compat_ioctl) {
2875 		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2876 		if (retval != -ENOIOCTLCMD)
2877 			return retval;
2878 	}
2879 
2880 	ld = tty_ldisc_ref_wait(tty);
2881 	if (ld->ops->compat_ioctl)
2882 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2883 	else
2884 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2885 	tty_ldisc_deref(ld);
2886 
2887 	return retval;
2888 }
2889 #endif
2890 
2891 static int this_tty(const void *t, struct file *file, unsigned fd)
2892 {
2893 	if (likely(file->f_op->read != tty_read))
2894 		return 0;
2895 	return file_tty(file) != t ? 0 : fd + 1;
2896 }
2897 
2898 /*
2899  * This implements the "Secure Attention Key" ---  the idea is to
2900  * prevent trojan horses by killing all processes associated with this
2901  * tty when the user hits the "Secure Attention Key".  Required for
2902  * super-paranoid applications --- see the Orange Book for more details.
2903  *
2904  * This code could be nicer; ideally it should send a HUP, wait a few
2905  * seconds, then send a INT, and then a KILL signal.  But you then
2906  * have to coordinate with the init process, since all processes associated
2907  * with the current tty must be dead before the new getty is allowed
2908  * to spawn.
2909  *
2910  * Now, if it would be correct ;-/ The current code has a nasty hole -
2911  * it doesn't catch files in flight. We may send the descriptor to ourselves
2912  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2913  *
2914  * Nasty bug: do_SAK is being called in interrupt context.  This can
2915  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2916  */
2917 void __do_SAK(struct tty_struct *tty)
2918 {
2919 #ifdef TTY_SOFT_SAK
2920 	tty_hangup(tty);
2921 #else
2922 	struct task_struct *g, *p;
2923 	struct pid *session;
2924 	int		i;
2925 
2926 	if (!tty)
2927 		return;
2928 	session = tty->session;
2929 
2930 	tty_ldisc_flush(tty);
2931 
2932 	tty_driver_flush_buffer(tty);
2933 
2934 	read_lock(&tasklist_lock);
2935 	/* Kill the entire session */
2936 	do_each_pid_task(session, PIDTYPE_SID, p) {
2937 		printk(KERN_NOTICE "SAK: killed process %d"
2938 			" (%s): task_session(p)==tty->session\n",
2939 			task_pid_nr(p), p->comm);
2940 		send_sig(SIGKILL, p, 1);
2941 	} while_each_pid_task(session, PIDTYPE_SID, p);
2942 	/* Now kill any processes that happen to have the
2943 	 * tty open.
2944 	 */
2945 	do_each_thread(g, p) {
2946 		if (p->signal->tty == tty) {
2947 			printk(KERN_NOTICE "SAK: killed process %d"
2948 			    " (%s): task_session(p)==tty->session\n",
2949 			    task_pid_nr(p), p->comm);
2950 			send_sig(SIGKILL, p, 1);
2951 			continue;
2952 		}
2953 		task_lock(p);
2954 		i = iterate_fd(p->files, 0, this_tty, tty);
2955 		if (i != 0) {
2956 			printk(KERN_NOTICE "SAK: killed process %d"
2957 			    " (%s): fd#%d opened to the tty\n",
2958 				    task_pid_nr(p), p->comm, i - 1);
2959 			force_sig(SIGKILL, p);
2960 		}
2961 		task_unlock(p);
2962 	} while_each_thread(g, p);
2963 	read_unlock(&tasklist_lock);
2964 #endif
2965 }
2966 
2967 static void do_SAK_work(struct work_struct *work)
2968 {
2969 	struct tty_struct *tty =
2970 		container_of(work, struct tty_struct, SAK_work);
2971 	__do_SAK(tty);
2972 }
2973 
2974 /*
2975  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2976  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2977  * the values which we write to it will be identical to the values which it
2978  * already has. --akpm
2979  */
2980 void do_SAK(struct tty_struct *tty)
2981 {
2982 	if (!tty)
2983 		return;
2984 	schedule_work(&tty->SAK_work);
2985 }
2986 
2987 EXPORT_SYMBOL(do_SAK);
2988 
2989 static int dev_match_devt(struct device *dev, const void *data)
2990 {
2991 	const dev_t *devt = data;
2992 	return dev->devt == *devt;
2993 }
2994 
2995 /* Must put_device() after it's unused! */
2996 static struct device *tty_get_device(struct tty_struct *tty)
2997 {
2998 	dev_t devt = tty_devnum(tty);
2999 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3000 }
3001 
3002 
3003 /**
3004  *	initialize_tty_struct
3005  *	@tty: tty to initialize
3006  *
3007  *	This subroutine initializes a tty structure that has been newly
3008  *	allocated.
