xref: /openbmc/linux/drivers/tty/tty_io.c (revision c4a7b9b5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992  Linus Torvalds
4  */
5 
6 /*
7  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8  * or rs-channels. It also implements echoing, cooked mode etc.
9  *
10  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11  *
12  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13  * tty_struct and tty_queue structures.  Previously there was an array
14  * of 256 tty_struct's which was statically allocated, and the
15  * tty_queue structures were allocated at boot time.  Both are now
16  * dynamically allocated only when the tty is open.
17  *
18  * Also restructured routines so that there is more of a separation
19  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20  * the low-level tty routines (serial.c, pty.c, console.c).  This
21  * makes for cleaner and more compact code.  -TYT, 9/17/92
22  *
23  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24  * which can be dynamically activated and de-activated by the line
25  * discipline handling modules (like SLIP).
26  *
27  * NOTE: pay no attention to the line discipline code (yet); its
28  * interface is still subject to change in this version...
29  * -- TYT, 1/31/92
30  *
31  * Added functionality to the OPOST tty handling.  No delays, but all
32  * other bits should be there.
33  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34  *
35  * Rewrote canonical mode and added more termios flags.
36  *	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37  *
38  * Reorganized FASYNC support so mouse code can share it.
39  *	-- ctm@ardi.com, 9Sep95
40  *
41  * New TIOCLINUX variants added.
42  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
43  *
44  * Restrict vt switching via ioctl()
45  *      -- grif@cs.ucr.edu, 5-Dec-95
46  *
47  * Move console and virtual terminal code to more appropriate files,
48  * implement CONFIG_VT and generalize console device interface.
49  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50  *
51  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52  *	-- Bill Hawes <whawes@star.net>, June 97
53  *
54  * Added devfs support.
55  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56  *
57  * Added support for a Unix98-style ptmx device.
58  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59  *
60  * Reduced memory usage for older ARM systems
61  *      -- Russell King <rmk@arm.linux.org.uk>
62  *
63  * Move do_SAK() into process context.  Less stack use in devfs functions.
64  * alloc_tty_struct() always uses kmalloc()
65  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66  */
67 
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched/signal.h>
74 #include <linux/sched/task.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/ppp-ioctl.h>
91 #include <linux/proc_fs.h>
92 #include <linux/init.h>
93 #include <linux/module.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99 #include <linux/serial.h>
100 #include <linux/ratelimit.h>
101 #include <linux/compat.h>
102 #include <linux/uaccess.h>
103 #include <linux/termios_internal.h>
104 
105 #include <linux/kbd_kern.h>
106 #include <linux/vt_kern.h>
107 #include <linux/selection.h>
108 
109 #include <linux/kmod.h>
110 #include <linux/nsproxy.h>
111 #include "tty.h"
112 
113 #undef TTY_DEBUG_HANGUP
114 #ifdef TTY_DEBUG_HANGUP
115 # define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
116 #else
117 # define tty_debug_hangup(tty, f, args...)	do { } while (0)
118 #endif
119 
120 #define TTY_PARANOIA_CHECK 1
121 #define CHECK_TTY_COUNT 1
122 
123 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
124 	.c_iflag = ICRNL | IXON,
125 	.c_oflag = OPOST | ONLCR,
126 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
127 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
128 		   ECHOCTL | ECHOKE | IEXTEN,
129 	.c_cc = INIT_C_CC,
130 	.c_ispeed = 38400,
131 	.c_ospeed = 38400,
132 	/* .c_line = N_TTY, */
133 };
134 EXPORT_SYMBOL(tty_std_termios);
135 
136 /* This list gets poked at by procfs and various bits of boot up code. This
137  * could do with some rationalisation such as pulling the tty proc function
138  * into this file.
139  */
140 
141 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
142 
143 /* Mutex to protect creating and releasing a tty */
144 DEFINE_MUTEX(tty_mutex);
145 
146 static ssize_t tty_read(struct kiocb *, struct iov_iter *);
147 static ssize_t tty_write(struct kiocb *, struct iov_iter *);
148 static __poll_t tty_poll(struct file *, poll_table *);
149 static int tty_open(struct inode *, struct file *);
150 #ifdef CONFIG_COMPAT
151 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
152 				unsigned long arg);
153 #else
154 #define tty_compat_ioctl NULL
155 #endif
156 static int __tty_fasync(int fd, struct file *filp, int on);
157 static int tty_fasync(int fd, struct file *filp, int on);
158 static void release_tty(struct tty_struct *tty, int idx);
159 
160 /**
161  * free_tty_struct	-	free a disused tty
162  * @tty: tty struct to free
163  *
164  * Free the write buffers, tty queue and tty memory itself.
165  *
166  * Locking: none. Must be called after tty is definitely unused
167  */
168 static void free_tty_struct(struct tty_struct *tty)
169 {
170 	tty_ldisc_deinit(tty);
171 	put_device(tty->dev);
172 	kvfree(tty->write_buf);
173 	kfree(tty);
174 }
175 
176 static inline struct tty_struct *file_tty(struct file *file)
177 {
178 	return ((struct tty_file_private *)file->private_data)->tty;
179 }
180 
181 int tty_alloc_file(struct file *file)
182 {
183 	struct tty_file_private *priv;
184 
185 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
186 	if (!priv)
187 		return -ENOMEM;
188 
189 	file->private_data = priv;
190 
191 	return 0;
192 }
193 
194 /* Associate a new file with the tty structure */
195 void tty_add_file(struct tty_struct *tty, struct file *file)
196 {
197 	struct tty_file_private *priv = file->private_data;
198 
199 	priv->tty = tty;
200 	priv->file = file;
201 
202 	spin_lock(&tty->files_lock);
203 	list_add(&priv->list, &tty->tty_files);
204 	spin_unlock(&tty->files_lock);
205 }
206 
207 /**
208  * tty_free_file - free file->private_data
209  * @file: to free private_data of
210  *
211  * This shall be used only for fail path handling when tty_add_file was not
212  * called yet.
213  */
214 void tty_free_file(struct file *file)
215 {
216 	struct tty_file_private *priv = file->private_data;
217 
218 	file->private_data = NULL;
219 	kfree(priv);
220 }
221 
222 /* Delete file from its tty */
223 static void tty_del_file(struct file *file)
224 {
225 	struct tty_file_private *priv = file->private_data;
226 	struct tty_struct *tty = priv->tty;
227 
228 	spin_lock(&tty->files_lock);
229 	list_del(&priv->list);
230 	spin_unlock(&tty->files_lock);
231 	tty_free_file(file);
232 }
233 
234 /**
235  * tty_name	-	return tty naming
236  * @tty: tty structure
237  *
238  * Convert a tty structure into a name. The name reflects the kernel naming
239  * policy and if udev is in use may not reflect user space
240  *
241  * Locking: none
242  */
243 const char *tty_name(const struct tty_struct *tty)
244 {
245 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
246 		return "NULL tty";
247 	return tty->name;
248 }
249 EXPORT_SYMBOL(tty_name);
250 
251 const char *tty_driver_name(const struct tty_struct *tty)
252 {
253 	if (!tty || !tty->driver)
254 		return "";
255 	return tty->driver->name;
256 }
257 
258 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
259 			      const char *routine)
260 {
261 #ifdef TTY_PARANOIA_CHECK
262 	if (!tty) {
263 		pr_warn("(%d:%d): %s: NULL tty\n",
264 			imajor(inode), iminor(inode), routine);
265 		return 1;
266 	}
267 #endif
268 	return 0;
269 }
270 
271 /* Caller must hold tty_lock */
272 static int check_tty_count(struct tty_struct *tty, const char *routine)
273 {
274 #ifdef CHECK_TTY_COUNT
275 	struct list_head *p;
276 	int count = 0, kopen_count = 0;
277 
278 	spin_lock(&tty->files_lock);
279 	list_for_each(p, &tty->tty_files) {
280 		count++;
281 	}
282 	spin_unlock(&tty->files_lock);
283 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
284 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
285 	    tty->link && tty->link->count)
286 		count++;
287 	if (tty_port_kopened(tty->port))
288 		kopen_count++;
289 	if (tty->count != (count + kopen_count)) {
290 		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
291 			 routine, tty->count, count, kopen_count);
292 		return (count + kopen_count);
293 	}
294 #endif
295 	return 0;
296 }
297 
298 /**
299  * get_tty_driver		-	find device of a tty
300  * @device: device identifier
301  * @index: returns the index of the tty
302  *
303  * This routine returns a tty driver structure, given a device number and also
304  * passes back the index number.
305  *
306  * Locking: caller must hold tty_mutex
307  */
308 static struct tty_driver *get_tty_driver(dev_t device, int *index)
309 {
310 	struct tty_driver *p;
311 
312 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
313 		dev_t base = MKDEV(p->major, p->minor_start);
314 
315 		if (device < base || device >= base + p->num)
316 			continue;
317 		*index = device - base;
318 		return tty_driver_kref_get(p);
319 	}
320 	return NULL;
321 }
322 
323 /**
324  * tty_dev_name_to_number	-	return dev_t for device name
325  * @name: user space name of device under /dev
326  * @number: pointer to dev_t that this function will populate
327  *
328  * This function converts device names like ttyS0 or ttyUSB1 into dev_t like
329  * (4, 64) or (188, 1). If no corresponding driver is registered then the
330  * function returns -%ENODEV.
331  *
332  * Locking: this acquires tty_mutex to protect the tty_drivers list from
333  *	being modified while we are traversing it, and makes sure to
334  *	release it before exiting.
335  */
336 int tty_dev_name_to_number(const char *name, dev_t *number)
337 {
338 	struct tty_driver *p;
339 	int ret;
340 	int index, prefix_length = 0;
341 	const char *str;
342 
343 	for (str = name; *str && !isdigit(*str); str++)
344 		;
345 
346 	if (!*str)
347 		return -EINVAL;
348 
349 	ret = kstrtoint(str, 10, &index);
350 	if (ret)
351 		return ret;
352 
353 	prefix_length = str - name;
354 	mutex_lock(&tty_mutex);
355 
356 	list_for_each_entry(p, &tty_drivers, tty_drivers)
357 		if (prefix_length == strlen(p->name) && strncmp(name,
358 					p->name, prefix_length) == 0) {
359 			if (index < p->num) {
360 				*number = MKDEV(p->major, p->minor_start + index);
361 				goto out;
362 			}
363 		}
364 
365 	/* if here then driver wasn't found */
366 	ret = -ENODEV;
367 out:
368 	mutex_unlock(&tty_mutex);
369 	return ret;
370 }
371 EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
372 
373 #ifdef CONFIG_CONSOLE_POLL
374 
375 /**
376  * tty_find_polling_driver	-	find device of a polled tty
377  * @name: name string to match
378  * @line: pointer to resulting tty line nr
379  *
380  * This routine returns a tty driver structure, given a name and the condition
381  * that the tty driver is capable of polled operation.
382  */
383 struct tty_driver *tty_find_polling_driver(char *name, int *line)
384 {
385 	struct tty_driver *p, *res = NULL;
386 	int tty_line = 0;
387 	int len;
388 	char *str, *stp;
389 
390 	for (str = name; *str; str++)
391 		if ((*str >= '0' && *str <= '9') || *str == ',')
392 			break;
393 	if (!*str)
394 		return NULL;
395 
396 	len = str - name;
397 	tty_line = simple_strtoul(str, &str, 10);
398 
399 	mutex_lock(&tty_mutex);
400 	/* Search through the tty devices to look for a match */
401 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
402 		if (!len || strncmp(name, p->name, len) != 0)
403 			continue;
404 		stp = str;
405 		if (*stp == ',')
406 			stp++;
407 		if (*stp == '\0')
408 			stp = NULL;
409 
410 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
411 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
412 			res = tty_driver_kref_get(p);
413 			*line = tty_line;
414 			break;
415 		}
416 	}
417 	mutex_unlock(&tty_mutex);
418 
419 	return res;
420 }
421 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
422 #endif
423 
424 static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
425 {
426 	return 0;
427 }
428 
429 static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
430 {
431 	return -EIO;
432 }
433 
434 /* No kernel lock held - none needed ;) */
435 static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
436 {
437 	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
438 }
439 
440 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
441 		unsigned long arg)
442 {
443 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
444 }
445 
446 static long hung_up_tty_compat_ioctl(struct file *file,
447 				     unsigned int cmd, unsigned long arg)
448 {
449 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
450 }
451 
452 static int hung_up_tty_fasync(int fd, struct file *file, int on)
453 {
454 	return -ENOTTY;
455 }
456 
457 static void tty_show_fdinfo(struct seq_file *m, struct file *file)
458 {
459 	struct tty_struct *tty = file_tty(file);
460 
461 	if (tty && tty->ops && tty->ops->show_fdinfo)
462 		tty->ops->show_fdinfo(tty, m);
463 }
464 
465 static const struct file_operations tty_fops = {
466 	.llseek		= no_llseek,
467 	.read_iter	= tty_read,
468 	.write_iter	= tty_write,
469 	.splice_read	= generic_file_splice_read,
470 	.splice_write	= iter_file_splice_write,
471 	.poll		= tty_poll,
472 	.unlocked_ioctl	= tty_ioctl,
473 	.compat_ioctl	= tty_compat_ioctl,
474 	.open		= tty_open,
475 	.release	= tty_release,
476 	.fasync		= tty_fasync,
477 	.show_fdinfo	= tty_show_fdinfo,
478 };
479 
480 static const struct file_operations console_fops = {
481 	.llseek		= no_llseek,
482 	.read_iter	= tty_read,
483 	.write_iter	= redirected_tty_write,
484 	.splice_read	= generic_file_splice_read,
485 	.splice_write	= iter_file_splice_write,
486 	.poll		= tty_poll,
487 	.unlocked_ioctl	= tty_ioctl,
488 	.compat_ioctl	= tty_compat_ioctl,
489 	.open		= tty_open,
490 	.release	= tty_release,
491 	.fasync		= tty_fasync,
492 };
493 
494 static const struct file_operations hung_up_tty_fops = {
495 	.llseek		= no_llseek,
496 	.read_iter	= hung_up_tty_read,
497 	.write_iter	= hung_up_tty_write,
498 	.poll		= hung_up_tty_poll,
499 	.unlocked_ioctl	= hung_up_tty_ioctl,
500 	.compat_ioctl	= hung_up_tty_compat_ioctl,
501 	.release	= tty_release,
502 	.fasync		= hung_up_tty_fasync,
503 };
504 
505 static DEFINE_SPINLOCK(redirect_lock);
506 static struct file *redirect;
507 
508 /**
509  * tty_wakeup	-	request more data
510  * @tty: terminal
511  *
512  * Internal and external helper for wakeups of tty. This function informs the
513  * line discipline if present that the driver is ready to receive more output
514  * data.
