1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 */ 4 5 /* 6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 7 * or rs-channels. It also implements echoing, cooked mode etc. 8 * 9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 10 * 11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 12 * tty_struct and tty_queue structures. Previously there was an array 13 * of 256 tty_struct's which was statically allocated, and the 14 * tty_queue structures were allocated at boot time. Both are now 15 * dynamically allocated only when the tty is open. 16 * 17 * Also restructured routines so that there is more of a separation 18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 19 * the low-level tty routines (serial.c, pty.c, console.c). This 20 * makes for cleaner and more compact code. -TYT, 9/17/92 21 * 22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 23 * which can be dynamically activated and de-activated by the line 24 * discipline handling modules (like SLIP). 25 * 26 * NOTE: pay no attention to the line discipline code (yet); its 27 * interface is still subject to change in this version... 28 * -- TYT, 1/31/92 29 * 30 * Added functionality to the OPOST tty handling. No delays, but all 31 * other bits should be there. 32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 33 * 34 * Rewrote canonical mode and added more termios flags. 35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 36 * 37 * Reorganized FASYNC support so mouse code can share it. 38 * -- ctm@ardi.com, 9Sep95 39 * 40 * New TIOCLINUX variants added. 41 * -- mj@k332.feld.cvut.cz, 19-Nov-95 42 * 43 * Restrict vt switching via ioctl() 44 * -- grif@cs.ucr.edu, 5-Dec-95 45 * 46 * Move console and virtual terminal code to more appropriate files, 47 * implement CONFIG_VT and generalize console device interface. 48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 49 * 50 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 51 * -- Bill Hawes <whawes@star.net>, June 97 52 * 53 * Added devfs support. 54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 55 * 56 * Added support for a Unix98-style ptmx device. 57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 58 * 59 * Reduced memory usage for older ARM systems 60 * -- Russell King <rmk@arm.linux.org.uk> 61 * 62 * Move do_SAK() into process context. Less stack use in devfs functions. 63 * alloc_tty_struct() always uses kmalloc() 64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 65 */ 66 67 #include <linux/types.h> 68 #include <linux/major.h> 69 #include <linux/errno.h> 70 #include <linux/signal.h> 71 #include <linux/fcntl.h> 72 #include <linux/sched.h> 73 #include <linux/interrupt.h> 74 #include <linux/tty.h> 75 #include <linux/tty_driver.h> 76 #include <linux/tty_flip.h> 77 #include <linux/devpts_fs.h> 78 #include <linux/file.h> 79 #include <linux/fdtable.h> 80 #include <linux/console.h> 81 #include <linux/timer.h> 82 #include <linux/ctype.h> 83 #include <linux/kd.h> 84 #include <linux/mm.h> 85 #include <linux/string.h> 86 #include <linux/slab.h> 87 #include <linux/poll.h> 88 #include <linux/proc_fs.h> 89 #include <linux/init.h> 90 #include <linux/module.h> 91 #include <linux/device.h> 92 #include <linux/wait.h> 93 #include <linux/bitops.h> 94 #include <linux/delay.h> 95 #include <linux/seq_file.h> 96 #include <linux/serial.h> 97 #include <linux/ratelimit.h> 98 99 #include <linux/uaccess.h> 100 101 #include <linux/kbd_kern.h> 102 #include <linux/vt_kern.h> 103 #include <linux/selection.h> 104 105 #include <linux/kmod.h> 106 #include <linux/nsproxy.h> 107 108 #undef TTY_DEBUG_HANGUP 109 #ifdef TTY_DEBUG_HANGUP 110 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args) 111 #else 112 # define tty_debug_hangup(tty, f, args...) do { } while (0) 113 #endif 114 115 #define TTY_PARANOIA_CHECK 1 116 #define CHECK_TTY_COUNT 1 117 118 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 119 .c_iflag = ICRNL | IXON, 120 .c_oflag = OPOST | ONLCR, 121 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 122 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 123 ECHOCTL | ECHOKE | IEXTEN, 124 .c_cc = INIT_C_CC, 125 .c_ispeed = 38400, 126 .c_ospeed = 38400 127 }; 128 129 EXPORT_SYMBOL(tty_std_termios); 130 131 /* This list gets poked at by procfs and various bits of boot up code. This 132 could do with some rationalisation such as pulling the tty proc function 133 into this file */ 134 135 LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 136 137 /* Mutex to protect creating and releasing a tty. This is shared with 138 vt.c for deeply disgusting hack reasons */ 139 DEFINE_MUTEX(tty_mutex); 140 EXPORT_SYMBOL(tty_mutex); 141 142 /* Spinlock to protect the tty->tty_files list */ 143 DEFINE_SPINLOCK(tty_files_lock); 144 145 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *); 146 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *); 147 ssize_t redirected_tty_write(struct file *, const char __user *, 148 size_t, loff_t *); 149 static unsigned int tty_poll(struct file *, poll_table *); 150 static int tty_open(struct inode *, struct file *); 151 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 152 #ifdef CONFIG_COMPAT 153 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 154 unsigned long arg); 155 #else 156 #define tty_compat_ioctl NULL 157 #endif 158 static int __tty_fasync(int fd, struct file *filp, int on); 159 static int tty_fasync(int fd, struct file *filp, int on); 160 static void release_tty(struct tty_struct *tty, int idx); 161 162 /** 163 * free_tty_struct - free a disused tty 164 * @tty: tty struct to free 165 * 166 * Free the write buffers, tty queue and tty memory itself. 167 * 168 * Locking: none. Must be called after tty is definitely unused 169 */ 170 171 void free_tty_struct(struct tty_struct *tty) 172 { 173 if (!tty) 174 return; 175 put_device(tty->dev); 176 kfree(tty->write_buf); 177 tty->magic = 0xDEADDEAD; 178 kfree(tty); 179 } 180 181 static inline struct tty_struct *file_tty(struct file *file) 182 { 183 return ((struct tty_file_private *)file->private_data)->tty; 184 } 185 186 int tty_alloc_file(struct file *file) 187 { 188 struct tty_file_private *priv; 189 190 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 191 if (!priv) 192 return -ENOMEM; 193 194 file->private_data = priv; 195 196 return 0; 197 } 198 199 /* Associate a new file with the tty structure */ 200 void tty_add_file(struct tty_struct *tty, struct file *file) 201 { 202 struct tty_file_private *priv = file->private_data; 203 204 priv->tty = tty; 205 priv->file = file; 206 207 spin_lock(&tty_files_lock); 208 list_add(&priv->list, &tty->tty_files); 209 spin_unlock(&tty_files_lock); 210 } 211 212 /** 213 * tty_free_file - free file->private_data 214 * 215 * This shall be used only for fail path handling when tty_add_file was not 216 * called yet. 217 */ 218 void tty_free_file(struct file *file) 219 { 220 struct tty_file_private *priv = file->private_data; 221 222 file->private_data = NULL; 223 kfree(priv); 224 } 225 226 /* Delete file from its tty */ 227 static void tty_del_file(struct file *file) 228 { 229 struct tty_file_private *priv = file->private_data; 230 231 spin_lock(&tty_files_lock); 232 list_del(&priv->list); 233 spin_unlock(&tty_files_lock); 234 tty_free_file(file); 235 } 236 237 238 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base) 239 240 /** 241 * tty_name - return tty naming 242 * @tty: tty structure 243 * 244 * Convert a tty structure into a name. The name reflects the kernel 245 * naming policy and if udev is in use may not reflect user space 246 * 247 * Locking: none 248 */ 249 250 const char *tty_name(const struct tty_struct *tty) 251 { 252 if (!tty) /* Hmm. NULL pointer. That's fun. */ 253 return "NULL tty"; 254 return tty->name; 255 } 256 257 EXPORT_SYMBOL(tty_name); 258 259 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 260 const char *routine) 261 { 262 #ifdef TTY_PARANOIA_CHECK 263 if (!tty) { 264 printk(KERN_WARNING 265 "null TTY for (%d:%d) in %s\n", 266 imajor(inode), iminor(inode), routine); 267 return 1; 268 } 269 if (tty->magic != TTY_MAGIC) { 270 printk(KERN_WARNING 271 "bad magic number for tty struct (%d:%d) in %s\n", 272 imajor(inode), iminor(inode), routine); 273 return 1; 274 } 275 #endif 276 return 0; 277 } 278 279 /* Caller must hold tty_lock */ 280 static int check_tty_count(struct tty_struct *tty, const char *routine) 281 { 282 #ifdef CHECK_TTY_COUNT 283 struct list_head *p; 284 int count = 0; 285 286 spin_lock(&tty_files_lock); 287 list_for_each(p, &tty->tty_files) { 288 count++; 289 } 290 spin_unlock(&tty_files_lock); 291 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 292 tty->driver->subtype == PTY_TYPE_SLAVE && 293 tty->link && tty->link->count) 294 count++; 295 if (tty->count != count) { 296 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) " 297 "!= #fd's(%d) in %s\n", 298 tty->name, tty->count, count, routine); 299 return count; 300 } 301 #endif 302 return 0; 303 } 304 305 /** 306 * get_tty_driver - find device of a tty 307 * @dev_t: device identifier 308 * @index: returns the index of the tty 309 * 310 * This routine returns a tty driver structure, given a device number 311 * and also passes back the index number. 312 * 313 * Locking: caller must hold tty_mutex 314 */ 315 316 static struct tty_driver *get_tty_driver(dev_t device, int *index) 317 { 318 struct tty_driver *p; 319 320 list_for_each_entry(p, &tty_drivers, tty_drivers) { 321 dev_t base = MKDEV(p->major, p->minor_start); 322 if (device < base || device >= base + p->num) 323 continue; 324 *index = device - base; 325 return tty_driver_kref_get(p); 326 } 327 return NULL; 328 } 329 330 #ifdef CONFIG_CONSOLE_POLL 331 332 /** 333 * tty_find_polling_driver - find device of a polled tty 334 * @name: name string to match 335 * @line: pointer to resulting tty line nr 336 * 337 * This routine returns a tty driver structure, given a name 338 * and the condition that the tty driver is capable of polled 339 * operation. 340 */ 341 struct tty_driver *tty_find_polling_driver(char *name, int *line) 342 { 343 struct tty_driver *p, *res = NULL; 344 int tty_line = 0; 345 int len; 346 char *str, *stp; 347 348 for (str = name; *str; str++) 349 if ((*str >= '0' && *str <= '9') || *str == ',') 350 break; 351 if (!*str) 352 return NULL; 353 354 len = str - name; 355 tty_line = simple_strtoul(str, &str, 10); 356 357 mutex_lock(&tty_mutex); 358 /* Search through the tty devices to look for a match */ 359 list_for_each_entry(p, &tty_drivers, tty_drivers) { 360 if (strncmp(name, p->name, len) != 0) 361 continue; 362 stp = str; 363 if (*stp == ',') 364 stp++; 365 if (*stp == '\0') 366 stp = NULL; 367 368 if (tty_line >= 0 && tty_line < p->num && p->ops && 369 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 370 res = tty_driver_kref_get(p); 371 *line = tty_line; 372 break; 373 } 374 } 375 mutex_unlock(&tty_mutex); 376 377 return res; 378 } 379 EXPORT_SYMBOL_GPL(tty_find_polling_driver); 380 #endif 381 382 /** 383 * tty_check_change - check for POSIX terminal changes 384 * @tty: tty to check 385 * 386 * If we try to write to, or set the state of, a terminal and we're 387 * not in the foreground, send a SIGTTOU. If the signal is blocked or 388 * ignored, go ahead and perform the operation. (POSIX 7.2) 389 * 390 * Locking: ctrl_lock 391 */ 392 393 int tty_check_change(struct tty_struct *tty) 394 { 395 unsigned long flags; 396 struct pid *pgrp; 397 int ret = 0; 398 399 if (current->signal->tty != tty) 400 return 0; 401 402 rcu_read_lock(); 403 pgrp = task_pgrp(current); 404 405 spin_lock_irqsave(&tty->ctrl_lock, flags); 406 407 if (!tty->pgrp) { 408 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n"); 409 goto out_unlock; 410 } 411 if (pgrp == tty->pgrp) 412 goto out_unlock; 413 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 414 415 if (is_ignored(SIGTTOU)) 416 goto out_rcuunlock; 417 if (is_current_pgrp_orphaned()) { 418 ret = -EIO; 419 goto out_rcuunlock; 420 } 421 kill_pgrp(pgrp, SIGTTOU, 1); 422 rcu_read_unlock(); 423 set_thread_flag(TIF_SIGPENDING); 424 ret = -ERESTARTSYS; 425 return ret; 426 out_unlock: 427 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 428 out_rcuunlock: 429 rcu_read_unlock(); 430 return ret; 431 } 432 433 EXPORT_SYMBOL(tty_check_change); 434 435 static ssize_t hung_up_tty_read(struct file *file, char __user *buf, 436 size_t count, loff_t *ppos) 437 { 438 return 0; 439 } 440 441 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf, 442 size_t count, loff_t *ppos) 443 { 444 return -EIO; 445 } 446 447 /* No kernel lock held - none needed ;) */ 448 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait) 449 { 450 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM; 451 } 452 453 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 454 unsigned long arg) 455 { 456 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 457 } 458 459 static long hung_up_tty_compat_ioctl(struct file *file, 460 unsigned int cmd, unsigned long arg) 461 { 462 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 463 } 464 465 static const struct file_operations tty_fops = { 466 .llseek = no_llseek, 467 .read = tty_read, 468 .write = tty_write, 469 .poll = tty_poll, 470 .unlocked_ioctl = tty_ioctl, 471 .compat_ioctl = tty_compat_ioctl, 472 .open = tty_open, 473 .release = tty_release, 474 .fasync = tty_fasync, 475 }; 476 477 static const struct file_operations console_fops = { 478 .llseek = no_llseek, 479 .read = tty_read, 480 .write = redirected_tty_write, 481 .poll = tty_poll, 482 .unlocked_ioctl = tty_ioctl, 483 .compat_ioctl = tty_compat_ioctl, 484 .open = tty_open, 485 .release = tty_release, 486 .fasync = tty_fasync, 487 }; 488 489 static const struct file_operations hung_up_tty_fops = { 490 .llseek = no_llseek, 491 .read = hung_up_tty_read, 492 .write = hung_up_tty_write, 493 .poll = hung_up_tty_poll, 494 .unlocked_ioctl = hung_up_tty_ioctl, 495 .compat_ioctl = hung_up_tty_compat_ioctl, 496 .release = tty_release, 497 }; 498 499 static DEFINE_SPINLOCK(redirect_lock); 500 static struct file *redirect; 501 502 503 void proc_clear_tty(struct task_struct *p) 504 { 505 unsigned long flags; 506 struct tty_struct *tty; 507 spin_lock_irqsave(&p->sighand->siglock, flags); 508 tty = p->signal->tty; 509 p->signal->tty = NULL; 510 spin_unlock_irqrestore(&p->sighand->siglock, flags); 511 tty_kref_put(tty); 512 } 513 514 /** 515 * proc_set_tty - set the controlling terminal 516 * 517 * Only callable by the session leader and only if it does not already have 518 * a controlling terminal. 