3009  *
3010  *	Locking: none - tty in question must not be exposed at this point
3011  */
3012 
3013 void initialize_tty_struct(struct tty_struct *tty,
3014 		struct tty_driver *driver, int idx)
3015 {
3016 	memset(tty, 0, sizeof(struct tty_struct));
3017 	kref_init(&tty->kref);
3018 	tty->magic = TTY_MAGIC;
3019 	tty_ldisc_init(tty);
3020 	tty->session = NULL;
3021 	tty->pgrp = NULL;
3022 	mutex_init(&tty->legacy_mutex);
3023 	mutex_init(&tty->throttle_mutex);
3024 	init_rwsem(&tty->termios_rwsem);
3025 	mutex_init(&tty->winsize_mutex);
3026 	init_ldsem(&tty->ldisc_sem);
3027 	init_waitqueue_head(&tty->write_wait);
3028 	init_waitqueue_head(&tty->read_wait);
3029 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3030 	mutex_init(&tty->atomic_write_lock);
3031 	spin_lock_init(&tty->ctrl_lock);
3032 	INIT_LIST_HEAD(&tty->tty_files);
3033 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3034 
3035 	tty->driver = driver;
3036 	tty->ops = driver->ops;
3037 	tty->index = idx;
3038 	tty_line_name(driver, idx, tty->name);
3039 	tty->dev = tty_get_device(tty);
3040 }
3041 
3042 /**
3043  *	deinitialize_tty_struct
3044  *	@tty: tty to deinitialize
3045  *
3046  *	This subroutine deinitializes a tty structure that has been newly
3047  *	allocated but tty_release cannot be called on that yet.
3048  *
3049  *	Locking: none - tty in question must not be exposed at this point
3050  */
3051 void deinitialize_tty_struct(struct tty_struct *tty)
3052 {
3053 	tty_ldisc_deinit(tty);
3054 }
3055 
3056 /**
3057  *	tty_put_char	-	write one character to a tty
3058  *	@tty: tty
3059  *	@ch: character
3060  *
3061  *	Write one byte to the tty using the provided put_char method
3062  *	if present. Returns the number of characters successfully output.
3063  *
3064  *	Note: the specific put_char operation in the driver layer may go
3065  *	away soon. Don't call it directly, use this method
3066  */
3067 
3068 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3069 {
3070 	if (tty->ops->put_char)
3071 		return tty->ops->put_char(tty, ch);
3072 	return tty->ops->write(tty, &ch, 1);
3073 }
3074 EXPORT_SYMBOL_GPL(tty_put_char);
3075 
3076 struct class *tty_class;
3077 
3078 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3079 		unsigned int index, unsigned int count)
3080 {
3081 	/* init here, since reused cdevs cause crashes */
3082 	cdev_init(&driver->cdevs[index], &tty_fops);
3083 	driver->cdevs[index].owner = driver->owner;
3084 	return cdev_add(&driver->cdevs[index], dev, count);
3085 }
3086 
3087 /**
3088  *	tty_register_device - register a tty device
3089  *	@driver: the tty driver that describes the tty device
3090  *	@index: the index in the tty driver for this tty device
3091  *	@device: a struct device that is associated with this tty device.