515  */
516 void tty_wakeup(struct tty_struct *tty)
517 {
518 	struct tty_ldisc *ld;
519 
520 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
521 		ld = tty_ldisc_ref(tty);
522 		if (ld) {
523 			if (ld->ops->write_wakeup)
524 				ld->ops->write_wakeup(tty);
525 			tty_ldisc_deref(ld);
526 		}
527 	}
528 	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
529 }
530 EXPORT_SYMBOL_GPL(tty_wakeup);
531 
532 /**
533  * tty_release_redirect	-	Release a redirect on a pty if present
534  * @tty: tty device
535  *
536  * This is available to the pty code so if the master closes, if the slave is a
537  * redirect it can release the redirect.
538  */
539 static struct file *tty_release_redirect(struct tty_struct *tty)
540 {
541 	struct file *f = NULL;
542 
543 	spin_lock(&redirect_lock);
544 	if (redirect && file_tty(redirect) == tty) {
545 		f = redirect;
546 		redirect = NULL;
547 	}
548 	spin_unlock(&redirect_lock);
549 
550 	return f;
551 }
552 
553 /**
554  * __tty_hangup		-	actual handler for hangup events
555  * @tty: tty device
556  * @exit_session: if non-zero, signal all foreground group processes
557  *
558  * This can be called by a "kworker" kernel thread. That is process synchronous
559  * but doesn't hold any locks, so we need to make sure we have the appropriate
560  * locks for what we're doing.
561  *
562  * The hangup event clears any pending redirections onto the hung up device. It
563  * ensures future writes will error and it does the needed line discipline
564  * hangup and signal delivery. The tty object itself remains intact.
565  *
566  * Locking:
567  *  * BTM
568  *
569  *   * redirect lock for undoing redirection
570  *   * file list lock for manipulating list of ttys
571  *   * tty_ldiscs_lock from called functions
572  *   * termios_rwsem resetting termios data
573  *   * tasklist_lock to walk task list for hangup event
574  *
575  *    * ->siglock to protect ->signal/->sighand
576  *
577  */
578 static void __tty_hangup(struct tty_struct *tty, int exit_session)
579 {
580 	struct file *cons_filp = NULL;
581 	struct file *filp, *f;
582 	struct tty_file_private *priv;
583 	int    closecount = 0, n;
584 	int refs;
585 
586 	if (!tty)
587 		return;
588 
589 	f = tty_release_redirect(tty);
590 
591 	tty_lock(tty);
592 
593 	if (test_bit(TTY_HUPPED, &tty->flags)) {
594 		tty_unlock(tty);
595 		return;
596 	}
597 
598 	/*
599 	 * Some console devices aren't actually hung up for technical and
600 	 * historical reasons, which can lead to indefinite interruptible
601 	 * sleep in n_tty_read().  The following explicitly tells
602 	 * n_tty_read() to abort readers.
603 	 */
604 	set_bit(TTY_HUPPING, &tty->flags);
605 
606 	/* inuse_filps is protected by the single tty lock,
607 	 * this really needs to change if we want to flush the
608 	 * workqueue with the lock held.
609 	 */
610 	check_tty_count(tty, "tty_hangup");
611 
612 	spin_lock(&tty->files_lock);
613 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
614 	list_for_each_entry(priv, &tty->tty_files, list) {
615 		filp = priv->file;
616 		if (filp->f_op->write_iter == redirected_tty_write)
617 			cons_filp = filp;
618 		if (filp->f_op->write_iter != tty_write)
619 			continue;
620 		closecount++;
621 		__tty_fasync(-1, filp, 0);	/* can't block */
622 		filp->f_op = &hung_up_tty_fops;
623 	}
624 	spin_unlock(&tty->files_lock);
625 
626 	refs = tty_signal_session_leader(tty, exit_session);
627 	/* Account for the p->signal references we killed */
628 	while (refs--)
629 		tty_kref_put(tty);
630 
631 	tty_ldisc_hangup(tty, cons_filp != NULL);
632 
633 	spin_lock_irq(&tty->ctrl.lock);
634 	clear_bit(TTY_THROTTLED, &tty->flags);
635 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
636 	put_pid(tty->ctrl.session);
637 	put_pid(tty->ctrl.pgrp);
638 	tty->ctrl.session = NULL;
639 	tty->ctrl.pgrp = NULL;
640 	tty->ctrl.pktstatus = 0;
641 	spin_unlock_irq(&tty->ctrl.lock);
642 
643 	/*
644 	 * If one of the devices matches a console pointer, we
645 	 * cannot just call hangup() because that will cause
646 	 * tty->count and state->count to go out of sync.
647 	 * So we just call close() the right number of times.
648 	 */
649 	if (cons_filp) {
650 		if (tty->ops->close)
651 			for (n = 0; n < closecount; n++)
652 				tty->ops->close(tty, cons_filp);
653 	} else if (tty->ops->hangup)
654 		tty->ops->hangup(tty);
655 	/*
656 	 * We don't want to have driver/ldisc interactions beyond the ones
657 	 * we did here. The driver layer expects no calls after ->hangup()
658 	 * from the ldisc side, which is now guaranteed.
659 	 */
660 	set_bit(TTY_HUPPED, &tty->flags);
661 	clear_bit(TTY_HUPPING, &tty->flags);
662 	tty_unlock(tty);
663 
664 	if (f)
665 		fput(f);
666 }
667 
668 static void do_tty_hangup(struct work_struct *work)
669 {
670 	struct tty_struct *tty =
671 		container_of(work, struct tty_struct, hangup_work);
672 
673 	__tty_hangup(tty, 0);
674 }
675 
676 /**
677  * tty_hangup		-	trigger a hangup event
678  * @tty: tty to hangup
679  *
680  * A carrier loss (virtual or otherwise) has occurred on @tty. Schedule a
681  * hangup sequence to run after this event.
682  */
683 void tty_hangup(struct tty_struct *tty)
684 {
685 	tty_debug_hangup(tty, "hangup\n");
686 	schedule_work(&tty->hangup_work);
687 }
688 EXPORT_SYMBOL(tty_hangup);
689 
690 /**
691  * tty_vhangup		-	process vhangup
692  * @tty: tty to hangup
693  *
694  * The user has asked via system call for the terminal to be hung up. We do
695  * this synchronously so that when the syscall returns the process is complete.
696  * That guarantee is necessary for security reasons.
697  */
698 void tty_vhangup(struct tty_struct *tty)
699 {
700 	tty_debug_hangup(tty, "vhangup\n");
701 	__tty_hangup(tty, 0);
702 }
703 EXPORT_SYMBOL(tty_vhangup);
704 
705 
706 /**
707  * tty_vhangup_self	-	process vhangup for own ctty
708  *
709  * Perform a vhangup on the current controlling tty
710  */
711 void tty_vhangup_self(void)
712 {
713 	struct tty_struct *tty;
714 
715 	tty = get_current_tty();
716 	if (tty) {
717 		tty_vhangup(tty);
718 		tty_kref_put(tty);
719 	}
720 }
721 
722 /**
723  * tty_vhangup_session	-	hangup session leader exit
724  * @tty: tty to hangup
725  *
726  * The session leader is exiting and hanging up its controlling terminal.
727  * Every process in the foreground process group is signalled %SIGHUP.
728  *
729  * We do this synchronously so that when the syscall returns the process is
730  * complete. That guarantee is necessary for security reasons.
731  */
732 void tty_vhangup_session(struct tty_struct *tty)
733 {
734 	tty_debug_hangup(tty, "session hangup\n");
735 	__tty_hangup(tty, 1);
736 }
737 
738 /**
739  * tty_hung_up_p	-	was tty hung up
740  * @filp: file pointer of tty
741  *
742  * Return: true if the tty has been subject to a vhangup or a carrier loss
743  */
744 int tty_hung_up_p(struct file *filp)
745 {
746 	return (filp && filp->f_op == &hung_up_tty_fops);
747 }
748 EXPORT_SYMBOL(tty_hung_up_p);
749 
750 void __stop_tty(struct tty_struct *tty)
751 {
752 	if (tty->flow.stopped)
753 		return;
754 	tty->flow.stopped = true;
755 	if (tty->ops->stop)
756 		tty->ops->stop(tty);
757 }
758 
759 /**
760  * stop_tty	-	propagate flow control
761  * @tty: tty to stop
762  *
763  * Perform flow control to the driver. May be called on an already stopped
764  * device and will not re-call the &tty_driver->stop() method.
765  *
766  * This functionality is used by both the line disciplines for halting incoming
767  * flow and by the driver. It may therefore be called from any context, may be
768  * under the tty %atomic_write_lock but not always.
769  *
770  * Locking:
771  *	flow.lock
772  */
773 void stop_tty(struct tty_struct *tty)
774 {
775 	unsigned long flags;
776 
777 	spin_lock_irqsave(&tty->flow.lock, flags);
778 	__stop_tty(tty);
779 	spin_unlock_irqrestore(&tty->flow.lock, flags);
780 }
781 EXPORT_SYMBOL(stop_tty);
782 
783 void __start_tty(struct tty_struct *tty)
784 {
785 	if (!tty->flow.stopped || tty->flow.tco_stopped)
786 		return;
787 	tty->flow.stopped = false;
788 	if (tty->ops->start)
789 		tty->ops->start(tty);
790 	tty_wakeup(tty);
791 }
792 
793 /**
794  * start_tty	-	propagate flow control
795  * @tty: tty to start
796  *
797  * Start a tty that has been stopped if at all possible. If @tty was previously
798  * stopped and is now being started, the &tty_driver->start() method is invoked
799  * and the line discipline woken.
800  *
801  * Locking:
802  *	flow.lock
803  */
804 void start_tty(struct tty_struct *tty)
805 {
806 	unsigned long flags;
807 
808 	spin_lock_irqsave(&tty->flow.lock, flags);
809 	__start_tty(tty);
810 	spin_unlock_irqrestore(&tty->flow.lock, flags);
811 }
812 EXPORT_SYMBOL(start_tty);
813 
814 static void tty_update_time(struct timespec64 *time)
815 {
816 	time64_t sec = ktime_get_real_seconds();
817 
818 	/*
819 	 * We only care if the two values differ in anything other than the
820 	 * lower three bits (i.e every 8 seconds).  If so, then we can update
821 	 * the time of the tty device, otherwise it could be construded as a
822 	 * security leak to let userspace know the exact timing of the tty.
823 	 */
824 	if ((sec ^ time->tv_sec) & ~7)
825 		time->tv_sec = sec;
826 }
827 
828 /*
829  * Iterate on the ldisc ->read() function until we've gotten all
830  * the data the ldisc has for us.
831  *
832  * The "cookie" is something that the ldisc read function can fill
833  * in to let us know that there is more data to be had.
834  *
835  * We promise to continue to call the ldisc until it stops returning
836  * data or clears the cookie. The cookie may be something that the
837  * ldisc maintains state for and needs to free.
838  */
839 static int iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
840 		struct file *file, struct iov_iter *to)
841 {
842 	int retval = 0;
843 	void *cookie = NULL;
844 	unsigned long offset = 0;
845 	char kernel_buf[64];
846 	size_t count = iov_iter_count(to);
847 
848 	do {
849 		int size, copied;
850 
851 		size = count > sizeof(kernel_buf) ? sizeof(kernel_buf) : count;
852 		size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
853 		if (!size)
854 			break;
855 
856 		if (size < 0) {
857 			/* Did we have an earlier error (ie -EFAULT)? */
858 			if (retval)
859 				break;
860 			retval = size;
861 
862 			/*
863 			 * -EOVERFLOW means we didn't have enough space
864 			 * for a whole packet, and we shouldn't return
865 			 * a partial result.
866 			 */
867 			if (retval == -EOVERFLOW)
868 				offset = 0;
869 			break;
870 		}
871 
872 		copied = copy_to_iter(kernel_buf, size, to);
873 		offset += copied;
874 		count -= copied;
875 
876 		/*
877 		 * If the user copy failed, we still need to do another ->read()
878 		 * call if we had a cookie to let the ldisc clear up.
879 		 *
880 		 * But make sure size is zeroed.
881 		 */
882 		if (unlikely(copied != size)) {
883 			count = 0;
884 			retval = -EFAULT;
885 		}
886 	} while (cookie);
887 
888 	/* We always clear tty buffer in case they contained passwords */
889 	memzero_explicit(kernel_buf, sizeof(kernel_buf));
890 	return offset ? offset : retval;
891 }
892 
893 
894 /**
895  * tty_read	-	read method for tty device files
896  * @iocb: kernel I/O control block
897  * @to: destination for the data read
898  *
899  * Perform the read system call function on this terminal device. Checks
900  * for hung up devices before calling the line discipline method.
901  *
902  * Locking:
903  *	Locks the line discipline internally while needed. Multiple read calls
904  *	may be outstanding in parallel.
905  */
906 static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
907 {
908 	int i;
909 	struct file *file = iocb->ki_filp;
910 	struct inode *inode = file_inode(file);
911 	struct tty_struct *tty = file_tty(file);
912 	struct tty_ldisc *ld;
913 
914 	if (tty_paranoia_check(tty, inode, "tty_read"))
915 		return -EIO;
916 	if (!tty || tty_io_error(tty))
917 		return -EIO;
918 
919 	/* We want to wait for the line discipline to sort out in this
920 	 * situation.
921 	 */
922 	ld = tty_ldisc_ref_wait(tty);
923 	if (!ld)
924 		return hung_up_tty_read(iocb, to);
925 	i = -EIO;
926 	if (ld->ops->read)
927 		i = iterate_tty_read(ld, tty, file, to);
928 	tty_ldisc_deref(ld);
929 
930 	if (i > 0)
931 		tty_update_time(&inode->i_atime);
932 
933 	return i;
934 }
935 
936 static void tty_write_unlock(struct tty_struct *tty)
937 {
938 	mutex_unlock(&tty->atomic_write_lock);
939 	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
940 }
941 
942 static int tty_write_lock(struct tty_struct *tty, int ndelay)
943 {
944 	if (!mutex_trylock(&tty->atomic_write_lock)) {
945 		if (ndelay)
946 			return -EAGAIN;
947 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
948 			return -ERESTARTSYS;
949 	}
950 	return 0;
951 }
952 
953 /*
954  * Split writes up in sane blocksizes to avoid
955  * denial-of-service type attacks
956  */
957 static inline ssize_t do_tty_write(
958 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
959 	struct tty_struct *tty,
960 	struct file *file,
961 	struct iov_iter *from)
962 {
963 	size_t count = iov_iter_count(from);
964 	ssize_t ret, written = 0;
965 	unsigned int chunk;
966 
967 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
968 	if (ret < 0)
969 		return ret;
970 
971 	/*
972 	 * We chunk up writes into a temporary buffer. This
973 	 * simplifies low-level drivers immensely, since they
974 	 * don't have locking issues and user mode accesses.
