xref: /openbmc/linux/drivers/tty/tty_io.c (revision d9f6e12f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992  Linus Torvalds
4  */
5 
6 /*
7  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8  * or rs-channels. It also implements echoing, cooked mode etc.
9  *
10  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11  *
12  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13  * tty_struct and tty_queue structures.  Previously there was an array
14  * of 256 tty_struct's which was statically allocated, and the
15  * tty_queue structures were allocated at boot time.  Both are now
16  * dynamically allocated only when the tty is open.
17  *
18  * Also restructured routines so that there is more of a separation
19  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20  * the low-level tty routines (serial.c, pty.c, console.c).  This
21  * makes for cleaner and more compact code.  -TYT, 9/17/92
22  *
23  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24  * which can be dynamically activated and de-activated by the line
25  * discipline handling modules (like SLIP).
26  *
27  * NOTE: pay no attention to the line discipline code (yet); its
28  * interface is still subject to change in this version...
29  * -- TYT, 1/31/92
30  *
31  * Added functionality to the OPOST tty handling.  No delays, but all
32  * other bits should be there.
33  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34  *
35  * Rewrote canonical mode and added more termios flags.
36  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37  *
38  * Reorganized FASYNC support so mouse code can share it.
39  *	-- ctm@ardi.com, 9Sep95
40  *
41  * New TIOCLINUX variants added.
42  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
43  *
44  * Restrict vt switching via ioctl()
45  *      -- grif@cs.ucr.edu, 5-Dec-95
46  *
47  * Move console and virtual terminal code to more appropriate files,
48  * implement CONFIG_VT and generalize console device interface.
49  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50  *
51  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52  *	-- Bill Hawes <whawes@star.net>, June 97
53  *
54  * Added devfs support.
55  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56  *
57  * Added support for a Unix98-style ptmx device.
58  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59  *
60  * Reduced memory usage for older ARM systems
61  *      -- Russell King <rmk@arm.linux.org.uk>
62  *
63  * Move do_SAK() into process context.  Less stack use in devfs functions.
64  * alloc_tty_struct() always uses kmalloc()
65  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66  */
67 
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched/signal.h>
74 #include <linux/sched/task.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/ppp-ioctl.h>
91 #include <linux/proc_fs.h>
92 #include <linux/init.h>
93 #include <linux/module.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99 #include <linux/serial.h>
100 #include <linux/ratelimit.h>
101 #include <linux/compat.h>
102 
103 #include <linux/uaccess.h>
104 
105 #include <linux/kbd_kern.h>
106 #include <linux/vt_kern.h>
107 #include <linux/selection.h>
108 
109 #include <linux/kmod.h>
110 #include <linux/nsproxy.h>
111 
112 #undef TTY_DEBUG_HANGUP
113 #ifdef TTY_DEBUG_HANGUP
114 # define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
115 #else
116 # define tty_debug_hangup(tty, f, args...)	do { } while (0)
117 #endif
118 
119 #define TTY_PARANOIA_CHECK 1
120 #define CHECK_TTY_COUNT 1
121 
122 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
123 	.c_iflag = ICRNL | IXON,
124 	.c_oflag = OPOST | ONLCR,
125 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
126 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
127 		   ECHOCTL | ECHOKE | IEXTEN,
128 	.c_cc = INIT_C_CC,
129 	.c_ispeed = 38400,
130 	.c_ospeed = 38400,
131 	/* .c_line = N_TTY, */
132 };
133 
134 EXPORT_SYMBOL(tty_std_termios);
135 
136 /* This list gets poked at by procfs and various bits of boot up code. This
137    could do with some rationalisation such as pulling the tty proc function
138    into this file */
139 
140 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
141 
142 /* Mutex to protect creating and releasing a tty */
143 DEFINE_MUTEX(tty_mutex);
144 
145 static ssize_t tty_read(struct kiocb *, struct iov_iter *);
146 static ssize_t tty_write(struct kiocb *, struct iov_iter *);
147 static __poll_t tty_poll(struct file *, poll_table *);
148 static int tty_open(struct inode *, struct file *);
149 #ifdef CONFIG_COMPAT
150 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
151 				unsigned long arg);
152 #else
153 #define tty_compat_ioctl NULL
154 #endif
155 static int __tty_fasync(int fd, struct file *filp, int on);
156 static int tty_fasync(int fd, struct file *filp, int on);
157 static void release_tty(struct tty_struct *tty, int idx);
158 
159 /**
160  *	free_tty_struct		-	free a disused tty
161  *	@tty: tty struct to free
162  *
163  *	Free the write buffers, tty queue and tty memory itself.
164  *
165  *	Locking: none. Must be called after tty is definitely unused
166  */
167 
168 static void free_tty_struct(struct tty_struct *tty)
169 {
170 	tty_ldisc_deinit(tty);
171 	put_device(tty->dev);
172 	kfree(tty->write_buf);
173 	tty->magic = 0xDEADDEAD;
174 	kfree(tty);
175 }
176 
177 static inline struct tty_struct *file_tty(struct file *file)
178 {
179 	return ((struct tty_file_private *)file->private_data)->tty;
180 }
181 
182 int tty_alloc_file(struct file *file)
183 {
184 	struct tty_file_private *priv;
185 
186 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
187 	if (!priv)
188 		return -ENOMEM;
189 
190 	file->private_data = priv;
191 
192 	return 0;
193 }
194 
195 /* Associate a new file with the tty structure */
196 void tty_add_file(struct tty_struct *tty, struct file *file)
197 {
198 	struct tty_file_private *priv = file->private_data;
199 
200 	priv->tty = tty;
201 	priv->file = file;
202 
203 	spin_lock(&tty->files_lock);
204 	list_add(&priv->list, &tty->tty_files);
205 	spin_unlock(&tty->files_lock);
206 }
207 
208 /*
209  * tty_free_file - free file->private_data
210  *
211  * This shall be used only for fail path handling when tty_add_file was not
212  * called yet.
213  */
214 void tty_free_file(struct file *file)
215 {
216 	struct tty_file_private *priv = file->private_data;
217 
218 	file->private_data = NULL;
219 	kfree(priv);
220 }
221 
222 /* Delete file from its tty */
223 static void tty_del_file(struct file *file)
224 {
225 	struct tty_file_private *priv = file->private_data;
226 	struct tty_struct *tty = priv->tty;
227 
228 	spin_lock(&tty->files_lock);
229 	list_del(&priv->list);
230 	spin_unlock(&tty->files_lock);
231 	tty_free_file(file);
232 }
233 
234 /**
235  *	tty_name	-	return tty naming
236  *	@tty: tty structure
237  *
238  *	Convert a tty structure into a name. The name reflects the kernel
239  *	naming policy and if udev is in use may not reflect user space
240  *
241  *	Locking: none
242  */
243 
244 const char *tty_name(const struct tty_struct *tty)
245 {
246 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
247 		return "NULL tty";
248 	return tty->name;
249 }
250 
251 EXPORT_SYMBOL(tty_name);
252 
253 const char *tty_driver_name(const struct tty_struct *tty)
254 {
255 	if (!tty || !tty->driver)
256 		return "";
257 	return tty->driver->name;
258 }
259 
260 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
261 			      const char *routine)
262 {
263 #ifdef TTY_PARANOIA_CHECK
264 	if (!tty) {
265 		pr_warn("(%d:%d): %s: NULL tty\n",
266 			imajor(inode), iminor(inode), routine);
267 		return 1;
268 	}
269 	if (tty->magic != TTY_MAGIC) {
270 		pr_warn("(%d:%d): %s: bad magic number\n",
271 			imajor(inode), iminor(inode), routine);
272 		return 1;
273 	}
274 #endif
275 	return 0;
276 }
277 
278 /* Caller must hold tty_lock */
279 static int check_tty_count(struct tty_struct *tty, const char *routine)
280 {
281 #ifdef CHECK_TTY_COUNT
282 	struct list_head *p;
283 	int count = 0, kopen_count = 0;
284 
285 	spin_lock(&tty->files_lock);
286 	list_for_each(p, &tty->tty_files) {
287 		count++;
288 	}
289 	spin_unlock(&tty->files_lock);
290 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
291 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
292 	    tty->link && tty->link->count)
293 		count++;
294 	if (tty_port_kopened(tty->port))
295 		kopen_count++;
296 	if (tty->count != (count + kopen_count)) {
297 		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
298 			 routine, tty->count, count, kopen_count);
299 		return (count + kopen_count);
300 	}
301 #endif
302 	return 0;
303 }
304 
305 /**
306  *	get_tty_driver		-	find device of a tty
307  *	@device: device identifier
308  *	@index: returns the index of the tty
309  *
310  *	This routine returns a tty driver structure, given a device number
311  *	and also passes back the index number.
312  *
313  *	Locking: caller must hold tty_mutex
314  */
315 
316 static struct tty_driver *get_tty_driver(dev_t device, int *index)
317 {
318 	struct tty_driver *p;
319 
320 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
321 		dev_t base = MKDEV(p->major, p->minor_start);
322 		if (device < base || device >= base + p->num)
323 			continue;
324 		*index = device - base;
325 		return tty_driver_kref_get(p);
326 	}
327 	return NULL;
328 }
329 
330 /**
331  *	tty_dev_name_to_number	-	return dev_t for device name
332  *	@name: user space name of device under /dev
333  *	@number: pointer to dev_t that this function will populate
334  *
335  *	This function converts device names like ttyS0 or ttyUSB1 into dev_t
336  *	like (4, 64) or (188, 1). If no corresponding driver is registered then
337  *	the function returns -ENODEV.
338  *
339  *	Locking: this acquires tty_mutex to protect the tty_drivers list from
340  *		being modified while we are traversing it, and makes sure to
341  *		release it before exiting.
342  */
343 int tty_dev_name_to_number(const char *name, dev_t *number)
344 {
345 	struct tty_driver *p;
346 	int ret;
347 	int index, prefix_length = 0;
348 	const char *str;
349 
350 	for (str = name; *str && !isdigit(*str); str++)
351 		;
352 
353 	if (!*str)
354 		return -EINVAL;
355 
356 	ret = kstrtoint(str, 10, &index);
357 	if (ret)
358 		return ret;
359 
360 	prefix_length = str - name;
361 	mutex_lock(&tty_mutex);
362 
363 	list_for_each_entry(p, &tty_drivers, tty_drivers)
364 		if (prefix_length == strlen(p->name) && strncmp(name,
365 					p->name, prefix_length) == 0) {
366 			if (index < p->num) {
367 				*number = MKDEV(p->major, p->minor_start + index);
368 				goto out;
369 			}
370 		}
371 
372 	/* if here then driver wasn't found */
373 	ret = -ENODEV;
374 out:
375 	mutex_unlock(&tty_mutex);
376 	return ret;
377 }
378 EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
379 
380 #ifdef CONFIG_CONSOLE_POLL
381 
382 /**
383  *	tty_find_polling_driver	-	find device of a polled tty
384  *	@name: name string to match
385  *	@line: pointer to resulting tty line nr
386  *
387  *	This routine returns a tty driver structure, given a name
388  *	and the condition that the tty driver is capable of polled
389  *	operation.
390  */
391 struct tty_driver *tty_find_polling_driver(char *name, int *line)
392 {
393 	struct tty_driver *p, *res = NULL;
394 	int tty_line = 0;
395 	int len;
396 	char *str, *stp;
397 
398 	for (str = name; *str; str++)
399 		if ((*str >= '0' && *str <= '9') || *str == ',')
400 			break;
401 	if (!*str)
402 		return NULL;
403 
404 	len = str - name;
405 	tty_line = simple_strtoul(str, &str, 10);
406 
407 	mutex_lock(&tty_mutex);
408 	/* Search through the tty devices to look for a match */
409 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
410 		if (!len || strncmp(name, p->name, len) != 0)
411 			continue;
412 		stp = str;
413 		if (*stp == ',')
414 			stp++;
415 		if (*stp == '\0')
416 			stp = NULL;
417 
418 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
419 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
420 			res = tty_driver_kref_get(p);
421 			*line = tty_line;
422 			break;
423 		}
424 	}
425 	mutex_unlock(&tty_mutex);
426 
427 	return res;
428 }
429 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
430 #endif
431 
432 static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
433 {
434 	return 0;
435 }
436 
437 static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
438 {
439 	return -EIO;
440 }
441 
442 /* No kernel lock held - none needed ;) */
443 static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
444 {
445 	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
446 }
447 
448 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
449 		unsigned long arg)
450 {
451 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
452 }
453 
454 static long hung_up_tty_compat_ioctl(struct file *file,
455 				     unsigned int cmd, unsigned long arg)
456 {
457 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
458 }
459 
460 static int hung_up_tty_fasync(int fd, struct file *file, int on)
461 {
462 	return -ENOTTY;
463 }
464 
465 static void tty_show_fdinfo(struct seq_file *m, struct file *file)
466 {
467 	struct tty_struct *tty = file_tty(file);
468 
469 	if (tty && tty->ops && tty->ops->show_fdinfo)
470 		tty->ops->show_fdinfo(tty, m);
471 }
472 
473 static const struct file_operations tty_fops = {
474 	.llseek		= no_llseek,
475 	.read_iter	= tty_read,
476 	.write_iter	= tty_write,
477 	.splice_read	= generic_file_splice_read,
478 	.splice_write	= iter_file_splice_write,
479 	.poll		= tty_poll,
480 	.unlocked_ioctl	= tty_ioctl,
481 	.compat_ioctl	= tty_compat_ioctl,
482 	.open		= tty_open,
483 	.release	= tty_release,
484 	.fasync		= tty_fasync,
485 	.show_fdinfo	= tty_show_fdinfo,
486 };
487 
488 static const struct file_operations console_fops = {
489 	.llseek		= no_llseek,
490 	.read_iter	= tty_read,
491 	.write_iter	= redirected_tty_write,
492 	.splice_read	= generic_file_splice_read,
493 	.splice_write	= iter_file_splice_write,
494 	.poll		= tty_poll,
495 	.unlocked_ioctl	= tty_ioctl,
496 	.compat_ioctl	= tty_compat_ioctl,
497 	.open		= tty_open,
498 	.release	= tty_release,
499 	.fasync		= tty_fasync,
500 };
501 
502 static const struct file_operations hung_up_tty_fops = {
503 	.llseek		= no_llseek,
504 	.read_iter	= hung_up_tty_read,
505 	.write_iter	= hung_up_tty_write,
506 	.poll		= hung_up_tty_poll,
507 	.unlocked_ioctl	= hung_up_tty_ioctl,
508 	.compat_ioctl	= hung_up_tty_compat_ioctl,
509 	.release	= tty_release,
510 	.fasync		= hung_up_tty_fasync,
511 };
512 
513 static DEFINE_SPINLOCK(redirect_lock);
514 static struct file *redirect;
515 
516 /**
517  *	tty_wakeup	-	request more data
518  *	@tty: terminal
519  *
520  *	Internal and external helper for wakeups of tty. This function
521  *	informs the line discipline if present that the driver is ready
522  *	to receive more output data.