519 * 520 * Caller must hold: tty_lock() 521 * a readlock on tasklist_lock 522 * sighand lock 523 */ 524 static void __proc_set_tty(struct tty_struct *tty) 525 { 526 unsigned long flags; 527 528 spin_lock_irqsave(&tty->ctrl_lock, flags); 529 /* 530 * The session and fg pgrp references will be non-NULL if 531 * tiocsctty() is stealing the controlling tty 532 */ 533 put_pid(tty->session); 534 put_pid(tty->pgrp); 535 tty->pgrp = get_pid(task_pgrp(current)); 536 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 537 tty->session = get_pid(task_session(current)); 538 if (current->signal->tty) { 539 tty_debug(tty, "current tty %s not NULL!!\n", 540 current->signal->tty->name); 541 tty_kref_put(current->signal->tty); 542 } 543 put_pid(current->signal->tty_old_pgrp); 544 current->signal->tty = tty_kref_get(tty); 545 current->signal->tty_old_pgrp = NULL; 546 } 547 548 static void proc_set_tty(struct tty_struct *tty) 549 { 550 spin_lock_irq(¤t->sighand->siglock); 551 __proc_set_tty(tty); 552 spin_unlock_irq(¤t->sighand->siglock); 553 } 554 555 struct tty_struct *get_current_tty(void) 556 { 557 struct tty_struct *tty; 558 unsigned long flags; 559 560 spin_lock_irqsave(¤t->sighand->siglock, flags); 561 tty = tty_kref_get(current->signal->tty); 562 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 563 return tty; 564 } 565 EXPORT_SYMBOL_GPL(get_current_tty); 566 567 static void session_clear_tty(struct pid *session) 568 { 569 struct task_struct *p; 570 do_each_pid_task(session, PIDTYPE_SID, p) { 571 proc_clear_tty(p); 572 } while_each_pid_task(session, PIDTYPE_SID, p); 573 } 574 575 /** 576 * tty_wakeup - request more data 577 * @tty: terminal 578 * 579 * Internal and external helper for wakeups of tty. This function 580 * informs the line discipline if present that the driver is ready 581 * to receive more output data. 582 */ 583 584 void tty_wakeup(struct tty_struct *tty) 585 { 586 struct tty_ldisc *ld; 587 588 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 589 ld = tty_ldisc_ref(tty); 590 if (ld) { 591 if (ld->ops->write_wakeup) 592 ld->ops->write_wakeup(tty); 593 tty_ldisc_deref(ld); 594 } 595 } 596 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 597 } 598 599 EXPORT_SYMBOL_GPL(tty_wakeup); 600 601 /** 602 * tty_signal_session_leader - sends SIGHUP to session leader 603 * @tty controlling tty 604 * @exit_session if non-zero, signal all foreground group processes 605 * 606 * Send SIGHUP and SIGCONT to the session leader and its process group. 607 * Optionally, signal all processes in the foreground process group. 608 * 609 * Returns the number of processes in the session with this tty 610 * as their controlling terminal. This value is used to drop 611 * tty references for those processes. 612 */ 613 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session) 614 { 615 struct task_struct *p; 616 int refs = 0; 617 struct pid *tty_pgrp = NULL; 618 619 read_lock(&tasklist_lock); 620 if (tty->session) { 621 do_each_pid_task(tty->session, PIDTYPE_SID, p) { 622 spin_lock_irq(&p->sighand->siglock); 623 if (p->signal->tty == tty) { 624 p->signal->tty = NULL; 625 /* We defer the dereferences outside fo 626 the tasklist lock */ 627 refs++; 628 } 629 if (!p->signal->leader) { 630 spin_unlock_irq(&p->sighand->siglock); 631 continue; 632 } 633 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p); 634 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p); 635 put_pid(p->signal->tty_old_pgrp); /* A noop */ 636 spin_lock(&tty->ctrl_lock); 637 tty_pgrp = get_pid(tty->pgrp); 638 if (tty->pgrp) 639 p->signal->tty_old_pgrp = get_pid(tty->pgrp); 640 spin_unlock(&tty->ctrl_lock); 641 spin_unlock_irq(&p->sighand->siglock); 642 } while_each_pid_task(tty->session, PIDTYPE_SID, p); 643 } 644 read_unlock(&tasklist_lock); 645 646 if (tty_pgrp) { 647 if (exit_session) 648 kill_pgrp(tty_pgrp, SIGHUP, exit_session); 649 put_pid(tty_pgrp); 650 } 651 652 return refs; 653 } 654 655 /** 656 * __tty_hangup - actual handler for hangup events 657 * @work: tty device 658 * 659 * This can be called by a "kworker" kernel thread. That is process 660 * synchronous but doesn't hold any locks, so we need to make sure we 661 * have the appropriate locks for what we're doing. 662 * 663 * The hangup event clears any pending redirections onto the hung up 664 * device. It ensures future writes will error and it does the needed 665 * line discipline hangup and signal delivery. The tty object itself 666 * remains intact. 667 * 668 * Locking: 669 * BTM 670 * redirect lock for undoing redirection 671 * file list lock for manipulating list of ttys 672 * tty_ldiscs_lock from called functions 673 * termios_rwsem resetting termios data 674 * tasklist_lock to walk task list for hangup event 675 * ->siglock to protect ->signal/->sighand 676 */ 677 static void __tty_hangup(struct tty_struct *tty, int exit_session) 678 { 679 struct file *cons_filp = NULL; 680 struct file *filp, *f = NULL; 681 struct tty_file_private *priv; 682 int closecount = 0, n; 683 int refs; 684 685 if (!tty) 686 return; 687 688 689 spin_lock(&redirect_lock); 690 if (redirect && file_tty(redirect) == tty) { 691 f = redirect; 692 redirect = NULL; 693 } 694 spin_unlock(&redirect_lock); 695 696 tty_lock(tty); 697 698 if (test_bit(TTY_HUPPED, &tty->flags)) { 699 tty_unlock(tty); 700 return; 701 } 702 703 /* inuse_filps is protected by the single tty lock, 704 this really needs to change if we want to flush the 705 workqueue with the lock held */ 706 check_tty_count(tty, "tty_hangup"); 707 708 spin_lock(&tty_files_lock); 709 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 710 list_for_each_entry(priv, &tty->tty_files, list) { 711 filp = priv->file; 712 if (filp->f_op->write == redirected_tty_write) 713 cons_filp = filp; 714 if (filp->f_op->write != tty_write) 715 continue; 716 closecount++; 717 __tty_fasync(-1, filp, 0); /* can't block */ 718 filp->f_op = &hung_up_tty_fops; 719 } 720 spin_unlock(&tty_files_lock); 721 722 refs = tty_signal_session_leader(tty, exit_session); 723 /* Account for the p->signal references we killed */ 724 while (refs--) 725 tty_kref_put(tty); 726 727 tty_ldisc_hangup(tty); 728 729 spin_lock_irq(&tty->ctrl_lock); 730 clear_bit(TTY_THROTTLED, &tty->flags); 731 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 732 put_pid(tty->session); 733 put_pid(tty->pgrp); 734 tty->session = NULL; 735 tty->pgrp = NULL; 736 tty->ctrl_status = 0; 737 spin_unlock_irq(&tty->ctrl_lock); 738 739 /* 740 * If one of the devices matches a console pointer, we 741 * cannot just call hangup() because that will cause 742 * tty->count and state->count to go out of sync. 743 * So we just call close() the right number of times. 744 */ 745 if (cons_filp) { 746 if (tty->ops->close) 747 for (n = 0; n < closecount; n++) 748 tty->ops->close(tty, cons_filp); 749 } else if (tty->ops->hangup) 750 tty->ops->hangup(tty); 751 /* 752 * We don't want to have driver/ldisc interactions beyond 753 * the ones we did here. The driver layer expects no 754 * calls after ->hangup() from the ldisc side. However we 755 * can't yet guarantee all that. 756 */ 757 set_bit(TTY_HUPPED, &tty->flags); 758 tty_unlock(tty); 759 760 if (f) 761 fput(f); 762 } 763 764 static void do_tty_hangup(struct work_struct *work) 765 { 766 struct tty_struct *tty = 767 container_of(work, struct tty_struct, hangup_work); 768 769 __tty_hangup(tty, 0); 770 } 771 772 /** 773 * tty_hangup - trigger a hangup event 774 * @tty: tty to hangup 775 * 776 * A carrier loss (virtual or otherwise) has occurred on this like 777 * schedule a hangup sequence to run after this event. 778 */ 779 780 void tty_hangup(struct tty_struct *tty) 781 { 782 tty_debug_hangup(tty, "\n"); 783 schedule_work(&tty->hangup_work); 784 } 785 786 EXPORT_SYMBOL(tty_hangup); 787 788 /** 789 * tty_vhangup - process vhangup 790 * @tty: tty to hangup 791 * 792 * The user has asked via system call for the terminal to be hung up. 793 * We do this synchronously so that when the syscall returns the process 794 * is complete. That guarantee is necessary for security reasons. 795 */ 796 797 void tty_vhangup(struct tty_struct *tty) 798 { 799 tty_debug_hangup(tty, "\n"); 800 __tty_hangup(tty, 0); 801 } 802 803 EXPORT_SYMBOL(tty_vhangup); 804 805 806 /** 807 * tty_vhangup_self - process vhangup for own ctty 808 * 809 * Perform a vhangup on the current controlling tty 810 */ 811 812 void tty_vhangup_self(void) 813 { 814 struct tty_struct *tty; 815 816 tty = get_current_tty(); 817 if (tty) { 818 tty_vhangup(tty); 819 tty_kref_put(tty); 820 } 821 } 822 823 /** 824 * tty_vhangup_session - hangup session leader exit 825 * @tty: tty to hangup 826 * 827 * The session leader is exiting and hanging up its controlling terminal. 828 * Every process in the foreground process group is signalled SIGHUP. 829 * 830 * We do this synchronously so that when the syscall returns the process 831 * is complete. That guarantee is necessary for security reasons. 832 */ 833 834 static void tty_vhangup_session(struct tty_struct *tty) 835 { 836 tty_debug_hangup(tty, "\n"); 837 __tty_hangup(tty, 1); 838 } 839 840 /** 841 * tty_hung_up_p - was tty hung up 842 * @filp: file pointer of tty 843 * 844 * Return true if the tty has been subject to a vhangup or a carrier 845 * loss 846 */ 847 848 int tty_hung_up_p(struct file *filp) 849 { 850 return (filp->f_op == &hung_up_tty_fops); 851 } 852 853 EXPORT_SYMBOL(tty_hung_up_p); 854 855 /** 856 * disassociate_ctty - disconnect controlling tty 857 * @on_exit: true if exiting so need to "hang up" the session 858 * 859 * This function is typically called only by the session leader, when 860 * it wants to disassociate itself from its controlling tty. 861 * 862 * It performs the following functions: 863 * (1) Sends a SIGHUP and SIGCONT to the foreground process group 864 * (2) Clears the tty from being controlling the session 865 * (3) Clears the controlling tty for all processes in the 866 * session group. 867 * 868 * The argument on_exit is set to 1 if called when a process is 869 * exiting; it is 0 if called by the ioctl TIOCNOTTY. 870 * 871 * Locking: 872 * BTM is taken for hysterical raisins, and held when 873 * called from no_tty(). 