xref: /openbmc/linux/drivers/tty/tty_io.c (revision a2cce7a9)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 #ifdef TTY_DEBUG_HANGUP
110 # define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
111 #else
112 # define tty_debug_hangup(tty, f, args...)	do { } while (0)
113 #endif
114 
115 #define TTY_PARANOIA_CHECK 1
116 #define CHECK_TTY_COUNT 1
117 
118 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
119 	.c_iflag = ICRNL | IXON,
120 	.c_oflag = OPOST | ONLCR,
121 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
122 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
123 		   ECHOCTL | ECHOKE | IEXTEN,
124 	.c_cc = INIT_C_CC,
125 	.c_ispeed = 38400,
126 	.c_ospeed = 38400
127 };
128 
129 EXPORT_SYMBOL(tty_std_termios);
130 
131 /* This list gets poked at by procfs and various bits of boot up code. This
132    could do with some rationalisation such as pulling the tty proc function
133    into this file */
134 
135 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
136 
137 /* Mutex to protect creating and releasing a tty. This is shared with
138    vt.c for deeply disgusting hack reasons */
139 DEFINE_MUTEX(tty_mutex);
140 EXPORT_SYMBOL(tty_mutex);
141 
142 /* Spinlock to protect the tty->tty_files list */
143 DEFINE_SPINLOCK(tty_files_lock);
144 
145 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
146 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
147 ssize_t redirected_tty_write(struct file *, const char __user *,
148 							size_t, loff_t *);
149 static unsigned int tty_poll(struct file *, poll_table *);
150 static int tty_open(struct inode *, struct file *);
151 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
152 #ifdef CONFIG_COMPAT
153 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
154 				unsigned long arg);
155 #else
156 #define tty_compat_ioctl NULL
157 #endif
158 static int __tty_fasync(int fd, struct file *filp, int on);
159 static int tty_fasync(int fd, struct file *filp, int on);
160 static void release_tty(struct tty_struct *tty, int idx);
161 
162 /**
163  *	free_tty_struct		-	free a disused tty
164  *	@tty: tty struct to free
165  *
166  *	Free the write buffers, tty queue and tty memory itself.
167  *
168  *	Locking: none. Must be called after tty is definitely unused
169  */
170 
171 void free_tty_struct(struct tty_struct *tty)
172 {
173 	if (!tty)
174 		return;
175 	put_device(tty->dev);
176 	kfree(tty->write_buf);
177 	tty->magic = 0xDEADDEAD;
178 	kfree(tty);
179 }
180 
181 static inline struct tty_struct *file_tty(struct file *file)
182 {
183 	return ((struct tty_file_private *)file->private_data)->tty;
184 }
185 
186 int tty_alloc_file(struct file *file)
187 {
188 	struct tty_file_private *priv;
189 
190 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
191 	if (!priv)
192 		return -ENOMEM;
193 
194 	file->private_data = priv;
195 
196 	return 0;
197 }
198 
199 /* Associate a new file with the tty structure */
200 void tty_add_file(struct tty_struct *tty, struct file *file)
201 {
202 	struct tty_file_private *priv = file->private_data;
203 
204 	priv->tty = tty;
205 	priv->file = file;
206 
207 	spin_lock(&tty_files_lock);
208 	list_add(&priv->list, &tty->tty_files);
209 	spin_unlock(&tty_files_lock);
210 }
211 
212 /**
213  * tty_free_file - free file->private_data
214  *
215  * This shall be used only for fail path handling when tty_add_file was not
216  * called yet.
217  */
218 void tty_free_file(struct file *file)
219 {
220 	struct tty_file_private *priv = file->private_data;
221 
222 	file->private_data = NULL;
223 	kfree(priv);
224 }
225 
226 /* Delete file from its tty */
227 static void tty_del_file(struct file *file)
228 {
229 	struct tty_file_private *priv = file->private_data;
230 
231 	spin_lock(&tty_files_lock);
232 	list_del(&priv->list);
233 	spin_unlock(&tty_files_lock);
234 	tty_free_file(file);
235 }
236 
237 
238 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
239 
240 /**
241  *	tty_name	-	return tty naming
242  *	@tty: tty structure
243  *
244  *	Convert a tty structure into a name. The name reflects the kernel
245  *	naming policy and if udev is in use may not reflect user space
246  *
247  *	Locking: none
248  */
249 
250 const char *tty_name(const struct tty_struct *tty)
251 {
252 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
253 		return "NULL tty";
254 	return tty->name;
255 }
256 
257 EXPORT_SYMBOL(tty_name);
258 
259 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
260 			      const char *routine)
261 {
262 #ifdef TTY_PARANOIA_CHECK
263 	if (!tty) {
264 		printk(KERN_WARNING
265 			"null TTY for (%d:%d) in %s\n",
266 			imajor(inode), iminor(inode), routine);
267 		return 1;
268 	}
269 	if (tty->magic != TTY_MAGIC) {
270 		printk(KERN_WARNING
271 			"bad magic number for tty struct (%d:%d) in %s\n",
272 			imajor(inode), iminor(inode), routine);
273 		return 1;
274 	}
275 #endif
276 	return 0;
277 }
278 
279 /* Caller must hold tty_lock */
280 static int check_tty_count(struct tty_struct *tty, const char *routine)
281 {
282 #ifdef CHECK_TTY_COUNT
283 	struct list_head *p;
284 	int count = 0;
285 
286 	spin_lock(&tty_files_lock);
287 	list_for_each(p, &tty->tty_files) {
288 		count++;
289 	}
290 	spin_unlock(&tty_files_lock);
291 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
293 	    tty->link && tty->link->count)
294 		count++;
295 	if (tty->count != count) {
296 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
297 				    "!= #fd's(%d) in %s\n",
298 		       tty->name, tty->count, count, routine);
299 		return count;
300 	}
301 #endif
302 	return 0;
303 }
304 
305 /**
306  *	get_tty_driver		-	find device of a tty
307  *	@dev_t: device identifier
308  *	@index: returns the index of the tty
309  *
310  *	This routine returns a tty driver structure, given a device number
311  *	and also passes back the index number.