3092  *		This field is optional, if there is no known struct device
3093  *		for this tty device it can be set to NULL safely.
3094  *
3095  *	Returns a pointer to the struct device for this tty device
3096  *	(or ERR_PTR(-EFOO) on error).
3097  *
3098  *	This call is required to be made to register an individual tty device
3099  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3100  *	that bit is not set, this function should not be called by a tty
3101  *	driver.
3102  *
3103  *	Locking: ??
3104  */
3105 
3106 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3107 				   struct device *device)
3108 {
3109 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3110 }
3111 EXPORT_SYMBOL(tty_register_device);
3112 
3113 static void tty_device_create_release(struct device *dev)
3114 {
3115 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3116 	kfree(dev);
3117 }
3118 
3119 /**
3120  *	tty_register_device_attr - register a tty device
3121  *	@driver: the tty driver that describes the tty device
3122  *	@index: the index in the tty driver for this tty device
3123  *	@device: a struct device that is associated with this tty device.
3124  *		This field is optional, if there is no known struct device
3125  *		for this tty device it can be set to NULL safely.
3126  *	@drvdata: Driver data to be set to device.
3127  *	@attr_grp: Attribute group to be set on device.
3128  *
3129  *	Returns a pointer to the struct device for this tty device
3130  *	(or ERR_PTR(-EFOO) on error).
3131  *
3132  *	This call is required to be made to register an individual tty device
3133  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3134  *	that bit is not set, this function should not be called by a tty
3135  *	driver.
3136  *
3137  *	Locking: ??
3138  */
3139 struct device *tty_register_device_attr(struct tty_driver *driver,
3140 				   unsigned index, struct device *device,
3141 				   void *drvdata,
3142 				   const struct attribute_group **attr_grp)
3143 {
3144 	char name[64];
3145 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3146 	struct device *dev = NULL;
3147 	int retval = -ENODEV;
3148 	bool cdev = false;
3149 
3150 	if (index >= driver->num) {
3151 		printk(KERN_ERR "Attempt to register invalid tty line number "
3152 		       " (%d).\n", index);
3153 		return ERR_PTR(-EINVAL);
3154 	}
3155 
3156 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3157 		pty_line_name(driver, index, name);
3158 	else
3159 		tty_line_name(driver, index, name);
3160 
3161 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3162 		retval = tty_cdev_add(driver, devt, index, 1);
3163 		if (retval)
3164 			goto error;
3165 		cdev = true;
3166 	}
3167 
3168 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3169 	if (!dev) {
3170 		retval = -ENOMEM;
3171 		goto error;
3172 	}
3173 
3174 	dev->devt = devt;
3175 	dev->class = tty_class;
3176 	dev->parent = device;
3177 	dev->release = tty_device_create_release;
3178 	dev_set_name(dev, "%s", name);
3179 	dev->groups = attr_grp;
3180 	dev_set_drvdata(dev, drvdata);
3181 
3182 	retval = device_register(dev);
3183 	if (retval)
3184 		goto error;
3185 
3186 	return dev;
3187 
3188 error:
3189 	put_device(dev);
3190 	if (cdev)
3191 		cdev_del(&driver->cdevs[index]);
3192 	return ERR_PTR(retval);
3193 }
3194 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3195 
3196 /**
3197  * 	tty_unregister_device - unregister a tty device
3198  * 	@driver: the tty driver that describes the tty device
3199  * 	@index: the index in the tty driver for this tty device
3200  *
3201  * 	If a tty device is registered with a call to tty_register_device() then
3202  *	this function must be called when the tty device is gone.
3203  *
3204  *	Locking: ??
