1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 */ 5 6 /* 7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 8 * or rs-channels. It also implements echoing, cooked mode etc. 9 * 10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 11 * 12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 13 * tty_struct and tty_queue structures. Previously there was an array 14 * of 256 tty_struct's which was statically allocated, and the 15 * tty_queue structures were allocated at boot time. Both are now 16 * dynamically allocated only when the tty is open. 17 * 18 * Also restructured routines so that there is more of a separation 19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 20 * the low-level tty routines (serial.c, pty.c, console.c). This 21 * makes for cleaner and more compact code. -TYT, 9/17/92 22 * 23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 24 * which can be dynamically activated and de-activated by the line 25 * discipline handling modules (like SLIP). 26 * 27 * NOTE: pay no attention to the line discipline code (yet); its 28 * interface is still subject to change in this version... 29 * -- TYT, 1/31/92 30 * 31 * Added functionality to the OPOST tty handling. No delays, but all 32 * other bits should be there. 33 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 34 * 35 * Rewrote canonical mode and added more termios flags. 36 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 37 * 38 * Reorganized FASYNC support so mouse code can share it. 39 * -- ctm@ardi.com, 9Sep95 40 * 41 * New TIOCLINUX variants added. 42 * -- mj@k332.feld.cvut.cz, 19-Nov-95 43 * 44 * Restrict vt switching via ioctl() 45 * -- grif@cs.ucr.edu, 5-Dec-95 46 * 47 * Move console and virtual terminal code to more appropriate files, 48 * implement CONFIG_VT and generalize console device interface. 49 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 50 * 51 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 52 * -- Bill Hawes <whawes@star.net>, June 97 53 * 54 * Added devfs support. 55 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 56 * 57 * Added support for a Unix98-style ptmx device. 58 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 59 * 60 * Reduced memory usage for older ARM systems 61 * -- Russell King <rmk@arm.linux.org.uk> 62 * 63 * Move do_SAK() into process context. Less stack use in devfs functions. 64 * alloc_tty_struct() always uses kmalloc() 65 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 66 */ 67 68 #include <linux/types.h> 69 #include <linux/major.h> 70 #include <linux/errno.h> 71 #include <linux/signal.h> 72 #include <linux/fcntl.h> 73 #include <linux/sched/signal.h> 74 #include <linux/sched/task.h> 75 #include <linux/interrupt.h> 76 #include <linux/tty.h> 77 #include <linux/tty_driver.h> 78 #include <linux/tty_flip.h> 79 #include <linux/devpts_fs.h> 80 #include <linux/file.h> 81 #include <linux/fdtable.h> 82 #include <linux/console.h> 83 #include <linux/timer.h> 84 #include <linux/ctype.h> 85 #include <linux/kd.h> 86 #include <linux/mm.h> 87 #include <linux/string.h> 88 #include <linux/slab.h> 89 #include <linux/poll.h> 90 #include <linux/proc_fs.h> 91 #include <linux/init.h> 92 #include <linux/module.h> 93 #include <linux/device.h> 94 #include <linux/wait.h> 95 #include <linux/bitops.h> 96 #include <linux/delay.h> 97 #include <linux/seq_file.h> 98 #include <linux/serial.h> 99 #include <linux/ratelimit.h> 100 101 #include <linux/uaccess.h> 102 103 #include <linux/kbd_kern.h> 104 #include <linux/vt_kern.h> 105 #include <linux/selection.h> 106 107 #include <linux/kmod.h> 108 #include <linux/nsproxy.h> 109 110 #undef TTY_DEBUG_HANGUP 111 #ifdef TTY_DEBUG_HANGUP 112 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args) 113 #else 114 # define tty_debug_hangup(tty, f, args...) do { } while (0) 115 #endif 116 117 #define TTY_PARANOIA_CHECK 1 118 #define CHECK_TTY_COUNT 1 119 120 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 121 .c_iflag = ICRNL | IXON, 122 .c_oflag = OPOST | ONLCR, 123 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 124 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 125 ECHOCTL | ECHOKE | IEXTEN, 126 .c_cc = INIT_C_CC, 127 .c_ispeed = 38400, 128 .c_ospeed = 38400, 129 /* .c_line = N_TTY, */ 130 }; 131 132 EXPORT_SYMBOL(tty_std_termios); 133 134 /* This list gets poked at by procfs and various bits of boot up code. This 135 could do with some rationalisation such as pulling the tty proc function 136 into this file */ 137 138 LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 139 140 /* Mutex to protect creating and releasing a tty */ 141 DEFINE_MUTEX(tty_mutex); 142 143 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *); 144 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *); 145 ssize_t redirected_tty_write(struct file *, const char __user *, 146 size_t, loff_t *); 147 static __poll_t tty_poll(struct file *, poll_table *); 148 static int tty_open(struct inode *, struct file *); 149 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 150 #ifdef CONFIG_COMPAT 151 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 152 unsigned long arg); 153 #else 154 #define tty_compat_ioctl NULL 155 #endif 156 static int __tty_fasync(int fd, struct file *filp, int on); 157 static int tty_fasync(int fd, struct file *filp, int on); 158 static void release_tty(struct tty_struct *tty, int idx); 159 160 /** 161 * free_tty_struct - free a disused tty 162 * @tty: tty struct to free 163 * 164 * Free the write buffers, tty queue and tty memory itself. 165 * 166 * Locking: none. Must be called after tty is definitely unused 167 */ 168 169 static void free_tty_struct(struct tty_struct *tty) 170 { 171 tty_ldisc_deinit(tty); 172 put_device(tty->dev); 173 kfree(tty->write_buf); 174 tty->magic = 0xDEADDEAD; 175 kfree(tty); 176 } 177 178 static inline struct tty_struct *file_tty(struct file *file) 179 { 180 return ((struct tty_file_private *)file->private_data)->tty; 181 } 182 183 int tty_alloc_file(struct file *file) 184 { 185 struct tty_file_private *priv; 186 187 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 188 if (!priv) 189 return -ENOMEM; 190 191 file->private_data = priv; 192 193 return 0; 194 } 195 196 /* Associate a new file with the tty structure */ 197 void tty_add_file(struct tty_struct *tty, struct file *file) 198 { 199 struct tty_file_private *priv = file->private_data; 200 201 priv->tty = tty; 202 priv->file = file; 203 204 spin_lock(&tty->files_lock); 205 list_add(&priv->list, &tty->tty_files); 206 spin_unlock(&tty->files_lock); 207 } 208 209 /** 210 * tty_free_file - free file->private_data 211 * 212 * This shall be used only for fail path handling when tty_add_file was not 213 * called yet. 214 */ 215 void tty_free_file(struct file *file) 216 { 217 struct tty_file_private *priv = file->private_data; 218 219 file->private_data = NULL; 220 kfree(priv); 221 } 222 223 /* Delete file from its tty */ 224 static void tty_del_file(struct file *file) 225 { 226 struct tty_file_private *priv = file->private_data; 227 struct tty_struct *tty = priv->tty; 228 229 spin_lock(&tty->files_lock); 230 list_del(&priv->list); 231 spin_unlock(&tty->files_lock); 232 tty_free_file(file); 233 } 234 235 /** 236 * tty_name - return tty naming 237 * @tty: tty structure 238 * 239 * Convert a tty structure into a name. The name reflects the kernel 240 * naming policy and if udev is in use may not reflect user space 241 * 242 * Locking: none 243 */ 244 245 const char *tty_name(const struct tty_struct *tty) 246 { 247 if (!tty) /* Hmm. NULL pointer. That's fun. */ 248 return "NULL tty"; 249 return tty->name; 250 } 251 252 EXPORT_SYMBOL(tty_name); 253 254 const char *tty_driver_name(const struct tty_struct *tty) 255 { 256 if (!tty || !tty->driver) 257 return ""; 258 return tty->driver->name; 259 } 260 261 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 262 const char *routine) 263 { 264 #ifdef TTY_PARANOIA_CHECK 265 if (!tty) { 266 pr_warn("(%d:%d): %s: NULL tty\n", 267 imajor(inode), iminor(inode), routine); 268 return 1; 269 } 270 if (tty->magic != TTY_MAGIC) { 271 pr_warn("(%d:%d): %s: bad magic number\n", 272 imajor(inode), iminor(inode), routine); 273 return 1; 274 } 275 #endif 276 return 0; 277 } 278 279 /* Caller must hold tty_lock */ 280 static int check_tty_count(struct tty_struct *tty, const char *routine) 281 { 282 #ifdef CHECK_TTY_COUNT 283 struct list_head *p; 284 int count = 0, kopen_count = 0; 285 286 spin_lock(&tty->files_lock); 287 list_for_each(p, &tty->tty_files) { 288 count++; 289 } 290 spin_unlock(&tty->files_lock); 291 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 292 tty->driver->subtype == PTY_TYPE_SLAVE && 293 tty->link && tty->link->count) 294 count++; 295 if (tty_port_kopened(tty->port)) 296 kopen_count++; 297 if (tty->count != (count + kopen_count)) { 298 tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n", 299 routine, tty->count, count, kopen_count); 300 return (count + kopen_count); 301 } 302 #endif 303 return 0; 304 } 305 306 /** 307 * get_tty_driver - find device of a tty 308 * @dev_t: device identifier 309 * @index: returns the index of the tty 310 * 311 * This routine returns a tty driver structure, given a device number 312 * and also passes back the index number. 313 * 314 * Locking: caller must hold tty_mutex 315 */ 316 317 static struct tty_driver *get_tty_driver(dev_t device, int *index) 318 { 319 struct tty_driver *p; 320 321 list_for_each_entry(p, &tty_drivers, tty_drivers) { 322 dev_t base = MKDEV(p->major, p->minor_start); 323 if (device < base || device >= base + p->num) 324 continue; 325 *index = device - base; 326 return tty_driver_kref_get(p); 327 } 328 return NULL; 329 } 330 331 /** 332 * tty_dev_name_to_number - return dev_t for device name 333 * @name: user space name of device under /dev 334 * @number: pointer to dev_t that this function will populate 335 * 336 * This function converts device names like ttyS0 or ttyUSB1 into dev_t 337 * like (4, 64) or (188, 1). If no corresponding driver is registered then 338 * the function returns -ENODEV. 339 * 340 * Locking: this acquires tty_mutex to protect the tty_drivers list from 341 * being modified while we are traversing it, and makes sure to 342 * release it before exiting. 343 */ 344 int tty_dev_name_to_number(const char *name, dev_t *number) 345 { 346 struct tty_driver *p; 347 int ret; 348 int index, prefix_length = 0; 349 const char *str; 350 351 for (str = name; *str && !isdigit(*str); str++) 352 ; 353 354 if (!*str) 355 return -EINVAL; 356 357 ret = kstrtoint(str, 10, &index); 358 if (ret) 359 return ret; 360 361 prefix_length = str - name; 362 mutex_lock(&tty_mutex); 363 364 list_for_each_entry(p, &tty_drivers, tty_drivers) 365 if (prefix_length == strlen(p->name) && strncmp(name, 366 p->name, prefix_length) == 0) { 367 if (index < p->num) { 368 *number = MKDEV(p->major, p->minor_start + index); 369 goto out; 370 } 371 } 372 373 /* if here then driver wasn't found */ 374 ret = -ENODEV; 375 out: 376 mutex_unlock(&tty_mutex); 377 return ret; 378 } 379 EXPORT_SYMBOL_GPL(tty_dev_name_to_number); 380 381 #ifdef CONFIG_CONSOLE_POLL 382 383 /** 384 * tty_find_polling_driver - find device of a polled tty 385 * @name: name string to match 386 * @line: pointer to resulting tty line nr 387 * 388 * This routine returns a tty driver structure, given a name 389 * and the condition that the tty driver is capable of polled 390 * operation. 391 */ 392 struct tty_driver *tty_find_polling_driver(char *name, int *line) 393 { 394 struct tty_driver *p, *res = NULL; 395 int tty_line = 0; 396 int len; 397 char *str, *stp; 398 399 for (str = name; *str; str++) 400 if ((*str >= '0' && *str <= '9') || *str == ',') 401 break; 402 if (!