975 	 *
976 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
977 	 * big chunk-size..
978 	 *
979 	 * The default chunk-size is 2kB, because the NTTY
980 	 * layer has problems with bigger chunks. It will
981 	 * claim to be able to handle more characters than
982 	 * it actually does.
983 	 */
984 	chunk = 2048;
985 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
986 		chunk = 65536;
987 	if (count < chunk)
988 		chunk = count;
989 
990 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
991 	if (tty->write_cnt < chunk) {
992 		unsigned char *buf_chunk;
993 
994 		if (chunk < 1024)
995 			chunk = 1024;
996 
997 		buf_chunk = kvmalloc(chunk, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
998 		if (!buf_chunk) {
999 			ret = -ENOMEM;
1000 			goto out;
1001 		}
1002 		kvfree(tty->write_buf);
1003 		tty->write_cnt = chunk;
1004 		tty->write_buf = buf_chunk;
1005 	}
1006 
1007 	/* Do the write .. */
1008 	for (;;) {
1009 		size_t size = count;
1010 
1011 		if (size > chunk)
1012 			size = chunk;
1013 
1014 		ret = -EFAULT;
1015 		if (copy_from_iter(tty->write_buf, size, from) != size)
1016 			break;
1017 
1018 		ret = write(tty, file, tty->write_buf, size);
1019 		if (ret <= 0)
1020 			break;
1021 
1022 		written += ret;
1023 		if (ret > size)
1024 			break;
1025 
1026 		/* FIXME! Have Al check this! */
1027 		if (ret != size)
1028 			iov_iter_revert(from, size-ret);
1029 
1030 		count -= ret;
1031 		if (!count)
1032 			break;
1033 		ret = -ERESTARTSYS;
1034 		if (signal_pending(current))
1035 			break;
1036 		cond_resched();
1037 	}
1038 	if (written) {
1039 		tty_update_time(&file_inode(file)->i_mtime);
1040 		ret = written;
1041 	}
1042 out:
1043 	tty_write_unlock(tty);
1044 	return ret;
1045 }
1046 
1047 /**
1048  * tty_write_message - write a message to a certain tty, not just the console.
1049  * @tty: the destination tty_struct
1050  * @msg: the message to write
1051  *
1052  * This is used for messages that need to be redirected to a specific tty. We
1053  * don't put it into the syslog queue right now maybe in the future if really
1054  * needed.
1055  *
1056  * We must still hold the BTM and test the CLOSING flag for the moment.
1057  */
1058 void tty_write_message(struct tty_struct *tty, char *msg)
1059 {
1060 	if (tty) {
1061 		mutex_lock(&tty->atomic_write_lock);
1062 		tty_lock(tty);
1063 		if (tty->ops->write && tty->count > 0)
1064 			tty->ops->write(tty, msg, strlen(msg));
1065 		tty_unlock(tty);
1066 		tty_write_unlock(tty);
1067 	}
1068 }
1069 
1070 static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
1071 {
1072 	struct tty_struct *tty = file_tty(file);
1073 	struct tty_ldisc *ld;
1074 	ssize_t ret;
1075 
1076 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1077 		return -EIO;
1078 	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1079 		return -EIO;
1080 	/* Short term debug to catch buggy drivers */
1081 	if (tty->ops->write_room == NULL)
1082 		tty_err(tty, "missing write_room method\n");
1083 	ld = tty_ldisc_ref_wait(tty);
1084 	if (!ld)
1085 		return hung_up_tty_write(iocb, from);
1086 	if (!ld->ops->write)
1087 		ret = -EIO;
1088 	else
1089 		ret = do_tty_write(ld->ops->write, tty, file, from);
1090 	tty_ldisc_deref(ld);
1091 	return ret;
1092 }
1093 
1094 /**
1095  * tty_write		-	write method for tty device file
1096  * @iocb: kernel I/O control block
1097  * @from: iov_iter with data to write
1098  *
1099  * Write data to a tty device via the line discipline.
1100  *
1101  * Locking:
1102  *	Locks the line discipline as required
1103  *	Writes to the tty driver are serialized by the atomic_write_lock
1104  *	and are then processed in chunks to the device. The line
1105  *	discipline write method will not be invoked in parallel for
1106  *	each device.
1107  */
1108 static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1109 {
1110 	return file_tty_write(iocb->ki_filp, iocb, from);
1111 }
1112 
1113 ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1114 {
1115 	struct file *p = NULL;
1116 
1117 	spin_lock(&redirect_lock);
1118 	if (redirect)
1119 		p = get_file(redirect);
1120 	spin_unlock(&redirect_lock);
1121 
1122 	/*
1123 	 * We know the redirected tty is just another tty, we can
1124 	 * call file_tty_write() directly with that file pointer.
1125 	 */
1126 	if (p) {
1127 		ssize_t res;
1128 
1129 		res = file_tty_write(p, iocb, iter);
1130 		fput(p);
1131 		return res;
1132 	}
1133 	return tty_write(iocb, iter);
1134 }
1135 
1136 /**
1137  * tty_send_xchar	-	send priority character
1138  * @tty: the tty to send to
1139  * @ch: xchar to send
1140  *
1141  * Send a high priority character to the tty even if stopped.
1142  *
1143  * Locking: none for xchar method, write ordering for write method.
1144  */
1145 int tty_send_xchar(struct tty_struct *tty, char ch)
1146 {
1147 	bool was_stopped = tty->flow.stopped;
1148 
1149 	if (tty->ops->send_xchar) {
1150 		down_read(&tty->termios_rwsem);
1151 		tty->ops->send_xchar(tty, ch);
1152 		up_read(&tty->termios_rwsem);
1153 		return 0;
1154 	}
1155 
1156 	if (tty_write_lock(tty, 0) < 0)
1157 		return -ERESTARTSYS;
1158 
1159 	down_read(&tty->termios_rwsem);
1160 	if (was_stopped)
1161 		start_tty(tty);
1162 	tty->ops->write(tty, &ch, 1);
1163 	if (was_stopped)
1164 		stop_tty(tty);
1165 	up_read(&tty->termios_rwsem);
1166 	tty_write_unlock(tty);
1167 	return 0;
1168 }
1169 
1170 /**
1171  * pty_line_name	-	generate name for a pty
1172  * @driver: the tty driver in use
1173  * @index: the minor number
1174  * @p: output buffer of at least 6 bytes
1175  *
1176  * Generate a name from a @driver reference and write it to the output buffer
1177  * @p.
1178  *
1179  * Locking: None
1180  */
1181 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1182 {
1183 	static const char ptychar[] = "pqrstuvwxyzabcde";
1184 	int i = index + driver->name_base;
1185 	/* ->name is initialized to "ttyp", but "tty" is expected */
1186 	sprintf(p, "%s%c%x",
1187 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1188 		ptychar[i >> 4 & 0xf], i & 0xf);
1189 }
1190 
1191 /**
1192  * tty_line_name	-	generate name for a tty
1193  * @driver: the tty driver in use
1194  * @index: the minor number
1195  * @p: output buffer of at least 7 bytes
1196  *
1197  * Generate a name from a @driver reference and write it to the output buffer
1198  * @p.
1199  *
1200  * Locking: None
1201  */
1202 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1203 {
1204 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1205 		return sprintf(p, "%s", driver->name);
1206 	else
1207 		return sprintf(p, "%s%d", driver->name,
1208 			       index + driver->name_base);
1209 }
1210 
1211 /**
1212  * tty_driver_lookup_tty() - find an existing tty, if any
1213  * @driver: the driver for the tty
1214  * @file: file object
1215  * @idx: the minor number
1216  *
1217  * Return: the tty, if found. If not found, return %NULL or ERR_PTR() if the
1218  * driver lookup() method returns an error.
1219  *
1220  * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1221  */
1222 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1223 		struct file *file, int idx)
1224 {
1225 	struct tty_struct *tty;
1226 
1227 	if (driver->ops->lookup)
1228 		if (!file)
1229 			tty = ERR_PTR(-EIO);
1230 		else
1231 			tty = driver->ops->lookup(driver, file, idx);
1232 	else
1233 		tty = driver->ttys[idx];
1234 
1235 	if (!IS_ERR(tty))
1236 		tty_kref_get(tty);
1237 	return tty;
1238 }
1239 
1240 /**
1241  * tty_init_termios	-  helper for termios setup
1242  * @tty: the tty to set up
1243  *
1244  * Initialise the termios structure for this tty. This runs under the
1245  * %tty_mutex currently so we can be relaxed about ordering.
1246  */
1247 void tty_init_termios(struct tty_struct *tty)
1248 {
1249 	struct ktermios *tp;
1250 	int idx = tty->index;
1251 
1252 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1253 		tty->termios = tty->driver->init_termios;
1254 	else {
1255 		/* Check for lazy saved data */
1256 		tp = tty->driver->termios[idx];
1257 		if (tp != NULL) {
1258 			tty->termios = *tp;
1259 			tty->termios.c_line  = tty->driver->init_termios.c_line;
1260 		} else
1261 			tty->termios = tty->driver->init_termios;
1262 	}
1263 	/* Compatibility until drivers always set this */
1264 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1265 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1266 }
1267 EXPORT_SYMBOL_GPL(tty_init_termios);
1268 
1269 /**
1270  * tty_standard_install - usual tty->ops->install
1271  * @driver: the driver for the tty
1272  * @tty: the tty
1273  *
1274  * If the @driver overrides @tty->ops->install, it still can call this function
1275  * to perform the standard install operations.
1276  */
1277 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1278 {
1279 	tty_init_termios(tty);
1280 	tty_driver_kref_get(driver);
1281 	tty->count++;
1282 	driver->ttys[tty->index] = tty;
1283 	return 0;
1284 }
1285 EXPORT_SYMBOL_GPL(tty_standard_install);
1286 
1287 /**
1288  * tty_driver_install_tty() - install a tty entry in the driver
1289  * @driver: the driver for the tty
1290  * @tty: the tty
1291  *
1292  * Install a tty object into the driver tables. The @tty->index field will be
1293  * set by the time this is called. This method is responsible for ensuring any
1294  * need additional structures are allocated and configured.
1295  *
1296  * Locking: tty_mutex for now
1297  */
1298 static int tty_driver_install_tty(struct tty_driver *driver,
1299 						struct tty_struct *tty)
1300 {
1301 	return driver->ops->install ? driver->ops->install(driver, tty) :
1302 		tty_standard_install(driver, tty);
1303 }
1304 
1305 /**
1306  * tty_driver_remove_tty() - remove a tty from the driver tables
1307  * @driver: the driver for the tty
1308  * @tty: tty to remove
1309  *
1310  * Remove a tty object from the driver tables. The tty->index field will be set
1311  * by the time this is called.
1312  *
1313  * Locking: tty_mutex for now
1314  */
1315 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1316 {
1317 	if (driver->ops->remove)
1318 		driver->ops->remove(driver, tty);
1319 	else
1320 		driver->ttys[tty->index] = NULL;
1321 }
1322 
1323 /**
1324  * tty_reopen()	- fast re-open of an open tty
1325  * @tty: the tty to open
1326  *
1327  * Re-opens on master ptys are not allowed and return -%EIO.
1328  *
1329  * Locking: Caller must hold tty_lock
1330  * Return: 0 on success, -errno on error.
1331  */
1332 static int tty_reopen(struct tty_struct *tty)
1333 {
1334 	struct tty_driver *driver = tty->driver;
1335 	struct tty_ldisc *ld;
1336 	int retval = 0;
1337 
1338 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1339 	    driver->subtype == PTY_TYPE_MASTER)
1340 		return -EIO;
1341 
1342 	if (!tty->count)
1343 		return -EAGAIN;
1344 
1345 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1346 		return -EBUSY;
1347 
1348 	ld = tty_ldisc_ref_wait(tty);
1349 	if (ld) {
1350 		tty_ldisc_deref(ld);
1351 	} else {
1352 		retval = tty_ldisc_lock(tty, 5 * HZ);
1353 		if (retval)
1354 			return retval;
1355 
1356 		if (!tty->ldisc)
1357 			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1358 		tty_ldisc_unlock(tty);
1359 	}
1360 
1361 	if (retval == 0)
1362 		tty->count++;
1363 
1364 	return retval;
1365 }
1366 
1367 /**
1368  * tty_init_dev		-	initialise a tty device
1369  * @driver: tty driver we are opening a device on
1370  * @idx: device index
1371  *
1372  * Prepare a tty device. This may not be a "new" clean device but could also be
1373  * an active device. The pty drivers require special handling because of this.
1374  *
1375  * Locking:
1376  *	The function is called under the tty_mutex, which protects us from the
1377  *	tty struct or driver itself going away.
1378  *
1379  * On exit the tty device has the line discipline attached and a reference
1380  * count of 1. If a pair was created for pty/tty use and the other was a pty
1381  * master then it too has a reference count of 1.
1382  *
1383  * WSH 06/09/97: Rewritten to remove races and properly clean up after a failed
1384  * open. The new code protects the open with a mutex, so it's really quite
1385  * straightforward. The mutex locking can probably be relaxed for the (most
1386  * common) case of reopening a tty.
1387  *
1388  * Return: new tty structure
1389  */
1390 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1391 {
1392 	struct tty_struct *tty;
1393 	int retval;
1394 
1395 	/*
1396 	 * First time open is complex, especially for PTY devices.
1397 	 * This code guarantees that either everything succeeds and the
1398 	 * TTY is ready for operation, or else the table slots are vacated
1399 	 * and the allocated memory released.  (Except that the termios
1400 	 * may be retained.)
