xref: /openbmc/linux/drivers/tty/tty_io.c (revision cc8bbe1a)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 #ifdef TTY_DEBUG_HANGUP
110 # define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
111 #else
112 # define tty_debug_hangup(tty, f, args...)	do { } while (0)
113 #endif
114 
115 #define TTY_PARANOIA_CHECK 1
116 #define CHECK_TTY_COUNT 1
117 
118 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
119 	.c_iflag = ICRNL | IXON,
120 	.c_oflag = OPOST | ONLCR,
121 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
122 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
123 		   ECHOCTL | ECHOKE | IEXTEN,
124 	.c_cc = INIT_C_CC,
125 	.c_ispeed = 38400,
126 	.c_ospeed = 38400
127 };
128 
129 EXPORT_SYMBOL(tty_std_termios);
130 
131 /* This list gets poked at by procfs and various bits of boot up code. This
132    could do with some rationalisation such as pulling the tty proc function
133    into this file */
134 
135 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
136 
137 /* Mutex to protect creating and releasing a tty. This is shared with
138    vt.c for deeply disgusting hack reasons */
139 DEFINE_MUTEX(tty_mutex);
140 EXPORT_SYMBOL(tty_mutex);
141 
142 /* Spinlock to protect the tty->tty_files list */
143 DEFINE_SPINLOCK(tty_files_lock);
144 
145 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
146 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
147 ssize_t redirected_tty_write(struct file *, const char __user *,
148 							size_t, loff_t *);
149 static unsigned int tty_poll(struct file *, poll_table *);
150 static int tty_open(struct inode *, struct file *);
151 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
152 #ifdef CONFIG_COMPAT
153 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
154 				unsigned long arg);
155 #else
156 #define tty_compat_ioctl NULL
157 #endif
158 static int __tty_fasync(int fd, struct file *filp, int on);
159 static int tty_fasync(int fd, struct file *filp, int on);
160 static void release_tty(struct tty_struct *tty, int idx);
161 
162 /**
163  *	free_tty_struct		-	free a disused tty
164  *	@tty: tty struct to free
165  *
166  *	Free the write buffers, tty queue and tty memory itself.
167  *
168  *	Locking: none. Must be called after tty is definitely unused
169  */
170 
171 void free_tty_struct(struct tty_struct *tty)
172 {
173 	if (!tty)
174 		return;
175 	put_device(tty->dev);
176 	kfree(tty->write_buf);
177 	tty->magic = 0xDEADDEAD;
178 	kfree(tty);
179 }
180 
181 static inline struct tty_struct *file_tty(struct file *file)
182 {
183 	return ((struct tty_file_private *)file->private_data)->tty;
184 }
185 
186 int tty_alloc_file(struct file *file)
187 {
188 	struct tty_file_private *priv;
189 
190 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
191 	if (!priv)
192 		return -ENOMEM;
193 
194 	file->private_data = priv;
195 
196 	return 0;
197 }
198 
199 /* Associate a new file with the tty structure */
200 void tty_add_file(struct tty_struct *tty, struct file *file)
201 {
202 	struct tty_file_private *priv = file->private_data;
203 
204 	priv->tty = tty;
205 	priv->file = file;
206 
207 	spin_lock(&tty_files_lock);
208 	list_add(&priv->list, &tty->tty_files);
209 	spin_unlock(&tty_files_lock);
210 }
211 
212 /**
213  * tty_free_file - free file->private_data
214  *
215  * This shall be used only for fail path handling when tty_add_file was not
216  * called yet.
217  */
218 void tty_free_file(struct file *file)
219 {
220 	struct tty_file_private *priv = file->private_data;
221 
222 	file->private_data = NULL;
223 	kfree(priv);
224 }
225 
226 /* Delete file from its tty */
227 static void tty_del_file(struct file *file)
228 {
229 	struct tty_file_private *priv = file->private_data;
230 
231 	spin_lock(&tty_files_lock);
232 	list_del(&priv->list);
233 	spin_unlock(&tty_files_lock);
234 	tty_free_file(file);
235 }
236 
237 
238 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
239 
240 /**
241  *	tty_name	-	return tty naming
242  *	@tty: tty structure
243  *
244  *	Convert a tty structure into a name. The name reflects the kernel
245  *	naming policy and if udev is in use may not reflect user space
246  *
247  *	Locking: none
248  */
249 
250 const char *tty_name(const struct tty_struct *tty)
251 {
252 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
253 		return "NULL tty";
254 	return tty->name;
255 }
256 
257 EXPORT_SYMBOL(tty_name);
258 
259 const char *tty_driver_name(const struct tty_struct *tty)
260 {
261 	if (!tty || !tty->driver)
262 		return "";
263 	return tty->driver->name;
264 }
265 
266 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
267 			      const char *routine)
268 {
269 #ifdef TTY_PARANOIA_CHECK
270 	if (!tty) {
271 		pr_warn("(%d:%d): %s: NULL tty\n",
272 			imajor(inode), iminor(inode), routine);
273 		return 1;
274 	}
275 	if (tty->magic != TTY_MAGIC) {
276 		pr_warn("(%d:%d): %s: bad magic number\n",
277 			imajor(inode), iminor(inode), routine);
278 		return 1;
279 	}
280 #endif
281 	return 0;
282 }
283 
284 /* Caller must hold tty_lock */
285 static int check_tty_count(struct tty_struct *tty, const char *routine)
286 {
287 #ifdef CHECK_TTY_COUNT
288 	struct list_head *p;
289 	int count = 0;
290 
291 	spin_lock(&tty_files_lock);
292 	list_for_each(p, &tty->tty_files) {
293 		count++;
294 	}
295 	spin_unlock(&tty_files_lock);
296 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
297 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
298 	    tty->link && tty->link->count)
299 		count++;
300 	if (tty->count != count) {
301 		tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n",
302 			 routine, tty->count, count);
303 		return count;
304 	}
305 #endif
306 	return 0;
307 }
308 
309 /**
310  *	get_tty_driver		-	find device of a tty
311  *	@dev_t: device identifier
312  *	@index: returns the index of the tty
313  *
314  *	This routine returns a tty driver structure, given a device number
315  *	and also passes back the index number.
316  *
317  *	Locking: caller must hold tty_mutex
318  */
319 
320 static struct tty_driver *get_tty_driver(dev_t device, int *index)
321 {
322 	struct tty_driver *p;
323 
324 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
325 		dev_t base = MKDEV(p->major, p->minor_start);
326 		if (device < base || device >= base + p->num)
327 			continue;
328 		*index = device - base;
329 		return tty_driver_kref_get(p);
330 	}
331 	return NULL;
332 }
333 
334 #ifdef CONFIG_CONSOLE_POLL
335 
336 /**
337  *	tty_find_polling_driver	-	find device of a polled tty
338  *	@name: name string to match
339  *	@line: pointer to resulting tty line nr
340  *
341  *	This routine returns a tty driver structure, given a name
342  *	and the condition that the tty driver is capable of polled
343  *	operation.
344  */
345 struct tty_driver *tty_find_polling_driver(char *name, int *line)
346 {
347 	struct tty_driver *p, *res = NULL;
348 	int tty_line = 0;
349 	int len;
350 	char *str, *stp;
351 
352 	for (str = name; *str; str++)
353 		if ((*str >= '0' && *str <= '9') || *str == ',')
354 			break;
355 	if (!*str)
356 		return NULL;
357 
358 	len = str - name;
359 	tty_line = simple_strtoul(str, &str, 10);
360 
361 	mutex_lock(&tty_mutex);
362 	/* Search through the tty devices to look for a match */
363 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
364 		if (strncmp(name, p->name, len) != 0)
365 			continue;
366 		stp = str;
367 		if (*stp == ',')
368 			stp++;
369 		if (*stp == '\0')
370 			stp = NULL;
371 
372 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
373 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
374 			res = tty_driver_kref_get(p);
375 			*line = tty_line;
376 			break;
377 		}
378 	}
379 	mutex_unlock(&tty_mutex);
380 
381 	return res;
382 }
383 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
384 #endif
385 
386 /**
387  *	tty_check_change	-	check for POSIX terminal changes
388  *	@tty: tty to check
389  *
390  *	If we try to write to, or set the state of, a terminal and we're
391  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
392  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
393  *
394  *	Locking: ctrl_lock
395  */
396 
397 int __tty_check_change(struct tty_struct *tty, int sig)
398 {
399 	unsigned long flags;
400 	struct pid *pgrp, *tty_pgrp;
401 	int ret = 0;
402 
403 	if (current->signal->tty != tty)
404 		return 0;
405 
406 	rcu_read_lock();
407 	pgrp = task_pgrp(current);
408 
409 	spin_lock_irqsave(&tty->ctrl_lock, flags);
410 	tty_pgrp = tty->pgrp;
411 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
412 
413 	if (tty_pgrp && pgrp != tty->pgrp) {
414 		if (is_ignored(sig)) {
415 			if (sig == SIGTTIN)
416 				ret = -EIO;
417 		} else if (is_current_pgrp_orphaned())
418 			ret = -EIO;
419 		else {
420 			kill_pgrp(pgrp, sig, 1);
421 			set_thread_flag(TIF_SIGPENDING);
422 			ret = -ERESTARTSYS;
423 		}
424 	}
425 	rcu_read_unlock();
426 
427 	if (!tty_pgrp)
428 		tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig);
429 
430 	return ret;
431 }
432 
433 int tty_check_change(struct tty_struct *tty)
434 {
435 	return __tty_check_change(tty, SIGTTOU);
436 }
437 EXPORT_SYMBOL(tty_check_change);
438 
439 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
440 				size_t count, loff_t *ppos)
441 {
442 	return 0;
443 }
444 
445 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
446 				 size_t count, loff_t *ppos)
447 {
448 	return -EIO;
449 }
450 
451 /* No kernel lock held - none needed ;) */
452 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
453 {
454 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
455 }
456 
457 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
458 		unsigned long arg)
459 {
460 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
461 }
462 
463 static long hung_up_tty_compat_ioctl(struct file *file,
464 				     unsigned int cmd, unsigned long arg)
465 {
466 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
467 }
468 
469 static const struct file_operations tty_fops = {
470 	.llseek		= no_llseek,
471 	.read		= tty_read,
472 	.write		= tty_write,
473 	.poll		= tty_poll,
474 	.unlocked_ioctl	= tty_ioctl,
475 	.compat_ioctl	= tty_compat_ioctl,
476 	.open		= tty_open,
477 	.release	= tty_release,
478 	.fasync		= tty_fasync,
479 };
480 
481 static const struct file_operations console_fops = {
482 	.llseek		= no_llseek,
483 	.read		= tty_read,
484 	.write		= redirected_tty_write,
485 	.poll		= tty_poll,
486 	.unlocked_ioctl	= tty_ioctl,
487 	.compat_ioctl	= tty_compat_ioctl,
488 	.open		= tty_open,
489 	.release	= tty_release,
490 	.fasync		= tty_fasync,
491 };
492 
493 static const struct file_operations hung_up_tty_fops = {
494 	.llseek		= no_llseek,
495 	.read		= hung_up_tty_read,
496 	.write		= hung_up_tty_write,
497 	.poll		= hung_up_tty_poll,
498 	.unlocked_ioctl	= hung_up_tty_ioctl,
499 	.compat_ioctl	= hung_up_tty_compat_ioctl,
500 	.release	= tty_release,
501 };
502 
503 static DEFINE_SPINLOCK(redirect_lock);
504 static struct file *redirect;
505 
506 
507 void proc_clear_tty(struct task_struct *p)
508 {
509 	unsigned long flags;
510 	struct tty_struct *tty;
511 	spin_lock_irqsave(&p->sighand->siglock, flags);
512 	tty = p->signal->tty;
513 	p->signal->tty = NULL;
514 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
515 	tty_kref_put(tty);
516 }
517 
518 /**
519  * proc_set_tty -  set the controlling terminal
520  *
521  * Only callable by the session leader and only if it does not already have
522  * a controlling terminal.
523  *
524  * Caller must hold:  tty_lock()
525  *		      a readlock on tasklist_lock
526  *		      sighand lock
527  */
528 static void __proc_set_tty(struct tty_struct *tty)
529 {
530 	unsigned long flags;
531 
532 	spin_lock_irqsave(&tty->ctrl_lock, flags);
533 	/*
534 	 * The session and fg pgrp references will be non-NULL if
535 	 * tiocsctty() is stealing the controlling tty
536 	 */
537 	put_pid(tty->session);
538 	put_pid(tty->pgrp);
539 	tty->pgrp = get_pid(task_pgrp(current));
540 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
541 	tty->session = get_pid(task_session(current));
542 	if (current->signal->tty) {
543 		tty_debug(tty, "current tty %s not NULL!!\n",
544 			  current->signal->tty->name);
545 		tty_kref_put(current->signal->tty);
546 	}
547 	put_pid(current->signal->tty_old_pgrp);
548 	current->signal->tty = tty_kref_get(tty);
549 	current->signal->tty_old_pgrp = NULL;
550 }
551 
552 static void proc_set_tty(struct tty_struct *tty)
553 {
554 	spin_lock_irq(&current->sighand->siglock);
555 	__proc_set_tty(tty);
556 	spin_unlock_irq(&current->sighand->siglock);
557 }
558 
559 struct tty_struct *get_current_tty(void)
560 {
561 	struct tty_struct *tty;
562 	unsigned long flags;
563 
564 	spin_lock_irqsave(&current->sighand->siglock, flags);
565 	tty = tty_kref_get(current->signal->tty);
566 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
567 	return tty;
568 }
569 EXPORT_SYMBOL_GPL(get_current_tty);
570 
571 static void session_clear_tty(struct pid *session)
572 {
573 	struct task_struct *p;
574 	do_each_pid_task(session, PIDTYPE_SID, p) {
575 		proc_clear_tty(p);
576 	} while_each_pid_task(session, PIDTYPE_SID, p);
577 }
578 
579 /**
580  *	tty_wakeup	-	request more data
581  *	@tty: terminal
582  *
583  *	Internal and external helper for wakeups of tty. This function
584  *	informs the line discipline if present that the driver is ready
585  *	to receive more output data.