523  */
524 
525 void tty_wakeup(struct tty_struct *tty)
526 {
527 	struct tty_ldisc *ld;
528 
529 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
530 		ld = tty_ldisc_ref(tty);
531 		if (ld) {
532 			if (ld->ops->write_wakeup)
533 				ld->ops->write_wakeup(tty);
534 			tty_ldisc_deref(ld);
535 		}
536 	}
537 	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
538 }
539 
540 EXPORT_SYMBOL_GPL(tty_wakeup);
541 
542 /**
543  *	tty_release_redirect	-	Release a redirect on a pty if present
544  *	@tty: tty device
545  *
546  *	This is available to the pty code so if the master closes, if the
547  *	slave is a redirect it can release the redirect.
548  */
549 struct file *tty_release_redirect(struct tty_struct *tty)
550 {
551 	struct file *f = NULL;
552 
553 	spin_lock(&redirect_lock);
554 	if (redirect && file_tty(redirect) == tty) {
555 		f = redirect;
556 		redirect = NULL;
557 	}
558 	spin_unlock(&redirect_lock);
559 
560 	return f;
561 }
562 EXPORT_SYMBOL_GPL(tty_release_redirect);
563 
564 /**
565  *	__tty_hangup		-	actual handler for hangup events
566  *	@tty: tty device
567  *	@exit_session: if non-zero, signal all foreground group processes
568  *
569  *	This can be called by a "kworker" kernel thread.  That is process
570  *	synchronous but doesn't hold any locks, so we need to make sure we
571  *	have the appropriate locks for what we're doing.
572  *
573  *	The hangup event clears any pending redirections onto the hung up
574  *	device. It ensures future writes will error and it does the needed
575  *	line discipline hangup and signal delivery. The tty object itself
576  *	remains intact.
577  *
578  *	Locking:
579  *		BTM
580  *		  redirect lock for undoing redirection
581  *		  file list lock for manipulating list of ttys
582  *		  tty_ldiscs_lock from called functions
583  *		  termios_rwsem resetting termios data
584  *		  tasklist_lock to walk task list for hangup event
585  *		    ->siglock to protect ->signal/->sighand
586  */
587 static void __tty_hangup(struct tty_struct *tty, int exit_session)
588 {
589 	struct file *cons_filp = NULL;
590 	struct file *filp, *f;
591 	struct tty_file_private *priv;
592 	int    closecount = 0, n;
593 	int refs;
594 
595 	if (!tty)
596 		return;
597 
598 	f = tty_release_redirect(tty);
599 
600 	tty_lock(tty);
601 
602 	if (test_bit(TTY_HUPPED, &tty->flags)) {
603 		tty_unlock(tty);
604 		return;
605 	}
606 
607 	/*
608 	 * Some console devices aren't actually hung up for technical and
609 	 * historical reasons, which can lead to indefinite interruptible
610 	 * sleep in n_tty_read().  The following explicitly tells
611 	 * n_tty_read() to abort readers.
612 	 */
613 	set_bit(TTY_HUPPING, &tty->flags);
614 
615 	/* inuse_filps is protected by the single tty lock,
616 	   this really needs to change if we want to flush the
617 	   workqueue with the lock held */
618 	check_tty_count(tty, "tty_hangup");
619 
620 	spin_lock(&tty->files_lock);
621 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
622 	list_for_each_entry(priv, &tty->tty_files, list) {
623 		filp = priv->file;
624 		if (filp->f_op->write_iter == redirected_tty_write)
625 			cons_filp = filp;
626 		if (filp->f_op->write_iter != tty_write)
627 			continue;
628 		closecount++;
629 		__tty_fasync(-1, filp, 0);	/* can't block */
630 		filp->f_op = &hung_up_tty_fops;
631 	}
632 	spin_unlock(&tty->files_lock);
633 
634 	refs = tty_signal_session_leader(tty, exit_session);
635 	/* Account for the p->signal references we killed */
636 	while (refs--)
637 		tty_kref_put(tty);
638 
639 	tty_ldisc_hangup(tty, cons_filp != NULL);
640 
641 	spin_lock_irq(&tty->ctrl_lock);
642 	clear_bit(TTY_THROTTLED, &tty->flags);
643 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
644 	put_pid(tty->session);
645 	put_pid(tty->pgrp);
646 	tty->session = NULL;
647 	tty->pgrp = NULL;
648 	tty->ctrl_status = 0;
649 	spin_unlock_irq(&tty->ctrl_lock);
650 
651 	/*
652 	 * If one of the devices matches a console pointer, we
653 	 * cannot just call hangup() because that will cause
654 	 * tty->count and state->count to go out of sync.
655 	 * So we just call close() the right number of times.
656 	 */
657 	if (cons_filp) {
658 		if (tty->ops->close)
659 			for (n = 0; n < closecount; n++)
660 				tty->ops->close(tty, cons_filp);
661 	} else if (tty->ops->hangup)
662 		tty->ops->hangup(tty);
663 	/*
664 	 * We don't want to have driver/ldisc interactions beyond the ones
665 	 * we did here. The driver layer expects no calls after ->hangup()
666 	 * from the ldisc side, which is now guaranteed.
667 	 */
668 	set_bit(TTY_HUPPED, &tty->flags);
669 	clear_bit(TTY_HUPPING, &tty->flags);
670 	tty_unlock(tty);
671 
672 	if (f)
673 		fput(f);
674 }
675 
676 static void do_tty_hangup(struct work_struct *work)
677 {
678 	struct tty_struct *tty =
679 		container_of(work, struct tty_struct, hangup_work);
680 
681 	__tty_hangup(tty, 0);
682 }
683 
684 /**
685  *	tty_hangup		-	trigger a hangup event
686  *	@tty: tty to hangup
687  *
688  *	A carrier loss (virtual or otherwise) has occurred on this like
689  *	schedule a hangup sequence to run after this event.
690  */
691 
692 void tty_hangup(struct tty_struct *tty)
693 {
694 	tty_debug_hangup(tty, "hangup\n");
695 	schedule_work(&tty->hangup_work);
696 }
697 
698 EXPORT_SYMBOL(tty_hangup);
699 
700 /**
701  *	tty_vhangup		-	process vhangup
702  *	@tty: tty to hangup
703  *
704  *	The user has asked via system call for the terminal to be hung up.
705  *	We do this synchronously so that when the syscall returns the process
706  *	is complete. That guarantee is necessary for security reasons.
707  */
708 
709 void tty_vhangup(struct tty_struct *tty)
710 {
711 	tty_debug_hangup(tty, "vhangup\n");
712 	__tty_hangup(tty, 0);
713 }
714 
715 EXPORT_SYMBOL(tty_vhangup);
716 
717 
718 /**
719  *	tty_vhangup_self	-	process vhangup for own ctty
720  *
721  *	Perform a vhangup on the current controlling tty
722  */
723 
724 void tty_vhangup_self(void)
725 {
726 	struct tty_struct *tty;
727 
728 	tty = get_current_tty();
729 	if (tty) {
730 		tty_vhangup(tty);
731 		tty_kref_put(tty);
732 	}
733 }
734 
735 /**
736  *	tty_vhangup_session		-	hangup session leader exit
737  *	@tty: tty to hangup
738  *
739  *	The session leader is exiting and hanging up its controlling terminal.
740  *	Every process in the foreground process group is signalled SIGHUP.
741  *
742  *	We do this synchronously so that when the syscall returns the process
743  *	is complete. That guarantee is necessary for security reasons.
744  */
745 
746 void tty_vhangup_session(struct tty_struct *tty)
747 {
748 	tty_debug_hangup(tty, "session hangup\n");
749 	__tty_hangup(tty, 1);
750 }
751 
752 /**
753  *	tty_hung_up_p		-	was tty hung up
754  *	@filp: file pointer of tty
755  *
756  *	Return true if the tty has been subject to a vhangup or a carrier
757  *	loss
758  */
759 
760 int tty_hung_up_p(struct file *filp)
761 {
762 	return (filp && filp->f_op == &hung_up_tty_fops);
763 }
764 
765 EXPORT_SYMBOL(tty_hung_up_p);
766 
767 /**
768  *	stop_tty	-	propagate flow control
769  *	@tty: tty to stop
770  *
771  *	Perform flow control to the driver. May be called
772  *	on an already stopped device and will not re-call the driver
773  *	method.
774  *
775  *	This functionality is used by both the line disciplines for
776  *	halting incoming flow and by the driver. It may therefore be
777  *	called from any context, may be under the tty atomic_write_lock
778  *	but not always.
779  *
780  *	Locking:
781  *		flow_lock
782  */
783 
784 void __stop_tty(struct tty_struct *tty)
785 {
786 	if (tty->stopped)
787 		return;
788 	tty->stopped = 1;
789 	if (tty->ops->stop)
790 		tty->ops->stop(tty);
791 }
792 
793 void stop_tty(struct tty_struct *tty)
794 {
795 	unsigned long flags;
796 
797 	spin_lock_irqsave(&tty->flow_lock, flags);
798 	__stop_tty(tty);
799 	spin_unlock_irqrestore(&tty->flow_lock, flags);
800 }
801 EXPORT_SYMBOL(stop_tty);
802 
803 /**
804  *	start_tty	-	propagate flow control
805  *	@tty: tty to start
806  *
807  *	Start a tty that has been stopped if at all possible. If this
808  *	tty was previous stopped and is now being started, the driver
809  *	start method is invoked and the line discipline woken.
810  *
811  *	Locking:
812  *		flow_lock
813  */
814 
815 void __start_tty(struct tty_struct *tty)
816 {
817 	if (!tty->stopped || tty->flow_stopped)
818 		return;
819 	tty->stopped = 0;
820 	if (tty->ops->start)
821 		tty->ops->start(tty);
822 	tty_wakeup(tty);
823 }
824 
825 void start_tty(struct tty_struct *tty)
826 {
827 	unsigned long flags;
828 
829 	spin_lock_irqsave(&tty->flow_lock, flags);
830 	__start_tty(tty);
831 	spin_unlock_irqrestore(&tty->flow_lock, flags);
832 }
833 EXPORT_SYMBOL(start_tty);
834 
835 static void tty_update_time(struct timespec64 *time)
836 {
837 	time64_t sec = ktime_get_real_seconds();
838 
839 	/*
840 	 * We only care if the two values differ in anything other than the
841 	 * lower three bits (i.e every 8 seconds).  If so, then we can update
842 	 * the time of the tty device, otherwise it could be construded as a
843 	 * security leak to let userspace know the exact timing of the tty.
844 	 */
845 	if ((sec ^ time->tv_sec) & ~7)
846 		time->tv_sec = sec;
847 }
848 
849 /*
850  * Iterate on the ldisc ->read() function until we've gotten all
851  * the data the ldisc has for us.
852  *
853  * The "cookie" is something that the ldisc read function can fill
854  * in to let us know that there is more data to be had.
855  *
856  * We promise to continue to call the ldisc until it stops returning
857  * data or clears the cookie. The cookie may be something that the
858  * ldisc maintains state for and needs to free.
859  */
860 static int iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
861 		struct file *file, struct iov_iter *to)
862 {
863 	int retval = 0;
864 	void *cookie = NULL;
865 	unsigned long offset = 0;
866 	char kernel_buf[64];
867 	size_t count = iov_iter_count(to);
868 
869 	do {
870 		int size, copied;
871 
872 		size = count > sizeof(kernel_buf) ? sizeof(kernel_buf) : count;
873 		size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
874 		if (!size)
875 			break;
876 
877 		if (size < 0) {
878 			/* Did we have an earlier error (ie -EFAULT)? */
879 			if (retval)
880 				break;
881 			retval = size;
882 
883 			/*
884 			 * -EOVERFLOW means we didn't have enough space
885 			 * for a whole packet, and we shouldn't return
886 			 * a partial result.
887 			 */
888 			if (retval == -EOVERFLOW)
889 				offset = 0;
890 			break;
891 		}
892 
893 		copied = copy_to_iter(kernel_buf, size, to);
894 		offset += copied;
895 		count -= copied;
896 
897 		/*
898 		 * If the user copy failed, we still need to do another ->read()
899 		 * call if we had a cookie to let the ldisc clear up.
900 		 *
901 		 * But make sure size is zeroed.
902 		 */
903 		if (unlikely(copied != size)) {
904 			count = 0;
905 			retval = -EFAULT;
906 		}
907 	} while (cookie);
908 
909 	/* We always clear tty buffer in case they contained passwords */
910 	memzero_explicit(kernel_buf, sizeof(kernel_buf));
911 	return offset ? offset : retval;
912 }
913 
914 
915 /**
916  *	tty_read	-	read method for tty device files
917  *	@file: pointer to tty file
918  *	@buf: user buffer
919  *	@count: size of user buffer
920  *	@ppos: unused
921  *
922  *	Perform the read system call function on this terminal device. Checks
923  *	for hung up devices before calling the line discipline method.
924  *
925  *	Locking:
926  *		Locks the line discipline internally while needed. Multiple
927  *	read calls may be outstanding in parallel.
928  */
929 
930 static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
931 {
932 	int i;
933 	struct file *file = iocb->ki_filp;
934 	struct inode *inode = file_inode(file);
935 	struct tty_struct *tty = file_tty(file);
936 	struct tty_ldisc *ld;
937 
938 	if (tty_paranoia_check(tty, inode, "tty_read"))
939 		return -EIO;
940 	if (!tty || tty_io_error(tty))
941 		return -EIO;
942 
943 	/* We want to wait for the line discipline to sort out in this
944 	   situation */
945 	ld = tty_ldisc_ref_wait(tty);
946 	if (!ld)
947 		return hung_up_tty_read(iocb, to);
948 	i = -EIO;
949 	if (ld->ops->read)
950 		i = iterate_tty_read(ld, tty, file, to);
951 	tty_ldisc_deref(ld);
952 
953 	if (i > 0)
954 		tty_update_time(&inode->i_atime);
955 
956 	return i;
957 }
958 
959 static void tty_write_unlock(struct tty_struct *tty)
960 {
961 	mutex_unlock(&tty->atomic_write_lock);
962 	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
963 }
964 
965 static int tty_write_lock(struct tty_struct *tty, int ndelay)
966 {
967 	if (!mutex_trylock(&tty->atomic_write_lock)) {
968 		if (ndelay)
969 			return -EAGAIN;
970 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
971 			return -ERESTARTSYS;
972 	}
973 	return 0;
974 }
975 
976 /*
977  * Split writes up in sane blocksizes to avoid
978  * denial-of-service type attacks
979  */
980 static inline ssize_t do_tty_write(
981 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
982 	struct tty_struct *tty,
983 	struct file *file,
984 	struct iov_iter *from)
985 {
986 	size_t count = iov_iter_count(from);
987 	ssize_t ret, written = 0;
988 	unsigned int chunk;
989 
990 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
991 	if (ret < 0)
992 		return ret;
993 
994 	/*
995 	 * We chunk up writes into a temporary buffer. This
996 	 * simplifies low-level drivers immensely, since they
997 	 * don't have locking issues and user mode accesses.