1401 	 */
1402 
1403 	if (!try_module_get(driver->owner))
1404 		return ERR_PTR(-ENODEV);
1405 
1406 	tty = alloc_tty_struct(driver, idx);
1407 	if (!tty) {
1408 		retval = -ENOMEM;
1409 		goto err_module_put;
1410 	}
1411 
1412 	tty_lock(tty);
1413 	retval = tty_driver_install_tty(driver, tty);
1414 	if (retval < 0)
1415 		goto err_free_tty;
1416 
1417 	if (!tty->port)
1418 		tty->port = driver->ports[idx];
1419 
1420 	if (WARN_RATELIMIT(!tty->port,
1421 			"%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1422 			__func__, tty->driver->name)) {
1423 		retval = -EINVAL;
1424 		goto err_release_lock;
1425 	}
1426 
1427 	retval = tty_ldisc_lock(tty, 5 * HZ);
1428 	if (retval)
1429 		goto err_release_lock;
1430 	tty->port->itty = tty;
1431 
1432 	/*
1433 	 * Structures all installed ... call the ldisc open routines.
1434 	 * If we fail here just call release_tty to clean up.  No need
1435 	 * to decrement the use counts, as release_tty doesn't care.
1436 	 */
1437 	retval = tty_ldisc_setup(tty, tty->link);
1438 	if (retval)
1439 		goto err_release_tty;
1440 	tty_ldisc_unlock(tty);
1441 	/* Return the tty locked so that it cannot vanish under the caller */
1442 	return tty;
1443 
1444 err_free_tty:
1445 	tty_unlock(tty);
1446 	free_tty_struct(tty);
1447 err_module_put:
1448 	module_put(driver->owner);
1449 	return ERR_PTR(retval);
1450 
1451 	/* call the tty release_tty routine to clean out this slot */
1452 err_release_tty:
1453 	tty_ldisc_unlock(tty);
1454 	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1455 			     retval, idx);
1456 err_release_lock:
1457 	tty_unlock(tty);
1458 	release_tty(tty, idx);
1459 	return ERR_PTR(retval);
1460 }
1461 
1462 /**
1463  * tty_save_termios() - save tty termios data in driver table
1464  * @tty: tty whose termios data to save
1465  *
1466  * Locking: Caller guarantees serialisation with tty_init_termios().
1467  */
1468 void tty_save_termios(struct tty_struct *tty)
1469 {
1470 	struct ktermios *tp;
1471 	int idx = tty->index;
1472 
1473 	/* If the port is going to reset then it has no termios to save */
1474 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1475 		return;
1476 
1477 	/* Stash the termios data */
1478 	tp = tty->driver->termios[idx];
1479 	if (tp == NULL) {
1480 		tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1481 		if (tp == NULL)
1482 			return;
1483 		tty->driver->termios[idx] = tp;
1484 	}
1485 	*tp = tty->termios;
1486 }
1487 EXPORT_SYMBOL_GPL(tty_save_termios);
1488 
1489 /**
1490  * tty_flush_works	-	flush all works of a tty/pty pair
1491  * @tty: tty device to flush works for (or either end of a pty pair)
1492  *
1493  * Sync flush all works belonging to @tty (and the 'other' tty).
1494  */
1495 static void tty_flush_works(struct tty_struct *tty)
1496 {
1497 	flush_work(&tty->SAK_work);
1498 	flush_work(&tty->hangup_work);
1499 	if (tty->link) {
1500 		flush_work(&tty->link->SAK_work);
1501 		flush_work(&tty->link->hangup_work);
1502 	}
1503 }
1504 
1505 /**
1506  * release_one_tty	-	release tty structure memory
1507  * @work: work of tty we are obliterating
1508  *
1509  * Releases memory associated with a tty structure, and clears out the
1510  * driver table slots. This function is called when a device is no longer
1511  * in use. It also gets called when setup of a device fails.
1512  *
1513  * Locking:
1514  *	takes the file list lock internally when working on the list of ttys
1515  *	that the driver keeps.
1516  *
1517  * This method gets called from a work queue so that the driver private
1518  * cleanup ops can sleep (needed for USB at least)
1519  */
1520 static void release_one_tty(struct work_struct *work)
1521 {
1522 	struct tty_struct *tty =
1523 		container_of(work, struct tty_struct, hangup_work);
1524 	struct tty_driver *driver = tty->driver;
1525 	struct module *owner = driver->owner;
1526 
1527 	if (tty->ops->cleanup)
1528 		tty->ops->cleanup(tty);
1529 
1530 	tty_driver_kref_put(driver);
1531 	module_put(owner);
1532 
1533 	spin_lock(&tty->files_lock);
1534 	list_del_init(&tty->tty_files);
1535 	spin_unlock(&tty->files_lock);
1536 
1537 	put_pid(tty->ctrl.pgrp);
1538 	put_pid(tty->ctrl.session);
1539 	free_tty_struct(tty);
1540 }
1541 
1542 static void queue_release_one_tty(struct kref *kref)
1543 {
1544 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1545 
1546 	/* The hangup queue is now free so we can reuse it rather than
1547 	 *  waste a chunk of memory for each port.
1548 	 */
1549 	INIT_WORK(&tty->hangup_work, release_one_tty);
1550 	schedule_work(&tty->hangup_work);
1551 }
1552 
1553 /**
1554  * tty_kref_put		-	release a tty kref
1555  * @tty: tty device
1556  *
1557  * Release a reference to the @tty device and if need be let the kref layer
1558  * destruct the object for us.
1559  */
1560 void tty_kref_put(struct tty_struct *tty)
1561 {
1562 	if (tty)
1563 		kref_put(&tty->kref, queue_release_one_tty);
1564 }
1565 EXPORT_SYMBOL(tty_kref_put);
1566 
1567 /**
1568  * release_tty		-	release tty structure memory
1569  * @tty: tty device release
1570  * @idx: index of the tty device release
1571  *
1572  * Release both @tty and a possible linked partner (think pty pair),
1573  * and decrement the refcount of the backing module.
1574  *
1575  * Locking:
1576  *	tty_mutex
1577  *	takes the file list lock internally when working on the list of ttys
1578  *	that the driver keeps.
1579  */
1580 static void release_tty(struct tty_struct *tty, int idx)
1581 {
1582 	/* This should always be true but check for the moment */
1583 	WARN_ON(tty->index != idx);
1584 	WARN_ON(!mutex_is_locked(&tty_mutex));
1585 	if (tty->ops->shutdown)
1586 		tty->ops->shutdown(tty);
1587 	tty_save_termios(tty);
1588 	tty_driver_remove_tty(tty->driver, tty);
1589 	if (tty->port)
1590 		tty->port->itty = NULL;
1591 	if (tty->link)
1592 		tty->link->port->itty = NULL;
1593 	if (tty->port)
1594 		tty_buffer_cancel_work(tty->port);
1595 	if (tty->link)
1596 		tty_buffer_cancel_work(tty->link->port);
1597 
1598 	tty_kref_put(tty->link);
1599 	tty_kref_put(tty);
1600 }
1601 
1602 /**
1603  * tty_release_checks - check a tty before real release
1604  * @tty: tty to check
1605  * @idx: index of the tty
1606  *
1607  * Performs some paranoid checking before true release of the @tty. This is a
1608  * no-op unless %TTY_PARANOIA_CHECK is defined.
1609  */
1610 static int tty_release_checks(struct tty_struct *tty, int idx)
1611 {
1612 #ifdef TTY_PARANOIA_CHECK
1613 	if (idx < 0 || idx >= tty->driver->num) {
1614 		tty_debug(tty, "bad idx %d\n", idx);
1615 		return -1;
1616 	}
1617 
1618 	/* not much to check for devpts */
1619 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1620 		return 0;
1621 
1622 	if (tty != tty->driver->ttys[idx]) {
1623 		tty_debug(tty, "bad driver table[%d] = %p\n",
1624 			  idx, tty->driver->ttys[idx]);
1625 		return -1;
1626 	}
1627 	if (tty->driver->other) {
1628 		struct tty_struct *o_tty = tty->link;
1629 
1630 		if (o_tty != tty->driver->other->ttys[idx]) {
1631 			tty_debug(tty, "bad other table[%d] = %p\n",
1632 				  idx, tty->driver->other->ttys[idx]);
1633 			return -1;
1634 		}
1635 		if (o_tty->link != tty) {
1636 			tty_debug(tty, "bad link = %p\n", o_tty->link);
1637 			return -1;
1638 		}
1639 	}
1640 #endif
1641 	return 0;
1642 }
1643 
1644 /**
1645  * tty_kclose      -       closes tty opened by tty_kopen
1646  * @tty: tty device
1647  *
1648  * Performs the final steps to release and free a tty device. It is the same as
1649  * tty_release_struct() except that it also resets %TTY_PORT_KOPENED flag on
1650  * @tty->port.
1651  */
1652 void tty_kclose(struct tty_struct *tty)
1653 {
1654 	/*
1655 	 * Ask the line discipline code to release its structures
1656 	 */
1657 	tty_ldisc_release(tty);
1658 
1659 	/* Wait for pending work before tty destruction commences */
1660 	tty_flush_works(tty);
1661 
1662 	tty_debug_hangup(tty, "freeing structure\n");
1663 	/*
1664 	 * The release_tty function takes care of the details of clearing
1665 	 * the slots and preserving the termios structure.
1666 	 */
1667 	mutex_lock(&tty_mutex);
1668 	tty_port_set_kopened(tty->port, 0);
1669 	release_tty(tty, tty->index);
1670 	mutex_unlock(&tty_mutex);
1671 }
1672 EXPORT_SYMBOL_GPL(tty_kclose);
1673 
1674 /**
1675  * tty_release_struct	-	release a tty struct
1676  * @tty: tty device
1677  * @idx: index of the tty
1678  *
1679  * Performs the final steps to release and free a tty device. It is roughly the
1680  * reverse of tty_init_dev().
1681  */
1682 void tty_release_struct(struct tty_struct *tty, int idx)
1683 {
1684 	/*
1685 	 * Ask the line discipline code to release its structures
1686 	 */
1687 	tty_ldisc_release(tty);
1688 
1689 	/* Wait for pending work before tty destruction commmences */
1690 	tty_flush_works(tty);
1691 
1692 	tty_debug_hangup(tty, "freeing structure\n");
1693 	/*
1694 	 * The release_tty function takes care of the details of clearing
1695 	 * the slots and preserving the termios structure.
1696 	 */
1697 	mutex_lock(&tty_mutex);
1698 	release_tty(tty, idx);
1699 	mutex_unlock(&tty_mutex);
1700 }
1701 EXPORT_SYMBOL_GPL(tty_release_struct);
1702 
1703 /**
1704  * tty_release		-	vfs callback for close
1705  * @inode: inode of tty
1706  * @filp: file pointer for handle to tty
1707  *
1708  * Called the last time each file handle is closed that references this tty.
1709  * There may however be several such references.
1710  *
1711  * Locking:
1712  *	Takes BKL. See tty_release_dev().
1713  *
1714  * Even releasing the tty structures is a tricky business. We have to be very
1715  * careful that the structures are all released at the same time, as interrupts
1716  * might otherwise get the wrong pointers.
1717  *
1718  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1719  * lead to double frees or releasing memory still in use.
1720  */
1721 int tty_release(struct inode *inode, struct file *filp)
1722 {
1723 	struct tty_struct *tty = file_tty(filp);
1724 	struct tty_struct *o_tty = NULL;
1725 	int	do_sleep, final;
1726 	int	idx;
1727 	long	timeout = 0;
1728 	int	once = 1;
1729 
1730 	if (tty_paranoia_check(tty, inode, __func__))
1731 		return 0;
1732 
1733 	tty_lock(tty);
1734 	check_tty_count(tty, __func__);
1735 
1736 	__tty_fasync(-1, filp, 0);
1737 
1738 	idx = tty->index;
1739 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1740 	    tty->driver->subtype == PTY_TYPE_MASTER)
1741 		o_tty = tty->link;
1742 
1743 	if (tty_release_checks(tty, idx)) {
1744 		tty_unlock(tty);
1745 		return 0;
1746 	}
1747 
1748 	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1749 
1750 	if (tty->ops->close)
1751 		tty->ops->close(tty, filp);
1752 
1753 	/* If tty is pty master, lock the slave pty (stable lock order) */
1754 	tty_lock_slave(o_tty);
1755 
1756 	/*
1757 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1758 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1759 	 * wait queues and kick everyone out _before_ actually starting to
1760 	 * close.  This ensures that we won't block while releasing the tty
1761 	 * structure.
1762 	 *
1763 	 * The test for the o_tty closing is necessary, since the master and
1764 	 * slave sides may close in any order.  If the slave side closes out
1765 	 * first, its count will be one, since the master side holds an open.
1766 	 * Thus this test wouldn't be triggered at the time the slave closed,
1767 	 * so we do it now.
1768 	 */
1769 	while (1) {
1770 		do_sleep = 0;
1771 
1772 		if (tty->count <= 1) {
1773 			if (waitqueue_active(&tty->read_wait)) {
1774 				wake_up_poll(&tty->read_wait, EPOLLIN);
1775 				do_sleep++;
1776 			}
1777 			if (waitqueue_active(&tty->write_wait)) {
1778 				wake_up_poll(&tty->write_wait, EPOLLOUT);
1779 				do_sleep++;
1780 			}
1781 		}
1782 		if (o_tty && o_tty->count <= 1) {
1783 			if (waitqueue_active(&o_tty->read_wait)) {
1784 				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1785 				do_sleep++;
1786 			}
1787 			if (waitqueue_active(&o_tty->write_wait)) {
1788 				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1789 				do_sleep++;
1790 			}
1791 		}
1792 		if (!do_sleep)
1793 			break;
1794 
1795 		if (once) {
1796 			once = 0;
1797 			tty_warn(tty, "read/write wait queue active!\n");
1798 		}
1799 		schedule_timeout_killable(timeout);
1800 		if (timeout < 120 * HZ)
1801 			timeout = 2 * timeout + 1;
1802 		else
1803 			timeout = MAX_SCHEDULE_TIMEOUT;
1804 	}
1805 
1806 	if (o_tty) {
1807 		if (--o_tty->count < 0) {
1808 			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1809 			o_tty->count = 0;
1810 		}
1811 	}
1812 	if (--tty->count < 0) {
1813 		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1814 		tty->count = 0;
1815 	}
1816 
1817 	/*
1818 	 * We've decremented tty->count, so we need to remove this file
1819 	 * descriptor off the tty->tty_files list; this serves two
1820 	 * purposes:
1821 	 *  - check_tty_count sees the correct number of file descriptors
1822 	 *    associated with this tty.
1823 	 *  - do_tty_hangup no longer sees this file descriptor as
1824 	 *    something that needs to be handled for hangups.