586  */
587 
588 void tty_wakeup(struct tty_struct *tty)
589 {
590 	struct tty_ldisc *ld;
591 
592 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
593 		ld = tty_ldisc_ref(tty);
594 		if (ld) {
595 			if (ld->ops->write_wakeup)
596 				ld->ops->write_wakeup(tty);
597 			tty_ldisc_deref(ld);
598 		}
599 	}
600 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
601 }
602 
603 EXPORT_SYMBOL_GPL(tty_wakeup);
604 
605 /**
606  *	tty_signal_session_leader	- sends SIGHUP to session leader
607  *	@tty		controlling tty
608  *	@exit_session	if non-zero, signal all foreground group processes
609  *
610  *	Send SIGHUP and SIGCONT to the session leader and its process group.
611  *	Optionally, signal all processes in the foreground process group.
612  *
613  *	Returns the number of processes in the session with this tty
614  *	as their controlling terminal. This value is used to drop
615  *	tty references for those processes.
616  */
617 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
618 {
619 	struct task_struct *p;
620 	int refs = 0;
621 	struct pid *tty_pgrp = NULL;
622 
623 	read_lock(&tasklist_lock);
624 	if (tty->session) {
625 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
626 			spin_lock_irq(&p->sighand->siglock);
627 			if (p->signal->tty == tty) {
628 				p->signal->tty = NULL;
629 				/* We defer the dereferences outside fo
630 				   the tasklist lock */
631 				refs++;
632 			}
633 			if (!p->signal->leader) {
634 				spin_unlock_irq(&p->sighand->siglock);
635 				continue;
636 			}
637 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
638 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
639 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
640 			spin_lock(&tty->ctrl_lock);
641 			tty_pgrp = get_pid(tty->pgrp);
642 			if (tty->pgrp)
643 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
644 			spin_unlock(&tty->ctrl_lock);
645 			spin_unlock_irq(&p->sighand->siglock);
646 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
647 	}
648 	read_unlock(&tasklist_lock);
649 
650 	if (tty_pgrp) {
651 		if (exit_session)
652 			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
653 		put_pid(tty_pgrp);
654 	}
655 
656 	return refs;
657 }
658 
659 /**
660  *	__tty_hangup		-	actual handler for hangup events
661  *	@work: tty device
662  *
663  *	This can be called by a "kworker" kernel thread.  That is process
664  *	synchronous but doesn't hold any locks, so we need to make sure we
665  *	have the appropriate locks for what we're doing.
666  *
667  *	The hangup event clears any pending redirections onto the hung up
668  *	device. It ensures future writes will error and it does the needed
669  *	line discipline hangup and signal delivery. The tty object itself
670  *	remains intact.
671  *
672  *	Locking:
673  *		BTM
674  *		  redirect lock for undoing redirection
675  *		  file list lock for manipulating list of ttys
676  *		  tty_ldiscs_lock from called functions
677  *		  termios_rwsem resetting termios data
678  *		  tasklist_lock to walk task list for hangup event
679  *		    ->siglock to protect ->signal/->sighand
680  */
681 static void __tty_hangup(struct tty_struct *tty, int exit_session)
682 {
683 	struct file *cons_filp = NULL;
684 	struct file *filp, *f = NULL;
685 	struct tty_file_private *priv;
686 	int    closecount = 0, n;
687 	int refs;
688 
689 	if (!tty)
690 		return;
691 
692 
693 	spin_lock(&redirect_lock);
694 	if (redirect && file_tty(redirect) == tty) {
695 		f = redirect;
696 		redirect = NULL;
697 	}
698 	spin_unlock(&redirect_lock);
699 
700 	tty_lock(tty);
701 
702 	if (test_bit(TTY_HUPPED, &tty->flags)) {
703 		tty_unlock(tty);
704 		return;
705 	}
706 
707 	/* inuse_filps is protected by the single tty lock,
708 	   this really needs to change if we want to flush the
709 	   workqueue with the lock held */
710 	check_tty_count(tty, "tty_hangup");
711 
712 	spin_lock(&tty_files_lock);
713 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
714 	list_for_each_entry(priv, &tty->tty_files, list) {
715 		filp = priv->file;
716 		if (filp->f_op->write == redirected_tty_write)
717 			cons_filp = filp;
718 		if (filp->f_op->write != tty_write)
719 			continue;
720 		closecount++;
721 		__tty_fasync(-1, filp, 0);	/* can't block */
722 		filp->f_op = &hung_up_tty_fops;
723 	}
724 	spin_unlock(&tty_files_lock);
725 
726 	refs = tty_signal_session_leader(tty, exit_session);
727 	/* Account for the p->signal references we killed */
728 	while (refs--)
729 		tty_kref_put(tty);
730 
731 	tty_ldisc_hangup(tty);
732 
733 	spin_lock_irq(&tty->ctrl_lock);
734 	clear_bit(TTY_THROTTLED, &tty->flags);
735 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
736 	put_pid(tty->session);
737 	put_pid(tty->pgrp);
738 	tty->session = NULL;
739 	tty->pgrp = NULL;
740 	tty->ctrl_status = 0;
741 	spin_unlock_irq(&tty->ctrl_lock);
742 
743 	/*
744 	 * If one of the devices matches a console pointer, we
745 	 * cannot just call hangup() because that will cause
746 	 * tty->count and state->count to go out of sync.
747 	 * So we just call close() the right number of times.
748 	 */
749 	if (cons_filp) {
750 		if (tty->ops->close)
751 			for (n = 0; n < closecount; n++)
752 				tty->ops->close(tty, cons_filp);
753 	} else if (tty->ops->hangup)
754 		tty->ops->hangup(tty);
755 	/*
756 	 * We don't want to have driver/ldisc interactions beyond
757 	 * the ones we did here. The driver layer expects no
758 	 * calls after ->hangup() from the ldisc side. However we
759 	 * can't yet guarantee all that.
760 	 */
761 	set_bit(TTY_HUPPED, &tty->flags);
762 	tty_unlock(tty);
763 
764 	if (f)
765 		fput(f);
766 }
767 
768 static void do_tty_hangup(struct work_struct *work)
769 {
770 	struct tty_struct *tty =
771 		container_of(work, struct tty_struct, hangup_work);
772 
773 	__tty_hangup(tty, 0);
774 }
775 
776 /**
777  *	tty_hangup		-	trigger a hangup event
778  *	@tty: tty to hangup
779  *
780  *	A carrier loss (virtual or otherwise) has occurred on this like
781  *	schedule a hangup sequence to run after this event.
782  */
783 
784 void tty_hangup(struct tty_struct *tty)
785 {
786 	tty_debug_hangup(tty, "hangup\n");
787 	schedule_work(&tty->hangup_work);
788 }
789 
790 EXPORT_SYMBOL(tty_hangup);
791 
792 /**
793  *	tty_vhangup		-	process vhangup
794  *	@tty: tty to hangup
795  *
796  *	The user has asked via system call for the terminal to be hung up.
797  *	We do this synchronously so that when the syscall returns the process
798  *	is complete. That guarantee is necessary for security reasons.
799  */
800 
801 void tty_vhangup(struct tty_struct *tty)
802 {
803 	tty_debug_hangup(tty, "vhangup\n");
804 	__tty_hangup(tty, 0);
805 }
806 
807 EXPORT_SYMBOL(tty_vhangup);
808 
809 
810 /**
811  *	tty_vhangup_self	-	process vhangup for own ctty
812  *
813  *	Perform a vhangup on the current controlling tty
814  */
815 
816 void tty_vhangup_self(void)
817 {
818 	struct tty_struct *tty;
819 
820 	tty = get_current_tty();
821 	if (tty) {
822 		tty_vhangup(tty);
823 		tty_kref_put(tty);
824 	}
825 }
826 
827 /**
828  *	tty_vhangup_session		-	hangup session leader exit
829  *	@tty: tty to hangup
830  *
831  *	The session leader is exiting and hanging up its controlling terminal.
832  *	Every process in the foreground process group is signalled SIGHUP.
833  *
834  *	We do this synchronously so that when the syscall returns the process
835  *	is complete. That guarantee is necessary for security reasons.
836  */
837 
838 static void tty_vhangup_session(struct tty_struct *tty)
839 {
840 	tty_debug_hangup(tty, "session hangup\n");
841 	__tty_hangup(tty, 1);
842 }
843 
844 /**
845  *	tty_hung_up_p		-	was tty hung up
846  *	@filp: file pointer of tty
847  *
848  *	Return true if the tty has been subject to a vhangup or a carrier
849  *	loss
850  */
851 
852 int tty_hung_up_p(struct file *filp)
853 {
854 	return (filp->f_op == &hung_up_tty_fops);
855 }
856 
857 EXPORT_SYMBOL(tty_hung_up_p);
858 
859 /**
860  *	disassociate_ctty	-	disconnect controlling tty
861  *	@on_exit: true if exiting so need to "hang up" the session
862  *
863  *	This function is typically called only by the session leader, when
864  *	it wants to disassociate itself from its controlling tty.
865  *
866  *	It performs the following functions:
867  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
868  * 	(2)  Clears the tty from being controlling the session
869  * 	(3)  Clears the controlling tty for all processes in the
870  * 		session group.
871  *
872  *	The argument on_exit is set to 1 if called when a process is
873  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
874  *
875  *	Locking:
876  *		BTM is taken for hysterical raisins, and held when
877  *		  called from no_tty().
878  *		  tty_mutex is taken to protect tty
879  *		  ->siglock is taken to protect ->signal/->sighand
880  *		  tasklist_lock is taken to walk process list for sessions
881  *		    ->siglock is taken to protect ->signal/->sighand
882  */
883 
884 void disassociate_ctty(int on_exit)
885 {
886 	struct tty_struct *tty;
887 
888 	if (!current->signal->leader)
889 		return;
890 
891 	tty = get_current_tty();
892 	if (tty) {
893 		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
894 			tty_vhangup_session(tty);
895 		} else {
896 			struct pid *tty_pgrp = tty_get_pgrp(tty);
897 			if (tty_pgrp) {
898 				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
899 				if (!on_exit)
900 					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
901 				put_pid(tty_pgrp);
902 			}
903 		}
904 		tty_kref_put(tty);
905 
906 	} else if (on_exit) {
907 		struct pid *old_pgrp;
908 		spin_lock_irq(&current->sighand->siglock);
909 		old_pgrp = current->signal->tty_old_pgrp;
910 		current->signal->tty_old_pgrp = NULL;
911 		spin_unlock_irq(&current->sighand->siglock);
912 		if (old_pgrp) {
913 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
914 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
915 			put_pid(old_pgrp);
916 		}
917 		return;
918 	}
919 
920 	spin_lock_irq(&current->sighand->siglock);
921 	put_pid(current->signal->tty_old_pgrp);
922 	current->signal->tty_old_pgrp = NULL;
923 
924 	tty = tty_kref_get(current->signal->tty);
925 	if (tty) {
926 		unsigned long flags;
927 		spin_lock_irqsave(&tty->ctrl_lock, flags);
928 		put_pid(tty->session);
929 		put_pid(tty->pgrp);
930 		tty->session = NULL;
931 		tty->pgrp = NULL;
932 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
933 		tty_kref_put(tty);
934 	} else
935 		tty_debug_hangup(tty, "no current tty\n");
936 
937 	spin_unlock_irq(&current->sighand->siglock);
938 	/* Now clear signal->tty under the lock */
939 	read_lock(&tasklist_lock);
940 	session_clear_tty(task_session(current));
941 	read_unlock(&tasklist_lock);
942 }
943 
944 /**
945  *
946  *	no_tty	- Ensure the current process does not have a controlling tty
947  */
948 void no_tty(void)
949 {
950 	/* FIXME: Review locking here. The tty_lock never covered any race
951 	   between a new association and proc_clear_tty but possible we need
952 	   to protect against this anyway */
953 	struct task_struct *tsk = current;
954 	disassociate_ctty(0);
955 	proc_clear_tty(tsk);
956 }
957 
958 
959 /**
960  *	stop_tty	-	propagate flow control
961  *	@tty: tty to stop
962  *
963  *	Perform flow control to the driver. May be called
964  *	on an already stopped device and will not re-call the driver
965  *	method.
966  *
967  *	This functionality is used by both the line disciplines for
968  *	halting incoming flow and by the driver. It may therefore be
969  *	called from any context, may be under the tty atomic_write_lock
970  *	but not always.
971  *
972  *	Locking:
973  *		flow_lock
974  */
975 
976 void __stop_tty(struct tty_struct *tty)
977 {
978 	if (tty->stopped)
979 		return;
980 	tty->stopped = 1;
981 	if (tty->ops->stop)
982 		tty->ops->stop(tty);
983 }
984 
985 void stop_tty(struct tty_struct *tty)
986 {
987 	unsigned long flags;
988 
989 	spin_lock_irqsave(&tty->flow_lock, flags);
990 	__stop_tty(tty);
991 	spin_unlock_irqrestore(&tty->flow_lock, flags);
992 }
993 EXPORT_SYMBOL(stop_tty);
994 
995 /**
996  *	start_tty	-	propagate flow control
997  *	@tty: tty to start
998  *
999  *	Start a tty that has been stopped if at all possible. If this
1000  *	tty was previous stopped and is now being started, the driver
1001  *	start method is invoked and the line discipline woken.
1002  *
1003  *	Locking:
1004  *		flow_lock
1005  */
1006 
1007 void __start_tty(struct tty_struct *tty)
1008 {
1009 	if (!tty->stopped || tty->flow_stopped)
1010 		return;
1011 	tty->stopped = 0;
1012 	if (tty->ops->start)
1013 		tty->ops->start(tty);
1014 	tty_wakeup(tty);
1015 }
1016 
1017 void start_tty(struct tty_struct *tty)
1018 {
1019 	unsigned long flags;
1020 
1021 	spin_lock_irqsave(&tty->flow_lock, flags);
1022 	__start_tty(tty);
1023 	spin_unlock_irqrestore(&tty->flow_lock, flags);
1024 }
1025 EXPORT_SYMBOL(start_tty);
1026 
1027 static void tty_update_time(struct timespec *time)
1028 {
1029 	unsigned long sec = get_seconds();
1030 
1031 	/*
1032 	 * We only care if the two values differ in anything other than the
1033 	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1034 	 * the time of the tty device, otherwise it could be construded as a
1035 	 * security leak to let userspace know the exact timing of the tty.