*str) 403 return NULL; 404 405 len = str - name; 406 tty_line = simple_strtoul(str, &str, 10); 407 408 mutex_lock(&tty_mutex); 409 /* Search through the tty devices to look for a match */ 410 list_for_each_entry(p, &tty_drivers, tty_drivers) { 411 if (strncmp(name, p->name, len) != 0) 412 continue; 413 stp = str; 414 if (*stp == ',') 415 stp++; 416 if (*stp == '\0') 417 stp = NULL; 418 419 if (tty_line >= 0 && tty_line < p->num && p->ops && 420 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 421 res = tty_driver_kref_get(p); 422 *line = tty_line; 423 break; 424 } 425 } 426 mutex_unlock(&tty_mutex); 427 428 return res; 429 } 430 EXPORT_SYMBOL_GPL(tty_find_polling_driver); 431 #endif 432 433 static ssize_t hung_up_tty_read(struct file *file, char __user *buf, 434 size_t count, loff_t *ppos) 435 { 436 return 0; 437 } 438 439 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf, 440 size_t count, loff_t *ppos) 441 { 442 return -EIO; 443 } 444 445 /* No kernel lock held - none needed ;) */ 446 static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait) 447 { 448 return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM; 449 } 450 451 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 452 unsigned long arg) 453 { 454 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 455 } 456 457 static long hung_up_tty_compat_ioctl(struct file *file, 458 unsigned int cmd, unsigned long arg) 459 { 460 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 461 } 462 463 static int hung_up_tty_fasync(int fd, struct file *file, int on) 464 { 465 return -ENOTTY; 466 } 467 468 static void tty_show_fdinfo(struct seq_file *m, struct file *file) 469 { 470 struct tty_struct *tty = file_tty(file); 471 472 if (tty && tty->ops && tty->ops->show_fdinfo) 473 tty->ops->show_fdinfo(tty, m); 474 } 475 476 static const struct file_operations tty_fops = { 477 .llseek = no_llseek, 478 .read = tty_read, 479 .write = tty_write, 480 .poll = tty_poll, 481 .unlocked_ioctl = tty_ioctl, 482 .compat_ioctl = tty_compat_ioctl, 483 .open = tty_open, 484 .release = tty_release, 485 .fasync = tty_fasync, 486 .show_fdinfo = tty_show_fdinfo, 487 }; 488 489 static const struct file_operations console_fops = { 490 .llseek = no_llseek, 491 .read = tty_read, 492 .write = redirected_tty_write, 493 .poll = tty_poll, 494 .unlocked_ioctl = tty_ioctl, 495 .compat_ioctl = tty_compat_ioctl, 496 .open = tty_open, 497 .release = tty_release, 498 .fasync = tty_fasync, 499 }; 500 501 static const struct file_operations hung_up_tty_fops = { 502 .llseek = no_llseek, 503 .read = hung_up_tty_read, 504 .write = hung_up_tty_write, 505 .poll = hung_up_tty_poll, 506 .unlocked_ioctl = hung_up_tty_ioctl, 507 .compat_ioctl = hung_up_tty_compat_ioctl, 508 .release = tty_release, 509 .fasync = hung_up_tty_fasync, 510 }; 511 512 static DEFINE_SPINLOCK(redirect_lock); 513 static struct file *redirect; 514 515 /** 516 * tty_wakeup - request more data 517 * @tty: terminal 518 * 519 * Internal and external helper for wakeups of tty. This function 520 * informs the line discipline if present that the driver is ready 521 * to receive more output data. 522 */ 523 524 void tty_wakeup(struct tty_struct *tty) 525 { 526 struct tty_ldisc *ld; 527 528 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 529 ld = tty_ldisc_ref(tty); 530 if (ld) { 531 if (ld->ops->write_wakeup) 532 ld->ops->write_wakeup(tty); 533 tty_ldisc_deref(ld); 534 } 535 } 536 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT); 537 } 538 539 EXPORT_SYMBOL_GPL(tty_wakeup); 540 541 /** 542 * __tty_hangup - actual handler for hangup events 543 * @work: tty device 544 * 545 * This can be called by a "kworker" kernel thread. That is process 546 * synchronous but doesn't hold any locks, so we need to make sure we 547 * have the appropriate locks for what we're doing. 548 * 549 * The hangup event clears any pending redirections onto the hung up 550 * device. It ensures future writes will error and it does the needed 551 * line discipline hangup and signal delivery. The tty object itself 552 * remains intact. 553 * 554 * Locking: 555 * BTM 556 * redirect lock for undoing redirection 557 * file list lock for manipulating list of ttys 558 * tty_ldiscs_lock from called functions 559 * termios_rwsem resetting termios data 560 * tasklist_lock to walk task list for hangup event 561 * ->siglock to protect ->signal/->sighand 562 */ 563 static void __tty_hangup(struct tty_struct *tty, int exit_session) 564 { 565 struct file *cons_filp = NULL; 566 struct file *filp, *f = NULL; 567 struct tty_file_private *priv; 568 int closecount = 0, n; 569 int refs; 570 571 if (!tty) 572 return; 573 574 575 spin_lock(&redirect_lock); 576 if (redirect && file_tty(redirect) == tty) { 577 f = redirect; 578 redirect = NULL; 579 } 580 spin_unlock(&redirect_lock); 581 582 tty_lock(tty); 583 584 if (test_bit(TTY_HUPPED, &tty->flags)) { 585 tty_unlock(tty); 586 return; 587 } 588 589 /* 590 * Some console devices aren't actually hung up for technical and 591 * historical reasons, which can lead to indefinite interruptible 592 * sleep in n_tty_read(). The following explicitly tells 593 * n_tty_read() to abort readers. 594 */ 595 set_bit(TTY_HUPPING, &tty->flags); 596 597 /* inuse_filps is protected by the single tty lock, 598 this really needs to change if we want to flush the 599 workqueue with the lock held */ 600 check_tty_count(tty, "tty_hangup"); 601 602 spin_lock(&tty->files_lock); 603 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 604 list_for_each_entry(priv, &tty->tty_files, list) { 605 filp = priv->file; 606 if (filp->f_op->write == redirected_tty_write) 607 cons_filp = filp; 608 if (filp->f_op->write != tty_write) 609 continue; 610 closecount++; 611 __tty_fasync(-1, filp, 0); /* can't block */ 612 filp->f_op = &hung_up_tty_fops; 613 } 614 spin_unlock(&tty->files_lock); 615 616 refs = tty_signal_session_leader(tty, exit_session); 617 /* Account for the p->signal references we killed */ 618 while (refs--) 619 tty_kref_put(tty); 620 621 tty_ldisc_hangup(tty, cons_filp != NULL); 622 623 spin_lock_irq(&tty->ctrl_lock); 624 clear_bit(TTY_THROTTLED, &tty->flags); 625 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 626 put_pid(tty->session); 627 put_pid(tty->pgrp); 628 tty->session = NULL; 629 tty->pgrp = NULL; 630 tty->ctrl_status = 0; 631 spin_unlock_irq(&tty->ctrl_lock); 632 633 /* 634 * If one of the devices matches a console pointer, we 635 * cannot just call hangup() because that will cause 636 * tty->count and state->count to go out of sync. 637 * So we just call close() the right number of times. 638 */ 639 if (cons_filp) { 640 if (tty->ops->close) 641 for (n = 0; n < closecount; n++) 642 tty->ops->close(tty, cons_filp); 643 } else if (tty->ops->hangup) 644 tty->ops->hangup(tty); 645 /* 646 * We don't want to have driver/ldisc interactions beyond the ones 647 * we did here. The driver layer expects no calls after ->hangup() 648 * from the ldisc side, which is now guaranteed. 649 */ 650 set_bit(TTY_HUPPED, &tty->flags); 651 clear_bit(TTY_HUPPING, &tty->flags); 652 tty_unlock(tty); 653 654 if (f) 655 fput(f); 656 } 657 658 static void do_tty_hangup(struct work_struct *work) 659 { 660 struct tty_struct *tty = 661 container_of(work, struct tty_struct, hangup_work); 662 663 __tty_hangup(tty, 0); 664 } 665 666 /** 667 * tty_hangup - trigger a hangup event 668 * @tty: tty to hangup 669 * 670 * A carrier loss (virtual or otherwise) has occurred on this like 671 * schedule a hangup sequence to run after this event. 672 */ 673 674 void tty_hangup(struct tty_struct *tty) 675 { 676 tty_debug_hangup(tty, "hangup\n"); 677 schedule_work(&tty->hangup_work); 678 } 679 680 EXPORT_SYMBOL(tty_hangup); 681 682 /** 683 * tty_vhangup - process vhangup 684 * @tty: tty to hangup 685 * 686 * The user has asked via system call for the terminal to be hung up. 687 * We do this synchronously so that when the syscall returns the process 688 * is complete. That guarantee is necessary for security reasons. 689 */ 690 691 void tty_vhangup(struct tty_struct *tty) 692 { 693 tty_debug_hangup(tty, "vhangup\n"); 694 __tty_hangup(tty, 0); 695 } 696 697 EXPORT_SYMBOL(tty_vhangup); 698 699 700 /** 701 * tty_vhangup_self - process vhangup for own ctty 702 * 703 * Perform a vhangup on the current controlling tty 704 */ 705 706 void tty_vhangup_self(void) 707 { 708 struct tty_struct *tty; 709 710 tty = get_current_tty(); 711 if (tty) { 712 tty_vhangup(tty); 713 tty_kref_put(tty); 714 } 715 } 716 717 /** 718 * tty_vhangup_session - hangup session leader exit 719 * @tty: tty to hangup 720 * 721 * The session leader is exiting and hanging up its controlling terminal. 722 * Every process in the foreground process group is signalled SIGHUP. 723 * 724 * We do this synchronously so that when the syscall returns the process 725 * is complete. That guarantee is necessary for security reasons. 726 */ 727 728 void tty_vhangup_session(struct tty_struct *tty) 729 { 730 tty_debug_hangup(tty, "session hangup\n"); 731 __tty_hangup(tty, 1); 732 } 733 734 /** 735 * tty_hung_up_p - was tty hung up 736 * @filp: file pointer of tty 737 * 738 * Return true if the tty has been subject to a vhangup or a carrier 739 * loss 740 */ 741 742 int tty_hung_up_p(struct file *filp) 743 { 744 return (filp && filp->f_op == &hung_up_tty_fops); 745 } 746 747 EXPORT_SYMBOL(tty_hung_up_p); 748 749 /** 750 * stop_tty - propagate flow control 751 * @tty: tty to stop 752 * 753 * Perform flow control to the driver. May be called 754 * on an already stopped device and will not re-call the driver 755 * method. 756 * 757 * This functionality is used by both the line disciplines for 758 * halting incoming flow and by the driver. It may therefore be 759 * called from any context, may be under the tty atomic_write_lock 760 * but not always. 761 * 762 * Locking: 763 * flow_lock 764 */ 765 766 void __stop_tty(struct tty_struct *tty) 767 { 768 if (tty->stopped) 769 return; 770 tty->stopped = 1; 771 if (tty->ops->stop) 772 tty->ops->stop(tty); 773 } 774 775 void stop_tty(struct tty_struct *tty) 776 { 777 unsigned long flags; 778 779 spin_lock_irqsave(&tty->flow_lock, flags); 780 __stop_tty(tty); 781 spin_unlock_irqrestore(&tty->flow_lock, flags); 782 } 783 EXPORT_SYMBOL(stop_tty); 784 785 /** 786 * start_tty - propagate flow control 787 * @tty: tty to start 788 * 789 * Start a tty that has been stopped if at all possible. If this 790 * tty was previous stopped and is now being started, the driver 791 * start method is invoked and the line discipline woken. 792 * 793 * Locking: 794 * flow_lock 795 */ 796 797 void __start_tty(struct tty_struct *tty) 798 { 799 if (!tty->stopped || tty->flow_stopped) 800 return; 801 tty->stopped = 0; 802 if (tty->ops->start) 803 tty->ops->start(tty); 804 tty_wakeup(tty); 805 } 806 807 void start_tty(struct tty_struct *tty) 808 { 809 unsigned long flags; 810 811 spin_lock_irqsave(&tty->flow_lock, flags); 812 __start_tty(tty); 813 spin_unlock_irqrestore(&tty->flow_lock, flags); 814 } 815 EXPORT_SYMBOL(start_tty); 816 817 static void tty_update_time(struct timespec *time) 818 { 819 unsigned long sec = get_seconds(); 820 821 /* 822 * We only care if the two values differ in anything other than the 823 * lower three bits (i.e every 8 seconds). If so, then we can update 824 * the time of the tty device, otherwise it could be construded as a 825 * security leak to let userspace know the exact timing of the tty. 826 */ 827 if ((sec ^ time->tv_sec) & ~7) 828 time->tv_sec = sec; 829 } 830 831 /** 832 * tty_read - read method for tty device files 833 * @file: pointer to tty file 834 * @buf: user buffer 835 * @count: size of user buffer 836 * @ppos: unused 837 * 838 * Perform the read system call function on this terminal device. Checks 839 * for hung up devices before calling the line discipline method. 