1825 	 */
1826 	tty_del_file(filp);
1827 
1828 	/*
1829 	 * Perform some housekeeping before deciding whether to return.
1830 	 *
1831 	 * If _either_ side is closing, make sure there aren't any
1832 	 * processes that still think tty or o_tty is their controlling
1833 	 * tty.
1834 	 */
1835 	if (!tty->count) {
1836 		read_lock(&tasklist_lock);
1837 		session_clear_tty(tty->ctrl.session);
1838 		if (o_tty)
1839 			session_clear_tty(o_tty->ctrl.session);
1840 		read_unlock(&tasklist_lock);
1841 	}
1842 
1843 	/* check whether both sides are closing ... */
1844 	final = !tty->count && !(o_tty && o_tty->count);
1845 
1846 	tty_unlock_slave(o_tty);
1847 	tty_unlock(tty);
1848 
1849 	/* At this point, the tty->count == 0 should ensure a dead tty
1850 	 * cannot be re-opened by a racing opener.
1851 	 */
1852 
1853 	if (!final)
1854 		return 0;
1855 
1856 	tty_debug_hangup(tty, "final close\n");
1857 
1858 	tty_release_struct(tty, idx);
1859 	return 0;
1860 }
1861 
1862 /**
1863  * tty_open_current_tty - get locked tty of current task
1864  * @device: device number
1865  * @filp: file pointer to tty
1866  * @return: locked tty of the current task iff @device is /dev/tty
1867  *
1868  * Performs a re-open of the current task's controlling tty.
1869  *
1870  * We cannot return driver and index like for the other nodes because devpts
1871  * will not work then. It expects inodes to be from devpts FS.
1872  */
1873 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1874 {
1875 	struct tty_struct *tty;
1876 	int retval;
1877 
1878 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1879 		return NULL;
1880 
1881 	tty = get_current_tty();
1882 	if (!tty)
1883 		return ERR_PTR(-ENXIO);
1884 
1885 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1886 	/* noctty = 1; */
1887 	tty_lock(tty);
1888 	tty_kref_put(tty);	/* safe to drop the kref now */
1889 
1890 	retval = tty_reopen(tty);
1891 	if (retval < 0) {
1892 		tty_unlock(tty);
1893 		tty = ERR_PTR(retval);
1894 	}
1895 	return tty;
1896 }
1897 
1898 /**
1899  * tty_lookup_driver - lookup a tty driver for a given device file
1900  * @device: device number
1901  * @filp: file pointer to tty
1902  * @index: index for the device in the @return driver
1903  *
1904  * If returned value is not erroneous, the caller is responsible to decrement
1905  * the refcount by tty_driver_kref_put().
1906  *
1907  * Locking: %tty_mutex protects get_tty_driver()
1908  *
1909  * Return: driver for this inode (with increased refcount)
1910  */
1911 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1912 		int *index)
1913 {
1914 	struct tty_driver *driver = NULL;
1915 
1916 	switch (device) {
1917 #ifdef CONFIG_VT
1918 	case MKDEV(TTY_MAJOR, 0): {
1919 		extern struct tty_driver *console_driver;
1920 
1921 		driver = tty_driver_kref_get(console_driver);
1922 		*index = fg_console;
1923 		break;
1924 	}
1925 #endif
1926 	case MKDEV(TTYAUX_MAJOR, 1): {
1927 		struct tty_driver *console_driver = console_device(index);
1928 
1929 		if (console_driver) {
1930 			driver = tty_driver_kref_get(console_driver);
1931 			if (driver && filp) {
1932 				/* Don't let /dev/console block */
1933 				filp->f_flags |= O_NONBLOCK;
1934 				break;
1935 			}
1936 		}
1937 		if (driver)
1938 			tty_driver_kref_put(driver);
1939 		return ERR_PTR(-ENODEV);
1940 	}
1941 	default:
1942 		driver = get_tty_driver(device, index);
1943 		if (!driver)
1944 			return ERR_PTR(-ENODEV);
1945 		break;
1946 	}
1947 	return driver;
1948 }
1949 
1950 static struct tty_struct *tty_kopen(dev_t device, int shared)
1951 {
1952 	struct tty_struct *tty;
1953 	struct tty_driver *driver;
1954 	int index = -1;
1955 
1956 	mutex_lock(&tty_mutex);
1957 	driver = tty_lookup_driver(device, NULL, &index);
1958 	if (IS_ERR(driver)) {
1959 		mutex_unlock(&tty_mutex);
1960 		return ERR_CAST(driver);
1961 	}
1962 
1963 	/* check whether we're reopening an existing tty */
1964 	tty = tty_driver_lookup_tty(driver, NULL, index);
1965 	if (IS_ERR(tty) || shared)
1966 		goto out;
1967 
1968 	if (tty) {
1969 		/* drop kref from tty_driver_lookup_tty() */
1970 		tty_kref_put(tty);
1971 		tty = ERR_PTR(-EBUSY);
1972 	} else { /* tty_init_dev returns tty with the tty_lock held */
1973 		tty = tty_init_dev(driver, index);
1974 		if (IS_ERR(tty))
1975 			goto out;
1976 		tty_port_set_kopened(tty->port, 1);
1977 	}
1978 out:
1979 	mutex_unlock(&tty_mutex);
1980 	tty_driver_kref_put(driver);
1981 	return tty;
1982 }
1983 
1984 /**
1985  * tty_kopen_exclusive	-	open a tty device for kernel
1986  * @device: dev_t of device to open
1987  *
1988  * Opens tty exclusively for kernel. Performs the driver lookup, makes sure
1989  * it's not already opened and performs the first-time tty initialization.
1990  *
1991  * Claims the global %tty_mutex to serialize:
1992  *  * concurrent first-time tty initialization
1993  *  * concurrent tty driver removal w/ lookup
1994  *  * concurrent tty removal from driver table
1995  *
1996  * Return: the locked initialized &tty_struct
1997  */
1998 struct tty_struct *tty_kopen_exclusive(dev_t device)
1999 {
2000 	return tty_kopen(device, 0);
2001 }
2002 EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2003 
2004 /**
2005  * tty_kopen_shared	-	open a tty device for shared in-kernel use
2006  * @device: dev_t of device to open
2007  *
2008  * Opens an already existing tty for in-kernel use. Compared to
2009  * tty_kopen_exclusive() above it doesn't ensure to be the only user.
2010  *
2011  * Locking: identical to tty_kopen() above.
2012  */
2013 struct tty_struct *tty_kopen_shared(dev_t device)
2014 {
2015 	return tty_kopen(device, 1);
2016 }
2017 EXPORT_SYMBOL_GPL(tty_kopen_shared);
2018 
2019 /**
2020  * tty_open_by_driver	-	open a tty device
2021  * @device: dev_t of device to open
2022  * @filp: file pointer to tty
2023  *
2024  * Performs the driver lookup, checks for a reopen, or otherwise performs the
2025  * first-time tty initialization.
2026  *
2027  *
2028  * Claims the global tty_mutex to serialize:
2029  *  * concurrent first-time tty initialization
2030  *  * concurrent tty driver removal w/ lookup
2031  *  * concurrent tty removal from driver table
2032  *
2033  * Return: the locked initialized or re-opened &tty_struct
2034  */
2035 static struct tty_struct *tty_open_by_driver(dev_t device,
2036 					     struct file *filp)
2037 {
2038 	struct tty_struct *tty;
2039 	struct tty_driver *driver = NULL;
2040 	int index = -1;
2041 	int retval;
2042 
2043 	mutex_lock(&tty_mutex);
2044 	driver = tty_lookup_driver(device, filp, &index);
2045 	if (IS_ERR(driver)) {
2046 		mutex_unlock(&tty_mutex);
2047 		return ERR_CAST(driver);
2048 	}
2049 
2050 	/* check whether we're reopening an existing tty */
2051 	tty = tty_driver_lookup_tty(driver, filp, index);
2052 	if (IS_ERR(tty)) {
2053 		mutex_unlock(&tty_mutex);
2054 		goto out;
2055 	}
2056 
2057 	if (tty) {
2058 		if (tty_port_kopened(tty->port)) {
2059 			tty_kref_put(tty);
2060 			mutex_unlock(&tty_mutex);
2061 			tty = ERR_PTR(-EBUSY);
2062 			goto out;
2063 		}
2064 		mutex_unlock(&tty_mutex);
2065 		retval = tty_lock_interruptible(tty);
2066 		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2067 		if (retval) {
2068 			if (retval == -EINTR)
2069 				retval = -ERESTARTSYS;
2070 			tty = ERR_PTR(retval);
2071 			goto out;
2072 		}
2073 		retval = tty_reopen(tty);
2074 		if (retval < 0) {
2075 			tty_unlock(tty);
2076 			tty = ERR_PTR(retval);
2077 		}
2078 	} else { /* Returns with the tty_lock held for now */
2079 		tty = tty_init_dev(driver, index);
2080 		mutex_unlock(&tty_mutex);
2081 	}
2082 out:
2083 	tty_driver_kref_put(driver);
2084 	return tty;
2085 }
2086 
2087 /**
2088  * tty_open	-	open a tty device
2089  * @inode: inode of device file
2090  * @filp: file pointer to tty
2091  *
2092  * tty_open() and tty_release() keep up the tty count that contains the number
2093  * of opens done on a tty. We cannot use the inode-count, as different inodes
2094  * might point to the same tty.
2095  *
2096  * Open-counting is needed for pty masters, as well as for keeping track of
2097  * serial lines: DTR is dropped when the last close happens.
2098  * (This is not done solely through tty->count, now.  - Ted 1/27/92)
2099  *
2100  * The termios state of a pty is reset on the first open so that settings don't
2101  * persist across reuse.
2102  *
2103  * Locking:
2104  *  * %tty_mutex protects tty, tty_lookup_driver() and tty_init_dev().
2105  *  * @tty->count should protect the rest.
2106  *  * ->siglock protects ->signal/->sighand
2107  *
2108  * Note: the tty_unlock/lock cases without a ref are only safe due to %tty_mutex
2109  */
2110 static int tty_open(struct inode *inode, struct file *filp)
2111 {
2112 	struct tty_struct *tty;
2113 	int noctty, retval;
2114 	dev_t device = inode->i_rdev;
2115 	unsigned saved_flags = filp->f_flags;
2116 
2117 	nonseekable_open(inode, filp);
2118 
2119 retry_open:
2120 	retval = tty_alloc_file(filp);
2121 	if (retval)
2122 		return -ENOMEM;
2123 
2124 	tty = tty_open_current_tty(device, filp);
2125 	if (!tty)
2126 		tty = tty_open_by_driver(device, filp);
2127 
2128 	if (IS_ERR(tty)) {
2129 		tty_free_file(filp);
2130 		retval = PTR_ERR(tty);
2131 		if (retval != -EAGAIN || signal_pending(current))
2132 			return retval;
2133 		schedule();
2134 		goto retry_open;
2135 	}
2136 
2137 	tty_add_file(tty, filp);
2138 
2139 	check_tty_count(tty, __func__);
2140 	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2141 
2142 	if (tty->ops->open)
2143 		retval = tty->ops->open(tty, filp);
2144 	else
2145 		retval = -ENODEV;
2146 	filp->f_flags = saved_flags;
2147 
2148 	if (retval) {
2149 		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2150 
2151 		tty_unlock(tty); /* need to call tty_release without BTM */
2152 		tty_release(inode, filp);
2153 		if (retval != -ERESTARTSYS)
2154 			return retval;
2155 
2156 		if (signal_pending(current))
2157 			return retval;
2158 
2159 		schedule();
2160 		/*
2161 		 * Need to reset f_op in case a hangup happened.
2162 		 */
2163 		if (tty_hung_up_p(filp))
2164 			filp->f_op = &tty_fops;
2165 		goto retry_open;
2166 	}
2167 	clear_bit(TTY_HUPPED, &tty->flags);
2168 
2169 	noctty = (filp->f_flags & O_NOCTTY) ||
2170 		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2171 		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2172 		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2173 		  tty->driver->subtype == PTY_TYPE_MASTER);
2174 	if (!noctty)
2175 		tty_open_proc_set_tty(filp, tty);
2176 	tty_unlock(tty);
2177 	return 0;
2178 }
2179 
2180 
2181 /**
2182  * tty_poll	-	check tty status
2183  * @filp: file being polled
2184  * @wait: poll wait structures to update
2185  *
2186  * Call the line discipline polling method to obtain the poll status of the
2187  * device.
2188  *
2189  * Locking: locks called line discipline but ldisc poll method may be
2190  * re-entered freely by other callers.
2191  */
2192 static __poll_t tty_poll(struct file *filp, poll_table *wait)
2193 {
2194 	struct tty_struct *tty = file_tty(filp);
2195 	struct tty_ldisc *ld;
2196 	__poll_t ret = 0;
2197 
2198 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2199 		return 0;
2200 
2201 	ld = tty_ldisc_ref_wait(tty);
2202 	if (!ld)
2203 		return hung_up_tty_poll(filp, wait);
2204 	if (ld->ops->poll)
2205 		ret = ld->ops->poll(tty, filp, wait);
2206 	tty_ldisc_deref(ld);
2207 	return ret;
2208 }
2209 
2210 static int __tty_fasync(int fd, struct file *filp, int on)
2211 {
2212 	struct tty_struct *tty = file_tty(filp);
2213 	unsigned long flags;
2214 	int retval = 0;
2215 
2216 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2217 		goto out;
2218 
2219 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2220 	if (retval <= 0)
2221 		goto out;
2222 
2223 	if (on) {
2224 		enum pid_type type;
2225 		struct pid *pid;
2226 
2227 		spin_lock_irqsave(&tty->ctrl.lock, flags);
2228 		if (tty->ctrl.pgrp) {
2229 			pid = tty->ctrl.pgrp;
2230 			type = PIDTYPE_PGID;
2231 		} else {
2232 			pid = task_pid(current);
2233 			type = PIDTYPE_TGID;
2234 		}
2235 		get_pid(pid);
2236 		spin_unlock_irqrestore(&tty->ctrl.lock, flags);
2237 		__f_setown(filp, pid, type, 0);
2238 		put_pid(pid);
2239 		retval = 0;
2240 	}
2241 out:
2242 	return retval;
2243 }
2244 
2245 static int tty_fasync(int fd, struct file *filp, int on)
2246 {
2247 	struct tty_struct *tty = file_tty(filp);
2248 	int retval = -ENOTTY;
2249 
2250 	tty_lock(tty);
2251 	if (!tty_hung_up_p(filp))
2252 		retval = __tty_fasync(fd, filp, on);
2253 	tty_unlock(tty);
2254 
2255 	return retval;
2256 }
2257 
2258 /**
2259  * tiocsti		-	fake input character
2260  * @tty: tty to fake input into
2261  * @p: pointer to character
2262  *
2263  * Fake input to a tty device. Does the necessary locking and input management.