1036 	 */
1037 	if ((sec ^ time->tv_sec) & ~7)
1038 		time->tv_sec = sec;
1039 }
1040 
1041 /**
1042  *	tty_read	-	read method for tty device files
1043  *	@file: pointer to tty file
1044  *	@buf: user buffer
1045  *	@count: size of user buffer
1046  *	@ppos: unused
1047  *
1048  *	Perform the read system call function on this terminal device. Checks
1049  *	for hung up devices before calling the line discipline method.
1050  *
1051  *	Locking:
1052  *		Locks the line discipline internally while needed. Multiple
1053  *	read calls may be outstanding in parallel.
1054  */
1055 
1056 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1057 			loff_t *ppos)
1058 {
1059 	int i;
1060 	struct inode *inode = file_inode(file);
1061 	struct tty_struct *tty = file_tty(file);
1062 	struct tty_ldisc *ld;
1063 
1064 	if (tty_paranoia_check(tty, inode, "tty_read"))
1065 		return -EIO;
1066 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1067 		return -EIO;
1068 
1069 	/* We want to wait for the line discipline to sort out in this
1070 	   situation */
1071 	ld = tty_ldisc_ref_wait(tty);
1072 	if (ld->ops->read)
1073 		i = ld->ops->read(tty, file, buf, count);
1074 	else
1075 		i = -EIO;
1076 	tty_ldisc_deref(ld);
1077 
1078 	if (i > 0)
1079 		tty_update_time(&inode->i_atime);
1080 
1081 	return i;
1082 }
1083 
1084 static void tty_write_unlock(struct tty_struct *tty)
1085 {
1086 	mutex_unlock(&tty->atomic_write_lock);
1087 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1088 }
1089 
1090 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1091 {
1092 	if (!mutex_trylock(&tty->atomic_write_lock)) {
1093 		if (ndelay)
1094 			return -EAGAIN;
1095 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1096 			return -ERESTARTSYS;
1097 	}
1098 	return 0;
1099 }
1100 
1101 /*
1102  * Split writes up in sane blocksizes to avoid
1103  * denial-of-service type attacks
1104  */
1105 static inline ssize_t do_tty_write(
1106 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1107 	struct tty_struct *tty,
1108 	struct file *file,
1109 	const char __user *buf,
1110 	size_t count)
1111 {
1112 	ssize_t ret, written = 0;
1113 	unsigned int chunk;
1114 
1115 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1116 	if (ret < 0)
1117 		return ret;
1118 
1119 	/*
1120 	 * We chunk up writes into a temporary buffer. This
1121 	 * simplifies low-level drivers immensely, since they
1122 	 * don't have locking issues and user mode accesses.
1123 	 *
1124 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1125 	 * big chunk-size..
1126 	 *
1127 	 * The default chunk-size is 2kB, because the NTTY
1128 	 * layer has problems with bigger chunks. It will
1129 	 * claim to be able to handle more characters than
1130 	 * it actually does.
1131 	 *
1132 	 * FIXME: This can probably go away now except that 64K chunks
1133 	 * are too likely to fail unless switched to vmalloc...
1134 	 */
1135 	chunk = 2048;
1136 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1137 		chunk = 65536;
1138 	if (count < chunk)
1139 		chunk = count;
1140 
1141 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1142 	if (tty->write_cnt < chunk) {
1143 		unsigned char *buf_chunk;
1144 
1145 		if (chunk < 1024)
1146 			chunk = 1024;
1147 
1148 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1149 		if (!buf_chunk) {
1150 			ret = -ENOMEM;
1151 			goto out;
1152 		}
1153 		kfree(tty->write_buf);
1154 		tty->write_cnt = chunk;
1155 		tty->write_buf = buf_chunk;
1156 	}
1157 
1158 	/* Do the write .. */
1159 	for (;;) {
1160 		size_t size = count;
1161 		if (size > chunk)
1162 			size = chunk;
1163 		ret = -EFAULT;
1164 		if (copy_from_user(tty->write_buf, buf, size))
1165 			break;
1166 		ret = write(tty, file, tty->write_buf, size);
1167 		if (ret <= 0)
1168 			break;
1169 		written += ret;
1170 		buf += ret;
1171 		count -= ret;
1172 		if (!count)
1173 			break;
1174 		ret = -ERESTARTSYS;
1175 		if (signal_pending(current))
1176 			break;
1177 		cond_resched();
1178 	}
1179 	if (written) {
1180 		tty_update_time(&file_inode(file)->i_mtime);
1181 		ret = written;
1182 	}
1183 out:
1184 	tty_write_unlock(tty);
1185 	return ret;
1186 }
1187 
1188 /**
1189  * tty_write_message - write a message to a certain tty, not just the console.
1190  * @tty: the destination tty_struct
1191  * @msg: the message to write
1192  *
1193  * This is used for messages that need to be redirected to a specific tty.
1194  * We don't put it into the syslog queue right now maybe in the future if
1195  * really needed.
1196  *
1197  * We must still hold the BTM and test the CLOSING flag for the moment.
1198  */
1199 
1200 void tty_write_message(struct tty_struct *tty, char *msg)
1201 {
1202 	if (tty) {
1203 		mutex_lock(&tty->atomic_write_lock);
1204 		tty_lock(tty);
1205 		if (tty->ops->write && tty->count > 0)
1206 			tty->ops->write(tty, msg, strlen(msg));
1207 		tty_unlock(tty);
1208 		tty_write_unlock(tty);
1209 	}
1210 	return;
1211 }
1212 
1213 
1214 /**
1215  *	tty_write		-	write method for tty device file
1216  *	@file: tty file pointer
1217  *	@buf: user data to write
1218  *	@count: bytes to write
1219  *	@ppos: unused
1220  *
1221  *	Write data to a tty device via the line discipline.
1222  *
1223  *	Locking:
1224  *		Locks the line discipline as required
1225  *		Writes to the tty driver are serialized by the atomic_write_lock
1226  *	and are then processed in chunks to the device. The line discipline
1227  *	write method will not be invoked in parallel for each device.
1228  */
1229 
1230 static ssize_t tty_write(struct file *file, const char __user *buf,
1231 						size_t count, loff_t *ppos)
1232 {
1233 	struct tty_struct *tty = file_tty(file);
1234  	struct tty_ldisc *ld;
1235 	ssize_t ret;
1236 
1237 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1238 		return -EIO;
1239 	if (!tty || !tty->ops->write ||
1240 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1241 			return -EIO;
1242 	/* Short term debug to catch buggy drivers */
1243 	if (tty->ops->write_room == NULL)
1244 		tty_err(tty, "missing write_room method\n");
1245 	ld = tty_ldisc_ref_wait(tty);
1246 	if (!ld->ops->write)
1247 		ret = -EIO;
1248 	else
1249 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1250 	tty_ldisc_deref(ld);
1251 	return ret;
1252 }
1253 
1254 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1255 						size_t count, loff_t *ppos)
1256 {
1257 	struct file *p = NULL;
1258 
1259 	spin_lock(&redirect_lock);
1260 	if (redirect)
1261 		p = get_file(redirect);
1262 	spin_unlock(&redirect_lock);
1263 
1264 	if (p) {
1265 		ssize_t res;
1266 		res = vfs_write(p, buf, count, &p->f_pos);
1267 		fput(p);
1268 		return res;
1269 	}
1270 	return tty_write(file, buf, count, ppos);
1271 }
1272 
1273 /**
1274  *	tty_send_xchar	-	send priority character
1275  *
1276  *	Send a high priority character to the tty even if stopped
1277  *
1278  *	Locking: none for xchar method, write ordering for write method.
1279  */
1280 
1281 int tty_send_xchar(struct tty_struct *tty, char ch)
1282 {
1283 	int	was_stopped = tty->stopped;
1284 
1285 	if (tty->ops->send_xchar) {
1286 		down_read(&tty->termios_rwsem);
1287 		tty->ops->send_xchar(tty, ch);
1288 		up_read(&tty->termios_rwsem);
1289 		return 0;
1290 	}
1291 
1292 	if (tty_write_lock(tty, 0) < 0)
1293 		return -ERESTARTSYS;
1294 
1295 	down_read(&tty->termios_rwsem);
1296 	if (was_stopped)
1297 		start_tty(tty);
1298 	tty->ops->write(tty, &ch, 1);
1299 	if (was_stopped)
1300 		stop_tty(tty);
1301 	up_read(&tty->termios_rwsem);
1302 	tty_write_unlock(tty);
1303 	return 0;
1304 }
1305 
1306 static char ptychar[] = "pqrstuvwxyzabcde";
1307 
1308 /**
1309  *	pty_line_name	-	generate name for a pty
1310  *	@driver: the tty driver in use
1311  *	@index: the minor number
1312  *	@p: output buffer of at least 6 bytes
1313  *
1314  *	Generate a name from a driver reference and write it to the output
1315  *	buffer.
1316  *
1317  *	Locking: None
1318  */
1319 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1320 {
1321 	int i = index + driver->name_base;
1322 	/* ->name is initialized to "ttyp", but "tty" is expected */
1323 	sprintf(p, "%s%c%x",
1324 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1325 		ptychar[i >> 4 & 0xf], i & 0xf);
1326 }
1327 
1328 /**
1329  *	tty_line_name	-	generate name for a tty
1330  *	@driver: the tty driver in use
1331  *	@index: the minor number
1332  *	@p: output buffer of at least 7 bytes
1333  *
1334  *	Generate a name from a driver reference and write it to the output
1335  *	buffer.
1336  *
1337  *	Locking: None
1338  */
1339 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1340 {
1341 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1342 		return sprintf(p, "%s", driver->name);
1343 	else
1344 		return sprintf(p, "%s%d", driver->name,
1345 			       index + driver->name_base);
1346 }
1347 
1348 /**
1349  *	tty_driver_lookup_tty() - find an existing tty, if any
1350  *	@driver: the driver for the tty
1351  *	@idx:	 the minor number
1352  *
1353  *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1354  *	driver lookup() method returns an error.
1355  *
1356  *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1357  */
1358 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1359 		struct inode *inode, int idx)
1360 {
1361 	struct tty_struct *tty;
1362 
1363 	if (driver->ops->lookup)
1364 		tty = driver->ops->lookup(driver, inode, idx);
1365 	else
1366 		tty = driver->ttys[idx];
1367 
1368 	if (!IS_ERR(tty))
1369 		tty_kref_get(tty);
1370 	return tty;
1371 }
1372 
1373 /**
1374  *	tty_init_termios	-  helper for termios setup
1375  *	@tty: the tty to set up
1376  *
1377  *	Initialise the termios structures for this tty. Thus runs under
1378  *	the tty_mutex currently so we can be relaxed about ordering.
1379  */
1380 
1381 int tty_init_termios(struct tty_struct *tty)
1382 {
1383 	struct ktermios *tp;
1384 	int idx = tty->index;
1385 
1386 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1387 		tty->termios = tty->driver->init_termios;
1388 	else {
1389 		/* Check for lazy saved data */
1390 		tp = tty->driver->termios[idx];
1391 		if (tp != NULL)
1392 			tty->termios = *tp;
1393 		else
1394 			tty->termios = tty->driver->init_termios;
1395 	}
1396 	/* Compatibility until drivers always set this */
1397 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1398 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1399 	return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(tty_init_termios);
1402 
1403 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1404 {
1405 	int ret = tty_init_termios(tty);
1406 	if (ret)
1407 		return ret;
1408 
1409 	tty_driver_kref_get(driver);
1410 	tty->count++;
1411 	driver->ttys[tty->index] = tty;
1412 	return 0;
1413 }
1414 EXPORT_SYMBOL_GPL(tty_standard_install);
1415 
1416 /**
1417  *	tty_driver_install_tty() - install a tty entry in the driver
1418  *	@driver: the driver for the tty
1419  *	@tty: the tty
1420  *
1421  *	Install a tty object into the driver tables. The tty->index field
1422  *	will be set by the time this is called. This method is responsible
1423  *	for ensuring any need additional structures are allocated and
1424  *	configured.
1425  *
1426  *	Locking: tty_mutex for now
1427  */
1428 static int tty_driver_install_tty(struct tty_driver *driver,
1429 						struct tty_struct *tty)
1430 {
1431 	return driver->ops->install ? driver->ops->install(driver, tty) :
1432 		tty_standard_install(driver, tty);
1433 }
1434 
1435 /**
1436  *	tty_driver_remove_tty() - remove a tty from the driver tables
1437  *	@driver: the driver for the tty
1438  *	@idx:	 the minor number
1439  *
1440  *	Remvoe a tty object from the driver tables. The tty->index field
1441  *	will be set by the time this is called.
1442  *
1443  *	Locking: tty_mutex for now
1444  */
1445 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1446 {
1447 	if (driver->ops->remove)
1448 		driver->ops->remove(driver, tty);
1449 	else
1450 		driver->ttys[tty->index] = NULL;
1451 }
1452 
1453 /*
1454  * 	tty_reopen()	- fast re-open of an open tty
1455  * 	@tty	- the tty to open
1456  *
1457  *	Return 0 on success, -errno on error.
1458  *	Re-opens on master ptys are not allowed and return -EIO.
1459  *
1460  *	Locking: Caller must hold tty_lock
1461  */
1462 static int tty_reopen(struct tty_struct *tty)
1463 {
1464 	struct tty_driver *driver = tty->driver;
1465 
1466 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1467 	    driver->subtype == PTY_TYPE_MASTER)
1468 		return -EIO;
1469 
1470 	if (!tty->count)
1471 		return -EAGAIN;
1472 
1473 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1474 		return -EBUSY;
1475 
1476 	tty->count++;
1477 
1478 	WARN_ON(!tty->ldisc);
1479 
1480 	return 0;
1481 }
1482 
1483 /**
1484  *	tty_init_dev		-	initialise a tty device
1485  *	@driver: tty driver we are opening a device on
1486  *	@idx: device index
1487  *	@ret_tty: returned tty structure
1488  *
1489  *	Prepare a tty device. This may not be a "new" clean device but
1490  *	could also be an active device. The pty drivers require special
1491  *	handling because of this.
