xref: /openbmc/linux/drivers/tty/tty_io.c (revision b34081f1)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112 
113 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
114 	.c_iflag = ICRNL | IXON,
115 	.c_oflag = OPOST | ONLCR,
116 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 		   ECHOCTL | ECHOKE | IEXTEN,
119 	.c_cc = INIT_C_CC,
120 	.c_ispeed = 38400,
121 	.c_ospeed = 38400
122 };
123 
124 EXPORT_SYMBOL(tty_std_termios);
125 
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129 
130 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
131 
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136 
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139 
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 							size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 				unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 
159 /**
160  *	alloc_tty_struct	-	allocate a tty object
161  *
162  *	Return a new empty tty structure. The data fields have not
163  *	been initialized in any way but has been zeroed
164  *
165  *	Locking: none
166  */
167 
168 struct tty_struct *alloc_tty_struct(void)
169 {
170 	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172 
173 /**
174  *	free_tty_struct		-	free a disused tty
175  *	@tty: tty struct to free
176  *
177  *	Free the write buffers, tty queue and tty memory itself.
178  *
179  *	Locking: none. Must be called after tty is definitely unused
180  */
181 
182 void free_tty_struct(struct tty_struct *tty)
183 {
184 	if (!tty)
185 		return;
186 	if (tty->dev)
187 		put_device(tty->dev);
188 	kfree(tty->write_buf);
189 	tty->magic = 0xDEADDEAD;
190 	kfree(tty);
191 }
192 
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195 	return ((struct tty_file_private *)file->private_data)->tty;
196 }
197 
198 int tty_alloc_file(struct file *file)
199 {
200 	struct tty_file_private *priv;
201 
202 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203 	if (!priv)
204 		return -ENOMEM;
205 
206 	file->private_data = priv;
207 
208 	return 0;
209 }
210 
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214 	struct tty_file_private *priv = file->private_data;
215 
216 	priv->tty = tty;
217 	priv->file = file;
218 
219 	spin_lock(&tty_files_lock);
220 	list_add(&priv->list, &tty->tty_files);
221 	spin_unlock(&tty_files_lock);
222 }
223 
224 /**
225  * tty_free_file - free file->private_data
226  *
227  * This shall be used only for fail path handling when tty_add_file was not
228  * called yet.
229  */
230 void tty_free_file(struct file *file)
231 {
232 	struct tty_file_private *priv = file->private_data;
233 
234 	file->private_data = NULL;
235 	kfree(priv);
236 }
237 
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241 	struct tty_file_private *priv = file->private_data;
242 
243 	spin_lock(&tty_files_lock);
244 	list_del(&priv->list);
245 	spin_unlock(&tty_files_lock);
246 	tty_free_file(file);
247 }
248 
249 
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251 
252 /**
253  *	tty_name	-	return tty naming
254  *	@tty: tty structure
255  *	@buf: buffer for output
256  *
257  *	Convert a tty structure into a name. The name reflects the kernel
258  *	naming policy and if udev is in use may not reflect user space
259  *
260  *	Locking: none
261  */
262 
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
266 		strcpy(buf, "NULL tty");
267 	else
268 		strcpy(buf, tty->name);
269 	return buf;
270 }
271 
272 EXPORT_SYMBOL(tty_name);
273 
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275 			      const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278 	if (!tty) {
279 		printk(KERN_WARNING
280 			"null TTY for (%d:%d) in %s\n",
281 			imajor(inode), iminor(inode), routine);
282 		return 1;
283 	}
284 	if (tty->magic != TTY_MAGIC) {
285 		printk(KERN_WARNING
286 			"bad magic number for tty struct (%d:%d) in %s\n",
287 			imajor(inode), iminor(inode), routine);
288 		return 1;
289 	}
290 #endif
291 	return 0;
292 }
293 
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297 	struct list_head *p;
298 	int count = 0;
299 
300 	spin_lock(&tty_files_lock);
301 	list_for_each(p, &tty->tty_files) {
302 		count++;
303 	}
304 	spin_unlock(&tty_files_lock);
305 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
307 	    tty->link && tty->link->count)
308 		count++;
309 	if (tty->count != count) {
310 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311 				    "!= #fd's(%d) in %s\n",
312 		       tty->name, tty->count, count, routine);
313 		return count;
314 	}
315 #endif
316 	return 0;
317 }
318 
319 /**
320  *	get_tty_driver		-	find device of a tty
321  *	@dev_t: device identifier
322  *	@index: returns the index of the tty
323  *
324  *	This routine returns a tty driver structure, given a device number
325  *	and also passes back the index number.
326  *
327  *	Locking: caller must hold tty_mutex
328  */
329 
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332 	struct tty_driver *p;
333 
334 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
335 		dev_t base = MKDEV(p->major, p->minor_start);
336 		if (device < base || device >= base + p->num)
337 			continue;
338 		*index = device - base;
339 		return tty_driver_kref_get(p);
340 	}
341 	return NULL;
342 }
343 
344 #ifdef CONFIG_CONSOLE_POLL
345 
346 /**
347  *	tty_find_polling_driver	-	find device of a polled tty
348  *	@name: name string to match
349  *	@line: pointer to resulting tty line nr
350  *
351  *	This routine returns a tty driver structure, given a name
352  *	and the condition that the tty driver is capable of polled
353  *	operation.
354  */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357 	struct tty_driver *p, *res = NULL;
358 	int tty_line = 0;
359 	int len;
360 	char *str, *stp;
361 
362 	for (str = name; *str; str++)
363 		if ((*str >= '0' && *str <= '9') || *str == ',')
364 			break;
365 	if (!*str)
366 		return NULL;
367 
368 	len = str - name;
369 	tty_line = simple_strtoul(str, &str, 10);
370 
371 	mutex_lock(&tty_mutex);
372 	/* Search through the tty devices to look for a match */
373 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
374 		if (strncmp(name, p->name, len) != 0)
375 			continue;
376 		stp = str;
377 		if (*stp == ',')
378 			stp++;
379 		if (*stp == '\0')
380 			stp = NULL;
381 
382 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
383 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384 			res = tty_driver_kref_get(p);
385 			*line = tty_line;
386 			break;
387 		}
388 	}
389 	mutex_unlock(&tty_mutex);
390 
391 	return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395 
396 /**
397  *	tty_check_change	-	check for POSIX terminal changes
398  *	@tty: tty to check
399  *
400  *	If we try to write to, or set the state of, a terminal and we're
401  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
402  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
403  *
404  *	Locking: ctrl_lock
405  */
406 
407 int tty_check_change(struct tty_struct *tty)
408 {
409 	unsigned long flags;
410 	int ret = 0;
411 
412 	if (current->signal->tty != tty)
413 		return 0;
414 
415 	spin_lock_irqsave(&tty->ctrl_lock, flags);
416 
417 	if (!tty->pgrp) {
418 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419 		goto out_unlock;
420 	}
421 	if (task_pgrp(current) == tty->pgrp)
422 		goto out_unlock;
423 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424 	if (is_ignored(SIGTTOU))
425 		goto out;
426 	if (is_current_pgrp_orphaned()) {
427 		ret = -EIO;
428 		goto out;
429 	}
430 	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431 	set_thread_flag(TIF_SIGPENDING);
432 	ret = -ERESTARTSYS;
433 out:
434 	return ret;
435 out_unlock:
436 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437 	return ret;
438 }
439 
440 EXPORT_SYMBOL(tty_check_change);
441 
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443 				size_t count, loff_t *ppos)
444 {
445 	return 0;
446 }
447 
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449 				 size_t count, loff_t *ppos)
450 {
451 	return -EIO;
452 }
453 
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459 
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461 		unsigned long arg)
462 {
463 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465 
466 static long hung_up_tty_compat_ioctl(struct file *file,
467 				     unsigned int cmd, unsigned long arg)
468 {
469 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471 
472 static const struct file_operations tty_fops = {
473 	.llseek		= no_llseek,
474 	.read		= tty_read,
475 	.write		= tty_write,
476 	.poll		= tty_poll,
477 	.unlocked_ioctl	= tty_ioctl,
478 	.compat_ioctl	= tty_compat_ioctl,
479 	.open		= tty_open,
480 	.release	= tty_release,
481 	.fasync		= tty_fasync,
482 };
483 
484 static const struct file_operations console_fops = {
485 	.llseek		= no_llseek,
486 	.read		= tty_read,
487 	.write		= redirected_tty_write,
488 	.poll		= tty_poll,
489 	.unlocked_ioctl	= tty_ioctl,
490 	.compat_ioctl	= tty_compat_ioctl,
491 	.open		= tty_open,
492 	.release	= tty_release,
493 	.fasync		= tty_fasync,
494 };
495 
496 static const struct file_operations hung_up_tty_fops = {
497 	.llseek		= no_llseek,
498 	.read		= hung_up_tty_read,
499 	.write		= hung_up_tty_write,
500 	.poll		= hung_up_tty_poll,
501 	.unlocked_ioctl	= hung_up_tty_ioctl,
502 	.compat_ioctl	= hung_up_tty_compat_ioctl,
503 	.release	= tty_release,
504 };
505 
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508 
509 /**
510  *	tty_wakeup	-	request more data
511  *	@tty: terminal
512  *
513  *	Internal and external helper for wakeups of tty. This function
514  *	informs the line discipline if present that the driver is ready
515  *	to receive more output data.
516  */
517 
518 void tty_wakeup(struct tty_struct *tty)
519 {
520 	struct tty_ldisc *ld;
521 
522 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523 		ld = tty_ldisc_ref(tty);
524 		if (ld) {
525 			if (ld->ops->write_wakeup)
526 				ld->ops->write_wakeup(tty);
527 			tty_ldisc_deref(ld);
528 		}
529 	}
530 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532 
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534 
535 /**
536  *	tty_signal_session_leader	- sends SIGHUP to session leader
537  *	@tty		controlling tty
538  *	@exit_session	if non-zero, signal all foreground group processes
539  *
540  *	Send SIGHUP and SIGCONT to the session leader and its process group.
541  *	Optionally, signal all processes in the foreground process group.
542  *
543  *	Returns the number of processes in the session with this tty
544  *	as their controlling terminal. This value is used to drop
545  *	tty references for those processes.
546  */
547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
548 {
549 	struct task_struct *p;
550 	int refs = 0;
551 	struct pid *tty_pgrp = NULL;
552 
553 	read_lock(&tasklist_lock);
554 	if (tty->session) {
555 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
556 			spin_lock_irq(&p->sighand->siglock);
557 			if (p->signal->tty == tty) {
558 				p->signal->tty = NULL;
559 				/* We defer the dereferences outside fo
560 				   the tasklist lock */
561 				refs++;
562 			}
563 			if (!p->signal->leader) {
564 				spin_unlock_irq(&p->sighand->siglock);
565 				continue;
566 			}
567 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
568 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
569 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
570 			spin_lock(&tty->ctrl_lock);
571 			tty_pgrp = get_pid(tty->pgrp);
572 			if (tty->pgrp)
573 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
574 			spin_unlock(&tty->ctrl_lock);
575 			spin_unlock_irq(&p->sighand->siglock);
576 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
577 	}
578 	read_unlock(&tasklist_lock);
579 
580 	if (tty_pgrp) {
581 		if (exit_session)
582 			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
583 		put_pid(tty_pgrp);
584 	}
585 
586 	return refs;
587 }
588 
589 /**
590  *	__tty_hangup		-	actual handler for hangup events
591  *	@work: tty device
592  *
593  *	This can be called by a "kworker" kernel thread.  That is process
594  *	synchronous but doesn't hold any locks, so we need to make sure we
595  *	have the appropriate locks for what we're doing.
596  *
597  *	The hangup event clears any pending redirections onto the hung up
598  *	device. It ensures future writes will error and it does the needed
599  *	line discipline hangup and signal delivery. The tty object itself
600  *	remains intact.
601  *
602  *	Locking:
603  *		BTM
604  *		  redirect lock for undoing redirection
605  *		  file list lock for manipulating list of ttys
606  *		  tty_ldiscs_lock from called functions
607  *		  termios_rwsem resetting termios data
608  *		  tasklist_lock to walk task list for hangup event
609  *		    ->siglock to protect ->signal/->sighand
610  */
611 static void __tty_hangup(struct tty_struct *tty, int exit_session)
612 {
613 	struct file *cons_filp = NULL;
614 	struct file *filp, *f = NULL;
615 	struct tty_file_private *priv;
616 	int    closecount = 0, n;
617 	int refs;
618 
619 	if (!tty)
620 		return;
621 
622 
623 	spin_lock(&redirect_lock);
624 	if (redirect && file_tty(redirect) == tty) {
625 		f = redirect;
626 		redirect = NULL;
627 	}
628 	spin_unlock(&redirect_lock);
629 
630 	tty_lock(tty);
631 
632 	if (test_bit(TTY_HUPPED, &tty->flags)) {
633 		tty_unlock(tty);
634 		return;
635 	}
636 
637 	/* some functions below drop BTM, so we need this bit */
638 	set_bit(TTY_HUPPING, &tty->flags);
639 
640 	/* inuse_filps is protected by the single tty lock,
641 	   this really needs to change if we want to flush the
642 	   workqueue with the lock held */
643 	check_tty_count(tty, "tty_hangup");
644 
645 	spin_lock(&tty_files_lock);
646 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
647 	list_for_each_entry(priv, &tty->tty_files, list) {
648 		filp = priv->file;
649 		if (filp->f_op->write == redirected_tty_write)
650 			cons_filp = filp;
651 		if (filp->f_op->write != tty_write)
652 			continue;
653 		closecount++;
654 		__tty_fasync(-1, filp, 0);	/* can't block */
655 		filp->f_op = &hung_up_tty_fops;
656 	}
657 	spin_unlock(&tty_files_lock);
658 
659 	refs = tty_signal_session_leader(tty, exit_session);
660 	/* Account for the p->signal references we killed */
661 	while (refs--)
662 		tty_kref_put(tty);
663 
664 	/*
665 	 * it drops BTM and thus races with reopen
666 	 * we protect the race by TTY_HUPPING
667 	 */
668 	tty_ldisc_hangup(tty);
669 
670 	spin_lock_irq(&tty->ctrl_lock);
671 	clear_bit(TTY_THROTTLED, &tty->flags);
672 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
673 	put_pid(tty->session);
674 	put_pid(tty->pgrp);
675 	tty->session = NULL;
676 	tty->pgrp = NULL;
677 	tty->ctrl_status = 0;
678 	spin_unlock_irq(&tty->ctrl_lock);
679 
680 	/*
681 	 * If one of the devices matches a console pointer, we
682 	 * cannot just call hangup() because that will cause
683 	 * tty->count and state->count to go out of sync.