998 	 *
999 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1000 	 * big chunk-size..
1001 	 *
1002 	 * The default chunk-size is 2kB, because the NTTY
1003 	 * layer has problems with bigger chunks. It will
1004 	 * claim to be able to handle more characters than
1005 	 * it actually does.
1006 	 *
1007 	 * FIXME: This can probably go away now except that 64K chunks
1008 	 * are too likely to fail unless switched to vmalloc...
1009 	 */
1010 	chunk = 2048;
1011 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1012 		chunk = 65536;
1013 	if (count < chunk)
1014 		chunk = count;
1015 
1016 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1017 	if (tty->write_cnt < chunk) {
1018 		unsigned char *buf_chunk;
1019 
1020 		if (chunk < 1024)
1021 			chunk = 1024;
1022 
1023 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1024 		if (!buf_chunk) {
1025 			ret = -ENOMEM;
1026 			goto out;
1027 		}
1028 		kfree(tty->write_buf);
1029 		tty->write_cnt = chunk;
1030 		tty->write_buf = buf_chunk;
1031 	}
1032 
1033 	/* Do the write .. */
1034 	for (;;) {
1035 		size_t size = count;
1036 		if (size > chunk)
1037 			size = chunk;
1038 
1039 		ret = -EFAULT;
1040 		if (copy_from_iter(tty->write_buf, size, from) != size)
1041 			break;
1042 
1043 		ret = write(tty, file, tty->write_buf, size);
1044 		if (ret <= 0)
1045 			break;
1046 
1047 		written += ret;
1048 		if (ret > size)
1049 			break;
1050 
1051 		/* FIXME! Have Al check this! */
1052 		if (ret != size)
1053 			iov_iter_revert(from, size-ret);
1054 
1055 		count -= ret;
1056 		if (!count)
1057 			break;
1058 		ret = -ERESTARTSYS;
1059 		if (signal_pending(current))
1060 			break;
1061 		cond_resched();
1062 	}
1063 	if (written) {
1064 		tty_update_time(&file_inode(file)->i_mtime);
1065 		ret = written;
1066 	}
1067 out:
1068 	tty_write_unlock(tty);
1069 	return ret;
1070 }
1071 
1072 /**
1073  * tty_write_message - write a message to a certain tty, not just the console.
1074  * @tty: the destination tty_struct
1075  * @msg: the message to write
1076  *
1077  * This is used for messages that need to be redirected to a specific tty.
1078  * We don't put it into the syslog queue right now maybe in the future if
1079  * really needed.
1080  *
1081  * We must still hold the BTM and test the CLOSING flag for the moment.
1082  */
1083 
1084 void tty_write_message(struct tty_struct *tty, char *msg)
1085 {
1086 	if (tty) {
1087 		mutex_lock(&tty->atomic_write_lock);
1088 		tty_lock(tty);
1089 		if (tty->ops->write && tty->count > 0)
1090 			tty->ops->write(tty, msg, strlen(msg));
1091 		tty_unlock(tty);
1092 		tty_write_unlock(tty);
1093 	}
1094 	return;
1095 }
1096 
1097 
1098 /**
1099  *	tty_write		-	write method for tty device file
1100  *	@file: tty file pointer
1101  *	@buf: user data to write
1102  *	@count: bytes to write
1103  *	@ppos: unused
1104  *
1105  *	Write data to a tty device via the line discipline.
1106  *
1107  *	Locking:
1108  *		Locks the line discipline as required
1109  *		Writes to the tty driver are serialized by the atomic_write_lock
1110  *	and are then processed in chunks to the device. The line discipline
1111  *	write method will not be invoked in parallel for each device.
1112  */
1113 
1114 static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
1115 {
1116 	struct tty_struct *tty = file_tty(file);
1117  	struct tty_ldisc *ld;
1118 	ssize_t ret;
1119 
1120 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1121 		return -EIO;
1122 	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1123 			return -EIO;
1124 	/* Short term debug to catch buggy drivers */
1125 	if (tty->ops->write_room == NULL)
1126 		tty_err(tty, "missing write_room method\n");
1127 	ld = tty_ldisc_ref_wait(tty);
1128 	if (!ld)
1129 		return hung_up_tty_write(iocb, from);
1130 	if (!ld->ops->write)
1131 		ret = -EIO;
1132 	else
1133 		ret = do_tty_write(ld->ops->write, tty, file, from);
1134 	tty_ldisc_deref(ld);
1135 	return ret;
1136 }
1137 
1138 static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1139 {
1140 	return file_tty_write(iocb->ki_filp, iocb, from);
1141 }
1142 
1143 ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1144 {
1145 	struct file *p = NULL;
1146 
1147 	spin_lock(&redirect_lock);
1148 	if (redirect)
1149 		p = get_file(redirect);
1150 	spin_unlock(&redirect_lock);
1151 
1152 	/*
1153 	 * We know the redirected tty is just another tty, we can can
1154 	 * call file_tty_write() directly with that file pointer.
1155 	 */
1156 	if (p) {
1157 		ssize_t res;
1158 		res = file_tty_write(p, iocb, iter);
1159 		fput(p);
1160 		return res;
1161 	}
1162 	return tty_write(iocb, iter);
1163 }
1164 
1165 /*
1166  *	tty_send_xchar	-	send priority character
1167  *
1168  *	Send a high priority character to the tty even if stopped
1169  *
1170  *	Locking: none for xchar method, write ordering for write method.
1171  */
1172 
1173 int tty_send_xchar(struct tty_struct *tty, char ch)
1174 {
1175 	int	was_stopped = tty->stopped;
1176 
1177 	if (tty->ops->send_xchar) {
1178 		down_read(&tty->termios_rwsem);
1179 		tty->ops->send_xchar(tty, ch);
1180 		up_read(&tty->termios_rwsem);
1181 		return 0;
1182 	}
1183 
1184 	if (tty_write_lock(tty, 0) < 0)
1185 		return -ERESTARTSYS;
1186 
1187 	down_read(&tty->termios_rwsem);
1188 	if (was_stopped)
1189 		start_tty(tty);
1190 	tty->ops->write(tty, &ch, 1);
1191 	if (was_stopped)
1192 		stop_tty(tty);
1193 	up_read(&tty->termios_rwsem);
1194 	tty_write_unlock(tty);
1195 	return 0;
1196 }
1197 
1198 static char ptychar[] = "pqrstuvwxyzabcde";
1199 
1200 /**
1201  *	pty_line_name	-	generate name for a pty
1202  *	@driver: the tty driver in use
1203  *	@index: the minor number
1204  *	@p: output buffer of at least 6 bytes
1205  *
1206  *	Generate a name from a driver reference and write it to the output
1207  *	buffer.
1208  *
1209  *	Locking: None
1210  */
1211 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1212 {
1213 	int i = index + driver->name_base;
1214 	/* ->name is initialized to "ttyp", but "tty" is expected */
1215 	sprintf(p, "%s%c%x",
1216 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1217 		ptychar[i >> 4 & 0xf], i & 0xf);
1218 }
1219 
1220 /**
1221  *	tty_line_name	-	generate name for a tty
1222  *	@driver: the tty driver in use
1223  *	@index: the minor number
1224  *	@p: output buffer of at least 7 bytes
1225  *
1226  *	Generate a name from a driver reference and write it to the output
1227  *	buffer.
1228  *
1229  *	Locking: None
1230  */
1231 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1232 {
1233 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1234 		return sprintf(p, "%s", driver->name);
1235 	else
1236 		return sprintf(p, "%s%d", driver->name,
1237 			       index + driver->name_base);
1238 }
1239 
1240 /**
1241  *	tty_driver_lookup_tty() - find an existing tty, if any
1242  *	@driver: the driver for the tty
1243  *	@file:   file object
1244  *	@idx:	 the minor number
1245  *
1246  *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1247  *	driver lookup() method returns an error.
1248  *
1249  *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1250  */
1251 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1252 		struct file *file, int idx)
1253 {
1254 	struct tty_struct *tty;
1255 
1256 	if (driver->ops->lookup)
1257 		if (!file)
1258 			tty = ERR_PTR(-EIO);
1259 		else
1260 			tty = driver->ops->lookup(driver, file, idx);
1261 	else
1262 		tty = driver->ttys[idx];
1263 
1264 	if (!IS_ERR(tty))
1265 		tty_kref_get(tty);
1266 	return tty;
1267 }
1268 
1269 /**
1270  *	tty_init_termios	-  helper for termios setup
1271  *	@tty: the tty to set up
1272  *
1273  *	Initialise the termios structure for this tty. This runs under
1274  *	the tty_mutex currently so we can be relaxed about ordering.
1275  */
1276 
1277 void tty_init_termios(struct tty_struct *tty)
1278 {
1279 	struct ktermios *tp;
1280 	int idx = tty->index;
1281 
1282 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1283 		tty->termios = tty->driver->init_termios;
1284 	else {
1285 		/* Check for lazy saved data */
1286 		tp = tty->driver->termios[idx];
1287 		if (tp != NULL) {
1288 			tty->termios = *tp;
1289 			tty->termios.c_line  = tty->driver->init_termios.c_line;
1290 		} else
1291 			tty->termios = tty->driver->init_termios;
1292 	}
1293 	/* Compatibility until drivers always set this */
1294 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1295 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1296 }
1297 EXPORT_SYMBOL_GPL(tty_init_termios);
1298 
1299 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1300 {
1301 	tty_init_termios(tty);
1302 	tty_driver_kref_get(driver);
1303 	tty->count++;
1304 	driver->ttys[tty->index] = tty;
1305 	return 0;
1306 }
1307 EXPORT_SYMBOL_GPL(tty_standard_install);
1308 
1309 /**
1310  *	tty_driver_install_tty() - install a tty entry in the driver
1311  *	@driver: the driver for the tty
1312  *	@tty: the tty
1313  *
1314  *	Install a tty object into the driver tables. The tty->index field
1315  *	will be set by the time this is called. This method is responsible
1316  *	for ensuring any need additional structures are allocated and
1317  *	configured.
1318  *
1319  *	Locking: tty_mutex for now
1320  */
1321 static int tty_driver_install_tty(struct tty_driver *driver,
1322 						struct tty_struct *tty)
1323 {
1324 	return driver->ops->install ? driver->ops->install(driver, tty) :
1325 		tty_standard_install(driver, tty);
1326 }
1327 
1328 /**
1329  *	tty_driver_remove_tty() - remove a tty from the driver tables
1330  *	@driver: the driver for the tty
1331  *	@tty: tty to remove
1332  *
1333  *	Remvoe a tty object from the driver tables. The tty->index field
1334  *	will be set by the time this is called.
1335  *
1336  *	Locking: tty_mutex for now
1337  */
1338 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1339 {
1340 	if (driver->ops->remove)
1341 		driver->ops->remove(driver, tty);
1342 	else
1343 		driver->ttys[tty->index] = NULL;
1344 }
1345 
1346 /**
1347  *	tty_reopen()	- fast re-open of an open tty
1348  *	@tty: the tty to open
1349  *
1350  *	Return 0 on success, -errno on error.
1351  *	Re-opens on master ptys are not allowed and return -EIO.
1352  *
1353  *	Locking: Caller must hold tty_lock
1354  */
1355 static int tty_reopen(struct tty_struct *tty)
1356 {
1357 	struct tty_driver *driver = tty->driver;
1358 	struct tty_ldisc *ld;
1359 	int retval = 0;
1360 
1361 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1362 	    driver->subtype == PTY_TYPE_MASTER)
1363 		return -EIO;
1364 
1365 	if (!tty->count)
1366 		return -EAGAIN;
1367 
1368 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1369 		return -EBUSY;
1370 
1371 	ld = tty_ldisc_ref_wait(tty);
1372 	if (ld) {
1373 		tty_ldisc_deref(ld);
1374 	} else {
1375 		retval = tty_ldisc_lock(tty, 5 * HZ);
1376 		if (retval)
1377 			return retval;
1378 
1379 		if (!tty->ldisc)
1380 			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1381 		tty_ldisc_unlock(tty);
1382 	}
1383 
1384 	if (retval == 0)
1385 		tty->count++;
1386 
1387 	return retval;
1388 }
1389 
1390 /**
1391  *	tty_init_dev		-	initialise a tty device
1392  *	@driver: tty driver we are opening a device on
1393  *	@idx: device index
1394  *
1395  *	Prepare a tty device. This may not be a "new" clean device but
1396  *	could also be an active device. The pty drivers require special
1397  *	handling because of this.
1398  *
1399  *	Locking:
1400  *		The function is called under the tty_mutex, which
1401  *	protects us from the tty struct or driver itself going away.
1402  *
1403  *	On exit the tty device has the line discipline attached and
1404  *	a reference count of 1. If a pair was created for pty/tty use
1405  *	and the other was a pty master then it too has a reference count of 1.
1406  *
1407  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1408  * failed open.  The new code protects the open with a mutex, so it's
1409  * really quite straightforward.  The mutex locking can probably be
1410  * relaxed for the (most common) case of reopening a tty.
1411  *
1412  *	Return: returned tty structure
1413  */
1414 
1415 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1416 {
1417 	struct tty_struct *tty;
1418 	int retval;
1419 
1420 	/*
1421 	 * First time open is complex, especially for PTY devices.
1422 	 * This code guarantees that either everything succeeds and the
1423 	 * TTY is ready for operation, or else the table slots are vacated
1424 	 * and the allocated memory released.  (Except that the termios
1425 	 * may be retained.)