2264  *
2265  * FIXME: does not honour flow control ??
2266  *
2267  * Locking:
2268  *  * Called functions take tty_ldiscs_lock
2269  *  * current->signal->tty check is safe without locks
2270  */
2271 static int tiocsti(struct tty_struct *tty, char __user *p)
2272 {
2273 	char ch, mbz = 0;
2274 	struct tty_ldisc *ld;
2275 
2276 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2277 		return -EPERM;
2278 	if (get_user(ch, p))
2279 		return -EFAULT;
2280 	tty_audit_tiocsti(tty, ch);
2281 	ld = tty_ldisc_ref_wait(tty);
2282 	if (!ld)
2283 		return -EIO;
2284 	tty_buffer_lock_exclusive(tty->port);
2285 	if (ld->ops->receive_buf)
2286 		ld->ops->receive_buf(tty, &ch, &mbz, 1);
2287 	tty_buffer_unlock_exclusive(tty->port);
2288 	tty_ldisc_deref(ld);
2289 	return 0;
2290 }
2291 
2292 /**
2293  * tiocgwinsz		-	implement window query ioctl
2294  * @tty: tty
2295  * @arg: user buffer for result
2296  *
2297  * Copies the kernel idea of the window size into the user buffer.
2298  *
2299  * Locking: @tty->winsize_mutex is taken to ensure the winsize data is
2300  * consistent.
2301  */
2302 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2303 {
2304 	int err;
2305 
2306 	mutex_lock(&tty->winsize_mutex);
2307 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2308 	mutex_unlock(&tty->winsize_mutex);
2309 
2310 	return err ? -EFAULT : 0;
2311 }
2312 
2313 /**
2314  * tty_do_resize	-	resize event
2315  * @tty: tty being resized
2316  * @ws: new dimensions
2317  *
2318  * Update the termios variables and send the necessary signals to peform a
2319  * terminal resize correctly.
2320  */
2321 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2322 {
2323 	struct pid *pgrp;
2324 
2325 	/* Lock the tty */
2326 	mutex_lock(&tty->winsize_mutex);
2327 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2328 		goto done;
2329 
2330 	/* Signal the foreground process group */
2331 	pgrp = tty_get_pgrp(tty);
2332 	if (pgrp)
2333 		kill_pgrp(pgrp, SIGWINCH, 1);
2334 	put_pid(pgrp);
2335 
2336 	tty->winsize = *ws;
2337 done:
2338 	mutex_unlock(&tty->winsize_mutex);
2339 	return 0;
2340 }
2341 EXPORT_SYMBOL(tty_do_resize);
2342 
2343 /**
2344  * tiocswinsz		-	implement window size set ioctl
2345  * @tty: tty side of tty
2346  * @arg: user buffer for result
2347  *
2348  * Copies the user idea of the window size to the kernel. Traditionally this is
2349  * just advisory information but for the Linux console it actually has driver
2350  * level meaning and triggers a VC resize.
2351  *
2352  * Locking:
2353  *	Driver dependent. The default do_resize method takes the tty termios
2354  *	mutex and ctrl.lock. The console takes its own lock then calls into the
2355  *	default method.
2356  */
2357 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2358 {
2359 	struct winsize tmp_ws;
2360 
2361 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2362 		return -EFAULT;
2363 
2364 	if (tty->ops->resize)
2365 		return tty->ops->resize(tty, &tmp_ws);
2366 	else
2367 		return tty_do_resize(tty, &tmp_ws);
2368 }
2369 
2370 /**
2371  * tioccons	-	allow admin to move logical console
2372  * @file: the file to become console
2373  *
2374  * Allow the administrator to move the redirected console device.
2375  *
2376  * Locking: uses redirect_lock to guard the redirect information
2377  */
2378 static int tioccons(struct file *file)
2379 {
2380 	if (!capable(CAP_SYS_ADMIN))
2381 		return -EPERM;
2382 	if (file->f_op->write_iter == redirected_tty_write) {
2383 		struct file *f;
2384 
2385 		spin_lock(&redirect_lock);
2386 		f = redirect;
2387 		redirect = NULL;
2388 		spin_unlock(&redirect_lock);
2389 		if (f)
2390 			fput(f);
2391 		return 0;
2392 	}
2393 	if (file->f_op->write_iter != tty_write)
2394 		return -ENOTTY;
2395 	if (!(file->f_mode & FMODE_WRITE))
2396 		return -EBADF;
2397 	if (!(file->f_mode & FMODE_CAN_WRITE))
2398 		return -EINVAL;
2399 	spin_lock(&redirect_lock);
2400 	if (redirect) {
2401 		spin_unlock(&redirect_lock);
2402 		return -EBUSY;
2403 	}
2404 	redirect = get_file(file);
2405 	spin_unlock(&redirect_lock);
2406 	return 0;
2407 }
2408 
2409 /**
2410  * tiocsetd	-	set line discipline
2411  * @tty: tty device
2412  * @p: pointer to user data
2413  *
2414  * Set the line discipline according to user request.
2415  *
2416  * Locking: see tty_set_ldisc(), this function is just a helper
2417  */
2418 static int tiocsetd(struct tty_struct *tty, int __user *p)
2419 {
2420 	int disc;
2421 	int ret;
2422 
2423 	if (get_user(disc, p))
2424 		return -EFAULT;
2425 
2426 	ret = tty_set_ldisc(tty, disc);
2427 
2428 	return ret;
2429 }
2430 
2431 /**
2432  * tiocgetd	-	get line discipline
2433  * @tty: tty device
2434  * @p: pointer to user data
2435  *
2436  * Retrieves the line discipline id directly from the ldisc.
2437  *
2438  * Locking: waits for ldisc reference (in case the line discipline is changing
2439  * or the @tty is being hungup)
2440  */
2441 static int tiocgetd(struct tty_struct *tty, int __user *p)
2442 {
2443 	struct tty_ldisc *ld;
2444 	int ret;
2445 
2446 	ld = tty_ldisc_ref_wait(tty);
2447 	if (!ld)
2448 		return -EIO;
2449 	ret = put_user(ld->ops->num, p);
2450 	tty_ldisc_deref(ld);
2451 	return ret;
2452 }
2453 
2454 /**
2455  * send_break	-	performed time break
2456  * @tty: device to break on
2457  * @duration: timeout in mS
2458  *
2459  * Perform a timed break on hardware that lacks its own driver level timed
2460  * break functionality.
2461  *
2462  * Locking:
2463  *	@tty->atomic_write_lock serializes
2464  */
2465 static int send_break(struct tty_struct *tty, unsigned int duration)
2466 {
2467 	int retval;
2468 
2469 	if (tty->ops->break_ctl == NULL)
2470 		return 0;
2471 
2472 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2473 		retval = tty->ops->break_ctl(tty, duration);
2474 	else {
2475 		/* Do the work ourselves */
2476 		if (tty_write_lock(tty, 0) < 0)
2477 			return -EINTR;
2478 		retval = tty->ops->break_ctl(tty, -1);
2479 		if (retval)
2480 			goto out;
2481 		if (!signal_pending(current))
2482 			msleep_interruptible(duration);
2483 		retval = tty->ops->break_ctl(tty, 0);
2484 out:
2485 		tty_write_unlock(tty);
2486 		if (signal_pending(current))
2487 			retval = -EINTR;
2488 	}
2489 	return retval;
2490 }
2491 
2492 /**
2493  * tty_tiocmget		-	get modem status
2494  * @tty: tty device
2495  * @p: pointer to result
2496  *
2497  * Obtain the modem status bits from the tty driver if the feature is
2498  * supported. Return -%ENOTTY if it is not available.
2499  *
2500  * Locking: none (up to the driver)
2501  */
2502 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2503 {
2504 	int retval = -ENOTTY;
2505 
2506 	if (tty->ops->tiocmget) {
2507 		retval = tty->ops->tiocmget(tty);
2508 
2509 		if (retval >= 0)
2510 			retval = put_user(retval, p);
2511 	}
2512 	return retval;
2513 }
2514 
2515 /**
2516  * tty_tiocmset		-	set modem status
2517  * @tty: tty device
2518  * @cmd: command - clear bits, set bits or set all
2519  * @p: pointer to desired bits
2520  *
2521  * Set the modem status bits from the tty driver if the feature
2522  * is supported. Return -%ENOTTY if it is not available.
2523  *
2524  * Locking: none (up to the driver)
2525  */
2526 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2527 	     unsigned __user *p)
2528 {
2529 	int retval;
2530 	unsigned int set, clear, val;
2531 
2532 	if (tty->ops->tiocmset == NULL)
2533 		return -ENOTTY;
2534 
2535 	retval = get_user(val, p);
2536 	if (retval)
2537 		return retval;
2538 	set = clear = 0;
2539 	switch (cmd) {
2540 	case TIOCMBIS:
2541 		set = val;
2542 		break;
2543 	case TIOCMBIC:
2544 		clear = val;
2545 		break;
2546 	case TIOCMSET:
2547 		set = val;
2548 		clear = ~val;
2549 		break;
2550 	}
2551 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2552 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2553 	return tty->ops->tiocmset(tty, set, clear);
2554 }
2555 
2556 /**
2557  * tty_get_icount	-	get tty statistics
2558  * @tty: tty device
2559  * @icount: output parameter
2560  *
2561  * Gets a copy of the @tty's icount statistics.
2562  *
2563  * Locking: none (up to the driver)
2564  */
2565 int tty_get_icount(struct tty_struct *tty,
2566 		   struct serial_icounter_struct *icount)
2567 {
2568 	memset(icount, 0, sizeof(*icount));
2569 
2570 	if (tty->ops->get_icount)
2571 		return tty->ops->get_icount(tty, icount);
2572 	else
2573 		return -ENOTTY;
2574 }
2575 EXPORT_SYMBOL_GPL(tty_get_icount);
2576 
2577 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2578 {
2579 	struct serial_icounter_struct icount;
2580 	int retval;
2581 
2582 	retval = tty_get_icount(tty, &icount);
2583 	if (retval != 0)
2584 		return retval;
2585 
2586 	if (copy_to_user(arg, &icount, sizeof(icount)))
2587 		return -EFAULT;
2588 	return 0;
2589 }
2590 
2591 static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss)
2592 {
2593 	char comm[TASK_COMM_LEN];
2594 	int flags;
2595 
2596 	flags = ss->flags & ASYNC_DEPRECATED;
2597 
2598 	if (flags)
2599 		pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2600 				__func__, get_task_comm(comm, current), flags);
2601 
2602 	if (!tty->ops->set_serial)
2603 		return -ENOTTY;
2604 
2605 	return tty->ops->set_serial(tty, ss);
2606 }
2607 
2608 static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2609 {
2610 	struct serial_struct v;
2611 
2612 	if (copy_from_user(&v, ss, sizeof(*ss)))
2613 		return -EFAULT;
2614 
2615 	return tty_set_serial(tty, &v);
2616 }
2617 
2618 static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2619 {
2620 	struct serial_struct v;
2621 	int err;
2622 
2623 	memset(&v, 0, sizeof(v));
2624 	if (!tty->ops->get_serial)
2625 		return -ENOTTY;
2626 	err = tty->ops->get_serial(tty, &v);
2627 	if (!err && copy_to_user(ss, &v, sizeof(v)))
2628 		err = -EFAULT;
2629 	return err;
2630 }
2631 
2632 /*
2633  * if pty, return the slave side (real_tty)
2634  * otherwise, return self
2635  */
2636 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2637 {
2638 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2639 	    tty->driver->subtype == PTY_TYPE_MASTER)
2640 		tty = tty->link;
2641 	return tty;
2642 }
2643 
2644 /*
2645  * Split this up, as gcc can choke on it otherwise..
2646  */
2647 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2648 {
2649 	struct tty_struct *tty = file_tty(file);
2650 	struct tty_struct *real_tty;
2651 	void __user *p = (void __user *)arg;
2652 	int retval;
2653 	struct tty_ldisc *ld;
2654 
2655 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2656 		return -EINVAL;
2657 
2658 	real_tty = tty_pair_get_tty(tty);
2659 
2660 	/*
2661 	 * Factor out some common prep work
2662 	 */
2663 	switch (cmd) {
2664 	case TIOCSETD:
2665 	case TIOCSBRK:
2666 	case TIOCCBRK:
2667 	case TCSBRK:
2668 	case TCSBRKP:
2669 		retval = tty_check_change(tty);
2670 		if (retval)
2671 			return retval;
2672 		if (cmd != TIOCCBRK) {
2673 			tty_wait_until_sent(tty, 0);
2674 			if (signal_pending(current))
2675 				return -EINTR;
2676 		}
2677 		break;
2678 	}
2679 
2680 	/*
2681 	 *	Now do the stuff.
2682 	 */
2683 	switch (cmd) {
2684 	case TIOCSTI:
2685 		return tiocsti(tty, p);
2686 	case TIOCGWINSZ:
2687 		return tiocgwinsz(real_tty, p);
2688 	case TIOCSWINSZ:
2689 		return tiocswinsz(real_tty, p);
2690 	case TIOCCONS:
2691 		return real_tty != tty ? -EINVAL : tioccons(file);
2692 	case TIOCEXCL:
2693 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2694 		return 0;
2695 	case TIOCNXCL:
2696 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2697 		return 0;
2698 	case TIOCGEXCL:
2699 	{
2700 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2701 
2702 		return put_user(excl, (int __user *)p);
2703 	}
2704 	case TIOCGETD:
2705 		return tiocgetd(tty, p);
2706 	case TIOCSETD:
2707 		return tiocsetd(tty, p);
2708 	case TIOCVHANGUP:
2709 		if (!capable(CAP_SYS_ADMIN))
2710 			return -EPERM;
2711 		tty_vhangup(tty);
2712 		return 0;
2713 	case TIOCGDEV:
2714 	{
2715 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2716 
2717 		return put_user(ret, (unsigned int __user *)p);
2718 	}
2719 	/*
2720 	 * Break handling
2721 	 */
2722 	case TIOCSBRK:	/* Turn break on, unconditionally */
2723 		if (tty->ops->break_ctl)
2724 			return tty->ops->break_ctl(tty, -1);
2725 		return 0;
2726 	case TIOCCBRK:	/* Turn break off, unconditionally */
2727 		if (tty->ops->break_ctl)
2728 			return tty->ops->break_ctl(tty, 0);
2729 		return 0;
2730 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2731 		/* non-zero arg means wait for all output data
2732 		 * to be sent (performed above) but don't send break.