3205  */
3206 
3207 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3208 {
3209 	device_destroy(tty_class,
3210 		MKDEV(driver->major, driver->minor_start) + index);
3211 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3212 		cdev_del(&driver->cdevs[index]);
3213 }
3214 EXPORT_SYMBOL(tty_unregister_device);
3215 
3216 /**
3217  * __tty_alloc_driver -- allocate tty driver
3218  * @lines: count of lines this driver can handle at most
3219  * @owner: module which is repsonsible for this driver
3220  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3221  *
3222  * This should not be called directly, some of the provided macros should be
3223  * used instead. Use IS_ERR and friends on @retval.
3224  */
3225 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3226 		unsigned long flags)
3227 {
3228 	struct tty_driver *driver;
3229 	unsigned int cdevs = 1;
3230 	int err;
3231 
3232 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3233 		return ERR_PTR(-EINVAL);
3234 
3235 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3236 	if (!driver)
3237 		return ERR_PTR(-ENOMEM);
3238 
3239 	kref_init(&driver->kref);
3240 	driver->magic = TTY_DRIVER_MAGIC;
3241 	driver->num = lines;
3242 	driver->owner = owner;
3243 	driver->flags = flags;
3244 
3245 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3246 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3247 				GFP_KERNEL);
3248 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3249 				GFP_KERNEL);
3250 		if (!driver->ttys || !driver->termios) {
3251 			err = -ENOMEM;
3252 			goto err_free_all;
3253 		}
3254 	}
3255 
3256 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3257 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3258 				GFP_KERNEL);
3259 		if (!driver->ports) {
3260 			err = -ENOMEM;
3261 			goto err_free_all;
3262 		}
3263 		cdevs = lines;
3264 	}
3265 
3266 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3267 	if (!driver->cdevs) {
3268 		err = -ENOMEM;
3269 		goto err_free_all;
3270 	}
3271 
3272 	return driver;
3273 err_free_all:
3274 	kfree(driver->ports);
3275 	kfree(driver->ttys);
3276 	kfree(driver->termios);
3277 	kfree(driver);
3278 	return ERR_PTR(err);
3279 }
3280 EXPORT_SYMBOL(__tty_alloc_driver);
3281 
3282 static void destruct_tty_driver(struct kref *kref)
3283 {
3284 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3285 	int i;
3286 	struct ktermios *tp;
3287 
3288 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3289 		/*
3290 		 * Free the termios and termios_locked structures because
3291 		 * we don't want to get memory leaks when modular tty
3292 		 * drivers are removed from the kernel.
3293 		 */
3294 		for (i = 0; i < driver->num; i++) {
3295 			tp = driver->termios[i];
3296 			if (tp) {
3297 				driver->termios[i] = NULL;
3298 				kfree(tp);
3299 			}
3300 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3301 				tty_unregister_device(driver, i);
3302 		}
3303 		proc_tty_unregister_driver(driver);
3304 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3305 			cdev_del(&driver->cdevs[0]);
3306 	}
3307 	kfree(driver->cdevs);
3308 	kfree(driver->ports);
3309 	kfree(driver->termios);
3310 	kfree(driver->ttys);
3311 	kfree(driver);
3312 }
3313 
3314 void tty_driver_kref_put(struct tty_driver *driver)
3315 {
3316 	kref_put(&driver->kref, destruct_tty_driver);
3317 }
3318 EXPORT_SYMBOL(tty_driver_kref_put);
3319 
3320 void tty_set_operations(struct tty_driver *driver,
3321 			const struct tty_operations *op)
3322 {
3323 	driver->ops = op;
3324 };
3325 EXPORT_SYMBOL(tty_set_operations);
3326 
3327 void put_tty_driver(struct tty_driver *d)
3328 {
3329 	tty_driver_kref_put(d);
3330 }
3331 EXPORT_SYMBOL(put_tty_driver);
3332 
3333 /*
3334  * Called by a tty driver to register itself.