1492  *
1493  *	Locking:
1494  *		The function is called under the tty_mutex, which
1495  *	protects us from the tty struct or driver itself going away.
1496  *
1497  *	On exit the tty device has the line discipline attached and
1498  *	a reference count of 1. If a pair was created for pty/tty use
1499  *	and the other was a pty master then it too has a reference count of 1.
1500  *
1501  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1502  * failed open.  The new code protects the open with a mutex, so it's
1503  * really quite straightforward.  The mutex locking can probably be
1504  * relaxed for the (most common) case of reopening a tty.
1505  */
1506 
1507 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1508 {
1509 	struct tty_struct *tty;
1510 	int retval;
1511 
1512 	/*
1513 	 * First time open is complex, especially for PTY devices.
1514 	 * This code guarantees that either everything succeeds and the
1515 	 * TTY is ready for operation, or else the table slots are vacated
1516 	 * and the allocated memory released.  (Except that the termios
1517 	 * and locked termios may be retained.)
1518 	 */
1519 
1520 	if (!try_module_get(driver->owner))
1521 		return ERR_PTR(-ENODEV);
1522 
1523 	tty = alloc_tty_struct(driver, idx);
1524 	if (!tty) {
1525 		retval = -ENOMEM;
1526 		goto err_module_put;
1527 	}
1528 
1529 	tty_lock(tty);
1530 	retval = tty_driver_install_tty(driver, tty);
1531 	if (retval < 0)
1532 		goto err_deinit_tty;
1533 
1534 	if (!tty->port)
1535 		tty->port = driver->ports[idx];
1536 
1537 	WARN_RATELIMIT(!tty->port,
1538 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1539 			__func__, tty->driver->name);
1540 
1541 	tty->port->itty = tty;
1542 
1543 	/*
1544 	 * Structures all installed ... call the ldisc open routines.
1545 	 * If we fail here just call release_tty to clean up.  No need
1546 	 * to decrement the use counts, as release_tty doesn't care.
1547 	 */
1548 	retval = tty_ldisc_setup(tty, tty->link);
1549 	if (retval)
1550 		goto err_release_tty;
1551 	/* Return the tty locked so that it cannot vanish under the caller */
1552 	return tty;
1553 
1554 err_deinit_tty:
1555 	tty_unlock(tty);
1556 	deinitialize_tty_struct(tty);
1557 	free_tty_struct(tty);
1558 err_module_put:
1559 	module_put(driver->owner);
1560 	return ERR_PTR(retval);
1561 
1562 	/* call the tty release_tty routine to clean out this slot */
1563 err_release_tty:
1564 	tty_unlock(tty);
1565 	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1566 			     retval, idx);
1567 	release_tty(tty, idx);
1568 	return ERR_PTR(retval);
1569 }
1570 
1571 void tty_free_termios(struct tty_struct *tty)
1572 {
1573 	struct ktermios *tp;
1574 	int idx = tty->index;
1575 
1576 	/* If the port is going to reset then it has no termios to save */
1577 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1578 		return;
1579 
1580 	/* Stash the termios data */
1581 	tp = tty->driver->termios[idx];
1582 	if (tp == NULL) {
1583 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1584 		if (tp == NULL)
1585 			return;
1586 		tty->driver->termios[idx] = tp;
1587 	}
1588 	*tp = tty->termios;
1589 }
1590 EXPORT_SYMBOL(tty_free_termios);
1591 
1592 /**
1593  *	tty_flush_works		-	flush all works of a tty/pty pair
1594  *	@tty: tty device to flush works for (or either end of a pty pair)
1595  *
1596  *	Sync flush all works belonging to @tty (and the 'other' tty).
1597  */
1598 static void tty_flush_works(struct tty_struct *tty)
1599 {
1600 	flush_work(&tty->SAK_work);
1601 	flush_work(&tty->hangup_work);
1602 	if (tty->link) {
1603 		flush_work(&tty->link->SAK_work);
1604 		flush_work(&tty->link->hangup_work);
1605 	}
1606 }
1607 
1608 /**
1609  *	release_one_tty		-	release tty structure memory
1610  *	@kref: kref of tty we are obliterating
1611  *
1612  *	Releases memory associated with a tty structure, and clears out the
1613  *	driver table slots. This function is called when a device is no longer
1614  *	in use. It also gets called when setup of a device fails.
1615  *
1616  *	Locking:
1617  *		takes the file list lock internally when working on the list
1618  *	of ttys that the driver keeps.
1619  *
1620  *	This method gets called from a work queue so that the driver private
1621  *	cleanup ops can sleep (needed for USB at least)
1622  */
1623 static void release_one_tty(struct work_struct *work)
1624 {
1625 	struct tty_struct *tty =
1626 		container_of(work, struct tty_struct, hangup_work);
1627 	struct tty_driver *driver = tty->driver;
1628 	struct module *owner = driver->owner;
1629 
1630 	if (tty->ops->cleanup)
1631 		tty->ops->cleanup(tty);
1632 
1633 	tty->magic = 0;
1634 	tty_driver_kref_put(driver);
1635 	module_put(owner);
1636 
1637 	spin_lock(&tty_files_lock);
1638 	list_del_init(&tty->tty_files);
1639 	spin_unlock(&tty_files_lock);
1640 
1641 	put_pid(tty->pgrp);
1642 	put_pid(tty->session);
1643 	free_tty_struct(tty);
1644 }
1645 
1646 static void queue_release_one_tty(struct kref *kref)
1647 {
1648 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1649 
1650 	/* The hangup queue is now free so we can reuse it rather than
1651 	   waste a chunk of memory for each port */
1652 	INIT_WORK(&tty->hangup_work, release_one_tty);
1653 	schedule_work(&tty->hangup_work);
1654 }
1655 
1656 /**
1657  *	tty_kref_put		-	release a tty kref
1658  *	@tty: tty device
1659  *
1660  *	Release a reference to a tty device and if need be let the kref
1661  *	layer destruct the object for us
1662  */
1663 
1664 void tty_kref_put(struct tty_struct *tty)
1665 {
1666 	if (tty)
1667 		kref_put(&tty->kref, queue_release_one_tty);
1668 }
1669 EXPORT_SYMBOL(tty_kref_put);
1670 
1671 /**
1672  *	release_tty		-	release tty structure memory
1673  *
1674  *	Release both @tty and a possible linked partner (think pty pair),
1675  *	and decrement the refcount of the backing module.
1676  *
1677  *	Locking:
1678  *		tty_mutex
1679  *		takes the file list lock internally when working on the list
1680  *	of ttys that the driver keeps.
1681  *
1682  */
1683 static void release_tty(struct tty_struct *tty, int idx)
1684 {
1685 	/* This should always be true but check for the moment */
1686 	WARN_ON(tty->index != idx);
1687 	WARN_ON(!mutex_is_locked(&tty_mutex));
1688 	if (tty->ops->shutdown)
1689 		tty->ops->shutdown(tty);
1690 	tty_free_termios(tty);
1691 	tty_driver_remove_tty(tty->driver, tty);
1692 	tty->port->itty = NULL;
1693 	if (tty->link)
1694 		tty->link->port->itty = NULL;
1695 	tty_buffer_cancel_work(tty->port);
1696 
1697 	tty_kref_put(tty->link);
1698 	tty_kref_put(tty);
1699 }
1700 
1701 /**
1702  *	tty_release_checks - check a tty before real release
1703  *	@tty: tty to check
1704  *	@o_tty: link of @tty (if any)
1705  *	@idx: index of the tty
1706  *
1707  *	Performs some paranoid checking before true release of the @tty.
1708  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1709  */
1710 static int tty_release_checks(struct tty_struct *tty, int idx)
1711 {
1712 #ifdef TTY_PARANOIA_CHECK
1713 	if (idx < 0 || idx >= tty->driver->num) {
1714 		tty_debug(tty, "bad idx %d\n", idx);
1715 		return -1;
1716 	}
1717 
1718 	/* not much to check for devpts */
1719 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1720 		return 0;
1721 
1722 	if (tty != tty->driver->ttys[idx]) {
1723 		tty_debug(tty, "bad driver table[%d] = %p\n",
1724 			  idx, tty->driver->ttys[idx]);
1725 		return -1;
1726 	}
1727 	if (tty->driver->other) {
1728 		struct tty_struct *o_tty = tty->link;
1729 
1730 		if (o_tty != tty->driver->other->ttys[idx]) {
1731 			tty_debug(tty, "bad other table[%d] = %p\n",
1732 				  idx, tty->driver->other->ttys[idx]);
1733 			return -1;
1734 		}
1735 		if (o_tty->link != tty) {
1736 			tty_debug(tty, "bad link = %p\n", o_tty->link);
1737 			return -1;
1738 		}
1739 	}
1740 #endif
1741 	return 0;
1742 }
1743 
1744 /**
1745  *	tty_release		-	vfs callback for close
1746  *	@inode: inode of tty
1747  *	@filp: file pointer for handle to tty
1748  *
1749  *	Called the last time each file handle is closed that references
1750  *	this tty. There may however be several such references.
1751  *
1752  *	Locking:
1753  *		Takes bkl. See tty_release_dev
1754  *
1755  * Even releasing the tty structures is a tricky business.. We have
1756  * to be very careful that the structures are all released at the
1757  * same time, as interrupts might otherwise get the wrong pointers.
1758  *
1759  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1760  * lead to double frees or releasing memory still in use.
1761  */
1762 
1763 int tty_release(struct inode *inode, struct file *filp)
1764 {
1765 	struct tty_struct *tty = file_tty(filp);
1766 	struct tty_struct *o_tty = NULL;
1767 	int	do_sleep, final;
1768 	int	idx;
1769 	long	timeout = 0;
1770 	int	once = 1;
1771 
1772 	if (tty_paranoia_check(tty, inode, __func__))
1773 		return 0;
1774 
1775 	tty_lock(tty);
1776 	check_tty_count(tty, __func__);
1777 
1778 	__tty_fasync(-1, filp, 0);
1779 
1780 	idx = tty->index;
1781 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1782 	    tty->driver->subtype == PTY_TYPE_MASTER)
1783 		o_tty = tty->link;
1784 
1785 	if (tty_release_checks(tty, idx)) {
1786 		tty_unlock(tty);
1787 		return 0;
1788 	}
1789 
1790 	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1791 
1792 	if (tty->ops->close)
1793 		tty->ops->close(tty, filp);
1794 
1795 	/* If tty is pty master, lock the slave pty (stable lock order) */
1796 	tty_lock_slave(o_tty);
1797 
1798 	/*
1799 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1800 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1801 	 * wait queues and kick everyone out _before_ actually starting to
1802 	 * close.  This ensures that we won't block while releasing the tty
1803 	 * structure.
1804 	 *
1805 	 * The test for the o_tty closing is necessary, since the master and
1806 	 * slave sides may close in any order.  If the slave side closes out
1807 	 * first, its count will be one, since the master side holds an open.
1808 	 * Thus this test wouldn't be triggered at the time the slave closed,
1809 	 * so we do it now.
1810 	 */
1811 	while (1) {
1812 		do_sleep = 0;
1813 
1814 		if (tty->count <= 1) {
1815 			if (waitqueue_active(&tty->read_wait)) {
1816 				wake_up_poll(&tty->read_wait, POLLIN);
1817 				do_sleep++;
1818 			}
1819 			if (waitqueue_active(&tty->write_wait)) {
1820 				wake_up_poll(&tty->write_wait, POLLOUT);
1821 				do_sleep++;
1822 			}
1823 		}
1824 		if (o_tty && o_tty->count <= 1) {
1825 			if (waitqueue_active(&o_tty->read_wait)) {
1826 				wake_up_poll(&o_tty->read_wait, POLLIN);
1827 				do_sleep++;
1828 			}
1829 			if (waitqueue_active(&o_tty->write_wait)) {
1830 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1831 				do_sleep++;
1832 			}
1833 		}
1834 		if (!do_sleep)
1835 			break;
1836 
1837 		if (once) {
1838 			once = 0;
1839 			tty_warn(tty, "read/write wait queue active!\n");
1840 		}
1841 		schedule_timeout_killable(timeout);
1842 		if (timeout < 120 * HZ)
1843 			timeout = 2 * timeout + 1;
1844 		else
1845 			timeout = MAX_SCHEDULE_TIMEOUT;
1846 	}
1847 
1848 	if (o_tty) {
1849 		if (--o_tty->count < 0) {
1850 			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1851 			o_tty->count = 0;
1852 		}
1853 	}
1854 	if (--tty->count < 0) {
1855 		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1856 		tty->count = 0;
1857 	}
1858 
1859 	/*
1860 	 * We've decremented tty->count, so we need to remove this file
1861 	 * descriptor off the tty->tty_files list; this serves two
1862 	 * purposes:
1863 	 *  - check_tty_count sees the correct number of file descriptors
1864 	 *    associated with this tty.
1865 	 *  - do_tty_hangup no longer sees this file descriptor as
1866 	 *    something that needs to be handled for hangups.
1867 	 */
1868 	tty_del_file(filp);
1869 
1870 	/*
1871 	 * Perform some housekeeping before deciding whether to return.
1872 	 *
1873 	 * If _either_ side is closing, make sure there aren't any
1874 	 * processes that still think tty or o_tty is their controlling
1875 	 * tty.
1876 	 */
1877 	if (!tty->count) {
1878 		read_lock(&tasklist_lock);
1879 		session_clear_tty(tty->session);
1880 		if (o_tty)
1881 			session_clear_tty(o_tty->session);
1882 		read_unlock(&tasklist_lock);
1883 	}
1884 
1885 	/* check whether both sides are closing ... */
1886 	final = !tty->count && !(o_tty && o_tty->count);
1887 
1888 	tty_unlock_slave(o_tty);
1889 	tty_unlock(tty);
1890 
1891 	/* At this point, the tty->count == 0 should ensure a dead tty
1892 	   cannot be re-opened by a racing opener */
1893 
1894 	if (!final)
1895 		return 0;
1896 
1897 	tty_debug_hangup(tty, "final close\n");
1898 	/*
1899 	 * Ask the line discipline code to release its structures
1900 	 */
1901 	tty_ldisc_release(tty);
1902 
1903 	/* Wait for pending work before tty destruction commmences */
1904 	tty_flush_works(tty);
1905 
1906 	tty_debug_hangup(tty, "freeing structure\n");
1907 	/*
1908 	 * The release_tty function takes care of the details of clearing
1909 	 * the slots and preserving the termios structure. The tty_unlock_pair
1910 	 * should be safe as we keep a kref while the tty is locked (so the
1911 	 * unlock never unlocks a freed tty).