684 	 * So we just call close() the right number of times.
685 	 */
686 	if (cons_filp) {
687 		if (tty->ops->close)
688 			for (n = 0; n < closecount; n++)
689 				tty->ops->close(tty, cons_filp);
690 	} else if (tty->ops->hangup)
691 		(tty->ops->hangup)(tty);
692 	/*
693 	 * We don't want to have driver/ldisc interactions beyond
694 	 * the ones we did here. The driver layer expects no
695 	 * calls after ->hangup() from the ldisc side. However we
696 	 * can't yet guarantee all that.
697 	 */
698 	set_bit(TTY_HUPPED, &tty->flags);
699 	clear_bit(TTY_HUPPING, &tty->flags);
700 
701 	tty_unlock(tty);
702 
703 	if (f)
704 		fput(f);
705 }
706 
707 static void do_tty_hangup(struct work_struct *work)
708 {
709 	struct tty_struct *tty =
710 		container_of(work, struct tty_struct, hangup_work);
711 
712 	__tty_hangup(tty, 0);
713 }
714 
715 /**
716  *	tty_hangup		-	trigger a hangup event
717  *	@tty: tty to hangup
718  *
719  *	A carrier loss (virtual or otherwise) has occurred on this like
720  *	schedule a hangup sequence to run after this event.
721  */
722 
723 void tty_hangup(struct tty_struct *tty)
724 {
725 #ifdef TTY_DEBUG_HANGUP
726 	char	buf[64];
727 	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
728 #endif
729 	schedule_work(&tty->hangup_work);
730 }
731 
732 EXPORT_SYMBOL(tty_hangup);
733 
734 /**
735  *	tty_vhangup		-	process vhangup
736  *	@tty: tty to hangup
737  *
738  *	The user has asked via system call for the terminal to be hung up.
739  *	We do this synchronously so that when the syscall returns the process
740  *	is complete. That guarantee is necessary for security reasons.
741  */
742 
743 void tty_vhangup(struct tty_struct *tty)
744 {
745 #ifdef TTY_DEBUG_HANGUP
746 	char	buf[64];
747 
748 	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
749 #endif
750 	__tty_hangup(tty, 0);
751 }
752 
753 EXPORT_SYMBOL(tty_vhangup);
754 
755 
756 /**
757  *	tty_vhangup_self	-	process vhangup for own ctty
758  *
759  *	Perform a vhangup on the current controlling tty
760  */
761 
762 void tty_vhangup_self(void)
763 {
764 	struct tty_struct *tty;
765 
766 	tty = get_current_tty();
767 	if (tty) {
768 		tty_vhangup(tty);
769 		tty_kref_put(tty);
770 	}
771 }
772 
773 /**
774  *	tty_vhangup_session		-	hangup session leader exit
775  *	@tty: tty to hangup
776  *
777  *	The session leader is exiting and hanging up its controlling terminal.
778  *	Every process in the foreground process group is signalled SIGHUP.
779  *
780  *	We do this synchronously so that when the syscall returns the process
781  *	is complete. That guarantee is necessary for security reasons.
782  */
783 
784 static void tty_vhangup_session(struct tty_struct *tty)
785 {
786 #ifdef TTY_DEBUG_HANGUP
787 	char	buf[64];
788 
789 	printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
790 #endif
791 	__tty_hangup(tty, 1);
792 }
793 
794 /**
795  *	tty_hung_up_p		-	was tty hung up
796  *	@filp: file pointer of tty
797  *
798  *	Return true if the tty has been subject to a vhangup or a carrier
799  *	loss
800  */
801 
802 int tty_hung_up_p(struct file *filp)
803 {
804 	return (filp->f_op == &hung_up_tty_fops);
805 }
806 
807 EXPORT_SYMBOL(tty_hung_up_p);
808 
809 static void session_clear_tty(struct pid *session)
810 {
811 	struct task_struct *p;
812 	do_each_pid_task(session, PIDTYPE_SID, p) {
813 		proc_clear_tty(p);
814 	} while_each_pid_task(session, PIDTYPE_SID, p);
815 }
816 
817 /**
818  *	disassociate_ctty	-	disconnect controlling tty
819  *	@on_exit: true if exiting so need to "hang up" the session
820  *
821  *	This function is typically called only by the session leader, when
822  *	it wants to disassociate itself from its controlling tty.
823  *
824  *	It performs the following functions:
825  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
826  * 	(2)  Clears the tty from being controlling the session
827  * 	(3)  Clears the controlling tty for all processes in the
828  * 		session group.
829  *
830  *	The argument on_exit is set to 1 if called when a process is
831  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
832  *
833  *	Locking:
834  *		BTM is taken for hysterical raisins, and held when
835  *		  called from no_tty().
836  *		  tty_mutex is taken to protect tty
837  *		  ->siglock is taken to protect ->signal/->sighand
838  *		  tasklist_lock is taken to walk process list for sessions
839  *		    ->siglock is taken to protect ->signal/->sighand
840  */
841 
842 void disassociate_ctty(int on_exit)
843 {
844 	struct tty_struct *tty;
845 
846 	if (!current->signal->leader)
847 		return;
848 
849 	tty = get_current_tty();
850 	if (tty) {
851 		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
852 			tty_vhangup_session(tty);
853 		} else {
854 			struct pid *tty_pgrp = tty_get_pgrp(tty);
855 			if (tty_pgrp) {
856 				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
857 				kill_pgrp(tty_pgrp, SIGCONT, on_exit);
858 				put_pid(tty_pgrp);
859 			}
860 		}
861 		tty_kref_put(tty);
862 
863 	} else if (on_exit) {
864 		struct pid *old_pgrp;
865 		spin_lock_irq(&current->sighand->siglock);
866 		old_pgrp = current->signal->tty_old_pgrp;
867 		current->signal->tty_old_pgrp = NULL;
868 		spin_unlock_irq(&current->sighand->siglock);
869 		if (old_pgrp) {
870 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
871 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
872 			put_pid(old_pgrp);
873 		}
874 		return;
875 	}
876 
877 	spin_lock_irq(&current->sighand->siglock);
878 	put_pid(current->signal->tty_old_pgrp);
879 	current->signal->tty_old_pgrp = NULL;
880 	spin_unlock_irq(&current->sighand->siglock);
881 
882 	tty = get_current_tty();
883 	if (tty) {
884 		unsigned long flags;
885 		spin_lock_irqsave(&tty->ctrl_lock, flags);
886 		put_pid(tty->session);
887 		put_pid(tty->pgrp);
888 		tty->session = NULL;
889 		tty->pgrp = NULL;
890 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
891 		tty_kref_put(tty);
892 	} else {
893 #ifdef TTY_DEBUG_HANGUP
894 		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
895 		       " = NULL", tty);
896 #endif
897 	}
898 
899 	/* Now clear signal->tty under the lock */
900 	read_lock(&tasklist_lock);
901 	session_clear_tty(task_session(current));
902 	read_unlock(&tasklist_lock);
903 }
904 
905 /**
906  *
907  *	no_tty	- Ensure the current process does not have a controlling tty
908  */
909 void no_tty(void)
910 {
911 	/* FIXME: Review locking here. The tty_lock never covered any race
912 	   between a new association and proc_clear_tty but possible we need
913 	   to protect against this anyway */
914 	struct task_struct *tsk = current;
915 	disassociate_ctty(0);
916 	proc_clear_tty(tsk);
917 }
918 
919 
920 /**
921  *	stop_tty	-	propagate flow control
922  *	@tty: tty to stop
923  *
924  *	Perform flow control to the driver. For PTY/TTY pairs we
925  *	must also propagate the TIOCKPKT status. May be called
926  *	on an already stopped device and will not re-call the driver
927  *	method.
928  *
929  *	This functionality is used by both the line disciplines for
930  *	halting incoming flow and by the driver. It may therefore be
931  *	called from any context, may be under the tty atomic_write_lock
932  *	but not always.
933  *
934  *	Locking:
935  *		Uses the tty control lock internally
936  */
937 
938 void stop_tty(struct tty_struct *tty)
939 {
940 	unsigned long flags;
941 	spin_lock_irqsave(&tty->ctrl_lock, flags);
942 	if (tty->stopped) {
943 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
944 		return;
945 	}
946 	tty->stopped = 1;
947 	if (tty->link && tty->link->packet) {
948 		tty->ctrl_status &= ~TIOCPKT_START;
949 		tty->ctrl_status |= TIOCPKT_STOP;
950 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
951 	}
952 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
953 	if (tty->ops->stop)
954 		(tty->ops->stop)(tty);
955 }
956 
957 EXPORT_SYMBOL(stop_tty);
958 
959 /**
960  *	start_tty	-	propagate flow control
961  *	@tty: tty to start
962  *
963  *	Start a tty that has been stopped if at all possible. Perform
964  *	any necessary wakeups and propagate the TIOCPKT status. If this
965  *	is the tty was previous stopped and is being started then the
966  *	driver start method is invoked and the line discipline woken.
967  *
968  *	Locking:
969  *		ctrl_lock
970  */
971 
972 void start_tty(struct tty_struct *tty)
973 {
974 	unsigned long flags;
975 	spin_lock_irqsave(&tty->ctrl_lock, flags);
976 	if (!tty->stopped || tty->flow_stopped) {
977 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
978 		return;
979 	}
980 	tty->stopped = 0;
981 	if (tty->link && tty->link->packet) {
982 		tty->ctrl_status &= ~TIOCPKT_STOP;
983 		tty->ctrl_status |= TIOCPKT_START;
984 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
985 	}
986 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
987 	if (tty->ops->start)
988 		(tty->ops->start)(tty);
989 	/* If we have a running line discipline it may need kicking */
990 	tty_wakeup(tty);
991 }
992 
993 EXPORT_SYMBOL(start_tty);
994 
995 /* We limit tty time update visibility to every 8 seconds or so. */
996 static void tty_update_time(struct timespec *time)
997 {
998 	unsigned long sec = get_seconds() & ~7;
999 	if ((long)(sec - time->tv_sec) > 0)
1000 		time->tv_sec = sec;
1001 }
1002 
1003 /**
1004  *	tty_read	-	read method for tty device files
1005  *	@file: pointer to tty file
1006  *	@buf: user buffer
1007  *	@count: size of user buffer
1008  *	@ppos: unused
1009  *
1010  *	Perform the read system call function on this terminal device. Checks
1011  *	for hung up devices before calling the line discipline method.
1012  *
1013  *	Locking:
1014  *		Locks the line discipline internally while needed. Multiple
1015  *	read calls may be outstanding in parallel.
1016  */
1017 
1018 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1019 			loff_t *ppos)
1020 {
1021 	int i;
1022 	struct inode *inode = file_inode(file);
1023 	struct tty_struct *tty = file_tty(file);
1024 	struct tty_ldisc *ld;
1025 
1026 	if (tty_paranoia_check(tty, inode, "tty_read"))
1027 		return -EIO;
1028 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1029 		return -EIO;
1030 
1031 	/* We want to wait for the line discipline to sort out in this
1032 	   situation */
1033 	ld = tty_ldisc_ref_wait(tty);
1034 	if (ld->ops->read)
1035 		i = (ld->ops->read)(tty, file, buf, count);
1036 	else
1037 		i = -EIO;
1038 	tty_ldisc_deref(ld);
1039 
1040 	if (i > 0)
1041 		tty_update_time(&inode->i_atime);
1042 
1043 	return i;
1044 }
1045 
1046 void tty_write_unlock(struct tty_struct *tty)
1047 	__releases(&tty->atomic_write_lock)
1048 {
1049 	mutex_unlock(&tty->atomic_write_lock);
1050 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1051 }
1052 
1053 int tty_write_lock(struct tty_struct *tty, int ndelay)
1054 	__acquires(&tty->atomic_write_lock)
1055 {
1056 	if (!mutex_trylock(&tty->atomic_write_lock)) {
1057 		if (ndelay)
1058 			return -EAGAIN;
1059 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1060 			return -ERESTARTSYS;
1061 	}
1062 	return 0;
1063 }
1064 
1065 /*
1066  * Split writes up in sane blocksizes to avoid
1067  * denial-of-service type attacks
1068  */
1069 static inline ssize_t do_tty_write(
1070 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1071 	struct tty_struct *tty,
1072 	struct file *file,
1073 	const char __user *buf,
1074 	size_t count)
1075 {
1076 	ssize_t ret, written = 0;
1077 	unsigned int chunk;
1078 
1079 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1080 	if (ret < 0)
1081 		return ret;
1082 
1083 	/*
1084 	 * We chunk up writes into a temporary buffer. This
1085 	 * simplifies low-level drivers immensely, since they
1086 	 * don't have locking issues and user mode accesses.