2733 		 * This is used by the tcdrain() termios function.
2734 		 */
2735 		if (!arg)
2736 			return send_break(tty, 250);
2737 		return 0;
2738 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2739 		return send_break(tty, arg ? arg*100 : 250);
2740 
2741 	case TIOCMGET:
2742 		return tty_tiocmget(tty, p);
2743 	case TIOCMSET:
2744 	case TIOCMBIC:
2745 	case TIOCMBIS:
2746 		return tty_tiocmset(tty, cmd, p);
2747 	case TIOCGICOUNT:
2748 		return tty_tiocgicount(tty, p);
2749 	case TCFLSH:
2750 		switch (arg) {
2751 		case TCIFLUSH:
2752 		case TCIOFLUSH:
2753 		/* flush tty buffer and allow ldisc to process ioctl */
2754 			tty_buffer_flush(tty, NULL);
2755 			break;
2756 		}
2757 		break;
2758 	case TIOCSSERIAL:
2759 		return tty_tiocsserial(tty, p);
2760 	case TIOCGSERIAL:
2761 		return tty_tiocgserial(tty, p);
2762 	case TIOCGPTPEER:
2763 		/* Special because the struct file is needed */
2764 		return ptm_open_peer(file, tty, (int)arg);
2765 	default:
2766 		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2767 		if (retval != -ENOIOCTLCMD)
2768 			return retval;
2769 	}
2770 	if (tty->ops->ioctl) {
2771 		retval = tty->ops->ioctl(tty, cmd, arg);
2772 		if (retval != -ENOIOCTLCMD)
2773 			return retval;
2774 	}
2775 	ld = tty_ldisc_ref_wait(tty);
2776 	if (!ld)
2777 		return hung_up_tty_ioctl(file, cmd, arg);
2778 	retval = -EINVAL;
2779 	if (ld->ops->ioctl) {
2780 		retval = ld->ops->ioctl(tty, cmd, arg);
2781 		if (retval == -ENOIOCTLCMD)
2782 			retval = -ENOTTY;
2783 	}
2784 	tty_ldisc_deref(ld);
2785 	return retval;
2786 }
2787 
2788 #ifdef CONFIG_COMPAT
2789 
2790 struct serial_struct32 {
2791 	compat_int_t    type;
2792 	compat_int_t    line;
2793 	compat_uint_t   port;
2794 	compat_int_t    irq;
2795 	compat_int_t    flags;
2796 	compat_int_t    xmit_fifo_size;
2797 	compat_int_t    custom_divisor;
2798 	compat_int_t    baud_base;
2799 	unsigned short  close_delay;
2800 	char    io_type;
2801 	char    reserved_char;
2802 	compat_int_t    hub6;
2803 	unsigned short  closing_wait; /* time to wait before closing */
2804 	unsigned short  closing_wait2; /* no longer used... */
2805 	compat_uint_t   iomem_base;
2806 	unsigned short  iomem_reg_shift;
2807 	unsigned int    port_high;
2808 	/* compat_ulong_t  iomap_base FIXME */
2809 	compat_int_t    reserved;
2810 };
2811 
2812 static int compat_tty_tiocsserial(struct tty_struct *tty,
2813 		struct serial_struct32 __user *ss)
2814 {
2815 	struct serial_struct32 v32;
2816 	struct serial_struct v;
2817 
2818 	if (copy_from_user(&v32, ss, sizeof(*ss)))
2819 		return -EFAULT;
2820 
2821 	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2822 	v.iomem_base = compat_ptr(v32.iomem_base);
2823 	v.iomem_reg_shift = v32.iomem_reg_shift;
2824 	v.port_high = v32.port_high;
2825 	v.iomap_base = 0;
2826 
2827 	return tty_set_serial(tty, &v);
2828 }
2829 
2830 static int compat_tty_tiocgserial(struct tty_struct *tty,
2831 			struct serial_struct32 __user *ss)
2832 {
2833 	struct serial_struct32 v32;
2834 	struct serial_struct v;
2835 	int err;
2836 
2837 	memset(&v, 0, sizeof(v));
2838 	memset(&v32, 0, sizeof(v32));
2839 
2840 	if (!tty->ops->get_serial)
2841 		return -ENOTTY;
2842 	err = tty->ops->get_serial(tty, &v);
2843 	if (!err) {
2844 		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2845 		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2846 			0xfffffff : ptr_to_compat(v.iomem_base);
2847 		v32.iomem_reg_shift = v.iomem_reg_shift;
2848 		v32.port_high = v.port_high;
2849 		if (copy_to_user(ss, &v32, sizeof(v32)))
2850 			err = -EFAULT;
2851 	}
2852 	return err;
2853 }
2854 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2855 				unsigned long arg)
2856 {
2857 	struct tty_struct *tty = file_tty(file);
2858 	struct tty_ldisc *ld;
2859 	int retval = -ENOIOCTLCMD;
2860 
2861 	switch (cmd) {
2862 	case TIOCOUTQ:
2863 	case TIOCSTI:
2864 	case TIOCGWINSZ:
2865 	case TIOCSWINSZ:
2866 	case TIOCGEXCL:
2867 	case TIOCGETD:
2868 	case TIOCSETD:
2869 	case TIOCGDEV:
2870 	case TIOCMGET:
2871 	case TIOCMSET:
2872 	case TIOCMBIC:
2873 	case TIOCMBIS:
2874 	case TIOCGICOUNT:
2875 	case TIOCGPGRP:
2876 	case TIOCSPGRP:
2877 	case TIOCGSID:
2878 	case TIOCSERGETLSR:
2879 	case TIOCGRS485:
2880 	case TIOCSRS485:
2881 #ifdef TIOCGETP
2882 	case TIOCGETP:
2883 	case TIOCSETP:
2884 	case TIOCSETN:
2885 #endif
2886 #ifdef TIOCGETC
2887 	case TIOCGETC:
2888 	case TIOCSETC:
2889 #endif
2890 #ifdef TIOCGLTC
2891 	case TIOCGLTC:
2892 	case TIOCSLTC:
2893 #endif
2894 	case TCSETSF:
2895 	case TCSETSW:
2896 	case TCSETS:
2897 	case TCGETS:
2898 #ifdef TCGETS2
2899 	case TCGETS2:
2900 	case TCSETSF2:
2901 	case TCSETSW2:
2902 	case TCSETS2:
2903 #endif
2904 	case TCGETA:
2905 	case TCSETAF:
2906 	case TCSETAW:
2907 	case TCSETA:
2908 	case TIOCGLCKTRMIOS:
2909 	case TIOCSLCKTRMIOS:
2910 #ifdef TCGETX
2911 	case TCGETX:
2912 	case TCSETX:
2913 	case TCSETXW:
2914 	case TCSETXF:
2915 #endif
2916 	case TIOCGSOFTCAR:
2917 	case TIOCSSOFTCAR:
2918 
2919 	case PPPIOCGCHAN:
2920 	case PPPIOCGUNIT:
2921 		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2922 	case TIOCCONS:
2923 	case TIOCEXCL:
2924 	case TIOCNXCL:
2925 	case TIOCVHANGUP:
2926 	case TIOCSBRK:
2927 	case TIOCCBRK:
2928 	case TCSBRK:
2929 	case TCSBRKP:
2930 	case TCFLSH:
2931 	case TIOCGPTPEER:
2932 	case TIOCNOTTY:
2933 	case TIOCSCTTY:
2934 	case TCXONC:
2935 	case TIOCMIWAIT:
2936 	case TIOCSERCONFIG:
2937 		return tty_ioctl(file, cmd, arg);
2938 	}
2939 
2940 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2941 		return -EINVAL;
2942 
2943 	switch (cmd) {
2944 	case TIOCSSERIAL:
2945 		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2946 	case TIOCGSERIAL:
2947 		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2948 	}
2949 	if (tty->ops->compat_ioctl) {
2950 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2951 		if (retval != -ENOIOCTLCMD)
2952 			return retval;
2953 	}
2954 
2955 	ld = tty_ldisc_ref_wait(tty);
2956 	if (!ld)
2957 		return hung_up_tty_compat_ioctl(file, cmd, arg);
2958 	if (ld->ops->compat_ioctl)
2959 		retval = ld->ops->compat_ioctl(tty, cmd, arg);
2960 	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2961 		retval = ld->ops->ioctl(tty, (unsigned long)compat_ptr(cmd),
2962 				arg);
2963 	tty_ldisc_deref(ld);
2964 
2965 	return retval;
2966 }
2967 #endif
2968 
2969 static int this_tty(const void *t, struct file *file, unsigned fd)
2970 {
2971 	if (likely(file->f_op->read_iter != tty_read))
2972 		return 0;
2973 	return file_tty(file) != t ? 0 : fd + 1;
2974 }
2975 
2976 /*
2977  * This implements the "Secure Attention Key" ---  the idea is to
2978  * prevent trojan horses by killing all processes associated with this
2979  * tty when the user hits the "Secure Attention Key".  Required for
2980  * super-paranoid applications --- see the Orange Book for more details.
2981  *
2982  * This code could be nicer; ideally it should send a HUP, wait a few
2983  * seconds, then send a INT, and then a KILL signal.  But you then
2984  * have to coordinate with the init process, since all processes associated
2985  * with the current tty must be dead before the new getty is allowed
2986  * to spawn.
2987  *
2988  * Now, if it would be correct ;-/ The current code has a nasty hole -
2989  * it doesn't catch files in flight. We may send the descriptor to ourselves
2990  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2991  *
2992  * Nasty bug: do_SAK is being called in interrupt context.  This can
2993  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2994  */
2995 void __do_SAK(struct tty_struct *tty)
2996 {
2997 	struct task_struct *g, *p;
2998 	struct pid *session;
2999 	int i;
3000 	unsigned long flags;
3001 
3002 	spin_lock_irqsave(&tty->ctrl.lock, flags);
3003 	session = get_pid(tty->ctrl.session);
3004 	spin_unlock_irqrestore(&tty->ctrl.lock, flags);
3005 
3006 	tty_ldisc_flush(tty);
3007 
3008 	tty_driver_flush_buffer(tty);
3009 
3010 	read_lock(&tasklist_lock);
3011 	/* Kill the entire session */
3012 	do_each_pid_task(session, PIDTYPE_SID, p) {
3013 		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3014 			   task_pid_nr(p), p->comm);
3015 		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3016 	} while_each_pid_task(session, PIDTYPE_SID, p);
3017 
3018 	/* Now kill any processes that happen to have the tty open */
3019 	do_each_thread(g, p) {
3020 		if (p->signal->tty == tty) {
3021 			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3022 				   task_pid_nr(p), p->comm);
3023 			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3024 					PIDTYPE_SID);
3025 			continue;
3026 		}
3027 		task_lock(p);
3028 		i = iterate_fd(p->files, 0, this_tty, tty);
3029 		if (i != 0) {
3030 			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3031 				   task_pid_nr(p), p->comm, i - 1);
3032 			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3033 					PIDTYPE_SID);
3034 		}
3035 		task_unlock(p);
3036 	} while_each_thread(g, p);
3037 	read_unlock(&tasklist_lock);
3038 	put_pid(session);
3039 }
3040 
3041 static void do_SAK_work(struct work_struct *work)
3042 {
3043 	struct tty_struct *tty =
3044 		container_of(work, struct tty_struct, SAK_work);
3045 	__do_SAK(tty);
3046 }
3047 
3048 /*
3049  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3050  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3051  * the values which we write to it will be identical to the values which it
3052  * already has. --akpm
3053  */
3054 void do_SAK(struct tty_struct *tty)
3055 {
3056 	if (!tty)
3057 		return;
3058 	schedule_work(&tty->SAK_work);
3059 }
3060 EXPORT_SYMBOL(do_SAK);
3061 
3062 /* Must put_device() after it's unused! */
3063 static struct device *tty_get_device(struct tty_struct *tty)
3064 {
3065 	dev_t devt = tty_devnum(tty);
3066 
3067 	return class_find_device_by_devt(tty_class, devt);
3068 }
3069 
3070 
3071 /**
3072  * alloc_tty_struct - allocate a new tty
3073  * @driver: driver which will handle the returned tty
3074  * @idx: minor of the tty
3075  *
3076  * This subroutine allocates and initializes a tty structure.
3077  *
3078  * Locking: none - @tty in question is not exposed at this point
3079  */
3080 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3081 {
3082 	struct tty_struct *tty;
3083 
3084 	tty = kzalloc(sizeof(*tty), GFP_KERNEL_ACCOUNT);
3085 	if (!tty)
3086 		return NULL;
3087 
3088 	kref_init(&tty->kref);
3089 	if (tty_ldisc_init(tty)) {
3090 		kfree(tty);
3091 		return NULL;
3092 	}
3093 	tty->ctrl.session = NULL;
3094 	tty->ctrl.pgrp = NULL;
3095 	mutex_init(&tty->legacy_mutex);
3096 	mutex_init(&tty->throttle_mutex);
3097 	init_rwsem(&tty->termios_rwsem);
3098 	mutex_init(&tty->winsize_mutex);
3099 	init_ldsem(&tty->ldisc_sem);
3100 	init_waitqueue_head(&tty->write_wait);
3101 	init_waitqueue_head(&tty->read_wait);
3102 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3103 	mutex_init(&tty->atomic_write_lock);
3104 	spin_lock_init(&tty->ctrl.lock);
3105 	spin_lock_init(&tty->flow.lock);
3106 	spin_lock_init(&tty->files_lock);
3107 	INIT_LIST_HEAD(&tty->tty_files);
3108 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3109 
3110 	tty->driver = driver;
3111 	tty->ops = driver->ops;
3112 	tty->index = idx;
3113 	tty_line_name(driver, idx, tty->name);
3114 	tty->dev = tty_get_device(tty);
3115 
3116 	return tty;
3117 }
3118 
3119 /**
3120  * tty_put_char	- write one character to a tty
3121  * @tty: tty
3122  * @ch: character to write
3123  *
3124  * Write one byte to the @tty using the provided @tty->ops->put_char() method
3125  * if present.
3126  *
3127  * Note: the specific put_char operation in the driver layer may go
3128  * away soon. Don't call it directly, use this method
3129  *
3130  * Return: the number of characters successfully output.