312  *
313  *	Locking: caller must hold tty_mutex
314  */
315 
316 static struct tty_driver *get_tty_driver(dev_t device, int *index)
317 {
318 	struct tty_driver *p;
319 
320 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
321 		dev_t base = MKDEV(p->major, p->minor_start);
322 		if (device < base || device >= base + p->num)
323 			continue;
324 		*index = device - base;
325 		return tty_driver_kref_get(p);
326 	}
327 	return NULL;
328 }
329 
330 #ifdef CONFIG_CONSOLE_POLL
331 
332 /**
333  *	tty_find_polling_driver	-	find device of a polled tty
334  *	@name: name string to match
335  *	@line: pointer to resulting tty line nr
336  *
337  *	This routine returns a tty driver structure, given a name
338  *	and the condition that the tty driver is capable of polled
339  *	operation.
340  */
341 struct tty_driver *tty_find_polling_driver(char *name, int *line)
342 {
343 	struct tty_driver *p, *res = NULL;
344 	int tty_line = 0;
345 	int len;
346 	char *str, *stp;
347 
348 	for (str = name; *str; str++)
349 		if ((*str >= '0' && *str <= '9') || *str == ',')
350 			break;
351 	if (!*str)
352 		return NULL;
353 
354 	len = str - name;
355 	tty_line = simple_strtoul(str, &str, 10);
356 
357 	mutex_lock(&tty_mutex);
358 	/* Search through the tty devices to look for a match */
359 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
360 		if (strncmp(name, p->name, len) != 0)
361 			continue;
362 		stp = str;
363 		if (*stp == ',')
364 			stp++;
365 		if (*stp == '\0')
366 			stp = NULL;
367 
368 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
369 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
370 			res = tty_driver_kref_get(p);
371 			*line = tty_line;
372 			break;
373 		}
374 	}
375 	mutex_unlock(&tty_mutex);
376 
377 	return res;
378 }
379 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
380 #endif
381 
382 /**
383  *	tty_check_change	-	check for POSIX terminal changes
384  *	@tty: tty to check
385  *
386  *	If we try to write to, or set the state of, a terminal and we're
387  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
388  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
389  *
390  *	Locking: ctrl_lock
391  */
392 
393 int tty_check_change(struct tty_struct *tty)
394 {
395 	unsigned long flags;
396 	struct pid *pgrp;
397 	int ret = 0;
398 
399 	if (current->signal->tty != tty)
400 		return 0;
401 
402 	rcu_read_lock();
403 	pgrp = task_pgrp(current);
404 
405 	spin_lock_irqsave(&tty->ctrl_lock, flags);
406 
407 	if (!tty->pgrp) {
408 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
409 		goto out_unlock;
410 	}
411 	if (pgrp == tty->pgrp)
412 		goto out_unlock;
413 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
414 
415 	if (is_ignored(SIGTTOU))
416 		goto out_rcuunlock;
417 	if (is_current_pgrp_orphaned()) {
418 		ret = -EIO;
419 		goto out_rcuunlock;
420 	}
421 	kill_pgrp(pgrp, SIGTTOU, 1);
422 	rcu_read_unlock();
423 	set_thread_flag(TIF_SIGPENDING);
424 	ret = -ERESTARTSYS;
425 	return ret;
426 out_unlock:
427 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
428 out_rcuunlock:
429 	rcu_read_unlock();
430 	return ret;
431 }
432 
433 EXPORT_SYMBOL(tty_check_change);
434 
435 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
436 				size_t count, loff_t *ppos)
437 {
438 	return 0;
439 }
440 
441 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
442 				 size_t count, loff_t *ppos)
443 {
444 	return -EIO;
445 }
446 
447 /* No kernel lock held - none needed ;) */
448 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
449 {
450 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
451 }
452 
453 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
454 		unsigned long arg)
455 {
456 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
457 }
458 
459 static long hung_up_tty_compat_ioctl(struct file *file,
460 				     unsigned int cmd, unsigned long arg)
461 {
462 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463 }
464 
465 static const struct file_operations tty_fops = {
466 	.llseek		= no_llseek,
467 	.read		= tty_read,
468 	.write		= tty_write,
469 	.poll		= tty_poll,
470 	.unlocked_ioctl	= tty_ioctl,
471 	.compat_ioctl	= tty_compat_ioctl,
472 	.open		= tty_open,
473 	.release	= tty_release,
474 	.fasync		= tty_fasync,
475 };
476 
477 static const struct file_operations console_fops = {
478 	.llseek		= no_llseek,
479 	.read		= tty_read,
480 	.write		= redirected_tty_write,
481 	.poll		= tty_poll,
482 	.unlocked_ioctl	= tty_ioctl,
483 	.compat_ioctl	= tty_compat_ioctl,
484 	.open		= tty_open,
485 	.release	= tty_release,
486 	.fasync		= tty_fasync,
487 };
488 
489 static const struct file_operations hung_up_tty_fops = {
490 	.llseek		= no_llseek,
491 	.read		= hung_up_tty_read,
492 	.write		= hung_up_tty_write,
493 	.poll		= hung_up_tty_poll,
494 	.unlocked_ioctl	= hung_up_tty_ioctl,
495 	.compat_ioctl	= hung_up_tty_compat_ioctl,
496 	.release	= tty_release,
497 };
498 
499 static DEFINE_SPINLOCK(redirect_lock);
500 static struct file *redirect;
501 
502 
503 void proc_clear_tty(struct task_struct *p)
504 {
505 	unsigned long flags;
506 	struct tty_struct *tty;
507 	spin_lock_irqsave(&p->sighand->siglock, flags);
508 	tty = p->signal->tty;
509 	p->signal->tty = NULL;
510 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
511 	tty_kref_put(tty);
512 }
513 
514 /**
515  * proc_set_tty -  set the controlling terminal
516  *
517  * Only callable by the session leader and only if it does not already have
518  * a controlling terminal.
