xref: /openbmc/linux/drivers/tty/tty_io.c (revision e1f7c9ee)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112 
113 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
114 	.c_iflag = ICRNL | IXON,
115 	.c_oflag = OPOST | ONLCR,
116 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 		   ECHOCTL | ECHOKE | IEXTEN,
119 	.c_cc = INIT_C_CC,
120 	.c_ispeed = 38400,
121 	.c_ospeed = 38400
122 };
123 
124 EXPORT_SYMBOL(tty_std_termios);
125 
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129 
130 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
131 
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136 
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139 
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 							size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 				unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 
159 /**
160  *	free_tty_struct		-	free a disused tty
161  *	@tty: tty struct to free
162  *
163  *	Free the write buffers, tty queue and tty memory itself.
164  *
165  *	Locking: none. Must be called after tty is definitely unused
166  */
167 
168 void free_tty_struct(struct tty_struct *tty)
169 {
170 	if (!tty)
171 		return;
172 	if (tty->dev)
173 		put_device(tty->dev);
174 	kfree(tty->write_buf);
175 	tty->magic = 0xDEADDEAD;
176 	kfree(tty);
177 }
178 
179 static inline struct tty_struct *file_tty(struct file *file)
180 {
181 	return ((struct tty_file_private *)file->private_data)->tty;
182 }
183 
184 int tty_alloc_file(struct file *file)
185 {
186 	struct tty_file_private *priv;
187 
188 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
189 	if (!priv)
190 		return -ENOMEM;
191 
192 	file->private_data = priv;
193 
194 	return 0;
195 }
196 
197 /* Associate a new file with the tty structure */
198 void tty_add_file(struct tty_struct *tty, struct file *file)
199 {
200 	struct tty_file_private *priv = file->private_data;
201 
202 	priv->tty = tty;
203 	priv->file = file;
204 
205 	spin_lock(&tty_files_lock);
206 	list_add(&priv->list, &tty->tty_files);
207 	spin_unlock(&tty_files_lock);
208 }
209 
210 /**
211  * tty_free_file - free file->private_data
212  *
213  * This shall be used only for fail path handling when tty_add_file was not
214  * called yet.
215  */
216 void tty_free_file(struct file *file)
217 {
218 	struct tty_file_private *priv = file->private_data;
219 
220 	file->private_data = NULL;
221 	kfree(priv);
222 }
223 
224 /* Delete file from its tty */
225 static void tty_del_file(struct file *file)
226 {
227 	struct tty_file_private *priv = file->private_data;
228 
229 	spin_lock(&tty_files_lock);
230 	list_del(&priv->list);
231 	spin_unlock(&tty_files_lock);
232 	tty_free_file(file);
233 }
234 
235 
236 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
237 
238 /**
239  *	tty_name	-	return tty naming
240  *	@tty: tty structure
241  *	@buf: buffer for output
242  *
243  *	Convert a tty structure into a name. The name reflects the kernel
244  *	naming policy and if udev is in use may not reflect user space
245  *
246  *	Locking: none
247  */
248 
249 char *tty_name(struct tty_struct *tty, char *buf)
250 {
251 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
252 		strcpy(buf, "NULL tty");
253 	else
254 		strcpy(buf, tty->name);
255 	return buf;
256 }
257 
258 EXPORT_SYMBOL(tty_name);
259 
260 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
261 			      const char *routine)
262 {
263 #ifdef TTY_PARANOIA_CHECK
264 	if (!tty) {
265 		printk(KERN_WARNING
266 			"null TTY for (%d:%d) in %s\n",
267 			imajor(inode), iminor(inode), routine);
268 		return 1;
269 	}
270 	if (tty->magic != TTY_MAGIC) {
271 		printk(KERN_WARNING
272 			"bad magic number for tty struct (%d:%d) in %s\n",
273 			imajor(inode), iminor(inode), routine);
274 		return 1;
275 	}
276 #endif
277 	return 0;
278 }
279 
280 static int check_tty_count(struct tty_struct *tty, const char *routine)
281 {
282 #ifdef CHECK_TTY_COUNT
283 	struct list_head *p;
284 	int count = 0;
285 
286 	spin_lock(&tty_files_lock);
287 	list_for_each(p, &tty->tty_files) {
288 		count++;
289 	}
290 	spin_unlock(&tty_files_lock);
291 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
293 	    tty->link && tty->link->count)
294 		count++;
295 	if (tty->count != count) {
296 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
297 				    "!= #fd's(%d) in %s\n",
298 		       tty->name, tty->count, count, routine);
299 		return count;
300 	}
301 #endif
302 	return 0;
303 }
304 
305 /**
306  *	get_tty_driver		-	find device of a tty
307  *	@dev_t: device identifier
308  *	@index: returns the index of the tty
309  *
310  *	This routine returns a tty driver structure, given a device number
311  *	and also passes back the index number.
312  *
313  *	Locking: caller must hold tty_mutex
314  */
315 
316 static struct tty_driver *get_tty_driver(dev_t device, int *index)
317 {
318 	struct tty_driver *p;
319 
320 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
321 		dev_t base = MKDEV(p->major, p->minor_start);
322 		if (device < base || device >= base + p->num)
323 			continue;
324 		*index = device - base;
325 		return tty_driver_kref_get(p);
326 	}
327 	return NULL;
328 }
329 
330 #ifdef CONFIG_CONSOLE_POLL
331 
332 /**
333  *	tty_find_polling_driver	-	find device of a polled tty
334  *	@name: name string to match
335  *	@line: pointer to resulting tty line nr
336  *
337  *	This routine returns a tty driver structure, given a name
338  *	and the condition that the tty driver is capable of polled
339  *	operation.
340  */
341 struct tty_driver *tty_find_polling_driver(char *name, int *line)
342 {
343 	struct tty_driver *p, *res = NULL;
344 	int tty_line = 0;
345 	int len;
346 	char *str, *stp;
347 
348 	for (str = name; *str; str++)
349 		if ((*str >= '0' && *str <= '9') || *str == ',')
350 			break;
351 	if (!*str)
352 		return NULL;
353 
354 	len = str - name;
355 	tty_line = simple_strtoul(str, &str, 10);
356 
357 	mutex_lock(&tty_mutex);
358 	/* Search through the tty devices to look for a match */
359 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
360 		if (strncmp(name, p->name, len) != 0)
361 			continue;
362 		stp = str;
363 		if (*stp == ',')
364 			stp++;
365 		if (*stp == '\0')
366 			stp = NULL;
367 
368 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
369 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
370 			res = tty_driver_kref_get(p);
371 			*line = tty_line;
372 			break;
373 		}
374 	}
375 	mutex_unlock(&tty_mutex);
376 
377 	return res;
378 }
379 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
380 #endif
381 
382 /**
383  *	tty_check_change	-	check for POSIX terminal changes
384  *	@tty: tty to check
385  *
386  *	If we try to write to, or set the state of, a terminal and we're
387  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
388  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
389  *
390  *	Locking: ctrl_lock
391  */
392 
393 int tty_check_change(struct tty_struct *tty)
394 {
395 	unsigned long flags;
396 	int ret = 0;
397 
398 	if (current->signal->tty != tty)
399 		return 0;
400 
401 	spin_lock_irqsave(&tty->ctrl_lock, flags);
402 
403 	if (!tty->pgrp) {
404 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
405 		goto out_unlock;
406 	}
407 	if (task_pgrp(current) == tty->pgrp)
408 		goto out_unlock;
409 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
410 	if (is_ignored(SIGTTOU))
411 		goto out;
412 	if (is_current_pgrp_orphaned()) {
413 		ret = -EIO;
414 		goto out;
415 	}
416 	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
417 	set_thread_flag(TIF_SIGPENDING);
418 	ret = -ERESTARTSYS;
419 out:
420 	return ret;
421 out_unlock:
422 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423 	return ret;
424 }
425 
426 EXPORT_SYMBOL(tty_check_change);
427 
428 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
429 				size_t count, loff_t *ppos)
430 {
431 	return 0;
432 }
433 
434 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
435 				 size_t count, loff_t *ppos)
436 {
437 	return -EIO;
438 }
439 
440 /* No kernel lock held - none needed ;) */
441 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
442 {
443 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
444 }
445 
446 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
447 		unsigned long arg)
448 {
449 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
450 }
451 
452 static long hung_up_tty_compat_ioctl(struct file *file,
453 				     unsigned int cmd, unsigned long arg)
454 {
455 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
456 }
457 
458 static const struct file_operations tty_fops = {
459 	.llseek		= no_llseek,
460 	.read		= tty_read,
461 	.write		= tty_write,
462 	.poll		= tty_poll,
463 	.unlocked_ioctl	= tty_ioctl,
464 	.compat_ioctl	= tty_compat_ioctl,
465 	.open		= tty_open,
466 	.release	= tty_release,
467 	.fasync		= tty_fasync,
468 };
469 
470 static const struct file_operations console_fops = {
471 	.llseek		= no_llseek,
472 	.read		= tty_read,
473 	.write		= redirected_tty_write,
474 	.poll		= tty_poll,
475 	.unlocked_ioctl	= tty_ioctl,
476 	.compat_ioctl	= tty_compat_ioctl,
477 	.open		= tty_open,
478 	.release	= tty_release,
479 	.fasync		= tty_fasync,
480 };
481 
482 static const struct file_operations hung_up_tty_fops = {
483 	.llseek		= no_llseek,
484 	.read		= hung_up_tty_read,
485 	.write		= hung_up_tty_write,
486 	.poll		= hung_up_tty_poll,
487 	.unlocked_ioctl	= hung_up_tty_ioctl,
488 	.compat_ioctl	= hung_up_tty_compat_ioctl,
489 	.release	= tty_release,
490 };
491 
492 static DEFINE_SPINLOCK(redirect_lock);
493 static struct file *redirect;
494 
495 /**
496  *	tty_wakeup	-	request more data
497  *	@tty: terminal
498  *
499  *	Internal and external helper for wakeups of tty. This function
500  *	informs the line discipline if present that the driver is ready
501  *	to receive more output data.
502  */
503 
504 void tty_wakeup(struct tty_struct *tty)
505 {
506 	struct tty_ldisc *ld;
507 
508 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
509 		ld = tty_ldisc_ref(tty);
510 		if (ld) {
511 			if (ld->ops->write_wakeup)
512 				ld->ops->write_wakeup(tty);
513 			tty_ldisc_deref(ld);
514 		}
515 	}
516 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
517 }
518 
519 EXPORT_SYMBOL_GPL(tty_wakeup);
520 
521 /**
522  *	tty_signal_session_leader	- sends SIGHUP to session leader
523  *	@tty		controlling tty
524  *	@exit_session	if non-zero, signal all foreground group processes
525  *
526  *	Send SIGHUP and SIGCONT to the session leader and its process group.
527  *	Optionally, signal all processes in the foreground process group.
528  *
529  *	Returns the number of processes in the session with this tty
530  *	as their controlling terminal. This value is used to drop
531  *	tty references for those processes.
532  */
533 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
534 {
535 	struct task_struct *p;
536 	int refs = 0;
537 	struct pid *tty_pgrp = NULL;
538 
539 	read_lock(&tasklist_lock);
540 	if (tty->session) {
541 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
542 			spin_lock_irq(&p->sighand->siglock);
543 			if (p->signal->tty == tty) {
544 				p->signal->tty = NULL;
545 				/* We defer the dereferences outside fo
546 				   the tasklist lock */
547 				refs++;
548 			}
549 			if (!p->signal->leader) {
550 				spin_unlock_irq(&p->sighand->siglock);
551 				continue;
552 			}
553 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
554 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
555 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
556 			spin_lock(&tty->ctrl_lock);
557 			tty_pgrp = get_pid(tty->pgrp);
558 			if (tty->pgrp)
559 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
560 			spin_unlock(&tty->ctrl_lock);
561 			spin_unlock_irq(&p->sighand->siglock);
562 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
563 	}
564 	read_unlock(&tasklist_lock);
565 
566 	if (tty_pgrp) {
567 		if (exit_session)
568 			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
569 		put_pid(tty_pgrp);
570 	}
571 
572 	return refs;
573 }
574 
575 /**
576  *	__tty_hangup		-	actual handler for hangup events
577  *	@work: tty device
578  *
579  *	This can be called by a "kworker" kernel thread.  That is process
580  *	synchronous but doesn't hold any locks, so we need to make sure we
581  *	have the appropriate locks for what we're doing.
582  *
583  *	The hangup event clears any pending redirections onto the hung up
584  *	device. It ensures future writes will error and it does the needed
585  *	line discipline hangup and signal delivery. The tty object itself
586  *	remains intact.