1426 	 */
1427 
1428 	if (!try_module_get(driver->owner))
1429 		return ERR_PTR(-ENODEV);
1430 
1431 	tty = alloc_tty_struct(driver, idx);
1432 	if (!tty) {
1433 		retval = -ENOMEM;
1434 		goto err_module_put;
1435 	}
1436 
1437 	tty_lock(tty);
1438 	retval = tty_driver_install_tty(driver, tty);
1439 	if (retval < 0)
1440 		goto err_free_tty;
1441 
1442 	if (!tty->port)
1443 		tty->port = driver->ports[idx];
1444 
1445 	if (WARN_RATELIMIT(!tty->port,
1446 			"%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1447 			__func__, tty->driver->name)) {
1448 		retval = -EINVAL;
1449 		goto err_release_lock;
1450 	}
1451 
1452 	retval = tty_ldisc_lock(tty, 5 * HZ);
1453 	if (retval)
1454 		goto err_release_lock;
1455 	tty->port->itty = tty;
1456 
1457 	/*
1458 	 * Structures all installed ... call the ldisc open routines.
1459 	 * If we fail here just call release_tty to clean up.  No need
1460 	 * to decrement the use counts, as release_tty doesn't care.
1461 	 */
1462 	retval = tty_ldisc_setup(tty, tty->link);
1463 	if (retval)
1464 		goto err_release_tty;
1465 	tty_ldisc_unlock(tty);
1466 	/* Return the tty locked so that it cannot vanish under the caller */
1467 	return tty;
1468 
1469 err_free_tty:
1470 	tty_unlock(tty);
1471 	free_tty_struct(tty);
1472 err_module_put:
1473 	module_put(driver->owner);
1474 	return ERR_PTR(retval);
1475 
1476 	/* call the tty release_tty routine to clean out this slot */
1477 err_release_tty:
1478 	tty_ldisc_unlock(tty);
1479 	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1480 			     retval, idx);
1481 err_release_lock:
1482 	tty_unlock(tty);
1483 	release_tty(tty, idx);
1484 	return ERR_PTR(retval);
1485 }
1486 
1487 /**
1488  * tty_save_termios() - save tty termios data in driver table
1489  * @tty: tty whose termios data to save
1490  *
1491  * Locking: Caller guarantees serialisation with tty_init_termios().
1492  */
1493 void tty_save_termios(struct tty_struct *tty)
1494 {
1495 	struct ktermios *tp;
1496 	int idx = tty->index;
1497 
1498 	/* If the port is going to reset then it has no termios to save */
1499 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1500 		return;
1501 
1502 	/* Stash the termios data */
1503 	tp = tty->driver->termios[idx];
1504 	if (tp == NULL) {
1505 		tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1506 		if (tp == NULL)
1507 			return;
1508 		tty->driver->termios[idx] = tp;
1509 	}
1510 	*tp = tty->termios;
1511 }
1512 EXPORT_SYMBOL_GPL(tty_save_termios);
1513 
1514 /**
1515  *	tty_flush_works		-	flush all works of a tty/pty pair
1516  *	@tty: tty device to flush works for (or either end of a pty pair)
1517  *
1518  *	Sync flush all works belonging to @tty (and the 'other' tty).
1519  */
1520 static void tty_flush_works(struct tty_struct *tty)
1521 {
1522 	flush_work(&tty->SAK_work);
1523 	flush_work(&tty->hangup_work);
1524 	if (tty->link) {
1525 		flush_work(&tty->link->SAK_work);
1526 		flush_work(&tty->link->hangup_work);
1527 	}
1528 }
1529 
1530 /**
1531  *	release_one_tty		-	release tty structure memory
1532  *	@work: work of tty we are obliterating
1533  *
1534  *	Releases memory associated with a tty structure, and clears out the
1535  *	driver table slots. This function is called when a device is no longer
1536  *	in use. It also gets called when setup of a device fails.
1537  *
1538  *	Locking:
1539  *		takes the file list lock internally when working on the list
1540  *	of ttys that the driver keeps.
1541  *
1542  *	This method gets called from a work queue so that the driver private
1543  *	cleanup ops can sleep (needed for USB at least)
1544  */
1545 static void release_one_tty(struct work_struct *work)
1546 {
1547 	struct tty_struct *tty =
1548 		container_of(work, struct tty_struct, hangup_work);
1549 	struct tty_driver *driver = tty->driver;
1550 	struct module *owner = driver->owner;
1551 
1552 	if (tty->ops->cleanup)
1553 		tty->ops->cleanup(tty);
1554 
1555 	tty->magic = 0;
1556 	tty_driver_kref_put(driver);
1557 	module_put(owner);
1558 
1559 	spin_lock(&tty->files_lock);
1560 	list_del_init(&tty->tty_files);
1561 	spin_unlock(&tty->files_lock);
1562 
1563 	put_pid(tty->pgrp);
1564 	put_pid(tty->session);
1565 	free_tty_struct(tty);
1566 }
1567 
1568 static void queue_release_one_tty(struct kref *kref)
1569 {
1570 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1571 
1572 	/* The hangup queue is now free so we can reuse it rather than
1573 	   waste a chunk of memory for each port */
1574 	INIT_WORK(&tty->hangup_work, release_one_tty);
1575 	schedule_work(&tty->hangup_work);
1576 }
1577 
1578 /**
1579  *	tty_kref_put		-	release a tty kref
1580  *	@tty: tty device
1581  *
1582  *	Release a reference to a tty device and if need be let the kref
1583  *	layer destruct the object for us
1584  */
1585 
1586 void tty_kref_put(struct tty_struct *tty)
1587 {
1588 	if (tty)
1589 		kref_put(&tty->kref, queue_release_one_tty);
1590 }
1591 EXPORT_SYMBOL(tty_kref_put);
1592 
1593 /**
1594  *	release_tty		-	release tty structure memory
1595  *	@tty: tty device release
1596  *	@idx: index of the tty device release
1597  *
1598  *	Release both @tty and a possible linked partner (think pty pair),
1599  *	and decrement the refcount of the backing module.
1600  *
1601  *	Locking:
1602  *		tty_mutex
1603  *		takes the file list lock internally when working on the list
1604  *	of ttys that the driver keeps.
1605  *
1606  */
1607 static void release_tty(struct tty_struct *tty, int idx)
1608 {
1609 	/* This should always be true but check for the moment */
1610 	WARN_ON(tty->index != idx);
1611 	WARN_ON(!mutex_is_locked(&tty_mutex));
1612 	if (tty->ops->shutdown)
1613 		tty->ops->shutdown(tty);
1614 	tty_save_termios(tty);
1615 	tty_driver_remove_tty(tty->driver, tty);
1616 	if (tty->port)
1617 		tty->port->itty = NULL;
1618 	if (tty->link)
1619 		tty->link->port->itty = NULL;
1620 	if (tty->port)
1621 		tty_buffer_cancel_work(tty->port);
1622 	if (tty->link)
1623 		tty_buffer_cancel_work(tty->link->port);
1624 
1625 	tty_kref_put(tty->link);
1626 	tty_kref_put(tty);
1627 }
1628 
1629 /**
1630  *	tty_release_checks - check a tty before real release
1631  *	@tty: tty to check
1632  *	@idx: index of the tty
1633  *
1634  *	Performs some paranoid checking before true release of the @tty.
1635  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1636  */
1637 static int tty_release_checks(struct tty_struct *tty, int idx)
1638 {
1639 #ifdef TTY_PARANOIA_CHECK
1640 	if (idx < 0 || idx >= tty->driver->num) {
1641 		tty_debug(tty, "bad idx %d\n", idx);
1642 		return -1;
1643 	}
1644 
1645 	/* not much to check for devpts */
1646 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1647 		return 0;
1648 
1649 	if (tty != tty->driver->ttys[idx]) {
1650 		tty_debug(tty, "bad driver table[%d] = %p\n",
1651 			  idx, tty->driver->ttys[idx]);
1652 		return -1;
1653 	}
1654 	if (tty->driver->other) {
1655 		struct tty_struct *o_tty = tty->link;
1656 
1657 		if (o_tty != tty->driver->other->ttys[idx]) {
1658 			tty_debug(tty, "bad other table[%d] = %p\n",
1659 				  idx, tty->driver->other->ttys[idx]);
1660 			return -1;
1661 		}
1662 		if (o_tty->link != tty) {
1663 			tty_debug(tty, "bad link = %p\n", o_tty->link);
1664 			return -1;
1665 		}
1666 	}
1667 #endif
1668 	return 0;
1669 }
1670 
1671 /**
1672  *      tty_kclose      -       closes tty opened by tty_kopen
1673  *      @tty: tty device
1674  *
1675  *      Performs the final steps to release and free a tty device. It is the
1676  *      same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1677  *      flag on tty->port.
1678  */
1679 void tty_kclose(struct tty_struct *tty)
1680 {
1681 	/*
1682 	 * Ask the line discipline code to release its structures
1683 	 */
1684 	tty_ldisc_release(tty);
1685 
1686 	/* Wait for pending work before tty destruction commmences */
1687 	tty_flush_works(tty);
1688 
1689 	tty_debug_hangup(tty, "freeing structure\n");
1690 	/*
1691 	 * The release_tty function takes care of the details of clearing
1692 	 * the slots and preserving the termios structure.
1693 	 */
1694 	mutex_lock(&tty_mutex);
1695 	tty_port_set_kopened(tty->port, 0);
1696 	release_tty(tty, tty->index);
1697 	mutex_unlock(&tty_mutex);
1698 }
1699 EXPORT_SYMBOL_GPL(tty_kclose);
1700 
1701 /**
1702  *	tty_release_struct	-	release a tty struct
1703  *	@tty: tty device
1704  *	@idx: index of the tty
1705  *
1706  *	Performs the final steps to release and free a tty device. It is
1707  *	roughly the reverse of tty_init_dev.
1708  */
1709 void tty_release_struct(struct tty_struct *tty, int idx)
1710 {
1711 	/*
1712 	 * Ask the line discipline code to release its structures
1713 	 */
1714 	tty_ldisc_release(tty);
1715 
1716 	/* Wait for pending work before tty destruction commmences */
1717 	tty_flush_works(tty);
1718 
1719 	tty_debug_hangup(tty, "freeing structure\n");
1720 	/*
1721 	 * The release_tty function takes care of the details of clearing
1722 	 * the slots and preserving the termios structure.
1723 	 */
1724 	mutex_lock(&tty_mutex);
1725 	release_tty(tty, idx);
1726 	mutex_unlock(&tty_mutex);
1727 }
1728 EXPORT_SYMBOL_GPL(tty_release_struct);
1729 
1730 /**
1731  *	tty_release		-	vfs callback for close
1732  *	@inode: inode of tty
1733  *	@filp: file pointer for handle to tty
1734  *
1735  *	Called the last time each file handle is closed that references
1736  *	this tty. There may however be several such references.
1737  *
1738  *	Locking:
1739  *		Takes bkl. See tty_release_dev
1740  *
1741  * Even releasing the tty structures is a tricky business.. We have
1742  * to be very careful that the structures are all released at the
1743  * same time, as interrupts might otherwise get the wrong pointers.
1744  *
1745  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1746  * lead to double frees or releasing memory still in use.
1747  */
1748 
1749 int tty_release(struct inode *inode, struct file *filp)
1750 {
1751 	struct tty_struct *tty = file_tty(filp);
1752 	struct tty_struct *o_tty = NULL;
1753 	int	do_sleep, final;
1754 	int	idx;
1755 	long	timeout = 0;
1756 	int	once = 1;
1757 
1758 	if (tty_paranoia_check(tty, inode, __func__))
1759 		return 0;
1760 
1761 	tty_lock(tty);
1762 	check_tty_count(tty, __func__);
1763 
1764 	__tty_fasync(-1, filp, 0);
1765 
1766 	idx = tty->index;
1767 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1768 	    tty->driver->subtype == PTY_TYPE_MASTER)
1769 		o_tty = tty->link;
1770 
1771 	if (tty_release_checks(tty, idx)) {
1772 		tty_unlock(tty);
1773 		return 0;
1774 	}
1775 
1776 	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1777 
1778 	if (tty->ops->close)
1779 		tty->ops->close(tty, filp);
1780 
1781 	/* If tty is pty master, lock the slave pty (stable lock order) */
1782 	tty_lock_slave(o_tty);
1783 
1784 	/*
1785 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1786 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1787 	 * wait queues and kick everyone out _before_ actually starting to
1788 	 * close.  This ensures that we won't block while releasing the tty
1789 	 * structure.
1790 	 *
1791 	 * The test for the o_tty closing is necessary, since the master and
1792 	 * slave sides may close in any order.  If the slave side closes out
1793 	 * first, its count will be one, since the master side holds an open.
1794 	 * Thus this test wouldn't be triggered at the time the slave closed,
1795 	 * so we do it now.
1796 	 */
1797 	while (1) {
1798 		do_sleep = 0;
1799 
1800 		if (tty->count <= 1) {
1801 			if (waitqueue_active(&tty->read_wait)) {
1802 				wake_up_poll(&tty->read_wait, EPOLLIN);
1803 				do_sleep++;
1804 			}
1805 			if (waitqueue_active(&tty->write_wait)) {
1806 				wake_up_poll(&tty->write_wait, EPOLLOUT);
1807 				do_sleep++;
1808 			}
1809 		}
1810 		if (o_tty && o_tty->count <= 1) {
1811 			if (waitqueue_active(&o_tty->read_wait)) {
1812 				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1813 				do_sleep++;
1814 			}
1815 			if (waitqueue_active(&o_tty->write_wait)) {
1816 				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1817 				do_sleep++;
1818 			}
1819 		}
1820 		if (!do_sleep)
1821 			break;
1822 
1823 		if (once) {
1824 			once = 0;
1825 			tty_warn(tty, "read/write wait queue active!\n");
1826 		}
1827 		schedule_timeout_killable(timeout);
1828 		if (timeout < 120 * HZ)
1829 			timeout = 2 * timeout + 1;
1830 		else
1831 			timeout = MAX_SCHEDULE_TIMEOUT;
1832 	}
1833 
1834 	if (o_tty) {
1835 		if (--o_tty->count < 0) {
1836 			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1837 			o_tty->count = 0;
1838 		}
1839 	}
1840 	if (--tty->count < 0) {
1841 		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1842 		tty->count = 0;
1843 	}
1844 
1845 	/*
1846 	 * We've decremented tty->count, so we need to remove this file
1847 	 * descriptor off the tty->tty_files list; this serves two
1848 	 * purposes:
1849 	 *  - check_tty_count sees the correct number of file descriptors
1850 	 *    associated with this tty.
1851 	 *  - do_tty_hangup no longer sees this file descriptor as
1852 	 *    something that needs to be handled for hangups.
1853 	 */
1854 	tty_del_file(filp);
1855 
1856 	/*
1857 	 * Perform some housekeeping before deciding whether to return.