874 * tty_mutex is taken to protect tty 875 * ->siglock is taken to protect ->signal/->sighand 876 * tasklist_lock is taken to walk process list for sessions 877 * ->siglock is taken to protect ->signal/->sighand 878 */ 879 880 void disassociate_ctty(int on_exit) 881 { 882 struct tty_struct *tty; 883 884 if (!current->signal->leader) 885 return; 886 887 tty = get_current_tty(); 888 if (tty) { 889 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) { 890 tty_vhangup_session(tty); 891 } else { 892 struct pid *tty_pgrp = tty_get_pgrp(tty); 893 if (tty_pgrp) { 894 kill_pgrp(tty_pgrp, SIGHUP, on_exit); 895 if (!on_exit) 896 kill_pgrp(tty_pgrp, SIGCONT, on_exit); 897 put_pid(tty_pgrp); 898 } 899 } 900 tty_kref_put(tty); 901 902 } else if (on_exit) { 903 struct pid *old_pgrp; 904 spin_lock_irq(¤t->sighand->siglock); 905 old_pgrp = current->signal->tty_old_pgrp; 906 current->signal->tty_old_pgrp = NULL; 907 spin_unlock_irq(¤t->sighand->siglock); 908 if (old_pgrp) { 909 kill_pgrp(old_pgrp, SIGHUP, on_exit); 910 kill_pgrp(old_pgrp, SIGCONT, on_exit); 911 put_pid(old_pgrp); 912 } 913 return; 914 } 915 916 spin_lock_irq(¤t->sighand->siglock); 917 put_pid(current->signal->tty_old_pgrp); 918 current->signal->tty_old_pgrp = NULL; 919 920 tty = tty_kref_get(current->signal->tty); 921 if (tty) { 922 unsigned long flags; 923 spin_lock_irqsave(&tty->ctrl_lock, flags); 924 put_pid(tty->session); 925 put_pid(tty->pgrp); 926 tty->session = NULL; 927 tty->pgrp = NULL; 928 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 929 tty_kref_put(tty); 930 } else 931 tty_debug_hangup(tty, "no current tty\n"); 932 933 spin_unlock_irq(¤t->sighand->siglock); 934 /* Now clear signal->tty under the lock */ 935 read_lock(&tasklist_lock); 936 session_clear_tty(task_session(current)); 937 read_unlock(&tasklist_lock); 938 } 939 940 /** 941 * 942 * no_tty - Ensure the current process does not have a controlling tty 943 */ 944 void no_tty(void) 945 { 946 /* FIXME: Review locking here. The tty_lock never covered any race 947 between a new association and proc_clear_tty but possible we need 948 to protect against this anyway */ 949 struct task_struct *tsk = current; 950 disassociate_ctty(0); 951 proc_clear_tty(tsk); 952 } 953 954 955 /** 956 * stop_tty - propagate flow control 957 * @tty: tty to stop 958 * 959 * Perform flow control to the driver. May be called 960 * on an already stopped device and will not re-call the driver 961 * method. 962 * 963 * This functionality is used by both the line disciplines for 964 * halting incoming flow and by the driver. It may therefore be 965 * called from any context, may be under the tty atomic_write_lock 966 * but not always. 967 * 968 * Locking: 969 * flow_lock 970 */ 971 972 void __stop_tty(struct tty_struct *tty) 973 { 974 if (tty->stopped) 975 return; 976 tty->stopped = 1; 977 if (tty->ops->stop) 978 tty->ops->stop(tty); 979 } 980 981 void stop_tty(struct tty_struct *tty) 982 { 983 unsigned long flags; 984 985 spin_lock_irqsave(&tty->flow_lock, flags); 986 __stop_tty(tty); 987 spin_unlock_irqrestore(&tty->flow_lock, flags); 988 } 989 EXPORT_SYMBOL(stop_tty); 990 991 /** 992 * start_tty - propagate flow control 993 * @tty: tty to start 994 * 995 * Start a tty that has been stopped if at all possible. If this 996 * tty was previous stopped and is now being started, the driver 997 * start method is invoked and the line discipline woken. 998 * 999 * Locking: 1000 * flow_lock 1001 */ 1002 1003 void __start_tty(struct tty_struct *tty) 1004 { 1005 if (!tty->stopped || tty->flow_stopped) 1006 return; 1007 tty->stopped = 0; 1008 if (tty->ops->start) 1009 tty->ops->start(tty); 1010 tty_wakeup(tty); 1011 } 1012 1013 void start_tty(struct tty_struct *tty) 1014 { 1015 unsigned long flags; 1016 1017 spin_lock_irqsave(&tty->flow_lock, flags); 1018 __start_tty(tty); 1019 spin_unlock_irqrestore(&tty->flow_lock, flags); 1020 } 1021 EXPORT_SYMBOL(start_tty); 1022 1023 static void tty_update_time(struct timespec *time) 1024 { 1025 unsigned long sec = get_seconds(); 1026 1027 /* 1028 * We only care if the two values differ in anything other than the 1029 * lower three bits (i.e every 8 seconds). If so, then we can update 1030 * the time of the tty device, otherwise it could be construded as a 1031 * security leak to let userspace know the exact timing of the tty. 1032 */ 1033 if ((sec ^ time->tv_sec) & ~7) 1034 time->tv_sec = sec; 1035 } 1036 1037 /** 1038 * tty_read - read method for tty device files 1039 * @file: pointer to tty file 1040 * @buf: user buffer 1041 * @count: size of user buffer 1042 * @ppos: unused 1043 * 1044 * Perform the read system call function on this terminal device. Checks 1045 * for hung up devices before calling the line discipline method. 1046 * 1047 * Locking: 1048 * Locks the line discipline internally while needed. Multiple 1049 * read calls may be outstanding in parallel. 1050 */ 1051 1052 static ssize_t tty_read(struct file *file, char __user *buf, size_t count, 1053 loff_t *ppos) 1054 { 1055 int i; 1056 struct inode *inode = file_inode(file); 1057 struct tty_struct *tty = file_tty(file); 1058 struct tty_ldisc *ld; 1059 1060 if (tty_paranoia_check(tty, inode, "tty_read")) 1061 return -EIO; 1062 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags))) 1063 return -EIO; 1064 1065 /* We want to wait for the line discipline to sort out in this 1066 situation */ 1067 ld = tty_ldisc_ref_wait(tty); 1068 if (ld->ops->read) 1069 i = ld->ops->read(tty, file, buf, count); 1070 else 1071 i = -EIO; 1072 tty_ldisc_deref(ld); 1073 1074 if (i > 0) 1075 tty_update_time(&inode->i_atime); 1076 1077 return i; 1078 } 1079 1080 static void tty_write_unlock(struct tty_struct *tty) 1081 { 1082 mutex_unlock(&tty->atomic_write_lock); 1083 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 1084 } 1085 1086 static int tty_write_lock(struct tty_struct *tty, int ndelay) 1087 { 1088 if (!mutex_trylock(&tty->atomic_write_lock)) { 1089 if (ndelay) 1090 return -EAGAIN; 1091 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 1092 return -ERESTARTSYS; 1093 } 1094 return 0; 1095 } 1096 1097 /* 1098 * Split writes up in sane blocksizes to avoid 1099 * denial-of-service type attacks 1100 */ 1101 static inline ssize_t do_tty_write( 1102 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 1103 struct tty_struct *tty, 1104 struct file *file, 1105 const char __user *buf, 1106 size_t count) 1107 { 1108 ssize_t ret, written = 0; 1109 unsigned int chunk; 1110 1111 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 1112 if (ret < 0) 1113 return ret; 1114 1115 /* 1116 * We chunk up writes into a temporary buffer. This 1117 * simplifies low-level drivers immensely, since they 1118 * don't have locking issues and user mode accesses. 1119 * 1120 * But if TTY_NO_WRITE_SPLIT is set, we should use a 1121 * big chunk-size.. 1122 * 1123 * The default chunk-size is 2kB, because the NTTY 1124 * layer has problems with bigger chunks. It will 1125 * claim to be able to handle more characters than 1126 * it actually does. 1127 * 1128 * FIXME: This can probably go away now except that 64K chunks 1129 * are too likely to fail unless switched to vmalloc... 1130 */ 1131 chunk = 2048; 1132 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 1133 chunk = 65536; 1134 if (count < chunk) 1135 chunk = count; 1136 1137 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 1138 if (tty->write_cnt < chunk) { 1139 unsigned char *buf_chunk; 1140 1141 if (chunk < 1024) 1142 chunk = 1024; 1143 1144 buf_chunk = kmalloc(chunk, GFP_KERNEL); 1145 if (!buf_chunk) { 1146 ret = -ENOMEM; 1147 goto out; 1148 } 1149 kfree(tty->write_buf); 1150 tty->write_cnt = chunk; 1151 tty->write_buf = buf_chunk; 1152 } 1153 1154 /* Do the write .. */ 1155 for (;;) { 1156 size_t size = count; 1157 if (size > chunk) 1158 size = chunk; 1159 ret = -EFAULT; 1160 if (copy_from_user(tty->write_buf, buf, size)) 1161 break; 1162 ret = write(tty, file, tty->write_buf, size); 1163 if (ret <= 0) 1164 break; 1165 written += ret; 1166 buf += ret; 1167 count -= ret; 1168 if (!count) 1169 break; 1170 ret = -ERESTARTSYS; 1171 if (signal_pending(current)) 1172 break; 1173 cond_resched(); 1174 } 1175 if (written) { 1176 tty_update_time(&file_inode(file)->i_mtime); 1177 ret = written; 1178 } 1179 out: 1180 tty_write_unlock(tty); 1181 return ret; 1182 } 1183 1184 /** 1185 * tty_write_message - write a message to a certain tty, not just the console. 1186 * @tty: the destination tty_struct 1187 * @msg: the message to write 1188 * 1189 * This is used for messages that need to be redirected to a specific tty. 1190 * We don't put it into the syslog queue right now maybe in the future if 1191 * really needed. 1192 * 1193 * We must still hold the BTM and test the CLOSING flag for the moment. 1194 */ 1195 1196 void tty_write_message(struct tty_struct *tty, char *msg) 1197 { 1198 if (tty) { 1199 mutex_lock(&tty->atomic_write_lock); 1200 tty_lock(tty); 1201 if (tty->ops->write && tty->count > 0) { 1202 tty_unlock(tty); 1203 tty->ops->write(tty, msg, strlen(msg)); 1204 } else 1205 tty_unlock(tty); 1206 tty_write_unlock(tty); 1207 } 1208 return; 1209 } 1210 1211 1212 /** 1213 * tty_write - write method for tty device file 1214 * @file: tty file pointer 1215 * @buf: user data to write 1216 * @count: bytes to write 1217 * @ppos: unused 1218 * 1219 * Write data to a tty device via the line discipline. 1220 * 1221 * Locking: 1222 * Locks the line discipline as required 1223 * Writes to the tty driver are serialized by the atomic_write_lock 1224 * and are then processed in chunks to the device. The line discipline 1225 * write method will not be invoked in parallel for each device. 1226 */ 1227 1228 static ssize_t tty_write(struct file *file, const char __user *buf, 1229 size_t count, loff_t *ppos) 1230 { 1231 struct tty_struct *tty = file_tty(file); 1232 struct tty_ldisc *ld; 1233 ssize_t ret; 1234 1235 if (tty_paranoia_check(tty, file_inode(file), "tty_write")) 1236 return -EIO; 1237 if (!tty || !tty->ops->write || 1238 (test_bit(TTY_IO_ERROR, &tty->flags))) 1239 return -EIO; 1240 /* Short term debug to catch buggy drivers */ 1241 if (tty->ops->write_room == NULL) 1242 printk(KERN_ERR "tty driver %s lacks a write_room method.\n", 1243 tty->driver->name); 1244 ld = tty_ldisc_ref_wait(tty); 1245 if (!ld->ops->write) 1246 ret = -EIO; 1247 else 1248 ret = do_tty_write(ld->ops->write, tty, file, buf, count); 1249 tty_ldisc_deref(ld); 1250 return ret; 1251 } 1252 1253 ssize_t redirected_tty_write(struct file *file, const char __user *buf, 1254 size_t count, loff_t *ppos) 1255 { 1256 struct file *p = NULL; 1257 1258 spin_lock(&redirect_lock); 1259 if (redirect) 1260 p = get_file(redirect); 1261 spin_unlock(&redirect_lock); 1262 1263 if (p) { 1264 ssize_t res; 1265 res = vfs_write(p, buf, count, &p->f_pos); 1266 fput(p); 1267 return res; 1268 } 1269 return tty_write(file, buf, count, ppos); 1270 } 1271 1272 /** 1273 * tty_send_xchar - send priority character 1274 * 1275 * Send a high priority character to the tty even if stopped 1276 * 1277 * Locking: none for xchar method, write ordering for write method. 1278 */ 1279 1280 int tty_send_xchar(struct tty_struct *tty, char ch) 1281 { 1282 int was_stopped = tty->stopped; 1283 1284 if (tty->ops->send_xchar) { 1285 tty->ops->send_xchar(tty, ch); 1286 return 0; 1287 } 1288 1289 if (tty_write_lock(tty, 0) < 0) 1290 return -ERESTARTSYS; 1291 1292 if (was_stopped) 1293 start_tty(tty); 1294 tty->ops->write(tty, &ch, 1); 1295 if (was_stopped) 1296 stop_tty(tty); 1297 tty_write_unlock(tty); 1298 return 0; 1299 } 1300 1301 static char ptychar[] = "pqrstuvwxyzabcde"; 1302 1303 /** 1304 * pty_line_name - generate name for a pty 1305 * @driver: the tty driver in use 1306 * @index: the minor number 1307 * @p: output buffer of at least 6 bytes 1308 * 1309 * Generate a name from a driver reference and write it to the output 1310 * buffer. 1311 * 1312 * Locking: None 1313 */ 1314 static void pty_line_name(struct tty_driver *driver, int index, char *p) 1315 { 1316 int i = index + driver->name_base; 1317 /* ->name is initialized to "ttyp", but "tty" is expected */ 1318 sprintf(p, "%s%c%x", 1319 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1320 ptychar[i >> 4 & 0xf], i & 0xf); 1321 } 1322 1323 /** 1324 * tty_line_name - generate name for a tty 1325 * @driver: the tty driver in use 1326 * @index: the minor number 1327 * @p: output buffer of at least 7 bytes 1328 * 1329 * Generate a name from a driver reference and write it to the output 1330 * buffer. 1331 * 1332 * Locking: None 1333 */ 1334 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p) 1335 { 1336 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE) 1337 return sprintf(p, "%s", driver->name); 1338 else 1339 return sprintf(p, "%s%d", driver->name, 1340 index + driver->name_base); 1341 } 1342 1343 /** 1344 * tty_driver_lookup_tty() - find an existing tty, if any 1345 * @driver: the driver for the tty 1346 * @idx: the minor number 1347 * 1348 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the 1349 * driver lookup() method returns an error. 1350 * 1351 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref. 1352 */ 1353 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1354 struct inode *inode, int idx) 1355 { 1356 struct tty_struct *tty; 1357 1358 if (driver->ops->lookup) 1359 tty = driver->ops->lookup(driver, inode, idx); 1360 else 1361 tty = driver->ttys[idx]; 1362 1363 if (!IS_ERR(tty)) 1364 tty_kref_get(tty); 1365 return tty; 1366 } 1367 1368 /** 1369 * tty_init_termios - helper for termios setup 1370 * @tty: the tty to set up 1371 * 1372 * Initialise the termios structures for this tty. Thus runs under 1373 * the tty_mutex currently so we can be relaxed about ordering. 