587  *
588  *	Locking:
589  *		BTM
590  *		  redirect lock for undoing redirection
591  *		  file list lock for manipulating list of ttys
592  *		  tty_ldiscs_lock from called functions
593  *		  termios_rwsem resetting termios data
594  *		  tasklist_lock to walk task list for hangup event
595  *		    ->siglock to protect ->signal/->sighand
596  */
597 static void __tty_hangup(struct tty_struct *tty, int exit_session)
598 {
599 	struct file *cons_filp = NULL;
600 	struct file *filp, *f = NULL;
601 	struct tty_file_private *priv;
602 	int    closecount = 0, n;
603 	int refs;
604 
605 	if (!tty)
606 		return;
607 
608 
609 	spin_lock(&redirect_lock);
610 	if (redirect && file_tty(redirect) == tty) {
611 		f = redirect;
612 		redirect = NULL;
613 	}
614 	spin_unlock(&redirect_lock);
615 
616 	tty_lock(tty);
617 
618 	if (test_bit(TTY_HUPPED, &tty->flags)) {
619 		tty_unlock(tty);
620 		return;
621 	}
622 
623 	/* some functions below drop BTM, so we need this bit */
624 	set_bit(TTY_HUPPING, &tty->flags);
625 
626 	/* inuse_filps is protected by the single tty lock,
627 	   this really needs to change if we want to flush the
628 	   workqueue with the lock held */
629 	check_tty_count(tty, "tty_hangup");
630 
631 	spin_lock(&tty_files_lock);
632 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
633 	list_for_each_entry(priv, &tty->tty_files, list) {
634 		filp = priv->file;
635 		if (filp->f_op->write == redirected_tty_write)
636 			cons_filp = filp;
637 		if (filp->f_op->write != tty_write)
638 			continue;
639 		closecount++;
640 		__tty_fasync(-1, filp, 0);	/* can't block */
641 		filp->f_op = &hung_up_tty_fops;
642 	}
643 	spin_unlock(&tty_files_lock);
644 
645 	refs = tty_signal_session_leader(tty, exit_session);
646 	/* Account for the p->signal references we killed */
647 	while (refs--)
648 		tty_kref_put(tty);
649 
650 	/*
651 	 * it drops BTM and thus races with reopen
652 	 * we protect the race by TTY_HUPPING
653 	 */
654 	tty_ldisc_hangup(tty);
655 
656 	spin_lock_irq(&tty->ctrl_lock);
657 	clear_bit(TTY_THROTTLED, &tty->flags);
658 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
659 	put_pid(tty->session);
660 	put_pid(tty->pgrp);
661 	tty->session = NULL;
662 	tty->pgrp = NULL;
663 	tty->ctrl_status = 0;
664 	spin_unlock_irq(&tty->ctrl_lock);
665 
666 	/*
667 	 * If one of the devices matches a console pointer, we
668 	 * cannot just call hangup() because that will cause
669 	 * tty->count and state->count to go out of sync.
670 	 * So we just call close() the right number of times.
671 	 */
672 	if (cons_filp) {
673 		if (tty->ops->close)
674 			for (n = 0; n < closecount; n++)
675 				tty->ops->close(tty, cons_filp);
676 	} else if (tty->ops->hangup)
677 		tty->ops->hangup(tty);
678 	/*
679 	 * We don't want to have driver/ldisc interactions beyond
680 	 * the ones we did here. The driver layer expects no
681 	 * calls after ->hangup() from the ldisc side. However we
682 	 * can't yet guarantee all that.
683 	 */
684 	set_bit(TTY_HUPPED, &tty->flags);
685 	clear_bit(TTY_HUPPING, &tty->flags);
686 
687 	tty_unlock(tty);
688 
689 	if (f)
690 		fput(f);
691 }
692 
693 static void do_tty_hangup(struct work_struct *work)
694 {
695 	struct tty_struct *tty =
696 		container_of(work, struct tty_struct, hangup_work);
697 
698 	__tty_hangup(tty, 0);
699 }
700 
701 /**
702  *	tty_hangup		-	trigger a hangup event
703  *	@tty: tty to hangup
704  *
705  *	A carrier loss (virtual or otherwise) has occurred on this like
706  *	schedule a hangup sequence to run after this event.
707  */
708 
709 void tty_hangup(struct tty_struct *tty)
710 {
711 #ifdef TTY_DEBUG_HANGUP
712 	char	buf[64];
713 	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
714 #endif
715 	schedule_work(&tty->hangup_work);
716 }
717 
718 EXPORT_SYMBOL(tty_hangup);
719 
720 /**
721  *	tty_vhangup		-	process vhangup
722  *	@tty: tty to hangup
723  *
724  *	The user has asked via system call for the terminal to be hung up.
725  *	We do this synchronously so that when the syscall returns the process
726  *	is complete. That guarantee is necessary for security reasons.
727  */
728 
729 void tty_vhangup(struct tty_struct *tty)
730 {
731 #ifdef TTY_DEBUG_HANGUP
732 	char	buf[64];
733 
734 	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
735 #endif
736 	__tty_hangup(tty, 0);
737 }
738 
739 EXPORT_SYMBOL(tty_vhangup);
740 
741 
742 /**
743  *	tty_vhangup_self	-	process vhangup for own ctty
744  *
745  *	Perform a vhangup on the current controlling tty
746  */
747 
748 void tty_vhangup_self(void)
749 {
750 	struct tty_struct *tty;
751 
752 	tty = get_current_tty();
753 	if (tty) {
754 		tty_vhangup(tty);
755 		tty_kref_put(tty);
756 	}
757 }
758 
759 /**
760  *	tty_vhangup_session		-	hangup session leader exit
761  *	@tty: tty to hangup
762  *
763  *	The session leader is exiting and hanging up its controlling terminal.
764  *	Every process in the foreground process group is signalled SIGHUP.
765  *
766  *	We do this synchronously so that when the syscall returns the process
767  *	is complete. That guarantee is necessary for security reasons.
768  */
769 
770 static void tty_vhangup_session(struct tty_struct *tty)
771 {
772 #ifdef TTY_DEBUG_HANGUP
773 	char	buf[64];
774 
775 	printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
776 #endif
777 	__tty_hangup(tty, 1);
778 }
779 
780 /**
781  *	tty_hung_up_p		-	was tty hung up
782  *	@filp: file pointer of tty
783  *
784  *	Return true if the tty has been subject to a vhangup or a carrier
785  *	loss
786  */
787 
788 int tty_hung_up_p(struct file *filp)
789 {
790 	return (filp->f_op == &hung_up_tty_fops);
791 }
792 
793 EXPORT_SYMBOL(tty_hung_up_p);
794 
795 static void session_clear_tty(struct pid *session)
796 {
797 	struct task_struct *p;
798 	do_each_pid_task(session, PIDTYPE_SID, p) {
799 		proc_clear_tty(p);
800 	} while_each_pid_task(session, PIDTYPE_SID, p);
801 }
802 
803 /**
804  *	disassociate_ctty	-	disconnect controlling tty
805  *	@on_exit: true if exiting so need to "hang up" the session
806  *
807  *	This function is typically called only by the session leader, when
808  *	it wants to disassociate itself from its controlling tty.
809  *
810  *	It performs the following functions:
811  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
812  * 	(2)  Clears the tty from being controlling the session
813  * 	(3)  Clears the controlling tty for all processes in the
814  * 		session group.
815  *
816  *	The argument on_exit is set to 1 if called when a process is
817  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
818  *
819  *	Locking:
820  *		BTM is taken for hysterical raisins, and held when
821  *		  called from no_tty().
822  *		  tty_mutex is taken to protect tty
823  *		  ->siglock is taken to protect ->signal/->sighand
824  *		  tasklist_lock is taken to walk process list for sessions
825  *		    ->siglock is taken to protect ->signal/->sighand
826  */
827 
828 void disassociate_ctty(int on_exit)
829 {
830 	struct tty_struct *tty;
831 
832 	if (!current->signal->leader)
833 		return;
834 
835 	tty = get_current_tty();
836 	if (tty) {
837 		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
838 			tty_vhangup_session(tty);
839 		} else {
840 			struct pid *tty_pgrp = tty_get_pgrp(tty);
841 			if (tty_pgrp) {
842 				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
843 				if (!on_exit)
844 					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
845 				put_pid(tty_pgrp);
846 			}
847 		}
848 		tty_kref_put(tty);
849 
850 	} else if (on_exit) {
851 		struct pid *old_pgrp;
852 		spin_lock_irq(&current->sighand->siglock);
853 		old_pgrp = current->signal->tty_old_pgrp;
854 		current->signal->tty_old_pgrp = NULL;
855 		spin_unlock_irq(&current->sighand->siglock);
856 		if (old_pgrp) {
857 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
858 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
859 			put_pid(old_pgrp);
860 		}
861 		return;
862 	}
863 
864 	spin_lock_irq(&current->sighand->siglock);
865 	put_pid(current->signal->tty_old_pgrp);
866 	current->signal->tty_old_pgrp = NULL;
867 
868 	tty = tty_kref_get(current->signal->tty);
869 	if (tty) {
870 		unsigned long flags;
871 		spin_lock_irqsave(&tty->ctrl_lock, flags);
872 		put_pid(tty->session);
873 		put_pid(tty->pgrp);
874 		tty->session = NULL;
875 		tty->pgrp = NULL;
876 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
877 		tty_kref_put(tty);
878 	} else {
879 #ifdef TTY_DEBUG_HANGUP
880 		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
881 		       " = NULL", tty);
882 #endif
883 	}
884 
885 	spin_unlock_irq(&current->sighand->siglock);
886 	/* Now clear signal->tty under the lock */
887 	read_lock(&tasklist_lock);
888 	session_clear_tty(task_session(current));
889 	read_unlock(&tasklist_lock);
890 }
891 
892 /**
893  *
894  *	no_tty	- Ensure the current process does not have a controlling tty
895  */
896 void no_tty(void)
897 {
898 	/* FIXME: Review locking here. The tty_lock never covered any race
899 	   between a new association and proc_clear_tty but possible we need
900 	   to protect against this anyway */
901 	struct task_struct *tsk = current;
902 	disassociate_ctty(0);
903 	proc_clear_tty(tsk);
904 }
905 
906 
907 /**
908  *	stop_tty	-	propagate flow control
909  *	@tty: tty to stop
910  *
911  *	Perform flow control to the driver. May be called
912  *	on an already stopped device and will not re-call the driver
913  *	method.
914  *
915  *	This functionality is used by both the line disciplines for
916  *	halting incoming flow and by the driver. It may therefore be
917  *	called from any context, may be under the tty atomic_write_lock
918  *	but not always.
919  *
920  *	Locking:
921  *		flow_lock
922  */
923 
924 void __stop_tty(struct tty_struct *tty)
925 {
926 	if (tty->stopped)
927 		return;
928 	tty->stopped = 1;
929 	if (tty->ops->stop)
930 		(tty->ops->stop)(tty);
931 }
932 
933 void stop_tty(struct tty_struct *tty)
934 {
935 	unsigned long flags;
936 
937 	spin_lock_irqsave(&tty->flow_lock, flags);
938 	__stop_tty(tty);
939 	spin_unlock_irqrestore(&tty->flow_lock, flags);
940 }
941 EXPORT_SYMBOL(stop_tty);
942 
943 /**
944  *	start_tty	-	propagate flow control
945  *	@tty: tty to start
946  *
947  *	Start a tty that has been stopped if at all possible. If this
948  *	tty was previous stopped and is now being started, the driver
949  *	start method is invoked and the line discipline woken.
950  *
951  *	Locking:
952  *		flow_lock
953  */
954 
955 void __start_tty(struct tty_struct *tty)
956 {
957 	if (!tty->stopped || tty->flow_stopped)
958 		return;
959 	tty->stopped = 0;
960 	if (tty->ops->start)
961 		(tty->ops->start)(tty);
962 	tty_wakeup(tty);
963 }
964 
965 void start_tty(struct tty_struct *tty)
966 {
967 	unsigned long flags;
968 
969 	spin_lock_irqsave(&tty->flow_lock, flags);
970 	__start_tty(tty);
971 	spin_unlock_irqrestore(&tty->flow_lock, flags);
972 }
973 EXPORT_SYMBOL(start_tty);
974 
975 /* We limit tty time update visibility to every 8 seconds or so. */
976 static void tty_update_time(struct timespec *time)
977 {
978 	unsigned long sec = get_seconds() & ~7;
979 	if ((long)(sec - time->tv_sec) > 0)
980 		time->tv_sec = sec;
981 }
982 
983 /**
984  *	tty_read	-	read method for tty device files
985  *	@file: pointer to tty file
986  *	@buf: user buffer
987  *	@count: size of user buffer
988  *	@ppos: unused
989  *
990  *	Perform the read system call function on this terminal device. Checks
991  *	for hung up devices before calling the line discipline method.
992  *
993  *	Locking:
994  *		Locks the line discipline internally while needed. Multiple
995  *	read calls may be outstanding in parallel.
996  */
997 
998 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
999 			loff_t *ppos)
1000 {
1001 	int i;
1002 	struct inode *inode = file_inode(file);
1003 	struct tty_struct *tty = file_tty(file);
1004 	struct tty_ldisc *ld;
1005 
1006 	if (tty_paranoia_check(tty, inode, "tty_read"))
1007 		return -EIO;
1008 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1009 		return -EIO;
1010 
1011 	/* We want to wait for the line discipline to sort out in this
1012 	   situation */
1013 	ld = tty_ldisc_ref_wait(tty);
1014 	if (ld->ops->read)
1015 		i = (ld->ops->read)(tty, file, buf, count);
1016 	else
1017 		i = -EIO;
1018 	tty_ldisc_deref(ld);
1019 
1020 	if (i > 0)
1021 		tty_update_time(&inode->i_atime);
1022 
1023 	return i;
1024 }
1025 
1026 static void tty_write_unlock(struct tty_struct *tty)
1027 	__releases(&tty->atomic_write_lock)
1028 {
1029 	mutex_unlock(&tty->atomic_write_lock);
1030 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1031 }
1032 
1033 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1034 	__acquires(&tty->atomic_write_lock)
1035 {
1036 	if (!mutex_trylock(&tty->atomic_write_lock)) {
1037 		if (ndelay)
1038 			return -EAGAIN;
1039 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1040 			return -ERESTARTSYS;
1041 	}
1042 	return 0;
1043 }
1044 
1045 /*
1046  * Split writes up in sane blocksizes to avoid
1047  * denial-of-service type attacks
1048  */
1049 static inline ssize_t do_tty_write(
1050 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1051 	struct tty_struct *tty,
1052 	struct file *file,
1053 	const char __user *buf,
1054 	size_t count)
1055 {
1056 	ssize_t ret, written = 0;
1057 	unsigned int chunk;
1058 
1059 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1060 	if (ret < 0)
1061 		return ret;
1062 
1063 	/*
1064 	 * We chunk up writes into a temporary buffer. This
1065 	 * simplifies low-level drivers immensely, since they
1066 	 * don't have locking issues and user mode accesses.