1858 	 *
1859 	 * If _either_ side is closing, make sure there aren't any
1860 	 * processes that still think tty or o_tty is their controlling
1861 	 * tty.
1862 	 */
1863 	if (!tty->count) {
1864 		read_lock(&tasklist_lock);
1865 		session_clear_tty(tty->session);
1866 		if (o_tty)
1867 			session_clear_tty(o_tty->session);
1868 		read_unlock(&tasklist_lock);
1869 	}
1870 
1871 	/* check whether both sides are closing ... */
1872 	final = !tty->count && !(o_tty && o_tty->count);
1873 
1874 	tty_unlock_slave(o_tty);
1875 	tty_unlock(tty);
1876 
1877 	/* At this point, the tty->count == 0 should ensure a dead tty
1878 	   cannot be re-opened by a racing opener */
1879 
1880 	if (!final)
1881 		return 0;
1882 
1883 	tty_debug_hangup(tty, "final close\n");
1884 
1885 	tty_release_struct(tty, idx);
1886 	return 0;
1887 }
1888 
1889 /**
1890  *	tty_open_current_tty - get locked tty of current task
1891  *	@device: device number
1892  *	@filp: file pointer to tty
1893  *	@return: locked tty of the current task iff @device is /dev/tty
1894  *
1895  *	Performs a re-open of the current task's controlling tty.
1896  *
1897  *	We cannot return driver and index like for the other nodes because
1898  *	devpts will not work then. It expects inodes to be from devpts FS.
1899  */
1900 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1901 {
1902 	struct tty_struct *tty;
1903 	int retval;
1904 
1905 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1906 		return NULL;
1907 
1908 	tty = get_current_tty();
1909 	if (!tty)
1910 		return ERR_PTR(-ENXIO);
1911 
1912 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1913 	/* noctty = 1; */
1914 	tty_lock(tty);
1915 	tty_kref_put(tty);	/* safe to drop the kref now */
1916 
1917 	retval = tty_reopen(tty);
1918 	if (retval < 0) {
1919 		tty_unlock(tty);
1920 		tty = ERR_PTR(retval);
1921 	}
1922 	return tty;
1923 }
1924 
1925 /**
1926  *	tty_lookup_driver - lookup a tty driver for a given device file
1927  *	@device: device number
1928  *	@filp: file pointer to tty
1929  *	@index: index for the device in the @return driver
1930  *	@return: driver for this inode (with increased refcount)
1931  *
1932  * 	If @return is not erroneous, the caller is responsible to decrement the
1933  * 	refcount by tty_driver_kref_put.
1934  *
1935  *	Locking: tty_mutex protects get_tty_driver
1936  */
1937 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1938 		int *index)
1939 {
1940 	struct tty_driver *driver = NULL;
1941 
1942 	switch (device) {
1943 #ifdef CONFIG_VT
1944 	case MKDEV(TTY_MAJOR, 0): {
1945 		extern struct tty_driver *console_driver;
1946 		driver = tty_driver_kref_get(console_driver);
1947 		*index = fg_console;
1948 		break;
1949 	}
1950 #endif
1951 	case MKDEV(TTYAUX_MAJOR, 1): {
1952 		struct tty_driver *console_driver = console_device(index);
1953 		if (console_driver) {
1954 			driver = tty_driver_kref_get(console_driver);
1955 			if (driver && filp) {
1956 				/* Don't let /dev/console block */
1957 				filp->f_flags |= O_NONBLOCK;
1958 				break;
1959 			}
1960 		}
1961 		if (driver)
1962 			tty_driver_kref_put(driver);
1963 		return ERR_PTR(-ENODEV);
1964 	}
1965 	default:
1966 		driver = get_tty_driver(device, index);
1967 		if (!driver)
1968 			return ERR_PTR(-ENODEV);
1969 		break;
1970 	}
1971 	return driver;
1972 }
1973 
1974 static struct tty_struct *tty_kopen(dev_t device, int shared)
1975 {
1976 	struct tty_struct *tty;
1977 	struct tty_driver *driver;
1978 	int index = -1;
1979 
1980 	mutex_lock(&tty_mutex);
1981 	driver = tty_lookup_driver(device, NULL, &index);
1982 	if (IS_ERR(driver)) {
1983 		mutex_unlock(&tty_mutex);
1984 		return ERR_CAST(driver);
1985 	}
1986 
1987 	/* check whether we're reopening an existing tty */
1988 	tty = tty_driver_lookup_tty(driver, NULL, index);
1989 	if (IS_ERR(tty) || shared)
1990 		goto out;
1991 
1992 	if (tty) {
1993 		/* drop kref from tty_driver_lookup_tty() */
1994 		tty_kref_put(tty);
1995 		tty = ERR_PTR(-EBUSY);
1996 	} else { /* tty_init_dev returns tty with the tty_lock held */
1997 		tty = tty_init_dev(driver, index);
1998 		if (IS_ERR(tty))
1999 			goto out;
2000 		tty_port_set_kopened(tty->port, 1);
2001 	}
2002 out:
2003 	mutex_unlock(&tty_mutex);
2004 	tty_driver_kref_put(driver);
2005 	return tty;
2006 }
2007 
2008 /**
2009  *	tty_kopen_exclusive	-	open a tty device for kernel
2010  *	@device: dev_t of device to open
2011  *
2012  *	Opens tty exclusively for kernel. Performs the driver lookup,
2013  *	makes sure it's not already opened and performs the first-time
2014  *	tty initialization.
2015  *
2016  *	Returns the locked initialized &tty_struct
2017  *
2018  *	Claims the global tty_mutex to serialize:
2019  *	  - concurrent first-time tty initialization
2020  *	  - concurrent tty driver removal w/ lookup
2021  *	  - concurrent tty removal from driver table
2022  */
2023 struct tty_struct *tty_kopen_exclusive(dev_t device)
2024 {
2025 	return tty_kopen(device, 0);
2026 }
2027 EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2028 
2029 /**
2030  *	tty_kopen_shared	-	open a tty device for shared in-kernel use
2031  *	@device: dev_t of device to open
2032  *
2033  *	Opens an already existing tty for in-kernel use. Compared to
2034  *	tty_kopen_exclusive() above it doesn't ensure to be the only user.
2035  *
2036  *	Locking is identical to tty_kopen() above.
2037  */
2038 struct tty_struct *tty_kopen_shared(dev_t device)
2039 {
2040 	return tty_kopen(device, 1);
2041 }
2042 EXPORT_SYMBOL_GPL(tty_kopen_shared);
2043 
2044 /**
2045  *	tty_open_by_driver	-	open a tty device
2046  *	@device: dev_t of device to open
2047  *	@filp: file pointer to tty
2048  *
2049  *	Performs the driver lookup, checks for a reopen, or otherwise
2050  *	performs the first-time tty initialization.
2051  *
2052  *	Returns the locked initialized or re-opened &tty_struct
2053  *
2054  *	Claims the global tty_mutex to serialize:
2055  *	  - concurrent first-time tty initialization
2056  *	  - concurrent tty driver removal w/ lookup
2057  *	  - concurrent tty removal from driver table
2058  */
2059 static struct tty_struct *tty_open_by_driver(dev_t device,
2060 					     struct file *filp)
2061 {
2062 	struct tty_struct *tty;
2063 	struct tty_driver *driver = NULL;
2064 	int index = -1;
2065 	int retval;
2066 
2067 	mutex_lock(&tty_mutex);
2068 	driver = tty_lookup_driver(device, filp, &index);
2069 	if (IS_ERR(driver)) {
2070 		mutex_unlock(&tty_mutex);
2071 		return ERR_CAST(driver);
2072 	}
2073 
2074 	/* check whether we're reopening an existing tty */
2075 	tty = tty_driver_lookup_tty(driver, filp, index);
2076 	if (IS_ERR(tty)) {
2077 		mutex_unlock(&tty_mutex);
2078 		goto out;
2079 	}
2080 
2081 	if (tty) {
2082 		if (tty_port_kopened(tty->port)) {
2083 			tty_kref_put(tty);
2084 			mutex_unlock(&tty_mutex);
2085 			tty = ERR_PTR(-EBUSY);
2086 			goto out;
2087 		}
2088 		mutex_unlock(&tty_mutex);
2089 		retval = tty_lock_interruptible(tty);
2090 		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2091 		if (retval) {
2092 			if (retval == -EINTR)
2093 				retval = -ERESTARTSYS;
2094 			tty = ERR_PTR(retval);
2095 			goto out;
2096 		}
2097 		retval = tty_reopen(tty);
2098 		if (retval < 0) {
2099 			tty_unlock(tty);
2100 			tty = ERR_PTR(retval);
2101 		}
2102 	} else { /* Returns with the tty_lock held for now */
2103 		tty = tty_init_dev(driver, index);
2104 		mutex_unlock(&tty_mutex);
2105 	}
2106 out:
2107 	tty_driver_kref_put(driver);
2108 	return tty;
2109 }
2110 
2111 /**
2112  *	tty_open		-	open a tty device
2113  *	@inode: inode of device file
2114  *	@filp: file pointer to tty
2115  *
2116  *	tty_open and tty_release keep up the tty count that contains the
2117  *	number of opens done on a tty. We cannot use the inode-count, as
2118  *	different inodes might point to the same tty.
2119  *
2120  *	Open-counting is needed for pty masters, as well as for keeping
2121  *	track of serial lines: DTR is dropped when the last close happens.
2122  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2123  *
2124  *	The termios state of a pty is reset on first open so that
2125  *	settings don't persist across reuse.
2126  *
2127  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2128  *		 tty->count should protect the rest.
2129  *		 ->siglock protects ->signal/->sighand
2130  *
2131  *	Note: the tty_unlock/lock cases without a ref are only safe due to
2132  *	tty_mutex
2133  */
2134 
2135 static int tty_open(struct inode *inode, struct file *filp)
2136 {
2137 	struct tty_struct *tty;
2138 	int noctty, retval;
2139 	dev_t device = inode->i_rdev;
2140 	unsigned saved_flags = filp->f_flags;
2141 
2142 	nonseekable_open(inode, filp);
2143 
2144 retry_open:
2145 	retval = tty_alloc_file(filp);
2146 	if (retval)
2147 		return -ENOMEM;
2148 
2149 	tty = tty_open_current_tty(device, filp);
2150 	if (!tty)
2151 		tty = tty_open_by_driver(device, filp);
2152 
2153 	if (IS_ERR(tty)) {
2154 		tty_free_file(filp);
2155 		retval = PTR_ERR(tty);
2156 		if (retval != -EAGAIN || signal_pending(current))
2157 			return retval;
2158 		schedule();
2159 		goto retry_open;
2160 	}
2161 
2162 	tty_add_file(tty, filp);
2163 
2164 	check_tty_count(tty, __func__);
2165 	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2166 
2167 	if (tty->ops->open)
2168 		retval = tty->ops->open(tty, filp);
2169 	else
2170 		retval = -ENODEV;
2171 	filp->f_flags = saved_flags;
2172 
2173 	if (retval) {
2174 		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2175 
2176 		tty_unlock(tty); /* need to call tty_release without BTM */
2177 		tty_release(inode, filp);
2178 		if (retval != -ERESTARTSYS)
2179 			return retval;
2180 
2181 		if (signal_pending(current))
2182 			return retval;
2183 
2184 		schedule();
2185 		/*
2186 		 * Need to reset f_op in case a hangup happened.
2187 		 */
2188 		if (tty_hung_up_p(filp))
2189 			filp->f_op = &tty_fops;
2190 		goto retry_open;
2191 	}
2192 	clear_bit(TTY_HUPPED, &tty->flags);
2193 
2194 	noctty = (filp->f_flags & O_NOCTTY) ||
2195 		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2196 		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2197 		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2198 		  tty->driver->subtype == PTY_TYPE_MASTER);
2199 	if (!noctty)
2200 		tty_open_proc_set_tty(filp, tty);
2201 	tty_unlock(tty);
2202 	return 0;
2203 }
2204 
2205 
2206 
2207 /**
2208  *	tty_poll	-	check tty status
2209  *	@filp: file being polled
2210  *	@wait: poll wait structures to update
2211  *
2212  *	Call the line discipline polling method to obtain the poll
2213  *	status of the device.
2214  *
2215  *	Locking: locks called line discipline but ldisc poll method
2216  *	may be re-entered freely by other callers.
2217  */
2218 
2219 static __poll_t tty_poll(struct file *filp, poll_table *wait)
2220 {
2221 	struct tty_struct *tty = file_tty(filp);
2222 	struct tty_ldisc *ld;
2223 	__poll_t ret = 0;
2224 
2225 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2226 		return 0;
2227 
2228 	ld = tty_ldisc_ref_wait(tty);
2229 	if (!ld)
2230 		return hung_up_tty_poll(filp, wait);
2231 	if (ld->ops->poll)
2232 		ret = ld->ops->poll(tty, filp, wait);
2233 	tty_ldisc_deref(ld);
2234 	return ret;
2235 }
2236 
2237 static int __tty_fasync(int fd, struct file *filp, int on)
2238 {
2239 	struct tty_struct *tty = file_tty(filp);
2240 	unsigned long flags;
2241 	int retval = 0;
2242 
2243 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2244 		goto out;
2245 
2246 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2247 	if (retval <= 0)
2248 		goto out;
2249 
2250 	if (on) {
2251 		enum pid_type type;
2252 		struct pid *pid;
2253 
2254 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2255 		if (tty->pgrp) {
2256 			pid = tty->pgrp;
2257 			type = PIDTYPE_PGID;
2258 		} else {
2259 			pid = task_pid(current);
2260 			type = PIDTYPE_TGID;
2261 		}
2262 		get_pid(pid);
2263 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2264 		__f_setown(filp, pid, type, 0);
2265 		put_pid(pid);
2266 		retval = 0;
2267 	}
2268 out:
2269 	return retval;
2270 }
2271 
2272 static int tty_fasync(int fd, struct file *filp, int on)
2273 {
2274 	struct tty_struct *tty = file_tty(filp);
2275 	int retval = -ENOTTY;
2276 
2277 	tty_lock(tty);
2278 	if (!tty_hung_up_p(filp))
2279 		retval = __tty_fasync(fd, filp, on);
2280 	tty_unlock(tty);
2281 
2282 	return retval;
2283 }
2284 
2285 /**
2286  *	tiocsti			-	fake input character
2287  *	@tty: tty to fake input into
2288  *	@p: pointer to character
2289  *
2290  *	Fake input to a tty device. Does the necessary locking and
2291  *	input management.
2292  *
2293  *	FIXME: does not honour flow control ??