1374 */ 1375 1376 int tty_init_termios(struct tty_struct *tty) 1377 { 1378 struct ktermios *tp; 1379 int idx = tty->index; 1380 1381 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1382 tty->termios = tty->driver->init_termios; 1383 else { 1384 /* Check for lazy saved data */ 1385 tp = tty->driver->termios[idx]; 1386 if (tp != NULL) 1387 tty->termios = *tp; 1388 else 1389 tty->termios = tty->driver->init_termios; 1390 } 1391 /* Compatibility until drivers always set this */ 1392 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios); 1393 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios); 1394 return 0; 1395 } 1396 EXPORT_SYMBOL_GPL(tty_init_termios); 1397 1398 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1399 { 1400 int ret = tty_init_termios(tty); 1401 if (ret) 1402 return ret; 1403 1404 tty_driver_kref_get(driver); 1405 tty->count++; 1406 driver->ttys[tty->index] = tty; 1407 return 0; 1408 } 1409 EXPORT_SYMBOL_GPL(tty_standard_install); 1410 1411 /** 1412 * tty_driver_install_tty() - install a tty entry in the driver 1413 * @driver: the driver for the tty 1414 * @tty: the tty 1415 * 1416 * Install a tty object into the driver tables. The tty->index field 1417 * will be set by the time this is called. This method is responsible 1418 * for ensuring any need additional structures are allocated and 1419 * configured. 1420 * 1421 * Locking: tty_mutex for now 1422 */ 1423 static int tty_driver_install_tty(struct tty_driver *driver, 1424 struct tty_struct *tty) 1425 { 1426 return driver->ops->install ? driver->ops->install(driver, tty) : 1427 tty_standard_install(driver, tty); 1428 } 1429 1430 /** 1431 * tty_driver_remove_tty() - remove a tty from the driver tables 1432 * @driver: the driver for the tty 1433 * @idx: the minor number 1434 * 1435 * Remvoe a tty object from the driver tables. The tty->index field 1436 * will be set by the time this is called. 1437 * 1438 * Locking: tty_mutex for now 1439 */ 1440 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1441 { 1442 if (driver->ops->remove) 1443 driver->ops->remove(driver, tty); 1444 else 1445 driver->ttys[tty->index] = NULL; 1446 } 1447 1448 /* 1449 * tty_reopen() - fast re-open of an open tty 1450 * @tty - the tty to open 1451 * 1452 * Return 0 on success, -errno on error. 1453 * Re-opens on master ptys are not allowed and return -EIO. 1454 * 1455 * Locking: Caller must hold tty_lock 1456 */ 1457 static int tty_reopen(struct tty_struct *tty) 1458 { 1459 struct tty_driver *driver = tty->driver; 1460 1461 if (!tty->count) 1462 return -EIO; 1463 1464 if (driver->type == TTY_DRIVER_TYPE_PTY && 1465 driver->subtype == PTY_TYPE_MASTER) 1466 return -EIO; 1467 1468 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN)) 1469 return -EBUSY; 1470 1471 tty->count++; 1472 1473 WARN_ON(!tty->ldisc); 1474 1475 return 0; 1476 } 1477 1478 /** 1479 * tty_init_dev - initialise a tty device 1480 * @driver: tty driver we are opening a device on 1481 * @idx: device index 1482 * @ret_tty: returned tty structure 1483 * 1484 * Prepare a tty device. This may not be a "new" clean device but 1485 * could also be an active device. The pty drivers require special 1486 * handling because of this. 1487 * 1488 * Locking: 1489 * The function is called under the tty_mutex, which 1490 * protects us from the tty struct or driver itself going away. 1491 * 1492 * On exit the tty device has the line discipline attached and 1493 * a reference count of 1. If a pair was created for pty/tty use 1494 * and the other was a pty master then it too has a reference count of 1. 1495 * 1496 * WSH 06/09/97: Rewritten to remove races and properly clean up after a 1497 * failed open. The new code protects the open with a mutex, so it's 1498 * really quite straightforward. The mutex locking can probably be 1499 * relaxed for the (most common) case of reopening a tty. 1500 */ 1501 1502 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1503 { 1504 struct tty_struct *tty; 1505 int retval; 1506 1507 /* 1508 * First time open is complex, especially for PTY devices. 1509 * This code guarantees that either everything succeeds and the 1510 * TTY is ready for operation, or else the table slots are vacated 1511 * and the allocated memory released. (Except that the termios 1512 * and locked termios may be retained.) 1513 */ 1514 1515 if (!try_module_get(driver->owner)) 1516 return ERR_PTR(-ENODEV); 1517 1518 tty = alloc_tty_struct(driver, idx); 1519 if (!tty) { 1520 retval = -ENOMEM; 1521 goto err_module_put; 1522 } 1523 1524 tty_lock(tty); 1525 retval = tty_driver_install_tty(driver, tty); 1526 if (retval < 0) 1527 goto err_deinit_tty; 1528 1529 if (!tty->port) 1530 tty->port = driver->ports[idx]; 1531 1532 WARN_RATELIMIT(!tty->port, 1533 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n", 1534 __func__, tty->driver->name); 1535 1536 tty->port->itty = tty; 1537 1538 /* 1539 * Structures all installed ... call the ldisc open routines. 1540 * If we fail here just call release_tty to clean up. No need 1541 * to decrement the use counts, as release_tty doesn't care. 1542 */ 1543 retval = tty_ldisc_setup(tty, tty->link); 1544 if (retval) 1545 goto err_release_tty; 1546 /* Return the tty locked so that it cannot vanish under the caller */ 1547 return tty; 1548 1549 err_deinit_tty: 1550 tty_unlock(tty); 1551 deinitialize_tty_struct(tty); 1552 free_tty_struct(tty); 1553 err_module_put: 1554 module_put(driver->owner); 1555 return ERR_PTR(retval); 1556 1557 /* call the tty release_tty routine to clean out this slot */ 1558 err_release_tty: 1559 tty_unlock(tty); 1560 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, " 1561 "clearing slot %d\n", idx); 1562 release_tty(tty, idx); 1563 return ERR_PTR(retval); 1564 } 1565 1566 void tty_free_termios(struct tty_struct *tty) 1567 { 1568 struct ktermios *tp; 1569 int idx = tty->index; 1570 1571 /* If the port is going to reset then it has no termios to save */ 1572 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1573 return; 1574 1575 /* Stash the termios data */ 1576 tp = tty->driver->termios[idx]; 1577 if (tp == NULL) { 1578 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL); 1579 if (tp == NULL) { 1580 pr_warn("tty: no memory to save termios state.\n"); 1581 return; 1582 } 1583 tty->driver->termios[idx] = tp; 1584 } 1585 *tp = tty->termios; 1586 } 1587 EXPORT_SYMBOL(tty_free_termios); 1588 1589 /** 1590 * tty_flush_works - flush all works of a tty/pty pair 1591 * @tty: tty device to flush works for (or either end of a pty pair) 1592 * 1593 * Sync flush all works belonging to @tty (and the 'other' tty). 1594 */ 1595 static void tty_flush_works(struct tty_struct *tty) 1596 { 1597 flush_work(&tty->SAK_work); 1598 flush_work(&tty->hangup_work); 1599 if (tty->link) { 1600 flush_work(&tty->link->SAK_work); 1601 flush_work(&tty->link->hangup_work); 1602 } 1603 } 1604 1605 /** 1606 * release_one_tty - release tty structure memory 1607 * @kref: kref of tty we are obliterating 1608 * 1609 * Releases memory associated with a tty structure, and clears out the 1610 * driver table slots. This function is called when a device is no longer 1611 * in use. It also gets called when setup of a device fails. 1612 * 1613 * Locking: 1614 * takes the file list lock internally when working on the list 1615 * of ttys that the driver keeps. 1616 * 1617 * This method gets called from a work queue so that the driver private 1618 * cleanup ops can sleep (needed for USB at least) 1619 */ 1620 static void release_one_tty(struct work_struct *work) 1621 { 1622 struct tty_struct *tty = 1623 container_of(work, struct tty_struct, hangup_work); 1624 struct tty_driver *driver = tty->driver; 1625 struct module *owner = driver->owner; 1626 1627 if (tty->ops->cleanup) 1628 tty->ops->cleanup(tty); 1629 1630 tty->magic = 0; 1631 tty_driver_kref_put(driver); 1632 module_put(owner); 1633 1634 spin_lock(&tty_files_lock); 1635 list_del_init(&tty->tty_files); 1636 spin_unlock(&tty_files_lock); 1637 1638 put_pid(tty->pgrp); 1639 put_pid(tty->session); 1640 free_tty_struct(tty); 1641 } 1642 1643 static void queue_release_one_tty(struct kref *kref) 1644 { 1645 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1646 1647 /* The hangup queue is now free so we can reuse it rather than 1648 waste a chunk of memory for each port */ 1649 INIT_WORK(&tty->hangup_work, release_one_tty); 1650 schedule_work(&tty->hangup_work); 1651 } 1652 1653 /** 1654 * tty_kref_put - release a tty kref 1655 * @tty: tty device 1656 * 1657 * Release a reference to a tty device and if need be let the kref 1658 * layer destruct the object for us 1659 */ 1660 1661 void tty_kref_put(struct tty_struct *tty) 1662 { 1663 if (tty) 1664 kref_put(&tty->kref, queue_release_one_tty); 1665 } 1666 EXPORT_SYMBOL(tty_kref_put); 1667 1668 /** 1669 * release_tty - release tty structure memory 1670 * 1671 * Release both @tty and a possible linked partner (think pty pair), 1672 * and decrement the refcount of the backing module. 1673 * 1674 * Locking: 1675 * tty_mutex 1676 * takes the file list lock internally when working on the list 1677 * of ttys that the driver keeps. 1678 * 1679 */ 1680 static void release_tty(struct tty_struct *tty, int idx) 1681 { 1682 /* This should always be true but check for the moment */ 1683 WARN_ON(tty->index != idx); 1684 WARN_ON(!mutex_is_locked(&tty_mutex)); 1685 if (tty->ops->shutdown) 1686 tty->ops->shutdown(tty); 1687 tty_free_termios(tty); 1688 tty_driver_remove_tty(tty->driver, tty); 1689 tty->port->itty = NULL; 1690 if (tty->link) 1691 tty->link->port->itty = NULL; 1692 cancel_work_sync(&tty->port->buf.work); 1693 1694 tty_kref_put(tty->link); 1695 tty_kref_put(tty); 1696 } 1697 1698 /** 1699 * tty_release_checks - check a tty before real release 1700 * @tty: tty to check 1701 * @o_tty: link of @tty (if any) 1702 * @idx: index of the tty 1703 * 1704 * Performs some paranoid checking before true release of the @tty. 1705 * This is a no-op unless TTY_PARANOIA_CHECK is defined. 1706 */ 1707 static int tty_release_checks(struct tty_struct *tty, int idx) 1708 { 1709 #ifdef TTY_PARANOIA_CHECK 1710 if (idx < 0 || idx >= tty->driver->num) { 1711 tty_debug(tty, "bad idx %d\n", idx); 1712 return -1; 1713 } 1714 1715 /* not much to check for devpts */ 1716 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1717 return 0; 1718 1719 if (tty != tty->driver->ttys[idx]) { 1720 tty_debug(tty, "bad driver table[%d] = %p\n", 1721 idx, tty->driver->ttys[idx]); 1722 return -1; 1723 } 1724 if (tty->driver->other) { 1725 struct tty_struct *o_tty = tty->link; 1726 1727 if (o_tty != tty->driver->other->ttys[idx]) { 1728 tty_debug(tty, "bad other table[%d] = %p\n", 1729 idx, tty->driver->other->ttys[idx]); 1730 return -1; 1731 } 1732 if (o_tty->link != tty) { 1733 tty_debug(tty, "bad link = %p\n", o_tty->link); 1734 return -1; 1735 } 1736 } 1737 #endif 1738 return 0; 1739 } 1740 1741 /** 1742 * tty_release - vfs callback for close 1743 * @inode: inode of tty 1744 * @filp: file pointer for handle to tty 1745 * 1746 * Called the last time each file handle is closed that references 1747 * this tty. There may however be several such references. 1748 * 1749 * Locking: 1750 * Takes bkl. See tty_release_dev 1751 * 1752 * Even releasing the tty structures is a tricky business.. We have 1753 * to be very careful that the structures are all released at the 1754 * same time, as interrupts might otherwise get the wrong pointers. 1755 * 1756 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1757 * lead to double frees or releasing memory still in use. 1758 */ 1759 1760 int tty_release(struct inode *inode, struct file *filp) 1761 { 1762 struct tty_struct *tty = file_tty(filp); 1763 struct tty_struct *o_tty = NULL; 1764 int do_sleep, final; 1765 int idx; 1766 long timeout = 0; 1767 int once = 1; 1768 1769 if (tty_paranoia_check(tty, inode, __func__)) 1770 return 0; 1771 1772 tty_lock(tty); 1773 check_tty_count(tty, __func__); 1774 1775 __tty_fasync(-1, filp, 0); 1776 1777 idx = tty->index; 1778 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1779 tty->driver->subtype == PTY_TYPE_MASTER) 1780 o_tty = tty->link; 1781 1782 if (tty_release_checks(tty, idx)) { 1783 tty_unlock(tty); 1784 return 0; 1785 } 1786 1787 tty_debug_hangup(tty, "(tty count=%d)...