1067 	 *
1068 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1069 	 * big chunk-size..
1070 	 *
1071 	 * The default chunk-size is 2kB, because the NTTY
1072 	 * layer has problems with bigger chunks. It will
1073 	 * claim to be able to handle more characters than
1074 	 * it actually does.
1075 	 *
1076 	 * FIXME: This can probably go away now except that 64K chunks
1077 	 * are too likely to fail unless switched to vmalloc...
1078 	 */
1079 	chunk = 2048;
1080 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1081 		chunk = 65536;
1082 	if (count < chunk)
1083 		chunk = count;
1084 
1085 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1086 	if (tty->write_cnt < chunk) {
1087 		unsigned char *buf_chunk;
1088 
1089 		if (chunk < 1024)
1090 			chunk = 1024;
1091 
1092 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1093 		if (!buf_chunk) {
1094 			ret = -ENOMEM;
1095 			goto out;
1096 		}
1097 		kfree(tty->write_buf);
1098 		tty->write_cnt = chunk;
1099 		tty->write_buf = buf_chunk;
1100 	}
1101 
1102 	/* Do the write .. */
1103 	for (;;) {
1104 		size_t size = count;
1105 		if (size > chunk)
1106 			size = chunk;
1107 		ret = -EFAULT;
1108 		if (copy_from_user(tty->write_buf, buf, size))
1109 			break;
1110 		ret = write(tty, file, tty->write_buf, size);
1111 		if (ret <= 0)
1112 			break;
1113 		written += ret;
1114 		buf += ret;
1115 		count -= ret;
1116 		if (!count)
1117 			break;
1118 		ret = -ERESTARTSYS;
1119 		if (signal_pending(current))
1120 			break;
1121 		cond_resched();
1122 	}
1123 	if (written) {
1124 		tty_update_time(&file_inode(file)->i_mtime);
1125 		ret = written;
1126 	}
1127 out:
1128 	tty_write_unlock(tty);
1129 	return ret;
1130 }
1131 
1132 /**
1133  * tty_write_message - write a message to a certain tty, not just the console.
1134  * @tty: the destination tty_struct
1135  * @msg: the message to write
1136  *
1137  * This is used for messages that need to be redirected to a specific tty.
1138  * We don't put it into the syslog queue right now maybe in the future if
1139  * really needed.
1140  *
1141  * We must still hold the BTM and test the CLOSING flag for the moment.
1142  */
1143 
1144 void tty_write_message(struct tty_struct *tty, char *msg)
1145 {
1146 	if (tty) {
1147 		mutex_lock(&tty->atomic_write_lock);
1148 		tty_lock(tty);
1149 		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1150 			tty_unlock(tty);
1151 			tty->ops->write(tty, msg, strlen(msg));
1152 		} else
1153 			tty_unlock(tty);
1154 		tty_write_unlock(tty);
1155 	}
1156 	return;
1157 }
1158 
1159 
1160 /**
1161  *	tty_write		-	write method for tty device file
1162  *	@file: tty file pointer
1163  *	@buf: user data to write
1164  *	@count: bytes to write
1165  *	@ppos: unused
1166  *
1167  *	Write data to a tty device via the line discipline.
1168  *
1169  *	Locking:
1170  *		Locks the line discipline as required
1171  *		Writes to the tty driver are serialized by the atomic_write_lock
1172  *	and are then processed in chunks to the device. The line discipline
1173  *	write method will not be invoked in parallel for each device.
1174  */
1175 
1176 static ssize_t tty_write(struct file *file, const char __user *buf,
1177 						size_t count, loff_t *ppos)
1178 {
1179 	struct tty_struct *tty = file_tty(file);
1180  	struct tty_ldisc *ld;
1181 	ssize_t ret;
1182 
1183 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1184 		return -EIO;
1185 	if (!tty || !tty->ops->write ||
1186 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1187 			return -EIO;
1188 	/* Short term debug to catch buggy drivers */
1189 	if (tty->ops->write_room == NULL)
1190 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1191 			tty->driver->name);
1192 	ld = tty_ldisc_ref_wait(tty);
1193 	if (!ld->ops->write)
1194 		ret = -EIO;
1195 	else
1196 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1197 	tty_ldisc_deref(ld);
1198 	return ret;
1199 }
1200 
1201 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1202 						size_t count, loff_t *ppos)
1203 {
1204 	struct file *p = NULL;
1205 
1206 	spin_lock(&redirect_lock);
1207 	if (redirect)
1208 		p = get_file(redirect);
1209 	spin_unlock(&redirect_lock);
1210 
1211 	if (p) {
1212 		ssize_t res;
1213 		res = vfs_write(p, buf, count, &p->f_pos);
1214 		fput(p);
1215 		return res;
1216 	}
1217 	return tty_write(file, buf, count, ppos);
1218 }
1219 
1220 /**
1221  *	tty_send_xchar	-	send priority character
1222  *
1223  *	Send a high priority character to the tty even if stopped
1224  *
1225  *	Locking: none for xchar method, write ordering for write method.
1226  */
1227 
1228 int tty_send_xchar(struct tty_struct *tty, char ch)
1229 {
1230 	int	was_stopped = tty->stopped;
1231 
1232 	if (tty->ops->send_xchar) {
1233 		tty->ops->send_xchar(tty, ch);
1234 		return 0;
1235 	}
1236 
1237 	if (tty_write_lock(tty, 0) < 0)
1238 		return -ERESTARTSYS;
1239 
1240 	if (was_stopped)
1241 		start_tty(tty);
1242 	tty->ops->write(tty, &ch, 1);
1243 	if (was_stopped)
1244 		stop_tty(tty);
1245 	tty_write_unlock(tty);
1246 	return 0;
1247 }
1248 
1249 static char ptychar[] = "pqrstuvwxyzabcde";
1250 
1251 /**
1252  *	pty_line_name	-	generate name for a pty
1253  *	@driver: the tty driver in use
1254  *	@index: the minor number
1255  *	@p: output buffer of at least 6 bytes
1256  *
1257  *	Generate a name from a driver reference and write it to the output
1258  *	buffer.
1259  *
1260  *	Locking: None
1261  */
1262 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1263 {
1264 	int i = index + driver->name_base;
1265 	/* ->name is initialized to "ttyp", but "tty" is expected */
1266 	sprintf(p, "%s%c%x",
1267 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1268 		ptychar[i >> 4 & 0xf], i & 0xf);
1269 }
1270 
1271 /**
1272  *	tty_line_name	-	generate name for a tty
1273  *	@driver: the tty driver in use
1274  *	@index: the minor number
1275  *	@p: output buffer of at least 7 bytes
1276  *
1277  *	Generate a name from a driver reference and write it to the output
1278  *	buffer.
1279  *
1280  *	Locking: None
1281  */
1282 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1283 {
1284 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1285 		return sprintf(p, "%s", driver->name);
1286 	else
1287 		return sprintf(p, "%s%d", driver->name,
1288 			       index + driver->name_base);
1289 }
1290 
1291 /**
1292  *	tty_driver_lookup_tty() - find an existing tty, if any
1293  *	@driver: the driver for the tty
1294  *	@idx:	 the minor number
1295  *
1296  *	Return the tty, if found or ERR_PTR() otherwise.
1297  *
1298  *	Locking: tty_mutex must be held. If tty is found, the mutex must
1299  *	be held until the 'fast-open' is also done. Will change once we
1300  *	have refcounting in the driver and per driver locking
1301  */
1302 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1303 		struct inode *inode, int idx)
1304 {
1305 	if (driver->ops->lookup)
1306 		return driver->ops->lookup(driver, inode, idx);
1307 
1308 	return driver->ttys[idx];
1309 }
1310 
1311 /**
1312  *	tty_init_termios	-  helper for termios setup
1313  *	@tty: the tty to set up
1314  *
1315  *	Initialise the termios structures for this tty. Thus runs under
1316  *	the tty_mutex currently so we can be relaxed about ordering.
1317  */
1318 
1319 int tty_init_termios(struct tty_struct *tty)
1320 {
1321 	struct ktermios *tp;
1322 	int idx = tty->index;
1323 
1324 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1325 		tty->termios = tty->driver->init_termios;
1326 	else {
1327 		/* Check for lazy saved data */
1328 		tp = tty->driver->termios[idx];
1329 		if (tp != NULL)
1330 			tty->termios = *tp;
1331 		else
1332 			tty->termios = tty->driver->init_termios;
1333 	}
1334 	/* Compatibility until drivers always set this */
1335 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1336 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1337 	return 0;
1338 }
1339 EXPORT_SYMBOL_GPL(tty_init_termios);
1340 
1341 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1342 {
1343 	int ret = tty_init_termios(tty);
1344 	if (ret)
1345 		return ret;
1346 
1347 	tty_driver_kref_get(driver);
1348 	tty->count++;
1349 	driver->ttys[tty->index] = tty;
1350 	return 0;
1351 }
1352 EXPORT_SYMBOL_GPL(tty_standard_install);
1353 
1354 /**
1355  *	tty_driver_install_tty() - install a tty entry in the driver
1356  *	@driver: the driver for the tty
1357  *	@tty: the tty
1358  *
1359  *	Install a tty object into the driver tables. The tty->index field
1360  *	will be set by the time this is called. This method is responsible
1361  *	for ensuring any need additional structures are allocated and
1362  *	configured.
1363  *
1364  *	Locking: tty_mutex for now
1365  */
1366 static int tty_driver_install_tty(struct tty_driver *driver,
1367 						struct tty_struct *tty)
1368 {
1369 	return driver->ops->install ? driver->ops->install(driver, tty) :
1370 		tty_standard_install(driver, tty);
1371 }
1372 
1373 /**
1374  *	tty_driver_remove_tty() - remove a tty from the driver tables
1375  *	@driver: the driver for the tty
1376  *	@idx:	 the minor number
1377  *
1378  *	Remvoe a tty object from the driver tables. The tty->index field
1379  *	will be set by the time this is called.
1380  *
1381  *	Locking: tty_mutex for now
1382  */
1383 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1384 {
1385 	if (driver->ops->remove)
1386 		driver->ops->remove(driver, tty);
1387 	else
1388 		driver->ttys[tty->index] = NULL;
1389 }
1390 
1391 /*
1392  * 	tty_reopen()	- fast re-open of an open tty
1393  * 	@tty	- the tty to open
1394  *
1395  *	Return 0 on success, -errno on error.
1396  *
1397  *	Locking: tty_mutex must be held from the time the tty was found
1398  *		 till this open completes.
1399  */
1400 static int tty_reopen(struct tty_struct *tty)
1401 {
1402 	struct tty_driver *driver = tty->driver;
1403 
1404 	if (test_bit(TTY_CLOSING, &tty->flags) ||
1405 			test_bit(TTY_HUPPING, &tty->flags))
1406 		return -EIO;
1407 
1408 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1409 	    driver->subtype == PTY_TYPE_MASTER) {
1410 		/*
1411 		 * special case for PTY masters: only one open permitted,
1412 		 * and the slave side open count is incremented as well.
1413 		 */
1414 		if (tty->count)
1415 			return -EIO;
1416 
1417 		tty->link->count++;
1418 	}
1419 	tty->count++;
1420 
1421 	WARN_ON(!tty->ldisc);
1422 
1423 	return 0;
1424 }
1425 
1426 /**
1427  *	tty_init_dev		-	initialise a tty device
1428  *	@driver: tty driver we are opening a device on
1429  *	@idx: device index
1430  *	@ret_tty: returned tty structure
1431  *
1432  *	Prepare a tty device. This may not be a "new" clean device but
1433  *	could also be an active device. The pty drivers require special
1434  *	handling because of this.
1435  *
1436  *	Locking:
1437  *		The function is called under the tty_mutex, which
1438  *	protects us from the tty struct or driver itself going away.
1439  *
1440  *	On exit the tty device has the line discipline attached and
1441  *	a reference count of 1. If a pair was created for pty/tty use
1442  *	and the other was a pty master then it too has a reference count of 1.
1443  *
1444  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1445  * failed open.  The new code protects the open with a mutex, so it's
1446  * really quite straightforward.  The mutex locking can probably be
1447  * relaxed for the (most common) case of reopening a tty.
1448  */
1449 
1450 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1451 {
1452 	struct tty_struct *tty;
1453 	int retval;
1454 
1455 	/*
1456 	 * First time open is complex, especially for PTY devices.
1457 	 * This code guarantees that either everything succeeds and the
1458 	 * TTY is ready for operation, or else the table slots are vacated
1459 	 * and the allocated memory released.  (Except that the termios
1460 	 * and locked termios may be retained.)
1461 	 */
1462 
1463 	if (!try_module_get(driver->owner))
1464 		return ERR_PTR(-ENODEV);
1465 
1466 	tty = alloc_tty_struct(driver, idx);
1467 	if (!tty) {
1468 		retval = -ENOMEM;
1469 		goto err_module_put;
1470 	}
1471 
1472 	tty_lock(tty);
1473 	retval = tty_driver_install_tty(driver, tty);
1474 	if (retval < 0)
1475 		goto err_deinit_tty;
1476 
1477 	if (!tty->port)
1478 		tty->port = driver->ports[idx];
1479 
1480 	WARN_RATELIMIT(!tty->port,
1481 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1482 			__func__, tty->driver->name);
1483 
1484 	tty->port->itty = tty;
1485 
1486 	/*
1487 	 * Structures all installed ... call the ldisc open routines.
1488 	 * If we fail here just call release_tty to clean up.  No need
1489 	 * to decrement the use counts, as release_tty doesn't care.