840 * 841 * Locking: 842 * Locks the line discipline internally while needed. Multiple 843 * read calls may be outstanding in parallel. 844 */ 845 846 static ssize_t tty_read(struct file *file, char __user *buf, size_t count, 847 loff_t *ppos) 848 { 849 int i; 850 struct inode *inode = file_inode(file); 851 struct tty_struct *tty = file_tty(file); 852 struct tty_ldisc *ld; 853 854 if (tty_paranoia_check(tty, inode, "tty_read")) 855 return -EIO; 856 if (!tty || tty_io_error(tty)) 857 return -EIO; 858 859 /* We want to wait for the line discipline to sort out in this 860 situation */ 861 ld = tty_ldisc_ref_wait(tty); 862 if (!ld) 863 return hung_up_tty_read(file, buf, count, ppos); 864 if (ld->ops->read) 865 i = ld->ops->read(tty, file, buf, count); 866 else 867 i = -EIO; 868 tty_ldisc_deref(ld); 869 870 if (i > 0) { 871 struct timespec ts; 872 873 ts = timespec64_to_timespec(inode->i_atime); 874 tty_update_time(&ts); 875 inode->i_atime = timespec_to_timespec64(ts); 876 } 877 878 return i; 879 } 880 881 static void tty_write_unlock(struct tty_struct *tty) 882 { 883 mutex_unlock(&tty->atomic_write_lock); 884 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT); 885 } 886 887 static int tty_write_lock(struct tty_struct *tty, int ndelay) 888 { 889 if (!mutex_trylock(&tty->atomic_write_lock)) { 890 if (ndelay) 891 return -EAGAIN; 892 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 893 return -ERESTARTSYS; 894 } 895 return 0; 896 } 897 898 /* 899 * Split writes up in sane blocksizes to avoid 900 * denial-of-service type attacks 901 */ 902 static inline ssize_t do_tty_write( 903 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 904 struct tty_struct *tty, 905 struct file *file, 906 const char __user *buf, 907 size_t count) 908 { 909 ssize_t ret, written = 0; 910 unsigned int chunk; 911 912 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 913 if (ret < 0) 914 return ret; 915 916 /* 917 * We chunk up writes into a temporary buffer. This 918 * simplifies low-level drivers immensely, since they 919 * don't have locking issues and user mode accesses. 920 * 921 * But if TTY_NO_WRITE_SPLIT is set, we should use a 922 * big chunk-size.. 923 * 924 * The default chunk-size is 2kB, because the NTTY 925 * layer has problems with bigger chunks. It will 926 * claim to be able to handle more characters than 927 * it actually does. 928 * 929 * FIXME: This can probably go away now except that 64K chunks 930 * are too likely to fail unless switched to vmalloc... 931 */ 932 chunk = 2048; 933 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 934 chunk = 65536; 935 if (count < chunk) 936 chunk = count; 937 938 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 939 if (tty->write_cnt < chunk) { 940 unsigned char *buf_chunk; 941 942 if (chunk < 1024) 943 chunk = 1024; 944 945 buf_chunk = kmalloc(chunk, GFP_KERNEL); 946 if (!buf_chunk) { 947 ret = -ENOMEM; 948 goto out; 949 } 950 kfree(tty->write_buf); 951 tty->write_cnt = chunk; 952 tty->write_buf = buf_chunk; 953 } 954 955 /* Do the write .. */ 956 for (;;) { 957 size_t size = count; 958 if (size > chunk) 959 size = chunk; 960 ret = -EFAULT; 961 if (copy_from_user(tty->write_buf, buf, size)) 962 break; 963 ret = write(tty, file, tty->write_buf, size); 964 if (ret <= 0) 965 break; 966 written += ret; 967 buf += ret; 968 count -= ret; 969 if (!count) 970 break; 971 ret = -ERESTARTSYS; 972 if (signal_pending(current)) 973 break; 974 cond_resched(); 975 } 976 if (written) { 977 struct timespec ts; 978 979 ts = timespec64_to_timespec(file_inode(file)->i_mtime); 980 tty_update_time(&ts); 981 file_inode(file)->i_mtime = timespec_to_timespec64(ts); 982 ret = written; 983 } 984 out: 985 tty_write_unlock(tty); 986 return ret; 987 } 988 989 /** 990 * tty_write_message - write a message to a certain tty, not just the console. 991 * @tty: the destination tty_struct 992 * @msg: the message to write 993 * 994 * This is used for messages that need to be redirected to a specific tty. 995 * We don't put it into the syslog queue right now maybe in the future if 996 * really needed. 997 * 998 * We must still hold the BTM and test the CLOSING flag for the moment. 999 */ 1000 1001 void tty_write_message(struct tty_struct *tty, char *msg) 1002 { 1003 if (tty) { 1004 mutex_lock(&tty->atomic_write_lock); 1005 tty_lock(tty); 1006 if (tty->ops->write && tty->count > 0) 1007 tty->ops->write(tty, msg, strlen(msg)); 1008 tty_unlock(tty); 1009 tty_write_unlock(tty); 1010 } 1011 return; 1012 } 1013 1014 1015 /** 1016 * tty_write - write method for tty device file 1017 * @file: tty file pointer 1018 * @buf: user data to write 1019 * @count: bytes to write 1020 * @ppos: unused 1021 * 1022 * Write data to a tty device via the line discipline. 1023 * 1024 * Locking: 1025 * Locks the line discipline as required 1026 * Writes to the tty driver are serialized by the atomic_write_lock 1027 * and are then processed in chunks to the device. The line discipline 1028 * write method will not be invoked in parallel for each device. 1029 */ 1030 1031 static ssize_t tty_write(struct file *file, const char __user *buf, 1032 size_t count, loff_t *ppos) 1033 { 1034 struct tty_struct *tty = file_tty(file); 1035 struct tty_ldisc *ld; 1036 ssize_t ret; 1037 1038 if (tty_paranoia_check(tty, file_inode(file), "tty_write")) 1039 return -EIO; 1040 if (!tty || !tty->ops->write || tty_io_error(tty)) 1041 return -EIO; 1042 /* Short term debug to catch buggy drivers */ 1043 if (tty->ops->write_room == NULL) 1044 tty_err(tty, "missing write_room method\n"); 1045 ld = tty_ldisc_ref_wait(tty); 1046 if (!ld) 1047 return hung_up_tty_write(file, buf, count, ppos); 1048 if (!ld->ops->write) 1049 ret = -EIO; 1050 else 1051 ret = do_tty_write(ld->ops->write, tty, file, buf, count); 1052 tty_ldisc_deref(ld); 1053 return ret; 1054 } 1055 1056 ssize_t redirected_tty_write(struct file *file, const char __user *buf, 1057 size_t count, loff_t *ppos) 1058 { 1059 struct file *p = NULL; 1060 1061 spin_lock(&redirect_lock); 1062 if (redirect) 1063 p = get_file(redirect); 1064 spin_unlock(&redirect_lock); 1065 1066 if (p) { 1067 ssize_t res; 1068 res = vfs_write(p, buf, count, &p->f_pos); 1069 fput(p); 1070 return res; 1071 } 1072 return tty_write(file, buf, count, ppos); 1073 } 1074 1075 /** 1076 * tty_send_xchar - send priority character 1077 * 1078 * Send a high priority character to the tty even if stopped 1079 * 1080 * Locking: none for xchar method, write ordering for write method. 1081 */ 1082 1083 int tty_send_xchar(struct tty_struct *tty, char ch) 1084 { 1085 int was_stopped = tty->stopped; 1086 1087 if (tty->ops->send_xchar) { 1088 down_read(&tty->termios_rwsem); 1089 tty->ops->send_xchar(tty, ch); 1090 up_read(&tty->termios_rwsem); 1091 return 0; 1092 } 1093 1094 if (tty_write_lock(tty, 0) < 0) 1095 return -ERESTARTSYS; 1096 1097 down_read(&tty->termios_rwsem); 1098 if (was_stopped) 1099 start_tty(tty); 1100 tty->ops->write(tty, &ch, 1); 1101 if (was_stopped) 1102 stop_tty(tty); 1103 up_read(&tty->termios_rwsem); 1104 tty_write_unlock(tty); 1105 return 0; 1106 } 1107 1108 static char ptychar[] = "pqrstuvwxyzabcde"; 1109 1110 /** 1111 * pty_line_name - generate name for a pty 1112 * @driver: the tty driver in use 1113 * @index: the minor number 1114 * @p: output buffer of at least 6 bytes 1115 * 1116 * Generate a name from a driver reference and write it to the output 1117 * buffer. 1118 * 1119 * Locking: None 1120 */ 1121 static void pty_line_name(struct tty_driver *driver, int index, char *p) 1122 { 1123 int i = index + driver->name_base; 1124 /* ->name is initialized to "ttyp", but "tty" is expected */ 1125 sprintf(p, "%s%c%x", 1126 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1127 ptychar[i >> 4 & 0xf], i & 0xf); 1128 } 1129 1130 /** 1131 * tty_line_name - generate name for a tty 1132 * @driver: the tty driver in use 1133 * @index: the minor number 1134 * @p: output buffer of at least 7 bytes 1135 * 1136 * Generate a name from a driver reference and write it to the output 1137 * buffer. 1138 * 1139 * Locking: None 1140 */ 1141 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p) 1142 { 1143 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE) 1144 return sprintf(p, "%s", driver->name); 1145 else 1146 return sprintf(p, "%s%d", driver->name, 1147 index + driver->name_base); 1148 } 1149 1150 /** 1151 * tty_driver_lookup_tty() - find an existing tty, if any 1152 * @driver: the driver for the tty 1153 * @idx: the minor number 1154 * 1155 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the 1156 * driver lookup() method returns an error. 1157 * 1158 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref. 1159 */ 1160 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1161 struct file *file, int idx) 1162 { 1163 struct tty_struct *tty; 1164 1165 if (driver->ops->lookup) 1166 if (!file) 1167 tty = ERR_PTR(-EIO); 1168 else 1169 tty = driver->ops->lookup(driver, file, idx); 1170 else 1171 tty = driver->ttys[idx]; 1172 1173 if (!IS_ERR(tty)) 1174 tty_kref_get(tty); 1175 return tty; 1176 } 1177 1178 /** 1179 * tty_init_termios - helper for termios setup 1180 * @tty: the tty to set up 1181 * 1182 * Initialise the termios structures for this tty. Thus runs under 1183 * the tty_mutex currently so we can be relaxed about ordering. 1184 */ 1185 1186 void tty_init_termios(struct tty_struct *tty) 1187 { 1188 struct ktermios *tp; 1189 int idx = tty->index; 1190 1191 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1192 tty->termios = tty->driver->init_termios; 1193 else { 1194 /* Check for lazy saved data */ 1195 tp = tty->driver->termios[idx]; 1196 if (tp != NULL) { 1197 tty->termios = *tp; 1198 tty->termios.c_line = tty->driver->init_termios.c_line; 1199 } else 1200 tty->termios = tty->driver->init_termios; 1201 } 1202 /* Compatibility until drivers always set this */ 1203 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios); 1204 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios); 1205 } 1206 EXPORT_SYMBOL_GPL(tty_init_termios); 1207 1208 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1209 { 1210 tty_init_termios(tty); 1211 tty_driver_kref_get(driver); 1212 tty->count++; 1213 driver->ttys[tty->index] = tty; 1214 return 0; 1215 } 1216 EXPORT_SYMBOL_GPL(tty_standard_install); 1217 1218 /** 1219 * tty_driver_install_tty() - install a tty entry in the driver 1220 * @driver: the driver for the tty 1221 * @tty: the tty 1222 * 1223 * Install a tty object into the driver tables. The tty->index field 1224 * will be set by the time this is called. This method is responsible 1225 * for ensuring any need additional structures are allocated and 1226 * configured. 1227 * 1228 * Locking: tty_mutex for now 1229 */ 1230 static int tty_driver_install_tty(struct tty_driver *driver, 1231 struct tty_struct *tty) 1232 { 1233 return driver->ops->install ? driver->ops->install(driver, tty) : 1234 tty_standard_install(driver, tty); 1235 } 1236 1237 /** 1238 * tty_driver_remove_tty() - remove a tty from the driver tables 1239 * @driver: the driver for the tty 1240 * @idx: the minor number 1241 * 1242 * Remvoe a tty object from the driver tables. The tty->index field 1243 * will be set by the time this is called. 1244 * 1245 * Locking: tty_mutex for now 1246 */ 1247 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1248 { 1249 if (driver->ops->remove) 1250 driver->ops->remove(driver, tty); 1251 else 1252 driver->ttys[tty->index] = NULL; 1253 } 1254 1255 /* 1256 * tty_reopen() - fast re-open of an open tty 1257 * @tty - the tty to open 1258 * 1259 * Return 0 on success, -errno on error. 