\n", tty->count); 1788 1789 if (tty->ops->close) 1790 tty->ops->close(tty, filp); 1791 1792 /* If tty is pty master, lock the slave pty (stable lock order) */ 1793 tty_lock_slave(o_tty); 1794 1795 /* 1796 * Sanity check: if tty->count is going to zero, there shouldn't be 1797 * any waiters on tty->read_wait or tty->write_wait. We test the 1798 * wait queues and kick everyone out _before_ actually starting to 1799 * close. This ensures that we won't block while releasing the tty 1800 * structure. 1801 * 1802 * The test for the o_tty closing is necessary, since the master and 1803 * slave sides may close in any order. If the slave side closes out 1804 * first, its count will be one, since the master side holds an open. 1805 * Thus this test wouldn't be triggered at the time the slave closed, 1806 * so we do it now. 1807 */ 1808 while (1) { 1809 do_sleep = 0; 1810 1811 if (tty->count <= 1) { 1812 if (waitqueue_active(&tty->read_wait)) { 1813 wake_up_poll(&tty->read_wait, POLLIN); 1814 do_sleep++; 1815 } 1816 if (waitqueue_active(&tty->write_wait)) { 1817 wake_up_poll(&tty->write_wait, POLLOUT); 1818 do_sleep++; 1819 } 1820 } 1821 if (o_tty && o_tty->count <= 1) { 1822 if (waitqueue_active(&o_tty->read_wait)) { 1823 wake_up_poll(&o_tty->read_wait, POLLIN); 1824 do_sleep++; 1825 } 1826 if (waitqueue_active(&o_tty->write_wait)) { 1827 wake_up_poll(&o_tty->write_wait, POLLOUT); 1828 do_sleep++; 1829 } 1830 } 1831 if (!do_sleep) 1832 break; 1833 1834 if (once) { 1835 once = 0; 1836 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n", 1837 __func__, tty_name(tty)); 1838 } 1839 schedule_timeout_killable(timeout); 1840 if (timeout < 120 * HZ) 1841 timeout = 2 * timeout + 1; 1842 else 1843 timeout = MAX_SCHEDULE_TIMEOUT; 1844 } 1845 1846 if (o_tty) { 1847 if (--o_tty->count < 0) { 1848 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n", 1849 __func__, o_tty->count, tty_name(o_tty)); 1850 o_tty->count = 0; 1851 } 1852 } 1853 if (--tty->count < 0) { 1854 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n", 1855 __func__, tty->count, tty_name(tty)); 1856 tty->count = 0; 1857 } 1858 1859 /* 1860 * We've decremented tty->count, so we need to remove this file 1861 * descriptor off the tty->tty_files list; this serves two 1862 * purposes: 1863 * - check_tty_count sees the correct number of file descriptors 1864 * associated with this tty. 1865 * - do_tty_hangup no longer sees this file descriptor as 1866 * something that needs to be handled for hangups. 1867 */ 1868 tty_del_file(filp); 1869 1870 /* 1871 * Perform some housekeeping before deciding whether to return. 1872 * 1873 * If _either_ side is closing, make sure there aren't any 1874 * processes that still think tty or o_tty is their controlling 1875 * tty. 1876 */ 1877 if (!tty->count) { 1878 read_lock(&tasklist_lock); 1879 session_clear_tty(tty->session); 1880 if (o_tty) 1881 session_clear_tty(o_tty->session); 1882 read_unlock(&tasklist_lock); 1883 } 1884 1885 /* check whether both sides are closing ... */ 1886 final = !tty->count && !(o_tty && o_tty->count); 1887 1888 tty_unlock_slave(o_tty); 1889 tty_unlock(tty); 1890 1891 /* At this point, the tty->count == 0 should ensure a dead tty 1892 cannot be re-opened by a racing opener */ 1893 1894 if (!final) 1895 return 0; 1896 1897 tty_debug_hangup(tty, "final close\n"); 1898 /* 1899 * Ask the line discipline code to release its structures 1900 */ 1901 tty_ldisc_release(tty); 1902 1903 /* Wait for pending work before tty destruction commmences */ 1904 tty_flush_works(tty); 1905 1906 tty_debug_hangup(tty, "freeing structure...\n"); 1907 /* 1908 * The release_tty function takes care of the details of clearing 1909 * the slots and preserving the termios structure. The tty_unlock_pair 1910 * should be safe as we keep a kref while the tty is locked (so the 1911 * unlock never unlocks a freed tty). 1912 */ 1913 mutex_lock(&tty_mutex); 1914 release_tty(tty, idx); 1915 mutex_unlock(&tty_mutex); 1916 1917 return 0; 1918 } 1919 1920 /** 1921 * tty_open_current_tty - get locked tty of current task 1922 * @device: device number 1923 * @filp: file pointer to tty 1924 * @return: locked tty of the current task iff @device is /dev/tty 1925 * 1926 * Performs a re-open of the current task's controlling tty. 1927 * 1928 * We cannot return driver and index like for the other nodes because 1929 * devpts will not work then. It expects inodes to be from devpts FS. 1930 */ 1931 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1932 { 1933 struct tty_struct *tty; 1934 int retval; 1935 1936 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1937 return NULL; 1938 1939 tty = get_current_tty(); 1940 if (!tty) 1941 return ERR_PTR(-ENXIO); 1942 1943 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1944 /* noctty = 1; */ 1945 tty_lock(tty); 1946 tty_kref_put(tty); /* safe to drop the kref now */ 1947 1948 retval = tty_reopen(tty); 1949 if (retval < 0) { 1950 tty_unlock(tty); 1951 tty = ERR_PTR(retval); 1952 } 1953 return tty; 1954 } 1955 1956 /** 1957 * tty_lookup_driver - lookup a tty driver for a given device file 1958 * @device: device number 1959 * @filp: file pointer to tty 1960 * @noctty: set if the device should not become a controlling tty 1961 * @index: index for the device in the @return driver 1962 * @return: driver for this inode (with increased refcount) 1963 * 1964 * If @return is not erroneous, the caller is responsible to decrement the 1965 * refcount by tty_driver_kref_put. 1966 * 1967 * Locking: tty_mutex protects get_tty_driver 1968 */ 1969 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1970 int *noctty, int *index) 1971 { 1972 struct tty_driver *driver; 1973 1974 switch (device) { 1975 #ifdef CONFIG_VT 1976 case MKDEV(TTY_MAJOR, 0): { 1977 extern struct tty_driver *console_driver; 1978 driver = tty_driver_kref_get(console_driver); 1979 *index = fg_console; 1980 *noctty = 1; 1981 break; 1982 } 1983 #endif 1984 case MKDEV(TTYAUX_MAJOR, 1): { 1985 struct tty_driver *console_driver = console_device(index); 1986 if (console_driver) { 1987 driver = tty_driver_kref_get(console_driver); 1988 if (driver) { 1989 /* Don't let /dev/console block */ 1990 filp->f_flags |= O_NONBLOCK; 1991 *noctty = 1; 1992 break; 1993 } 1994 } 1995 return ERR_PTR(-ENODEV); 1996 } 1997 default: 1998 driver = get_tty_driver(device, index); 1999 if (!driver) 2000 return ERR_PTR(-ENODEV); 2001 break; 2002 } 2003 return driver; 2004 } 2005 2006 /** 2007 * tty_open - open a tty device 2008 * @inode: inode of device file 2009 * @filp: file pointer to tty 2010 * 2011 * tty_open and tty_release keep up the tty count that contains the 2012 * number of opens done on a tty. We cannot use the inode-count, as 2013 * different inodes might point to the same tty. 2014 * 2015 * Open-counting is needed for pty masters, as well as for keeping 2016 * track of serial lines: DTR is dropped when the last close happens. 2017 * (This is not done solely through tty->count, now. - Ted 1/27/92) 2018 * 2019 * The termios state of a pty is reset on first open so that 2020 * settings don't persist across reuse. 2021 * 2022 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev. 2023 * tty->count should protect the rest. 2024 * ->siglock protects ->signal/->sighand 2025 * 2026 * Note: the tty_unlock/lock cases without a ref are only safe due to 2027 * tty_mutex 2028 */ 2029 2030 static int tty_open(struct inode *inode, struct file *filp) 2031 { 2032 struct tty_struct *tty; 2033 int noctty, retval; 2034 struct tty_driver *driver = NULL; 2035 int index; 2036 dev_t device = inode->i_rdev; 2037 unsigned saved_flags = filp->f_flags; 2038 2039 nonseekable_open(inode, filp); 2040 2041 retry_open: 2042 retval = tty_alloc_file(filp); 2043 if (retval) 2044 return -ENOMEM; 2045 2046 noctty = filp->f_flags & O_NOCTTY; 2047 index = -1; 2048 retval = 0; 2049 2050 tty = tty_open_current_tty(device, filp); 2051 if (!tty) { 2052 mutex_lock(&tty_mutex); 2053 driver = tty_lookup_driver(device, filp, &noctty, &index); 2054 if (IS_ERR(driver)) { 2055 retval = PTR_ERR(driver); 2056 goto err_unlock; 2057 } 2058 2059 /* check whether we're reopening an existing tty */ 2060 tty = tty_driver_lookup_tty(driver, inode, index); 2061 if (IS_ERR(tty)) { 2062 retval = PTR_ERR(tty); 2063 goto err_unlock; 2064 } 2065 2066 if (tty) { 2067 mutex_unlock(&tty_mutex); 2068 tty_lock(tty); 2069 /* safe to drop the kref from tty_driver_lookup_tty() */ 2070 tty_kref_put(tty); 2071 retval = tty_reopen(tty); 2072 if (retval < 0) { 2073 tty_unlock(tty); 2074 tty = ERR_PTR(retval); 2075 } 2076 } else { /* Returns with the tty_lock held for now */ 2077 tty = tty_init_dev(driver, index); 2078 mutex_unlock(&tty_mutex); 2079 } 2080 2081 tty_driver_kref_put(driver); 2082 } 2083 2084 if (IS_ERR(tty)) { 2085 retval = PTR_ERR(tty); 2086 goto err_file; 2087 } 2088 2089 tty_add_file(tty, filp); 2090 2091 check_tty_count(tty, __func__); 2092 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2093 tty->driver->subtype == PTY_TYPE_MASTER) 2094 noctty = 1; 2095 2096 tty_debug_hangup(tty, "(tty count=%d)\n", tty->count); 2097 2098 if (tty->ops->open) 2099 retval = tty->ops->open(tty, filp); 2100 else 2101 retval = -ENODEV; 2102 filp->f_flags = saved_flags; 2103 2104 if (retval) { 2105 tty_debug_hangup(tty, "error %d, releasing...\n", retval); 2106 2107 tty_unlock(tty); /* need to call tty_release without BTM */ 2108 tty_release(inode, filp); 2109 if (retval != -ERESTARTSYS) 2110 return retval; 2111 2112 if (signal_pending(current)) 2113 return retval; 2114 2115 schedule(); 2116 /* 2117 * Need to reset f_op in case a hangup happened. 2118 */ 2119 if (tty_hung_up_p(filp)) 2120 filp->f_op = &tty_fops; 2121 goto retry_open; 2122 } 2123 clear_bit(TTY_HUPPED, &tty->flags); 2124 2125 2126 read_lock(&tasklist_lock); 2127 spin_lock_irq(¤t->sighand->siglock); 2128 if (!noctty && 2129 current->signal->leader && 2130 !current->signal->tty && 2131 tty->session == NULL) 2132 __proc_set_tty(tty); 2133 spin_unlock_irq(¤t->sighand->siglock); 2134 read_unlock(&tasklist_lock); 2135 tty_unlock(tty); 2136 return 0; 2137 err_unlock: 2138 mutex_unlock(&tty_mutex); 2139 /* after locks to avoid deadlock */ 2140 if (!IS_ERR_OR_NULL(driver)) 2141 tty_driver_kref_put(driver); 2142 err_file: 2143 tty_free_file(filp); 2144 return retval; 2145 } 2146 2147 2148 2149 /** 2150 * tty_poll - check tty status 2151 * @filp: file being polled 2152 * @wait: poll wait structures to update 2153 * 2154 * Call the line discipline polling method to obtain the poll 2155 * status of the device. 2156 * 2157 * Locking: locks called line discipline but ldisc poll method 2158 * may be re-entered freely by other callers. 2159 */ 2160 2161 static unsigned int tty_poll(struct file *filp, poll_table *wait) 2162 { 2163 struct tty_struct *tty = file_tty(filp); 2164 struct tty_ldisc *ld; 2165 int ret = 0; 2166 2167 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll")) 2168 return 0; 2169 2170 ld = tty_ldisc_ref_wait(tty); 2171 if (ld->ops->poll) 2172 ret = ld->ops->poll(tty, filp, wait); 2173 tty_ldisc_deref(ld); 2174 return ret; 2175 } 2176 2177 static int __tty_fasync(int fd, struct file *filp, int on) 2178 { 2179 struct tty_struct *tty = file_tty(filp); 2180 struct tty_ldisc *ldisc; 2181 unsigned long flags; 2182 int retval = 0; 2183 2184 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync")) 2185 goto out; 2186 2187 retval = fasync_helper(fd, filp, on, &tty->fasync); 2188 if (retval <= 0) 2189 goto out; 2190 2191 ldisc = tty_ldisc_ref(tty); 2192 if (ldisc) { 2193 if (ldisc->ops->fasync) 2194 ldisc->ops->fasync(tty, on); 2195 tty_ldisc_deref(ldisc); 2196 } 2197 2198 if (on) { 2199 enum pid_type type; 2200 struct pid *pid; 2201 2202 spin_lock_irqsave(&tty->ctrl_lock, flags); 2203 if (tty->pgrp) { 2204 pid = tty->pgrp; 2205 type = PIDTYPE_PGID; 2206 } else { 2207 pid = task_pid(current); 2208 type = PIDTYPE_PID; 2209 } 2210 get_pid(pid); 2211 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2212 __f_setown(filp, pid, type, 0); 2213 put_pid(pid); 2214 retval = 0; 2215 } 2216 out: 2217 return retval; 2218 } 2219 2220 static int tty_fasync(int fd, struct file *filp, int on) 2221 { 2222 struct tty_struct *tty = file_tty(filp); 2223 int retval; 2224 2225 tty_lock(tty); 2226 retval = __tty_fasync(fd, filp, on); 2227 tty_unlock(tty); 2228 2229 return retval; 2230 } 2231 2232 /** 2233 * tiocsti - fake input character 2234 * @tty: tty to fake input into 2235 * @p: pointer to character 2236 * 2237 * Fake input to a tty device. Does the necessary locking and 2238 * input management. 2239 * 2240 * FIXME: does not honour flow control ?? 