3335  */
3336 int tty_register_driver(struct tty_driver *driver)
3337 {
3338 	int error;
3339 	int i;
3340 	dev_t dev;
3341 	struct device *d;
3342 
3343 	if (!driver->major) {
3344 		error = alloc_chrdev_region(&dev, driver->minor_start,
3345 						driver->num, driver->name);
3346 		if (!error) {
3347 			driver->major = MAJOR(dev);
3348 			driver->minor_start = MINOR(dev);
3349 		}
3350 	} else {
3351 		dev = MKDEV(driver->major, driver->minor_start);
3352 		error = register_chrdev_region(dev, driver->num, driver->name);
3353 	}
3354 	if (error < 0)
3355 		goto err;
3356 
3357 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3358 		error = tty_cdev_add(driver, dev, 0, driver->num);
3359 		if (error)
3360 			goto err_unreg_char;
3361 	}
3362 
3363 	mutex_lock(&tty_mutex);
3364 	list_add(&driver->tty_drivers, &tty_drivers);
3365 	mutex_unlock(&tty_mutex);
3366 
3367 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3368 		for (i = 0; i < driver->num; i++) {
3369 			d = tty_register_device(driver, i, NULL);
3370 			if (IS_ERR(d)) {
3371 				error = PTR_ERR(d);
3372 				goto err_unreg_devs;
3373 			}
3374 		}
3375 	}
3376 	proc_tty_register_driver(driver);
3377 	driver->flags |= TTY_DRIVER_INSTALLED;
3378 	return 0;
3379 
3380 err_unreg_devs:
3381 	for (i--; i >= 0; i--)
3382 		tty_unregister_device(driver, i);
3383 
3384 	mutex_lock(&tty_mutex);
3385 	list_del(&driver->tty_drivers);
3386 	mutex_unlock(&tty_mutex);
3387 
3388 err_unreg_char:
3389 	unregister_chrdev_region(dev, driver->num);
3390 err:
3391 	return error;
3392 }
3393 EXPORT_SYMBOL(tty_register_driver);
3394 
3395 /*
3396  * Called by a tty driver to unregister itself.
3397  */
3398 int tty_unregister_driver(struct tty_driver *driver)
3399 {
3400 #if 0
3401 	/* FIXME */
3402 	if (driver->refcount)
3403 		return -EBUSY;
3404 #endif
3405 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3406 				driver->num);
3407 	mutex_lock(&tty_mutex);
3408 	list_del(&driver->tty_drivers);
3409 	mutex_unlock(&tty_mutex);
3410 	return 0;
3411 }
3412 
3413 EXPORT_SYMBOL(tty_unregister_driver);
3414 
3415 dev_t tty_devnum(struct tty_struct *tty)
3416 {
3417 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3418 }
3419 EXPORT_SYMBOL(tty_devnum);
3420 
3421 void proc_clear_tty(struct task_struct *p)
3422 {
3423 	unsigned long flags;
3424 	struct tty_struct *tty;
3425 	spin_lock_irqsave(&p->sighand->siglock, flags);
3426 	tty = p->signal->tty;
3427 	p->signal->tty = NULL;
3428 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3429 	tty_kref_put(tty);
3430 }
3431 
3432 /* Called under the sighand lock */
3433 
3434 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3435 {
3436 	if (tty) {
3437 		unsigned long flags;
3438 		/* We should not have a session or pgrp to put here but.... */
3439 		spin_lock_irqsave(&tty->ctrl_lock, flags);
3440 		put_pid(tty->session);
3441 		put_pid(tty->pgrp);
3442 		tty->pgrp = get_pid(task_pgrp(tsk));
3443 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3444 		tty->session = get_pid(task_session(tsk));
3445 		if (tsk->signal->tty) {
3446 			printk(KERN_DEBUG "tty not NULL!!\n");
3447 			tty_kref_put(tsk->signal->tty);
3448 		}
3449 	}
3450 	put_pid(tsk->signal->tty_old_pgrp);
3451 	tsk->signal->tty = tty_kref_get(tty);
3452 	tsk->signal->tty_old_pgrp = NULL;
3453 }
3454 
3455 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3456 {
3457 	spin_lock_irq(&tsk->sighand->siglock);
3458 	__proc_set_tty(tsk, tty);
3459 	spin_unlock_irq(&tsk->sighand->siglock);
3460 }
3461 
3462 struct tty_struct *get_current_tty(void)
3463 {
3464 	struct tty_struct *tty;
3465 	unsigned long flags;
3466 
3467 	spin_lock_irqsave(&current->sighand->siglock, flags);
3468 	tty = tty_kref_get(current->signal->tty);
3469 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3470 	return tty;
3471 }
3472 EXPORT_SYMBOL_GPL(get_current_tty);
3473 
3474 void tty_default_fops(struct file_operations *fops)
3475 {
3476 	*fops = tty_fops;
3477 }
3478 
3479 /*
3480  * Initialize the console device. This is called *early*, so
3481  * we can't necessarily depend on lots of kernel help here.