1912 	 */
1913 	mutex_lock(&tty_mutex);
1914 	release_tty(tty, idx);
1915 	mutex_unlock(&tty_mutex);
1916 
1917 	return 0;
1918 }
1919 
1920 /**
1921  *	tty_open_current_tty - get locked tty of current task
1922  *	@device: device number
1923  *	@filp: file pointer to tty
1924  *	@return: locked tty of the current task iff @device is /dev/tty
1925  *
1926  *	Performs a re-open of the current task's controlling tty.
1927  *
1928  *	We cannot return driver and index like for the other nodes because
1929  *	devpts will not work then. It expects inodes to be from devpts FS.
1930  */
1931 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1932 {
1933 	struct tty_struct *tty;
1934 	int retval;
1935 
1936 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1937 		return NULL;
1938 
1939 	tty = get_current_tty();
1940 	if (!tty)
1941 		return ERR_PTR(-ENXIO);
1942 
1943 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1944 	/* noctty = 1; */
1945 	tty_lock(tty);
1946 	tty_kref_put(tty);	/* safe to drop the kref now */
1947 
1948 	retval = tty_reopen(tty);
1949 	if (retval < 0) {
1950 		tty_unlock(tty);
1951 		tty = ERR_PTR(retval);
1952 	}
1953 	return tty;
1954 }
1955 
1956 /**
1957  *	tty_lookup_driver - lookup a tty driver for a given device file
1958  *	@device: device number
1959  *	@filp: file pointer to tty
1960  *	@noctty: set if the device should not become a controlling tty
1961  *	@index: index for the device in the @return driver
1962  *	@return: driver for this inode (with increased refcount)
1963  *
1964  * 	If @return is not erroneous, the caller is responsible to decrement the
1965  * 	refcount by tty_driver_kref_put.
1966  *
1967  *	Locking: tty_mutex protects get_tty_driver
1968  */
1969 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1970 		int *noctty, int *index)
1971 {
1972 	struct tty_driver *driver;
1973 
1974 	switch (device) {
1975 #ifdef CONFIG_VT
1976 	case MKDEV(TTY_MAJOR, 0): {
1977 		extern struct tty_driver *console_driver;
1978 		driver = tty_driver_kref_get(console_driver);
1979 		*index = fg_console;
1980 		*noctty = 1;
1981 		break;
1982 	}
1983 #endif
1984 	case MKDEV(TTYAUX_MAJOR, 1): {
1985 		struct tty_driver *console_driver = console_device(index);
1986 		if (console_driver) {
1987 			driver = tty_driver_kref_get(console_driver);
1988 			if (driver) {
1989 				/* Don't let /dev/console block */
1990 				filp->f_flags |= O_NONBLOCK;
1991 				*noctty = 1;
1992 				break;
1993 			}
1994 		}
1995 		return ERR_PTR(-ENODEV);
1996 	}
1997 	default:
1998 		driver = get_tty_driver(device, index);
1999 		if (!driver)
2000 			return ERR_PTR(-ENODEV);
2001 		break;
2002 	}
2003 	return driver;
2004 }
2005 
2006 /**
2007  *	tty_open		-	open a tty device
2008  *	@inode: inode of device file
2009  *	@filp: file pointer to tty
2010  *
2011  *	tty_open and tty_release keep up the tty count that contains the
2012  *	number of opens done on a tty. We cannot use the inode-count, as
2013  *	different inodes might point to the same tty.
2014  *
2015  *	Open-counting is needed for pty masters, as well as for keeping
2016  *	track of serial lines: DTR is dropped when the last close happens.
2017  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2018  *
2019  *	The termios state of a pty is reset on first open so that
2020  *	settings don't persist across reuse.
2021  *
2022  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2023  *		 tty->count should protect the rest.
2024  *		 ->siglock protects ->signal/->sighand
2025  *
2026  *	Note: the tty_unlock/lock cases without a ref are only safe due to
2027  *	tty_mutex
2028  */
2029 
2030 static int tty_open(struct inode *inode, struct file *filp)
2031 {
2032 	struct tty_struct *tty;
2033 	int noctty, retval;
2034 	struct tty_driver *driver = NULL;
2035 	int index;
2036 	dev_t device = inode->i_rdev;
2037 	unsigned saved_flags = filp->f_flags;
2038 
2039 	nonseekable_open(inode, filp);
2040 
2041 retry_open:
2042 	retval = tty_alloc_file(filp);
2043 	if (retval)
2044 		return -ENOMEM;
2045 
2046 	noctty = filp->f_flags & O_NOCTTY;
2047 	index  = -1;
2048 	retval = 0;
2049 
2050 	tty = tty_open_current_tty(device, filp);
2051 	if (!tty) {
2052 		mutex_lock(&tty_mutex);
2053 		driver = tty_lookup_driver(device, filp, &noctty, &index);
2054 		if (IS_ERR(driver)) {
2055 			retval = PTR_ERR(driver);
2056 			goto err_unlock;
2057 		}
2058 
2059 		/* check whether we're reopening an existing tty */
2060 		tty = tty_driver_lookup_tty(driver, inode, index);
2061 		if (IS_ERR(tty)) {
2062 			retval = PTR_ERR(tty);
2063 			goto err_unlock;
2064 		}
2065 
2066 		if (tty) {
2067 			mutex_unlock(&tty_mutex);
2068 			retval = tty_lock_interruptible(tty);
2069 			tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2070 			if (retval) {
2071 				if (retval == -EINTR)
2072 					retval = -ERESTARTSYS;
2073 				goto err_unref;
2074 			}
2075 			retval = tty_reopen(tty);
2076 			if (retval < 0) {
2077 				tty_unlock(tty);
2078 				tty = ERR_PTR(retval);
2079 			}
2080 		} else { /* Returns with the tty_lock held for now */
2081 			tty = tty_init_dev(driver, index);
2082 			mutex_unlock(&tty_mutex);
2083 		}
2084 
2085 		tty_driver_kref_put(driver);
2086 	}
2087 
2088 	if (IS_ERR(tty)) {
2089 		retval = PTR_ERR(tty);
2090 		if (retval != -EAGAIN || signal_pending(current))
2091 			goto err_file;
2092 		tty_free_file(filp);
2093 		schedule();
2094 		goto retry_open;
2095 	}
2096 
2097 	tty_add_file(tty, filp);
2098 
2099 	check_tty_count(tty, __func__);
2100 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2101 	    tty->driver->subtype == PTY_TYPE_MASTER)
2102 		noctty = 1;
2103 
2104 	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2105 
2106 	if (tty->ops->open)
2107 		retval = tty->ops->open(tty, filp);
2108 	else
2109 		retval = -ENODEV;
2110 	filp->f_flags = saved_flags;
2111 
2112 	if (retval) {
2113 		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2114 
2115 		tty_unlock(tty); /* need to call tty_release without BTM */
2116 		tty_release(inode, filp);
2117 		if (retval != -ERESTARTSYS)
2118 			return retval;
2119 
2120 		if (signal_pending(current))
2121 			return retval;
2122 
2123 		schedule();
2124 		/*
2125 		 * Need to reset f_op in case a hangup happened.
2126 		 */
2127 		if (tty_hung_up_p(filp))
2128 			filp->f_op = &tty_fops;
2129 		goto retry_open;
2130 	}
2131 	clear_bit(TTY_HUPPED, &tty->flags);
2132 
2133 
2134 	read_lock(&tasklist_lock);
2135 	spin_lock_irq(&current->sighand->siglock);
2136 	if (!noctty &&
2137 	    current->signal->leader &&
2138 	    !current->signal->tty &&
2139 	    tty->session == NULL) {
2140 		/*
2141 		 * Don't let a process that only has write access to the tty
2142 		 * obtain the privileges associated with having a tty as
2143 		 * controlling terminal (being able to reopen it with full
2144 		 * access through /dev/tty, being able to perform pushback).
2145 		 * Many distributions set the group of all ttys to "tty" and
2146 		 * grant write-only access to all terminals for setgid tty
2147 		 * binaries, which should not imply full privileges on all ttys.
2148 		 *
2149 		 * This could theoretically break old code that performs open()
2150 		 * on a write-only file descriptor. In that case, it might be
2151 		 * necessary to also permit this if
2152 		 * inode_permission(inode, MAY_READ) == 0.
2153 		 */
2154 		if (filp->f_mode & FMODE_READ)
2155 			__proc_set_tty(tty);
2156 	}
2157 	spin_unlock_irq(&current->sighand->siglock);
2158 	read_unlock(&tasklist_lock);
2159 	tty_unlock(tty);
2160 	return 0;
2161 err_unlock:
2162 	mutex_unlock(&tty_mutex);
2163 err_unref:
2164 	/* after locks to avoid deadlock */
2165 	if (!IS_ERR_OR_NULL(driver))
2166 		tty_driver_kref_put(driver);
2167 err_file:
2168 	tty_free_file(filp);
2169 	return retval;
2170 }
2171 
2172 
2173 
2174 /**
2175  *	tty_poll	-	check tty status
2176  *	@filp: file being polled
2177  *	@wait: poll wait structures to update
2178  *
2179  *	Call the line discipline polling method to obtain the poll
2180  *	status of the device.
2181  *
2182  *	Locking: locks called line discipline but ldisc poll method
2183  *	may be re-entered freely by other callers.
2184  */
2185 
2186 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2187 {
2188 	struct tty_struct *tty = file_tty(filp);
2189 	struct tty_ldisc *ld;
2190 	int ret = 0;
2191 
2192 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2193 		return 0;
2194 
2195 	ld = tty_ldisc_ref_wait(tty);
2196 	if (ld->ops->poll)
2197 		ret = ld->ops->poll(tty, filp, wait);
2198 	tty_ldisc_deref(ld);
2199 	return ret;
2200 }
2201 
2202 static int __tty_fasync(int fd, struct file *filp, int on)
2203 {
2204 	struct tty_struct *tty = file_tty(filp);
2205 	struct tty_ldisc *ldisc;
2206 	unsigned long flags;
2207 	int retval = 0;
2208 
2209 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2210 		goto out;
2211 
2212 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2213 	if (retval <= 0)
2214 		goto out;
2215 
2216 	ldisc = tty_ldisc_ref(tty);
2217 	if (ldisc) {
2218 		if (ldisc->ops->fasync)
2219 			ldisc->ops->fasync(tty, on);
2220 		tty_ldisc_deref(ldisc);
2221 	}
2222 
2223 	if (on) {
2224 		enum pid_type type;
2225 		struct pid *pid;
2226 
2227 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2228 		if (tty->pgrp) {
2229 			pid = tty->pgrp;
2230 			type = PIDTYPE_PGID;
2231 		} else {
2232 			pid = task_pid(current);
2233 			type = PIDTYPE_PID;
2234 		}
2235 		get_pid(pid);
2236 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2237 		__f_setown(filp, pid, type, 0);
2238 		put_pid(pid);
2239 		retval = 0;
2240 	}
2241 out:
2242 	return retval;
2243 }
2244 
2245 static int tty_fasync(int fd, struct file *filp, int on)
2246 {
2247 	struct tty_struct *tty = file_tty(filp);
2248 	int retval;
2249 
2250 	tty_lock(tty);
2251 	retval = __tty_fasync(fd, filp, on);
2252 	tty_unlock(tty);
2253 
2254 	return retval;
2255 }
2256 
2257 /**
2258  *	tiocsti			-	fake input character
2259  *	@tty: tty to fake input into
2260  *	@p: pointer to character
2261  *
2262  *	Fake input to a tty device. Does the necessary locking and
2263  *	input management.
2264  *
2265  *	FIXME: does not honour flow control ??
2266  *
2267  *	Locking:
2268  *		Called functions take tty_ldiscs_lock
2269  *		current->signal->tty check is safe without locks
2270  *
2271  *	FIXME: may race normal receive processing
2272  */
2273 
2274 static int tiocsti(struct tty_struct *tty, char __user *p)
2275 {
2276 	char ch, mbz = 0;
2277 	struct tty_ldisc *ld;
2278 
2279 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2280 		return -EPERM;
2281 	if (get_user(ch, p))
2282 		return -EFAULT;
2283 	tty_audit_tiocsti(tty, ch);
2284 	ld = tty_ldisc_ref_wait(tty);
2285 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2286 	tty_ldisc_deref(ld);
2287 	return 0;
2288 }
2289 
2290 /**
2291  *	tiocgwinsz		-	implement window query ioctl
2292  *	@tty; tty
2293  *	@arg: user buffer for result
2294  *
2295  *	Copies the kernel idea of the window size into the user buffer.
2296  *
2297  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2298  *		is consistent.
2299  */
2300 
2301 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2302 {
2303 	int err;
2304 
2305 	mutex_lock(&tty->winsize_mutex);
2306 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2307 	mutex_unlock(&tty->winsize_mutex);
2308 
2309 	return err ? -EFAULT: 0;
2310 }
2311 
2312 /**
2313  *	tty_do_resize		-	resize event
2314  *	@tty: tty being resized
2315  *	@rows: rows (character)
2316  *	@cols: cols (character)
2317  *
2318  *	Update the termios variables and send the necessary signals to
2319  *	peform a terminal resize correctly
2320  */
2321 
2322 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2323 {
2324 	struct pid *pgrp;
2325 
2326 	/* Lock the tty */
2327 	mutex_lock(&tty->winsize_mutex);
2328 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2329 		goto done;
2330 
2331 	/* Signal the foreground process group */
2332 	pgrp = tty_get_pgrp(tty);
2333 	if (pgrp)
2334 		kill_pgrp(pgrp, SIGWINCH, 1);
2335 	put_pid(pgrp);
2336 
2337 	tty->winsize = *ws;
2338 done:
2339 	mutex_unlock(&tty->winsize_mutex);
2340 	return 0;
2341 }
2342 EXPORT_SYMBOL(tty_do_resize);
2343 
2344 /**
2345  *	tiocswinsz		-	implement window size set ioctl
2346  *	@tty; tty side of tty
2347  *	@arg: user buffer for result
2348  *
2349  *	Copies the user idea of the window size to the kernel. Traditionally
2350  *	this is just advisory information but for the Linux console it
2351  *	actually has driver level meaning and triggers a VC resize.