1087 	 *
1088 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1089 	 * big chunk-size..
1090 	 *
1091 	 * The default chunk-size is 2kB, because the NTTY
1092 	 * layer has problems with bigger chunks. It will
1093 	 * claim to be able to handle more characters than
1094 	 * it actually does.
1095 	 *
1096 	 * FIXME: This can probably go away now except that 64K chunks
1097 	 * are too likely to fail unless switched to vmalloc...
1098 	 */
1099 	chunk = 2048;
1100 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1101 		chunk = 65536;
1102 	if (count < chunk)
1103 		chunk = count;
1104 
1105 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1106 	if (tty->write_cnt < chunk) {
1107 		unsigned char *buf_chunk;
1108 
1109 		if (chunk < 1024)
1110 			chunk = 1024;
1111 
1112 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1113 		if (!buf_chunk) {
1114 			ret = -ENOMEM;
1115 			goto out;
1116 		}
1117 		kfree(tty->write_buf);
1118 		tty->write_cnt = chunk;
1119 		tty->write_buf = buf_chunk;
1120 	}
1121 
1122 	/* Do the write .. */
1123 	for (;;) {
1124 		size_t size = count;
1125 		if (size > chunk)
1126 			size = chunk;
1127 		ret = -EFAULT;
1128 		if (copy_from_user(tty->write_buf, buf, size))
1129 			break;
1130 		ret = write(tty, file, tty->write_buf, size);
1131 		if (ret <= 0)
1132 			break;
1133 		written += ret;
1134 		buf += ret;
1135 		count -= ret;
1136 		if (!count)
1137 			break;
1138 		ret = -ERESTARTSYS;
1139 		if (signal_pending(current))
1140 			break;
1141 		cond_resched();
1142 	}
1143 	if (written) {
1144 		tty_update_time(&file_inode(file)->i_mtime);
1145 		ret = written;
1146 	}
1147 out:
1148 	tty_write_unlock(tty);
1149 	return ret;
1150 }
1151 
1152 /**
1153  * tty_write_message - write a message to a certain tty, not just the console.
1154  * @tty: the destination tty_struct
1155  * @msg: the message to write
1156  *
1157  * This is used for messages that need to be redirected to a specific tty.
1158  * We don't put it into the syslog queue right now maybe in the future if
1159  * really needed.
1160  *
1161  * We must still hold the BTM and test the CLOSING flag for the moment.
1162  */
1163 
1164 void tty_write_message(struct tty_struct *tty, char *msg)
1165 {
1166 	if (tty) {
1167 		mutex_lock(&tty->atomic_write_lock);
1168 		tty_lock(tty);
1169 		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1170 			tty_unlock(tty);
1171 			tty->ops->write(tty, msg, strlen(msg));
1172 		} else
1173 			tty_unlock(tty);
1174 		tty_write_unlock(tty);
1175 	}
1176 	return;
1177 }
1178 
1179 
1180 /**
1181  *	tty_write		-	write method for tty device file
1182  *	@file: tty file pointer
1183  *	@buf: user data to write
1184  *	@count: bytes to write
1185  *	@ppos: unused
1186  *
1187  *	Write data to a tty device via the line discipline.
1188  *
1189  *	Locking:
1190  *		Locks the line discipline as required
1191  *		Writes to the tty driver are serialized by the atomic_write_lock
1192  *	and are then processed in chunks to the device. The line discipline
1193  *	write method will not be invoked in parallel for each device.
1194  */
1195 
1196 static ssize_t tty_write(struct file *file, const char __user *buf,
1197 						size_t count, loff_t *ppos)
1198 {
1199 	struct tty_struct *tty = file_tty(file);
1200  	struct tty_ldisc *ld;
1201 	ssize_t ret;
1202 
1203 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1204 		return -EIO;
1205 	if (!tty || !tty->ops->write ||
1206 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1207 			return -EIO;
1208 	/* Short term debug to catch buggy drivers */
1209 	if (tty->ops->write_room == NULL)
1210 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1211 			tty->driver->name);
1212 	ld = tty_ldisc_ref_wait(tty);
1213 	if (!ld->ops->write)
1214 		ret = -EIO;
1215 	else
1216 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1217 	tty_ldisc_deref(ld);
1218 	return ret;
1219 }
1220 
1221 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1222 						size_t count, loff_t *ppos)
1223 {
1224 	struct file *p = NULL;
1225 
1226 	spin_lock(&redirect_lock);
1227 	if (redirect)
1228 		p = get_file(redirect);
1229 	spin_unlock(&redirect_lock);
1230 
1231 	if (p) {
1232 		ssize_t res;
1233 		res = vfs_write(p, buf, count, &p->f_pos);
1234 		fput(p);
1235 		return res;
1236 	}
1237 	return tty_write(file, buf, count, ppos);
1238 }
1239 
1240 static char ptychar[] = "pqrstuvwxyzabcde";
1241 
1242 /**
1243  *	pty_line_name	-	generate name for a pty
1244  *	@driver: the tty driver in use
1245  *	@index: the minor number
1246  *	@p: output buffer of at least 6 bytes
1247  *
1248  *	Generate a name from a driver reference and write it to the output
1249  *	buffer.
1250  *
1251  *	Locking: None
1252  */
1253 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1254 {
1255 	int i = index + driver->name_base;
1256 	/* ->name is initialized to "ttyp", but "tty" is expected */
1257 	sprintf(p, "%s%c%x",
1258 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1259 		ptychar[i >> 4 & 0xf], i & 0xf);
1260 }
1261 
1262 /**
1263  *	tty_line_name	-	generate name for a tty
1264  *	@driver: the tty driver in use
1265  *	@index: the minor number
1266  *	@p: output buffer of at least 7 bytes
1267  *
1268  *	Generate a name from a driver reference and write it to the output
1269  *	buffer.
1270  *
1271  *	Locking: None
1272  */
1273 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1274 {
1275 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1276 		strcpy(p, driver->name);
1277 	else
1278 		sprintf(p, "%s%d", driver->name, index + driver->name_base);
1279 }
1280 
1281 /**
1282  *	tty_driver_lookup_tty() - find an existing tty, if any
1283  *	@driver: the driver for the tty
1284  *	@idx:	 the minor number
1285  *
1286  *	Return the tty, if found or ERR_PTR() otherwise.
1287  *
1288  *	Locking: tty_mutex must be held. If tty is found, the mutex must
1289  *	be held until the 'fast-open' is also done. Will change once we
1290  *	have refcounting in the driver and per driver locking
1291  */
1292 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1293 		struct inode *inode, int idx)
1294 {
1295 	if (driver->ops->lookup)
1296 		return driver->ops->lookup(driver, inode, idx);
1297 
1298 	return driver->ttys[idx];
1299 }
1300 
1301 /**
1302  *	tty_init_termios	-  helper for termios setup
1303  *	@tty: the tty to set up
1304  *
1305  *	Initialise the termios structures for this tty. Thus runs under
1306  *	the tty_mutex currently so we can be relaxed about ordering.
1307  */
1308 
1309 int tty_init_termios(struct tty_struct *tty)
1310 {
1311 	struct ktermios *tp;
1312 	int idx = tty->index;
1313 
1314 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1315 		tty->termios = tty->driver->init_termios;
1316 	else {
1317 		/* Check for lazy saved data */
1318 		tp = tty->driver->termios[idx];
1319 		if (tp != NULL)
1320 			tty->termios = *tp;
1321 		else
1322 			tty->termios = tty->driver->init_termios;
1323 	}
1324 	/* Compatibility until drivers always set this */
1325 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1326 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1327 	return 0;
1328 }
1329 EXPORT_SYMBOL_GPL(tty_init_termios);
1330 
1331 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1332 {
1333 	int ret = tty_init_termios(tty);
1334 	if (ret)
1335 		return ret;
1336 
1337 	tty_driver_kref_get(driver);
1338 	tty->count++;
1339 	driver->ttys[tty->index] = tty;
1340 	return 0;
1341 }
1342 EXPORT_SYMBOL_GPL(tty_standard_install);
1343 
1344 /**
1345  *	tty_driver_install_tty() - install a tty entry in the driver
1346  *	@driver: the driver for the tty
1347  *	@tty: the tty
1348  *
1349  *	Install a tty object into the driver tables. The tty->index field
1350  *	will be set by the time this is called. This method is responsible
1351  *	for ensuring any need additional structures are allocated and
1352  *	configured.
1353  *
1354  *	Locking: tty_mutex for now
1355  */
1356 static int tty_driver_install_tty(struct tty_driver *driver,
1357 						struct tty_struct *tty)
1358 {
1359 	return driver->ops->install ? driver->ops->install(driver, tty) :
1360 		tty_standard_install(driver, tty);
1361 }
1362 
1363 /**
1364  *	tty_driver_remove_tty() - remove a tty from the driver tables
1365  *	@driver: the driver for the tty
1366  *	@idx:	 the minor number
1367  *
1368  *	Remvoe a tty object from the driver tables. The tty->index field
1369  *	will be set by the time this is called.
1370  *
1371  *	Locking: tty_mutex for now
1372  */
1373 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1374 {
1375 	if (driver->ops->remove)
1376 		driver->ops->remove(driver, tty);
1377 	else
1378 		driver->ttys[tty->index] = NULL;
1379 }
1380 
1381 /*
1382  * 	tty_reopen()	- fast re-open of an open tty
1383  * 	@tty	- the tty to open
1384  *
1385  *	Return 0 on success, -errno on error.
1386  *
1387  *	Locking: tty_mutex must be held from the time the tty was found
1388  *		 till this open completes.
1389  */
1390 static int tty_reopen(struct tty_struct *tty)
1391 {
1392 	struct tty_driver *driver = tty->driver;
1393 
1394 	if (test_bit(TTY_CLOSING, &tty->flags) ||
1395 			test_bit(TTY_HUPPING, &tty->flags))
1396 		return -EIO;
1397 
1398 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1399 	    driver->subtype == PTY_TYPE_MASTER) {
1400 		/*
1401 		 * special case for PTY masters: only one open permitted,
1402 		 * and the slave side open count is incremented as well.
1403 		 */
1404 		if (tty->count)
1405 			return -EIO;
1406 
1407 		tty->link->count++;
1408 	}
1409 	tty->count++;
1410 
1411 	WARN_ON(!tty->ldisc);
1412 
1413 	return 0;
1414 }
1415 
1416 /**
1417  *	tty_init_dev		-	initialise a tty device
1418  *	@driver: tty driver we are opening a device on
1419  *	@idx: device index
1420  *	@ret_tty: returned tty structure
1421  *
1422  *	Prepare a tty device. This may not be a "new" clean device but
1423  *	could also be an active device. The pty drivers require special
1424  *	handling because of this.
1425  *
1426  *	Locking:
1427  *		The function is called under the tty_mutex, which
1428  *	protects us from the tty struct or driver itself going away.
1429  *
1430  *	On exit the tty device has the line discipline attached and
1431  *	a reference count of 1. If a pair was created for pty/tty use
1432  *	and the other was a pty master then it too has a reference count of 1.
1433  *
1434  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1435  * failed open.  The new code protects the open with a mutex, so it's
1436  * really quite straightforward.  The mutex locking can probably be
1437  * relaxed for the (most common) case of reopening a tty.
1438  */
1439 
1440 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1441 {
1442 	struct tty_struct *tty;
1443 	int retval;
1444 
1445 	/*
1446 	 * First time open is complex, especially for PTY devices.
1447 	 * This code guarantees that either everything succeeds and the
1448 	 * TTY is ready for operation, or else the table slots are vacated
1449 	 * and the allocated memory released.  (Except that the termios
1450 	 * and locked termios may be retained.)
1451 	 */
1452 
1453 	if (!try_module_get(driver->owner))
1454 		return ERR_PTR(-ENODEV);
1455 
1456 	tty = alloc_tty_struct();
1457 	if (!tty) {
1458 		retval = -ENOMEM;
1459 		goto err_module_put;
1460 	}
1461 	initialize_tty_struct(tty, driver, idx);
1462 
1463 	tty_lock(tty);
1464 	retval = tty_driver_install_tty(driver, tty);
1465 	if (retval < 0)
1466 		goto err_deinit_tty;
1467 
1468 	if (!tty->port)
1469 		tty->port = driver->ports[idx];
1470 
1471 	WARN_RATELIMIT(!tty->port,
1472 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1473 			__func__, tty->driver->name);
1474 
1475 	tty->port->itty = tty;
1476 
1477 	/*
1478 	 * Structures all installed ... call the ldisc open routines.
1479 	 * If we fail here just call release_tty to clean up.  No need
1480 	 * to decrement the use counts, as release_tty doesn't care.