1490 	 */
1491 	retval = tty_ldisc_setup(tty, tty->link);
1492 	if (retval)
1493 		goto err_release_tty;
1494 	/* Return the tty locked so that it cannot vanish under the caller */
1495 	return tty;
1496 
1497 err_deinit_tty:
1498 	tty_unlock(tty);
1499 	deinitialize_tty_struct(tty);
1500 	free_tty_struct(tty);
1501 err_module_put:
1502 	module_put(driver->owner);
1503 	return ERR_PTR(retval);
1504 
1505 	/* call the tty release_tty routine to clean out this slot */
1506 err_release_tty:
1507 	tty_unlock(tty);
1508 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1509 				 "clearing slot %d\n", idx);
1510 	release_tty(tty, idx);
1511 	return ERR_PTR(retval);
1512 }
1513 
1514 void tty_free_termios(struct tty_struct *tty)
1515 {
1516 	struct ktermios *tp;
1517 	int idx = tty->index;
1518 
1519 	/* If the port is going to reset then it has no termios to save */
1520 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1521 		return;
1522 
1523 	/* Stash the termios data */
1524 	tp = tty->driver->termios[idx];
1525 	if (tp == NULL) {
1526 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1527 		if (tp == NULL) {
1528 			pr_warn("tty: no memory to save termios state.\n");
1529 			return;
1530 		}
1531 		tty->driver->termios[idx] = tp;
1532 	}
1533 	*tp = tty->termios;
1534 }
1535 EXPORT_SYMBOL(tty_free_termios);
1536 
1537 /**
1538  *	tty_flush_works		-	flush all works of a tty
1539  *	@tty: tty device to flush works for
1540  *
1541  *	Sync flush all works belonging to @tty.
1542  */
1543 static void tty_flush_works(struct tty_struct *tty)
1544 {
1545 	flush_work(&tty->SAK_work);
1546 	flush_work(&tty->hangup_work);
1547 }
1548 
1549 /**
1550  *	release_one_tty		-	release tty structure memory
1551  *	@kref: kref of tty we are obliterating
1552  *
1553  *	Releases memory associated with a tty structure, and clears out the
1554  *	driver table slots. This function is called when a device is no longer
1555  *	in use. It also gets called when setup of a device fails.
1556  *
1557  *	Locking:
1558  *		takes the file list lock internally when working on the list
1559  *	of ttys that the driver keeps.
1560  *
1561  *	This method gets called from a work queue so that the driver private
1562  *	cleanup ops can sleep (needed for USB at least)
1563  */
1564 static void release_one_tty(struct work_struct *work)
1565 {
1566 	struct tty_struct *tty =
1567 		container_of(work, struct tty_struct, hangup_work);
1568 	struct tty_driver *driver = tty->driver;
1569 	struct module *owner = driver->owner;
1570 
1571 	if (tty->ops->cleanup)
1572 		tty->ops->cleanup(tty);
1573 
1574 	tty->magic = 0;
1575 	tty_driver_kref_put(driver);
1576 	module_put(owner);
1577 
1578 	spin_lock(&tty_files_lock);
1579 	list_del_init(&tty->tty_files);
1580 	spin_unlock(&tty_files_lock);
1581 
1582 	put_pid(tty->pgrp);
1583 	put_pid(tty->session);
1584 	free_tty_struct(tty);
1585 }
1586 
1587 static void queue_release_one_tty(struct kref *kref)
1588 {
1589 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1590 
1591 	/* The hangup queue is now free so we can reuse it rather than
1592 	   waste a chunk of memory for each port */
1593 	INIT_WORK(&tty->hangup_work, release_one_tty);
1594 	schedule_work(&tty->hangup_work);
1595 }
1596 
1597 /**
1598  *	tty_kref_put		-	release a tty kref
1599  *	@tty: tty device
1600  *
1601  *	Release a reference to a tty device and if need be let the kref
1602  *	layer destruct the object for us
1603  */
1604 
1605 void tty_kref_put(struct tty_struct *tty)
1606 {
1607 	if (tty)
1608 		kref_put(&tty->kref, queue_release_one_tty);
1609 }
1610 EXPORT_SYMBOL(tty_kref_put);
1611 
1612 /**
1613  *	release_tty		-	release tty structure memory
1614  *
1615  *	Release both @tty and a possible linked partner (think pty pair),
1616  *	and decrement the refcount of the backing module.
1617  *
1618  *	Locking:
1619  *		tty_mutex
1620  *		takes the file list lock internally when working on the list
1621  *	of ttys that the driver keeps.
1622  *
1623  */
1624 static void release_tty(struct tty_struct *tty, int idx)
1625 {
1626 	/* This should always be true but check for the moment */
1627 	WARN_ON(tty->index != idx);
1628 	WARN_ON(!mutex_is_locked(&tty_mutex));
1629 	if (tty->ops->shutdown)
1630 		tty->ops->shutdown(tty);
1631 	tty_free_termios(tty);
1632 	tty_driver_remove_tty(tty->driver, tty);
1633 	tty->port->itty = NULL;
1634 	if (tty->link)
1635 		tty->link->port->itty = NULL;
1636 	cancel_work_sync(&tty->port->buf.work);
1637 
1638 	if (tty->link)
1639 		tty_kref_put(tty->link);
1640 	tty_kref_put(tty);
1641 }
1642 
1643 /**
1644  *	tty_release_checks - check a tty before real release
1645  *	@tty: tty to check
1646  *	@o_tty: link of @tty (if any)
1647  *	@idx: index of the tty
1648  *
1649  *	Performs some paranoid checking before true release of the @tty.
1650  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1651  */
1652 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1653 		int idx)
1654 {
1655 #ifdef TTY_PARANOIA_CHECK
1656 	if (idx < 0 || idx >= tty->driver->num) {
1657 		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1658 				__func__, tty->name);
1659 		return -1;
1660 	}
1661 
1662 	/* not much to check for devpts */
1663 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1664 		return 0;
1665 
1666 	if (tty != tty->driver->ttys[idx]) {
1667 		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1668 				__func__, idx, tty->name);
1669 		return -1;
1670 	}
1671 	if (tty->driver->other) {
1672 		if (o_tty != tty->driver->other->ttys[idx]) {
1673 			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1674 					__func__, idx, tty->name);
1675 			return -1;
1676 		}
1677 		if (o_tty->link != tty) {
1678 			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1679 			return -1;
1680 		}
1681 	}
1682 #endif
1683 	return 0;
1684 }
1685 
1686 /**
1687  *	tty_release		-	vfs callback for close
1688  *	@inode: inode of tty
1689  *	@filp: file pointer for handle to tty
1690  *
1691  *	Called the last time each file handle is closed that references
1692  *	this tty. There may however be several such references.
1693  *
1694  *	Locking:
1695  *		Takes bkl. See tty_release_dev
1696  *
1697  * Even releasing the tty structures is a tricky business.. We have
1698  * to be very careful that the structures are all released at the
1699  * same time, as interrupts might otherwise get the wrong pointers.
1700  *
1701  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1702  * lead to double frees or releasing memory still in use.
1703  */
1704 
1705 int tty_release(struct inode *inode, struct file *filp)
1706 {
1707 	struct tty_struct *tty = file_tty(filp);
1708 	struct tty_struct *o_tty;
1709 	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1710 	int	idx;
1711 	char	buf[64];
1712 
1713 	if (tty_paranoia_check(tty, inode, __func__))
1714 		return 0;
1715 
1716 	tty_lock(tty);
1717 	check_tty_count(tty, __func__);
1718 
1719 	__tty_fasync(-1, filp, 0);
1720 
1721 	idx = tty->index;
1722 	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1723 		      tty->driver->subtype == PTY_TYPE_MASTER);
1724 	/* Review: parallel close */
1725 	o_tty = tty->link;
1726 
1727 	if (tty_release_checks(tty, o_tty, idx)) {
1728 		tty_unlock(tty);
1729 		return 0;
1730 	}
1731 
1732 #ifdef TTY_DEBUG_HANGUP
1733 	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1734 			tty_name(tty, buf), tty->count);
1735 #endif
1736 
1737 	if (tty->ops->close)
1738 		tty->ops->close(tty, filp);
1739 
1740 	tty_unlock(tty);
1741 	/*
1742 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1743 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1744 	 * wait queues and kick everyone out _before_ actually starting to
1745 	 * close.  This ensures that we won't block while releasing the tty
1746 	 * structure.
1747 	 *
1748 	 * The test for the o_tty closing is necessary, since the master and
1749 	 * slave sides may close in any order.  If the slave side closes out
1750 	 * first, its count will be one, since the master side holds an open.
1751 	 * Thus this test wouldn't be triggered at the time the slave closes,
1752 	 * so we do it now.
1753 	 *
1754 	 * Note that it's possible for the tty to be opened again while we're
1755 	 * flushing out waiters.  By recalculating the closing flags before
1756 	 * each iteration we avoid any problems.
1757 	 */
1758 	while (1) {
1759 		/* Guard against races with tty->count changes elsewhere and
1760 		   opens on /dev/tty */
1761 
1762 		mutex_lock(&tty_mutex);
1763 		tty_lock_pair(tty, o_tty);
1764 		tty_closing = tty->count <= 1;
1765 		o_tty_closing = o_tty &&
1766 			(o_tty->count <= (pty_master ? 1 : 0));
1767 		do_sleep = 0;
1768 
1769 		if (tty_closing) {
1770 			if (waitqueue_active(&tty->read_wait)) {
1771 				wake_up_poll(&tty->read_wait, POLLIN);
1772 				do_sleep++;
1773 			}
1774 			if (waitqueue_active(&tty->write_wait)) {
1775 				wake_up_poll(&tty->write_wait, POLLOUT);
1776 				do_sleep++;
1777 			}
1778 		}
1779 		if (o_tty_closing) {
1780 			if (waitqueue_active(&o_tty->read_wait)) {
1781 				wake_up_poll(&o_tty->read_wait, POLLIN);
1782 				do_sleep++;
1783 			}
1784 			if (waitqueue_active(&o_tty->write_wait)) {
1785 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1786 				do_sleep++;
1787 			}
1788 		}
1789 		if (!do_sleep)
1790 			break;
1791 
1792 		printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1793 				__func__, tty_name(tty, buf));
1794 		tty_unlock_pair(tty, o_tty);
1795 		mutex_unlock(&tty_mutex);
1796 		schedule();
1797 	}
1798 
1799 	/*
1800 	 * The closing flags are now consistent with the open counts on
1801 	 * both sides, and we've completed the last operation that could
1802 	 * block, so it's safe to proceed with closing.
1803 	 *
1804 	 * We must *not* drop the tty_mutex until we ensure that a further
1805 	 * entry into tty_open can not pick up this tty.
1806 	 */
1807 	if (pty_master) {
1808 		if (--o_tty->count < 0) {
1809 			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1810 				__func__, o_tty->count, tty_name(o_tty, buf));
1811 			o_tty->count = 0;
1812 		}
1813 	}
1814 	if (--tty->count < 0) {
1815 		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1816 				__func__, tty->count, tty_name(tty, buf));
1817 		tty->count = 0;
1818 	}
1819 
1820 	/*
1821 	 * We've decremented tty->count, so we need to remove this file
1822 	 * descriptor off the tty->tty_files list; this serves two
1823 	 * purposes:
1824 	 *  - check_tty_count sees the correct number of file descriptors
1825 	 *    associated with this tty.
1826 	 *  - do_tty_hangup no longer sees this file descriptor as
1827 	 *    something that needs to be handled for hangups.
1828 	 */
1829 	tty_del_file(filp);
1830 
1831 	/*
1832 	 * Perform some housekeeping before deciding whether to return.
1833 	 *
1834 	 * Set the TTY_CLOSING flag if this was the last open.  In the
1835 	 * case of a pty we may have to wait around for the other side
1836 	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1837 	 */
1838 	if (tty_closing)
1839 		set_bit(TTY_CLOSING, &tty->flags);
1840 	if (o_tty_closing)
1841 		set_bit(TTY_CLOSING, &o_tty->flags);
1842 
1843 	/*
1844 	 * If _either_ side is closing, make sure there aren't any
1845 	 * processes that still think tty or o_tty is their controlling
1846 	 * tty.
1847 	 */
1848 	if (tty_closing || o_tty_closing) {
1849 		read_lock(&tasklist_lock);
1850 		session_clear_tty(tty->session);
1851 		if (o_tty)
1852 			session_clear_tty(o_tty->session);
1853 		read_unlock(&tasklist_lock);
1854 	}
1855 
1856 	mutex_unlock(&tty_mutex);
1857 	tty_unlock_pair(tty, o_tty);
1858 	/* At this point the TTY_CLOSING flag should ensure a dead tty
1859 	   cannot be re-opened by a racing opener */
1860 
1861 	/* check whether both sides are closing ... */
1862 	if (!tty_closing || (o_tty && !o_tty_closing))
1863 		return 0;
1864 
1865 #ifdef TTY_DEBUG_HANGUP
1866 	printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1867 #endif
1868 	/*
1869 	 * Ask the line discipline code to release its structures
1870 	 */
1871 	tty_ldisc_release(tty, o_tty);
1872 
1873 	/* Wait for pending work before tty destruction commmences */
1874 	tty_flush_works(tty);
1875 	if (o_tty)
1876 		tty_flush_works(o_tty);
1877 
1878 #ifdef TTY_DEBUG_HANGUP
1879 	printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1880 #endif
1881 	/*
1882 	 * The release_tty function takes care of the details of clearing
1883 	 * the slots and preserving the termios structure. The tty_unlock_pair
1884 	 * should be safe as we keep a kref while the tty is locked (so the
1885 	 * unlock never unlocks a freed tty).