519  *
520  * Caller must hold:  tty_lock()
521  *		      a readlock on tasklist_lock
522  *		      sighand lock
523  */
524 static void __proc_set_tty(struct tty_struct *tty)
525 {
526 	unsigned long flags;
527 
528 	spin_lock_irqsave(&tty->ctrl_lock, flags);
529 	/*
530 	 * The session and fg pgrp references will be non-NULL if
531 	 * tiocsctty() is stealing the controlling tty
532 	 */
533 	put_pid(tty->session);
534 	put_pid(tty->pgrp);
535 	tty->pgrp = get_pid(task_pgrp(current));
536 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
537 	tty->session = get_pid(task_session(current));
538 	if (current->signal->tty) {
539 		tty_debug(tty, "current tty %s not NULL!!\n",
540 			  current->signal->tty->name);
541 		tty_kref_put(current->signal->tty);
542 	}
543 	put_pid(current->signal->tty_old_pgrp);
544 	current->signal->tty = tty_kref_get(tty);
545 	current->signal->tty_old_pgrp = NULL;
546 }
547 
548 static void proc_set_tty(struct tty_struct *tty)
549 {
550 	spin_lock_irq(&current->sighand->siglock);
551 	__proc_set_tty(tty);
552 	spin_unlock_irq(&current->sighand->siglock);
553 }
554 
555 struct tty_struct *get_current_tty(void)
556 {
557 	struct tty_struct *tty;
558 	unsigned long flags;
559 
560 	spin_lock_irqsave(&current->sighand->siglock, flags);
561 	tty = tty_kref_get(current->signal->tty);
562 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
563 	return tty;
564 }
565 EXPORT_SYMBOL_GPL(get_current_tty);
566 
567 static void session_clear_tty(struct pid *session)
568 {
569 	struct task_struct *p;
570 	do_each_pid_task(session, PIDTYPE_SID, p) {
571 		proc_clear_tty(p);
572 	} while_each_pid_task(session, PIDTYPE_SID, p);
573 }
574 
575 /**
576  *	tty_wakeup	-	request more data
577  *	@tty: terminal
578  *
579  *	Internal and external helper for wakeups of tty. This function
580  *	informs the line discipline if present that the driver is ready
581  *	to receive more output data.
582  */
583 
584 void tty_wakeup(struct tty_struct *tty)
585 {
586 	struct tty_ldisc *ld;
587 
588 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
589 		ld = tty_ldisc_ref(tty);
590 		if (ld) {
591 			if (ld->ops->write_wakeup)
592 				ld->ops->write_wakeup(tty);
593 			tty_ldisc_deref(ld);
594 		}
595 	}
596 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
597 }
598 
599 EXPORT_SYMBOL_GPL(tty_wakeup);
600 
601 /**
602  *	tty_signal_session_leader	- sends SIGHUP to session leader
603  *	@tty		controlling tty
604  *	@exit_session	if non-zero, signal all foreground group processes
605  *
606  *	Send SIGHUP and SIGCONT to the session leader and its process group.
607  *	Optionally, signal all processes in the foreground process group.
608  *
609  *	Returns the number of processes in the session with this tty
610  *	as their controlling terminal. This value is used to drop
611  *	tty references for those processes.
612  */
613 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
614 {
615 	struct task_struct *p;
616 	int refs = 0;
617 	struct pid *tty_pgrp = NULL;
618 
619 	read_lock(&tasklist_lock);
620 	if (tty->session) {
621 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
622 			spin_lock_irq(&p->sighand->siglock);
623 			if (p->signal->tty == tty) {
624 				p->signal->tty = NULL;
625 				/* We defer the dereferences outside fo
626 				   the tasklist lock */
627 				refs++;
628 			}
629 			if (!p->signal->leader) {
630 				spin_unlock_irq(&p->sighand->siglock);
631 				continue;
632 			}
633 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
634 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
635 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
636 			spin_lock(&tty->ctrl_lock);
637 			tty_pgrp = get_pid(tty->pgrp);
638 			if (tty->pgrp)
639 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
640 			spin_unlock(&tty->ctrl_lock);
641 			spin_unlock_irq(&p->sighand->siglock);
642 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
643 	}
644 	read_unlock(&tasklist_lock);
645 
646 	if (tty_pgrp) {
647 		if (exit_session)
648 			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
649 		put_pid(tty_pgrp);
650 	}
651 
652 	return refs;
653 }
654 
655 /**
656  *	__tty_hangup		-	actual handler for hangup events
657  *	@work: tty device
658  *
659  *	This can be called by a "kworker" kernel thread.  That is process
660  *	synchronous but doesn't hold any locks, so we need to make sure we
661  *	have the appropriate locks for what we're doing.
662  *
663  *	The hangup event clears any pending redirections onto the hung up
664  *	device. It ensures future writes will error and it does the needed
665  *	line discipline hangup and signal delivery. The tty object itself
666  *	remains intact.
667  *
668  *	Locking:
669  *		BTM
670  *		  redirect lock for undoing redirection
671  *		  file list lock for manipulating list of ttys
672  *		  tty_ldiscs_lock from called functions
673  *		  termios_rwsem resetting termios data
674  *		  tasklist_lock to walk task list for hangup event
675  *		    ->siglock to protect ->signal/->sighand
676  */
677 static void __tty_hangup(struct tty_struct *tty, int exit_session)
678 {
679 	struct file *cons_filp = NULL;
680 	struct file *filp, *f = NULL;
681 	struct tty_file_private *priv;
682 	int    closecount = 0, n;
683 	int refs;
684 
685 	if (!tty)
686 		return;
687 
688 
689 	spin_lock(&redirect_lock);
690 	if (redirect && file_tty(redirect) == tty) {
691 		f = redirect;
692 		redirect = NULL;
693 	}
694 	spin_unlock(&redirect_lock);
695 
696 	tty_lock(tty);
697 
698 	if (test_bit(TTY_HUPPED, &tty->flags)) {
699 		tty_unlock(tty);
700 		return;
701 	}
702 
703 	/* inuse_filps is protected by the single tty lock,
704 	   this really needs to change if we want to flush the
705 	   workqueue with the lock held */
706 	check_tty_count(tty, "tty_hangup");
707 
708 	spin_lock(&tty_files_lock);
709 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
710 	list_for_each_entry(priv, &tty->tty_files, list) {
711 		filp = priv->file;
712 		if (filp->f_op->write == redirected_tty_write)
713 			cons_filp = filp;
714 		if (filp->f_op->write != tty_write)
715 			continue;
716 		closecount++;
717 		__tty_fasync(-1, filp, 0);	/* can't block */
718 		filp->f_op = &hung_up_tty_fops;
719 	}
720 	spin_unlock(&tty_files_lock);
721 
722 	refs = tty_signal_session_leader(tty, exit_session);
723 	/* Account for the p->signal references we killed */
724 	while (refs--)
725 		tty_kref_put(tty);
726 
727 	tty_ldisc_hangup(tty);
728 
729 	spin_lock_irq(&tty->ctrl_lock);
730 	clear_bit(TTY_THROTTLED, &tty->flags);
731 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
732 	put_pid(tty->session);
733 	put_pid(tty->pgrp);
734 	tty->session = NULL;
735 	tty->pgrp = NULL;
736 	tty->ctrl_status = 0;
737 	spin_unlock_irq(&tty->ctrl_lock);
738 
739 	/*
740 	 * If one of the devices matches a console pointer, we
741 	 * cannot just call hangup() because that will cause
742 	 * tty->count and state->count to go out of sync.