1481 	 */
1482 	retval = tty_ldisc_setup(tty, tty->link);
1483 	if (retval)
1484 		goto err_release_tty;
1485 	/* Return the tty locked so that it cannot vanish under the caller */
1486 	return tty;
1487 
1488 err_deinit_tty:
1489 	tty_unlock(tty);
1490 	deinitialize_tty_struct(tty);
1491 	free_tty_struct(tty);
1492 err_module_put:
1493 	module_put(driver->owner);
1494 	return ERR_PTR(retval);
1495 
1496 	/* call the tty release_tty routine to clean out this slot */
1497 err_release_tty:
1498 	tty_unlock(tty);
1499 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1500 				 "clearing slot %d\n", idx);
1501 	release_tty(tty, idx);
1502 	return ERR_PTR(retval);
1503 }
1504 
1505 void tty_free_termios(struct tty_struct *tty)
1506 {
1507 	struct ktermios *tp;
1508 	int idx = tty->index;
1509 
1510 	/* If the port is going to reset then it has no termios to save */
1511 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1512 		return;
1513 
1514 	/* Stash the termios data */
1515 	tp = tty->driver->termios[idx];
1516 	if (tp == NULL) {
1517 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1518 		if (tp == NULL) {
1519 			pr_warn("tty: no memory to save termios state.\n");
1520 			return;
1521 		}
1522 		tty->driver->termios[idx] = tp;
1523 	}
1524 	*tp = tty->termios;
1525 }
1526 EXPORT_SYMBOL(tty_free_termios);
1527 
1528 /**
1529  *	tty_flush_works		-	flush all works of a tty
1530  *	@tty: tty device to flush works for
1531  *
1532  *	Sync flush all works belonging to @tty.
1533  */
1534 static void tty_flush_works(struct tty_struct *tty)
1535 {
1536 	flush_work(&tty->SAK_work);
1537 	flush_work(&tty->hangup_work);
1538 }
1539 
1540 /**
1541  *	release_one_tty		-	release tty structure memory
1542  *	@kref: kref of tty we are obliterating
1543  *
1544  *	Releases memory associated with a tty structure, and clears out the
1545  *	driver table slots. This function is called when a device is no longer
1546  *	in use. It also gets called when setup of a device fails.
1547  *
1548  *	Locking:
1549  *		takes the file list lock internally when working on the list
1550  *	of ttys that the driver keeps.
1551  *
1552  *	This method gets called from a work queue so that the driver private
1553  *	cleanup ops can sleep (needed for USB at least)
1554  */
1555 static void release_one_tty(struct work_struct *work)
1556 {
1557 	struct tty_struct *tty =
1558 		container_of(work, struct tty_struct, hangup_work);
1559 	struct tty_driver *driver = tty->driver;
1560 
1561 	if (tty->ops->cleanup)
1562 		tty->ops->cleanup(tty);
1563 
1564 	tty->magic = 0;
1565 	tty_driver_kref_put(driver);
1566 	module_put(driver->owner);
1567 
1568 	spin_lock(&tty_files_lock);
1569 	list_del_init(&tty->tty_files);
1570 	spin_unlock(&tty_files_lock);
1571 
1572 	put_pid(tty->pgrp);
1573 	put_pid(tty->session);
1574 	free_tty_struct(tty);
1575 }
1576 
1577 static void queue_release_one_tty(struct kref *kref)
1578 {
1579 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1580 
1581 	/* The hangup queue is now free so we can reuse it rather than
1582 	   waste a chunk of memory for each port */
1583 	INIT_WORK(&tty->hangup_work, release_one_tty);
1584 	schedule_work(&tty->hangup_work);
1585 }
1586 
1587 /**
1588  *	tty_kref_put		-	release a tty kref
1589  *	@tty: tty device
1590  *
1591  *	Release a reference to a tty device and if need be let the kref
1592  *	layer destruct the object for us
1593  */
1594 
1595 void tty_kref_put(struct tty_struct *tty)
1596 {
1597 	if (tty)
1598 		kref_put(&tty->kref, queue_release_one_tty);
1599 }
1600 EXPORT_SYMBOL(tty_kref_put);
1601 
1602 /**
1603  *	release_tty		-	release tty structure memory
1604  *
1605  *	Release both @tty and a possible linked partner (think pty pair),
1606  *	and decrement the refcount of the backing module.
1607  *
1608  *	Locking:
1609  *		tty_mutex
1610  *		takes the file list lock internally when working on the list
1611  *	of ttys that the driver keeps.
1612  *
1613  */
1614 static void release_tty(struct tty_struct *tty, int idx)
1615 {
1616 	/* This should always be true but check for the moment */
1617 	WARN_ON(tty->index != idx);
1618 	WARN_ON(!mutex_is_locked(&tty_mutex));
1619 	if (tty->ops->shutdown)
1620 		tty->ops->shutdown(tty);
1621 	tty_free_termios(tty);
1622 	tty_driver_remove_tty(tty->driver, tty);
1623 	tty->port->itty = NULL;
1624 	if (tty->link)
1625 		tty->link->port->itty = NULL;
1626 	cancel_work_sync(&tty->port->buf.work);
1627 
1628 	if (tty->link)
1629 		tty_kref_put(tty->link);
1630 	tty_kref_put(tty);
1631 }
1632 
1633 /**
1634  *	tty_release_checks - check a tty before real release
1635  *	@tty: tty to check
1636  *	@o_tty: link of @tty (if any)
1637  *	@idx: index of the tty
1638  *
1639  *	Performs some paranoid checking before true release of the @tty.
1640  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1641  */
1642 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1643 		int idx)
1644 {
1645 #ifdef TTY_PARANOIA_CHECK
1646 	if (idx < 0 || idx >= tty->driver->num) {
1647 		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1648 				__func__, tty->name);
1649 		return -1;
1650 	}
1651 
1652 	/* not much to check for devpts */
1653 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1654 		return 0;
1655 
1656 	if (tty != tty->driver->ttys[idx]) {
1657 		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1658 				__func__, idx, tty->name);
1659 		return -1;
1660 	}
1661 	if (tty->driver->other) {
1662 		if (o_tty != tty->driver->other->ttys[idx]) {
1663 			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1664 					__func__, idx, tty->name);
1665 			return -1;
1666 		}
1667 		if (o_tty->link != tty) {
1668 			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1669 			return -1;
1670 		}
1671 	}
1672 #endif
1673 	return 0;
1674 }
1675 
1676 /**
1677  *	tty_release		-	vfs callback for close
1678  *	@inode: inode of tty
1679  *	@filp: file pointer for handle to tty
1680  *
1681  *	Called the last time each file handle is closed that references
1682  *	this tty. There may however be several such references.
1683  *
1684  *	Locking:
1685  *		Takes bkl. See tty_release_dev
1686  *
1687  * Even releasing the tty structures is a tricky business.. We have
1688  * to be very careful that the structures are all released at the
1689  * same time, as interrupts might otherwise get the wrong pointers.
1690  *
1691  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1692  * lead to double frees or releasing memory still in use.
1693  */
1694 
1695 int tty_release(struct inode *inode, struct file *filp)
1696 {
1697 	struct tty_struct *tty = file_tty(filp);
1698 	struct tty_struct *o_tty;
1699 	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1700 	int	idx;
1701 	char	buf[64];
1702 
1703 	if (tty_paranoia_check(tty, inode, __func__))
1704 		return 0;
1705 
1706 	tty_lock(tty);
1707 	check_tty_count(tty, __func__);
1708 
1709 	__tty_fasync(-1, filp, 0);
1710 
1711 	idx = tty->index;
1712 	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1713 		      tty->driver->subtype == PTY_TYPE_MASTER);
1714 	/* Review: parallel close */
1715 	o_tty = tty->link;
1716 
1717 	if (tty_release_checks(tty, o_tty, idx)) {
1718 		tty_unlock(tty);
1719 		return 0;
1720 	}
1721 
1722 #ifdef TTY_DEBUG_HANGUP
1723 	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1724 			tty_name(tty, buf), tty->count);
1725 #endif
1726 
1727 	if (tty->ops->close)
1728 		tty->ops->close(tty, filp);
1729 
1730 	tty_unlock(tty);
1731 	/*
1732 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1733 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1734 	 * wait queues and kick everyone out _before_ actually starting to
1735 	 * close.  This ensures that we won't block while releasing the tty
1736 	 * structure.
1737 	 *
1738 	 * The test for the o_tty closing is necessary, since the master and
1739 	 * slave sides may close in any order.  If the slave side closes out
1740 	 * first, its count will be one, since the master side holds an open.
1741 	 * Thus this test wouldn't be triggered at the time the slave closes,
1742 	 * so we do it now.
1743 	 *
1744 	 * Note that it's possible for the tty to be opened again while we're
1745 	 * flushing out waiters.  By recalculating the closing flags before
1746 	 * each iteration we avoid any problems.
1747 	 */
1748 	while (1) {
1749 		/* Guard against races with tty->count changes elsewhere and
1750 		   opens on /dev/tty */
1751 
1752 		mutex_lock(&tty_mutex);
1753 		tty_lock_pair(tty, o_tty);
1754 		tty_closing = tty->count <= 1;
1755 		o_tty_closing = o_tty &&
1756 			(o_tty->count <= (pty_master ? 1 : 0));
1757 		do_sleep = 0;
1758 
1759 		if (tty_closing) {
1760 			if (waitqueue_active(&tty->read_wait)) {
1761 				wake_up_poll(&tty->read_wait, POLLIN);
1762 				do_sleep++;
1763 			}
1764 			if (waitqueue_active(&tty->write_wait)) {
1765 				wake_up_poll(&tty->write_wait, POLLOUT);
1766 				do_sleep++;
1767 			}
1768 		}
1769 		if (o_tty_closing) {
1770 			if (waitqueue_active(&o_tty->read_wait)) {
1771 				wake_up_poll(&o_tty->read_wait, POLLIN);
1772 				do_sleep++;
1773 			}
1774 			if (waitqueue_active(&o_tty->write_wait)) {
1775 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1776 				do_sleep++;
1777 			}
1778 		}
1779 		if (!do_sleep)
1780 			break;
1781 
1782 		printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1783 				__func__, tty_name(tty, buf));
1784 		tty_unlock_pair(tty, o_tty);
1785 		mutex_unlock(&tty_mutex);
1786 		schedule();
1787 	}
1788 
1789 	/*
1790 	 * The closing flags are now consistent with the open counts on
1791 	 * both sides, and we've completed the last operation that could
1792 	 * block, so it's safe to proceed with closing.
1793 	 *
1794 	 * We must *not* drop the tty_mutex until we ensure that a further
1795 	 * entry into tty_open can not pick up this tty.
1796 	 */
1797 	if (pty_master) {
1798 		if (--o_tty->count < 0) {
1799 			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1800 				__func__, o_tty->count, tty_name(o_tty, buf));
1801 			o_tty->count = 0;
1802 		}
1803 	}
1804 	if (--tty->count < 0) {
1805 		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1806 				__func__, tty->count, tty_name(tty, buf));
1807 		tty->count = 0;
1808 	}
1809 
1810 	/*
1811 	 * We've decremented tty->count, so we need to remove this file
1812 	 * descriptor off the tty->tty_files list; this serves two
1813 	 * purposes:
1814 	 *  - check_tty_count sees the correct number of file descriptors
1815 	 *    associated with this tty.
1816 	 *  - do_tty_hangup no longer sees this file descriptor as
1817 	 *    something that needs to be handled for hangups.
1818 	 */
1819 	tty_del_file(filp);
1820 
1821 	/*
1822 	 * Perform some housekeeping before deciding whether to return.
1823 	 *
1824 	 * Set the TTY_CLOSING flag if this was the last open.  In the
1825 	 * case of a pty we may have to wait around for the other side
1826 	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1827 	 */
1828 	if (tty_closing)
1829 		set_bit(TTY_CLOSING, &tty->flags);
1830 	if (o_tty_closing)
1831 		set_bit(TTY_CLOSING, &o_tty->flags);
1832 
1833 	/*
1834 	 * If _either_ side is closing, make sure there aren't any
1835 	 * processes that still think tty or o_tty is their controlling
1836 	 * tty.
1837 	 */
1838 	if (tty_closing || o_tty_closing) {
1839 		read_lock(&tasklist_lock);
1840 		session_clear_tty(tty->session);
1841 		if (o_tty)
1842 			session_clear_tty(o_tty->session);
1843 		read_unlock(&tasklist_lock);
1844 	}
1845 
1846 	mutex_unlock(&tty_mutex);
1847 	tty_unlock_pair(tty, o_tty);
1848 	/* At this point the TTY_CLOSING flag should ensure a dead tty
1849 	   cannot be re-opened by a racing opener */
1850 
1851 	/* check whether both sides are closing ... */
1852 	if (!tty_closing || (o_tty && !o_tty_closing))
1853 		return 0;
1854 
1855 #ifdef TTY_DEBUG_HANGUP
1856 	printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1857 #endif
1858 	/*
1859 	 * Ask the line discipline code to release its structures
1860 	 */
1861 	tty_ldisc_release(tty, o_tty);
1862 
1863 	/* Wait for pending work before tty destruction commmences */
1864 	tty_flush_works(tty);
1865 	if (o_tty)
1866 		tty_flush_works(o_tty);
1867 
1868 #ifdef TTY_DEBUG_HANGUP
1869 	printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1870 #endif
1871 	/*
1872 	 * The release_tty function takes care of the details of clearing
1873 	 * the slots and preserving the termios structure. The tty_unlock_pair
1874 	 * should be safe as we keep a kref while the tty is locked (so the
1875 	 * unlock never unlocks a freed tty).
1876 	 */
1877 	mutex_lock(&tty_mutex);
1878 	release_tty(tty, idx);
1879 	mutex_unlock(&tty_mutex);
1880 
1881 	return 0;
1882 }
1883 
1884 /**
1885  *	tty_open_current_tty - get tty of current task for open
1886  *	@device: device number
1887  *	@filp: file pointer to tty
1888  *	@return: tty of the current task iff @device is /dev/tty
1889  *
1890  *	We cannot return driver and index like for the other nodes because
1891  *	devpts will not work then. It expects inodes to be from devpts FS.