3482  * Just do some early initializations, and do the complex setup
3483  * later.
3484  */
3485 void __init console_init(void)
3486 {
3487 	initcall_t *call;
3488 
3489 	/* Setup the default TTY line discipline. */
3490 	tty_ldisc_begin();
3491 
3492 	/*
3493 	 * set up the console device so that later boot sequences can
3494 	 * inform about problems etc..
3495 	 */
3496 	call = __con_initcall_start;
3497 	while (call < __con_initcall_end) {
3498 		(*call)();
3499 		call++;
3500 	}
3501 }
3502 
3503 static char *tty_devnode(struct device *dev, umode_t *mode)
3504 {
3505 	if (!mode)
3506 		return NULL;
3507 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3508 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3509 		*mode = 0666;
3510 	return NULL;
3511 }
3512 
3513 static int __init tty_class_init(void)
3514 {
3515 	tty_class = class_create(THIS_MODULE, "tty");
3516 	if (IS_ERR(tty_class))
3517 		return PTR_ERR(tty_class);
3518 	tty_class->devnode = tty_devnode;
3519 	return 0;
3520 }
3521 
3522 postcore_initcall(tty_class_init);
3523 
3524 /* 3/2004 jmc: why do these devices exist? */
3525 static struct cdev tty_cdev, console_cdev;
3526 
3527 static ssize_t show_cons_active(struct device *dev,
3528 				struct device_attribute *attr, char *buf)
3529 {
3530 	struct console *cs[16];
3531 	int i = 0;
3532 	struct console *c;
3533 	ssize_t count = 0;
3534 
3535 	console_lock();
3536 	for_each_console(c) {
3537 		if (!c->device)
3538 			continue;
3539 		if (!c->write)
3540 			continue;
3541 		if ((c->flags & CON_ENABLED) == 0)
3542 			continue;
3543 		cs[i++] = c;
3544 		if (i >= ARRAY_SIZE(cs))
3545 			break;
3546 	}
3547 	while (i--)
3548 		count += sprintf(buf + count, "%s%d%c",
3549 				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3550 	console_unlock();
3551 
3552 	return count;
3553 }
3554 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3555 
3556 static struct device *consdev;
3557 
3558 void console_sysfs_notify(void)
3559 {
3560 	if (consdev)
3561 		sysfs_notify(&consdev->kobj, NULL, "active");
3562 }
3563 
3564 /*
3565  * Ok, now we can initialize the rest of the tty devices and can count
3566  * on memory allocations, interrupts etc..
3567  */
3568 int __init tty_init(void)
3569 {
3570 	cdev_init(&tty_cdev, &tty_fops);
3571 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3572 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3573 		panic("Couldn't register /dev/tty driver\n");
3574 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3575 
3576 	cdev_init(&console_cdev, &console_fops);
3577 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3578 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3579 		panic("Couldn't register /dev/console driver\n");
3580 	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3581 			      "console");
3582 	if (IS_ERR(consdev))
3583 		consdev = NULL;
3584 	else
3585 		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3586 
3587 #ifdef CONFIG_VT
3588 	vty_init(&console_fops);
3589 #endif
3590 	return 0;
3591 }
3592 
3593