743 	 * So we just call close() the right number of times.
744 	 */
745 	if (cons_filp) {
746 		if (tty->ops->close)
747 			for (n = 0; n < closecount; n++)
748 				tty->ops->close(tty, cons_filp);
749 	} else if (tty->ops->hangup)
750 		tty->ops->hangup(tty);
751 	/*
752 	 * We don't want to have driver/ldisc interactions beyond
753 	 * the ones we did here. The driver layer expects no
754 	 * calls after ->hangup() from the ldisc side. However we
755 	 * can't yet guarantee all that.
756 	 */
757 	set_bit(TTY_HUPPED, &tty->flags);
758 	tty_unlock(tty);
759 
760 	if (f)
761 		fput(f);
762 }
763 
764 static void do_tty_hangup(struct work_struct *work)
765 {
766 	struct tty_struct *tty =
767 		container_of(work, struct tty_struct, hangup_work);
768 
769 	__tty_hangup(tty, 0);
770 }
771 
772 /**
773  *	tty_hangup		-	trigger a hangup event
774  *	@tty: tty to hangup
775  *
776  *	A carrier loss (virtual or otherwise) has occurred on this like
777  *	schedule a hangup sequence to run after this event.
778  */
779 
780 void tty_hangup(struct tty_struct *tty)
781 {
782 	tty_debug_hangup(tty, "\n");
783 	schedule_work(&tty->hangup_work);
784 }
785 
786 EXPORT_SYMBOL(tty_hangup);
787 
788 /**
789  *	tty_vhangup		-	process vhangup
790  *	@tty: tty to hangup
791  *
792  *	The user has asked via system call for the terminal to be hung up.
793  *	We do this synchronously so that when the syscall returns the process
794  *	is complete. That guarantee is necessary for security reasons.
795  */
796 
797 void tty_vhangup(struct tty_struct *tty)
798 {
799 	tty_debug_hangup(tty, "\n");
800 	__tty_hangup(tty, 0);
801 }
802 
803 EXPORT_SYMBOL(tty_vhangup);
804 
805 
806 /**
807  *	tty_vhangup_self	-	process vhangup for own ctty
808  *
809  *	Perform a vhangup on the current controlling tty
810  */
811 
812 void tty_vhangup_self(void)
813 {
814 	struct tty_struct *tty;
815 
816 	tty = get_current_tty();
817 	if (tty) {
818 		tty_vhangup(tty);
819 		tty_kref_put(tty);
820 	}
821 }
822 
823 /**
824  *	tty_vhangup_session		-	hangup session leader exit
825  *	@tty: tty to hangup
826  *
827  *	The session leader is exiting and hanging up its controlling terminal.
828  *	Every process in the foreground process group is signalled SIGHUP.
829  *
830  *	We do this synchronously so that when the syscall returns the process
831  *	is complete. That guarantee is necessary for security reasons.
832  */
833 
834 static void tty_vhangup_session(struct tty_struct *tty)
835 {
836 	tty_debug_hangup(tty, "\n");
837 	__tty_hangup(tty, 1);
838 }
839 
840 /**
841  *	tty_hung_up_p		-	was tty hung up
842  *	@filp: file pointer of tty
843  *
844  *	Return true if the tty has been subject to a vhangup or a carrier
845  *	loss
846  */
847 
848 int tty_hung_up_p(struct file *filp)
849 {
850 	return (filp->f_op == &hung_up_tty_fops);
851 }
852 
853 EXPORT_SYMBOL(tty_hung_up_p);
854 
855 /**
856  *	disassociate_ctty	-	disconnect controlling tty
857  *	@on_exit: true if exiting so need to "hang up" the session
858  *
859  *	This function is typically called only by the session leader, when
860  *	it wants to disassociate itself from its controlling tty.
861  *
862  *	It performs the following functions:
863  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
864  * 	(2)  Clears the tty from being controlling the session
865  * 	(3)  Clears the controlling tty for all processes in the
866  * 		session group.
867  *
868  *	The argument on_exit is set to 1 if called when a process is
869  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
870  *
871  *	Locking:
872  *		BTM is taken for hysterical raisins, and held when
873  *		  called from no_tty().
874  *		  tty_mutex is taken to protect tty
875  *		  ->siglock is taken to protect ->signal/->sighand
876  *		  tasklist_lock is taken to walk process list for sessions
877  *		    ->siglock is taken to protect ->signal/->sighand
878  */
879 
880 void disassociate_ctty(int on_exit)
881 {
882 	struct tty_struct *tty;
883 
884 	if (!current->signal->leader)
885 		return;
886 
887 	tty = get_current_tty();
888 	if (tty) {
889 		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
890 			tty_vhangup_session(tty);
891 		} else {
892 			struct pid *tty_pgrp = tty_get_pgrp(tty);
893 			if (tty_pgrp) {
894 				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
895 				if (!on_exit)
896 					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
897 				put_pid(tty_pgrp);
898 			}
899 		}
900 		tty_kref_put(tty);
901 
902 	} else if (on_exit) {
903 		struct pid *old_pgrp;
904 		spin_lock_irq(&current->sighand->siglock);
905 		old_pgrp = current->signal->tty_old_pgrp;
906 		current->signal->tty_old_pgrp = NULL;
907 		spin_unlock_irq(&current->sighand->siglock);
908 		if (old_pgrp) {
909 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
910 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
911 			put_pid(old_pgrp);
912 		}
913 		return;
914 	}
915 
916 	spin_lock_irq(&current->sighand->siglock);
917 	put_pid(current->signal->tty_old_pgrp);
918 	current->signal->tty_old_pgrp = NULL;
919 
920 	tty = tty_kref_get(current->signal->tty);
921 	if (tty) {
922 		unsigned long flags;
923 		spin_lock_irqsave(&tty->ctrl_lock, flags);
924 		put_pid(tty->session);
925 		put_pid(tty->pgrp);
926 		tty->session = NULL;
927 		tty->pgrp = NULL;
928 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
929 		tty_kref_put(tty);
930 	} else
931 		tty_debug_hangup(tty, "no current tty\n");
932 
933 	spin_unlock_irq(&current->sighand->siglock);
934 	/* Now clear signal->tty under the lock */
935 	read_lock(&tasklist_lock);
936 	session_clear_tty(task_session(current));
937 	read_unlock(&tasklist_lock);
938 }
939 
940 /**
941  *
942  *	no_tty	- Ensure the current process does not have a controlling tty
943  */
944 void no_tty(void)
945 {
946 	/* FIXME: Review locking here. The tty_lock never covered any race
947 	   between a new association and proc_clear_tty but possible we need
948 	   to protect against this anyway */
949 	struct task_struct *tsk = current;
950 	disassociate_ctty(0);
951 	proc_clear_tty(tsk);
952 }
953 
954 
955 /**
956  *	stop_tty	-	propagate flow control
957  *	@tty: tty to stop
958  *
959  *	Perform flow control to the driver. May be called
960  *	on an already stopped device and will not re-call the driver
961  *	method.