1892  *
1893  *	We need to move to returning a refcounted object from all the lookup
1894  *	paths including this one.
1895  */
1896 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1897 {
1898 	struct tty_struct *tty;
1899 
1900 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1901 		return NULL;
1902 
1903 	tty = get_current_tty();
1904 	if (!tty)
1905 		return ERR_PTR(-ENXIO);
1906 
1907 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1908 	/* noctty = 1; */
1909 	tty_kref_put(tty);
1910 	/* FIXME: we put a reference and return a TTY! */
1911 	/* This is only safe because the caller holds tty_mutex */
1912 	return tty;
1913 }
1914 
1915 /**
1916  *	tty_lookup_driver - lookup a tty driver for a given device file
1917  *	@device: device number
1918  *	@filp: file pointer to tty
1919  *	@noctty: set if the device should not become a controlling tty
1920  *	@index: index for the device in the @return driver
1921  *	@return: driver for this inode (with increased refcount)
1922  *
1923  * 	If @return is not erroneous, the caller is responsible to decrement the
1924  * 	refcount by tty_driver_kref_put.
1925  *
1926  *	Locking: tty_mutex protects get_tty_driver
1927  */
1928 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1929 		int *noctty, int *index)
1930 {
1931 	struct tty_driver *driver;
1932 
1933 	switch (device) {
1934 #ifdef CONFIG_VT
1935 	case MKDEV(TTY_MAJOR, 0): {
1936 		extern struct tty_driver *console_driver;
1937 		driver = tty_driver_kref_get(console_driver);
1938 		*index = fg_console;
1939 		*noctty = 1;
1940 		break;
1941 	}
1942 #endif
1943 	case MKDEV(TTYAUX_MAJOR, 1): {
1944 		struct tty_driver *console_driver = console_device(index);
1945 		if (console_driver) {
1946 			driver = tty_driver_kref_get(console_driver);
1947 			if (driver) {
1948 				/* Don't let /dev/console block */
1949 				filp->f_flags |= O_NONBLOCK;
1950 				*noctty = 1;
1951 				break;
1952 			}
1953 		}
1954 		return ERR_PTR(-ENODEV);
1955 	}
1956 	default:
1957 		driver = get_tty_driver(device, index);
1958 		if (!driver)
1959 			return ERR_PTR(-ENODEV);
1960 		break;
1961 	}
1962 	return driver;
1963 }
1964 
1965 /**
1966  *	tty_open		-	open a tty device
1967  *	@inode: inode of device file
1968  *	@filp: file pointer to tty
1969  *
1970  *	tty_open and tty_release keep up the tty count that contains the
1971  *	number of opens done on a tty. We cannot use the inode-count, as
1972  *	different inodes might point to the same tty.
1973  *
1974  *	Open-counting is needed for pty masters, as well as for keeping
1975  *	track of serial lines: DTR is dropped when the last close happens.
1976  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1977  *
1978  *	The termios state of a pty is reset on first open so that
1979  *	settings don't persist across reuse.
1980  *
1981  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1982  *		 tty->count should protect the rest.
1983  *		 ->siglock protects ->signal/->sighand
1984  *
1985  *	Note: the tty_unlock/lock cases without a ref are only safe due to
1986  *	tty_mutex
1987  */
1988 
1989 static int tty_open(struct inode *inode, struct file *filp)
1990 {
1991 	struct tty_struct *tty;
1992 	int noctty, retval;
1993 	struct tty_driver *driver = NULL;
1994 	int index;
1995 	dev_t device = inode->i_rdev;
1996 	unsigned saved_flags = filp->f_flags;
1997 
1998 	nonseekable_open(inode, filp);
1999 
2000 retry_open:
2001 	retval = tty_alloc_file(filp);
2002 	if (retval)
2003 		return -ENOMEM;
2004 
2005 	noctty = filp->f_flags & O_NOCTTY;
2006 	index  = -1;
2007 	retval = 0;
2008 
2009 	mutex_lock(&tty_mutex);
2010 	/* This is protected by the tty_mutex */
2011 	tty = tty_open_current_tty(device, filp);
2012 	if (IS_ERR(tty)) {
2013 		retval = PTR_ERR(tty);
2014 		goto err_unlock;
2015 	} else if (!tty) {
2016 		driver = tty_lookup_driver(device, filp, &noctty, &index);
2017 		if (IS_ERR(driver)) {
2018 			retval = PTR_ERR(driver);
2019 			goto err_unlock;
2020 		}
2021 
2022 		/* check whether we're reopening an existing tty */
2023 		tty = tty_driver_lookup_tty(driver, inode, index);
2024 		if (IS_ERR(tty)) {
2025 			retval = PTR_ERR(tty);
2026 			goto err_unlock;
2027 		}
2028 	}
2029 
2030 	if (tty) {
2031 		tty_lock(tty);
2032 		retval = tty_reopen(tty);
2033 		if (retval < 0) {
2034 			tty_unlock(tty);
2035 			tty = ERR_PTR(retval);
2036 		}
2037 	} else	/* Returns with the tty_lock held for now */
2038 		tty = tty_init_dev(driver, index);
2039 
2040 	mutex_unlock(&tty_mutex);
2041 	if (driver)
2042 		tty_driver_kref_put(driver);
2043 	if (IS_ERR(tty)) {
2044 		retval = PTR_ERR(tty);
2045 		goto err_file;
2046 	}
2047 
2048 	tty_add_file(tty, filp);
2049 
2050 	check_tty_count(tty, __func__);
2051 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2052 	    tty->driver->subtype == PTY_TYPE_MASTER)
2053 		noctty = 1;
2054 #ifdef TTY_DEBUG_HANGUP
2055 	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2056 #endif
2057 	if (tty->ops->open)
2058 		retval = tty->ops->open(tty, filp);
2059 	else
2060 		retval = -ENODEV;
2061 	filp->f_flags = saved_flags;
2062 
2063 	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2064 						!capable(CAP_SYS_ADMIN))
2065 		retval = -EBUSY;
2066 
2067 	if (retval) {
2068 #ifdef TTY_DEBUG_HANGUP
2069 		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2070 				retval, tty->name);
2071 #endif
2072 		tty_unlock(tty); /* need to call tty_release without BTM */
2073 		tty_release(inode, filp);
2074 		if (retval != -ERESTARTSYS)
2075 			return retval;
2076 
2077 		if (signal_pending(current))
2078 			return retval;
2079 
2080 		schedule();
2081 		/*
2082 		 * Need to reset f_op in case a hangup happened.
2083 		 */
2084 		if (filp->f_op == &hung_up_tty_fops)
2085 			filp->f_op = &tty_fops;
2086 		goto retry_open;
2087 	}
2088 	tty_unlock(tty);
2089 
2090 
2091 	mutex_lock(&tty_mutex);
2092 	tty_lock(tty);
2093 	spin_lock_irq(&current->sighand->siglock);
2094 	if (!noctty &&
2095 	    current->signal->leader &&
2096 	    !current->signal->tty &&
2097 	    tty->session == NULL)
2098 		__proc_set_tty(current, tty);
2099 	spin_unlock_irq(&current->sighand->siglock);
2100 	tty_unlock(tty);
2101 	mutex_unlock(&tty_mutex);
2102 	return 0;
2103 err_unlock:
2104 	mutex_unlock(&tty_mutex);
2105 	/* after locks to avoid deadlock */
2106 	if (!IS_ERR_OR_NULL(driver))
2107 		tty_driver_kref_put(driver);
2108 err_file:
2109 	tty_free_file(filp);
2110 	return retval;
2111 }
2112 
2113 
2114 
2115 /**
2116  *	tty_poll	-	check tty status
2117  *	@filp: file being polled
2118  *	@wait: poll wait structures to update
2119  *
2120  *	Call the line discipline polling method to obtain the poll
2121  *	status of the device.
2122  *
2123  *	Locking: locks called line discipline but ldisc poll method
2124  *	may be re-entered freely by other callers.
2125  */
2126 
2127 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2128 {
2129 	struct tty_struct *tty = file_tty(filp);
2130 	struct tty_ldisc *ld;
2131 	int ret = 0;
2132 
2133 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2134 		return 0;
2135 
2136 	ld = tty_ldisc_ref_wait(tty);
2137 	if (ld->ops->poll)
2138 		ret = (ld->ops->poll)(tty, filp, wait);
2139 	tty_ldisc_deref(ld);
2140 	return ret;
2141 }
2142 
2143 static int __tty_fasync(int fd, struct file *filp, int on)
2144 {
2145 	struct tty_struct *tty = file_tty(filp);
2146 	struct tty_ldisc *ldisc;
2147 	unsigned long flags;
2148 	int retval = 0;
2149 
2150 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2151 		goto out;
2152 
2153 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2154 	if (retval <= 0)
2155 		goto out;
2156 
2157 	ldisc = tty_ldisc_ref(tty);
2158 	if (ldisc) {
2159 		if (ldisc->ops->fasync)
2160 			ldisc->ops->fasync(tty, on);
2161 		tty_ldisc_deref(ldisc);
2162 	}
2163 
2164 	if (on) {
2165 		enum pid_type type;
2166 		struct pid *pid;
2167 
2168 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2169 		if (tty->pgrp) {
2170 			pid = tty->pgrp;
2171 			type = PIDTYPE_PGID;
2172 		} else {
2173 			pid = task_pid(current);
2174 			type = PIDTYPE_PID;
2175 		}
2176 		get_pid(pid);
2177 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2178 		retval = __f_setown(filp, pid, type, 0);
2179 		put_pid(pid);
2180 	}
2181 out:
2182 	return retval;
2183 }
2184 
2185 static int tty_fasync(int fd, struct file *filp, int on)
2186 {
2187 	struct tty_struct *tty = file_tty(filp);
2188 	int retval;
2189 
2190 	tty_lock(tty);
2191 	retval = __tty_fasync(fd, filp, on);
2192 	tty_unlock(tty);
2193 
2194 	return retval;
2195 }
2196 
2197 /**
2198  *	tiocsti			-	fake input character
2199  *	@tty: tty to fake input into
2200  *	@p: pointer to character
2201  *
2202  *	Fake input to a tty device. Does the necessary locking and
2203  *	input management.
2204  *
2205  *	FIXME: does not honour flow control ??
2206  *
2207  *	Locking:
2208  *		Called functions take tty_ldiscs_lock
2209  *		current->signal->tty check is safe without locks
2210  *
2211  *	FIXME: may race normal receive processing
2212  */
2213 
2214 static int tiocsti(struct tty_struct *tty, char __user *p)
2215 {
2216 	char ch, mbz = 0;
2217 	struct tty_ldisc *ld;
2218 
2219 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2220 		return -EPERM;
2221 	if (get_user(ch, p))
2222 		return -EFAULT;
2223 	tty_audit_tiocsti(tty, ch);
2224 	ld = tty_ldisc_ref_wait(tty);
2225 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2226 	tty_ldisc_deref(ld);
2227 	return 0;
2228 }
2229 
2230 /**
2231  *	tiocgwinsz		-	implement window query ioctl
2232  *	@tty; tty
2233  *	@arg: user buffer for result
2234  *
2235  *	Copies the kernel idea of the window size into the user buffer.
2236  *
2237  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2238  *		is consistent.
2239  */
2240 
2241 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2242 {
2243 	int err;
2244 
2245 	mutex_lock(&tty->winsize_mutex);
2246 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2247 	mutex_unlock(&tty->winsize_mutex);
2248 
2249 	return err ? -EFAULT: 0;
2250 }
2251 
2252 /**
2253  *	tty_do_resize		-	resize event
2254  *	@tty: tty being resized
2255  *	@rows: rows (character)
2256  *	@cols: cols (character)
2257  *
2258  *	Update the termios variables and send the necessary signals to
2259  *	peform a terminal resize correctly
2260  */
2261 
2262 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2263 {
2264 	struct pid *pgrp;
2265 	unsigned long flags;
2266 
2267 	/* Lock the tty */
2268 	mutex_lock(&tty->winsize_mutex);
2269 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2270 		goto done;
2271 	/* Get the PID values and reference them so we can
2272 	   avoid holding the tty ctrl lock while sending signals */
2273 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2274 	pgrp = get_pid(tty->pgrp);
2275 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2276 
2277 	if (pgrp)
2278 		kill_pgrp(pgrp, SIGWINCH, 1);
2279 	put_pid(pgrp);
2280 
2281 	tty->winsize = *ws;
2282 done:
2283 	mutex_unlock(&tty->winsize_mutex);
2284 	return 0;
2285 }
2286 EXPORT_SYMBOL(tty_do_resize);
2287 
2288 /**
2289  *	tiocswinsz		-	implement window size set ioctl
2290  *	@tty; tty side of tty
2291  *	@arg: user buffer for result
2292  *
2293  *	Copies the user idea of the window size to the kernel. Traditionally
2294  *	this is just advisory information but for the Linux console it
2295  *	actually has driver level meaning and triggers a VC resize.
2296  *
2297  *	Locking:
2298  *		Driver dependent. The default do_resize method takes the
2299  *	tty termios mutex and ctrl_lock. The console takes its own lock
2300  *	then calls into the default method.