1260 * Re-opens on master ptys are not allowed and return -EIO. 1261 * 1262 * Locking: Caller must hold tty_lock 1263 */ 1264 static int tty_reopen(struct tty_struct *tty) 1265 { 1266 struct tty_driver *driver = tty->driver; 1267 1268 if (driver->type == TTY_DRIVER_TYPE_PTY && 1269 driver->subtype == PTY_TYPE_MASTER) 1270 return -EIO; 1271 1272 if (!tty->count) 1273 return -EAGAIN; 1274 1275 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN)) 1276 return -EBUSY; 1277 1278 tty->count++; 1279 1280 if (!tty->ldisc) 1281 return tty_ldisc_reinit(tty, tty->termios.c_line); 1282 1283 return 0; 1284 } 1285 1286 /** 1287 * tty_init_dev - initialise a tty device 1288 * @driver: tty driver we are opening a device on 1289 * @idx: device index 1290 * @ret_tty: returned tty structure 1291 * 1292 * Prepare a tty device. This may not be a "new" clean device but 1293 * could also be an active device. The pty drivers require special 1294 * handling because of this. 1295 * 1296 * Locking: 1297 * The function is called under the tty_mutex, which 1298 * protects us from the tty struct or driver itself going away. 1299 * 1300 * On exit the tty device has the line discipline attached and 1301 * a reference count of 1. If a pair was created for pty/tty use 1302 * and the other was a pty master then it too has a reference count of 1. 1303 * 1304 * WSH 06/09/97: Rewritten to remove races and properly clean up after a 1305 * failed open. The new code protects the open with a mutex, so it's 1306 * really quite straightforward. The mutex locking can probably be 1307 * relaxed for the (most common) case of reopening a tty. 1308 */ 1309 1310 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1311 { 1312 struct tty_struct *tty; 1313 int retval; 1314 1315 /* 1316 * First time open is complex, especially for PTY devices. 1317 * This code guarantees that either everything succeeds and the 1318 * TTY is ready for operation, or else the table slots are vacated 1319 * and the allocated memory released. (Except that the termios 1320 * may be retained.) 1321 */ 1322 1323 if (!try_module_get(driver->owner)) 1324 return ERR_PTR(-ENODEV); 1325 1326 tty = alloc_tty_struct(driver, idx); 1327 if (!tty) { 1328 retval = -ENOMEM; 1329 goto err_module_put; 1330 } 1331 1332 tty_lock(tty); 1333 retval = tty_driver_install_tty(driver, tty); 1334 if (retval < 0) 1335 goto err_free_tty; 1336 1337 if (!tty->port) 1338 tty->port = driver->ports[idx]; 1339 1340 WARN_RATELIMIT(!tty->port, 1341 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n", 1342 __func__, tty->driver->name); 1343 1344 retval = tty_ldisc_lock(tty, 5 * HZ); 1345 if (retval) 1346 goto err_release_lock; 1347 tty->port->itty = tty; 1348 1349 /* 1350 * Structures all installed ... call the ldisc open routines. 1351 * If we fail here just call release_tty to clean up. No need 1352 * to decrement the use counts, as release_tty doesn't care. 1353 */ 1354 retval = tty_ldisc_setup(tty, tty->link); 1355 if (retval) 1356 goto err_release_tty; 1357 tty_ldisc_unlock(tty); 1358 /* Return the tty locked so that it cannot vanish under the caller */ 1359 return tty; 1360 1361 err_free_tty: 1362 tty_unlock(tty); 1363 free_tty_struct(tty); 1364 err_module_put: 1365 module_put(driver->owner); 1366 return ERR_PTR(retval); 1367 1368 /* call the tty release_tty routine to clean out this slot */ 1369 err_release_tty: 1370 tty_ldisc_unlock(tty); 1371 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n", 1372 retval, idx); 1373 err_release_lock: 1374 tty_unlock(tty); 1375 release_tty(tty, idx); 1376 return ERR_PTR(retval); 1377 } 1378 1379 static void tty_free_termios(struct tty_struct *tty) 1380 { 1381 struct ktermios *tp; 1382 int idx = tty->index; 1383 1384 /* If the port is going to reset then it has no termios to save */ 1385 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1386 return; 1387 1388 /* Stash the termios data */ 1389 tp = tty->driver->termios[idx]; 1390 if (tp == NULL) { 1391 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL); 1392 if (tp == NULL) 1393 return; 1394 tty->driver->termios[idx] = tp; 1395 } 1396 *tp = tty->termios; 1397 } 1398 1399 /** 1400 * tty_flush_works - flush all works of a tty/pty pair 1401 * @tty: tty device to flush works for (or either end of a pty pair) 1402 * 1403 * Sync flush all works belonging to @tty (and the 'other' tty). 1404 */ 1405 static void tty_flush_works(struct tty_struct *tty) 1406 { 1407 flush_work(&tty->SAK_work); 1408 flush_work(&tty->hangup_work); 1409 if (tty->link) { 1410 flush_work(&tty->link->SAK_work); 1411 flush_work(&tty->link->hangup_work); 1412 } 1413 } 1414 1415 /** 1416 * release_one_tty - release tty structure memory 1417 * @kref: kref of tty we are obliterating 1418 * 1419 * Releases memory associated with a tty structure, and clears out the 1420 * driver table slots. This function is called when a device is no longer 1421 * in use. It also gets called when setup of a device fails. 1422 * 1423 * Locking: 1424 * takes the file list lock internally when working on the list 1425 * of ttys that the driver keeps. 1426 * 1427 * This method gets called from a work queue so that the driver private 1428 * cleanup ops can sleep (needed for USB at least) 1429 */ 1430 static void release_one_tty(struct work_struct *work) 1431 { 1432 struct tty_struct *tty = 1433 container_of(work, struct tty_struct, hangup_work); 1434 struct tty_driver *driver = tty->driver; 1435 struct module *owner = driver->owner; 1436 1437 if (tty->ops->cleanup) 1438 tty->ops->cleanup(tty); 1439 1440 tty->magic = 0; 1441 tty_driver_kref_put(driver); 1442 module_put(owner); 1443 1444 spin_lock(&tty->files_lock); 1445 list_del_init(&tty->tty_files); 1446 spin_unlock(&tty->files_lock); 1447 1448 put_pid(tty->pgrp); 1449 put_pid(tty->session); 1450 free_tty_struct(tty); 1451 } 1452 1453 static void queue_release_one_tty(struct kref *kref) 1454 { 1455 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1456 1457 /* The hangup queue is now free so we can reuse it rather than 1458 waste a chunk of memory for each port */ 1459 INIT_WORK(&tty->hangup_work, release_one_tty); 1460 schedule_work(&tty->hangup_work); 1461 } 1462 1463 /** 1464 * tty_kref_put - release a tty kref 1465 * @tty: tty device 1466 * 1467 * Release a reference to a tty device and if need be let the kref 1468 * layer destruct the object for us 1469 */ 1470 1471 void tty_kref_put(struct tty_struct *tty) 1472 { 1473 if (tty) 1474 kref_put(&tty->kref, queue_release_one_tty); 1475 } 1476 EXPORT_SYMBOL(tty_kref_put); 1477 1478 /** 1479 * release_tty - release tty structure memory 1480 * 1481 * Release both @tty and a possible linked partner (think pty pair), 1482 * and decrement the refcount of the backing module. 1483 * 1484 * Locking: 1485 * tty_mutex 1486 * takes the file list lock internally when working on the list 1487 * of ttys that the driver keeps. 1488 * 1489 */ 1490 static void release_tty(struct tty_struct *tty, int idx) 1491 { 1492 /* This should always be true but check for the moment */ 1493 WARN_ON(tty->index != idx); 1494 WARN_ON(!mutex_is_locked(&tty_mutex)); 1495 if (tty->ops->shutdown) 1496 tty->ops->shutdown(tty); 1497 tty_free_termios(tty); 1498 tty_driver_remove_tty(tty->driver, tty); 1499 tty->port->itty = NULL; 1500 if (tty->link) 1501 tty->link->port->itty = NULL; 1502 tty_buffer_cancel_work(tty->port); 1503 if (tty->link) 1504 tty_buffer_cancel_work(tty->link->port); 1505 1506 tty_kref_put(tty->link); 1507 tty_kref_put(tty); 1508 } 1509 1510 /** 1511 * tty_release_checks - check a tty before real release 1512 * @tty: tty to check 1513 * @o_tty: link of @tty (if any) 1514 * @idx: index of the tty 1515 * 1516 * Performs some paranoid checking before true release of the @tty. 1517 * This is a no-op unless TTY_PARANOIA_CHECK is defined. 1518 */ 1519 static int tty_release_checks(struct tty_struct *tty, int idx) 1520 { 1521 #ifdef TTY_PARANOIA_CHECK 1522 if (idx < 0 || idx >= tty->driver->num) { 1523 tty_debug(tty, "bad idx %d\n", idx); 1524 return -1; 1525 } 1526 1527 /* not much to check for devpts */ 1528 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1529 return 0; 1530 1531 if (tty != tty->driver->ttys[idx]) { 1532 tty_debug(tty, "bad driver table[%d] = %p\n", 1533 idx, tty->driver->ttys[idx]); 1534 return -1; 1535 } 1536 if (tty->driver->other) { 1537 struct tty_struct *o_tty = tty->link; 1538 1539 if (o_tty != tty->driver->other->ttys[idx]) { 1540 tty_debug(tty, "bad other table[%d] = %p\n", 1541 idx, tty->driver->other->ttys[idx]); 1542 return -1; 1543 } 1544 if (o_tty->link != tty) { 1545 tty_debug(tty, "bad link = %p\n", o_tty->link); 1546 return -1; 1547 } 1548 } 1549 #endif 1550 return 0; 1551 } 1552 1553 /** 1554 * tty_kclose - closes tty opened by tty_kopen 1555 * @tty: tty device 1556 * 1557 * Performs the final steps to release and free a tty device. It is the 1558 * same as tty_release_struct except that it also resets TTY_PORT_KOPENED 1559 * flag on tty->port. 1560 */ 1561 void tty_kclose(struct tty_struct *tty) 1562 { 1563 /* 1564 * Ask the line discipline code to release its structures 1565 */ 1566 tty_ldisc_release(tty); 1567 1568 /* Wait for pending work before tty destruction commmences */ 1569 tty_flush_works(tty); 1570 1571 tty_debug_hangup(tty, "freeing structure\n"); 1572 /* 1573 * The release_tty function takes care of the details of clearing 1574 * the slots and preserving the termios structure. The tty_unlock_pair 1575 * should be safe as we keep a kref while the tty is locked (so the 1576 * unlock never unlocks a freed tty). 1577 */ 1578 mutex_lock(&tty_mutex); 1579 tty_port_set_kopened(tty->port, 0); 1580 release_tty(tty, tty->index); 1581 mutex_unlock(&tty_mutex); 1582 } 1583 EXPORT_SYMBOL_GPL(tty_kclose); 1584 1585 /** 1586 * tty_release_struct - release a tty struct 1587 * @tty: tty device 1588 * @idx: index of the tty 1589 * 1590 * Performs the final steps to release and free a tty device. It is 1591 * roughly the reverse of tty_init_dev. 1592 */ 1593 void tty_release_struct(struct tty_struct *tty, int idx) 1594 { 1595 /* 1596 * Ask the line discipline code to release its structures 1597 */ 1598 tty_ldisc_release(tty); 1599 1600 /* Wait for pending work before tty destruction commmences */ 1601 tty_flush_works(tty); 1602 1603 tty_debug_hangup(tty, "freeing structure\n"); 1604 /* 1605 * The release_tty function takes care of the details of clearing 1606 * the slots and preserving the termios structure. The tty_unlock_pair 1607 * should be safe as we keep a kref while the tty is locked (so the 1608 * unlock never unlocks a freed tty). 1609 */ 1610 mutex_lock(&tty_mutex); 1611 release_tty(tty, idx); 1612 mutex_unlock(&tty_mutex); 1613 } 1614 EXPORT_SYMBOL_GPL(tty_release_struct); 1615 1616 /** 1617 * tty_release - vfs callback for close 1618 * @inode: inode of tty 1619 * @filp: file pointer for handle to tty 1620 * 1621 * Called the last time each file handle is closed that references 1622 * this tty. There may however be several such references. 1623 * 1624 * Locking: 1625 * Takes bkl. See tty_release_dev 1626 * 1627 * Even releasing the tty structures is a tricky business.. We have 1628 * to be very careful that the structures are all released at the 1629 * same time, as interrupts might otherwise get the wrong pointers. 