962  *
963  *	This functionality is used by both the line disciplines for
964  *	halting incoming flow and by the driver. It may therefore be
965  *	called from any context, may be under the tty atomic_write_lock
966  *	but not always.
967  *
968  *	Locking:
969  *		flow_lock
970  */
971 
972 void __stop_tty(struct tty_struct *tty)
973 {
974 	if (tty->stopped)
975 		return;
976 	tty->stopped = 1;
977 	if (tty->ops->stop)
978 		tty->ops->stop(tty);
979 }
980 
981 void stop_tty(struct tty_struct *tty)
982 {
983 	unsigned long flags;
984 
985 	spin_lock_irqsave(&tty->flow_lock, flags);
986 	__stop_tty(tty);
987 	spin_unlock_irqrestore(&tty->flow_lock, flags);
988 }
989 EXPORT_SYMBOL(stop_tty);
990 
991 /**
992  *	start_tty	-	propagate flow control
993  *	@tty: tty to start
994  *
995  *	Start a tty that has been stopped if at all possible. If this
996  *	tty was previous stopped and is now being started, the driver
997  *	start method is invoked and the line discipline woken.
998  *
999  *	Locking:
1000  *		flow_lock
1001  */
1002 
1003 void __start_tty(struct tty_struct *tty)
1004 {
1005 	if (!tty->stopped || tty->flow_stopped)
1006 		return;
1007 	tty->stopped = 0;
1008 	if (tty->ops->start)
1009 		tty->ops->start(tty);
1010 	tty_wakeup(tty);
1011 }
1012 
1013 void start_tty(struct tty_struct *tty)
1014 {
1015 	unsigned long flags;
1016 
1017 	spin_lock_irqsave(&tty->flow_lock, flags);
1018 	__start_tty(tty);
1019 	spin_unlock_irqrestore(&tty->flow_lock, flags);
1020 }
1021 EXPORT_SYMBOL(start_tty);
1022 
1023 static void tty_update_time(struct timespec *time)
1024 {
1025 	unsigned long sec = get_seconds();
1026 
1027 	/*
1028 	 * We only care if the two values differ in anything other than the
1029 	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1030 	 * the time of the tty device, otherwise it could be construded as a
1031 	 * security leak to let userspace know the exact timing of the tty.
1032 	 */
1033 	if ((sec ^ time->tv_sec) & ~7)
1034 		time->tv_sec = sec;
1035 }
1036 
1037 /**
1038  *	tty_read	-	read method for tty device files
1039  *	@file: pointer to tty file
1040  *	@buf: user buffer
1041  *	@count: size of user buffer
1042  *	@ppos: unused
1043  *
1044  *	Perform the read system call function on this terminal device. Checks
1045  *	for hung up devices before calling the line discipline method.
1046  *
1047  *	Locking:
1048  *		Locks the line discipline internally while needed. Multiple
1049  *	read calls may be outstanding in parallel.
1050  */
1051 
1052 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1053 			loff_t *ppos)
1054 {
1055 	int i;
1056 	struct inode *inode = file_inode(file);
1057 	struct tty_struct *tty = file_tty(file);
1058 	struct tty_ldisc *ld;
1059 
1060 	if (tty_paranoia_check(tty, inode, "tty_read"))
1061 		return -EIO;
1062 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1063 		return -EIO;
1064 
1065 	/* We want to wait for the line discipline to sort out in this
1066 	   situation */
1067 	ld = tty_ldisc_ref_wait(tty);
1068 	if (ld->ops->read)
1069 		i = ld->ops->read(tty, file, buf, count);
1070 	else
1071 		i = -EIO;
1072 	tty_ldisc_deref(ld);
1073 
1074 	if (i > 0)
1075 		tty_update_time(&inode->i_atime);
1076 
1077 	return i;
1078 }
1079 
1080 static void tty_write_unlock(struct tty_struct *tty)
1081 {
1082 	mutex_unlock(&tty->atomic_write_lock);
1083 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1084 }
1085 
1086 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1087 {
1088 	if (!mutex_trylock(&tty->atomic_write_lock)) {
1089 		if (ndelay)
1090 			return -EAGAIN;
1091 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1092 			return -ERESTARTSYS;
1093 	}
1094 	return 0;
1095 }
1096 
1097 /*
1098  * Split writes up in sane blocksizes to avoid
1099  * denial-of-service type attacks
1100  */
1101 static inline ssize_t do_tty_write(
1102 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1103 	struct tty_struct *tty,
1104 	struct file *file,
1105 	const char __user *buf,
1106 	size_t count)
1107 {
1108 	ssize_t ret, written = 0;
1109 	unsigned int chunk;
1110 
1111 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1112 	if (ret < 0)
1113 		return ret;
1114 
1115 	/*
1116 	 * We chunk up writes into a temporary buffer. This
1117 	 * simplifies low-level drivers immensely, since they
1118 	 * don't have locking issues and user mode accesses.
1119 	 *
1120 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1121 	 * big chunk-size..
1122 	 *
1123 	 * The default chunk-size is 2kB, because the NTTY
1124 	 * layer has problems with bigger chunks. It will
1125 	 * claim to be able to handle more characters than
1126 	 * it actually does.
1127 	 *
1128 	 * FIXME: This can probably go away now except that 64K chunks
1129 	 * are too likely to fail unless switched to vmalloc...