1886 	 */
1887 	mutex_lock(&tty_mutex);
1888 	release_tty(tty, idx);
1889 	mutex_unlock(&tty_mutex);
1890 
1891 	return 0;
1892 }
1893 
1894 /**
1895  *	tty_open_current_tty - get tty of current task for open
1896  *	@device: device number
1897  *	@filp: file pointer to tty
1898  *	@return: tty of the current task iff @device is /dev/tty
1899  *
1900  *	We cannot return driver and index like for the other nodes because
1901  *	devpts will not work then. It expects inodes to be from devpts FS.
1902  *
1903  *	We need to move to returning a refcounted object from all the lookup
1904  *	paths including this one.
1905  */
1906 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1907 {
1908 	struct tty_struct *tty;
1909 
1910 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1911 		return NULL;
1912 
1913 	tty = get_current_tty();
1914 	if (!tty)
1915 		return ERR_PTR(-ENXIO);
1916 
1917 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1918 	/* noctty = 1; */
1919 	tty_kref_put(tty);
1920 	/* FIXME: we put a reference and return a TTY! */
1921 	/* This is only safe because the caller holds tty_mutex */
1922 	return tty;
1923 }
1924 
1925 /**
1926  *	tty_lookup_driver - lookup a tty driver for a given device file
1927  *	@device: device number
1928  *	@filp: file pointer to tty
1929  *	@noctty: set if the device should not become a controlling tty
1930  *	@index: index for the device in the @return driver
1931  *	@return: driver for this inode (with increased refcount)
1932  *
1933  * 	If @return is not erroneous, the caller is responsible to decrement the
1934  * 	refcount by tty_driver_kref_put.
1935  *
1936  *	Locking: tty_mutex protects get_tty_driver
1937  */
1938 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1939 		int *noctty, int *index)
1940 {
1941 	struct tty_driver *driver;
1942 
1943 	switch (device) {
1944 #ifdef CONFIG_VT
1945 	case MKDEV(TTY_MAJOR, 0): {
1946 		extern struct tty_driver *console_driver;
1947 		driver = tty_driver_kref_get(console_driver);
1948 		*index = fg_console;
1949 		*noctty = 1;
1950 		break;
1951 	}
1952 #endif
1953 	case MKDEV(TTYAUX_MAJOR, 1): {
1954 		struct tty_driver *console_driver = console_device(index);
1955 		if (console_driver) {
1956 			driver = tty_driver_kref_get(console_driver);
1957 			if (driver) {
1958 				/* Don't let /dev/console block */
1959 				filp->f_flags |= O_NONBLOCK;
1960 				*noctty = 1;
1961 				break;
1962 			}
1963 		}
1964 		return ERR_PTR(-ENODEV);
1965 	}
1966 	default:
1967 		driver = get_tty_driver(device, index);
1968 		if (!driver)
1969 			return ERR_PTR(-ENODEV);
1970 		break;
1971 	}
1972 	return driver;
1973 }
1974 
1975 /**
1976  *	tty_open		-	open a tty device
1977  *	@inode: inode of device file
1978  *	@filp: file pointer to tty
1979  *
1980  *	tty_open and tty_release keep up the tty count that contains the
1981  *	number of opens done on a tty. We cannot use the inode-count, as
1982  *	different inodes might point to the same tty.
1983  *
1984  *	Open-counting is needed for pty masters, as well as for keeping
1985  *	track of serial lines: DTR is dropped when the last close happens.
1986  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1987  *
1988  *	The termios state of a pty is reset on first open so that
1989  *	settings don't persist across reuse.
1990  *
1991  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1992  *		 tty->count should protect the rest.
1993  *		 ->siglock protects ->signal/->sighand
1994  *
1995  *	Note: the tty_unlock/lock cases without a ref are only safe due to
1996  *	tty_mutex
1997  */
1998 
1999 static int tty_open(struct inode *inode, struct file *filp)
2000 {
2001 	struct tty_struct *tty;
2002 	int noctty, retval;
2003 	struct tty_driver *driver = NULL;
2004 	int index;
2005 	dev_t device = inode->i_rdev;
2006 	unsigned saved_flags = filp->f_flags;
2007 
2008 	nonseekable_open(inode, filp);
2009 
2010 retry_open:
2011 	retval = tty_alloc_file(filp);
2012 	if (retval)
2013 		return -ENOMEM;
2014 
2015 	noctty = filp->f_flags & O_NOCTTY;
2016 	index  = -1;
2017 	retval = 0;
2018 
2019 	mutex_lock(&tty_mutex);
2020 	/* This is protected by the tty_mutex */
2021 	tty = tty_open_current_tty(device, filp);
2022 	if (IS_ERR(tty)) {
2023 		retval = PTR_ERR(tty);
2024 		goto err_unlock;
2025 	} else if (!tty) {
2026 		driver = tty_lookup_driver(device, filp, &noctty, &index);
2027 		if (IS_ERR(driver)) {
2028 			retval = PTR_ERR(driver);
2029 			goto err_unlock;
2030 		}
2031 
2032 		/* check whether we're reopening an existing tty */
2033 		tty = tty_driver_lookup_tty(driver, inode, index);
2034 		if (IS_ERR(tty)) {
2035 			retval = PTR_ERR(tty);
2036 			goto err_unlock;
2037 		}
2038 	}
2039 
2040 	if (tty) {
2041 		tty_lock(tty);
2042 		retval = tty_reopen(tty);
2043 		if (retval < 0) {
2044 			tty_unlock(tty);
2045 			tty = ERR_PTR(retval);
2046 		}
2047 	} else	/* Returns with the tty_lock held for now */
2048 		tty = tty_init_dev(driver, index);
2049 
2050 	mutex_unlock(&tty_mutex);
2051 	if (driver)
2052 		tty_driver_kref_put(driver);
2053 	if (IS_ERR(tty)) {
2054 		retval = PTR_ERR(tty);
2055 		goto err_file;
2056 	}
2057 
2058 	tty_add_file(tty, filp);
2059 
2060 	check_tty_count(tty, __func__);
2061 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2062 	    tty->driver->subtype == PTY_TYPE_MASTER)
2063 		noctty = 1;
2064 #ifdef TTY_DEBUG_HANGUP
2065 	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2066 #endif
2067 	if (tty->ops->open)
2068 		retval = tty->ops->open(tty, filp);
2069 	else
2070 		retval = -ENODEV;
2071 	filp->f_flags = saved_flags;
2072 
2073 	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2074 						!capable(CAP_SYS_ADMIN))
2075 		retval = -EBUSY;
2076 
2077 	if (retval) {
2078 #ifdef TTY_DEBUG_HANGUP
2079 		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2080 				retval, tty->name);
2081 #endif
2082 		tty_unlock(tty); /* need to call tty_release without BTM */
2083 		tty_release(inode, filp);
2084 		if (retval != -ERESTARTSYS)
2085 			return retval;
2086 
2087 		if (signal_pending(current))
2088 			return retval;
2089 
2090 		schedule();
2091 		/*
2092 		 * Need to reset f_op in case a hangup happened.
2093 		 */
2094 		if (filp->f_op == &hung_up_tty_fops)
2095 			filp->f_op = &tty_fops;
2096 		goto retry_open;
2097 	}
2098 	clear_bit(TTY_HUPPED, &tty->flags);
2099 	tty_unlock(tty);
2100 
2101 
2102 	mutex_lock(&tty_mutex);
2103 	tty_lock(tty);
2104 	spin_lock_irq(&current->sighand->siglock);
2105 	if (!noctty &&
2106 	    current->signal->leader &&
2107 	    !current->signal->tty &&
2108 	    tty->session == NULL)
2109 		__proc_set_tty(current, tty);
2110 	spin_unlock_irq(&current->sighand->siglock);
2111 	tty_unlock(tty);
2112 	mutex_unlock(&tty_mutex);
2113 	return 0;
2114 err_unlock:
2115 	mutex_unlock(&tty_mutex);
2116 	/* after locks to avoid deadlock */
2117 	if (!IS_ERR_OR_NULL(driver))
2118 		tty_driver_kref_put(driver);
2119 err_file:
2120 	tty_free_file(filp);
2121 	return retval;
2122 }
2123 
2124 
2125 
2126 /**
2127  *	tty_poll	-	check tty status
2128  *	@filp: file being polled
2129  *	@wait: poll wait structures to update
2130  *
2131  *	Call the line discipline polling method to obtain the poll
2132  *	status of the device.
2133  *
2134  *	Locking: locks called line discipline but ldisc poll method
2135  *	may be re-entered freely by other callers.
2136  */
2137 
2138 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2139 {
2140 	struct tty_struct *tty = file_tty(filp);
2141 	struct tty_ldisc *ld;
2142 	int ret = 0;
2143 
2144 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2145 		return 0;
2146 
2147 	ld = tty_ldisc_ref_wait(tty);
2148 	if (ld->ops->poll)
2149 		ret = (ld->ops->poll)(tty, filp, wait);
2150 	tty_ldisc_deref(ld);
2151 	return ret;
2152 }
2153 
2154 static int __tty_fasync(int fd, struct file *filp, int on)
2155 {
2156 	struct tty_struct *tty = file_tty(filp);
2157 	struct tty_ldisc *ldisc;
2158 	unsigned long flags;
2159 	int retval = 0;
2160 
2161 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2162 		goto out;
2163 
2164 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2165 	if (retval <= 0)
2166 		goto out;
2167 
2168 	ldisc = tty_ldisc_ref(tty);
2169 	if (ldisc) {
2170 		if (ldisc->ops->fasync)
2171 			ldisc->ops->fasync(tty, on);
2172 		tty_ldisc_deref(ldisc);
2173 	}
2174 
2175 	if (on) {
2176 		enum pid_type type;
2177 		struct pid *pid;
2178 
2179 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2180 		if (tty->pgrp) {
2181 			pid = tty->pgrp;
2182 			type = PIDTYPE_PGID;
2183 		} else {
2184 			pid = task_pid(current);
2185 			type = PIDTYPE_PID;
2186 		}
2187 		get_pid(pid);
2188 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2189 		__f_setown(filp, pid, type, 0);
2190 		put_pid(pid);
2191 		retval = 0;
2192 	}
2193 out:
2194 	return retval;
2195 }
2196 
2197 static int tty_fasync(int fd, struct file *filp, int on)
2198 {
2199 	struct tty_struct *tty = file_tty(filp);
2200 	int retval;
2201 
2202 	tty_lock(tty);
2203 	retval = __tty_fasync(fd, filp, on);
2204 	tty_unlock(tty);
2205 
2206 	return retval;
2207 }
2208 
2209 /**
2210  *	tiocsti			-	fake input character
2211  *	@tty: tty to fake input into
2212  *	@p: pointer to character
2213  *
2214  *	Fake input to a tty device. Does the necessary locking and
2215  *	input management.
2216  *
2217  *	FIXME: does not honour flow control ??
2218  *
2219  *	Locking:
2220  *		Called functions take tty_ldiscs_lock
2221  *		current->signal->tty check is safe without locks
2222  *
2223  *	FIXME: may race normal receive processing
2224  */
2225 
2226 static int tiocsti(struct tty_struct *tty, char __user *p)
2227 {
2228 	char ch, mbz = 0;
2229 	struct tty_ldisc *ld;
2230 
2231 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2232 		return -EPERM;
2233 	if (get_user(ch, p))
2234 		return -EFAULT;
2235 	tty_audit_tiocsti(tty, ch);
2236 	ld = tty_ldisc_ref_wait(tty);
2237 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2238 	tty_ldisc_deref(ld);
2239 	return 0;
2240 }
2241 
2242 /**
2243  *	tiocgwinsz		-	implement window query ioctl
2244  *	@tty; tty
2245  *	@arg: user buffer for result
2246  *
2247  *	Copies the kernel idea of the window size into the user buffer.
2248  *
2249  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2250  *		is consistent.
2251  */
2252 
2253 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2254 {
2255 	int err;
2256 
2257 	mutex_lock(&tty->winsize_mutex);
2258 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2259 	mutex_unlock(&tty->winsize_mutex);
2260 
2261 	return err ? -EFAULT: 0;
2262 }
2263 
2264 /**
2265  *	tty_do_resize		-	resize event
2266  *	@tty: tty being resized
2267  *	@rows: rows (character)
2268  *	@cols: cols (character)
2269  *
2270  *	Update the termios variables and send the necessary signals to
2271  *	peform a terminal resize correctly
2272  */
2273 
2274 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2275 {
2276 	struct pid *pgrp;
2277 	unsigned long flags;
2278 
2279 	/* Lock the tty */
2280 	mutex_lock(&tty->winsize_mutex);
2281 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2282 		goto done;
2283 	/* Get the PID values and reference them so we can
2284 	   avoid holding the tty ctrl lock while sending signals */
2285 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2286 	pgrp = get_pid(tty->pgrp);
2287 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2288 
2289 	if (pgrp)
2290 		kill_pgrp(pgrp, SIGWINCH, 1);
2291 	put_pid(pgrp);
2292 
2293 	tty->winsize = *ws;
2294 done:
2295 	mutex_unlock(&tty->winsize_mutex);
2296 	return 0;
2297 }
2298 EXPORT_SYMBOL(tty_do_resize);
2299 
2300 /**
2301  *	tiocswinsz		-	implement window size set ioctl
2302  *	@tty; tty side of tty
2303  *	@arg: user buffer for result
2304  *
2305  *	Copies the user idea of the window size to the kernel. Traditionally
2306  *	this is just advisory information but for the Linux console it
2307  *	actually has driver level meaning and triggers a VC resize.
2308  *
2309  *	Locking:
2310  *		Driver dependent. The default do_resize method takes the
2311  *	tty termios mutex and ctrl_lock. The console takes its own lock
2312  *	then calls into the default method.