1630 * 1631 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1632 * lead to double frees or releasing memory still in use. 1633 */ 1634 1635 int tty_release(struct inode *inode, struct file *filp) 1636 { 1637 struct tty_struct *tty = file_tty(filp); 1638 struct tty_struct *o_tty = NULL; 1639 int do_sleep, final; 1640 int idx; 1641 long timeout = 0; 1642 int once = 1; 1643 1644 if (tty_paranoia_check(tty, inode, __func__)) 1645 return 0; 1646 1647 tty_lock(tty); 1648 check_tty_count(tty, __func__); 1649 1650 __tty_fasync(-1, filp, 0); 1651 1652 idx = tty->index; 1653 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1654 tty->driver->subtype == PTY_TYPE_MASTER) 1655 o_tty = tty->link; 1656 1657 if (tty_release_checks(tty, idx)) { 1658 tty_unlock(tty); 1659 return 0; 1660 } 1661 1662 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count); 1663 1664 if (tty->ops->close) 1665 tty->ops->close(tty, filp); 1666 1667 /* If tty is pty master, lock the slave pty (stable lock order) */ 1668 tty_lock_slave(o_tty); 1669 1670 /* 1671 * Sanity check: if tty->count is going to zero, there shouldn't be 1672 * any waiters on tty->read_wait or tty->write_wait. We test the 1673 * wait queues and kick everyone out _before_ actually starting to 1674 * close. This ensures that we won't block while releasing the tty 1675 * structure. 1676 * 1677 * The test for the o_tty closing is necessary, since the master and 1678 * slave sides may close in any order. If the slave side closes out 1679 * first, its count will be one, since the master side holds an open. 1680 * Thus this test wouldn't be triggered at the time the slave closed, 1681 * so we do it now. 1682 */ 1683 while (1) { 1684 do_sleep = 0; 1685 1686 if (tty->count <= 1) { 1687 if (waitqueue_active(&tty->read_wait)) { 1688 wake_up_poll(&tty->read_wait, EPOLLIN); 1689 do_sleep++; 1690 } 1691 if (waitqueue_active(&tty->write_wait)) { 1692 wake_up_poll(&tty->write_wait, EPOLLOUT); 1693 do_sleep++; 1694 } 1695 } 1696 if (o_tty && o_tty->count <= 1) { 1697 if (waitqueue_active(&o_tty->read_wait)) { 1698 wake_up_poll(&o_tty->read_wait, EPOLLIN); 1699 do_sleep++; 1700 } 1701 if (waitqueue_active(&o_tty->write_wait)) { 1702 wake_up_poll(&o_tty->write_wait, EPOLLOUT); 1703 do_sleep++; 1704 } 1705 } 1706 if (!do_sleep) 1707 break; 1708 1709 if (once) { 1710 once = 0; 1711 tty_warn(tty, "read/write wait queue active!\n"); 1712 } 1713 schedule_timeout_killable(timeout); 1714 if (timeout < 120 * HZ) 1715 timeout = 2 * timeout + 1; 1716 else 1717 timeout = MAX_SCHEDULE_TIMEOUT; 1718 } 1719 1720 if (o_tty) { 1721 if (--o_tty->count < 0) { 1722 tty_warn(tty, "bad slave count (%d)\n", o_tty->count); 1723 o_tty->count = 0; 1724 } 1725 } 1726 if (--tty->count < 0) { 1727 tty_warn(tty, "bad tty->count (%d)\n", tty->count); 1728 tty->count = 0; 1729 } 1730 1731 /* 1732 * We've decremented tty->count, so we need to remove this file 1733 * descriptor off the tty->tty_files list; this serves two 1734 * purposes: 1735 * - check_tty_count sees the correct number of file descriptors 1736 * associated with this tty. 1737 * - do_tty_hangup no longer sees this file descriptor as 1738 * something that needs to be handled for hangups. 1739 */ 1740 tty_del_file(filp); 1741 1742 /* 1743 * Perform some housekeeping before deciding whether to return. 1744 * 1745 * If _either_ side is closing, make sure there aren't any 1746 * processes that still think tty or o_tty is their controlling 1747 * tty. 1748 */ 1749 if (!tty->count) { 1750 read_lock(&tasklist_lock); 1751 session_clear_tty(tty->session); 1752 if (o_tty) 1753 session_clear_tty(o_tty->session); 1754 read_unlock(&tasklist_lock); 1755 } 1756 1757 /* check whether both sides are closing ... */ 1758 final = !tty->count && !(o_tty && o_tty->count); 1759 1760 tty_unlock_slave(o_tty); 1761 tty_unlock(tty); 1762 1763 /* At this point, the tty->count == 0 should ensure a dead tty 1764 cannot be re-opened by a racing opener */ 1765 1766 if (!final) 1767 return 0; 1768 1769 tty_debug_hangup(tty, "final close\n"); 1770 1771 tty_release_struct(tty, idx); 1772 return 0; 1773 } 1774 1775 /** 1776 * tty_open_current_tty - get locked tty of current task 1777 * @device: device number 1778 * @filp: file pointer to tty 1779 * @return: locked tty of the current task iff @device is /dev/tty 1780 * 1781 * Performs a re-open of the current task's controlling tty. 1782 * 1783 * We cannot return driver and index like for the other nodes because 1784 * devpts will not work then. It expects inodes to be from devpts FS. 1785 */ 1786 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1787 { 1788 struct tty_struct *tty; 1789 int retval; 1790 1791 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1792 return NULL; 1793 1794 tty = get_current_tty(); 1795 if (!tty) 1796 return ERR_PTR(-ENXIO); 1797 1798 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1799 /* noctty = 1; */ 1800 tty_lock(tty); 1801 tty_kref_put(tty); /* safe to drop the kref now */ 1802 1803 retval = tty_reopen(tty); 1804 if (retval < 0) { 1805 tty_unlock(tty); 1806 tty = ERR_PTR(retval); 1807 } 1808 return tty; 1809 } 1810 1811 /** 1812 * tty_lookup_driver - lookup a tty driver for a given device file 1813 * @device: device number 1814 * @filp: file pointer to tty 1815 * @index: index for the device in the @return driver 1816 * @return: driver for this inode (with increased refcount) 1817 * 1818 * If @return is not erroneous, the caller is responsible to decrement the 1819 * refcount by tty_driver_kref_put. 1820 * 1821 * Locking: tty_mutex protects get_tty_driver 1822 */ 1823 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1824 int *index) 1825 { 1826 struct tty_driver *driver; 1827 1828 switch (device) { 1829 #ifdef CONFIG_VT 1830 case MKDEV(TTY_MAJOR, 0): { 1831 extern struct tty_driver *console_driver; 1832 driver = tty_driver_kref_get(console_driver); 1833 *index = fg_console; 1834 break; 1835 } 1836 #endif 1837 case MKDEV(TTYAUX_MAJOR, 1): { 1838 struct tty_driver *console_driver = console_device(index); 1839 if (console_driver) { 1840 driver = tty_driver_kref_get(console_driver); 1841 if (driver && filp) { 1842 /* Don't let /dev/console block */ 1843 filp->f_flags |= O_NONBLOCK; 1844 break; 1845 } 1846 } 1847 return ERR_PTR(-ENODEV); 1848 } 1849 default: 1850 driver = get_tty_driver(device, index); 1851 if (!driver) 1852 return ERR_PTR(-ENODEV); 1853 break; 1854 } 1855 return driver; 1856 } 1857 1858 /** 1859 * tty_kopen - open a tty device for kernel 1860 * @device: dev_t of device to open 1861 * 1862 * Opens tty exclusively for kernel. Performs the driver lookup, 1863 * makes sure it's not already opened and performs the first-time 1864 * tty initialization. 1865 * 1866 * Returns the locked initialized &tty_struct 1867 * 1868 * Claims the global tty_mutex to serialize: 1869 * - concurrent first-time tty initialization 1870 * - concurrent tty driver removal w/ lookup 1871 * - concurrent tty removal from driver table 1872 */ 1873 struct tty_struct *tty_kopen(dev_t device) 1874 { 1875 struct tty_struct *tty; 1876 struct tty_driver *driver = NULL; 1877 int index = -1; 1878 1879 mutex_lock(&tty_mutex); 1880 driver = tty_lookup_driver(device, NULL, &index); 1881 if (IS_ERR(driver)) { 1882 mutex_unlock(&tty_mutex); 1883 return ERR_CAST(driver); 1884 } 1885 1886 /* check whether we're reopening an existing tty */ 1887 tty = tty_driver_lookup_tty(driver, NULL, index); 1888 if (IS_ERR(tty)) 1889 goto out; 1890 1891 if (tty) { 1892 /* drop kref from tty_driver_lookup_tty() */ 1893 tty_kref_put(tty); 1894 tty = ERR_PTR(-EBUSY); 1895 } else { /* tty_init_dev returns tty with the tty_lock held */ 1896 tty = tty_init_dev(driver, index); 1897 if (IS_ERR(tty)) 1898 goto out; 1899 tty_port_set_kopened(tty->port, 1); 1900 } 1901 out: 1902 mutex_unlock(&tty_mutex); 1903 tty_driver_kref_put(driver); 1904 return tty; 1905 } 1906 EXPORT_SYMBOL_GPL(tty_kopen); 1907 1908 /** 1909 * tty_open_by_driver - open a tty device 1910 * @device: dev_t of device to open 1911 * @inode: inode of device file 1912 * @filp: file pointer to tty 1913 * 1914 * Performs the driver lookup, checks for a reopen, or otherwise 1915 * performs the first-time tty initialization. 1916 * 1917 * Returns the locked initialized or re-opened &tty_struct 1918 * 1919 * Claims the global tty_mutex to serialize: 1920 * - concurrent first-time tty initialization 1921 * - concurrent tty driver removal w/ lookup 1922 * - concurrent tty removal from driver table 1923 */ 1924 static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode, 1925 struct file *filp) 1926 { 1927 struct tty_struct *tty; 1928 struct tty_driver *driver = NULL; 1929 int index = -1; 1930 int retval; 1931 1932 mutex_lock(&tty_mutex); 1933 driver = tty_lookup_driver(device, filp, &index); 1934 if (IS_ERR(driver)) { 1935 mutex_unlock(&tty_mutex); 1936 return ERR_CAST(driver); 1937 } 1938 1939 /* check whether we're reopening an existing tty */ 1940 tty = tty_driver_lookup_tty(driver, filp, index); 1941 if (IS_ERR(tty)) { 1942 mutex_unlock(&tty_mutex); 1943 goto out; 1944 } 1945 1946 if (tty) { 1947 if (tty_port_kopened(tty->port)) { 1948 tty_kref_put(tty); 1949 mutex_unlock(&tty_mutex); 1950 tty = ERR_PTR(-EBUSY); 1951 goto out; 1952 } 1953 mutex_unlock(&tty_mutex); 1954 retval = tty_lock_interruptible(tty); 1955 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */ 1956 if (retval) { 1957 if (retval == -EINTR) 1958 retval = -ERESTARTSYS; 1959 tty = ERR_PTR(retval); 1960 goto out; 1961 } 1962 retval = tty_reopen(tty); 1963 if (retval < 0) { 1964 tty_unlock(tty); 1965 tty = ERR_PTR(retval); 1966 } 1967 } else { /* Returns with the tty_lock held for now */ 1968 tty = tty_init_dev(driver, index); 1969 mutex_unlock(&tty_mutex); 1970 } 1971 out: 1972 tty_driver_kref_put(driver); 1973 return tty; 1974 } 1975 1976 /** 1977 * tty_open - open a tty device 1978 * @inode: inode of device file 1979 * @filp: file pointer to tty 1980 * 1981 * tty_open and tty_release keep up the tty count that contains the 1982 * number of opens done on a tty. We cannot use the inode-count, as 1983 * different inodes might point to the same tty. 1984 * 1985 * Open-counting is needed for pty masters, as well as for keeping 1986 * track of serial lines: DTR is dropped when the last close happens. 1987 * (This is not done solely through tty->count, now. - Ted 1/27/92) 1988 * 1989 * The termios state of a pty is reset on first open so that 1990 * settings don't persist across reuse. 1991 * 1992 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev. 1993 * tty->count should protect the rest. 1994 * ->siglock protects ->signal/->sighand 1995 * 1996 * Note: the tty_unlock/lock cases without a ref are only safe due to 1997 * tty_mutex 1998 */ 1999 2000 static int tty_open(struct inode *inode, struct file *filp) 2001 { 2002 struct tty_struct *tty; 2003 int noctty, retval; 2004 dev_t device = inode->i_rdev; 2005 unsigned saved_flags = filp->f_flags; 2006 2007 nonseekable_open(inode, filp); 2008 2009 retry_open: 2010 retval = tty_alloc_file(filp); 2011 if (retval) 2012 return -ENOMEM; 2013 2014 tty = tty_open_current_tty(device, filp); 2015 if (!tty) 2016 tty = tty_open_by_driver(device, inode, filp); 2017 2018 if (IS_ERR(tty)) { 2019 tty_free_file(filp); 2020 retval = PTR_ERR(tty); 2021 if (retval != -EAGAIN || signal_pending(current)) 2022 return retval; 2023 schedule(); 2024 goto retry_open; 2025 } 2026 2027 tty_add_file(tty, filp); 2028 2029 check_tty_count(tty, __func__); 2030 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count); 2031 2032 if (tty->ops->open) 2033 retval = tty->ops->open(tty, filp); 2034 else 2035 retval = -ENODEV; 2036 filp->f_flags = saved_flags; 2037 2038 if (retval) { 2039 tty_debug_hangup(tty, "open error %d, releasing\n", retval); 2040 2041 tty_unlock(tty); /* need to call tty_release without BTM */ 2042 tty_release(inode, filp); 2043 if (retval != -ERESTARTSYS) 2044 return retval; 2045 2046 if (signal_pending(current)) 2047 return retval; 2048 2049 schedule(); 2050 /* 2051 * Need to reset f_op in case a hangup happened. 