2294  *
2295  *	Locking:
2296  *		Called functions take tty_ldiscs_lock
2297  *		current->signal->tty check is safe without locks
2298  *
2299  *	FIXME: may race normal receive processing
2300  */
2301 
2302 static int tiocsti(struct tty_struct *tty, char __user *p)
2303 {
2304 	char ch, mbz = 0;
2305 	struct tty_ldisc *ld;
2306 
2307 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2308 		return -EPERM;
2309 	if (get_user(ch, p))
2310 		return -EFAULT;
2311 	tty_audit_tiocsti(tty, ch);
2312 	ld = tty_ldisc_ref_wait(tty);
2313 	if (!ld)
2314 		return -EIO;
2315 	if (ld->ops->receive_buf)
2316 		ld->ops->receive_buf(tty, &ch, &mbz, 1);
2317 	tty_ldisc_deref(ld);
2318 	return 0;
2319 }
2320 
2321 /**
2322  *	tiocgwinsz		-	implement window query ioctl
2323  *	@tty: tty
2324  *	@arg: user buffer for result
2325  *
2326  *	Copies the kernel idea of the window size into the user buffer.
2327  *
2328  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2329  *		is consistent.
2330  */
2331 
2332 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2333 {
2334 	int err;
2335 
2336 	mutex_lock(&tty->winsize_mutex);
2337 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2338 	mutex_unlock(&tty->winsize_mutex);
2339 
2340 	return err ? -EFAULT: 0;
2341 }
2342 
2343 /**
2344  *	tty_do_resize		-	resize event
2345  *	@tty: tty being resized
2346  *	@ws: new dimensions
2347  *
2348  *	Update the termios variables and send the necessary signals to
2349  *	peform a terminal resize correctly
2350  */
2351 
2352 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2353 {
2354 	struct pid *pgrp;
2355 
2356 	/* Lock the tty */
2357 	mutex_lock(&tty->winsize_mutex);
2358 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2359 		goto done;
2360 
2361 	/* Signal the foreground process group */
2362 	pgrp = tty_get_pgrp(tty);
2363 	if (pgrp)
2364 		kill_pgrp(pgrp, SIGWINCH, 1);
2365 	put_pid(pgrp);
2366 
2367 	tty->winsize = *ws;
2368 done:
2369 	mutex_unlock(&tty->winsize_mutex);
2370 	return 0;
2371 }
2372 EXPORT_SYMBOL(tty_do_resize);
2373 
2374 /**
2375  *	tiocswinsz		-	implement window size set ioctl
2376  *	@tty: tty side of tty
2377  *	@arg: user buffer for result
2378  *
2379  *	Copies the user idea of the window size to the kernel. Traditionally
2380  *	this is just advisory information but for the Linux console it
2381  *	actually has driver level meaning and triggers a VC resize.
2382  *
2383  *	Locking:
2384  *		Driver dependent. The default do_resize method takes the
2385  *	tty termios mutex and ctrl_lock. The console takes its own lock
2386  *	then calls into the default method.
2387  */
2388 
2389 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2390 {
2391 	struct winsize tmp_ws;
2392 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2393 		return -EFAULT;
2394 
2395 	if (tty->ops->resize)
2396 		return tty->ops->resize(tty, &tmp_ws);
2397 	else
2398 		return tty_do_resize(tty, &tmp_ws);
2399 }
2400 
2401 /**
2402  *	tioccons	-	allow admin to move logical console
2403  *	@file: the file to become console
2404  *
2405  *	Allow the administrator to move the redirected console device
2406  *
2407  *	Locking: uses redirect_lock to guard the redirect information
2408  */
2409 
2410 static int tioccons(struct file *file)
2411 {
2412 	if (!capable(CAP_SYS_ADMIN))
2413 		return -EPERM;
2414 	if (file->f_op->write_iter == redirected_tty_write) {
2415 		struct file *f;
2416 		spin_lock(&redirect_lock);
2417 		f = redirect;
2418 		redirect = NULL;
2419 		spin_unlock(&redirect_lock);
2420 		if (f)
2421 			fput(f);
2422 		return 0;
2423 	}
2424 	if (file->f_op->write_iter != tty_write)
2425 		return -ENOTTY;
2426 	if (!(file->f_mode & FMODE_WRITE))
2427 		return -EBADF;
2428 	if (!(file->f_mode & FMODE_CAN_WRITE))
2429 		return -EINVAL;
2430 	spin_lock(&redirect_lock);
2431 	if (redirect) {
2432 		spin_unlock(&redirect_lock);
2433 		return -EBUSY;
2434 	}
2435 	redirect = get_file(file);
2436 	spin_unlock(&redirect_lock);
2437 	return 0;
2438 }
2439 
2440 /**
2441  *	tiocsetd	-	set line discipline
2442  *	@tty: tty device
2443  *	@p: pointer to user data
2444  *
2445  *	Set the line discipline according to user request.
2446  *
2447  *	Locking: see tty_set_ldisc, this function is just a helper
2448  */
2449 
2450 static int tiocsetd(struct tty_struct *tty, int __user *p)
2451 {
2452 	int disc;
2453 	int ret;
2454 
2455 	if (get_user(disc, p))
2456 		return -EFAULT;
2457 
2458 	ret = tty_set_ldisc(tty, disc);
2459 
2460 	return ret;
2461 }
2462 
2463 /**
2464  *	tiocgetd	-	get line discipline
2465  *	@tty: tty device
2466  *	@p: pointer to user data
2467  *
2468  *	Retrieves the line discipline id directly from the ldisc.
2469  *
2470  *	Locking: waits for ldisc reference (in case the line discipline
2471  *		is changing or the tty is being hungup)
2472  */
2473 
2474 static int tiocgetd(struct tty_struct *tty, int __user *p)
2475 {
2476 	struct tty_ldisc *ld;
2477 	int ret;
2478 
2479 	ld = tty_ldisc_ref_wait(tty);
2480 	if (!ld)
2481 		return -EIO;
2482 	ret = put_user(ld->ops->num, p);
2483 	tty_ldisc_deref(ld);
2484 	return ret;
2485 }
2486 
2487 /**
2488  *	send_break	-	performed time break
2489  *	@tty: device to break on
2490  *	@duration: timeout in mS
2491  *
2492  *	Perform a timed break on hardware that lacks its own driver level
2493  *	timed break functionality.
2494  *
2495  *	Locking:
2496  *		atomic_write_lock serializes
2497  *
2498  */
2499 
2500 static int send_break(struct tty_struct *tty, unsigned int duration)
2501 {
2502 	int retval;
2503 
2504 	if (tty->ops->break_ctl == NULL)
2505 		return 0;
2506 
2507 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2508 		retval = tty->ops->break_ctl(tty, duration);
2509 	else {
2510 		/* Do the work ourselves */
2511 		if (tty_write_lock(tty, 0) < 0)
2512 			return -EINTR;
2513 		retval = tty->ops->break_ctl(tty, -1);
2514 		if (retval)
2515 			goto out;
2516 		if (!signal_pending(current))
2517 			msleep_interruptible(duration);
2518 		retval = tty->ops->break_ctl(tty, 0);
2519 out:
2520 		tty_write_unlock(tty);
2521 		if (signal_pending(current))
2522 			retval = -EINTR;
2523 	}
2524 	return retval;
2525 }
2526 
2527 /**
2528  *	tty_tiocmget		-	get modem status
2529  *	@tty: tty device
2530  *	@p: pointer to result
2531  *
2532  *	Obtain the modem status bits from the tty driver if the feature
2533  *	is supported. Return -EINVAL if it is not available.
2534  *
2535  *	Locking: none (up to the driver)
2536  */
2537 
2538 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2539 {
2540 	int retval = -EINVAL;
2541 
2542 	if (tty->ops->tiocmget) {
2543 		retval = tty->ops->tiocmget(tty);
2544 
2545 		if (retval >= 0)
2546 			retval = put_user(retval, p);
2547 	}
2548 	return retval;
2549 }
2550 
2551 /**
2552  *	tty_tiocmset		-	set modem status
2553  *	@tty: tty device
2554  *	@cmd: command - clear bits, set bits or set all
2555  *	@p: pointer to desired bits
2556  *
2557  *	Set the modem status bits from the tty driver if the feature
2558  *	is supported. Return -EINVAL if it is not available.
2559  *
2560  *	Locking: none (up to the driver)
2561  */
2562 
2563 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2564 	     unsigned __user *p)
2565 {
2566 	int retval;
2567 	unsigned int set, clear, val;
2568 
2569 	if (tty->ops->tiocmset == NULL)
2570 		return -EINVAL;
2571 
2572 	retval = get_user(val, p);
2573 	if (retval)
2574 		return retval;
2575 	set = clear = 0;
2576 	switch (cmd) {
2577 	case TIOCMBIS:
2578 		set = val;
2579 		break;
2580 	case TIOCMBIC:
2581 		clear = val;
2582 		break;
2583 	case TIOCMSET:
2584 		set = val;
2585 		clear = ~val;
2586 		break;
2587 	}
2588 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2589 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2590 	return tty->ops->tiocmset(tty, set, clear);
2591 }
2592 
2593 /**
2594  *	tty_get_icount		-	get tty statistics
2595  *	@tty: tty device
2596  *	@icount: output parameter
2597  *
2598  *	Gets a copy of the tty's icount statistics.
2599  *
2600  *	Locking: none (up to the driver)
2601  */
2602 int tty_get_icount(struct tty_struct *tty,
2603 		   struct serial_icounter_struct *icount)
2604 {
2605 	memset(icount, 0, sizeof(*icount));
2606 
2607 	if (tty->ops->get_icount)
2608 		return tty->ops->get_icount(tty, icount);
2609 	else
2610 		return -EINVAL;
2611 }
2612 EXPORT_SYMBOL_GPL(tty_get_icount);
2613 
2614 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2615 {
2616 	struct serial_icounter_struct icount;
2617 	int retval;
2618 
2619 	retval = tty_get_icount(tty, &icount);
2620 	if (retval != 0)
2621 		return retval;
2622 
2623 	if (copy_to_user(arg, &icount, sizeof(icount)))
2624 		return -EFAULT;
2625 	return 0;
2626 }
2627 
2628 static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2629 {
2630 	static DEFINE_RATELIMIT_STATE(depr_flags,
2631 			DEFAULT_RATELIMIT_INTERVAL,
2632 			DEFAULT_RATELIMIT_BURST);
2633 	char comm[TASK_COMM_LEN];
2634 	struct serial_struct v;
2635 	int flags;
2636 
2637 	if (copy_from_user(&v, ss, sizeof(*ss)))
2638 		return -EFAULT;
2639 
2640 	flags = v.flags & ASYNC_DEPRECATED;
2641 
2642 	if (flags && __ratelimit(&depr_flags))
2643 		pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2644 			__func__, get_task_comm(comm, current), flags);
2645 	if (!tty->ops->set_serial)
2646 		return -ENOTTY;
2647 	return tty->ops->set_serial(tty, &v);
2648 }
2649 
2650 static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2651 {
2652 	struct serial_struct v;
2653 	int err;
2654 
2655 	memset(&v, 0, sizeof(v));
2656 	if (!tty->ops->get_serial)
2657 		return -ENOTTY;
2658 	err = tty->ops->get_serial(tty, &v);
2659 	if (!err && copy_to_user(ss, &v, sizeof(v)))
2660 		err = -EFAULT;
2661 	return err;
2662 }
2663 
2664 /*
2665  * if pty, return the slave side (real_tty)
2666  * otherwise, return self
2667  */
2668 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2669 {
2670 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2671 	    tty->driver->subtype == PTY_TYPE_MASTER)
2672 		tty = tty->link;
2673 	return tty;
2674 }
2675 
2676 /*
2677  * Split this up, as gcc can choke on it otherwise..
2678  */
2679 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2680 {
2681 	struct tty_struct *tty = file_tty(file);
2682 	struct tty_struct *real_tty;
2683 	void __user *p = (void __user *)arg;
2684 	int retval;
2685 	struct tty_ldisc *ld;
2686 
2687 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2688 		return -EINVAL;
2689 
2690 	real_tty = tty_pair_get_tty(tty);
2691 
2692 	/*
2693 	 * Factor out some common prep work
2694 	 */
2695 	switch (cmd) {
2696 	case TIOCSETD:
2697 	case TIOCSBRK:
2698 	case TIOCCBRK:
2699 	case TCSBRK:
2700 	case TCSBRKP:
2701 		retval = tty_check_change(tty);
2702 		if (retval)
2703 			return retval;
2704 		if (cmd != TIOCCBRK) {
2705 			tty_wait_until_sent(tty, 0);
2706 			if (signal_pending(current))
2707 				return -EINTR;
2708 		}
2709 		break;
2710 	}
2711 
2712 	/*
2713 	 *	Now do the stuff.
2714 	 */
2715 	switch (cmd) {
2716 	case TIOCSTI:
2717 		return tiocsti(tty, p);
2718 	case TIOCGWINSZ:
2719 		return tiocgwinsz(real_tty, p);
2720 	case TIOCSWINSZ:
2721 		return tiocswinsz(real_tty, p);
2722 	case TIOCCONS:
2723 		return real_tty != tty ? -EINVAL : tioccons(file);
2724 	case TIOCEXCL:
2725 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2726 		return 0;
2727 	case TIOCNXCL:
2728 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2729 		return 0;
2730 	case TIOCGEXCL:
2731 	{
2732 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2733 		return put_user(excl, (int __user *)p);
2734 	}
2735 	case TIOCGETD:
2736 		return tiocgetd(tty, p);
2737 	case TIOCSETD:
2738 		return tiocsetd(tty, p);
2739 	case TIOCVHANGUP:
2740 		if (!capable(CAP_SYS_ADMIN))
2741 			return -EPERM;
2742 		tty_vhangup(tty);
2743 		return 0;
2744 	case TIOCGDEV:
2745 	{
2746 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2747 		return put_user(ret, (unsigned int __user *)p);
2748 	}
2749 	/*
2750 	 * Break handling
2751 	 */
2752 	case TIOCSBRK:	/* Turn break on, unconditionally */
2753 		if (tty->ops->break_ctl)
2754 			return tty->ops->break_ctl(tty, -1);
2755 		return 0;
2756 	case TIOCCBRK:	/* Turn break off, unconditionally */
2757 		if (tty->ops->break_ctl)
2758 			return tty->ops->break_ctl(tty, 0);
2759 		return 0;
2760 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2761 		/* non-zero arg means wait for all output data
2762 		 * to be sent (performed above) but don't send break.
2763 		 * This is used by the tcdrain() termios function.