1130 	 */
1131 	chunk = 2048;
1132 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1133 		chunk = 65536;
1134 	if (count < chunk)
1135 		chunk = count;
1136 
1137 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1138 	if (tty->write_cnt < chunk) {
1139 		unsigned char *buf_chunk;
1140 
1141 		if (chunk < 1024)
1142 			chunk = 1024;
1143 
1144 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1145 		if (!buf_chunk) {
1146 			ret = -ENOMEM;
1147 			goto out;
1148 		}
1149 		kfree(tty->write_buf);
1150 		tty->write_cnt = chunk;
1151 		tty->write_buf = buf_chunk;
1152 	}
1153 
1154 	/* Do the write .. */
1155 	for (;;) {
1156 		size_t size = count;
1157 		if (size > chunk)
1158 			size = chunk;
1159 		ret = -EFAULT;
1160 		if (copy_from_user(tty->write_buf, buf, size))
1161 			break;
1162 		ret = write(tty, file, tty->write_buf, size);
1163 		if (ret <= 0)
1164 			break;
1165 		written += ret;
1166 		buf += ret;
1167 		count -= ret;
1168 		if (!count)
1169 			break;
1170 		ret = -ERESTARTSYS;
1171 		if (signal_pending(current))
1172 			break;
1173 		cond_resched();
1174 	}
1175 	if (written) {
1176 		tty_update_time(&file_inode(file)->i_mtime);
1177 		ret = written;
1178 	}
1179 out:
1180 	tty_write_unlock(tty);
1181 	return ret;
1182 }
1183 
1184 /**
1185  * tty_write_message - write a message to a certain tty, not just the console.
1186  * @tty: the destination tty_struct
1187  * @msg: the message to write
1188  *
1189  * This is used for messages that need to be redirected to a specific tty.
1190  * We don't put it into the syslog queue right now maybe in the future if
1191  * really needed.
1192  *
1193  * We must still hold the BTM and test the CLOSING flag for the moment.
1194  */
1195 
1196 void tty_write_message(struct tty_struct *tty, char *msg)
1197 {
1198 	if (tty) {
1199 		mutex_lock(&tty->atomic_write_lock);
1200 		tty_lock(tty);
1201 		if (tty->ops->write && tty->count > 0) {
1202 			tty_unlock(tty);
1203 			tty->ops->write(tty, msg, strlen(msg));
1204 		} else
1205 			tty_unlock(tty);
1206 		tty_write_unlock(tty);
1207 	}
1208 	return;
1209 }
1210 
1211 
1212 /**
1213  *	tty_write		-	write method for tty device file
1214  *	@file: tty file pointer
1215  *	@buf: user data to write
1216  *	@count: bytes to write
1217  *	@ppos: unused
1218  *
1219  *	Write data to a tty device via the line discipline.
1220  *
1221  *	Locking:
1222  *		Locks the line discipline as required
1223  *		Writes to the tty driver are serialized by the atomic_write_lock
1224  *	and are then processed in chunks to the device. The line discipline
1225  *	write method will not be invoked in parallel for each device.
1226  */
1227 
1228 static ssize_t tty_write(struct file *file, const char __user *buf,
1229 						size_t count, loff_t *ppos)
1230 {
1231 	struct tty_struct *tty = file_tty(file);
1232  	struct tty_ldisc *ld;
1233 	ssize_t ret;
1234 
1235 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1236 		return -EIO;
1237 	if (!tty || !tty->ops->write ||
1238 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1239 			return -EIO;
1240 	/* Short term debug to catch buggy drivers */
1241 	if (tty->ops->write_room == NULL)
1242 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1243 			tty->driver->name);
1244 	ld = tty_ldisc_ref_wait(tty);
1245 	if (!ld->ops->write)
1246 		ret = -EIO;
1247 	else
1248 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1249 	tty_ldisc_deref(ld);
1250 	return ret;
1251 }
1252 
1253 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1254 						size_t count, loff_t *ppos)
1255 {
1256 	struct file *p = NULL;
1257 
1258 	spin_lock(&redirect_lock);
1259 	if (redirect)
1260 		p = get_file(redirect);
1261 	spin_unlock(&redirect_lock);
1262 
1263 	if (p) {
1264 		ssize_t res;
1265 		res = vfs_write(p, buf, count, &p->f_pos);
1266 		fput(p);
1267 		return res;
1268 	}
1269 	return tty_write(file, buf, count, ppos);
1270 }
1271 
1272 /**
1273  *	tty_send_xchar	-	send priority character
1274  *
1275  *	Send a high priority character to the tty even if stopped
1276  *
1277  *	Locking: none for xchar method, write ordering for write method.
1278  */
1279 
1280 int tty_send_xchar(struct tty_struct *tty, char ch)
1281 {
1282 	int	was_stopped = tty->stopped;
1283 
1284 	if (tty->ops->send_xchar) {
1285 		tty->ops->send_xchar(tty, ch);
1286 		return 0;
1287 	}
1288 
1289 	if (tty_write_lock(tty, 0) < 0)
1290 		return -ERESTARTSYS;
1291 
1292 	if (was_stopped)
1293 		start_tty(tty);
1294 	tty->ops->write(tty, &ch, 1);
1295 	if (was_stopped)
1296 		stop_tty(tty);
1297 	tty_write_unlock(tty);
1298 	return 0;
1299 }
1300 
1301 static char ptychar[] = "pqrstuvwxyzabcde";
1302 
1303 /**
1304  *	pty_line_name	-	generate name for a pty
1305  *	@driver: the tty driver in use
1306  *	@index: the minor number
1307  *	@p: output buffer of at least 6 bytes
1308  *
1309  *	Generate a name from a driver reference and write it to the output
1310  *	buffer.
1311  *
1312  *	Locking: None
1313  */
1314 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1315 {
1316 	int i = index + driver->name_base;
1317 	/* ->name is initialized to "ttyp", but "tty" is expected */
1318 	sprintf(p, "%s%c%x",
1319 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1320 		ptychar[i >> 4 & 0xf], i & 0xf);
1321 }
1322 
1323 /**
1324  *	tty_line_name	-	generate name for a tty
1325  *	@driver: the tty driver in use
1326  *	@index: the minor number
1327  *	@p: output buffer of at least 7 bytes
1328  *
1329  *	Generate a name from a driver reference and write it to the output
1330  *	buffer.
1331  *
1332  *	Locking: None
1333  */
1334 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1335 {
1336 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1337 		return sprintf(p, "%s", driver->name);
1338 	else
1339 		return sprintf(p, "%s%d", driver->name,
1340 			       index + driver->name_base);
1341 }
1342 
1343 /**
1344  *	tty_driver_lookup_tty() - find an existing tty, if any
1345  *	@driver: the driver for the tty
1346  *	@idx:	 the minor number
1347  *
1348  *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1349  *	driver lookup() method returns an error.