2052 */ 2053 if (tty_hung_up_p(filp)) 2054 filp->f_op = &tty_fops; 2055 goto retry_open; 2056 } 2057 clear_bit(TTY_HUPPED, &tty->flags); 2058 2059 noctty = (filp->f_flags & O_NOCTTY) || 2060 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) || 2061 device == MKDEV(TTYAUX_MAJOR, 1) || 2062 (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2063 tty->driver->subtype == PTY_TYPE_MASTER); 2064 if (!noctty) 2065 tty_open_proc_set_tty(filp, tty); 2066 tty_unlock(tty); 2067 return 0; 2068 } 2069 2070 2071 2072 /** 2073 * tty_poll - check tty status 2074 * @filp: file being polled 2075 * @wait: poll wait structures to update 2076 * 2077 * Call the line discipline polling method to obtain the poll 2078 * status of the device. 2079 * 2080 * Locking: locks called line discipline but ldisc poll method 2081 * may be re-entered freely by other callers. 2082 */ 2083 2084 static __poll_t tty_poll(struct file *filp, poll_table *wait) 2085 { 2086 struct tty_struct *tty = file_tty(filp); 2087 struct tty_ldisc *ld; 2088 __poll_t ret = 0; 2089 2090 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll")) 2091 return 0; 2092 2093 ld = tty_ldisc_ref_wait(tty); 2094 if (!ld) 2095 return hung_up_tty_poll(filp, wait); 2096 if (ld->ops->poll) 2097 ret = ld->ops->poll(tty, filp, wait); 2098 tty_ldisc_deref(ld); 2099 return ret; 2100 } 2101 2102 static int __tty_fasync(int fd, struct file *filp, int on) 2103 { 2104 struct tty_struct *tty = file_tty(filp); 2105 unsigned long flags; 2106 int retval = 0; 2107 2108 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync")) 2109 goto out; 2110 2111 retval = fasync_helper(fd, filp, on, &tty->fasync); 2112 if (retval <= 0) 2113 goto out; 2114 2115 if (on) { 2116 enum pid_type type; 2117 struct pid *pid; 2118 2119 spin_lock_irqsave(&tty->ctrl_lock, flags); 2120 if (tty->pgrp) { 2121 pid = tty->pgrp; 2122 type = PIDTYPE_PGID; 2123 } else { 2124 pid = task_pid(current); 2125 type = PIDTYPE_PID; 2126 } 2127 get_pid(pid); 2128 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2129 __f_setown(filp, pid, type, 0); 2130 put_pid(pid); 2131 retval = 0; 2132 } 2133 out: 2134 return retval; 2135 } 2136 2137 static int tty_fasync(int fd, struct file *filp, int on) 2138 { 2139 struct tty_struct *tty = file_tty(filp); 2140 int retval = -ENOTTY; 2141 2142 tty_lock(tty); 2143 if (!tty_hung_up_p(filp)) 2144 retval = __tty_fasync(fd, filp, on); 2145 tty_unlock(tty); 2146 2147 return retval; 2148 } 2149 2150 /** 2151 * tiocsti - fake input character 2152 * @tty: tty to fake input into 2153 * @p: pointer to character 2154 * 2155 * Fake input to a tty device. Does the necessary locking and 2156 * input management. 2157 * 2158 * FIXME: does not honour flow control ?? 2159 * 2160 * Locking: 2161 * Called functions take tty_ldiscs_lock 2162 * current->signal->tty check is safe without locks 2163 * 2164 * FIXME: may race normal receive processing 2165 */ 2166 2167 static int tiocsti(struct tty_struct *tty, char __user *p) 2168 { 2169 char ch, mbz = 0; 2170 struct tty_ldisc *ld; 2171 2172 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2173 return -EPERM; 2174 if (get_user(ch, p)) 2175 return -EFAULT; 2176 tty_audit_tiocsti(tty, ch); 2177 ld = tty_ldisc_ref_wait(tty); 2178 if (!ld) 2179 return -EIO; 2180 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2181 tty_ldisc_deref(ld); 2182 return 0; 2183 } 2184 2185 /** 2186 * tiocgwinsz - implement window query ioctl 2187 * @tty; tty 2188 * @arg: user buffer for result 2189 * 2190 * Copies the kernel idea of the window size into the user buffer. 2191 * 2192 * Locking: tty->winsize_mutex is taken to ensure the winsize data 2193 * is consistent. 2194 */ 2195 2196 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2197 { 2198 int err; 2199 2200 mutex_lock(&tty->winsize_mutex); 2201 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2202 mutex_unlock(&tty->winsize_mutex); 2203 2204 return err ? -EFAULT: 0; 2205 } 2206 2207 /** 2208 * tty_do_resize - resize event 2209 * @tty: tty being resized 2210 * @rows: rows (character) 2211 * @cols: cols (character) 2212 * 2213 * Update the termios variables and send the necessary signals to 2214 * peform a terminal resize correctly 2215 */ 2216 2217 int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2218 { 2219 struct pid *pgrp; 2220 2221 /* Lock the tty */ 2222 mutex_lock(&tty->winsize_mutex); 2223 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2224 goto done; 2225 2226 /* Signal the foreground process group */ 2227 pgrp = tty_get_pgrp(tty); 2228 if (pgrp) 2229 kill_pgrp(pgrp, SIGWINCH, 1); 2230 put_pid(pgrp); 2231 2232 tty->winsize = *ws; 2233 done: 2234 mutex_unlock(&tty->winsize_mutex); 2235 return 0; 2236 } 2237 EXPORT_SYMBOL(tty_do_resize); 2238 2239 /** 2240 * tiocswinsz - implement window size set ioctl 2241 * @tty; tty side of tty 2242 * @arg: user buffer for result 2243 * 2244 * Copies the user idea of the window size to the kernel. Traditionally 2245 * this is just advisory information but for the Linux console it 2246 * actually has driver level meaning and triggers a VC resize. 2247 * 2248 * Locking: 2249 * Driver dependent. The default do_resize method takes the 2250 * tty termios mutex and ctrl_lock. The console takes its own lock 2251 * then calls into the default method. 2252 */ 2253 2254 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2255 { 2256 struct winsize tmp_ws; 2257 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2258 return -EFAULT; 2259 2260 if (tty->ops->resize) 2261 return tty->ops->resize(tty, &tmp_ws); 2262 else 2263 return tty_do_resize(tty, &tmp_ws); 2264 } 2265 2266 /** 2267 * tioccons - allow admin to move logical console 2268 * @file: the file to become console 2269 * 2270 * Allow the administrator to move the redirected console device 2271 * 2272 * Locking: uses redirect_lock to guard the redirect information 2273 */ 2274 2275 static int tioccons(struct file *file) 2276 { 2277 if (!capable(CAP_SYS_ADMIN)) 2278 return -EPERM; 2279 if (file->f_op->write == redirected_tty_write) { 2280 struct file *f; 2281 spin_lock(&redirect_lock); 2282 f = redirect; 2283 redirect = NULL; 2284 spin_unlock(&redirect_lock); 2285 if (f) 2286 fput(f); 2287 return 0; 2288 } 2289 spin_lock(&redirect_lock); 2290 if (redirect) { 2291 spin_unlock(&redirect_lock); 2292 return -EBUSY; 2293 } 2294 redirect = get_file(file); 2295 spin_unlock(&redirect_lock); 2296 return 0; 2297 } 2298 2299 /** 2300 * fionbio - non blocking ioctl 2301 * @file: file to set blocking value 2302 * @p: user parameter 2303 * 2304 * Historical tty interfaces had a blocking control ioctl before 2305 * the generic functionality existed. This piece of history is preserved 2306 * in the expected tty API of posix OS's. 2307 * 2308 * Locking: none, the open file handle ensures it won't go away. 2309 */ 2310 2311 static int fionbio(struct file *file, int __user *p) 2312 { 2313 int nonblock; 2314 2315 if (get_user(nonblock, p)) 2316 return -EFAULT; 2317 2318 spin_lock(&file->f_lock); 2319 if (nonblock) 2320 file->f_flags |= O_NONBLOCK; 2321 else 2322 file->f_flags &= ~O_NONBLOCK; 2323 spin_unlock(&file->f_lock); 2324 return 0; 2325 } 2326 2327 /** 2328 * tiocsetd - set line discipline 2329 * @tty: tty device 2330 * @p: pointer to user data 2331 * 2332 * Set the line discipline according to user request. 2333 * 2334 * Locking: see tty_set_ldisc, this function is just a helper 2335 */ 2336 2337 static int tiocsetd(struct tty_struct *tty, int __user *p) 2338 { 2339 int disc; 2340 int ret; 2341 2342 if (get_user(disc, p)) 2343 return -EFAULT; 2344 2345 ret = tty_set_ldisc(tty, disc); 2346 2347 return ret; 2348 } 2349 2350 /** 2351 * tiocgetd - get line discipline 2352 * @tty: tty device 2353 * @p: pointer to user data 2354 * 2355 * Retrieves the line discipline id directly from the ldisc. 2356 * 2357 * Locking: waits for ldisc reference (in case the line discipline 2358 * is changing or the tty is being hungup) 2359 */ 2360 2361 static int tiocgetd(struct tty_struct *tty, int __user *p) 2362 { 2363 struct tty_ldisc *ld; 2364 int ret; 2365 2366 ld = tty_ldisc_ref_wait(tty); 2367 if (!ld) 2368 return -EIO; 2369 ret = put_user(ld->ops->num, p); 2370 tty_ldisc_deref(ld); 2371 return ret; 2372 } 2373 2374 /** 2375 * send_break - performed time break 2376 * @tty: device to break on 2377 * @duration: timeout in mS 2378 * 2379 * Perform a timed break on hardware that lacks its own driver level 2380 * timed break functionality. 2381 * 2382 * Locking: 2383 * atomic_write_lock serializes 2384 * 2385 */ 2386 2387 static int send_break(struct tty_struct *tty, unsigned int duration) 2388 { 2389 int retval; 2390 2391 if (tty->ops->break_ctl == NULL) 2392 return 0; 2393 2394 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2395 retval = tty->ops->break_ctl(tty, duration); 2396 else { 2397 /* Do the work ourselves */ 2398 if (tty_write_lock(tty, 0) < 0) 2399 return -EINTR; 2400 retval = tty->ops->break_ctl(tty, -1); 2401 if (retval) 2402 goto out; 2403 if (!signal_pending(current)) 2404 msleep_interruptible(duration); 2405 retval = tty->ops->break_ctl(tty, 0); 2406 out: 2407 tty_write_unlock(tty); 2408 if (signal_pending(current)) 2409 retval = -EINTR; 2410 } 2411 return retval; 2412 } 2413 2414 /** 2415 * tty_tiocmget - get modem status 2416 * @tty: tty device 2417 * @file: user file pointer 2418 * @p: pointer to result 2419 * 2420 * Obtain the modem status bits from the tty driver if the feature 2421 * is supported. Return -EINVAL if it is not available. 2422 * 2423 * Locking: none (up to the driver) 2424 */ 2425 2426 static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2427 { 2428 int retval = -EINVAL; 2429 2430 if (tty->ops->tiocmget) { 2431 retval = tty->ops->tiocmget(tty); 2432 2433 if (retval >= 0) 2434 retval = put_user(retval, p); 2435 } 2436 return retval; 2437 } 2438 2439 /** 2440 * tty_tiocmset - set modem status 2441 * @tty: tty device 2442 * @cmd: command - clear bits, set bits or set all 2443 * @p: pointer to desired bits 2444 * 2445 * Set the modem status bits from the tty driver if the feature 2446 * is supported. Return -EINVAL if it is not available. 2447 * 2448 * Locking: none (up to the driver) 2449 */ 2450 2451 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2452 unsigned __user *p) 2453 { 2454 int retval; 2455 unsigned int set, clear, val; 2456 2457 if (tty->ops->tiocmset == NULL) 2458 return -EINVAL; 2459 2460 retval = get_user(val, p); 2461 if (retval) 2462 return retval; 2463 set = clear = 0; 2464 switch (cmd) { 2465 case TIOCMBIS: 2466 set = val; 2467 break; 2468 case TIOCMBIC: 2469 clear = val; 2470 break; 2471 case TIOCMSET: 2472 set = val; 2473 clear = ~val; 2474 break; 2475 } 2476 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2477 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2478 return tty->ops->tiocmset(tty, set, clear); 2479 } 2480 2481 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2482 { 2483 int retval = -EINVAL; 2484 struct serial_icounter_struct icount; 2485 memset(&icount, 0, sizeof(icount)); 2486 if (tty->ops->get_icount) 2487 retval = tty->ops->get_icount(tty, &icount); 2488 if (retval != 0) 2489 return retval; 2490 if (copy_to_user(arg, &icount, sizeof(icount))) 2491 return -EFAULT; 2492 return 0; 2493 } 2494 2495 static void tty_warn_deprecated_flags(struct serial_struct __user *ss) 2496 { 2497 static DEFINE_RATELIMIT_STATE(depr_flags, 2498 DEFAULT_RATELIMIT_INTERVAL, 2499 DEFAULT_RATELIMIT_BURST); 2500 char comm[TASK_COMM_LEN]; 2501 int flags; 2502 2503 if (get_user(flags, &ss->flags)) 2504 return; 2505 2506 flags &= ASYNC_DEPRECATED; 2507 2508 if (flags && __ratelimit(&depr_flags)) 2509 pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n", 2510 __func__, get_task_comm(comm, current), flags); 2511 } 2512 2513 /* 2514 * if pty, return the slave side (real_tty) 2515 * otherwise, return self 2516 */ 2517 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2518 { 2519 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2520 tty->driver->subtype == PTY_TYPE_MASTER) 2521 tty = tty->link; 2522 return tty; 2523 } 2524 2525 /* 2526 * Split this up, as gcc can choke on it otherwise.. 