2352  *
2353  *	Locking:
2354  *		Driver dependent. The default do_resize method takes the
2355  *	tty termios mutex and ctrl_lock. The console takes its own lock
2356  *	then calls into the default method.
2357  */
2358 
2359 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2360 {
2361 	struct winsize tmp_ws;
2362 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2363 		return -EFAULT;
2364 
2365 	if (tty->ops->resize)
2366 		return tty->ops->resize(tty, &tmp_ws);
2367 	else
2368 		return tty_do_resize(tty, &tmp_ws);
2369 }
2370 
2371 /**
2372  *	tioccons	-	allow admin to move logical console
2373  *	@file: the file to become console
2374  *
2375  *	Allow the administrator to move the redirected console device
2376  *
2377  *	Locking: uses redirect_lock to guard the redirect information
2378  */
2379 
2380 static int tioccons(struct file *file)
2381 {
2382 	if (!capable(CAP_SYS_ADMIN))
2383 		return -EPERM;
2384 	if (file->f_op->write == redirected_tty_write) {
2385 		struct file *f;
2386 		spin_lock(&redirect_lock);
2387 		f = redirect;
2388 		redirect = NULL;
2389 		spin_unlock(&redirect_lock);
2390 		if (f)
2391 			fput(f);
2392 		return 0;
2393 	}
2394 	spin_lock(&redirect_lock);
2395 	if (redirect) {
2396 		spin_unlock(&redirect_lock);
2397 		return -EBUSY;
2398 	}
2399 	redirect = get_file(file);
2400 	spin_unlock(&redirect_lock);
2401 	return 0;
2402 }
2403 
2404 /**
2405  *	fionbio		-	non blocking ioctl
2406  *	@file: file to set blocking value
2407  *	@p: user parameter
2408  *
2409  *	Historical tty interfaces had a blocking control ioctl before
2410  *	the generic functionality existed. This piece of history is preserved
2411  *	in the expected tty API of posix OS's.
2412  *
2413  *	Locking: none, the open file handle ensures it won't go away.
2414  */
2415 
2416 static int fionbio(struct file *file, int __user *p)
2417 {
2418 	int nonblock;
2419 
2420 	if (get_user(nonblock, p))
2421 		return -EFAULT;
2422 
2423 	spin_lock(&file->f_lock);
2424 	if (nonblock)
2425 		file->f_flags |= O_NONBLOCK;
2426 	else
2427 		file->f_flags &= ~O_NONBLOCK;
2428 	spin_unlock(&file->f_lock);
2429 	return 0;
2430 }
2431 
2432 /**
2433  *	tiocsctty	-	set controlling tty
2434  *	@tty: tty structure
2435  *	@arg: user argument
2436  *
2437  *	This ioctl is used to manage job control. It permits a session
2438  *	leader to set this tty as the controlling tty for the session.
2439  *
2440  *	Locking:
2441  *		Takes tty_lock() to serialize proc_set_tty() for this tty
2442  *		Takes tasklist_lock internally to walk sessions
2443  *		Takes ->siglock() when updating signal->tty
2444  */
2445 
2446 static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2447 {
2448 	int ret = 0;
2449 
2450 	tty_lock(tty);
2451 	read_lock(&tasklist_lock);
2452 
2453 	if (current->signal->leader && (task_session(current) == tty->session))
2454 		goto unlock;
2455 
2456 	/*
2457 	 * The process must be a session leader and
2458 	 * not have a controlling tty already.
2459 	 */
2460 	if (!current->signal->leader || current->signal->tty) {
2461 		ret = -EPERM;
2462 		goto unlock;
2463 	}
2464 
2465 	if (tty->session) {
2466 		/*
2467 		 * This tty is already the controlling
2468 		 * tty for another session group!
2469 		 */
2470 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2471 			/*
2472 			 * Steal it away
2473 			 */
2474 			session_clear_tty(tty->session);
2475 		} else {
2476 			ret = -EPERM;
2477 			goto unlock;
2478 		}
2479 	}
2480 
2481 	/* See the comment in tty_open(). */
2482 	if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2483 		ret = -EPERM;
2484 		goto unlock;
2485 	}
2486 
2487 	proc_set_tty(tty);
2488 unlock:
2489 	read_unlock(&tasklist_lock);
2490 	tty_unlock(tty);
2491 	return ret;
2492 }
2493 
2494 /**
2495  *	tty_get_pgrp	-	return a ref counted pgrp pid
2496  *	@tty: tty to read
2497  *
2498  *	Returns a refcounted instance of the pid struct for the process
2499  *	group controlling the tty.
2500  */
2501 
2502 struct pid *tty_get_pgrp(struct tty_struct *tty)
2503 {
2504 	unsigned long flags;
2505 	struct pid *pgrp;
2506 
2507 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2508 	pgrp = get_pid(tty->pgrp);
2509 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2510 
2511 	return pgrp;
2512 }
2513 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2514 
2515 /*
2516  * This checks not only the pgrp, but falls back on the pid if no
2517  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2518  * without this...
2519  *
2520  * The caller must hold rcu lock or the tasklist lock.
2521  */
2522 static struct pid *session_of_pgrp(struct pid *pgrp)
2523 {
2524 	struct task_struct *p;
2525 	struct pid *sid = NULL;
2526 
2527 	p = pid_task(pgrp, PIDTYPE_PGID);
2528 	if (p == NULL)
2529 		p = pid_task(pgrp, PIDTYPE_PID);
2530 	if (p != NULL)
2531 		sid = task_session(p);
2532 
2533 	return sid;
2534 }
2535 
2536 /**
2537  *	tiocgpgrp		-	get process group
2538  *	@tty: tty passed by user
2539  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2540  *	@p: returned pid
2541  *
2542  *	Obtain the process group of the tty. If there is no process group
2543  *	return an error.
2544  *
2545  *	Locking: none. Reference to current->signal->tty is safe.
2546  */
2547 
2548 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2549 {
2550 	struct pid *pid;
2551 	int ret;
2552 	/*
2553 	 * (tty == real_tty) is a cheap way of
2554 	 * testing if the tty is NOT a master pty.
2555 	 */
2556 	if (tty == real_tty && current->signal->tty != real_tty)
2557 		return -ENOTTY;
2558 	pid = tty_get_pgrp(real_tty);
2559 	ret =  put_user(pid_vnr(pid), p);
2560 	put_pid(pid);
2561 	return ret;
2562 }
2563 
2564 /**
2565  *	tiocspgrp		-	attempt to set process group
2566  *	@tty: tty passed by user
2567  *	@real_tty: tty side device matching tty passed by user
2568  *	@p: pid pointer
2569  *
2570  *	Set the process group of the tty to the session passed. Only
2571  *	permitted where the tty session is our session.
2572  *
2573  *	Locking: RCU, ctrl lock
2574  */
2575 
2576 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2577 {
2578 	struct pid *pgrp;
2579 	pid_t pgrp_nr;
2580 	int retval = tty_check_change(real_tty);
2581 
2582 	if (retval == -EIO)
2583 		return -ENOTTY;
2584 	if (retval)
2585 		return retval;
2586 	if (!current->signal->tty ||
2587 	    (current->signal->tty != real_tty) ||
2588 	    (real_tty->session != task_session(current)))
2589 		return -ENOTTY;
2590 	if (get_user(pgrp_nr, p))
2591 		return -EFAULT;
2592 	if (pgrp_nr < 0)
2593 		return -EINVAL;
2594 	rcu_read_lock();
2595 	pgrp = find_vpid(pgrp_nr);
2596 	retval = -ESRCH;
2597 	if (!pgrp)
2598 		goto out_unlock;
2599 	retval = -EPERM;
2600 	if (session_of_pgrp(pgrp) != task_session(current))
2601 		goto out_unlock;
2602 	retval = 0;
2603 	spin_lock_irq(&tty->ctrl_lock);
2604 	put_pid(real_tty->pgrp);
2605 	real_tty->pgrp = get_pid(pgrp);
2606 	spin_unlock_irq(&tty->ctrl_lock);
2607 out_unlock:
2608 	rcu_read_unlock();
2609 	return retval;
2610 }
2611 
2612 /**
2613  *	tiocgsid		-	get session id
2614  *	@tty: tty passed by user
2615  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2616  *	@p: pointer to returned session id
2617  *
2618  *	Obtain the session id of the tty. If there is no session
2619  *	return an error.
2620  *
2621  *	Locking: none. Reference to current->signal->tty is safe.
2622  */
2623 
2624 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2625 {
2626 	/*
2627 	 * (tty == real_tty) is a cheap way of
2628 	 * testing if the tty is NOT a master pty.
2629 	*/
2630 	if (tty == real_tty && current->signal->tty != real_tty)
2631 		return -ENOTTY;
2632 	if (!real_tty->session)
2633 		return -ENOTTY;
2634 	return put_user(pid_vnr(real_tty->session), p);
2635 }
2636 
2637 /**
2638  *	tiocsetd	-	set line discipline
2639  *	@tty: tty device
2640  *	@p: pointer to user data
2641  *
2642  *	Set the line discipline according to user request.
2643  *
2644  *	Locking: see tty_set_ldisc, this function is just a helper
2645  */
2646 
2647 static int tiocsetd(struct tty_struct *tty, int __user *p)
2648 {
2649 	int ldisc;
2650 	int ret;
2651 
2652 	if (get_user(ldisc, p))
2653 		return -EFAULT;
2654 
2655 	ret = tty_set_ldisc(tty, ldisc);
2656 
2657 	return ret;
2658 }
2659 
2660 /**
2661  *	tiocgetd	-	get line discipline
2662  *	@tty: tty device
2663  *	@p: pointer to user data
2664  *
2665  *	Retrieves the line discipline id directly from the ldisc.
2666  *
2667  *	Locking: waits for ldisc reference (in case the line discipline
2668  *		is changing or the tty is being hungup)
2669  */
2670 
2671 static int tiocgetd(struct tty_struct *tty, int __user *p)
2672 {
2673 	struct tty_ldisc *ld;
2674 	int ret;
2675 
2676 	ld = tty_ldisc_ref_wait(tty);
2677 	ret = put_user(ld->ops->num, p);
2678 	tty_ldisc_deref(ld);
2679 	return ret;
2680 }
2681 
2682 /**
2683  *	send_break	-	performed time break
2684  *	@tty: device to break on
2685  *	@duration: timeout in mS
2686  *
2687  *	Perform a timed break on hardware that lacks its own driver level
2688  *	timed break functionality.
2689  *
2690  *	Locking:
2691  *		atomic_write_lock serializes
2692  *
2693  */
2694 
2695 static int send_break(struct tty_struct *tty, unsigned int duration)
2696 {
2697 	int retval;
2698 
2699 	if (tty->ops->break_ctl == NULL)
2700 		return 0;
2701 
2702 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2703 		retval = tty->ops->break_ctl(tty, duration);
2704 	else {
2705 		/* Do the work ourselves */
2706 		if (tty_write_lock(tty, 0) < 0)
2707 			return -EINTR;
2708 		retval = tty->ops->break_ctl(tty, -1);
2709 		if (retval)
2710 			goto out;
2711 		if (!signal_pending(current))
2712 			msleep_interruptible(duration);
2713 		retval = tty->ops->break_ctl(tty, 0);
2714 out:
2715 		tty_write_unlock(tty);
2716 		if (signal_pending(current))
2717 			retval = -EINTR;
2718 	}
2719 	return retval;
2720 }
2721 
2722 /**
2723  *	tty_tiocmget		-	get modem status
2724  *	@tty: tty device
2725  *	@file: user file pointer
2726  *	@p: pointer to result
2727  *
2728  *	Obtain the modem status bits from the tty driver if the feature
2729  *	is supported. Return -EINVAL if it is not available.
2730  *
2731  *	Locking: none (up to the driver)
2732  */
2733 
2734 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2735 {
2736 	int retval = -EINVAL;
2737 
2738 	if (tty->ops->tiocmget) {
2739 		retval = tty->ops->tiocmget(tty);
2740 
2741 		if (retval >= 0)
2742 			retval = put_user(retval, p);
2743 	}
2744 	return retval;
2745 }
2746 
2747 /**
2748  *	tty_tiocmset		-	set modem status
2749  *	@tty: tty device
2750  *	@cmd: command - clear bits, set bits or set all
2751  *	@p: pointer to desired bits
2752  *
2753  *	Set the modem status bits from the tty driver if the feature
2754  *	is supported. Return -EINVAL if it is not available.
2755  *
2756  *	Locking: none (up to the driver)
2757  */
2758 
2759 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2760 	     unsigned __user *p)
2761 {
2762 	int retval;
2763 	unsigned int set, clear, val;
2764 
2765 	if (tty->ops->tiocmset == NULL)
2766 		return -EINVAL;
2767 
2768 	retval = get_user(val, p);
2769 	if (retval)
2770 		return retval;
2771 	set = clear = 0;
2772 	switch (cmd) {
2773 	case TIOCMBIS:
2774 		set = val;
2775 		break;
2776 	case TIOCMBIC:
2777 		clear = val;
2778 		break;
2779 	case TIOCMSET:
2780 		set = val;
2781 		clear = ~val;
2782 		break;
2783 	}
2784 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2785 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2786 	return tty->ops->tiocmset(tty, set, clear);
2787 }
2788 
2789 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2790 {
2791 	int retval = -EINVAL;
2792 	struct serial_icounter_struct icount;
2793 	memset(&icount, 0, sizeof(icount));
2794 	if (tty->ops->get_icount)
2795 		retval = tty->ops->get_icount(tty, &icount);
2796 	if (retval != 0)
2797 		return retval;
2798 	if (copy_to_user(arg, &icount, sizeof(icount)))
2799 		return -EFAULT;
2800 	return 0;
2801 }
2802 
2803 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2804 {
2805 	static DEFINE_RATELIMIT_STATE(depr_flags,
2806 			DEFAULT_RATELIMIT_INTERVAL,
2807 			DEFAULT_RATELIMIT_BURST);
2808 	char comm[TASK_COMM_LEN];
2809 	int flags;
2810 
2811 	if (get_user(flags, &ss->flags))
2812 		return;
2813 
2814 	flags &= ASYNC_DEPRECATED;
2815 
2816 	if (flags && __ratelimit(&depr_flags))
2817 		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2818 				__func__, get_task_comm(comm, current), flags);
2819 }
2820 
2821 /*
2822  * if pty, return the slave side (real_tty)
2823  * otherwise, return self
2824  */
2825 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2826 {
2827 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2828 	    tty->driver->subtype == PTY_TYPE_MASTER)
2829 		tty = tty->link;
2830 	return tty;
2831 }
2832 
2833 /*
2834  * Split this up, as gcc can choke on it otherwise..