2313  */
2314 
2315 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2316 {
2317 	struct winsize tmp_ws;
2318 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2319 		return -EFAULT;
2320 
2321 	if (tty->ops->resize)
2322 		return tty->ops->resize(tty, &tmp_ws);
2323 	else
2324 		return tty_do_resize(tty, &tmp_ws);
2325 }
2326 
2327 /**
2328  *	tioccons	-	allow admin to move logical console
2329  *	@file: the file to become console
2330  *
2331  *	Allow the administrator to move the redirected console device
2332  *
2333  *	Locking: uses redirect_lock to guard the redirect information
2334  */
2335 
2336 static int tioccons(struct file *file)
2337 {
2338 	if (!capable(CAP_SYS_ADMIN))
2339 		return -EPERM;
2340 	if (file->f_op->write == redirected_tty_write) {
2341 		struct file *f;
2342 		spin_lock(&redirect_lock);
2343 		f = redirect;
2344 		redirect = NULL;
2345 		spin_unlock(&redirect_lock);
2346 		if (f)
2347 			fput(f);
2348 		return 0;
2349 	}
2350 	spin_lock(&redirect_lock);
2351 	if (redirect) {
2352 		spin_unlock(&redirect_lock);
2353 		return -EBUSY;
2354 	}
2355 	redirect = get_file(file);
2356 	spin_unlock(&redirect_lock);
2357 	return 0;
2358 }
2359 
2360 /**
2361  *	fionbio		-	non blocking ioctl
2362  *	@file: file to set blocking value
2363  *	@p: user parameter
2364  *
2365  *	Historical tty interfaces had a blocking control ioctl before
2366  *	the generic functionality existed. This piece of history is preserved
2367  *	in the expected tty API of posix OS's.
2368  *
2369  *	Locking: none, the open file handle ensures it won't go away.
2370  */
2371 
2372 static int fionbio(struct file *file, int __user *p)
2373 {
2374 	int nonblock;
2375 
2376 	if (get_user(nonblock, p))
2377 		return -EFAULT;
2378 
2379 	spin_lock(&file->f_lock);
2380 	if (nonblock)
2381 		file->f_flags |= O_NONBLOCK;
2382 	else
2383 		file->f_flags &= ~O_NONBLOCK;
2384 	spin_unlock(&file->f_lock);
2385 	return 0;
2386 }
2387 
2388 /**
2389  *	tiocsctty	-	set controlling tty
2390  *	@tty: tty structure
2391  *	@arg: user argument
2392  *
2393  *	This ioctl is used to manage job control. It permits a session
2394  *	leader to set this tty as the controlling tty for the session.
2395  *
2396  *	Locking:
2397  *		Takes tty_mutex() to protect tty instance
2398  *		Takes tasklist_lock internally to walk sessions
2399  *		Takes ->siglock() when updating signal->tty
2400  */
2401 
2402 static int tiocsctty(struct tty_struct *tty, int arg)
2403 {
2404 	int ret = 0;
2405 	if (current->signal->leader && (task_session(current) == tty->session))
2406 		return ret;
2407 
2408 	mutex_lock(&tty_mutex);
2409 	/*
2410 	 * The process must be a session leader and
2411 	 * not have a controlling tty already.
2412 	 */
2413 	if (!current->signal->leader || current->signal->tty) {
2414 		ret = -EPERM;
2415 		goto unlock;
2416 	}
2417 
2418 	if (tty->session) {
2419 		/*
2420 		 * This tty is already the controlling
2421 		 * tty for another session group!
2422 		 */
2423 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2424 			/*
2425 			 * Steal it away
2426 			 */
2427 			read_lock(&tasklist_lock);
2428 			session_clear_tty(tty->session);
2429 			read_unlock(&tasklist_lock);
2430 		} else {
2431 			ret = -EPERM;
2432 			goto unlock;
2433 		}
2434 	}
2435 	proc_set_tty(current, tty);
2436 unlock:
2437 	mutex_unlock(&tty_mutex);
2438 	return ret;
2439 }
2440 
2441 /**
2442  *	tty_get_pgrp	-	return a ref counted pgrp pid
2443  *	@tty: tty to read
2444  *
2445  *	Returns a refcounted instance of the pid struct for the process
2446  *	group controlling the tty.
2447  */
2448 
2449 struct pid *tty_get_pgrp(struct tty_struct *tty)
2450 {
2451 	unsigned long flags;
2452 	struct pid *pgrp;
2453 
2454 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2455 	pgrp = get_pid(tty->pgrp);
2456 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2457 
2458 	return pgrp;
2459 }
2460 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2461 
2462 /**
2463  *	tiocgpgrp		-	get process group
2464  *	@tty: tty passed by user
2465  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2466  *	@p: returned pid
2467  *
2468  *	Obtain the process group of the tty. If there is no process group
2469  *	return an error.
2470  *
2471  *	Locking: none. Reference to current->signal->tty is safe.
2472  */
2473 
2474 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2475 {
2476 	struct pid *pid;
2477 	int ret;
2478 	/*
2479 	 * (tty == real_tty) is a cheap way of
2480 	 * testing if the tty is NOT a master pty.
2481 	 */
2482 	if (tty == real_tty && current->signal->tty != real_tty)
2483 		return -ENOTTY;
2484 	pid = tty_get_pgrp(real_tty);
2485 	ret =  put_user(pid_vnr(pid), p);
2486 	put_pid(pid);
2487 	return ret;
2488 }
2489 
2490 /**
2491  *	tiocspgrp		-	attempt to set process group
2492  *	@tty: tty passed by user
2493  *	@real_tty: tty side device matching tty passed by user
2494  *	@p: pid pointer
2495  *
2496  *	Set the process group of the tty to the session passed. Only
2497  *	permitted where the tty session is our session.
2498  *
2499  *	Locking: RCU, ctrl lock
2500  */
2501 
2502 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2503 {
2504 	struct pid *pgrp;
2505 	pid_t pgrp_nr;
2506 	int retval = tty_check_change(real_tty);
2507 	unsigned long flags;
2508 
2509 	if (retval == -EIO)
2510 		return -ENOTTY;
2511 	if (retval)
2512 		return retval;
2513 	if (!current->signal->tty ||
2514 	    (current->signal->tty != real_tty) ||
2515 	    (real_tty->session != task_session(current)))
2516 		return -ENOTTY;
2517 	if (get_user(pgrp_nr, p))
2518 		return -EFAULT;
2519 	if (pgrp_nr < 0)
2520 		return -EINVAL;
2521 	rcu_read_lock();
2522 	pgrp = find_vpid(pgrp_nr);
2523 	retval = -ESRCH;
2524 	if (!pgrp)
2525 		goto out_unlock;
2526 	retval = -EPERM;
2527 	if (session_of_pgrp(pgrp) != task_session(current))
2528 		goto out_unlock;
2529 	retval = 0;
2530 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2531 	put_pid(real_tty->pgrp);
2532 	real_tty->pgrp = get_pid(pgrp);
2533 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2534 out_unlock:
2535 	rcu_read_unlock();
2536 	return retval;
2537 }
2538 
2539 /**
2540  *	tiocgsid		-	get session id
2541  *	@tty: tty passed by user
2542  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2543  *	@p: pointer to returned session id
2544  *
2545  *	Obtain the session id of the tty. If there is no session
2546  *	return an error.
2547  *
2548  *	Locking: none. Reference to current->signal->tty is safe.
2549  */
2550 
2551 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2552 {
2553 	/*
2554 	 * (tty == real_tty) is a cheap way of
2555 	 * testing if the tty is NOT a master pty.
2556 	*/
2557 	if (tty == real_tty && current->signal->tty != real_tty)
2558 		return -ENOTTY;
2559 	if (!real_tty->session)
2560 		return -ENOTTY;
2561 	return put_user(pid_vnr(real_tty->session), p);
2562 }
2563 
2564 /**
2565  *	tiocsetd	-	set line discipline
2566  *	@tty: tty device
2567  *	@p: pointer to user data
2568  *
2569  *	Set the line discipline according to user request.
2570  *
2571  *	Locking: see tty_set_ldisc, this function is just a helper
2572  */
2573 
2574 static int tiocsetd(struct tty_struct *tty, int __user *p)
2575 {
2576 	int ldisc;
2577 	int ret;
2578 
2579 	if (get_user(ldisc, p))
2580 		return -EFAULT;
2581 
2582 	ret = tty_set_ldisc(tty, ldisc);
2583 
2584 	return ret;
2585 }
2586 
2587 /**
2588  *	send_break	-	performed time break
2589  *	@tty: device to break on
2590  *	@duration: timeout in mS
2591  *
2592  *	Perform a timed break on hardware that lacks its own driver level
2593  *	timed break functionality.
2594  *
2595  *	Locking:
2596  *		atomic_write_lock serializes
2597  *
2598  */
2599 
2600 static int send_break(struct tty_struct *tty, unsigned int duration)
2601 {
2602 	int retval;
2603 
2604 	if (tty->ops->break_ctl == NULL)
2605 		return 0;
2606 
2607 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2608 		retval = tty->ops->break_ctl(tty, duration);
2609 	else {
2610 		/* Do the work ourselves */
2611 		if (tty_write_lock(tty, 0) < 0)
2612 			return -EINTR;
2613 		retval = tty->ops->break_ctl(tty, -1);
2614 		if (retval)
2615 			goto out;
2616 		if (!signal_pending(current))
2617 			msleep_interruptible(duration);
2618 		retval = tty->ops->break_ctl(tty, 0);
2619 out:
2620 		tty_write_unlock(tty);
2621 		if (signal_pending(current))
2622 			retval = -EINTR;
2623 	}
2624 	return retval;
2625 }
2626 
2627 /**
2628  *	tty_tiocmget		-	get modem status
2629  *	@tty: tty device
2630  *	@file: user file pointer
2631  *	@p: pointer to result
2632  *
2633  *	Obtain the modem status bits from the tty driver if the feature
2634  *	is supported. Return -EINVAL if it is not available.
2635  *
2636  *	Locking: none (up to the driver)
2637  */
2638 
2639 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2640 {
2641 	int retval = -EINVAL;
2642 
2643 	if (tty->ops->tiocmget) {
2644 		retval = tty->ops->tiocmget(tty);
2645 
2646 		if (retval >= 0)
2647 			retval = put_user(retval, p);
2648 	}
2649 	return retval;
2650 }
2651 
2652 /**
2653  *	tty_tiocmset		-	set modem status
2654  *	@tty: tty device
2655  *	@cmd: command - clear bits, set bits or set all
2656  *	@p: pointer to desired bits
2657  *
2658  *	Set the modem status bits from the tty driver if the feature
2659  *	is supported. Return -EINVAL if it is not available.
2660  *
2661  *	Locking: none (up to the driver)
2662  */
2663 
2664 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2665 	     unsigned __user *p)
2666 {
2667 	int retval;
2668 	unsigned int set, clear, val;
2669 
2670 	if (tty->ops->tiocmset == NULL)
2671 		return -EINVAL;
2672 
2673 	retval = get_user(val, p);
2674 	if (retval)
2675 		return retval;
2676 	set = clear = 0;
2677 	switch (cmd) {
2678 	case TIOCMBIS:
2679 		set = val;
2680 		break;
2681 	case TIOCMBIC:
2682 		clear = val;
2683 		break;
2684 	case TIOCMSET:
2685 		set = val;
2686 		clear = ~val;
2687 		break;
2688 	}
2689 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2690 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2691 	return tty->ops->tiocmset(tty, set, clear);
2692 }
2693 
2694 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2695 {
2696 	int retval = -EINVAL;
2697 	struct serial_icounter_struct icount;
2698 	memset(&icount, 0, sizeof(icount));
2699 	if (tty->ops->get_icount)
2700 		retval = tty->ops->get_icount(tty, &icount);
2701 	if (retval != 0)
2702 		return retval;
2703 	if (copy_to_user(arg, &icount, sizeof(icount)))
2704 		return -EFAULT;
2705 	return 0;
2706 }
2707 
2708 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2709 {
2710 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2711 	    tty->driver->subtype == PTY_TYPE_MASTER)
2712 		tty = tty->link;
2713 	return tty;
2714 }
2715 EXPORT_SYMBOL(tty_pair_get_tty);
2716 
2717 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2718 {
2719 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2720 	    tty->driver->subtype == PTY_TYPE_MASTER)
2721 	    return tty;
2722 	return tty->link;
2723 }
2724 EXPORT_SYMBOL(tty_pair_get_pty);
2725 
2726 /*
2727  * Split this up, as gcc can choke on it otherwise..
2728  */
2729 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2730 {
2731 	struct tty_struct *tty = file_tty(file);
2732 	struct tty_struct *real_tty;
2733 	void __user *p = (void __user *)arg;
2734 	int retval;
2735 	struct tty_ldisc *ld;
2736 
2737 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2738 		return -EINVAL;
2739 
2740 	real_tty = tty_pair_get_tty(tty);
2741 
2742 	/*
2743 	 * Factor out some common prep work
2744 	 */
2745 	switch (cmd) {
2746 	case TIOCSETD:
2747 	case TIOCSBRK:
2748 	case TIOCCBRK:
2749 	case TCSBRK:
2750 	case TCSBRKP:
2751 		retval = tty_check_change(tty);
2752 		if (retval)
2753 			return retval;
2754 		if (cmd != TIOCCBRK) {
2755 			tty_wait_until_sent(tty, 0);
2756 			if (signal_pending(current))
2757 				return -EINTR;
2758 		}
2759 		break;
2760 	}
2761 
2762 	/*
2763 	 *	Now do the stuff.