2301  */
2302 
2303 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2304 {
2305 	struct winsize tmp_ws;
2306 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2307 		return -EFAULT;
2308 
2309 	if (tty->ops->resize)
2310 		return tty->ops->resize(tty, &tmp_ws);
2311 	else
2312 		return tty_do_resize(tty, &tmp_ws);
2313 }
2314 
2315 /**
2316  *	tioccons	-	allow admin to move logical console
2317  *	@file: the file to become console
2318  *
2319  *	Allow the administrator to move the redirected console device
2320  *
2321  *	Locking: uses redirect_lock to guard the redirect information
2322  */
2323 
2324 static int tioccons(struct file *file)
2325 {
2326 	if (!capable(CAP_SYS_ADMIN))
2327 		return -EPERM;
2328 	if (file->f_op->write == redirected_tty_write) {
2329 		struct file *f;
2330 		spin_lock(&redirect_lock);
2331 		f = redirect;
2332 		redirect = NULL;
2333 		spin_unlock(&redirect_lock);
2334 		if (f)
2335 			fput(f);
2336 		return 0;
2337 	}
2338 	spin_lock(&redirect_lock);
2339 	if (redirect) {
2340 		spin_unlock(&redirect_lock);
2341 		return -EBUSY;
2342 	}
2343 	redirect = get_file(file);
2344 	spin_unlock(&redirect_lock);
2345 	return 0;
2346 }
2347 
2348 /**
2349  *	fionbio		-	non blocking ioctl
2350  *	@file: file to set blocking value
2351  *	@p: user parameter
2352  *
2353  *	Historical tty interfaces had a blocking control ioctl before
2354  *	the generic functionality existed. This piece of history is preserved
2355  *	in the expected tty API of posix OS's.
2356  *
2357  *	Locking: none, the open file handle ensures it won't go away.
2358  */
2359 
2360 static int fionbio(struct file *file, int __user *p)
2361 {
2362 	int nonblock;
2363 
2364 	if (get_user(nonblock, p))
2365 		return -EFAULT;
2366 
2367 	spin_lock(&file->f_lock);
2368 	if (nonblock)
2369 		file->f_flags |= O_NONBLOCK;
2370 	else
2371 		file->f_flags &= ~O_NONBLOCK;
2372 	spin_unlock(&file->f_lock);
2373 	return 0;
2374 }
2375 
2376 /**
2377  *	tiocsctty	-	set controlling tty
2378  *	@tty: tty structure
2379  *	@arg: user argument
2380  *
2381  *	This ioctl is used to manage job control. It permits a session
2382  *	leader to set this tty as the controlling tty for the session.
2383  *
2384  *	Locking:
2385  *		Takes tty_mutex() to protect tty instance
2386  *		Takes tasklist_lock internally to walk sessions
2387  *		Takes ->siglock() when updating signal->tty
2388  */
2389 
2390 static int tiocsctty(struct tty_struct *tty, int arg)
2391 {
2392 	int ret = 0;
2393 	if (current->signal->leader && (task_session(current) == tty->session))
2394 		return ret;
2395 
2396 	mutex_lock(&tty_mutex);
2397 	/*
2398 	 * The process must be a session leader and
2399 	 * not have a controlling tty already.
2400 	 */
2401 	if (!current->signal->leader || current->signal->tty) {
2402 		ret = -EPERM;
2403 		goto unlock;
2404 	}
2405 
2406 	if (tty->session) {
2407 		/*
2408 		 * This tty is already the controlling
2409 		 * tty for another session group!
2410 		 */
2411 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2412 			/*
2413 			 * Steal it away
2414 			 */
2415 			read_lock(&tasklist_lock);
2416 			session_clear_tty(tty->session);
2417 			read_unlock(&tasklist_lock);
2418 		} else {
2419 			ret = -EPERM;
2420 			goto unlock;
2421 		}
2422 	}
2423 	proc_set_tty(current, tty);
2424 unlock:
2425 	mutex_unlock(&tty_mutex);
2426 	return ret;
2427 }
2428 
2429 /**
2430  *	tty_get_pgrp	-	return a ref counted pgrp pid
2431  *	@tty: tty to read
2432  *
2433  *	Returns a refcounted instance of the pid struct for the process
2434  *	group controlling the tty.
2435  */
2436 
2437 struct pid *tty_get_pgrp(struct tty_struct *tty)
2438 {
2439 	unsigned long flags;
2440 	struct pid *pgrp;
2441 
2442 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2443 	pgrp = get_pid(tty->pgrp);
2444 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2445 
2446 	return pgrp;
2447 }
2448 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2449 
2450 /**
2451  *	tiocgpgrp		-	get process group
2452  *	@tty: tty passed by user
2453  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2454  *	@p: returned pid
2455  *
2456  *	Obtain the process group of the tty. If there is no process group
2457  *	return an error.
2458  *
2459  *	Locking: none. Reference to current->signal->tty is safe.
2460  */
2461 
2462 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2463 {
2464 	struct pid *pid;
2465 	int ret;
2466 	/*
2467 	 * (tty == real_tty) is a cheap way of
2468 	 * testing if the tty is NOT a master pty.
2469 	 */
2470 	if (tty == real_tty && current->signal->tty != real_tty)
2471 		return -ENOTTY;
2472 	pid = tty_get_pgrp(real_tty);
2473 	ret =  put_user(pid_vnr(pid), p);
2474 	put_pid(pid);
2475 	return ret;
2476 }
2477 
2478 /**
2479  *	tiocspgrp		-	attempt to set process group
2480  *	@tty: tty passed by user
2481  *	@real_tty: tty side device matching tty passed by user
2482  *	@p: pid pointer
2483  *
2484  *	Set the process group of the tty to the session passed. Only
2485  *	permitted where the tty session is our session.
2486  *
2487  *	Locking: RCU, ctrl lock
2488  */
2489 
2490 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2491 {
2492 	struct pid *pgrp;
2493 	pid_t pgrp_nr;
2494 	int retval = tty_check_change(real_tty);
2495 	unsigned long flags;
2496 
2497 	if (retval == -EIO)
2498 		return -ENOTTY;
2499 	if (retval)
2500 		return retval;
2501 	if (!current->signal->tty ||
2502 	    (current->signal->tty != real_tty) ||
2503 	    (real_tty->session != task_session(current)))
2504 		return -ENOTTY;
2505 	if (get_user(pgrp_nr, p))
2506 		return -EFAULT;
2507 	if (pgrp_nr < 0)
2508 		return -EINVAL;
2509 	rcu_read_lock();
2510 	pgrp = find_vpid(pgrp_nr);
2511 	retval = -ESRCH;
2512 	if (!pgrp)
2513 		goto out_unlock;
2514 	retval = -EPERM;
2515 	if (session_of_pgrp(pgrp) != task_session(current))
2516 		goto out_unlock;
2517 	retval = 0;
2518 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2519 	put_pid(real_tty->pgrp);
2520 	real_tty->pgrp = get_pid(pgrp);
2521 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2522 out_unlock:
2523 	rcu_read_unlock();
2524 	return retval;
2525 }
2526 
2527 /**
2528  *	tiocgsid		-	get session id
2529  *	@tty: tty passed by user
2530  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2531  *	@p: pointer to returned session id
2532  *
2533  *	Obtain the session id of the tty. If there is no session
2534  *	return an error.
2535  *
2536  *	Locking: none. Reference to current->signal->tty is safe.
2537  */
2538 
2539 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2540 {
2541 	/*
2542 	 * (tty == real_tty) is a cheap way of
2543 	 * testing if the tty is NOT a master pty.
2544 	*/
2545 	if (tty == real_tty && current->signal->tty != real_tty)
2546 		return -ENOTTY;
2547 	if (!real_tty->session)
2548 		return -ENOTTY;
2549 	return put_user(pid_vnr(real_tty->session), p);
2550 }
2551 
2552 /**
2553  *	tiocsetd	-	set line discipline
2554  *	@tty: tty device
2555  *	@p: pointer to user data
2556  *
2557  *	Set the line discipline according to user request.
2558  *
2559  *	Locking: see tty_set_ldisc, this function is just a helper
2560  */
2561 
2562 static int tiocsetd(struct tty_struct *tty, int __user *p)
2563 {
2564 	int ldisc;
2565 	int ret;
2566 
2567 	if (get_user(ldisc, p))
2568 		return -EFAULT;
2569 
2570 	ret = tty_set_ldisc(tty, ldisc);
2571 
2572 	return ret;
2573 }
2574 
2575 /**
2576  *	send_break	-	performed time break
2577  *	@tty: device to break on
2578  *	@duration: timeout in mS
2579  *
2580  *	Perform a timed break on hardware that lacks its own driver level
2581  *	timed break functionality.
2582  *
2583  *	Locking:
2584  *		atomic_write_lock serializes
2585  *
2586  */
2587 
2588 static int send_break(struct tty_struct *tty, unsigned int duration)
2589 {
2590 	int retval;
2591 
2592 	if (tty->ops->break_ctl == NULL)
2593 		return 0;
2594 
2595 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2596 		retval = tty->ops->break_ctl(tty, duration);
2597 	else {
2598 		/* Do the work ourselves */
2599 		if (tty_write_lock(tty, 0) < 0)
2600 			return -EINTR;
2601 		retval = tty->ops->break_ctl(tty, -1);
2602 		if (retval)
2603 			goto out;
2604 		if (!signal_pending(current))
2605 			msleep_interruptible(duration);
2606 		retval = tty->ops->break_ctl(tty, 0);
2607 out:
2608 		tty_write_unlock(tty);
2609 		if (signal_pending(current))
2610 			retval = -EINTR;
2611 	}
2612 	return retval;
2613 }
2614 
2615 /**
2616  *	tty_tiocmget		-	get modem status
2617  *	@tty: tty device
2618  *	@file: user file pointer
2619  *	@p: pointer to result
2620  *
2621  *	Obtain the modem status bits from the tty driver if the feature
2622  *	is supported. Return -EINVAL if it is not available.
2623  *
2624  *	Locking: none (up to the driver)
2625  */
2626 
2627 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2628 {
2629 	int retval = -EINVAL;
2630 
2631 	if (tty->ops->tiocmget) {
2632 		retval = tty->ops->tiocmget(tty);
2633 
2634 		if (retval >= 0)
2635 			retval = put_user(retval, p);
2636 	}
2637 	return retval;
2638 }
2639 
2640 /**
2641  *	tty_tiocmset		-	set modem status
2642  *	@tty: tty device
2643  *	@cmd: command - clear bits, set bits or set all
2644  *	@p: pointer to desired bits
2645  *
2646  *	Set the modem status bits from the tty driver if the feature
2647  *	is supported. Return -EINVAL if it is not available.
2648  *
2649  *	Locking: none (up to the driver)
2650  */
2651 
2652 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2653 	     unsigned __user *p)
2654 {
2655 	int retval;
2656 	unsigned int set, clear, val;
2657 
2658 	if (tty->ops->tiocmset == NULL)
2659 		return -EINVAL;
2660 
2661 	retval = get_user(val, p);
2662 	if (retval)
2663 		return retval;
2664 	set = clear = 0;
2665 	switch (cmd) {
2666 	case TIOCMBIS:
2667 		set = val;
2668 		break;
2669 	case TIOCMBIC:
2670 		clear = val;
2671 		break;
2672 	case TIOCMSET:
2673 		set = val;
2674 		clear = ~val;
2675 		break;
2676 	}
2677 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2678 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2679 	return tty->ops->tiocmset(tty, set, clear);
2680 }
2681 
2682 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2683 {
2684 	int retval = -EINVAL;
2685 	struct serial_icounter_struct icount;
2686 	memset(&icount, 0, sizeof(icount));
2687 	if (tty->ops->get_icount)
2688 		retval = tty->ops->get_icount(tty, &icount);
2689 	if (retval != 0)
2690 		return retval;
2691 	if (copy_to_user(arg, &icount, sizeof(icount)))
2692 		return -EFAULT;
2693 	return 0;
2694 }
2695 
2696 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2697 {
2698 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2699 	    tty->driver->subtype == PTY_TYPE_MASTER)
2700 		tty = tty->link;
2701 	return tty;
2702 }
2703 EXPORT_SYMBOL(tty_pair_get_tty);
2704 
2705 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2706 {
2707 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2708 	    tty->driver->subtype == PTY_TYPE_MASTER)
2709 	    return tty;
2710 	return tty->link;
2711 }
2712 EXPORT_SYMBOL(tty_pair_get_pty);
2713 
2714 /*
2715  * Split this up, as gcc can choke on it otherwise..
2716  */
2717 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2718 {
2719 	struct tty_struct *tty = file_tty(file);
2720 	struct tty_struct *real_tty;
2721 	void __user *p = (void __user *)arg;
2722 	int retval;
2723 	struct tty_ldisc *ld;
2724 
2725 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2726 		return -EINVAL;
2727 
2728 	real_tty = tty_pair_get_tty(tty);
2729 
2730 	/*
2731 	 * Factor out some common prep work
2732 	 */
2733 	switch (cmd) {
2734 	case TIOCSETD:
2735 	case TIOCSBRK:
2736 	case TIOCCBRK:
2737 	case TCSBRK:
2738 	case TCSBRKP:
2739 		retval = tty_check_change(tty);
2740 		if (retval)
2741 			return retval;
2742 		if (cmd != TIOCCBRK) {
2743 			tty_wait_until_sent(tty, 0);
2744 			if (signal_pending(current))
2745 				return -EINTR;
2746 		}
2747 		break;
2748 	}
2749 
2750 	/*
2751 	 *	Now do the stuff.