2835  */
2836 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2837 {
2838 	struct tty_struct *tty = file_tty(file);
2839 	struct tty_struct *real_tty;
2840 	void __user *p = (void __user *)arg;
2841 	int retval;
2842 	struct tty_ldisc *ld;
2843 
2844 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2845 		return -EINVAL;
2846 
2847 	real_tty = tty_pair_get_tty(tty);
2848 
2849 	/*
2850 	 * Factor out some common prep work
2851 	 */
2852 	switch (cmd) {
2853 	case TIOCSETD:
2854 	case TIOCSBRK:
2855 	case TIOCCBRK:
2856 	case TCSBRK:
2857 	case TCSBRKP:
2858 		retval = tty_check_change(tty);
2859 		if (retval)
2860 			return retval;
2861 		if (cmd != TIOCCBRK) {
2862 			tty_wait_until_sent(tty, 0);
2863 			if (signal_pending(current))
2864 				return -EINTR;
2865 		}
2866 		break;
2867 	}
2868 
2869 	/*
2870 	 *	Now do the stuff.
2871 	 */
2872 	switch (cmd) {
2873 	case TIOCSTI:
2874 		return tiocsti(tty, p);
2875 	case TIOCGWINSZ:
2876 		return tiocgwinsz(real_tty, p);
2877 	case TIOCSWINSZ:
2878 		return tiocswinsz(real_tty, p);
2879 	case TIOCCONS:
2880 		return real_tty != tty ? -EINVAL : tioccons(file);
2881 	case FIONBIO:
2882 		return fionbio(file, p);
2883 	case TIOCEXCL:
2884 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2885 		return 0;
2886 	case TIOCNXCL:
2887 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2888 		return 0;
2889 	case TIOCGEXCL:
2890 	{
2891 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2892 		return put_user(excl, (int __user *)p);
2893 	}
2894 	case TIOCNOTTY:
2895 		if (current->signal->tty != tty)
2896 			return -ENOTTY;
2897 		no_tty();
2898 		return 0;
2899 	case TIOCSCTTY:
2900 		return tiocsctty(real_tty, file, arg);
2901 	case TIOCGPGRP:
2902 		return tiocgpgrp(tty, real_tty, p);
2903 	case TIOCSPGRP:
2904 		return tiocspgrp(tty, real_tty, p);
2905 	case TIOCGSID:
2906 		return tiocgsid(tty, real_tty, p);
2907 	case TIOCGETD:
2908 		return tiocgetd(tty, p);
2909 	case TIOCSETD:
2910 		return tiocsetd(tty, p);
2911 	case TIOCVHANGUP:
2912 		if (!capable(CAP_SYS_ADMIN))
2913 			return -EPERM;
2914 		tty_vhangup(tty);
2915 		return 0;
2916 	case TIOCGDEV:
2917 	{
2918 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2919 		return put_user(ret, (unsigned int __user *)p);
2920 	}
2921 	/*
2922 	 * Break handling
2923 	 */
2924 	case TIOCSBRK:	/* Turn break on, unconditionally */
2925 		if (tty->ops->break_ctl)
2926 			return tty->ops->break_ctl(tty, -1);
2927 		return 0;
2928 	case TIOCCBRK:	/* Turn break off, unconditionally */
2929 		if (tty->ops->break_ctl)
2930 			return tty->ops->break_ctl(tty, 0);
2931 		return 0;
2932 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2933 		/* non-zero arg means wait for all output data
2934 		 * to be sent (performed above) but don't send break.
2935 		 * This is used by the tcdrain() termios function.
2936 		 */
2937 		if (!arg)
2938 			return send_break(tty, 250);
2939 		return 0;
2940 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2941 		return send_break(tty, arg ? arg*100 : 250);
2942 
2943 	case TIOCMGET:
2944 		return tty_tiocmget(tty, p);
2945 	case TIOCMSET:
2946 	case TIOCMBIC:
2947 	case TIOCMBIS:
2948 		return tty_tiocmset(tty, cmd, p);
2949 	case TIOCGICOUNT:
2950 		retval = tty_tiocgicount(tty, p);
2951 		/* For the moment allow fall through to the old method */
2952         	if (retval != -EINVAL)
2953 			return retval;
2954 		break;
2955 	case TCFLSH:
2956 		switch (arg) {
2957 		case TCIFLUSH:
2958 		case TCIOFLUSH:
2959 		/* flush tty buffer and allow ldisc to process ioctl */
2960 			tty_buffer_flush(tty, NULL);
2961 			break;
2962 		}
2963 		break;
2964 	case TIOCSSERIAL:
2965 		tty_warn_deprecated_flags(p);
2966 		break;
2967 	}
2968 	if (tty->ops->ioctl) {
2969 		retval = tty->ops->ioctl(tty, cmd, arg);
2970 		if (retval != -ENOIOCTLCMD)
2971 			return retval;
2972 	}
2973 	ld = tty_ldisc_ref_wait(tty);
2974 	retval = -EINVAL;
2975 	if (ld->ops->ioctl) {
2976 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2977 		if (retval == -ENOIOCTLCMD)
2978 			retval = -ENOTTY;
2979 	}
2980 	tty_ldisc_deref(ld);
2981 	return retval;
2982 }
2983 
2984 #ifdef CONFIG_COMPAT
2985 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2986 				unsigned long arg)
2987 {
2988 	struct tty_struct *tty = file_tty(file);
2989 	struct tty_ldisc *ld;
2990 	int retval = -ENOIOCTLCMD;
2991 
2992 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2993 		return -EINVAL;
2994 
2995 	if (tty->ops->compat_ioctl) {
2996 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2997 		if (retval != -ENOIOCTLCMD)
2998 			return retval;
2999 	}
3000 
3001 	ld = tty_ldisc_ref_wait(tty);
3002 	if (ld->ops->compat_ioctl)
3003 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3004 	else
3005 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
3006 	tty_ldisc_deref(ld);
3007 
3008 	return retval;
3009 }
3010 #endif
3011 
3012 static int this_tty(const void *t, struct file *file, unsigned fd)
3013 {
3014 	if (likely(file->f_op->read != tty_read))
3015 		return 0;
3016 	return file_tty(file) != t ? 0 : fd + 1;
3017 }
3018 
3019 /*
3020  * This implements the "Secure Attention Key" ---  the idea is to
3021  * prevent trojan horses by killing all processes associated with this
3022  * tty when the user hits the "Secure Attention Key".  Required for
3023  * super-paranoid applications --- see the Orange Book for more details.
3024  *
3025  * This code could be nicer; ideally it should send a HUP, wait a few
3026  * seconds, then send a INT, and then a KILL signal.  But you then
3027  * have to coordinate with the init process, since all processes associated
3028  * with the current tty must be dead before the new getty is allowed
3029  * to spawn.
3030  *
3031  * Now, if it would be correct ;-/ The current code has a nasty hole -
3032  * it doesn't catch files in flight. We may send the descriptor to ourselves
3033  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3034  *
3035  * Nasty bug: do_SAK is being called in interrupt context.  This can
3036  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3037  */
3038 void __do_SAK(struct tty_struct *tty)
3039 {
3040 #ifdef TTY_SOFT_SAK
3041 	tty_hangup(tty);
3042 #else
3043 	struct task_struct *g, *p;
3044 	struct pid *session;
3045 	int		i;
3046 
3047 	if (!tty)
3048 		return;
3049 	session = tty->session;
3050 
3051 	tty_ldisc_flush(tty);
3052 
3053 	tty_driver_flush_buffer(tty);
3054 
3055 	read_lock(&tasklist_lock);
3056 	/* Kill the entire session */
3057 	do_each_pid_task(session, PIDTYPE_SID, p) {
3058 		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3059 			   task_pid_nr(p), p->comm);
3060 		send_sig(SIGKILL, p, 1);
3061 	} while_each_pid_task(session, PIDTYPE_SID, p);
3062 
3063 	/* Now kill any processes that happen to have the tty open */
3064 	do_each_thread(g, p) {
3065 		if (p->signal->tty == tty) {
3066 			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3067 				   task_pid_nr(p), p->comm);
3068 			send_sig(SIGKILL, p, 1);
3069 			continue;
3070 		}
3071 		task_lock(p);
3072 		i = iterate_fd(p->files, 0, this_tty, tty);
3073 		if (i != 0) {
3074 			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3075 				   task_pid_nr(p), p->comm, i - 1);
3076 			force_sig(SIGKILL, p);
3077 		}
3078 		task_unlock(p);
3079 	} while_each_thread(g, p);
3080 	read_unlock(&tasklist_lock);
3081 #endif
3082 }
3083 
3084 static void do_SAK_work(struct work_struct *work)
3085 {
3086 	struct tty_struct *tty =
3087 		container_of(work, struct tty_struct, SAK_work);
3088 	__do_SAK(tty);
3089 }
3090 
3091 /*
3092  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3093  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3094  * the values which we write to it will be identical to the values which it
3095  * already has. --akpm
3096  */
3097 void do_SAK(struct tty_struct *tty)
3098 {
3099 	if (!tty)
3100 		return;
3101 	schedule_work(&tty->SAK_work);
3102 }
3103 
3104 EXPORT_SYMBOL(do_SAK);
3105 
3106 static int dev_match_devt(struct device *dev, const void *data)
3107 {
3108 	const dev_t *devt = data;
3109 	return dev->devt == *devt;
3110 }
3111 
3112 /* Must put_device() after it's unused! */
3113 static struct device *tty_get_device(struct tty_struct *tty)
3114 {
3115 	dev_t devt = tty_devnum(tty);
3116 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3117 }
3118 
3119 
3120 /**
3121  *	alloc_tty_struct
3122  *
3123  *	This subroutine allocates and initializes a tty structure.
3124  *
3125  *	Locking: none - tty in question is not exposed at this point
3126  */
3127 
3128 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3129 {
3130 	struct tty_struct *tty;
3131 
3132 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3133 	if (!tty)
3134 		return NULL;
3135 
3136 	kref_init(&tty->kref);
3137 	tty->magic = TTY_MAGIC;
3138 	tty_ldisc_init(tty);
3139 	tty->session = NULL;
3140 	tty->pgrp = NULL;
3141 	mutex_init(&tty->legacy_mutex);
3142 	mutex_init(&tty->throttle_mutex);
3143 	init_rwsem(&tty->termios_rwsem);
3144 	mutex_init(&tty->winsize_mutex);
3145 	init_ldsem(&tty->ldisc_sem);
3146 	init_waitqueue_head(&tty->write_wait);
3147 	init_waitqueue_head(&tty->read_wait);
3148 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3149 	mutex_init(&tty->atomic_write_lock);
3150 	spin_lock_init(&tty->ctrl_lock);
3151 	spin_lock_init(&tty->flow_lock);
3152 	INIT_LIST_HEAD(&tty->tty_files);
3153 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3154 
3155 	tty->driver = driver;
3156 	tty->ops = driver->ops;
3157 	tty->index = idx;
3158 	tty_line_name(driver, idx, tty->name);
3159 	tty->dev = tty_get_device(tty);
3160 
3161 	return tty;
3162 }
3163 
3164 /**
3165  *	deinitialize_tty_struct
3166  *	@tty: tty to deinitialize
3167  *
3168  *	This subroutine deinitializes a tty structure that has been newly
3169  *	allocated but tty_release cannot be called on that yet.
3170  *
3171  *	Locking: none - tty in question must not be exposed at this point
3172  */
3173 void deinitialize_tty_struct(struct tty_struct *tty)
3174 {
3175 	tty_ldisc_deinit(tty);
3176 }
3177 
3178 /**
3179  *	tty_put_char	-	write one character to a tty
3180  *	@tty: tty
3181  *	@ch: character
3182  *
3183  *	Write one byte to the tty using the provided put_char method
3184  *	if present. Returns the number of characters successfully output.
3185  *
3186  *	Note: the specific put_char operation in the driver layer may go
3187  *	away soon. Don't call it directly, use this method
3188  */
3189 
3190 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3191 {
3192 	if (tty->ops->put_char)
3193 		return tty->ops->put_char(tty, ch);
3194 	return tty->ops->write(tty, &ch, 1);
3195 }
3196 EXPORT_SYMBOL_GPL(tty_put_char);
3197 
3198 struct class *tty_class;
3199 
3200 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3201 		unsigned int index, unsigned int count)
3202 {
3203 	int err;
3204 
3205 	/* init here, since reused cdevs cause crashes */
3206 	driver->cdevs[index] = cdev_alloc();
3207 	if (!driver->cdevs[index])
3208 		return -ENOMEM;
3209 	driver->cdevs[index]->ops = &tty_fops;
3210 	driver->cdevs[index]->owner = driver->owner;
3211 	err = cdev_add(driver->cdevs[index], dev, count);
3212 	if (err)
3213 		kobject_put(&driver->cdevs[index]->kobj);
3214 	return err;
3215 }
3216 
3217 /**
3218  *	tty_register_device - register a tty device
3219  *	@driver: the tty driver that describes the tty device
3220  *	@index: the index in the tty driver for this tty device
3221  *	@device: a struct device that is associated with this tty device.