2527 */ 2528 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2529 { 2530 struct tty_struct *tty = file_tty(file); 2531 struct tty_struct *real_tty; 2532 void __user *p = (void __user *)arg; 2533 int retval; 2534 struct tty_ldisc *ld; 2535 2536 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2537 return -EINVAL; 2538 2539 real_tty = tty_pair_get_tty(tty); 2540 2541 /* 2542 * Factor out some common prep work 2543 */ 2544 switch (cmd) { 2545 case TIOCSETD: 2546 case TIOCSBRK: 2547 case TIOCCBRK: 2548 case TCSBRK: 2549 case TCSBRKP: 2550 retval = tty_check_change(tty); 2551 if (retval) 2552 return retval; 2553 if (cmd != TIOCCBRK) { 2554 tty_wait_until_sent(tty, 0); 2555 if (signal_pending(current)) 2556 return -EINTR; 2557 } 2558 break; 2559 } 2560 2561 /* 2562 * Now do the stuff. 2563 */ 2564 switch (cmd) { 2565 case TIOCSTI: 2566 return tiocsti(tty, p); 2567 case TIOCGWINSZ: 2568 return tiocgwinsz(real_tty, p); 2569 case TIOCSWINSZ: 2570 return tiocswinsz(real_tty, p); 2571 case TIOCCONS: 2572 return real_tty != tty ? -EINVAL : tioccons(file); 2573 case FIONBIO: 2574 return fionbio(file, p); 2575 case TIOCEXCL: 2576 set_bit(TTY_EXCLUSIVE, &tty->flags); 2577 return 0; 2578 case TIOCNXCL: 2579 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2580 return 0; 2581 case TIOCGEXCL: 2582 { 2583 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags); 2584 return put_user(excl, (int __user *)p); 2585 } 2586 case TIOCGETD: 2587 return tiocgetd(tty, p); 2588 case TIOCSETD: 2589 return tiocsetd(tty, p); 2590 case TIOCVHANGUP: 2591 if (!capable(CAP_SYS_ADMIN)) 2592 return -EPERM; 2593 tty_vhangup(tty); 2594 return 0; 2595 case TIOCGDEV: 2596 { 2597 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2598 return put_user(ret, (unsigned int __user *)p); 2599 } 2600 /* 2601 * Break handling 2602 */ 2603 case TIOCSBRK: /* Turn break on, unconditionally */ 2604 if (tty->ops->break_ctl) 2605 return tty->ops->break_ctl(tty, -1); 2606 return 0; 2607 case TIOCCBRK: /* Turn break off, unconditionally */ 2608 if (tty->ops->break_ctl) 2609 return tty->ops->break_ctl(tty, 0); 2610 return 0; 2611 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2612 /* non-zero arg means wait for all output data 2613 * to be sent (performed above) but don't send break. 2614 * This is used by the tcdrain() termios function. 2615 */ 2616 if (!arg) 2617 return send_break(tty, 250); 2618 return 0; 2619 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2620 return send_break(tty, arg ? arg*100 : 250); 2621 2622 case TIOCMGET: 2623 return tty_tiocmget(tty, p); 2624 case TIOCMSET: 2625 case TIOCMBIC: 2626 case TIOCMBIS: 2627 return tty_tiocmset(tty, cmd, p); 2628 case TIOCGICOUNT: 2629 retval = tty_tiocgicount(tty, p); 2630 /* For the moment allow fall through to the old method */ 2631 if (retval != -EINVAL) 2632 return retval; 2633 break; 2634 case TCFLSH: 2635 switch (arg) { 2636 case TCIFLUSH: 2637 case TCIOFLUSH: 2638 /* flush tty buffer and allow ldisc to process ioctl */ 2639 tty_buffer_flush(tty, NULL); 2640 break; 2641 } 2642 break; 2643 case TIOCSSERIAL: 2644 tty_warn_deprecated_flags(p); 2645 break; 2646 case TIOCGPTPEER: 2647 /* Special because the struct file is needed */ 2648 return ptm_open_peer(file, tty, (int)arg); 2649 default: 2650 retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg); 2651 if (retval != -ENOIOCTLCMD) 2652 return retval; 2653 } 2654 if (tty->ops->ioctl) { 2655 retval = tty->ops->ioctl(tty, cmd, arg); 2656 if (retval != -ENOIOCTLCMD) 2657 return retval; 2658 } 2659 ld = tty_ldisc_ref_wait(tty); 2660 if (!ld) 2661 return hung_up_tty_ioctl(file, cmd, arg); 2662 retval = -EINVAL; 2663 if (ld->ops->ioctl) { 2664 retval = ld->ops->ioctl(tty, file, cmd, arg); 2665 if (retval == -ENOIOCTLCMD) 2666 retval = -ENOTTY; 2667 } 2668 tty_ldisc_deref(ld); 2669 return retval; 2670 } 2671 2672 #ifdef CONFIG_COMPAT 2673 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 2674 unsigned long arg) 2675 { 2676 struct tty_struct *tty = file_tty(file); 2677 struct tty_ldisc *ld; 2678 int retval = -ENOIOCTLCMD; 2679 2680 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2681 return -EINVAL; 2682 2683 if (tty->ops->compat_ioctl) { 2684 retval = tty->ops->compat_ioctl(tty, cmd, arg); 2685 if (retval != -ENOIOCTLCMD) 2686 return retval; 2687 } 2688 2689 ld = tty_ldisc_ref_wait(tty); 2690 if (!ld) 2691 return hung_up_tty_compat_ioctl(file, cmd, arg); 2692 if (ld->ops->compat_ioctl) 2693 retval = ld->ops->compat_ioctl(tty, file, cmd, arg); 2694 else 2695 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg); 2696 tty_ldisc_deref(ld); 2697 2698 return retval; 2699 } 2700 #endif 2701 2702 static int this_tty(const void *t, struct file *file, unsigned fd) 2703 { 2704 if (likely(file->f_op->read != tty_read)) 2705 return 0; 2706 return file_tty(file) != t ? 0 : fd + 1; 2707 } 2708 2709 /* 2710 * This implements the "Secure Attention Key" --- the idea is to 2711 * prevent trojan horses by killing all processes associated with this 2712 * tty when the user hits the "Secure Attention Key". Required for 2713 * super-paranoid applications --- see the Orange Book for more details. 2714 * 2715 * This code could be nicer; ideally it should send a HUP, wait a few 2716 * seconds, then send a INT, and then a KILL signal. But you then 2717 * have to coordinate with the init process, since all processes associated 2718 * with the current tty must be dead before the new getty is allowed 2719 * to spawn. 2720 * 2721 * Now, if it would be correct ;-/ The current code has a nasty hole - 2722 * it doesn't catch files in flight. We may send the descriptor to ourselves 2723 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 2724 * 2725 * Nasty bug: do_SAK is being called in interrupt context. This can 2726 * deadlock. We punt it up to process context. AKPM - 16Mar2001 2727 */ 2728 void __do_SAK(struct tty_struct *tty) 2729 { 2730 #ifdef TTY_SOFT_SAK 2731 tty_hangup(tty); 2732 #else 2733 struct task_struct *g, *p; 2734 struct pid *session; 2735 int i; 2736 2737 if (!tty) 2738 return; 2739 session = tty->session; 2740 2741 tty_ldisc_flush(tty); 2742 2743 tty_driver_flush_buffer(tty); 2744 2745 read_lock(&tasklist_lock); 2746 /* Kill the entire session */ 2747 do_each_pid_task(session, PIDTYPE_SID, p) { 2748 tty_notice(tty, "SAK: killed process %d (%s): by session\n", 2749 task_pid_nr(p), p->comm); 2750 send_sig(SIGKILL, p, 1); 2751 } while_each_pid_task(session, PIDTYPE_SID, p); 2752 2753 /* Now kill any processes that happen to have the tty open */ 2754 do_each_thread(g, p) { 2755 if (p->signal->tty == tty) { 2756 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n", 2757 task_pid_nr(p), p->comm); 2758 send_sig(SIGKILL, p, 1); 2759 continue; 2760 } 2761 task_lock(p); 2762 i = iterate_fd(p->files, 0, this_tty, tty); 2763 if (i != 0) { 2764 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n", 2765 task_pid_nr(p), p->comm, i - 1); 2766 force_sig(SIGKILL, p); 2767 } 2768 task_unlock(p); 2769 } while_each_thread(g, p); 2770 read_unlock(&tasklist_lock); 2771 #endif 2772 } 2773 2774 static void do_SAK_work(struct work_struct *work) 2775 { 2776 struct tty_struct *tty = 2777 container_of(work, struct tty_struct, SAK_work); 2778 __do_SAK(tty); 2779 } 2780 2781 /* 2782 * The tq handling here is a little racy - tty->SAK_work may already be queued. 2783 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 2784 * the values which we write to it will be identical to the values which it 2785 * already has. --akpm 2786 */ 2787 void do_SAK(struct tty_struct *tty) 2788 { 2789 if (!tty) 2790 return; 2791 schedule_work(&tty->SAK_work); 2792 } 2793 2794 EXPORT_SYMBOL(do_SAK); 2795 2796 static int dev_match_devt(struct device *dev, const void *data) 2797 { 2798 const dev_t *devt = data; 2799 return dev->devt == *devt; 2800 } 2801 2802 /* Must put_device() after it's unused! */ 2803 static struct device *tty_get_device(struct tty_struct *tty) 2804 { 2805 dev_t devt = tty_devnum(tty); 2806 return class_find_device(tty_class, NULL, &devt, dev_match_devt); 2807 } 2808 2809 2810 /** 2811 * alloc_tty_struct 2812 * 2813 * This subroutine allocates and initializes a tty structure. 2814 * 2815 * Locking: none - tty in question is not exposed at this point 2816 */ 2817 2818 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx) 2819 { 2820 struct tty_struct *tty; 2821 2822 tty = kzalloc(sizeof(*tty), GFP_KERNEL); 2823 if (!tty) 2824 return NULL; 2825 2826 kref_init(&tty->kref); 2827 tty->magic = TTY_MAGIC; 2828 if (tty_ldisc_init(tty)) { 2829 kfree(tty); 2830 return NULL; 2831 } 2832 tty->session = NULL; 2833 tty->pgrp = NULL; 2834 mutex_init(&tty->legacy_mutex); 2835 mutex_init(&tty->throttle_mutex); 2836 init_rwsem(&tty->termios_rwsem); 2837 mutex_init(&tty->winsize_mutex); 2838 init_ldsem(&tty->ldisc_sem); 2839 init_waitqueue_head(&tty->write_wait); 2840 init_waitqueue_head(&tty->read_wait); 2841 INIT_WORK(&tty->hangup_work, do_tty_hangup); 2842 mutex_init(&tty->atomic_write_lock); 2843 spin_lock_init(&tty->ctrl_lock); 2844 spin_lock_init(&tty->flow_lock); 2845 spin_lock_init(&tty->files_lock); 2846 INIT_LIST_HEAD(&tty->tty_files); 2847 INIT_WORK(&tty->SAK_work, do_SAK_work); 2848 2849 tty->driver = driver; 2850 tty->ops = driver->ops; 2851 tty->index = idx; 2852 tty_line_name(driver, idx, tty->name); 2853 tty->dev = tty_get_device(tty); 2854 2855 return tty; 2856 } 2857 2858 /** 2859 * tty_put_char - write one character to a tty 2860 * @tty: tty 2861 * @ch: character 2862 * 2863 * Write one byte to the tty using the provided put_char method 2864 * if present. Returns the number of characters successfully output. 2865 * 2866 * Note: the specific put_char operation in the driver layer may go 2867 * away soon. Don't call it directly, use this method 2868 */ 2869 2870 int tty_put_char(struct tty_struct *tty, unsigned char ch) 2871 { 2872 if (tty->ops->put_char) 2873 return tty->ops->put_char(tty, ch); 2874 return tty->ops->write(tty, &ch, 1); 2875 } 2876 EXPORT_SYMBOL_GPL(tty_put_char); 2877 2878 struct class *tty_class; 2879 2880 static int tty_cdev_add(struct tty_driver *driver, dev_t dev, 2881 unsigned int index, unsigned int count) 2882 { 2883 int err; 2884 2885 /* init here, since reused cdevs cause crashes */ 2886 driver->cdevs[index] = cdev_alloc(); 2887 if (!driver->cdevs[index]) 2888 return -ENOMEM; 2889 driver->cdevs[index]->ops = &tty_fops; 2890 driver->cdevs[index]->owner = driver->owner; 2891 err = cdev_add(driver->cdevs[index], dev, count); 2892 if (err) 2893 kobject_put(&driver->cdevs[index]->kobj); 2894 return err; 2895 } 2896 2897 /** 2898 * tty_register_device - register a tty device 2899 * @driver: the tty driver that describes the tty device 2900 * @index: the index in the tty driver for this tty device 2901 * @device: a struct device that is associated with this tty device. 2902 * This field is optional, if there is no known struct device 2903 * for this tty device it can be set to NULL safely. 2904 * 2905 * Returns a pointer to the struct device for this tty device 2906 * (or ERR_PTR(-EFOO) on error). 2907 * 2908 * This call is required to be made to register an individual tty device 2909 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 2910 * that bit is not set, this function should not be called by a tty 2911 * driver. 2912 * 2913 * Locking: ?? 2914 */ 2915 2916 struct device *tty_register_device(struct tty_driver *driver, unsigned index, 2917 struct device *device) 2918 { 2919 return tty_register_device_attr(driver, index, device, NULL, NULL); 2920 } 2921 EXPORT_SYMBOL(tty_register_device); 2922 2923 static void tty_device_create_release(struct device *dev) 2924 { 2925 dev_dbg(dev, "releasing...