2764 		 */
2765 		if (!arg)
2766 			return send_break(tty, 250);
2767 		return 0;
2768 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2769 		return send_break(tty, arg ? arg*100 : 250);
2770 
2771 	case TIOCMGET:
2772 		return tty_tiocmget(tty, p);
2773 	case TIOCMSET:
2774 	case TIOCMBIC:
2775 	case TIOCMBIS:
2776 		return tty_tiocmset(tty, cmd, p);
2777 	case TIOCGICOUNT:
2778 		return tty_tiocgicount(tty, p);
2779 	case TCFLSH:
2780 		switch (arg) {
2781 		case TCIFLUSH:
2782 		case TCIOFLUSH:
2783 		/* flush tty buffer and allow ldisc to process ioctl */
2784 			tty_buffer_flush(tty, NULL);
2785 			break;
2786 		}
2787 		break;
2788 	case TIOCSSERIAL:
2789 		return tty_tiocsserial(tty, p);
2790 	case TIOCGSERIAL:
2791 		return tty_tiocgserial(tty, p);
2792 	case TIOCGPTPEER:
2793 		/* Special because the struct file is needed */
2794 		return ptm_open_peer(file, tty, (int)arg);
2795 	default:
2796 		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2797 		if (retval != -ENOIOCTLCMD)
2798 			return retval;
2799 	}
2800 	if (tty->ops->ioctl) {
2801 		retval = tty->ops->ioctl(tty, cmd, arg);
2802 		if (retval != -ENOIOCTLCMD)
2803 			return retval;
2804 	}
2805 	ld = tty_ldisc_ref_wait(tty);
2806 	if (!ld)
2807 		return hung_up_tty_ioctl(file, cmd, arg);
2808 	retval = -EINVAL;
2809 	if (ld->ops->ioctl) {
2810 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2811 		if (retval == -ENOIOCTLCMD)
2812 			retval = -ENOTTY;
2813 	}
2814 	tty_ldisc_deref(ld);
2815 	return retval;
2816 }
2817 
2818 #ifdef CONFIG_COMPAT
2819 
2820 struct serial_struct32 {
2821 	compat_int_t    type;
2822 	compat_int_t    line;
2823 	compat_uint_t   port;
2824 	compat_int_t    irq;
2825 	compat_int_t    flags;
2826 	compat_int_t    xmit_fifo_size;
2827 	compat_int_t    custom_divisor;
2828 	compat_int_t    baud_base;
2829 	unsigned short  close_delay;
2830 	char    io_type;
2831 	char    reserved_char;
2832 	compat_int_t    hub6;
2833 	unsigned short  closing_wait; /* time to wait before closing */
2834 	unsigned short  closing_wait2; /* no longer used... */
2835 	compat_uint_t   iomem_base;
2836 	unsigned short  iomem_reg_shift;
2837 	unsigned int    port_high;
2838 	/* compat_ulong_t  iomap_base FIXME */
2839 	compat_int_t    reserved;
2840 };
2841 
2842 static int compat_tty_tiocsserial(struct tty_struct *tty,
2843 		struct serial_struct32 __user *ss)
2844 {
2845 	static DEFINE_RATELIMIT_STATE(depr_flags,
2846 			DEFAULT_RATELIMIT_INTERVAL,
2847 			DEFAULT_RATELIMIT_BURST);
2848 	char comm[TASK_COMM_LEN];
2849 	struct serial_struct32 v32;
2850 	struct serial_struct v;
2851 	int flags;
2852 
2853 	if (copy_from_user(&v32, ss, sizeof(*ss)))
2854 		return -EFAULT;
2855 
2856 	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2857 	v.iomem_base = compat_ptr(v32.iomem_base);
2858 	v.iomem_reg_shift = v32.iomem_reg_shift;
2859 	v.port_high = v32.port_high;
2860 	v.iomap_base = 0;
2861 
2862 	flags = v.flags & ASYNC_DEPRECATED;
2863 
2864 	if (flags && __ratelimit(&depr_flags))
2865 		pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2866 			__func__, get_task_comm(comm, current), flags);
2867 	if (!tty->ops->set_serial)
2868 		return -ENOTTY;
2869 	return tty->ops->set_serial(tty, &v);
2870 }
2871 
2872 static int compat_tty_tiocgserial(struct tty_struct *tty,
2873 			struct serial_struct32 __user *ss)
2874 {
2875 	struct serial_struct32 v32;
2876 	struct serial_struct v;
2877 	int err;
2878 
2879 	memset(&v, 0, sizeof(v));
2880 	memset(&v32, 0, sizeof(v32));
2881 
2882 	if (!tty->ops->get_serial)
2883 		return -ENOTTY;
2884 	err = tty->ops->get_serial(tty, &v);
2885 	if (!err) {
2886 		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2887 		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2888 			0xfffffff : ptr_to_compat(v.iomem_base);
2889 		v32.iomem_reg_shift = v.iomem_reg_shift;
2890 		v32.port_high = v.port_high;
2891 		if (copy_to_user(ss, &v32, sizeof(v32)))
2892 			err = -EFAULT;
2893 	}
2894 	return err;
2895 }
2896 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2897 				unsigned long arg)
2898 {
2899 	struct tty_struct *tty = file_tty(file);
2900 	struct tty_ldisc *ld;
2901 	int retval = -ENOIOCTLCMD;
2902 
2903 	switch (cmd) {
2904 	case TIOCOUTQ:
2905 	case TIOCSTI:
2906 	case TIOCGWINSZ:
2907 	case TIOCSWINSZ:
2908 	case TIOCGEXCL:
2909 	case TIOCGETD:
2910 	case TIOCSETD:
2911 	case TIOCGDEV:
2912 	case TIOCMGET:
2913 	case TIOCMSET:
2914 	case TIOCMBIC:
2915 	case TIOCMBIS:
2916 	case TIOCGICOUNT:
2917 	case TIOCGPGRP:
2918 	case TIOCSPGRP:
2919 	case TIOCGSID:
2920 	case TIOCSERGETLSR:
2921 	case TIOCGRS485:
2922 	case TIOCSRS485:
2923 #ifdef TIOCGETP
2924 	case TIOCGETP:
2925 	case TIOCSETP:
2926 	case TIOCSETN:
2927 #endif
2928 #ifdef TIOCGETC
2929 	case TIOCGETC:
2930 	case TIOCSETC:
2931 #endif
2932 #ifdef TIOCGLTC
2933 	case TIOCGLTC:
2934 	case TIOCSLTC:
2935 #endif
2936 	case TCSETSF:
2937 	case TCSETSW:
2938 	case TCSETS:
2939 	case TCGETS:
2940 #ifdef TCGETS2
2941 	case TCGETS2:
2942 	case TCSETSF2:
2943 	case TCSETSW2:
2944 	case TCSETS2:
2945 #endif
2946 	case TCGETA:
2947 	case TCSETAF:
2948 	case TCSETAW:
2949 	case TCSETA:
2950 	case TIOCGLCKTRMIOS:
2951 	case TIOCSLCKTRMIOS:
2952 #ifdef TCGETX
2953 	case TCGETX:
2954 	case TCSETX:
2955 	case TCSETXW:
2956 	case TCSETXF:
2957 #endif
2958 	case TIOCGSOFTCAR:
2959 	case TIOCSSOFTCAR:
2960 
2961 	case PPPIOCGCHAN:
2962 	case PPPIOCGUNIT:
2963 		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2964 	case TIOCCONS:
2965 	case TIOCEXCL:
2966 	case TIOCNXCL:
2967 	case TIOCVHANGUP:
2968 	case TIOCSBRK:
2969 	case TIOCCBRK:
2970 	case TCSBRK:
2971 	case TCSBRKP:
2972 	case TCFLSH:
2973 	case TIOCGPTPEER:
2974 	case TIOCNOTTY:
2975 	case TIOCSCTTY:
2976 	case TCXONC:
2977 	case TIOCMIWAIT:
2978 	case TIOCSERCONFIG:
2979 		return tty_ioctl(file, cmd, arg);
2980 	}
2981 
2982 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2983 		return -EINVAL;
2984 
2985 	switch (cmd) {
2986 	case TIOCSSERIAL:
2987 		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2988 	case TIOCGSERIAL:
2989 		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2990 	}
2991 	if (tty->ops->compat_ioctl) {
2992 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2993 		if (retval != -ENOIOCTLCMD)
2994 			return retval;
2995 	}
2996 
2997 	ld = tty_ldisc_ref_wait(tty);
2998 	if (!ld)
2999 		return hung_up_tty_compat_ioctl(file, cmd, arg);
3000 	if (ld->ops->compat_ioctl)
3001 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3002 	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
3003 		retval = ld->ops->ioctl(tty, file,
3004 				(unsigned long)compat_ptr(cmd), arg);
3005 	tty_ldisc_deref(ld);
3006 
3007 	return retval;
3008 }
3009 #endif
3010 
3011 static int this_tty(const void *t, struct file *file, unsigned fd)
3012 {
3013 	if (likely(file->f_op->read_iter != tty_read))
3014 		return 0;
3015 	return file_tty(file) != t ? 0 : fd + 1;
3016 }
3017 
3018 /*
3019  * This implements the "Secure Attention Key" ---  the idea is to
3020  * prevent trojan horses by killing all processes associated with this
3021  * tty when the user hits the "Secure Attention Key".  Required for
3022  * super-paranoid applications --- see the Orange Book for more details.
3023  *
3024  * This code could be nicer; ideally it should send a HUP, wait a few
3025  * seconds, then send a INT, and then a KILL signal.  But you then
3026  * have to coordinate with the init process, since all processes associated
3027  * with the current tty must be dead before the new getty is allowed
3028  * to spawn.
3029  *
3030  * Now, if it would be correct ;-/ The current code has a nasty hole -
3031  * it doesn't catch files in flight. We may send the descriptor to ourselves
3032  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3033  *
3034  * Nasty bug: do_SAK is being called in interrupt context.  This can
3035  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3036  */
3037 void __do_SAK(struct tty_struct *tty)
3038 {
3039 #ifdef TTY_SOFT_SAK
3040 	tty_hangup(tty);
3041 #else
3042 	struct task_struct *g, *p;
3043 	struct pid *session;
3044 	int		i;
3045 	unsigned long flags;
3046 
3047 	if (!tty)
3048 		return;
3049 
3050 	spin_lock_irqsave(&tty->ctrl_lock, flags);
3051 	session = get_pid(tty->session);
3052 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3053 
3054 	tty_ldisc_flush(tty);
3055 
3056 	tty_driver_flush_buffer(tty);
3057 
3058 	read_lock(&tasklist_lock);
3059 	/* Kill the entire session */
3060 	do_each_pid_task(session, PIDTYPE_SID, p) {
3061 		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3062 			   task_pid_nr(p), p->comm);
3063 		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3064 	} while_each_pid_task(session, PIDTYPE_SID, p);
3065 
3066 	/* Now kill any processes that happen to have the tty open */
3067 	do_each_thread(g, p) {
3068 		if (p->signal->tty == tty) {
3069 			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3070 				   task_pid_nr(p), p->comm);
3071 			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3072 			continue;
3073 		}
3074 		task_lock(p);
3075 		i = iterate_fd(p->files, 0, this_tty, tty);
3076 		if (i != 0) {
3077 			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3078 				   task_pid_nr(p), p->comm, i - 1);
3079 			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3080 		}
3081 		task_unlock(p);
3082 	} while_each_thread(g, p);
3083 	read_unlock(&tasklist_lock);
3084 	put_pid(session);
3085 #endif
3086 }
3087 
3088 static void do_SAK_work(struct work_struct *work)
3089 {
3090 	struct tty_struct *tty =
3091 		container_of(work, struct tty_struct, SAK_work);
3092 	__do_SAK(tty);
3093 }
3094 
3095 /*
3096  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3097  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3098  * the values which we write to it will be identical to the values which it
3099  * already has. --akpm
3100  */
3101 void do_SAK(struct tty_struct *tty)
3102 {
3103 	if (!tty)
3104 		return;
3105 	schedule_work(&tty->SAK_work);
3106 }
3107 
3108 EXPORT_SYMBOL(do_SAK);
3109 
3110 /* Must put_device() after it's unused! */
3111 static struct device *tty_get_device(struct tty_struct *tty)
3112 {
3113 	dev_t devt = tty_devnum(tty);
3114 	return class_find_device_by_devt(tty_class, devt);
3115 }
3116 
3117 
3118 /*
3119  *	alloc_tty_struct
3120  *
3121  *	This subroutine allocates and initializes a tty structure.
3122  *
3123  *	Locking: none - tty in question is not exposed at this point
3124  */
3125 
3126 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3127 {
3128 	struct tty_struct *tty;
3129 
3130 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3131 	if (!tty)
3132 		return NULL;
3133 
3134 	kref_init(&tty->kref);
3135 	tty->magic = TTY_MAGIC;
3136 	if (tty_ldisc_init(tty)) {
3137 		kfree(tty);
3138 		return NULL;
3139 	}
3140 	tty->session = NULL;
3141 	tty->pgrp = NULL;
3142 	mutex_init(&tty->legacy_mutex);
3143 	mutex_init(&tty->throttle_mutex);
3144 	init_rwsem(&tty->termios_rwsem);
3145 	mutex_init(&tty->winsize_mutex);
3146 	init_ldsem(&tty->ldisc_sem);
3147 	init_waitqueue_head(&tty->write_wait);
3148 	init_waitqueue_head(&tty->read_wait);
3149 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3150 	mutex_init(&tty->atomic_write_lock);
3151 	spin_lock_init(&tty->ctrl_lock);
3152 	spin_lock_init(&tty->flow_lock);
3153 	spin_lock_init(&tty->files_lock);
3154 	INIT_LIST_HEAD(&tty->tty_files);
3155 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3156 
3157 	tty->driver = driver;
3158 	tty->ops = driver->ops;
3159 	tty->index = idx;
3160 	tty_line_name(driver, idx, tty->name);
3161 	tty->dev = tty_get_device(tty);
3162 
3163 	return tty;
3164 }
3165 
3166 /**
3167  *	tty_put_char	-	write one character to a tty
3168  *	@tty: tty
3169  *	@ch: character
3170  *
3171  *	Write one byte to the tty using the provided put_char method
3172  *	if present. Returns the number of characters successfully output.