2241 * 2242 * Locking: 2243 * Called functions take tty_ldiscs_lock 2244 * current->signal->tty check is safe without locks 2245 * 2246 * FIXME: may race normal receive processing 2247 */ 2248 2249 static int tiocsti(struct tty_struct *tty, char __user *p) 2250 { 2251 char ch, mbz = 0; 2252 struct tty_ldisc *ld; 2253 2254 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2255 return -EPERM; 2256 if (get_user(ch, p)) 2257 return -EFAULT; 2258 tty_audit_tiocsti(tty, ch); 2259 ld = tty_ldisc_ref_wait(tty); 2260 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2261 tty_ldisc_deref(ld); 2262 return 0; 2263 } 2264 2265 /** 2266 * tiocgwinsz - implement window query ioctl 2267 * @tty; tty 2268 * @arg: user buffer for result 2269 * 2270 * Copies the kernel idea of the window size into the user buffer. 2271 * 2272 * Locking: tty->winsize_mutex is taken to ensure the winsize data 2273 * is consistent. 2274 */ 2275 2276 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2277 { 2278 int err; 2279 2280 mutex_lock(&tty->winsize_mutex); 2281 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2282 mutex_unlock(&tty->winsize_mutex); 2283 2284 return err ? -EFAULT: 0; 2285 } 2286 2287 /** 2288 * tty_do_resize - resize event 2289 * @tty: tty being resized 2290 * @rows: rows (character) 2291 * @cols: cols (character) 2292 * 2293 * Update the termios variables and send the necessary signals to 2294 * peform a terminal resize correctly 2295 */ 2296 2297 int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2298 { 2299 struct pid *pgrp; 2300 2301 /* Lock the tty */ 2302 mutex_lock(&tty->winsize_mutex); 2303 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2304 goto done; 2305 2306 /* Signal the foreground process group */ 2307 pgrp = tty_get_pgrp(tty); 2308 if (pgrp) 2309 kill_pgrp(pgrp, SIGWINCH, 1); 2310 put_pid(pgrp); 2311 2312 tty->winsize = *ws; 2313 done: 2314 mutex_unlock(&tty->winsize_mutex); 2315 return 0; 2316 } 2317 EXPORT_SYMBOL(tty_do_resize); 2318 2319 /** 2320 * tiocswinsz - implement window size set ioctl 2321 * @tty; tty side of tty 2322 * @arg: user buffer for result 2323 * 2324 * Copies the user idea of the window size to the kernel. Traditionally 2325 * this is just advisory information but for the Linux console it 2326 * actually has driver level meaning and triggers a VC resize. 2327 * 2328 * Locking: 2329 * Driver dependent. The default do_resize method takes the 2330 * tty termios mutex and ctrl_lock. The console takes its own lock 2331 * then calls into the default method. 2332 */ 2333 2334 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2335 { 2336 struct winsize tmp_ws; 2337 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2338 return -EFAULT; 2339 2340 if (tty->ops->resize) 2341 return tty->ops->resize(tty, &tmp_ws); 2342 else 2343 return tty_do_resize(tty, &tmp_ws); 2344 } 2345 2346 /** 2347 * tioccons - allow admin to move logical console 2348 * @file: the file to become console 2349 * 2350 * Allow the administrator to move the redirected console device 2351 * 2352 * Locking: uses redirect_lock to guard the redirect information 2353 */ 2354 2355 static int tioccons(struct file *file) 2356 { 2357 if (!capable(CAP_SYS_ADMIN)) 2358 return -EPERM; 2359 if (file->f_op->write == redirected_tty_write) { 2360 struct file *f; 2361 spin_lock(&redirect_lock); 2362 f = redirect; 2363 redirect = NULL; 2364 spin_unlock(&redirect_lock); 2365 if (f) 2366 fput(f); 2367 return 0; 2368 } 2369 spin_lock(&redirect_lock); 2370 if (redirect) { 2371 spin_unlock(&redirect_lock); 2372 return -EBUSY; 2373 } 2374 redirect = get_file(file); 2375 spin_unlock(&redirect_lock); 2376 return 0; 2377 } 2378 2379 /** 2380 * fionbio - non blocking ioctl 2381 * @file: file to set blocking value 2382 * @p: user parameter 2383 * 2384 * Historical tty interfaces had a blocking control ioctl before 2385 * the generic functionality existed. This piece of history is preserved 2386 * in the expected tty API of posix OS's. 2387 * 2388 * Locking: none, the open file handle ensures it won't go away. 2389 */ 2390 2391 static int fionbio(struct file *file, int __user *p) 2392 { 2393 int nonblock; 2394 2395 if (get_user(nonblock, p)) 2396 return -EFAULT; 2397 2398 spin_lock(&file->f_lock); 2399 if (nonblock) 2400 file->f_flags |= O_NONBLOCK; 2401 else 2402 file->f_flags &= ~O_NONBLOCK; 2403 spin_unlock(&file->f_lock); 2404 return 0; 2405 } 2406 2407 /** 2408 * tiocsctty - set controlling tty 2409 * @tty: tty structure 2410 * @arg: user argument 2411 * 2412 * This ioctl is used to manage job control. It permits a session 2413 * leader to set this tty as the controlling tty for the session. 2414 * 2415 * Locking: 2416 * Takes tty_lock() to serialize proc_set_tty() for this tty 2417 * Takes tasklist_lock internally to walk sessions 2418 * Takes ->siglock() when updating signal->tty 2419 */ 2420 2421 static int tiocsctty(struct tty_struct *tty, int arg) 2422 { 2423 int ret = 0; 2424 2425 tty_lock(tty); 2426 read_lock(&tasklist_lock); 2427 2428 if (current->signal->leader && (task_session(current) == tty->session)) 2429 goto unlock; 2430 2431 /* 2432 * The process must be a session leader and 2433 * not have a controlling tty already. 2434 */ 2435 if (!current->signal->leader || current->signal->tty) { 2436 ret = -EPERM; 2437 goto unlock; 2438 } 2439 2440 if (tty->session) { 2441 /* 2442 * This tty is already the controlling 2443 * tty for another session group! 2444 */ 2445 if (arg == 1 && capable(CAP_SYS_ADMIN)) { 2446 /* 2447 * Steal it away 2448 */ 2449 session_clear_tty(tty->session); 2450 } else { 2451 ret = -EPERM; 2452 goto unlock; 2453 } 2454 } 2455 proc_set_tty(tty); 2456 unlock: 2457 read_unlock(&tasklist_lock); 2458 tty_unlock(tty); 2459 return ret; 2460 } 2461 2462 /** 2463 * tty_get_pgrp - return a ref counted pgrp pid 2464 * @tty: tty to read 2465 * 2466 * Returns a refcounted instance of the pid struct for the process 2467 * group controlling the tty. 2468 */ 2469 2470 struct pid *tty_get_pgrp(struct tty_struct *tty) 2471 { 2472 unsigned long flags; 2473 struct pid *pgrp; 2474 2475 spin_lock_irqsave(&tty->ctrl_lock, flags); 2476 pgrp = get_pid(tty->pgrp); 2477 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2478 2479 return pgrp; 2480 } 2481 EXPORT_SYMBOL_GPL(tty_get_pgrp); 2482 2483 /* 2484 * This checks not only the pgrp, but falls back on the pid if no 2485 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 2486 * without this... 2487 * 2488 * The caller must hold rcu lock or the tasklist lock. 2489 */ 2490 static struct pid *session_of_pgrp(struct pid *pgrp) 2491 { 2492 struct task_struct *p; 2493 struct pid *sid = NULL; 2494 2495 p = pid_task(pgrp, PIDTYPE_PGID); 2496 if (p == NULL) 2497 p = pid_task(pgrp, PIDTYPE_PID); 2498 if (p != NULL) 2499 sid = task_session(p); 2500 2501 return sid; 2502 } 2503 2504 /** 2505 * tiocgpgrp - get process group 2506 * @tty: tty passed by user 2507 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2508 * @p: returned pid 2509 * 2510 * Obtain the process group of the tty. If there is no process group 2511 * return an error. 2512 * 2513 * Locking: none. Reference to current->signal->tty is safe. 2514 */ 2515 2516 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2517 { 2518 struct pid *pid; 2519 int ret; 2520 /* 2521 * (tty == real_tty) is a cheap way of 2522 * testing if the tty is NOT a master pty. 2523 */ 2524 if (tty == real_tty && current->signal->tty != real_tty) 2525 return -ENOTTY; 2526 pid = tty_get_pgrp(real_tty); 2527 ret = put_user(pid_vnr(pid), p); 2528 put_pid(pid); 2529 return ret; 2530 } 2531 2532 /** 2533 * tiocspgrp - attempt to set process group 2534 * @tty: tty passed by user 2535 * @real_tty: tty side device matching tty passed by user 2536 * @p: pid pointer 2537 * 2538 * Set the process group of the tty to the session passed. Only 2539 * permitted where the tty session is our session. 2540 * 2541 * Locking: RCU, ctrl lock 2542 */ 2543 2544 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2545 { 2546 struct pid *pgrp; 2547 pid_t pgrp_nr; 2548 int retval = tty_check_change(real_tty); 2549 unsigned long flags; 2550 2551 if (retval == -EIO) 2552 return -ENOTTY; 2553 if (retval) 2554 return retval; 2555 if (!current->signal->tty || 2556 (current->signal->tty != real_tty) || 2557 (real_tty->session != task_session(current))) 2558 return -ENOTTY; 2559 if (get_user(pgrp_nr, p)) 2560 return -EFAULT; 2561 if (pgrp_nr < 0) 2562 return -EINVAL; 2563 rcu_read_lock(); 2564 pgrp = find_vpid(pgrp_nr); 2565 retval = -ESRCH; 2566 if (!pgrp) 2567 goto out_unlock; 2568 retval = -EPERM; 2569 if (session_of_pgrp(pgrp) != task_session(current)) 2570 goto out_unlock; 2571 retval = 0; 2572 spin_lock_irqsave(&tty->ctrl_lock, flags); 2573 put_pid(real_tty->pgrp); 2574 real_tty->pgrp = get_pid(pgrp); 2575 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2576 out_unlock: 2577 rcu_read_unlock(); 2578 return retval; 2579 } 2580 2581 /** 2582 * tiocgsid - get session id 2583 * @tty: tty passed by user 2584 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2585 * @p: pointer to returned session id 2586 * 2587 * Obtain the session id of the tty. If there is no session 2588 * return an error. 2589 * 2590 * Locking: none. Reference to current->signal->tty is safe. 2591 */ 2592 2593 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2594 { 2595 /* 2596 * (tty == real_tty) is a cheap way of 2597 * testing if the tty is NOT a master pty. 2598 */ 2599 if (tty == real_tty && current->signal->tty != real_tty) 2600 return -ENOTTY; 2601 if (!real_tty->session) 2602 return -ENOTTY; 2603 return put_user(pid_vnr(real_tty->session), p); 2604 } 2605 2606 /** 2607 * tiocsetd - set line discipline 2608 * @tty: tty device 2609 * @p: pointer to user data 2610 * 2611 * Set the line discipline according to user request. 2612 * 2613 * Locking: see tty_set_ldisc, this function is just a helper 2614 */ 2615 2616 static int tiocsetd(struct tty_struct *tty, int __user *p) 2617 { 2618 int ldisc; 2619 int ret; 2620 2621 if (get_user(ldisc, p)) 2622 return -EFAULT; 2623 2624 ret = tty_set_ldisc(tty, ldisc); 2625 2626 return ret; 2627 } 2628 2629 /** 2630 * send_break - performed time break 2631 * @tty: device to break on 2632 * @duration: timeout in mS 2633 * 2634 * Perform a timed break on hardware that lacks its own driver level 2635 * timed break functionality. 2636 * 2637 * Locking: 2638 * atomic_write_lock serializes 2639 * 2640 */ 2641 2642 static int send_break(struct tty_struct *tty, unsigned int duration) 2643 { 2644 int retval; 2645 2646 if (tty->ops->break_ctl == NULL) 2647 return 0; 2648 2649 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2650 retval = tty->ops->break_ctl(tty, duration); 2651 else { 2652 /* Do the work ourselves */ 2653 if (tty_write_lock(tty, 0) < 0) 2654 return -EINTR; 2655 retval = tty->ops->break_ctl(tty, -1); 2656 if (retval) 2657 goto out; 2658 if (!signal_pending(current)) 2659 msleep_interruptible(duration); 2660 retval = tty->ops->break_ctl(tty, 0); 2661 out: 2662 tty_write_unlock(tty); 2663 if (signal_pending(current)) 2664 retval = -EINTR; 2665 } 2666 return retval; 2667 } 2668 2669 /** 2670 * tty_tiocmget - get modem status 2671 * @tty: tty device 2672 * @file: user file pointer 2673 * @p: pointer to result 2674 * 2675 * Obtain the modem status bits from the tty driver if the feature 2676 * is supported. Return -EINVAL if it is not available. 2677 * 2678 * Locking: none (up to the driver) 2679 */ 2680 2681 static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2682 { 2683 int retval = -EINVAL; 2684 2685 if (tty->ops->tiocmget) { 2686 retval = tty->ops->tiocmget(tty); 2687 2688 if (retval >= 0) 2689 retval = put_user(retval, p); 2690 } 2691 return retval; 2692 } 2693 2694 /** 2695 * tty_tiocmset - set modem status 2696 * @tty: tty device 2697 * @cmd: command - clear bits, set bits or set all 2698 * @p: pointer to desired bits 2699 * 2700 * Set the modem status bits from the tty driver if the feature 2701 * is supported. Return -EINVAL if it is not available. 