1350  *
1351  *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1352  */
1353 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1354 		struct inode *inode, int idx)
1355 {
1356 	struct tty_struct *tty;
1357 
1358 	if (driver->ops->lookup)
1359 		tty = driver->ops->lookup(driver, inode, idx);
1360 	else
1361 		tty = driver->ttys[idx];
1362 
1363 	if (!IS_ERR(tty))
1364 		tty_kref_get(tty);
1365 	return tty;
1366 }
1367 
1368 /**
1369  *	tty_init_termios	-  helper for termios setup
1370  *	@tty: the tty to set up
1371  *
1372  *	Initialise the termios structures for this tty. Thus runs under
1373  *	the tty_mutex currently so we can be relaxed about ordering.
1374  */
1375 
1376 int tty_init_termios(struct tty_struct *tty)
1377 {
1378 	struct ktermios *tp;
1379 	int idx = tty->index;
1380 
1381 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1382 		tty->termios = tty->driver->init_termios;
1383 	else {
1384 		/* Check for lazy saved data */
1385 		tp = tty->driver->termios[idx];
1386 		if (tp != NULL)
1387 			tty->termios = *tp;
1388 		else
1389 			tty->termios = tty->driver->init_termios;
1390 	}
1391 	/* Compatibility until drivers always set this */
1392 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1393 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1394 	return 0;
1395 }
1396 EXPORT_SYMBOL_GPL(tty_init_termios);
1397 
1398 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1399 {
1400 	int ret = tty_init_termios(tty);
1401 	if (ret)
1402 		return ret;
1403 
1404 	tty_driver_kref_get(driver);
1405 	tty->count++;
1406 	driver->ttys[tty->index] = tty;
1407 	return 0;
1408 }
1409 EXPORT_SYMBOL_GPL(tty_standard_install);
1410 
1411 /**
1412  *	tty_driver_install_tty() - install a tty entry in the driver
1413  *	@driver: the driver for the tty
1414  *	@tty: the tty
1415  *
1416  *	Install a tty object into the driver tables. The tty->index field
1417  *	will be set by the time this is called. This method is responsible
1418  *	for ensuring any need additional structures are allocated and
1419  *	configured.
1420  *
1421  *	Locking: tty_mutex for now
1422  */
1423 static int tty_driver_install_tty(struct tty_driver *driver,
1424 						struct tty_struct *tty)
1425 {
1426 	return driver->ops->install ? driver->ops->install(driver, tty) :
1427 		tty_standard_install(driver, tty);
1428 }
1429 
1430 /**
1431  *	tty_driver_remove_tty() - remove a tty from the driver tables
1432  *	@driver: the driver for the tty
1433  *	@idx:	 the minor number
1434  *
1435  *	Remvoe a tty object from the driver tables. The tty->index field
1436  *	will be set by the time this is called.
1437  *
1438  *	Locking: tty_mutex for now
1439  */
1440 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1441 {
1442 	if (driver->ops->remove)
1443 		driver->ops->remove(driver, tty);
1444 	else
1445 		driver->ttys[tty->index] = NULL;
1446 }
1447 
1448 /*
1449  * 	tty_reopen()	- fast re-open of an open tty
1450  * 	@tty	- the tty to open
1451  *
1452  *	Return 0 on success, -errno on error.
1453  *	Re-opens on master ptys are not allowed and return -EIO.
1454  *
1455  *	Locking: Caller must hold tty_lock
1456  */
1457 static int tty_reopen(struct tty_struct *tty)
1458 {
1459 	struct tty_driver *driver = tty->driver;
1460 
1461 	if (!tty->count)
1462 		return -EIO;
1463 
1464 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1465 	    driver->subtype == PTY_TYPE_MASTER)
1466 		return -EIO;
1467 
1468 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1469 		return -EBUSY;
1470 
1471 	tty->count++;
1472 
1473 	WARN_ON(!tty->ldisc);
1474 
1475 	return 0;
1476 }
1477 
1478 /**
1479  *	tty_init_dev		-	initialise a tty device
1480  *	@driver: tty driver we are opening a device on
1481  *	@idx: device index
1482  *	@ret_tty: returned tty structure
1483  *
1484  *	Prepare a tty device. This may not be a "new" clean device but
1485  *	could also be an active device. The pty drivers require special
1486  *	handling because of this.
1487  *
1488  *	Locking:
1489  *		The function is called under the tty_mutex, which
1490  *	protects us from the tty struct or driver itself going away.
1491  *
1492  *	On exit the tty device has the line discipline attached and
1493  *	a reference count of 1. If a pair was created for pty/tty use
1494  *	and the other was a pty master then it too has a reference count of 1.
1495  *
1496  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1497  * failed open.  The new code protects the open with a mutex, so it's
1498  * really quite straightforward.  The mutex locking can probably be
1499  * relaxed for the (most common) case of reopening a tty.
1500  */
1501 
1502 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1503 {
1504 	struct tty_struct *tty;
1505 	int retval;
1506 
1507 	/*
1508 	 * First time open is complex, especially for PTY devices.
1509 	 * This code guarantees that either everything succeeds and the
1510 	 * TTY is ready for operation, or else the table slots are vacated
1511 	 * and the allocated memory released.  (Except that the termios
1512 	 * and locked termios may be retained.)
1513 	 */
1514 
1515 	if (!try_module_get(driver->owner))
1516 		return ERR_PTR(-ENODEV);
1517 
1518 	tty = alloc_tty_struct(driver, idx);
1519 	if (!tty) {
1520 		retval = -ENOMEM;
1521 		goto err_module_put;
1522 	}
1523 
1524 	tty_lock(tty);
1525 	retval = tty_driver_install_tty(driver, tty);
1526 	if (retval < 0)
1527 		goto err_deinit_tty;
1528 
1529 	if (!tty->port)
1530 		tty->port = driver->ports[idx];
1531 
1532 	WARN_RATELIMIT(!tty->port,
1533 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1534 			__func__, tty->driver->name);
1535 
1536 	tty->port->itty = tty;
1537 
1538 	/*
1539 	 * Structures all installed ... call the ldisc open routines.
1540 	 * If we fail here just call release_tty to clean up.  No need
1541 	 * to decrement the use counts, as release_tty doesn't care.