2764 	 */
2765 	switch (cmd) {
2766 	case TIOCSTI:
2767 		return tiocsti(tty, p);
2768 	case TIOCGWINSZ:
2769 		return tiocgwinsz(real_tty, p);
2770 	case TIOCSWINSZ:
2771 		return tiocswinsz(real_tty, p);
2772 	case TIOCCONS:
2773 		return real_tty != tty ? -EINVAL : tioccons(file);
2774 	case FIONBIO:
2775 		return fionbio(file, p);
2776 	case TIOCEXCL:
2777 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2778 		return 0;
2779 	case TIOCNXCL:
2780 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2781 		return 0;
2782 	case TIOCGEXCL:
2783 	{
2784 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2785 		return put_user(excl, (int __user *)p);
2786 	}
2787 	case TIOCNOTTY:
2788 		if (current->signal->tty != tty)
2789 			return -ENOTTY;
2790 		no_tty();
2791 		return 0;
2792 	case TIOCSCTTY:
2793 		return tiocsctty(tty, arg);
2794 	case TIOCGPGRP:
2795 		return tiocgpgrp(tty, real_tty, p);
2796 	case TIOCSPGRP:
2797 		return tiocspgrp(tty, real_tty, p);
2798 	case TIOCGSID:
2799 		return tiocgsid(tty, real_tty, p);
2800 	case TIOCGETD:
2801 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2802 	case TIOCSETD:
2803 		return tiocsetd(tty, p);
2804 	case TIOCVHANGUP:
2805 		if (!capable(CAP_SYS_ADMIN))
2806 			return -EPERM;
2807 		tty_vhangup(tty);
2808 		return 0;
2809 	case TIOCGDEV:
2810 	{
2811 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2812 		return put_user(ret, (unsigned int __user *)p);
2813 	}
2814 	/*
2815 	 * Break handling
2816 	 */
2817 	case TIOCSBRK:	/* Turn break on, unconditionally */
2818 		if (tty->ops->break_ctl)
2819 			return tty->ops->break_ctl(tty, -1);
2820 		return 0;
2821 	case TIOCCBRK:	/* Turn break off, unconditionally */
2822 		if (tty->ops->break_ctl)
2823 			return tty->ops->break_ctl(tty, 0);
2824 		return 0;
2825 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2826 		/* non-zero arg means wait for all output data
2827 		 * to be sent (performed above) but don't send break.
2828 		 * This is used by the tcdrain() termios function.
2829 		 */
2830 		if (!arg)
2831 			return send_break(tty, 250);
2832 		return 0;
2833 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2834 		return send_break(tty, arg ? arg*100 : 250);
2835 
2836 	case TIOCMGET:
2837 		return tty_tiocmget(tty, p);
2838 	case TIOCMSET:
2839 	case TIOCMBIC:
2840 	case TIOCMBIS:
2841 		return tty_tiocmset(tty, cmd, p);
2842 	case TIOCGICOUNT:
2843 		retval = tty_tiocgicount(tty, p);
2844 		/* For the moment allow fall through to the old method */
2845         	if (retval != -EINVAL)
2846 			return retval;
2847 		break;
2848 	case TCFLSH:
2849 		switch (arg) {
2850 		case TCIFLUSH:
2851 		case TCIOFLUSH:
2852 		/* flush tty buffer and allow ldisc to process ioctl */
2853 			tty_buffer_flush(tty);
2854 			break;
2855 		}
2856 		break;
2857 	}
2858 	if (tty->ops->ioctl) {
2859 		retval = (tty->ops->ioctl)(tty, cmd, arg);
2860 		if (retval != -ENOIOCTLCMD)
2861 			return retval;
2862 	}
2863 	ld = tty_ldisc_ref_wait(tty);
2864 	retval = -EINVAL;
2865 	if (ld->ops->ioctl) {
2866 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2867 		if (retval == -ENOIOCTLCMD)
2868 			retval = -ENOTTY;
2869 	}
2870 	tty_ldisc_deref(ld);
2871 	return retval;
2872 }
2873 
2874 #ifdef CONFIG_COMPAT
2875 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2876 				unsigned long arg)
2877 {
2878 	struct tty_struct *tty = file_tty(file);
2879 	struct tty_ldisc *ld;
2880 	int retval = -ENOIOCTLCMD;
2881 
2882 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2883 		return -EINVAL;
2884 
2885 	if (tty->ops->compat_ioctl) {
2886 		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2887 		if (retval != -ENOIOCTLCMD)
2888 			return retval;
2889 	}
2890 
2891 	ld = tty_ldisc_ref_wait(tty);
2892 	if (ld->ops->compat_ioctl)
2893 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2894 	else
2895 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2896 	tty_ldisc_deref(ld);
2897 
2898 	return retval;
2899 }
2900 #endif
2901 
2902 static int this_tty(const void *t, struct file *file, unsigned fd)
2903 {
2904 	if (likely(file->f_op->read != tty_read))
2905 		return 0;
2906 	return file_tty(file) != t ? 0 : fd + 1;
2907 }
2908 
2909 /*
2910  * This implements the "Secure Attention Key" ---  the idea is to
2911  * prevent trojan horses by killing all processes associated with this
2912  * tty when the user hits the "Secure Attention Key".  Required for
2913  * super-paranoid applications --- see the Orange Book for more details.
2914  *
2915  * This code could be nicer; ideally it should send a HUP, wait a few
2916  * seconds, then send a INT, and then a KILL signal.  But you then
2917  * have to coordinate with the init process, since all processes associated
2918  * with the current tty must be dead before the new getty is allowed
2919  * to spawn.
2920  *
2921  * Now, if it would be correct ;-/ The current code has a nasty hole -
2922  * it doesn't catch files in flight. We may send the descriptor to ourselves
2923  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2924  *
2925  * Nasty bug: do_SAK is being called in interrupt context.  This can
2926  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2927  */
2928 void __do_SAK(struct tty_struct *tty)
2929 {
2930 #ifdef TTY_SOFT_SAK
2931 	tty_hangup(tty);
2932 #else
2933 	struct task_struct *g, *p;
2934 	struct pid *session;
2935 	int		i;
2936 
2937 	if (!tty)
2938 		return;
2939 	session = tty->session;
2940 
2941 	tty_ldisc_flush(tty);
2942 
2943 	tty_driver_flush_buffer(tty);
2944 
2945 	read_lock(&tasklist_lock);
2946 	/* Kill the entire session */
2947 	do_each_pid_task(session, PIDTYPE_SID, p) {
2948 		printk(KERN_NOTICE "SAK: killed process %d"
2949 			" (%s): task_session(p)==tty->session\n",
2950 			task_pid_nr(p), p->comm);
2951 		send_sig(SIGKILL, p, 1);
2952 	} while_each_pid_task(session, PIDTYPE_SID, p);
2953 	/* Now kill any processes that happen to have the
2954 	 * tty open.
2955 	 */
2956 	do_each_thread(g, p) {
2957 		if (p->signal->tty == tty) {
2958 			printk(KERN_NOTICE "SAK: killed process %d"
2959 			    " (%s): task_session(p)==tty->session\n",
2960 			    task_pid_nr(p), p->comm);
2961 			send_sig(SIGKILL, p, 1);
2962 			continue;
2963 		}
2964 		task_lock(p);
2965 		i = iterate_fd(p->files, 0, this_tty, tty);
2966 		if (i != 0) {
2967 			printk(KERN_NOTICE "SAK: killed process %d"
2968 			    " (%s): fd#%d opened to the tty\n",
2969 				    task_pid_nr(p), p->comm, i - 1);
2970 			force_sig(SIGKILL, p);
2971 		}
2972 		task_unlock(p);
2973 	} while_each_thread(g, p);
2974 	read_unlock(&tasklist_lock);
2975 #endif
2976 }
2977 
2978 static void do_SAK_work(struct work_struct *work)
2979 {
2980 	struct tty_struct *tty =
2981 		container_of(work, struct tty_struct, SAK_work);
2982 	__do_SAK(tty);
2983 }
2984 
2985 /*
2986  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2987  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2988  * the values which we write to it will be identical to the values which it
2989  * already has. --akpm
2990  */
2991 void do_SAK(struct tty_struct *tty)
2992 {
2993 	if (!tty)
2994 		return;
2995 	schedule_work(&tty->SAK_work);
2996 }
2997 
2998 EXPORT_SYMBOL(do_SAK);
2999 
3000 static int dev_match_devt(struct device *dev, const void *data)
3001 {
3002 	const dev_t *devt = data;
3003 	return dev->devt == *devt;
3004 }
3005 
3006 /* Must put_device() after it's unused! */
3007 static struct device *tty_get_device(struct tty_struct *tty)
3008 {
3009 	dev_t devt = tty_devnum(tty);
3010 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3011 }
3012 
3013 
3014 /**
3015  *	alloc_tty_struct
3016  *
3017  *	This subroutine allocates and initializes a tty structure.
3018  *
3019  *	Locking: none - tty in question is not exposed at this point
3020  */
3021 
3022 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3023 {
3024 	struct tty_struct *tty;
3025 
3026 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3027 	if (!tty)
3028 		return NULL;
3029 
3030 	kref_init(&tty->kref);
3031 	tty->magic = TTY_MAGIC;
3032 	tty_ldisc_init(tty);
3033 	tty->session = NULL;
3034 	tty->pgrp = NULL;
3035 	mutex_init(&tty->legacy_mutex);
3036 	mutex_init(&tty->throttle_mutex);
3037 	init_rwsem(&tty->termios_rwsem);
3038 	mutex_init(&tty->winsize_mutex);
3039 	init_ldsem(&tty->ldisc_sem);
3040 	init_waitqueue_head(&tty->write_wait);
3041 	init_waitqueue_head(&tty->read_wait);
3042 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3043 	mutex_init(&tty->atomic_write_lock);
3044 	spin_lock_init(&tty->ctrl_lock);
3045 	spin_lock_init(&tty->flow_lock);
3046 	INIT_LIST_HEAD(&tty->tty_files);
3047 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3048 
3049 	tty->driver = driver;
3050 	tty->ops = driver->ops;
3051 	tty->index = idx;
3052 	tty_line_name(driver, idx, tty->name);
3053 	tty->dev = tty_get_device(tty);
3054 
3055 	return tty;
3056 }
3057 
3058 /**
3059  *	deinitialize_tty_struct
3060  *	@tty: tty to deinitialize
3061  *
3062  *	This subroutine deinitializes a tty structure that has been newly
3063  *	allocated but tty_release cannot be called on that yet.
3064  *
3065  *	Locking: none - tty in question must not be exposed at this point
3066  */
3067 void deinitialize_tty_struct(struct tty_struct *tty)
3068 {
3069 	tty_ldisc_deinit(tty);
3070 }
3071 
3072 /**
3073  *	tty_put_char	-	write one character to a tty
3074  *	@tty: tty
3075  *	@ch: character
3076  *
3077  *	Write one byte to the tty using the provided put_char method
3078  *	if present. Returns the number of characters successfully output.
3079  *
3080  *	Note: the specific put_char operation in the driver layer may go
3081  *	away soon. Don't call it directly, use this method
3082  */
3083 
3084 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3085 {
3086 	if (tty->ops->put_char)
3087 		return tty->ops->put_char(tty, ch);
3088 	return tty->ops->write(tty, &ch, 1);
3089 }
3090 EXPORT_SYMBOL_GPL(tty_put_char);
3091 
3092 struct class *tty_class;
3093 
3094 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3095 		unsigned int index, unsigned int count)
3096 {
3097 	/* init here, since reused cdevs cause crashes */
3098 	cdev_init(&driver->cdevs[index], &tty_fops);
3099 	driver->cdevs[index].owner = driver->owner;
3100 	return cdev_add(&driver->cdevs[index], dev, count);
3101 }
3102 
3103 /**
3104  *	tty_register_device - register a tty device
3105  *	@driver: the tty driver that describes the tty device
3106  *	@index: the index in the tty driver for this tty device
3107  *	@device: a struct device that is associated with this tty device.
3108  *		This field is optional, if there is no known struct device
3109  *		for this tty device it can be set to NULL safely.
3110  *
3111  *	Returns a pointer to the struct device for this tty device
3112  *	(or ERR_PTR(-EFOO) on error).
3113  *
3114  *	This call is required to be made to register an individual tty device
3115  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3116  *	that bit is not set, this function should not be called by a tty
3117  *	driver.
3118  *
3119  *	Locking: ??
3120  */
3121 
3122 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3123 				   struct device *device)
3124 {
3125 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3126 }
3127 EXPORT_SYMBOL(tty_register_device);
3128 
3129 static void tty_device_create_release(struct device *dev)
3130 {
3131 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3132 	kfree(dev);
3133 }
3134 
3135 /**
3136  *	tty_register_device_attr - register a tty device
3137  *	@driver: the tty driver that describes the tty device
3138  *	@index: the index in the tty driver for this tty device
3139  *	@device: a struct device that is associated with this tty device.
3140  *		This field is optional, if there is no known struct device
3141  *		for this tty device it can be set to NULL safely.
3142  *	@drvdata: Driver data to be set to device.
3143  *	@attr_grp: Attribute group to be set on device.
3144  *
3145  *	Returns a pointer to the struct device for this tty device
3146  *	(or ERR_PTR(-EFOO) on error).
3147  *
3148  *	This call is required to be made to register an individual tty device
3149  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3150  *	that bit is not set, this function should not be called by a tty
3151  *	driver.
3152  *
3153  *	Locking: ??