2702 * 2703 * Locking: none (up to the driver) 2704 */ 2705 2706 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2707 unsigned __user *p) 2708 { 2709 int retval; 2710 unsigned int set, clear, val; 2711 2712 if (tty->ops->tiocmset == NULL) 2713 return -EINVAL; 2714 2715 retval = get_user(val, p); 2716 if (retval) 2717 return retval; 2718 set = clear = 0; 2719 switch (cmd) { 2720 case TIOCMBIS: 2721 set = val; 2722 break; 2723 case TIOCMBIC: 2724 clear = val; 2725 break; 2726 case TIOCMSET: 2727 set = val; 2728 clear = ~val; 2729 break; 2730 } 2731 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2732 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2733 return tty->ops->tiocmset(tty, set, clear); 2734 } 2735 2736 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2737 { 2738 int retval = -EINVAL; 2739 struct serial_icounter_struct icount; 2740 memset(&icount, 0, sizeof(icount)); 2741 if (tty->ops->get_icount) 2742 retval = tty->ops->get_icount(tty, &icount); 2743 if (retval != 0) 2744 return retval; 2745 if (copy_to_user(arg, &icount, sizeof(icount))) 2746 return -EFAULT; 2747 return 0; 2748 } 2749 2750 static void tty_warn_deprecated_flags(struct serial_struct __user *ss) 2751 { 2752 static DEFINE_RATELIMIT_STATE(depr_flags, 2753 DEFAULT_RATELIMIT_INTERVAL, 2754 DEFAULT_RATELIMIT_BURST); 2755 char comm[TASK_COMM_LEN]; 2756 int flags; 2757 2758 if (get_user(flags, &ss->flags)) 2759 return; 2760 2761 flags &= ASYNC_DEPRECATED; 2762 2763 if (flags && __ratelimit(&depr_flags)) 2764 pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n", 2765 __func__, get_task_comm(comm, current), flags); 2766 } 2767 2768 /* 2769 * if pty, return the slave side (real_tty) 2770 * otherwise, return self 2771 */ 2772 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2773 { 2774 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2775 tty->driver->subtype == PTY_TYPE_MASTER) 2776 tty = tty->link; 2777 return tty; 2778 } 2779 2780 /* 2781 * Split this up, as gcc can choke on it otherwise.. 2782 */ 2783 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2784 { 2785 struct tty_struct *tty = file_tty(file); 2786 struct tty_struct *real_tty; 2787 void __user *p = (void __user *)arg; 2788 int retval; 2789 struct tty_ldisc *ld; 2790 2791 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2792 return -EINVAL; 2793 2794 real_tty = tty_pair_get_tty(tty); 2795 2796 /* 2797 * Factor out some common prep work 2798 */ 2799 switch (cmd) { 2800 case TIOCSETD: 2801 case TIOCSBRK: 2802 case TIOCCBRK: 2803 case TCSBRK: 2804 case TCSBRKP: 2805 retval = tty_check_change(tty); 2806 if (retval) 2807 return retval; 2808 if (cmd != TIOCCBRK) { 2809 tty_wait_until_sent(tty, 0); 2810 if (signal_pending(current)) 2811 return -EINTR; 2812 } 2813 break; 2814 } 2815 2816 /* 2817 * Now do the stuff. 2818 */ 2819 switch (cmd) { 2820 case TIOCSTI: 2821 return tiocsti(tty, p); 2822 case TIOCGWINSZ: 2823 return tiocgwinsz(real_tty, p); 2824 case TIOCSWINSZ: 2825 return tiocswinsz(real_tty, p); 2826 case TIOCCONS: 2827 return real_tty != tty ? -EINVAL : tioccons(file); 2828 case FIONBIO: 2829 return fionbio(file, p); 2830 case TIOCEXCL: 2831 set_bit(TTY_EXCLUSIVE, &tty->flags); 2832 return 0; 2833 case TIOCNXCL: 2834 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2835 return 0; 2836 case TIOCGEXCL: 2837 { 2838 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags); 2839 return put_user(excl, (int __user *)p); 2840 } 2841 case TIOCNOTTY: 2842 if (current->signal->tty != tty) 2843 return -ENOTTY; 2844 no_tty(); 2845 return 0; 2846 case TIOCSCTTY: 2847 return tiocsctty(tty, arg); 2848 case TIOCGPGRP: 2849 return tiocgpgrp(tty, real_tty, p); 2850 case TIOCSPGRP: 2851 return tiocspgrp(tty, real_tty, p); 2852 case TIOCGSID: 2853 return tiocgsid(tty, real_tty, p); 2854 case TIOCGETD: 2855 return put_user(tty->ldisc->ops->num, (int __user *)p); 2856 case TIOCSETD: 2857 return tiocsetd(tty, p); 2858 case TIOCVHANGUP: 2859 if (!capable(CAP_SYS_ADMIN)) 2860 return -EPERM; 2861 tty_vhangup(tty); 2862 return 0; 2863 case TIOCGDEV: 2864 { 2865 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2866 return put_user(ret, (unsigned int __user *)p); 2867 } 2868 /* 2869 * Break handling 2870 */ 2871 case TIOCSBRK: /* Turn break on, unconditionally */ 2872 if (tty->ops->break_ctl) 2873 return tty->ops->break_ctl(tty, -1); 2874 return 0; 2875 case TIOCCBRK: /* Turn break off, unconditionally */ 2876 if (tty->ops->break_ctl) 2877 return tty->ops->break_ctl(tty, 0); 2878 return 0; 2879 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2880 /* non-zero arg means wait for all output data 2881 * to be sent (performed above) but don't send break. 2882 * This is used by the tcdrain() termios function. 2883 */ 2884 if (!arg) 2885 return send_break(tty, 250); 2886 return 0; 2887 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2888 return send_break(tty, arg ? arg*100 : 250); 2889 2890 case TIOCMGET: 2891 return tty_tiocmget(tty, p); 2892 case TIOCMSET: 2893 case TIOCMBIC: 2894 case TIOCMBIS: 2895 return tty_tiocmset(tty, cmd, p); 2896 case TIOCGICOUNT: 2897 retval = tty_tiocgicount(tty, p); 2898 /* For the moment allow fall through to the old method */ 2899 if (retval != -EINVAL) 2900 return retval; 2901 break; 2902 case TCFLSH: 2903 switch (arg) { 2904 case TCIFLUSH: 2905 case TCIOFLUSH: 2906 /* flush tty buffer and allow ldisc to process ioctl */ 2907 tty_buffer_flush(tty, NULL); 2908 break; 2909 } 2910 break; 2911 case TIOCSSERIAL: 2912 tty_warn_deprecated_flags(p); 2913 break; 2914 } 2915 if (tty->ops->ioctl) { 2916 retval = tty->ops->ioctl(tty, cmd, arg); 2917 if (retval != -ENOIOCTLCMD) 2918 return retval; 2919 } 2920 ld = tty_ldisc_ref_wait(tty); 2921 retval = -EINVAL; 2922 if (ld->ops->ioctl) { 2923 retval = ld->ops->ioctl(tty, file, cmd, arg); 2924 if (retval == -ENOIOCTLCMD) 2925 retval = -ENOTTY; 2926 } 2927 tty_ldisc_deref(ld); 2928 return retval; 2929 } 2930 2931 #ifdef CONFIG_COMPAT 2932 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 2933 unsigned long arg) 2934 { 2935 struct tty_struct *tty = file_tty(file); 2936 struct tty_ldisc *ld; 2937 int retval = -ENOIOCTLCMD; 2938 2939 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2940 return -EINVAL; 2941 2942 if (tty->ops->compat_ioctl) { 2943 retval = tty->ops->compat_ioctl(tty, cmd, arg); 2944 if (retval != -ENOIOCTLCMD) 2945 return retval; 2946 } 2947 2948 ld = tty_ldisc_ref_wait(tty); 2949 if (ld->ops->compat_ioctl) 2950 retval = ld->ops->compat_ioctl(tty, file, cmd, arg); 2951 else 2952 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg); 2953 tty_ldisc_deref(ld); 2954 2955 return retval; 2956 } 2957 #endif 2958 2959 static int this_tty(const void *t, struct file *file, unsigned fd) 2960 { 2961 if (likely(file->f_op->read != tty_read)) 2962 return 0; 2963 return file_tty(file) != t ? 0 : fd + 1; 2964 } 2965 2966 /* 2967 * This implements the "Secure Attention Key" --- the idea is to 2968 * prevent trojan horses by killing all processes associated with this 2969 * tty when the user hits the "Secure Attention Key". Required for 2970 * super-paranoid applications --- see the Orange Book for more details. 2971 * 2972 * This code could be nicer; ideally it should send a HUP, wait a few 2973 * seconds, then send a INT, and then a KILL signal. But you then 2974 * have to coordinate with the init process, since all processes associated 2975 * with the current tty must be dead before the new getty is allowed 2976 * to spawn. 2977 * 2978 * Now, if it would be correct ;-/ The current code has a nasty hole - 2979 * it doesn't catch files in flight. We may send the descriptor to ourselves 2980 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 2981 * 2982 * Nasty bug: do_SAK is being called in interrupt context. This can 2983 * deadlock. We punt it up to process context. AKPM - 16Mar2001 2984 */ 2985 void __do_SAK(struct tty_struct *tty) 2986 { 2987 #ifdef TTY_SOFT_SAK 2988 tty_hangup(tty); 2989 #else 2990 struct task_struct *g, *p; 2991 struct pid *session; 2992 int i; 2993 2994 if (!tty) 2995 return; 2996 session = tty->session; 2997 2998 tty_ldisc_flush(tty); 2999 3000 tty_driver_flush_buffer(tty); 3001 3002 read_lock(&tasklist_lock); 3003 /* Kill the entire session */ 3004 do_each_pid_task(session, PIDTYPE_SID, p) { 3005 printk(KERN_NOTICE "SAK: killed process %d" 3006 " (%s): task_session(p)==tty->session\n", 3007 task_pid_nr(p), p->comm); 3008 send_sig(SIGKILL, p, 1); 3009 } while_each_pid_task(session, PIDTYPE_SID, p); 3010 /* Now kill any processes that happen to have the 3011 * tty open. 3012 */ 3013 do_each_thread(g, p) { 3014 if (p->signal->tty == tty) { 3015 printk(KERN_NOTICE "SAK: killed process %d" 3016 " (%s): task_session(p)==tty->session\n", 3017 task_pid_nr(p), p->comm); 3018 send_sig(SIGKILL, p, 1); 3019 continue; 3020 } 3021 task_lock(p); 3022 i = iterate_fd(p->files, 0, this_tty, tty); 3023 if (i != 0) { 3024 printk(KERN_NOTICE "SAK: killed process %d" 3025 " (%s): fd#%d opened to the tty\n", 3026 task_pid_nr(p), p->comm, i - 1); 3027 force_sig(SIGKILL, p); 3028 } 3029 task_unlock(p); 3030 } while_each_thread(g, p); 3031 read_unlock(&tasklist_lock); 3032 #endif 3033 } 3034 3035 static void do_SAK_work(struct work_struct *work) 3036 { 3037 struct tty_struct *tty = 3038 container_of(work, struct tty_struct, SAK_work); 3039 __do_SAK(tty); 3040 } 3041 3042 /* 3043 * The tq handling here is a little racy - tty->SAK_work may already be queued. 3044 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 3045 * the values which we write to it will be identical to the values which it 3046 * already has. --akpm 3047 */ 3048 void do_SAK(struct tty_struct *tty) 3049 { 3050 if (!tty) 3051 return; 3052 schedule_work(&tty->SAK_work); 3053 } 3054 3055 EXPORT_SYMBOL(do_SAK); 3056 3057 static int dev_match_devt(struct device *dev, const void *data) 3058 { 3059 const dev_t *devt = data; 3060 return dev->devt == *devt; 3061 } 3062 3063 /* Must put_device() after it's unused! */ 3064 static struct device *tty_get_device(struct tty_struct *tty) 3065 { 3066 dev_t devt = tty_devnum(tty); 3067 return class_find_device(tty_class, NULL, &devt, dev_match_devt); 3068 } 3069 3070 3071 /** 3072 * alloc_tty_struct 3073 * 3074 * This subroutine allocates and initializes a tty structure. 3075 * 3076 * Locking: none - tty in question is not exposed at this point 3077 */ 3078 3079 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx) 3080 { 3081 struct tty_struct *tty; 3082 3083 tty = kzalloc(sizeof(*tty), GFP_KERNEL); 3084 if (!tty) 3085 return NULL; 3086 3087 kref_init(&tty->kref); 3088 tty->magic = TTY_MAGIC; 3089 tty_ldisc_init(tty); 3090 tty->session = NULL; 3091 tty->pgrp = NULL; 3092 mutex_init(&tty->legacy_mutex); 3093 mutex_init(&tty->throttle_mutex); 3094 init_rwsem(&tty->termios_rwsem); 3095 mutex_init(&tty->winsize_mutex); 3096 init_ldsem(&tty->ldisc_sem); 3097 init_waitqueue_head(&tty->write_wait); 3098 init_waitqueue_head(&tty->read_wait); 3099 INIT_WORK(&tty->hangup_work, do_tty_hangup); 3100 mutex_init(&tty->atomic_write_lock); 3101 spin_lock_init(&tty->ctrl_lock); 3102 spin_lock_init(&tty->flow_lock); 3103 INIT_LIST_HEAD(&tty->tty_files); 3104 INIT_WORK(&tty->SAK_work, do_SAK_work); 3105 3106 tty->driver = driver; 3107 tty->ops = driver->ops; 3108 tty->index = idx; 3109 tty_line_name(driver, idx, tty->name); 3110 tty->dev = tty_get_device(tty); 3111 3112 return tty; 3113 } 3114 3115 /** 3116 * deinitialize_tty_struct 3117 * @tty: tty to deinitialize 3118 * 3119 * This subroutine deinitializes a tty structure that has been newly 3120 * allocated but tty_release cannot be called on that yet. 3121 * 3122 * Locking: none - tty in question must not be exposed at this point 3123 */ 3124 void deinitialize_tty_struct(struct tty_struct *tty) 3125 { 3126 tty_ldisc_deinit(tty); 3127 } 3128 3129 /** 3130 * tty_put_char - write one character to a tty 3131 * @tty: tty 3132 * @ch: character 3133 * 3134 * Write one byte to the tty using the provided put_char method 3135 * if present. Returns the number of characters successfully output. 3136 * 3137 * Note: the specific put_char operation in the driver layer may go 3138 * away soon. Don't call it directly, use this method 3139 */ 3140 3141 int tty_put_char(struct tty_struct *tty, unsigned char ch) 3142 { 3143 if (tty->ops->put_char) 3144 return tty->ops->put_char(tty, ch); 3145 return tty->ops->write(tty, &ch, 1); 3146 } 3147 EXPORT_SYMBOL_GPL(tty_put_char); 3148 3149 struct class *tty_class; 3150 3151 static int tty_cdev_add(struct tty_driver *driver, dev_t dev, 3152 unsigned int index, unsigned int count) 3153 { 3154 /* init here, since reused cdevs cause crashes */ 3155 driver->cdevs[index] = cdev_alloc(); 3156 if (!driver->cdevs[index]) 3157 return -ENOMEM; 3158 cdev_init(driver->cdevs[index], &tty_fops); 3159 driver->cdevs[index]->owner = driver->owner; 3160 return cdev_add(driver->cdevs[index], dev, count); 3161 } 3162 3163 /** 3164 * tty_register_device - register a tty device 3165 * @driver: the tty driver that describes the tty device 3166 * @index: the index in the tty driver for this tty device 3167 * @device: a struct device that is associated with this tty device. 3168 * This field is optional, if there is no known struct device 3169 * for this tty device it can be set to NULL safely. 3170 * 3171 * Returns a pointer to the struct device for this tty device 3172 * (or ERR_PTR(-EFOO) on error). 3173 * 3174 * This call is required to be made to register an individual tty device 3175 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3176 * that bit is not set, this function should not be called by a tty 3177 * driver. 