2752 	 */
2753 	switch (cmd) {
2754 	case TIOCSTI:
2755 		return tiocsti(tty, p);
2756 	case TIOCGWINSZ:
2757 		return tiocgwinsz(real_tty, p);
2758 	case TIOCSWINSZ:
2759 		return tiocswinsz(real_tty, p);
2760 	case TIOCCONS:
2761 		return real_tty != tty ? -EINVAL : tioccons(file);
2762 	case FIONBIO:
2763 		return fionbio(file, p);
2764 	case TIOCEXCL:
2765 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2766 		return 0;
2767 	case TIOCNXCL:
2768 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2769 		return 0;
2770 	case TIOCGEXCL:
2771 	{
2772 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2773 		return put_user(excl, (int __user *)p);
2774 	}
2775 	case TIOCNOTTY:
2776 		if (current->signal->tty != tty)
2777 			return -ENOTTY;
2778 		no_tty();
2779 		return 0;
2780 	case TIOCSCTTY:
2781 		return tiocsctty(tty, arg);
2782 	case TIOCGPGRP:
2783 		return tiocgpgrp(tty, real_tty, p);
2784 	case TIOCSPGRP:
2785 		return tiocspgrp(tty, real_tty, p);
2786 	case TIOCGSID:
2787 		return tiocgsid(tty, real_tty, p);
2788 	case TIOCGETD:
2789 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2790 	case TIOCSETD:
2791 		return tiocsetd(tty, p);
2792 	case TIOCVHANGUP:
2793 		if (!capable(CAP_SYS_ADMIN))
2794 			return -EPERM;
2795 		tty_vhangup(tty);
2796 		return 0;
2797 	case TIOCGDEV:
2798 	{
2799 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2800 		return put_user(ret, (unsigned int __user *)p);
2801 	}
2802 	/*
2803 	 * Break handling
2804 	 */
2805 	case TIOCSBRK:	/* Turn break on, unconditionally */
2806 		if (tty->ops->break_ctl)
2807 			return tty->ops->break_ctl(tty, -1);
2808 		return 0;
2809 	case TIOCCBRK:	/* Turn break off, unconditionally */
2810 		if (tty->ops->break_ctl)
2811 			return tty->ops->break_ctl(tty, 0);
2812 		return 0;
2813 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2814 		/* non-zero arg means wait for all output data
2815 		 * to be sent (performed above) but don't send break.
2816 		 * This is used by the tcdrain() termios function.
2817 		 */
2818 		if (!arg)
2819 			return send_break(tty, 250);
2820 		return 0;
2821 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2822 		return send_break(tty, arg ? arg*100 : 250);
2823 
2824 	case TIOCMGET:
2825 		return tty_tiocmget(tty, p);
2826 	case TIOCMSET:
2827 	case TIOCMBIC:
2828 	case TIOCMBIS:
2829 		return tty_tiocmset(tty, cmd, p);
2830 	case TIOCGICOUNT:
2831 		retval = tty_tiocgicount(tty, p);
2832 		/* For the moment allow fall through to the old method */
2833         	if (retval != -EINVAL)
2834 			return retval;
2835 		break;
2836 	case TCFLSH:
2837 		switch (arg) {
2838 		case TCIFLUSH:
2839 		case TCIOFLUSH:
2840 		/* flush tty buffer and allow ldisc to process ioctl */
2841 			tty_buffer_flush(tty);
2842 			break;
2843 		}
2844 		break;
2845 	}
2846 	if (tty->ops->ioctl) {
2847 		retval = (tty->ops->ioctl)(tty, cmd, arg);
2848 		if (retval != -ENOIOCTLCMD)
2849 			return retval;
2850 	}
2851 	ld = tty_ldisc_ref_wait(tty);
2852 	retval = -EINVAL;
2853 	if (ld->ops->ioctl) {
2854 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2855 		if (retval == -ENOIOCTLCMD)
2856 			retval = -ENOTTY;
2857 	}
2858 	tty_ldisc_deref(ld);
2859 	return retval;
2860 }
2861 
2862 #ifdef CONFIG_COMPAT
2863 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2864 				unsigned long arg)
2865 {
2866 	struct tty_struct *tty = file_tty(file);
2867 	struct tty_ldisc *ld;
2868 	int retval = -ENOIOCTLCMD;
2869 
2870 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2871 		return -EINVAL;
2872 
2873 	if (tty->ops->compat_ioctl) {
2874 		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2875 		if (retval != -ENOIOCTLCMD)
2876 			return retval;
2877 	}
2878 
2879 	ld = tty_ldisc_ref_wait(tty);
2880 	if (ld->ops->compat_ioctl)
2881 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2882 	else
2883 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2884 	tty_ldisc_deref(ld);
2885 
2886 	return retval;
2887 }
2888 #endif
2889 
2890 static int this_tty(const void *t, struct file *file, unsigned fd)
2891 {
2892 	if (likely(file->f_op->read != tty_read))
2893 		return 0;
2894 	return file_tty(file) != t ? 0 : fd + 1;
2895 }
2896 
2897 /*
2898  * This implements the "Secure Attention Key" ---  the idea is to
2899  * prevent trojan horses by killing all processes associated with this
2900  * tty when the user hits the "Secure Attention Key".  Required for
2901  * super-paranoid applications --- see the Orange Book for more details.
2902  *
2903  * This code could be nicer; ideally it should send a HUP, wait a few
2904  * seconds, then send a INT, and then a KILL signal.  But you then
2905  * have to coordinate with the init process, since all processes associated
2906  * with the current tty must be dead before the new getty is allowed
2907  * to spawn.
2908  *
2909  * Now, if it would be correct ;-/ The current code has a nasty hole -
2910  * it doesn't catch files in flight. We may send the descriptor to ourselves
2911  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2912  *
2913  * Nasty bug: do_SAK is being called in interrupt context.  This can
2914  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2915  */
2916 void __do_SAK(struct tty_struct *tty)
2917 {
2918 #ifdef TTY_SOFT_SAK
2919 	tty_hangup(tty);
2920 #else
2921 	struct task_struct *g, *p;
2922 	struct pid *session;
2923 	int		i;
2924 
2925 	if (!tty)
2926 		return;
2927 	session = tty->session;
2928 
2929 	tty_ldisc_flush(tty);
2930 
2931 	tty_driver_flush_buffer(tty);
2932 
2933 	read_lock(&tasklist_lock);
2934 	/* Kill the entire session */
2935 	do_each_pid_task(session, PIDTYPE_SID, p) {
2936 		printk(KERN_NOTICE "SAK: killed process %d"
2937 			" (%s): task_session(p)==tty->session\n",
2938 			task_pid_nr(p), p->comm);
2939 		send_sig(SIGKILL, p, 1);
2940 	} while_each_pid_task(session, PIDTYPE_SID, p);
2941 	/* Now kill any processes that happen to have the
2942 	 * tty open.
2943 	 */
2944 	do_each_thread(g, p) {
2945 		if (p->signal->tty == tty) {
2946 			printk(KERN_NOTICE "SAK: killed process %d"
2947 			    " (%s): task_session(p)==tty->session\n",
2948 			    task_pid_nr(p), p->comm);
2949 			send_sig(SIGKILL, p, 1);
2950 			continue;
2951 		}
2952 		task_lock(p);
2953 		i = iterate_fd(p->files, 0, this_tty, tty);
2954 		if (i != 0) {
2955 			printk(KERN_NOTICE "SAK: killed process %d"
2956 			    " (%s): fd#%d opened to the tty\n",
2957 				    task_pid_nr(p), p->comm, i - 1);
2958 			force_sig(SIGKILL, p);
2959 		}
2960 		task_unlock(p);
2961 	} while_each_thread(g, p);
2962 	read_unlock(&tasklist_lock);
2963 #endif
2964 }
2965 
2966 static void do_SAK_work(struct work_struct *work)
2967 {
2968 	struct tty_struct *tty =
2969 		container_of(work, struct tty_struct, SAK_work);
2970 	__do_SAK(tty);
2971 }
2972 
2973 /*
2974  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2975  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2976  * the values which we write to it will be identical to the values which it
2977  * already has. --akpm
2978  */
2979 void do_SAK(struct tty_struct *tty)
2980 {
2981 	if (!tty)
2982 		return;
2983 	schedule_work(&tty->SAK_work);
2984 }
2985 
2986 EXPORT_SYMBOL(do_SAK);
2987 
2988 static int dev_match_devt(struct device *dev, const void *data)
2989 {
2990 	const dev_t *devt = data;
2991 	return dev->devt == *devt;
2992 }
2993 
2994 /* Must put_device() after it's unused! */
2995 static struct device *tty_get_device(struct tty_struct *tty)
2996 {
2997 	dev_t devt = tty_devnum(tty);
2998 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2999 }
3000 
3001 
3002 /**
3003  *	initialize_tty_struct
3004  *	@tty: tty to initialize
3005  *
3006  *	This subroutine initializes a tty structure that has been newly
3007  *	allocated.
3008  *
3009  *	Locking: none - tty in question must not be exposed at this point
3010  */
3011 
3012 void initialize_tty_struct(struct tty_struct *tty,
3013 		struct tty_driver *driver, int idx)
3014 {
3015 	memset(tty, 0, sizeof(struct tty_struct));
3016 	kref_init(&tty->kref);
3017 	tty->magic = TTY_MAGIC;
3018 	tty_ldisc_init(tty);
3019 	tty->session = NULL;
3020 	tty->pgrp = NULL;
3021 	mutex_init(&tty->legacy_mutex);
3022 	mutex_init(&tty->throttle_mutex);
3023 	init_rwsem(&tty->termios_rwsem);
3024 	mutex_init(&tty->winsize_mutex);
3025 	init_ldsem(&tty->ldisc_sem);
3026 	init_waitqueue_head(&tty->write_wait);
3027 	init_waitqueue_head(&tty->read_wait);
3028 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3029 	mutex_init(&tty->atomic_write_lock);
3030 	spin_lock_init(&tty->ctrl_lock);
3031 	INIT_LIST_HEAD(&tty->tty_files);
3032 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3033 
3034 	tty->driver = driver;
3035 	tty->ops = driver->ops;
3036 	tty->index = idx;
3037 	tty_line_name(driver, idx, tty->name);
3038 	tty->dev = tty_get_device(tty);
3039 }
3040 
3041 /**
3042  *	deinitialize_tty_struct
3043  *	@tty: tty to deinitialize
3044  *
3045  *	This subroutine deinitializes a tty structure that has been newly
3046  *	allocated but tty_release cannot be called on that yet.
3047  *
3048  *	Locking: none - tty in question must not be exposed at this point
3049  */
3050 void deinitialize_tty_struct(struct tty_struct *tty)
3051 {
3052 	tty_ldisc_deinit(tty);
3053 }
3054 
3055 /**
3056  *	tty_put_char	-	write one character to a tty
3057  *	@tty: tty
3058  *	@ch: character
3059  *
3060  *	Write one byte to the tty using the provided put_char method
3061  *	if present. Returns the number of characters successfully output.
3062  *
3063  *	Note: the specific put_char operation in the driver layer may go
3064  *	away soon. Don't call it directly, use this method
3065  */
3066 
3067 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3068 {
3069 	if (tty->ops->put_char)
3070 		return tty->ops->put_char(tty, ch);
3071 	return tty->ops->write(tty, &ch, 1);
3072 }
3073 EXPORT_SYMBOL_GPL(tty_put_char);
3074 
3075 struct class *tty_class;
3076 
3077 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3078 		unsigned int index, unsigned int count)
3079 {
3080 	/* init here, since reused cdevs cause crashes */
3081 	cdev_init(&driver->cdevs[index], &tty_fops);
3082 	driver->cdevs[index].owner = driver->owner;
3083 	return cdev_add(&driver->cdevs[index], dev, count);
3084 }
3085 
3086 /**
3087  *	tty_register_device - register a tty device
3088  *	@driver: the tty driver that describes the tty device
3089  *	@index: the index in the tty driver for this tty device
3090  *	@device: a struct device that is associated with this tty device.
3091  *		This field is optional, if there is no known struct device
3092  *		for this tty device it can be set to NULL safely.
3093  *
3094  *	Returns a pointer to the struct device for this tty device
3095  *	(or ERR_PTR(-EFOO) on error).
3096  *
3097  *	This call is required to be made to register an individual tty device
3098  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3099  *	that bit is not set, this function should not be called by a tty
3100  *	driver.
3101  *
3102  *	Locking: ??
3103  */
3104 
3105 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3106 				   struct device *device)
3107 {
3108 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3109 }
3110 EXPORT_SYMBOL(tty_register_device);
3111 
3112 static void tty_device_create_release(struct device *dev)
3113 {
3114 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3115 	kfree(dev);
3116 }
3117 
3118 /**
3119  *	tty_register_device_attr - register a tty device
3120  *	@driver: the tty driver that describes the tty device
3121  *	@index: the index in the tty driver for this tty device
3122  *	@device: a struct device that is associated with this tty device.
3123  *		This field is optional, if there is no known struct device
3124  *		for this tty device it can be set to NULL safely.
3125  *	@drvdata: Driver data to be set to device.
3126  *	@attr_grp: Attribute group to be set on device.
3127  *
3128  *	Returns a pointer to the struct device for this tty device
3129  *	(or ERR_PTR(-EFOO) on error).
3130  *
3131  *	This call is required to be made to register an individual tty device
3132  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3133  *	that bit is not set, this function should not be called by a tty
3134  *	driver.
3135  *
3136  *	Locking: ??