3154  */
3155 struct device *tty_register_device_attr(struct tty_driver *driver,
3156 				   unsigned index, struct device *device,
3157 				   void *drvdata,
3158 				   const struct attribute_group **attr_grp)
3159 {
3160 	char name[64];
3161 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3162 	struct device *dev = NULL;
3163 	int retval = -ENODEV;
3164 	bool cdev = false;
3165 
3166 	if (index >= driver->num) {
3167 		printk(KERN_ERR "Attempt to register invalid tty line number "
3168 		       " (%d).\n", index);
3169 		return ERR_PTR(-EINVAL);
3170 	}
3171 
3172 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3173 		pty_line_name(driver, index, name);
3174 	else
3175 		tty_line_name(driver, index, name);
3176 
3177 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3178 		retval = tty_cdev_add(driver, devt, index, 1);
3179 		if (retval)
3180 			goto error;
3181 		cdev = true;
3182 	}
3183 
3184 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3185 	if (!dev) {
3186 		retval = -ENOMEM;
3187 		goto error;
3188 	}
3189 
3190 	dev->devt = devt;
3191 	dev->class = tty_class;
3192 	dev->parent = device;
3193 	dev->release = tty_device_create_release;
3194 	dev_set_name(dev, "%s", name);
3195 	dev->groups = attr_grp;
3196 	dev_set_drvdata(dev, drvdata);
3197 
3198 	retval = device_register(dev);
3199 	if (retval)
3200 		goto error;
3201 
3202 	return dev;
3203 
3204 error:
3205 	put_device(dev);
3206 	if (cdev)
3207 		cdev_del(&driver->cdevs[index]);
3208 	return ERR_PTR(retval);
3209 }
3210 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3211 
3212 /**
3213  * 	tty_unregister_device - unregister a tty device
3214  * 	@driver: the tty driver that describes the tty device
3215  * 	@index: the index in the tty driver for this tty device
3216  *
3217  * 	If a tty device is registered with a call to tty_register_device() then
3218  *	this function must be called when the tty device is gone.
3219  *
3220  *	Locking: ??
3221  */
3222 
3223 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3224 {
3225 	device_destroy(tty_class,
3226 		MKDEV(driver->major, driver->minor_start) + index);
3227 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3228 		cdev_del(&driver->cdevs[index]);
3229 }
3230 EXPORT_SYMBOL(tty_unregister_device);
3231 
3232 /**
3233  * __tty_alloc_driver -- allocate tty driver
3234  * @lines: count of lines this driver can handle at most
3235  * @owner: module which is repsonsible for this driver
3236  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3237  *
3238  * This should not be called directly, some of the provided macros should be
3239  * used instead. Use IS_ERR and friends on @retval.
3240  */
3241 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3242 		unsigned long flags)
3243 {
3244 	struct tty_driver *driver;
3245 	unsigned int cdevs = 1;
3246 	int err;
3247 
3248 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3249 		return ERR_PTR(-EINVAL);
3250 
3251 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3252 	if (!driver)
3253 		return ERR_PTR(-ENOMEM);
3254 
3255 	kref_init(&driver->kref);
3256 	driver->magic = TTY_DRIVER_MAGIC;
3257 	driver->num = lines;
3258 	driver->owner = owner;
3259 	driver->flags = flags;
3260 
3261 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3262 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3263 				GFP_KERNEL);
3264 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3265 				GFP_KERNEL);
3266 		if (!driver->ttys || !driver->termios) {
3267 			err = -ENOMEM;
3268 			goto err_free_all;
3269 		}
3270 	}
3271 
3272 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3273 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3274 				GFP_KERNEL);
3275 		if (!driver->ports) {
3276 			err = -ENOMEM;
3277 			goto err_free_all;
3278 		}
3279 		cdevs = lines;
3280 	}
3281 
3282 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3283 	if (!driver->cdevs) {
3284 		err = -ENOMEM;
3285 		goto err_free_all;
3286 	}
3287 
3288 	return driver;
3289 err_free_all:
3290 	kfree(driver->ports);
3291 	kfree(driver->ttys);
3292 	kfree(driver->termios);
3293 	kfree(driver);
3294 	return ERR_PTR(err);
3295 }
3296 EXPORT_SYMBOL(__tty_alloc_driver);
3297 
3298 static void destruct_tty_driver(struct kref *kref)
3299 {
3300 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3301 	int i;
3302 	struct ktermios *tp;
3303 
3304 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3305 		/*
3306 		 * Free the termios and termios_locked structures because
3307 		 * we don't want to get memory leaks when modular tty
3308 		 * drivers are removed from the kernel.
3309 		 */
3310 		for (i = 0; i < driver->num; i++) {
3311 			tp = driver->termios[i];
3312 			if (tp) {
3313 				driver->termios[i] = NULL;
3314 				kfree(tp);
3315 			}
3316 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3317 				tty_unregister_device(driver, i);
3318 		}
3319 		proc_tty_unregister_driver(driver);
3320 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3321 			cdev_del(&driver->cdevs[0]);
3322 	}
3323 	kfree(driver->cdevs);
3324 	kfree(driver->ports);
3325 	kfree(driver->termios);
3326 	kfree(driver->ttys);
3327 	kfree(driver);
3328 }
3329 
3330 void tty_driver_kref_put(struct tty_driver *driver)
3331 {
3332 	kref_put(&driver->kref, destruct_tty_driver);
3333 }
3334 EXPORT_SYMBOL(tty_driver_kref_put);
3335 
3336 void tty_set_operations(struct tty_driver *driver,
3337 			const struct tty_operations *op)
3338 {
3339 	driver->ops = op;
3340 };
3341 EXPORT_SYMBOL(tty_set_operations);
3342 
3343 void put_tty_driver(struct tty_driver *d)
3344 {
3345 	tty_driver_kref_put(d);
3346 }
3347 EXPORT_SYMBOL(put_tty_driver);
3348 
3349 /*
3350  * Called by a tty driver to register itself.
3351  */
3352 int tty_register_driver(struct tty_driver *driver)
3353 {
3354 	int error;
3355 	int i;
3356 	dev_t dev;
3357 	struct device *d;
3358 
3359 	if (!driver->major) {
3360 		error = alloc_chrdev_region(&dev, driver->minor_start,
3361 						driver->num, driver->name);
3362 		if (!error) {
3363 			driver->major = MAJOR(dev);
3364 			driver->minor_start = MINOR(dev);
3365 		}
3366 	} else {
3367 		dev = MKDEV(driver->major, driver->minor_start);
3368 		error = register_chrdev_region(dev, driver->num, driver->name);
3369 	}
3370 	if (error < 0)
3371 		goto err;
3372 
3373 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3374 		error = tty_cdev_add(driver, dev, 0, driver->num);
3375 		if (error)
3376 			goto err_unreg_char;
3377 	}
3378 
3379 	mutex_lock(&tty_mutex);
3380 	list_add(&driver->tty_drivers, &tty_drivers);
3381 	mutex_unlock(&tty_mutex);
3382 
3383 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3384 		for (i = 0; i < driver->num; i++) {
3385 			d = tty_register_device(driver, i, NULL);
3386 			if (IS_ERR(d)) {
3387 				error = PTR_ERR(d);
3388 				goto err_unreg_devs;
3389 			}
3390 		}
3391 	}
3392 	proc_tty_register_driver(driver);
3393 	driver->flags |= TTY_DRIVER_INSTALLED;
3394 	return 0;
3395 
3396 err_unreg_devs:
3397 	for (i--; i >= 0; i--)
3398 		tty_unregister_device(driver, i);
3399 
3400 	mutex_lock(&tty_mutex);
3401 	list_del(&driver->tty_drivers);
3402 	mutex_unlock(&tty_mutex);
3403 
3404 err_unreg_char:
3405 	unregister_chrdev_region(dev, driver->num);
3406 err:
3407 	return error;
3408 }
3409 EXPORT_SYMBOL(tty_register_driver);
3410 
3411 /*
3412  * Called by a tty driver to unregister itself.
3413  */
3414 int tty_unregister_driver(struct tty_driver *driver)
3415 {
3416 #if 0
3417 	/* FIXME */
3418 	if (driver->refcount)
3419 		return -EBUSY;
3420 #endif
3421 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3422 				driver->num);
3423 	mutex_lock(&tty_mutex);
3424 	list_del(&driver->tty_drivers);
3425 	mutex_unlock(&tty_mutex);
3426 	return 0;
3427 }
3428 
3429 EXPORT_SYMBOL(tty_unregister_driver);
3430 
3431 dev_t tty_devnum(struct tty_struct *tty)
3432 {
3433 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3434 }
3435 EXPORT_SYMBOL(tty_devnum);
3436 
3437 void proc_clear_tty(struct task_struct *p)
3438 {
3439 	unsigned long flags;
3440 	struct tty_struct *tty;
3441 	spin_lock_irqsave(&p->sighand->siglock, flags);
3442 	tty = p->signal->tty;
3443 	p->signal->tty = NULL;
3444 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3445 	tty_kref_put(tty);
3446 }
3447 
3448 /* Called under the sighand lock */
3449 
3450 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3451 {
3452 	if (tty) {
3453 		unsigned long flags;
3454 		/* We should not have a session or pgrp to put here but.... */
3455 		spin_lock_irqsave(&tty->ctrl_lock, flags);
3456 		put_pid(tty->session);
3457 		put_pid(tty->pgrp);
3458 		tty->pgrp = get_pid(task_pgrp(tsk));
3459 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3460 		tty->session = get_pid(task_session(tsk));
3461 		if (tsk->signal->tty) {
3462 			printk(KERN_DEBUG "tty not NULL!!\n");
3463 			tty_kref_put(tsk->signal->tty);
3464 		}
3465 	}
3466 	put_pid(tsk->signal->tty_old_pgrp);
3467 	tsk->signal->tty = tty_kref_get(tty);
3468 	tsk->signal->tty_old_pgrp = NULL;
3469 }
3470 
3471 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3472 {
3473 	spin_lock_irq(&tsk->sighand->siglock);
3474 	__proc_set_tty(tsk, tty);
3475 	spin_unlock_irq(&tsk->sighand->siglock);
3476 }
3477 
3478 struct tty_struct *get_current_tty(void)
3479 {
3480 	struct tty_struct *tty;
3481 	unsigned long flags;
3482 
3483 	spin_lock_irqsave(&current->sighand->siglock, flags);
3484 	tty = tty_kref_get(current->signal->tty);
3485 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3486 	return tty;
3487 }
3488 EXPORT_SYMBOL_GPL(get_current_tty);
3489 
3490 void tty_default_fops(struct file_operations *fops)
3491 {
3492 	*fops = tty_fops;
3493 }
3494 
3495 /*
3496  * Initialize the console device. This is called *early*, so
3497  * we can't necessarily depend on lots of kernel help here.
3498  * Just do some early initializations, and do the complex setup
3499  * later.
3500  */
3501 void __init console_init(void)
3502 {
3503 	initcall_t *call;
3504 
3505 	/* Setup the default TTY line discipline. */
3506 	tty_ldisc_begin();
3507 
3508 	/*
3509 	 * set up the console device so that later boot sequences can
3510 	 * inform about problems etc..
3511 	 */
3512 	call = __con_initcall_start;
3513 	while (call < __con_initcall_end) {
3514 		(*call)();
3515 		call++;
3516 	}
3517 }
3518 
3519 static char *tty_devnode(struct device *dev, umode_t *mode)
3520 {
3521 	if (!mode)
3522 		return NULL;
3523 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3524 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3525 		*mode = 0666;
3526 	return NULL;
3527 }
3528 
3529 static int __init tty_class_init(void)
3530 {
3531 	tty_class = class_create(THIS_MODULE, "tty");
3532 	if (IS_ERR(tty_class))
3533 		return PTR_ERR(tty_class);
3534 	tty_class->devnode = tty_devnode;
3535 	return 0;
3536 }
3537 
3538 postcore_initcall(tty_class_init);
3539 
3540 /* 3/2004 jmc: why do these devices exist? */
3541 static struct cdev tty_cdev, console_cdev;
3542 
3543 static ssize_t show_cons_active(struct device *dev,
3544 				struct device_attribute *attr, char *buf)
3545 {
3546 	struct console *cs[16];
3547 	int i = 0;
3548 	struct console *c;
3549 	ssize_t count = 0;
3550 
3551 	console_lock();
3552 	for_each_console(c) {
3553 		if (!c->device)
3554 			continue;
3555 		if (!c->write)
3556 			continue;
3557 		if ((c->flags & CON_ENABLED) == 0)
3558 			continue;
3559 		cs[i++] = c;
3560 		if (i >= ARRAY_SIZE(cs))
3561 			break;
3562 	}
3563 	while (i--) {
3564 		int index = cs[i]->index;
3565 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3566 
3567 		/* don't resolve tty0 as some programs depend on it */
3568 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3569 			count += tty_line_name(drv, index, buf + count);
3570 		else
3571 			count += sprintf(buf + count, "%s%d",
3572 					 cs[i]->name, cs[i]->index);
3573 
3574 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3575 	}
3576 	console_unlock();
3577 
3578 	return count;
3579 }
3580 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3581 
3582 static struct device *consdev;
3583 
3584 void console_sysfs_notify(void)
3585 {
3586 	if (consdev)
3587 		sysfs_notify(&consdev->kobj, NULL, "active");
3588 }
3589 
3590 /*
3591  * Ok, now we can initialize the rest of the tty devices and can count
3592  * on memory allocations, interrupts etc..
3593  */
3594 int __init tty_init(void)
3595 {
3596 	cdev_init(&tty_cdev, &tty_fops);
3597 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3598 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3599 		panic("Couldn't register /dev/tty driver\n");
3600 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3601 
3602 	cdev_init(&console_cdev, &console_fops);
3603 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3604 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3605 		panic("Couldn't register /dev/console driver\n");
3606 	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3607 			      "console");
3608 	if (IS_ERR(consdev))
3609 		consdev = NULL;
3610 	else
3611 		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3612 
3613 #ifdef CONFIG_VT
3614 	vty_init(&console_fops);
3615 #endif
3616 	return 0;
3617 }
3618 
3619