\n"); 2926 kfree(dev); 2927 } 2928 2929 /** 2930 * tty_register_device_attr - register a tty device 2931 * @driver: the tty driver that describes the tty device 2932 * @index: the index in the tty driver for this tty device 2933 * @device: a struct device that is associated with this tty device. 2934 * This field is optional, if there is no known struct device 2935 * for this tty device it can be set to NULL safely. 2936 * @drvdata: Driver data to be set to device. 2937 * @attr_grp: Attribute group to be set on device. 2938 * 2939 * Returns a pointer to the struct device for this tty device 2940 * (or ERR_PTR(-EFOO) on error). 2941 * 2942 * This call is required to be made to register an individual tty device 2943 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 2944 * that bit is not set, this function should not be called by a tty 2945 * driver. 2946 * 2947 * Locking: ?? 2948 */ 2949 struct device *tty_register_device_attr(struct tty_driver *driver, 2950 unsigned index, struct device *device, 2951 void *drvdata, 2952 const struct attribute_group **attr_grp) 2953 { 2954 char name[64]; 2955 dev_t devt = MKDEV(driver->major, driver->minor_start) + index; 2956 struct ktermios *tp; 2957 struct device *dev; 2958 int retval; 2959 2960 if (index >= driver->num) { 2961 pr_err("%s: Attempt to register invalid tty line number (%d)\n", 2962 driver->name, index); 2963 return ERR_PTR(-EINVAL); 2964 } 2965 2966 if (driver->type == TTY_DRIVER_TYPE_PTY) 2967 pty_line_name(driver, index, name); 2968 else 2969 tty_line_name(driver, index, name); 2970 2971 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2972 if (!dev) 2973 return ERR_PTR(-ENOMEM); 2974 2975 dev->devt = devt; 2976 dev->class = tty_class; 2977 dev->parent = device; 2978 dev->release = tty_device_create_release; 2979 dev_set_name(dev, "%s", name); 2980 dev->groups = attr_grp; 2981 dev_set_drvdata(dev, drvdata); 2982 2983 dev_set_uevent_suppress(dev, 1); 2984 2985 retval = device_register(dev); 2986 if (retval) 2987 goto err_put; 2988 2989 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 2990 /* 2991 * Free any saved termios data so that the termios state is 2992 * reset when reusing a minor number. 2993 */ 2994 tp = driver->termios[index]; 2995 if (tp) { 2996 driver->termios[index] = NULL; 2997 kfree(tp); 2998 } 2999 3000 retval = tty_cdev_add(driver, devt, index, 1); 3001 if (retval) 3002 goto err_del; 3003 } 3004 3005 dev_set_uevent_suppress(dev, 0); 3006 kobject_uevent(&dev->kobj, KOBJ_ADD); 3007 3008 return dev; 3009 3010 err_del: 3011 device_del(dev); 3012 err_put: 3013 put_device(dev); 3014 3015 return ERR_PTR(retval); 3016 } 3017 EXPORT_SYMBOL_GPL(tty_register_device_attr); 3018 3019 /** 3020 * tty_unregister_device - unregister a tty device 3021 * @driver: the tty driver that describes the tty device 3022 * @index: the index in the tty driver for this tty device 3023 * 3024 * If a tty device is registered with a call to tty_register_device() then 3025 * this function must be called when the tty device is gone. 3026 * 3027 * Locking: ?? 3028 */ 3029 3030 void tty_unregister_device(struct tty_driver *driver, unsigned index) 3031 { 3032 device_destroy(tty_class, 3033 MKDEV(driver->major, driver->minor_start) + index); 3034 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3035 cdev_del(driver->cdevs[index]); 3036 driver->cdevs[index] = NULL; 3037 } 3038 } 3039 EXPORT_SYMBOL(tty_unregister_device); 3040 3041 /** 3042 * __tty_alloc_driver -- allocate tty driver 3043 * @lines: count of lines this driver can handle at most 3044 * @owner: module which is responsible for this driver 3045 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags 3046 * 3047 * This should not be called directly, some of the provided macros should be 3048 * used instead. Use IS_ERR and friends on @retval. 3049 */ 3050 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner, 3051 unsigned long flags) 3052 { 3053 struct tty_driver *driver; 3054 unsigned int cdevs = 1; 3055 int err; 3056 3057 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1)) 3058 return ERR_PTR(-EINVAL); 3059 3060 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL); 3061 if (!driver) 3062 return ERR_PTR(-ENOMEM); 3063 3064 kref_init(&driver->kref); 3065 driver->magic = TTY_DRIVER_MAGIC; 3066 driver->num = lines; 3067 driver->owner = owner; 3068 driver->flags = flags; 3069 3070 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) { 3071 driver->ttys = kcalloc(lines, sizeof(*driver->ttys), 3072 GFP_KERNEL); 3073 driver->termios = kcalloc(lines, sizeof(*driver->termios), 3074 GFP_KERNEL); 3075 if (!driver->ttys || !driver->termios) { 3076 err = -ENOMEM; 3077 goto err_free_all; 3078 } 3079 } 3080 3081 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3082 driver->ports = kcalloc(lines, sizeof(*driver->ports), 3083 GFP_KERNEL); 3084 if (!driver->ports) { 3085 err = -ENOMEM; 3086 goto err_free_all; 3087 } 3088 cdevs = lines; 3089 } 3090 3091 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL); 3092 if (!driver->cdevs) { 3093 err = -ENOMEM; 3094 goto err_free_all; 3095 } 3096 3097 return driver; 3098 err_free_all: 3099 kfree(driver->ports); 3100 kfree(driver->ttys); 3101 kfree(driver->termios); 3102 kfree(driver->cdevs); 3103 kfree(driver); 3104 return ERR_PTR(err); 3105 } 3106 EXPORT_SYMBOL(__tty_alloc_driver); 3107 3108 static void destruct_tty_driver(struct kref *kref) 3109 { 3110 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3111 int i; 3112 struct ktermios *tp; 3113 3114 if (driver->flags & TTY_DRIVER_INSTALLED) { 3115 for (i = 0; i < driver->num; i++) { 3116 tp = driver->termios[i]; 3117 if (tp) { 3118 driver->termios[i] = NULL; 3119 kfree(tp); 3120 } 3121 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3122 tty_unregister_device(driver, i); 3123 } 3124 proc_tty_unregister_driver(driver); 3125 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) 3126 cdev_del(driver->cdevs[0]); 3127 } 3128 kfree(driver->cdevs); 3129 kfree(driver->ports); 3130 kfree(driver->termios); 3131 kfree(driver->ttys); 3132 kfree(driver); 3133 } 3134 3135 void tty_driver_kref_put(struct tty_driver *driver) 3136 { 3137 kref_put(&driver->kref, destruct_tty_driver); 3138 } 3139 EXPORT_SYMBOL(tty_driver_kref_put); 3140 3141 void tty_set_operations(struct tty_driver *driver, 3142 const struct tty_operations *op) 3143 { 3144 driver->ops = op; 3145 }; 3146 EXPORT_SYMBOL(tty_set_operations); 3147 3148 void put_tty_driver(struct tty_driver *d) 3149 { 3150 tty_driver_kref_put(d); 3151 } 3152 EXPORT_SYMBOL(put_tty_driver); 3153 3154 /* 3155 * Called by a tty driver to register itself. 3156 */ 3157 int tty_register_driver(struct tty_driver *driver) 3158 { 3159 int error; 3160 int i; 3161 dev_t dev; 3162 struct device *d; 3163 3164 if (!driver->major) { 3165 error = alloc_chrdev_region(&dev, driver->minor_start, 3166 driver->num, driver->name); 3167 if (!error) { 3168 driver->major = MAJOR(dev); 3169 driver->minor_start = MINOR(dev); 3170 } 3171 } else { 3172 dev = MKDEV(driver->major, driver->minor_start); 3173 error = register_chrdev_region(dev, driver->num, driver->name); 3174 } 3175 if (error < 0) 3176 goto err; 3177 3178 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) { 3179 error = tty_cdev_add(driver, dev, 0, driver->num); 3180 if (error) 3181 goto err_unreg_char; 3182 } 3183 3184 mutex_lock(&tty_mutex); 3185 list_add(&driver->tty_drivers, &tty_drivers); 3186 mutex_unlock(&tty_mutex); 3187 3188 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3189 for (i = 0; i < driver->num; i++) { 3190 d = tty_register_device(driver, i, NULL); 3191 if (IS_ERR(d)) { 3192 error = PTR_ERR(d); 3193 goto err_unreg_devs; 3194 } 3195 } 3196 } 3197 proc_tty_register_driver(driver); 3198 driver->flags |= TTY_DRIVER_INSTALLED; 3199 return 0; 3200 3201 err_unreg_devs: 3202 for (i--; i >= 0; i--) 3203 tty_unregister_device(driver, i); 3204 3205 mutex_lock(&tty_mutex); 3206 list_del(&driver->tty_drivers); 3207 mutex_unlock(&tty_mutex); 3208 3209 err_unreg_char: 3210 unregister_chrdev_region(dev, driver->num); 3211 err: 3212 return error; 3213 } 3214 EXPORT_SYMBOL(tty_register_driver); 3215 3216 /* 3217 * Called by a tty driver to unregister itself. 3218 */ 3219 int tty_unregister_driver(struct tty_driver *driver) 3220 { 3221 #if 0 3222 /* FIXME */ 3223 if (driver->refcount) 3224 return -EBUSY; 3225 #endif 3226 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3227 driver->num); 3228 mutex_lock(&tty_mutex); 3229 list_del(&driver->tty_drivers); 3230 mutex_unlock(&tty_mutex); 3231 return 0; 3232 } 3233 3234 EXPORT_SYMBOL(tty_unregister_driver); 3235 3236 dev_t tty_devnum(struct tty_struct *tty) 3237 { 3238 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3239 } 3240 EXPORT_SYMBOL(tty_devnum); 3241 3242 void tty_default_fops(struct file_operations *fops) 3243 { 3244 *fops = tty_fops; 3245 } 3246 3247 static char *tty_devnode(struct device *dev, umode_t *mode) 3248 { 3249 if (!mode) 3250 return NULL; 3251 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3252 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3253 *mode = 0666; 3254 return NULL; 3255 } 3256 3257 static int __init tty_class_init(void) 3258 { 3259 tty_class = class_create(THIS_MODULE, "tty"); 3260 if (IS_ERR(tty_class)) 3261 return PTR_ERR(tty_class); 3262 tty_class->devnode = tty_devnode; 3263 return 0; 3264 } 3265 3266 postcore_initcall(tty_class_init); 3267 3268 /* 3/2004 jmc: why do these devices exist? */ 3269 static struct cdev tty_cdev, console_cdev; 3270 3271 static ssize_t show_cons_active(struct device *dev, 3272 struct device_attribute *attr, char *buf) 3273 { 3274 struct console *cs[16]; 3275 int i = 0; 3276 struct console *c; 3277 ssize_t count = 0; 3278 3279 console_lock(); 3280 for_each_console(c) { 3281 if (!c->device) 3282 continue; 3283 if (!c->write) 3284 continue; 3285 if ((c->flags & CON_ENABLED) == 0) 3286 continue; 3287 cs[i++] = c; 3288 if (i >= ARRAY_SIZE(cs)) 3289 break; 3290 } 3291 while (i--) { 3292 int index = cs[i]->index; 3293 struct tty_driver *drv = cs[i]->device(cs[i], &index); 3294 3295 /* don't resolve tty0 as some programs depend on it */ 3296 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR)) 3297 count += tty_line_name(drv, index, buf + count); 3298 else 3299 count += sprintf(buf + count, "%s%d", 3300 cs[i]->name, cs[i]->index); 3301 3302 count += sprintf(buf + count, "%c", i ? ' ':'\n'); 3303 } 3304 console_unlock(); 3305 3306 return count; 3307 } 3308 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3309 3310 static struct attribute *cons_dev_attrs[] = { 3311 &dev_attr_active.attr, 3312 NULL 3313 }; 3314 3315 ATTRIBUTE_GROUPS(cons_dev); 3316 3317 static struct device *consdev; 3318 3319 void console_sysfs_notify(void) 3320 { 3321 if (consdev) 3322 sysfs_notify(&consdev->kobj, NULL, "active"); 3323 } 3324 3325 /* 3326 * Ok, now we can initialize the rest of the tty devices and can count 3327 * on memory allocations, interrupts etc.. 3328 */ 3329 int __init tty_init(void) 3330 { 3331 cdev_init(&tty_cdev, &tty_fops); 3332 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3333 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3334 panic("Couldn't register /dev/tty driver\n"); 3335 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3336 3337 cdev_init(&console_cdev, &console_fops); 3338 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3339 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3340 panic("Couldn't register /dev/console driver\n"); 3341 consdev = device_create_with_groups(tty_class, NULL, 3342 MKDEV(TTYAUX_MAJOR, 1), NULL, 3343 cons_dev_groups, "console"); 3344 if (IS_ERR(consdev)) 3345 consdev = NULL; 3346 3347 #ifdef CONFIG_VT 3348 vty_init(&console_fops); 3349 #endif 3350 return 0; 3351 } 3352 3353