3173  *
3174  *	Note: the specific put_char operation in the driver layer may go
3175  *	away soon. Don't call it directly, use this method
3176  */
3177 
3178 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3179 {
3180 	if (tty->ops->put_char)
3181 		return tty->ops->put_char(tty, ch);
3182 	return tty->ops->write(tty, &ch, 1);
3183 }
3184 EXPORT_SYMBOL_GPL(tty_put_char);
3185 
3186 struct class *tty_class;
3187 
3188 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3189 		unsigned int index, unsigned int count)
3190 {
3191 	int err;
3192 
3193 	/* init here, since reused cdevs cause crashes */
3194 	driver->cdevs[index] = cdev_alloc();
3195 	if (!driver->cdevs[index])
3196 		return -ENOMEM;
3197 	driver->cdevs[index]->ops = &tty_fops;
3198 	driver->cdevs[index]->owner = driver->owner;
3199 	err = cdev_add(driver->cdevs[index], dev, count);
3200 	if (err)
3201 		kobject_put(&driver->cdevs[index]->kobj);
3202 	return err;
3203 }
3204 
3205 /**
3206  *	tty_register_device - register a tty device
3207  *	@driver: the tty driver that describes the tty device
3208  *	@index: the index in the tty driver for this tty device
3209  *	@device: a struct device that is associated with this tty device.
3210  *		This field is optional, if there is no known struct device
3211  *		for this tty device it can be set to NULL safely.
3212  *
3213  *	Returns a pointer to the struct device for this tty device
3214  *	(or ERR_PTR(-EFOO) on error).
3215  *
3216  *	This call is required to be made to register an individual tty device
3217  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3218  *	that bit is not set, this function should not be called by a tty
3219  *	driver.
3220  *
3221  *	Locking: ??
3222  */
3223 
3224 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3225 				   struct device *device)
3226 {
3227 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3228 }
3229 EXPORT_SYMBOL(tty_register_device);
3230 
3231 static void tty_device_create_release(struct device *dev)
3232 {
3233 	dev_dbg(dev, "releasing...\n");
3234 	kfree(dev);
3235 }
3236 
3237 /**
3238  *	tty_register_device_attr - register a tty device
3239  *	@driver: the tty driver that describes the tty device
3240  *	@index: the index in the tty driver for this tty device
3241  *	@device: a struct device that is associated with this tty device.
3242  *		This field is optional, if there is no known struct device
3243  *		for this tty device it can be set to NULL safely.
3244  *	@drvdata: Driver data to be set to device.
3245  *	@attr_grp: Attribute group to be set on device.
3246  *
3247  *	Returns a pointer to the struct device for this tty device
3248  *	(or ERR_PTR(-EFOO) on error).
3249  *
3250  *	This call is required to be made to register an individual tty device
3251  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3252  *	that bit is not set, this function should not be called by a tty
3253  *	driver.
3254  *
3255  *	Locking: ??
3256  */
3257 struct device *tty_register_device_attr(struct tty_driver *driver,
3258 				   unsigned index, struct device *device,
3259 				   void *drvdata,
3260 				   const struct attribute_group **attr_grp)
3261 {
3262 	char name[64];
3263 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3264 	struct ktermios *tp;
3265 	struct device *dev;
3266 	int retval;
3267 
3268 	if (index >= driver->num) {
3269 		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3270 		       driver->name, index);
3271 		return ERR_PTR(-EINVAL);
3272 	}
3273 
3274 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3275 		pty_line_name(driver, index, name);
3276 	else
3277 		tty_line_name(driver, index, name);
3278 
3279 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3280 	if (!dev)
3281 		return ERR_PTR(-ENOMEM);
3282 
3283 	dev->devt = devt;
3284 	dev->class = tty_class;
3285 	dev->parent = device;
3286 	dev->release = tty_device_create_release;
3287 	dev_set_name(dev, "%s", name);
3288 	dev->groups = attr_grp;
3289 	dev_set_drvdata(dev, drvdata);
3290 
3291 	dev_set_uevent_suppress(dev, 1);
3292 
3293 	retval = device_register(dev);
3294 	if (retval)
3295 		goto err_put;
3296 
3297 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3298 		/*
3299 		 * Free any saved termios data so that the termios state is
3300 		 * reset when reusing a minor number.
3301 		 */
3302 		tp = driver->termios[index];
3303 		if (tp) {
3304 			driver->termios[index] = NULL;
3305 			kfree(tp);
3306 		}
3307 
3308 		retval = tty_cdev_add(driver, devt, index, 1);
3309 		if (retval)
3310 			goto err_del;
3311 	}
3312 
3313 	dev_set_uevent_suppress(dev, 0);
3314 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3315 
3316 	return dev;
3317 
3318 err_del:
3319 	device_del(dev);
3320 err_put:
3321 	put_device(dev);
3322 
3323 	return ERR_PTR(retval);
3324 }
3325 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3326 
3327 /**
3328  * 	tty_unregister_device - unregister a tty device
3329  * 	@driver: the tty driver that describes the tty device
3330  * 	@index: the index in the tty driver for this tty device
3331  *
3332  * 	If a tty device is registered with a call to tty_register_device() then
3333  *	this function must be called when the tty device is gone.
3334  *
3335  *	Locking: ??
3336  */
3337 
3338 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3339 {
3340 	device_destroy(tty_class,
3341 		MKDEV(driver->major, driver->minor_start) + index);
3342 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3343 		cdev_del(driver->cdevs[index]);
3344 		driver->cdevs[index] = NULL;
3345 	}
3346 }
3347 EXPORT_SYMBOL(tty_unregister_device);
3348 
3349 /**
3350  * __tty_alloc_driver -- allocate tty driver
3351  * @lines: count of lines this driver can handle at most
3352  * @owner: module which is responsible for this driver
3353  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3354  *
3355  * This should not be called directly, some of the provided macros should be
3356  * used instead. Use IS_ERR and friends on @retval.
3357  */
3358 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3359 		unsigned long flags)
3360 {
3361 	struct tty_driver *driver;
3362 	unsigned int cdevs = 1;
3363 	int err;
3364 
3365 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3366 		return ERR_PTR(-EINVAL);
3367 
3368 	driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3369 	if (!driver)
3370 		return ERR_PTR(-ENOMEM);
3371 
3372 	kref_init(&driver->kref);
3373 	driver->magic = TTY_DRIVER_MAGIC;
3374 	driver->num = lines;
3375 	driver->owner = owner;
3376 	driver->flags = flags;
3377 
3378 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3379 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3380 				GFP_KERNEL);
3381 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3382 				GFP_KERNEL);
3383 		if (!driver->ttys || !driver->termios) {
3384 			err = -ENOMEM;
3385 			goto err_free_all;
3386 		}
3387 	}
3388 
3389 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3390 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3391 				GFP_KERNEL);
3392 		if (!driver->ports) {
3393 			err = -ENOMEM;
3394 			goto err_free_all;
3395 		}
3396 		cdevs = lines;
3397 	}
3398 
3399 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3400 	if (!driver->cdevs) {
3401 		err = -ENOMEM;
3402 		goto err_free_all;
3403 	}
3404 
3405 	return driver;
3406 err_free_all:
3407 	kfree(driver->ports);
3408 	kfree(driver->ttys);
3409 	kfree(driver->termios);
3410 	kfree(driver->cdevs);
3411 	kfree(driver);
3412 	return ERR_PTR(err);
3413 }
3414 EXPORT_SYMBOL(__tty_alloc_driver);
3415 
3416 static void destruct_tty_driver(struct kref *kref)
3417 {
3418 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3419 	int i;
3420 	struct ktermios *tp;
3421 
3422 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3423 		for (i = 0; i < driver->num; i++) {
3424 			tp = driver->termios[i];
3425 			if (tp) {
3426 				driver->termios[i] = NULL;
3427 				kfree(tp);
3428 			}
3429 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3430 				tty_unregister_device(driver, i);
3431 		}
3432 		proc_tty_unregister_driver(driver);
3433 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3434 			cdev_del(driver->cdevs[0]);
3435 	}
3436 	kfree(driver->cdevs);
3437 	kfree(driver->ports);
3438 	kfree(driver->termios);
3439 	kfree(driver->ttys);
3440 	kfree(driver);
3441 }
3442 
3443 void tty_driver_kref_put(struct tty_driver *driver)
3444 {
3445 	kref_put(&driver->kref, destruct_tty_driver);
3446 }
3447 EXPORT_SYMBOL(tty_driver_kref_put);
3448 
3449 void tty_set_operations(struct tty_driver *driver,
3450 			const struct tty_operations *op)
3451 {
3452 	driver->ops = op;
3453 };
3454 EXPORT_SYMBOL(tty_set_operations);
3455 
3456 void put_tty_driver(struct tty_driver *d)
3457 {
3458 	tty_driver_kref_put(d);
3459 }
3460 EXPORT_SYMBOL(put_tty_driver);
3461 
3462 /*
3463  * Called by a tty driver to register itself.
3464  */
3465 int tty_register_driver(struct tty_driver *driver)
3466 {
3467 	int error;
3468 	int i;
3469 	dev_t dev;
3470 	struct device *d;
3471 
3472 	if (!driver->major) {
3473 		error = alloc_chrdev_region(&dev, driver->minor_start,
3474 						driver->num, driver->name);
3475 		if (!error) {
3476 			driver->major = MAJOR(dev);
3477 			driver->minor_start = MINOR(dev);
3478 		}
3479 	} else {
3480 		dev = MKDEV(driver->major, driver->minor_start);
3481 		error = register_chrdev_region(dev, driver->num, driver->name);
3482 	}
3483 	if (error < 0)
3484 		goto err;
3485 
3486 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3487 		error = tty_cdev_add(driver, dev, 0, driver->num);
3488 		if (error)
3489 			goto err_unreg_char;
3490 	}
3491 
3492 	mutex_lock(&tty_mutex);
3493 	list_add(&driver->tty_drivers, &tty_drivers);
3494 	mutex_unlock(&tty_mutex);
3495 
3496 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3497 		for (i = 0; i < driver->num; i++) {
3498 			d = tty_register_device(driver, i, NULL);
3499 			if (IS_ERR(d)) {
3500 				error = PTR_ERR(d);
3501 				goto err_unreg_devs;
3502 			}
3503 		}
3504 	}
3505 	proc_tty_register_driver(driver);
3506 	driver->flags |= TTY_DRIVER_INSTALLED;
3507 	return 0;
3508 
3509 err_unreg_devs:
3510 	for (i--; i >= 0; i--)
3511 		tty_unregister_device(driver, i);
3512 
3513 	mutex_lock(&tty_mutex);
3514 	list_del(&driver->tty_drivers);
3515 	mutex_unlock(&tty_mutex);
3516 
3517 err_unreg_char:
3518 	unregister_chrdev_region(dev, driver->num);
3519 err:
3520 	return error;
3521 }
3522 EXPORT_SYMBOL(tty_register_driver);
3523 
3524 /*
3525  * Called by a tty driver to unregister itself.
3526  */
3527 int tty_unregister_driver(struct tty_driver *driver)
3528 {
3529 #if 0
3530 	/* FIXME */
3531 	if (driver->refcount)
3532 		return -EBUSY;
3533 #endif
3534 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3535 				driver->num);
3536 	mutex_lock(&tty_mutex);
3537 	list_del(&driver->tty_drivers);
3538 	mutex_unlock(&tty_mutex);
3539 	return 0;
3540 }
3541 
3542 EXPORT_SYMBOL(tty_unregister_driver);
3543 
3544 dev_t tty_devnum(struct tty_struct *tty)
3545 {
3546 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3547 }
3548 EXPORT_SYMBOL(tty_devnum);
3549 
3550 void tty_default_fops(struct file_operations *fops)
3551 {
3552 	*fops = tty_fops;
3553 }
3554 
3555 static char *tty_devnode(struct device *dev, umode_t *mode)
3556 {
3557 	if (!mode)
3558 		return NULL;
3559 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3560 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3561 		*mode = 0666;
3562 	return NULL;
3563 }
3564 
3565 static int __init tty_class_init(void)
3566 {
3567 	tty_class = class_create(THIS_MODULE, "tty");
3568 	if (IS_ERR(tty_class))
3569 		return PTR_ERR(tty_class);
3570 	tty_class->devnode = tty_devnode;
3571 	return 0;
3572 }
3573 
3574 postcore_initcall(tty_class_init);
3575 
3576 /* 3/2004 jmc: why do these devices exist? */
3577 static struct cdev tty_cdev, console_cdev;
3578 
3579 static ssize_t show_cons_active(struct device *dev,
3580 				struct device_attribute *attr, char *buf)
3581 {
3582 	struct console *cs[16];
3583 	int i = 0;
3584 	struct console *c;
3585 	ssize_t count = 0;
3586 
3587 	console_lock();
3588 	for_each_console(c) {
3589 		if (!c->device)
3590 			continue;
3591 		if (!c->write)
3592 			continue;
3593 		if ((c->flags & CON_ENABLED) == 0)
3594 			continue;
3595 		cs[i++] = c;
3596 		if (i >= ARRAY_SIZE(cs))
3597 			break;
3598 	}
3599 	while (i--) {
3600 		int index = cs[i]->index;
3601 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3602 
3603 		/* don't resolve tty0 as some programs depend on it */
3604 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3605 			count += tty_line_name(drv, index, buf + count);
3606 		else
3607 			count += sprintf(buf + count, "%s%d",
3608 					 cs[i]->name, cs[i]->index);
3609 
3610 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3611 	}
3612 	console_unlock();
3613 
3614 	return count;
3615 }
3616 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3617 
3618 static struct attribute *cons_dev_attrs[] = {
3619 	&dev_attr_active.attr,
3620 	NULL
3621 };
3622 
3623 ATTRIBUTE_GROUPS(cons_dev);
3624 
3625 static struct device *consdev;
3626 
3627 void console_sysfs_notify(void)
3628 {
3629 	if (consdev)
3630 		sysfs_notify(&consdev->kobj, NULL, "active");
3631 }
3632 
3633 /*
3634  * Ok, now we can initialize the rest of the tty devices and can count
3635  * on memory allocations, interrupts etc..
3636  */
3637 int __init tty_init(void)
3638 {
3639 	tty_sysctl_init();
3640 	cdev_init(&tty_cdev, &tty_fops);
3641 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3642 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3643 		panic("Couldn't register /dev/tty driver\n");
3644 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3645 
3646 	cdev_init(&console_cdev, &console_fops);
3647 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3648 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3649 		panic("Couldn't register /dev/console driver\n");
3650 	consdev = device_create_with_groups(tty_class, NULL,
3651 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3652 					    cons_dev_groups, "console");
3653 	if (IS_ERR(consdev))
3654 		consdev = NULL;
3655 
3656 #ifdef CONFIG_VT
3657 	vty_init(&console_fops);
3658 #endif
3659 	return 0;
3660 }
3661 
3662