3137  */
3138 struct device *tty_register_device_attr(struct tty_driver *driver,
3139 				   unsigned index, struct device *device,
3140 				   void *drvdata,
3141 				   const struct attribute_group **attr_grp)
3142 {
3143 	char name[64];
3144 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3145 	struct device *dev = NULL;
3146 	int retval = -ENODEV;
3147 	bool cdev = false;
3148 
3149 	if (index >= driver->num) {
3150 		printk(KERN_ERR "Attempt to register invalid tty line number "
3151 		       " (%d).\n", index);
3152 		return ERR_PTR(-EINVAL);
3153 	}
3154 
3155 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3156 		pty_line_name(driver, index, name);
3157 	else
3158 		tty_line_name(driver, index, name);
3159 
3160 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3161 		retval = tty_cdev_add(driver, devt, index, 1);
3162 		if (retval)
3163 			goto error;
3164 		cdev = true;
3165 	}
3166 
3167 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3168 	if (!dev) {
3169 		retval = -ENOMEM;
3170 		goto error;
3171 	}
3172 
3173 	dev->devt = devt;
3174 	dev->class = tty_class;
3175 	dev->parent = device;
3176 	dev->release = tty_device_create_release;
3177 	dev_set_name(dev, "%s", name);
3178 	dev->groups = attr_grp;
3179 	dev_set_drvdata(dev, drvdata);
3180 
3181 	retval = device_register(dev);
3182 	if (retval)
3183 		goto error;
3184 
3185 	return dev;
3186 
3187 error:
3188 	put_device(dev);
3189 	if (cdev)
3190 		cdev_del(&driver->cdevs[index]);
3191 	return ERR_PTR(retval);
3192 }
3193 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3194 
3195 /**
3196  * 	tty_unregister_device - unregister a tty device
3197  * 	@driver: the tty driver that describes the tty device
3198  * 	@index: the index in the tty driver for this tty device
3199  *
3200  * 	If a tty device is registered with a call to tty_register_device() then
3201  *	this function must be called when the tty device is gone.
3202  *
3203  *	Locking: ??
3204  */
3205 
3206 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3207 {
3208 	device_destroy(tty_class,
3209 		MKDEV(driver->major, driver->minor_start) + index);
3210 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3211 		cdev_del(&driver->cdevs[index]);
3212 }
3213 EXPORT_SYMBOL(tty_unregister_device);
3214 
3215 /**
3216  * __tty_alloc_driver -- allocate tty driver
3217  * @lines: count of lines this driver can handle at most
3218  * @owner: module which is repsonsible for this driver
3219  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3220  *
3221  * This should not be called directly, some of the provided macros should be
3222  * used instead. Use IS_ERR and friends on @retval.
3223  */
3224 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3225 		unsigned long flags)
3226 {
3227 	struct tty_driver *driver;
3228 	unsigned int cdevs = 1;
3229 	int err;
3230 
3231 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3232 		return ERR_PTR(-EINVAL);
3233 
3234 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3235 	if (!driver)
3236 		return ERR_PTR(-ENOMEM);
3237 
3238 	kref_init(&driver->kref);
3239 	driver->magic = TTY_DRIVER_MAGIC;
3240 	driver->num = lines;
3241 	driver->owner = owner;
3242 	driver->flags = flags;
3243 
3244 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3245 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3246 				GFP_KERNEL);
3247 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3248 				GFP_KERNEL);
3249 		if (!driver->ttys || !driver->termios) {
3250 			err = -ENOMEM;
3251 			goto err_free_all;
3252 		}
3253 	}
3254 
3255 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3256 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3257 				GFP_KERNEL);
3258 		if (!driver->ports) {
3259 			err = -ENOMEM;
3260 			goto err_free_all;
3261 		}
3262 		cdevs = lines;
3263 	}
3264 
3265 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3266 	if (!driver->cdevs) {
3267 		err = -ENOMEM;
3268 		goto err_free_all;
3269 	}
3270 
3271 	return driver;
3272 err_free_all:
3273 	kfree(driver->ports);
3274 	kfree(driver->ttys);
3275 	kfree(driver->termios);
3276 	kfree(driver);
3277 	return ERR_PTR(err);
3278 }
3279 EXPORT_SYMBOL(__tty_alloc_driver);
3280 
3281 static void destruct_tty_driver(struct kref *kref)
3282 {
3283 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3284 	int i;
3285 	struct ktermios *tp;
3286 
3287 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3288 		/*
3289 		 * Free the termios and termios_locked structures because
3290 		 * we don't want to get memory leaks when modular tty
3291 		 * drivers are removed from the kernel.
3292 		 */
3293 		for (i = 0; i < driver->num; i++) {
3294 			tp = driver->termios[i];
3295 			if (tp) {
3296 				driver->termios[i] = NULL;
3297 				kfree(tp);
3298 			}
3299 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3300 				tty_unregister_device(driver, i);
3301 		}
3302 		proc_tty_unregister_driver(driver);
3303 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3304 			cdev_del(&driver->cdevs[0]);
3305 	}
3306 	kfree(driver->cdevs);
3307 	kfree(driver->ports);
3308 	kfree(driver->termios);
3309 	kfree(driver->ttys);
3310 	kfree(driver);
3311 }
3312 
3313 void tty_driver_kref_put(struct tty_driver *driver)
3314 {
3315 	kref_put(&driver->kref, destruct_tty_driver);
3316 }
3317 EXPORT_SYMBOL(tty_driver_kref_put);
3318 
3319 void tty_set_operations(struct tty_driver *driver,
3320 			const struct tty_operations *op)
3321 {
3322 	driver->ops = op;
3323 };
3324 EXPORT_SYMBOL(tty_set_operations);
3325 
3326 void put_tty_driver(struct tty_driver *d)
3327 {
3328 	tty_driver_kref_put(d);
3329 }
3330 EXPORT_SYMBOL(put_tty_driver);
3331 
3332 /*
3333  * Called by a tty driver to register itself.
3334  */
3335 int tty_register_driver(struct tty_driver *driver)
3336 {
3337 	int error;
3338 	int i;
3339 	dev_t dev;
3340 	struct device *d;
3341 
3342 	if (!driver->major) {
3343 		error = alloc_chrdev_region(&dev, driver->minor_start,
3344 						driver->num, driver->name);
3345 		if (!error) {
3346 			driver->major = MAJOR(dev);
3347 			driver->minor_start = MINOR(dev);
3348 		}
3349 	} else {
3350 		dev = MKDEV(driver->major, driver->minor_start);
3351 		error = register_chrdev_region(dev, driver->num, driver->name);
3352 	}
3353 	if (error < 0)
3354 		goto err;
3355 
3356 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3357 		error = tty_cdev_add(driver, dev, 0, driver->num);
3358 		if (error)
3359 			goto err_unreg_char;
3360 	}
3361 
3362 	mutex_lock(&tty_mutex);
3363 	list_add(&driver->tty_drivers, &tty_drivers);
3364 	mutex_unlock(&tty_mutex);
3365 
3366 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3367 		for (i = 0; i < driver->num; i++) {
3368 			d = tty_register_device(driver, i, NULL);
3369 			if (IS_ERR(d)) {
3370 				error = PTR_ERR(d);
3371 				goto err_unreg_devs;
3372 			}
3373 		}
3374 	}
3375 	proc_tty_register_driver(driver);
3376 	driver->flags |= TTY_DRIVER_INSTALLED;
3377 	return 0;
3378 
3379 err_unreg_devs:
3380 	for (i--; i >= 0; i--)
3381 		tty_unregister_device(driver, i);
3382 
3383 	mutex_lock(&tty_mutex);
3384 	list_del(&driver->tty_drivers);
3385 	mutex_unlock(&tty_mutex);
3386 
3387 err_unreg_char:
3388 	unregister_chrdev_region(dev, driver->num);
3389 err:
3390 	return error;
3391 }
3392 EXPORT_SYMBOL(tty_register_driver);
3393 
3394 /*
3395  * Called by a tty driver to unregister itself.
3396  */
3397 int tty_unregister_driver(struct tty_driver *driver)
3398 {
3399 #if 0
3400 	/* FIXME */
3401 	if (driver->refcount)
3402 		return -EBUSY;
3403 #endif
3404 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3405 				driver->num);
3406 	mutex_lock(&tty_mutex);
3407 	list_del(&driver->tty_drivers);
3408 	mutex_unlock(&tty_mutex);
3409 	return 0;
3410 }
3411 
3412 EXPORT_SYMBOL(tty_unregister_driver);
3413 
3414 dev_t tty_devnum(struct tty_struct *tty)
3415 {
3416 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3417 }
3418 EXPORT_SYMBOL(tty_devnum);
3419 
3420 void proc_clear_tty(struct task_struct *p)
3421 {
3422 	unsigned long flags;
3423 	struct tty_struct *tty;
3424 	spin_lock_irqsave(&p->sighand->siglock, flags);
3425 	tty = p->signal->tty;
3426 	p->signal->tty = NULL;
3427 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3428 	tty_kref_put(tty);
3429 }
3430 
3431 /* Called under the sighand lock */
3432 
3433 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3434 {
3435 	if (tty) {
3436 		unsigned long flags;
3437 		/* We should not have a session or pgrp to put here but.... */
3438 		spin_lock_irqsave(&tty->ctrl_lock, flags);
3439 		put_pid(tty->session);
3440 		put_pid(tty->pgrp);
3441 		tty->pgrp = get_pid(task_pgrp(tsk));
3442 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3443 		tty->session = get_pid(task_session(tsk));
3444 		if (tsk->signal->tty) {
3445 			printk(KERN_DEBUG "tty not NULL!!\n");
3446 			tty_kref_put(tsk->signal->tty);
3447 		}
3448 	}
3449 	put_pid(tsk->signal->tty_old_pgrp);
3450 	tsk->signal->tty = tty_kref_get(tty);
3451 	tsk->signal->tty_old_pgrp = NULL;
3452 }
3453 
3454 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3455 {
3456 	spin_lock_irq(&tsk->sighand->siglock);
3457 	__proc_set_tty(tsk, tty);
3458 	spin_unlock_irq(&tsk->sighand->siglock);
3459 }
3460 
3461 struct tty_struct *get_current_tty(void)
3462 {
3463 	struct tty_struct *tty;
3464 	unsigned long flags;
3465 
3466 	spin_lock_irqsave(&current->sighand->siglock, flags);
3467 	tty = tty_kref_get(current->signal->tty);
3468 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3469 	return tty;
3470 }
3471 EXPORT_SYMBOL_GPL(get_current_tty);
3472 
3473 void tty_default_fops(struct file_operations *fops)
3474 {
3475 	*fops = tty_fops;
3476 }
3477 
3478 /*
3479  * Initialize the console device. This is called *early*, so
3480  * we can't necessarily depend on lots of kernel help here.
3481  * Just do some early initializations, and do the complex setup
3482  * later.
3483  */
3484 void __init console_init(void)
3485 {
3486 	initcall_t *call;
3487 
3488 	/* Setup the default TTY line discipline. */
3489 	tty_ldisc_begin();
3490 
3491 	/*
3492 	 * set up the console device so that later boot sequences can
3493 	 * inform about problems etc..
3494 	 */
3495 	call = __con_initcall_start;
3496 	while (call < __con_initcall_end) {
3497 		(*call)();
3498 		call++;
3499 	}
3500 }
3501 
3502 static char *tty_devnode(struct device *dev, umode_t *mode)
3503 {
3504 	if (!mode)
3505 		return NULL;
3506 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3507 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3508 		*mode = 0666;
3509 	return NULL;
3510 }
3511 
3512 static int __init tty_class_init(void)
3513 {
3514 	tty_class = class_create(THIS_MODULE, "tty");
3515 	if (IS_ERR(tty_class))
3516 		return PTR_ERR(tty_class);
3517 	tty_class->devnode = tty_devnode;
3518 	return 0;
3519 }
3520 
3521 postcore_initcall(tty_class_init);
3522 
3523 /* 3/2004 jmc: why do these devices exist? */
3524 static struct cdev tty_cdev, console_cdev;
3525 
3526 static ssize_t show_cons_active(struct device *dev,
3527 				struct device_attribute *attr, char *buf)
3528 {
3529 	struct console *cs[16];
3530 	int i = 0;
3531 	struct console *c;
3532 	ssize_t count = 0;
3533 
3534 	console_lock();
3535 	for_each_console(c) {
3536 		if (!c->device)
3537 			continue;
3538 		if (!c->write)
3539 			continue;
3540 		if ((c->flags & CON_ENABLED) == 0)
3541 			continue;
3542 		cs[i++] = c;
3543 		if (i >= ARRAY_SIZE(cs))
3544 			break;
3545 	}
3546 	while (i--)
3547 		count += sprintf(buf + count, "%s%d%c",
3548 				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3549 	console_unlock();
3550 
3551 	return count;
3552 }
3553 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3554 
3555 static struct device *consdev;
3556 
3557 void console_sysfs_notify(void)
3558 {
3559 	if (consdev)
3560 		sysfs_notify(&consdev->kobj, NULL, "active");
3561 }
3562 
3563 /*
3564  * Ok, now we can initialize the rest of the tty devices and can count
3565  * on memory allocations, interrupts etc..
3566  */
3567 int __init tty_init(void)
3568 {
3569 	cdev_init(&tty_cdev, &tty_fops);
3570 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3571 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3572 		panic("Couldn't register /dev/tty driver\n");
3573 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3574 
3575 	cdev_init(&console_cdev, &console_fops);
3576 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3577 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3578 		panic("Couldn't register /dev/console driver\n");
3579 	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3580 			      "console");
3581 	if (IS_ERR(consdev))
3582 		consdev = NULL;
3583 	else
3584 		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3585 
3586 #ifdef CONFIG_VT
3587 	vty_init(&console_fops);
3588 #endif
3589 	return 0;
3590 }
3591 
3592