3222  *		This field is optional, if there is no known struct device
3223  *		for this tty device it can be set to NULL safely.
3224  *
3225  *	Returns a pointer to the struct device for this tty device
3226  *	(or ERR_PTR(-EFOO) on error).
3227  *
3228  *	This call is required to be made to register an individual tty device
3229  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3230  *	that bit is not set, this function should not be called by a tty
3231  *	driver.
3232  *
3233  *	Locking: ??
3234  */
3235 
3236 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3237 				   struct device *device)
3238 {
3239 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3240 }
3241 EXPORT_SYMBOL(tty_register_device);
3242 
3243 static void tty_device_create_release(struct device *dev)
3244 {
3245 	dev_dbg(dev, "releasing...\n");
3246 	kfree(dev);
3247 }
3248 
3249 /**
3250  *	tty_register_device_attr - register a tty device
3251  *	@driver: the tty driver that describes the tty device
3252  *	@index: the index in the tty driver for this tty device
3253  *	@device: a struct device that is associated with this tty device.
3254  *		This field is optional, if there is no known struct device
3255  *		for this tty device it can be set to NULL safely.
3256  *	@drvdata: Driver data to be set to device.
3257  *	@attr_grp: Attribute group to be set on device.
3258  *
3259  *	Returns a pointer to the struct device for this tty device
3260  *	(or ERR_PTR(-EFOO) on error).
3261  *
3262  *	This call is required to be made to register an individual tty device
3263  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3264  *	that bit is not set, this function should not be called by a tty
3265  *	driver.
3266  *
3267  *	Locking: ??
3268  */
3269 struct device *tty_register_device_attr(struct tty_driver *driver,
3270 				   unsigned index, struct device *device,
3271 				   void *drvdata,
3272 				   const struct attribute_group **attr_grp)
3273 {
3274 	char name[64];
3275 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3276 	struct device *dev = NULL;
3277 	int retval = -ENODEV;
3278 	bool cdev = false;
3279 
3280 	if (index >= driver->num) {
3281 		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3282 		       driver->name, index);
3283 		return ERR_PTR(-EINVAL);
3284 	}
3285 
3286 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3287 		pty_line_name(driver, index, name);
3288 	else
3289 		tty_line_name(driver, index, name);
3290 
3291 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3292 		retval = tty_cdev_add(driver, devt, index, 1);
3293 		if (retval)
3294 			goto error;
3295 		cdev = true;
3296 	}
3297 
3298 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3299 	if (!dev) {
3300 		retval = -ENOMEM;
3301 		goto error;
3302 	}
3303 
3304 	dev->devt = devt;
3305 	dev->class = tty_class;
3306 	dev->parent = device;
3307 	dev->release = tty_device_create_release;
3308 	dev_set_name(dev, "%s", name);
3309 	dev->groups = attr_grp;
3310 	dev_set_drvdata(dev, drvdata);
3311 
3312 	retval = device_register(dev);
3313 	if (retval)
3314 		goto error;
3315 
3316 	return dev;
3317 
3318 error:
3319 	put_device(dev);
3320 	if (cdev) {
3321 		cdev_del(driver->cdevs[index]);
3322 		driver->cdevs[index] = NULL;
3323 	}
3324 	return ERR_PTR(retval);
3325 }
3326 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3327 
3328 /**
3329  * 	tty_unregister_device - unregister a tty device
3330  * 	@driver: the tty driver that describes the tty device
3331  * 	@index: the index in the tty driver for this tty device
3332  *
3333  * 	If a tty device is registered with a call to tty_register_device() then
3334  *	this function must be called when the tty device is gone.
3335  *
3336  *	Locking: ??
3337  */
3338 
3339 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3340 {
3341 	device_destroy(tty_class,
3342 		MKDEV(driver->major, driver->minor_start) + index);
3343 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3344 		cdev_del(driver->cdevs[index]);
3345 		driver->cdevs[index] = NULL;
3346 	}
3347 }
3348 EXPORT_SYMBOL(tty_unregister_device);
3349 
3350 /**
3351  * __tty_alloc_driver -- allocate tty driver
3352  * @lines: count of lines this driver can handle at most
3353  * @owner: module which is repsonsible for this driver
3354  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3355  *
3356  * This should not be called directly, some of the provided macros should be
3357  * used instead. Use IS_ERR and friends on @retval.
3358  */
3359 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3360 		unsigned long flags)
3361 {
3362 	struct tty_driver *driver;
3363 	unsigned int cdevs = 1;
3364 	int err;
3365 
3366 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3367 		return ERR_PTR(-EINVAL);
3368 
3369 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3370 	if (!driver)
3371 		return ERR_PTR(-ENOMEM);
3372 
3373 	kref_init(&driver->kref);
3374 	driver->magic = TTY_DRIVER_MAGIC;
3375 	driver->num = lines;
3376 	driver->owner = owner;
3377 	driver->flags = flags;
3378 
3379 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3380 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3381 				GFP_KERNEL);
3382 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3383 				GFP_KERNEL);
3384 		if (!driver->ttys || !driver->termios) {
3385 			err = -ENOMEM;
3386 			goto err_free_all;
3387 		}
3388 	}
3389 
3390 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3391 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3392 				GFP_KERNEL);
3393 		if (!driver->ports) {
3394 			err = -ENOMEM;
3395 			goto err_free_all;
3396 		}
3397 		cdevs = lines;
3398 	}
3399 
3400 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3401 	if (!driver->cdevs) {
3402 		err = -ENOMEM;
3403 		goto err_free_all;
3404 	}
3405 
3406 	return driver;
3407 err_free_all:
3408 	kfree(driver->ports);
3409 	kfree(driver->ttys);
3410 	kfree(driver->termios);
3411 	kfree(driver->cdevs);
3412 	kfree(driver);
3413 	return ERR_PTR(err);
3414 }
3415 EXPORT_SYMBOL(__tty_alloc_driver);
3416 
3417 static void destruct_tty_driver(struct kref *kref)
3418 {
3419 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3420 	int i;
3421 	struct ktermios *tp;
3422 
3423 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3424 		/*
3425 		 * Free the termios and termios_locked structures because
3426 		 * we don't want to get memory leaks when modular tty
3427 		 * drivers are removed from the kernel.
3428 		 */
3429 		for (i = 0; i < driver->num; i++) {
3430 			tp = driver->termios[i];
3431 			if (tp) {
3432 				driver->termios[i] = NULL;
3433 				kfree(tp);
3434 			}
3435 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3436 				tty_unregister_device(driver, i);
3437 		}
3438 		proc_tty_unregister_driver(driver);
3439 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3440 			cdev_del(driver->cdevs[0]);
3441 	}
3442 	kfree(driver->cdevs);
3443 	kfree(driver->ports);
3444 	kfree(driver->termios);
3445 	kfree(driver->ttys);
3446 	kfree(driver);
3447 }
3448 
3449 void tty_driver_kref_put(struct tty_driver *driver)
3450 {
3451 	kref_put(&driver->kref, destruct_tty_driver);
3452 }
3453 EXPORT_SYMBOL(tty_driver_kref_put);
3454 
3455 void tty_set_operations(struct tty_driver *driver,
3456 			const struct tty_operations *op)
3457 {
3458 	driver->ops = op;
3459 };
3460 EXPORT_SYMBOL(tty_set_operations);
3461 
3462 void put_tty_driver(struct tty_driver *d)
3463 {
3464 	tty_driver_kref_put(d);
3465 }
3466 EXPORT_SYMBOL(put_tty_driver);
3467 
3468 /*
3469  * Called by a tty driver to register itself.
3470  */
3471 int tty_register_driver(struct tty_driver *driver)
3472 {
3473 	int error;
3474 	int i;
3475 	dev_t dev;
3476 	struct device *d;
3477 
3478 	if (!driver->major) {
3479 		error = alloc_chrdev_region(&dev, driver->minor_start,
3480 						driver->num, driver->name);
3481 		if (!error) {
3482 			driver->major = MAJOR(dev);
3483 			driver->minor_start = MINOR(dev);
3484 		}
3485 	} else {
3486 		dev = MKDEV(driver->major, driver->minor_start);
3487 		error = register_chrdev_region(dev, driver->num, driver->name);
3488 	}
3489 	if (error < 0)
3490 		goto err;
3491 
3492 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3493 		error = tty_cdev_add(driver, dev, 0, driver->num);
3494 		if (error)
3495 			goto err_unreg_char;
3496 	}
3497 
3498 	mutex_lock(&tty_mutex);
3499 	list_add(&driver->tty_drivers, &tty_drivers);
3500 	mutex_unlock(&tty_mutex);
3501 
3502 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3503 		for (i = 0; i < driver->num; i++) {
3504 			d = tty_register_device(driver, i, NULL);
3505 			if (IS_ERR(d)) {
3506 				error = PTR_ERR(d);
3507 				goto err_unreg_devs;
3508 			}
3509 		}
3510 	}
3511 	proc_tty_register_driver(driver);
3512 	driver->flags |= TTY_DRIVER_INSTALLED;
3513 	return 0;
3514 
3515 err_unreg_devs:
3516 	for (i--; i >= 0; i--)
3517 		tty_unregister_device(driver, i);
3518 
3519 	mutex_lock(&tty_mutex);
3520 	list_del(&driver->tty_drivers);
3521 	mutex_unlock(&tty_mutex);
3522 
3523 err_unreg_char:
3524 	unregister_chrdev_region(dev, driver->num);
3525 err:
3526 	return error;
3527 }
3528 EXPORT_SYMBOL(tty_register_driver);
3529 
3530 /*
3531  * Called by a tty driver to unregister itself.
3532  */
3533 int tty_unregister_driver(struct tty_driver *driver)
3534 {
3535 #if 0
3536 	/* FIXME */
3537 	if (driver->refcount)
3538 		return -EBUSY;
3539 #endif
3540 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3541 				driver->num);
3542 	mutex_lock(&tty_mutex);
3543 	list_del(&driver->tty_drivers);
3544 	mutex_unlock(&tty_mutex);
3545 	return 0;
3546 }
3547 
3548 EXPORT_SYMBOL(tty_unregister_driver);
3549 
3550 dev_t tty_devnum(struct tty_struct *tty)
3551 {
3552 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3553 }
3554 EXPORT_SYMBOL(tty_devnum);
3555 
3556 void tty_default_fops(struct file_operations *fops)
3557 {
3558 	*fops = tty_fops;
3559 }
3560 
3561 /*
3562  * Initialize the console device. This is called *early*, so
3563  * we can't necessarily depend on lots of kernel help here.
3564  * Just do some early initializations, and do the complex setup
3565  * later.
3566  */
3567 void __init console_init(void)
3568 {
3569 	initcall_t *call;
3570 
3571 	/* Setup the default TTY line discipline. */
3572 	tty_ldisc_begin();
3573 
3574 	/*
3575 	 * set up the console device so that later boot sequences can
3576 	 * inform about problems etc..
3577 	 */
3578 	call = __con_initcall_start;
3579 	while (call < __con_initcall_end) {
3580 		(*call)();
3581 		call++;
3582 	}
3583 }
3584 
3585 static char *tty_devnode(struct device *dev, umode_t *mode)
3586 {
3587 	if (!mode)
3588 		return NULL;
3589 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3590 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3591 		*mode = 0666;
3592 	return NULL;
3593 }
3594 
3595 static int __init tty_class_init(void)
3596 {
3597 	tty_class = class_create(THIS_MODULE, "tty");
3598 	if (IS_ERR(tty_class))
3599 		return PTR_ERR(tty_class);
3600 	tty_class->devnode = tty_devnode;
3601 	return 0;
3602 }
3603 
3604 postcore_initcall(tty_class_init);
3605 
3606 /* 3/2004 jmc: why do these devices exist? */
3607 static struct cdev tty_cdev, console_cdev;
3608 
3609 static ssize_t show_cons_active(struct device *dev,
3610 				struct device_attribute *attr, char *buf)
3611 {
3612 	struct console *cs[16];
3613 	int i = 0;
3614 	struct console *c;
3615 	ssize_t count = 0;
3616 
3617 	console_lock();
3618 	for_each_console(c) {
3619 		if (!c->device)
3620 			continue;
3621 		if (!c->write)
3622 			continue;
3623 		if ((c->flags & CON_ENABLED) == 0)
3624 			continue;
3625 		cs[i++] = c;
3626 		if (i >= ARRAY_SIZE(cs))
3627 			break;
3628 	}
3629 	while (i--) {
3630 		int index = cs[i]->index;
3631 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3632 
3633 		/* don't resolve tty0 as some programs depend on it */
3634 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3635 			count += tty_line_name(drv, index, buf + count);
3636 		else
3637 			count += sprintf(buf + count, "%s%d",
3638 					 cs[i]->name, cs[i]->index);
3639 
3640 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3641 	}
3642 	console_unlock();
3643 
3644 	return count;
3645 }
3646 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3647 
3648 static struct attribute *cons_dev_attrs[] = {
3649 	&dev_attr_active.attr,
3650 	NULL
3651 };
3652 
3653 ATTRIBUTE_GROUPS(cons_dev);
3654 
3655 static struct device *consdev;
3656 
3657 void console_sysfs_notify(void)
3658 {
3659 	if (consdev)
3660 		sysfs_notify(&consdev->kobj, NULL, "active");
3661 }
3662 
3663 /*
3664  * Ok, now we can initialize the rest of the tty devices and can count
3665  * on memory allocations, interrupts etc..
3666  */
3667 int __init tty_init(void)
3668 {
3669 	cdev_init(&tty_cdev, &tty_fops);
3670 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3671 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3672 		panic("Couldn't register /dev/tty driver\n");
3673 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3674 
3675 	cdev_init(&console_cdev, &console_fops);
3676 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3677 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3678 		panic("Couldn't register /dev/console driver\n");
3679 	consdev = device_create_with_groups(tty_class, NULL,
3680 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3681 					    cons_dev_groups, "console");
3682 	if (IS_ERR(consdev))
3683 		consdev = NULL;
3684 
3685 #ifdef CONFIG_VT
3686 	vty_init(&console_fops);
3687 #endif
3688 	return 0;
3689 }
3690 
3691