3178 * 3179 * Locking: ?? 3180 */ 3181 3182 struct device *tty_register_device(struct tty_driver *driver, unsigned index, 3183 struct device *device) 3184 { 3185 return tty_register_device_attr(driver, index, device, NULL, NULL); 3186 } 3187 EXPORT_SYMBOL(tty_register_device); 3188 3189 static void tty_device_create_release(struct device *dev) 3190 { 3191 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3192 kfree(dev); 3193 } 3194 3195 /** 3196 * tty_register_device_attr - register a tty device 3197 * @driver: the tty driver that describes the tty device 3198 * @index: the index in the tty driver for this tty device 3199 * @device: a struct device that is associated with this tty device. 3200 * This field is optional, if there is no known struct device 3201 * for this tty device it can be set to NULL safely. 3202 * @drvdata: Driver data to be set to device. 3203 * @attr_grp: Attribute group to be set on device. 3204 * 3205 * Returns a pointer to the struct device for this tty device 3206 * (or ERR_PTR(-EFOO) on error). 3207 * 3208 * This call is required to be made to register an individual tty device 3209 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3210 * that bit is not set, this function should not be called by a tty 3211 * driver. 3212 * 3213 * Locking: ?? 3214 */ 3215 struct device *tty_register_device_attr(struct tty_driver *driver, 3216 unsigned index, struct device *device, 3217 void *drvdata, 3218 const struct attribute_group **attr_grp) 3219 { 3220 char name[64]; 3221 dev_t devt = MKDEV(driver->major, driver->minor_start) + index; 3222 struct device *dev = NULL; 3223 int retval = -ENODEV; 3224 bool cdev = false; 3225 3226 if (index >= driver->num) { 3227 printk(KERN_ERR "Attempt to register invalid tty line number " 3228 " (%d).\n", index); 3229 return ERR_PTR(-EINVAL); 3230 } 3231 3232 if (driver->type == TTY_DRIVER_TYPE_PTY) 3233 pty_line_name(driver, index, name); 3234 else 3235 tty_line_name(driver, index, name); 3236 3237 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3238 retval = tty_cdev_add(driver, devt, index, 1); 3239 if (retval) 3240 goto error; 3241 cdev = true; 3242 } 3243 3244 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3245 if (!dev) { 3246 retval = -ENOMEM; 3247 goto error; 3248 } 3249 3250 dev->devt = devt; 3251 dev->class = tty_class; 3252 dev->parent = device; 3253 dev->release = tty_device_create_release; 3254 dev_set_name(dev, "%s", name); 3255 dev->groups = attr_grp; 3256 dev_set_drvdata(dev, drvdata); 3257 3258 retval = device_register(dev); 3259 if (retval) 3260 goto error; 3261 3262 return dev; 3263 3264 error: 3265 put_device(dev); 3266 if (cdev) { 3267 cdev_del(driver->cdevs[index]); 3268 driver->cdevs[index] = NULL; 3269 } 3270 return ERR_PTR(retval); 3271 } 3272 EXPORT_SYMBOL_GPL(tty_register_device_attr); 3273 3274 /** 3275 * tty_unregister_device - unregister a tty device 3276 * @driver: the tty driver that describes the tty device 3277 * @index: the index in the tty driver for this tty device 3278 * 3279 * If a tty device is registered with a call to tty_register_device() then 3280 * this function must be called when the tty device is gone. 3281 * 3282 * Locking: ?? 3283 */ 3284 3285 void tty_unregister_device(struct tty_driver *driver, unsigned index) 3286 { 3287 device_destroy(tty_class, 3288 MKDEV(driver->major, driver->minor_start) + index); 3289 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3290 cdev_del(driver->cdevs[index]); 3291 driver->cdevs[index] = NULL; 3292 } 3293 } 3294 EXPORT_SYMBOL(tty_unregister_device); 3295 3296 /** 3297 * __tty_alloc_driver -- allocate tty driver 3298 * @lines: count of lines this driver can handle at most 3299 * @owner: module which is repsonsible for this driver 3300 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags 3301 * 3302 * This should not be called directly, some of the provided macros should be 3303 * used instead. Use IS_ERR and friends on @retval. 3304 */ 3305 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner, 3306 unsigned long flags) 3307 { 3308 struct tty_driver *driver; 3309 unsigned int cdevs = 1; 3310 int err; 3311 3312 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1)) 3313 return ERR_PTR(-EINVAL); 3314 3315 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL); 3316 if (!driver) 3317 return ERR_PTR(-ENOMEM); 3318 3319 kref_init(&driver->kref); 3320 driver->magic = TTY_DRIVER_MAGIC; 3321 driver->num = lines; 3322 driver->owner = owner; 3323 driver->flags = flags; 3324 3325 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) { 3326 driver->ttys = kcalloc(lines, sizeof(*driver->ttys), 3327 GFP_KERNEL); 3328 driver->termios = kcalloc(lines, sizeof(*driver->termios), 3329 GFP_KERNEL); 3330 if (!driver->ttys || !driver->termios) { 3331 err = -ENOMEM; 3332 goto err_free_all; 3333 } 3334 } 3335 3336 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3337 driver->ports = kcalloc(lines, sizeof(*driver->ports), 3338 GFP_KERNEL); 3339 if (!driver->ports) { 3340 err = -ENOMEM; 3341 goto err_free_all; 3342 } 3343 cdevs = lines; 3344 } 3345 3346 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL); 3347 if (!driver->cdevs) { 3348 err = -ENOMEM; 3349 goto err_free_all; 3350 } 3351 3352 return driver; 3353 err_free_all: 3354 kfree(driver->ports); 3355 kfree(driver->ttys); 3356 kfree(driver->termios); 3357 kfree(driver->cdevs); 3358 kfree(driver); 3359 return ERR_PTR(err); 3360 } 3361 EXPORT_SYMBOL(__tty_alloc_driver); 3362 3363 static void destruct_tty_driver(struct kref *kref) 3364 { 3365 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3366 int i; 3367 struct ktermios *tp; 3368 3369 if (driver->flags & TTY_DRIVER_INSTALLED) { 3370 /* 3371 * Free the termios and termios_locked structures because 3372 * we don't want to get memory leaks when modular tty 3373 * drivers are removed from the kernel. 3374 */ 3375 for (i = 0; i < driver->num; i++) { 3376 tp = driver->termios[i]; 3377 if (tp) { 3378 driver->termios[i] = NULL; 3379 kfree(tp); 3380 } 3381 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3382 tty_unregister_device(driver, i); 3383 } 3384 proc_tty_unregister_driver(driver); 3385 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) 3386 cdev_del(driver->cdevs[0]); 3387 } 3388 kfree(driver->cdevs); 3389 kfree(driver->ports); 3390 kfree(driver->termios); 3391 kfree(driver->ttys); 3392 kfree(driver); 3393 } 3394 3395 void tty_driver_kref_put(struct tty_driver *driver) 3396 { 3397 kref_put(&driver->kref, destruct_tty_driver); 3398 } 3399 EXPORT_SYMBOL(tty_driver_kref_put); 3400 3401 void tty_set_operations(struct tty_driver *driver, 3402 const struct tty_operations *op) 3403 { 3404 driver->ops = op; 3405 }; 3406 EXPORT_SYMBOL(tty_set_operations); 3407 3408 void put_tty_driver(struct tty_driver *d) 3409 { 3410 tty_driver_kref_put(d); 3411 } 3412 EXPORT_SYMBOL(put_tty_driver); 3413 3414 /* 3415 * Called by a tty driver to register itself. 3416 */ 3417 int tty_register_driver(struct tty_driver *driver) 3418 { 3419 int error; 3420 int i; 3421 dev_t dev; 3422 struct device *d; 3423 3424 if (!driver->major) { 3425 error = alloc_chrdev_region(&dev, driver->minor_start, 3426 driver->num, driver->name); 3427 if (!error) { 3428 driver->major = MAJOR(dev); 3429 driver->minor_start = MINOR(dev); 3430 } 3431 } else { 3432 dev = MKDEV(driver->major, driver->minor_start); 3433 error = register_chrdev_region(dev, driver->num, driver->name); 3434 } 3435 if (error < 0) 3436 goto err; 3437 3438 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) { 3439 error = tty_cdev_add(driver, dev, 0, driver->num); 3440 if (error) 3441 goto err_unreg_char; 3442 } 3443 3444 mutex_lock(&tty_mutex); 3445 list_add(&driver->tty_drivers, &tty_drivers); 3446 mutex_unlock(&tty_mutex); 3447 3448 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3449 for (i = 0; i < driver->num; i++) { 3450 d = tty_register_device(driver, i, NULL); 3451 if (IS_ERR(d)) { 3452 error = PTR_ERR(d); 3453 goto err_unreg_devs; 3454 } 3455 } 3456 } 3457 proc_tty_register_driver(driver); 3458 driver->flags |= TTY_DRIVER_INSTALLED; 3459 return 0; 3460 3461 err_unreg_devs: 3462 for (i--; i >= 0; i--) 3463 tty_unregister_device(driver, i); 3464 3465 mutex_lock(&tty_mutex); 3466 list_del(&driver->tty_drivers); 3467 mutex_unlock(&tty_mutex); 3468 3469 err_unreg_char: 3470 unregister_chrdev_region(dev, driver->num); 3471 err: 3472 return error; 3473 } 3474 EXPORT_SYMBOL(tty_register_driver); 3475 3476 /* 3477 * Called by a tty driver to unregister itself. 3478 */ 3479 int tty_unregister_driver(struct tty_driver *driver) 3480 { 3481 #if 0 3482 /* FIXME */ 3483 if (driver->refcount) 3484 return -EBUSY; 3485 #endif 3486 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3487 driver->num); 3488 mutex_lock(&tty_mutex); 3489 list_del(&driver->tty_drivers); 3490 mutex_unlock(&tty_mutex); 3491 return 0; 3492 } 3493 3494 EXPORT_SYMBOL(tty_unregister_driver); 3495 3496 dev_t tty_devnum(struct tty_struct *tty) 3497 { 3498 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3499 } 3500 EXPORT_SYMBOL(tty_devnum); 3501 3502 void tty_default_fops(struct file_operations *fops) 3503 { 3504 *fops = tty_fops; 3505 } 3506 3507 /* 3508 * Initialize the console device. This is called *early*, so 3509 * we can't necessarily depend on lots of kernel help here. 3510 * Just do some early initializations, and do the complex setup 3511 * later. 3512 */ 3513 void __init console_init(void) 3514 { 3515 initcall_t *call; 3516 3517 /* Setup the default TTY line discipline. */ 3518 tty_ldisc_begin(); 3519 3520 /* 3521 * set up the console device so that later boot sequences can 3522 * inform about problems etc.. 3523 */ 3524 call = __con_initcall_start; 3525 while (call < __con_initcall_end) { 3526 (*call)(); 3527 call++; 3528 } 3529 } 3530 3531 static char *tty_devnode(struct device *dev, umode_t *mode) 3532 { 3533 if (!mode) 3534 return NULL; 3535 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3536 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3537 *mode = 0666; 3538 return NULL; 3539 } 3540 3541 static int __init tty_class_init(void) 3542 { 3543 tty_class = class_create(THIS_MODULE, "tty"); 3544 if (IS_ERR(tty_class)) 3545 return PTR_ERR(tty_class); 3546 tty_class->devnode = tty_devnode; 3547 return 0; 3548 } 3549 3550 postcore_initcall(tty_class_init); 3551 3552 /* 3/2004 jmc: why do these devices exist? */ 3553 static struct cdev tty_cdev, console_cdev; 3554 3555 static ssize_t show_cons_active(struct device *dev, 3556 struct device_attribute *attr, char *buf) 3557 { 3558 struct console *cs[16]; 3559 int i = 0; 3560 struct console *c; 3561 ssize_t count = 0; 3562 3563 console_lock(); 3564 for_each_console(c) { 3565 if (!c->device) 3566 continue; 3567 if (!c->write) 3568 continue; 3569 if ((c->flags & CON_ENABLED) == 0) 3570 continue; 3571 cs[i++] = c; 3572 if (i >= ARRAY_SIZE(cs)) 3573 break; 3574 } 3575 while (i--) { 3576 int index = cs[i]->index; 3577 struct tty_driver *drv = cs[i]->device(cs[i], &index); 3578 3579 /* don't resolve tty0 as some programs depend on it */ 3580 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR)) 3581 count += tty_line_name(drv, index, buf + count); 3582 else 3583 count += sprintf(buf + count, "%s%d", 3584 cs[i]->name, cs[i]->index); 3585 3586 count += sprintf(buf + count, "%c", i ? ' ':'\n'); 3587 } 3588 console_unlock(); 3589 3590 return count; 3591 } 3592 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3593 3594 static struct attribute *cons_dev_attrs[] = { 3595 &dev_attr_active.attr, 3596 NULL 3597 }; 3598 3599 ATTRIBUTE_GROUPS(cons_dev); 3600 3601 static struct device *consdev; 3602 3603 void console_sysfs_notify(void) 3604 { 3605 if (consdev) 3606 sysfs_notify(&consdev->kobj, NULL, "active"); 3607 } 3608 3609 /* 3610 * Ok, now we can initialize the rest of the tty devices and can count 3611 * on memory allocations, interrupts etc.. 3612 */ 3613 int __init tty_init(void) 3614 { 3615 cdev_init(&tty_cdev, &tty_fops); 3616 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3617 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3618 panic("Couldn't register /dev/tty driver\n"); 3619 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3620 3621 cdev_init(&console_cdev, &console_fops); 3622 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3623 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3624 panic("Couldn't register /dev/console driver\n"); 3625 consdev = device_create_with_groups(tty_class, NULL, 3626 MKDEV(TTYAUX_MAJOR, 1), NULL, 3627 cons_dev_groups, "console"); 3628 if (IS_ERR(consdev)) 3629 consdev = NULL; 3630 3631 #ifdef CONFIG_VT 3632 vty_init(&console_fops); 3633 #endif 3634 return 0; 3635 } 3636 3637