3131  */
3132 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3133 {
3134 	if (tty->ops->put_char)
3135 		return tty->ops->put_char(tty, ch);
3136 	return tty->ops->write(tty, &ch, 1);
3137 }
3138 EXPORT_SYMBOL_GPL(tty_put_char);
3139 
3140 struct class *tty_class;
3141 
3142 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3143 		unsigned int index, unsigned int count)
3144 {
3145 	int err;
3146 
3147 	/* init here, since reused cdevs cause crashes */
3148 	driver->cdevs[index] = cdev_alloc();
3149 	if (!driver->cdevs[index])
3150 		return -ENOMEM;
3151 	driver->cdevs[index]->ops = &tty_fops;
3152 	driver->cdevs[index]->owner = driver->owner;
3153 	err = cdev_add(driver->cdevs[index], dev, count);
3154 	if (err)
3155 		kobject_put(&driver->cdevs[index]->kobj);
3156 	return err;
3157 }
3158 
3159 /**
3160  * tty_register_device - register a tty device
3161  * @driver: the tty driver that describes the tty device
3162  * @index: the index in the tty driver for this tty device
3163  * @device: a struct device that is associated with this tty device.
3164  *	This field is optional, if there is no known struct device
3165  *	for this tty device it can be set to NULL safely.
3166  *
3167  * This call is required to be made to register an individual tty device
3168  * if the tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set.  If
3169  * that bit is not set, this function should not be called by a tty
3170  * driver.
3171  *
3172  * Locking: ??
3173  *
3174  * Return: A pointer to the struct device for this tty device (or
3175  * ERR_PTR(-EFOO) on error).
3176  */
3177 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3178 				   struct device *device)
3179 {
3180 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3181 }
3182 EXPORT_SYMBOL(tty_register_device);
3183 
3184 static void tty_device_create_release(struct device *dev)
3185 {
3186 	dev_dbg(dev, "releasing...\n");
3187 	kfree(dev);
3188 }
3189 
3190 /**
3191  * tty_register_device_attr - register a tty device
3192  * @driver: the tty driver that describes the tty device
3193  * @index: the index in the tty driver for this tty device
3194  * @device: a struct device that is associated with this tty device.
3195  *	This field is optional, if there is no known struct device
3196  *	for this tty device it can be set to %NULL safely.
3197  * @drvdata: Driver data to be set to device.
3198  * @attr_grp: Attribute group to be set on device.
3199  *
3200  * This call is required to be made to register an individual tty device if the
3201  * tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If that bit is
3202  * not set, this function should not be called by a tty driver.
3203  *
3204  * Locking: ??
3205  *
3206  * Return: A pointer to the struct device for this tty device (or
3207  * ERR_PTR(-EFOO) on error).
3208  */
3209 struct device *tty_register_device_attr(struct tty_driver *driver,
3210 				   unsigned index, struct device *device,
3211 				   void *drvdata,
3212 				   const struct attribute_group **attr_grp)
3213 {
3214 	char name[64];
3215 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3216 	struct ktermios *tp;
3217 	struct device *dev;
3218 	int retval;
3219 
3220 	if (index >= driver->num) {
3221 		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3222 		       driver->name, index);
3223 		return ERR_PTR(-EINVAL);
3224 	}
3225 
3226 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3227 		pty_line_name(driver, index, name);
3228 	else
3229 		tty_line_name(driver, index, name);
3230 
3231 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3232 	if (!dev)
3233 		return ERR_PTR(-ENOMEM);
3234 
3235 	dev->devt = devt;
3236 	dev->class = tty_class;
3237 	dev->parent = device;
3238 	dev->release = tty_device_create_release;
3239 	dev_set_name(dev, "%s", name);
3240 	dev->groups = attr_grp;
3241 	dev_set_drvdata(dev, drvdata);
3242 
3243 	dev_set_uevent_suppress(dev, 1);
3244 
3245 	retval = device_register(dev);
3246 	if (retval)
3247 		goto err_put;
3248 
3249 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3250 		/*
3251 		 * Free any saved termios data so that the termios state is
3252 		 * reset when reusing a minor number.
3253 		 */
3254 		tp = driver->termios[index];
3255 		if (tp) {
3256 			driver->termios[index] = NULL;
3257 			kfree(tp);
3258 		}
3259 
3260 		retval = tty_cdev_add(driver, devt, index, 1);
3261 		if (retval)
3262 			goto err_del;
3263 	}
3264 
3265 	dev_set_uevent_suppress(dev, 0);
3266 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3267 
3268 	return dev;
3269 
3270 err_del:
3271 	device_del(dev);
3272 err_put:
3273 	put_device(dev);
3274 
3275 	return ERR_PTR(retval);
3276 }
3277 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3278 
3279 /**
3280  * tty_unregister_device - unregister a tty device
3281  * @driver: the tty driver that describes the tty device
3282  * @index: the index in the tty driver for this tty device
3283  *
3284  * If a tty device is registered with a call to tty_register_device() then
3285  * this function must be called when the tty device is gone.
3286  *
3287  * Locking: ??
3288  */
3289 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3290 {
3291 	device_destroy(tty_class,
3292 		MKDEV(driver->major, driver->minor_start) + index);
3293 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3294 		cdev_del(driver->cdevs[index]);
3295 		driver->cdevs[index] = NULL;
3296 	}
3297 }
3298 EXPORT_SYMBOL(tty_unregister_device);
3299 
3300 /**
3301  * __tty_alloc_driver -- allocate tty driver
3302  * @lines: count of lines this driver can handle at most
3303  * @owner: module which is responsible for this driver
3304  * @flags: some of %TTY_DRIVER_ flags, will be set in driver->flags
3305  *
3306  * This should not be called directly, some of the provided macros should be
3307  * used instead. Use IS_ERR() and friends on @retval.
3308  */
3309 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3310 		unsigned long flags)
3311 {
3312 	struct tty_driver *driver;
3313 	unsigned int cdevs = 1;
3314 	int err;
3315 
3316 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3317 		return ERR_PTR(-EINVAL);
3318 
3319 	driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3320 	if (!driver)
3321 		return ERR_PTR(-ENOMEM);
3322 
3323 	kref_init(&driver->kref);
3324 	driver->num = lines;
3325 	driver->owner = owner;
3326 	driver->flags = flags;
3327 
3328 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3329 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3330 				GFP_KERNEL);
3331 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3332 				GFP_KERNEL);
3333 		if (!driver->ttys || !driver->termios) {
3334 			err = -ENOMEM;
3335 			goto err_free_all;
3336 		}
3337 	}
3338 
3339 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3340 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3341 				GFP_KERNEL);
3342 		if (!driver->ports) {
3343 			err = -ENOMEM;
3344 			goto err_free_all;
3345 		}
3346 		cdevs = lines;
3347 	}
3348 
3349 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3350 	if (!driver->cdevs) {
3351 		err = -ENOMEM;
3352 		goto err_free_all;
3353 	}
3354 
3355 	return driver;
3356 err_free_all:
3357 	kfree(driver->ports);
3358 	kfree(driver->ttys);
3359 	kfree(driver->termios);
3360 	kfree(driver->cdevs);
3361 	kfree(driver);
3362 	return ERR_PTR(err);
3363 }
3364 EXPORT_SYMBOL(__tty_alloc_driver);
3365 
3366 static void destruct_tty_driver(struct kref *kref)
3367 {
3368 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3369 	int i;
3370 	struct ktermios *tp;
3371 
3372 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3373 		for (i = 0; i < driver->num; i++) {
3374 			tp = driver->termios[i];
3375 			if (tp) {
3376 				driver->termios[i] = NULL;
3377 				kfree(tp);
3378 			}
3379 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3380 				tty_unregister_device(driver, i);
3381 		}
3382 		proc_tty_unregister_driver(driver);
3383 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3384 			cdev_del(driver->cdevs[0]);
3385 	}
3386 	kfree(driver->cdevs);
3387 	kfree(driver->ports);
3388 	kfree(driver->termios);
3389 	kfree(driver->ttys);
3390 	kfree(driver);
3391 }
3392 
3393 /**
3394  * tty_driver_kref_put -- drop a reference to a tty driver
3395  * @driver: driver of which to drop the reference
3396  *
3397  * The final put will destroy and free up the driver.
3398  */
3399 void tty_driver_kref_put(struct tty_driver *driver)
3400 {
3401 	kref_put(&driver->kref, destruct_tty_driver);
3402 }
3403 EXPORT_SYMBOL(tty_driver_kref_put);
3404 
3405 /**
3406  * tty_register_driver -- register a tty driver
3407  * @driver: driver to register
3408  *
3409  * Called by a tty driver to register itself.
3410  */
3411 int tty_register_driver(struct tty_driver *driver)
3412 {
3413 	int error;
3414 	int i;
3415 	dev_t dev;
3416 	struct device *d;
3417 
3418 	if (!driver->major) {
3419 		error = alloc_chrdev_region(&dev, driver->minor_start,
3420 						driver->num, driver->name);
3421 		if (!error) {
3422 			driver->major = MAJOR(dev);
3423 			driver->minor_start = MINOR(dev);
3424 		}
3425 	} else {
3426 		dev = MKDEV(driver->major, driver->minor_start);
3427 		error = register_chrdev_region(dev, driver->num, driver->name);
3428 	}
3429 	if (error < 0)
3430 		goto err;
3431 
3432 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3433 		error = tty_cdev_add(driver, dev, 0, driver->num);
3434 		if (error)
3435 			goto err_unreg_char;
3436 	}
3437 
3438 	mutex_lock(&tty_mutex);
3439 	list_add(&driver->tty_drivers, &tty_drivers);
3440 	mutex_unlock(&tty_mutex);
3441 
3442 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3443 		for (i = 0; i < driver->num; i++) {
3444 			d = tty_register_device(driver, i, NULL);
3445 			if (IS_ERR(d)) {
3446 				error = PTR_ERR(d);
3447 				goto err_unreg_devs;
3448 			}
3449 		}
3450 	}
3451 	proc_tty_register_driver(driver);
3452 	driver->flags |= TTY_DRIVER_INSTALLED;
3453 	return 0;
3454 
3455 err_unreg_devs:
3456 	for (i--; i >= 0; i--)
3457 		tty_unregister_device(driver, i);
3458 
3459 	mutex_lock(&tty_mutex);
3460 	list_del(&driver->tty_drivers);
3461 	mutex_unlock(&tty_mutex);
3462 
3463 err_unreg_char:
3464 	unregister_chrdev_region(dev, driver->num);
3465 err:
3466 	return error;
3467 }
3468 EXPORT_SYMBOL(tty_register_driver);
3469 
3470 /**
3471  * tty_unregister_driver -- unregister a tty driver
3472  * @driver: driver to unregister
3473  *
3474  * Called by a tty driver to unregister itself.
3475  */
3476 void tty_unregister_driver(struct tty_driver *driver)
3477 {
3478 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3479 				driver->num);
3480 	mutex_lock(&tty_mutex);
3481 	list_del(&driver->tty_drivers);
3482 	mutex_unlock(&tty_mutex);
3483 }
3484 EXPORT_SYMBOL(tty_unregister_driver);
3485 
3486 dev_t tty_devnum(struct tty_struct *tty)
3487 {
3488 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3489 }
3490 EXPORT_SYMBOL(tty_devnum);
3491 
3492 void tty_default_fops(struct file_operations *fops)
3493 {
3494 	*fops = tty_fops;
3495 }
3496 
3497 static char *tty_devnode(struct device *dev, umode_t *mode)
3498 {
3499 	if (!mode)
3500 		return NULL;
3501 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3502 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3503 		*mode = 0666;
3504 	return NULL;
3505 }
3506 
3507 static int __init tty_class_init(void)
3508 {
3509 	tty_class = class_create(THIS_MODULE, "tty");
3510 	if (IS_ERR(tty_class))
3511 		return PTR_ERR(tty_class);
3512 	tty_class->devnode = tty_devnode;
3513 	return 0;
3514 }
3515 
3516 postcore_initcall(tty_class_init);
3517 
3518 /* 3/2004 jmc: why do these devices exist? */
3519 static struct cdev tty_cdev, console_cdev;
3520 
3521 static ssize_t show_cons_active(struct device *dev,
3522 				struct device_attribute *attr, char *buf)
3523 {
3524 	struct console *cs[16];
3525 	int i = 0;
3526 	struct console *c;
3527 	ssize_t count = 0;
3528 
3529 	console_lock();
3530 	for_each_console(c) {
3531 		if (!c->device)
3532 			continue;
3533 		if (!c->write)
3534 			continue;
3535 		if ((c->flags & CON_ENABLED) == 0)
3536 			continue;
3537 		cs[i++] = c;
3538 		if (i >= ARRAY_SIZE(cs))
3539 			break;
3540 	}
3541 	while (i--) {
3542 		int index = cs[i]->index;
3543 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3544 
3545 		/* don't resolve tty0 as some programs depend on it */
3546 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3547 			count += tty_line_name(drv, index, buf + count);
3548 		else
3549 			count += sprintf(buf + count, "%s%d",
3550 					 cs[i]->name, cs[i]->index);
3551 
3552 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3553 	}
3554 	console_unlock();
3555 
3556 	return count;
3557 }
3558 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3559 
3560 static struct attribute *cons_dev_attrs[] = {
3561 	&dev_attr_active.attr,
3562 	NULL
3563 };
3564 
3565 ATTRIBUTE_GROUPS(cons_dev);
3566 
3567 static struct device *consdev;
3568 
3569 void console_sysfs_notify(void)
3570 {
3571 	if (consdev)
3572 		sysfs_notify(&consdev->kobj, NULL, "active");
3573 }
3574 
3575 /*
3576  * Ok, now we can initialize the rest of the tty devices and can count
3577  * on memory allocations, interrupts etc..
3578  */
3579 int __init tty_init(void)
3580 {
3581 	tty_sysctl_init();
3582 	cdev_init(&tty_cdev, &tty_fops);
3583 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3584 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3585 		panic("Couldn't register /dev/tty driver\n");
3586 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3587 
3588 	cdev_init(&console_cdev, &console_fops);
3589 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3590 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3591 		panic("Couldn't register /dev/console driver\n");
3592 	consdev = device_create_with_groups(tty_class, NULL,
3593 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3594 					    cons_dev_groups, "console");
3595 	if (IS_ERR(consdev))
3596 		consdev = NULL;
3597 
3598 #ifdef CONFIG_VT
3599 	vty_init(&console_fops);
3600 #endif
3601 	return 0;
3602 }
3603 
3604