1542 	 */
1543 	retval = tty_ldisc_setup(tty, tty->link);
1544 	if (retval)
1545 		goto err_release_tty;
1546 	/* Return the tty locked so that it cannot vanish under the caller */
1547 	return tty;
1548 
1549 err_deinit_tty:
1550 	tty_unlock(tty);
1551 	deinitialize_tty_struct(tty);
1552 	free_tty_struct(tty);
1553 err_module_put:
1554 	module_put(driver->owner);
1555 	return ERR_PTR(retval);
1556 
1557 	/* call the tty release_tty routine to clean out this slot */
1558 err_release_tty:
1559 	tty_unlock(tty);
1560 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1561 				 "clearing slot %d\n", idx);
1562 	release_tty(tty, idx);
1563 	return ERR_PTR(retval);
1564 }
1565 
1566 void tty_free_termios(struct tty_struct *tty)
1567 {
1568 	struct ktermios *tp;
1569 	int idx = tty->index;
1570 
1571 	/* If the port is going to reset then it has no termios to save */
1572 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1573 		return;
1574 
1575 	/* Stash the termios data */
1576 	tp = tty->driver->termios[idx];
1577 	if (tp == NULL) {
1578 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1579 		if (tp == NULL) {
1580 			pr_warn("tty: no memory to save termios state.\n");
1581 			return;
1582 		}
1583 		tty->driver->termios[idx] = tp;
1584 	}
1585 	*tp = tty->termios;
1586 }
1587 EXPORT_SYMBOL(tty_free_termios);
1588 
1589 /**
1590  *	tty_flush_works		-	flush all works of a tty/pty pair
1591  *	@tty: tty device to flush works for (or either end of a pty pair)
1592  *
1593  *	Sync flush all works belonging to @tty (and the 'other' tty).
1594  */
1595 static void tty_flush_works(struct tty_struct *tty)
1596 {
1597 	flush_work(&tty->SAK_work);
1598 	flush_work(&tty->hangup_work);
1599 	if (tty->link) {
1600 		flush_work(&tty->link->SAK_work);
1601 		flush_work(&tty->link->hangup_work);
1602 	}
1603 }
1604 
1605 /**
1606  *	release_one_tty		-	release tty structure memory
1607  *	@kref: kref of tty we are obliterating
1608  *
1609  *	Releases memory associated with a tty structure, and clears out the
1610  *	driver table slots. This function is called when a device is no longer
1611  *	in use. It also gets called when setup of a device fails.
1612  *
1613  *	Locking:
1614  *		takes the file list lock internally when working on the list
1615  *	of ttys that the driver keeps.
1616  *
1617  *	This method gets called from a work queue so that the driver private
1618  *	cleanup ops can sleep (needed for USB at least)
1619  */
1620 static void release_one_tty(struct work_struct *work)
1621 {
1622 	struct tty_struct *tty =
1623 		container_of(work, struct tty_struct, hangup_work);
1624 	struct tty_driver *driver = tty->driver;
1625 	struct module *owner = driver->owner;
1626 
1627 	if (tty->ops->cleanup)
1628 		tty->ops->cleanup(tty);
1629 
1630 	tty->magic = 0;
1631 	tty_driver_kref_put(driver);
1632 	module_put(owner);
1633 
1634 	spin_lock(&tty_files_lock);
1635 	list_del_init(&tty->tty_files);
1636 	spin_unlock(&tty_files_lock);
1637 
1638 	put_pid(tty->pgrp);
1639 	put_pid(tty->session);
1640 	free_tty_struct(tty);
1641 }
1642 
1643 static void queue_release_one_tty(struct kref *kref)
1644 {
1645 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1646 
1647 	/* The hangup queue is now free so we can reuse it rather than
1648 	   waste a chunk of memory for each port */
1649 	INIT_WORK(&tty->hangup_work, release_one_tty);
1650 	schedule_work(&tty->hangup_work);
1651 }
1652 
1653 /**
1654  *	tty_kref_put		-	release a tty kref
1655  *	@tty: tty device
1656  *
1657  *	Release a reference to a tty device and if need be let the kref
1658  *	layer destruct the object for us
1659  */
1660 
1661 void tty_kref_put(struct tty_struct *tty)
1662 {
1663 	if (tty)
1664 		kref_put(&tty->kref, queue_release_one_tty);
1665 }
1666 EXPORT_SYMBOL(tty_kref_put);
1667 
1668 /**
1669  *	release_tty		-	release tty structure memory
1670  *
1671  *	Release both @tty and a possible linked partner (think pty pair),
1672  *	and decrement the refcount of the backing module.
1673  *
1674  *	Locking:
1675  *		tty_mutex
1676  *		takes the file list lock internally when working on the list
1677  *	of ttys that the driver keeps.
1678  *
1679  */
1680 static void release_tty(struct tty_struct *tty, int idx)
1681 {
1682 	/* This should always be true but check for the moment */
1683 	WARN_ON(tty->index != idx);
1684 	WARN_ON(!mutex_is_locked(&tty_mutex));
1685 	if (tty->ops->shutdown)
1686 		tty->ops->shutdown(tty);
1687 	tty_free_termios(tty);
1688 	tty_driver_remove_tty(tty->driver, tty);
1689 	tty->port->itty = NULL;
1690 	if (tty->link)
1691 		tty->link->port->itty = NULL;
1692 	cancel_work_sync(&tty->port->buf.work);
1693 
1694 	tty_kref_put(tty->link);
1695 	tty_kref_put(tty);
1696 }
1697 
1698 /**
1699  *	tty_release_checks - check a tty before real release
1700  *	@tty: tty to check
1701  *	@o_tty: link of @tty (if any)
1702  *	@idx: index of the tty
1703  *
1704  *	Performs some paranoid checking before true release of the @tty.
1705  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1706  */
1707 static int tty_release_checks(struct tty_struct *tty, int idx)
1708 {
1709 #ifdef TTY_PARANOIA_CHECK
1710 	if (idx < 0 || idx >= tty->driver->num) {
1711 		tty_debug(tty, "bad idx %d\n", idx);
1712 		return -1;
1713 	}
1714 
1715 	/* not much to check for devpts */
1716 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1717 		return 0;
1718 
1719 	if (tty != tty->driver->ttys[idx]) {
1720 		tty_debug(tty, "bad driver table[%d] = %p\n",
1721 			  idx, tty->driver->ttys[idx]);
1722 		return -1;
1723 	}
1724 	if (tty->driver->other) {
1725 		struct tty_struct *o_tty = tty->link;
1726 
1727 		if (o_tty != tty->driver->other->ttys[idx]) {
1728 			tty_debug(tty, "bad other table[%d] = %p\n",
1729 				  idx, tty->driver->other->ttys[idx]);
1730 			return -1;
1731 		}
1732 		if (o_tty->link != tty) {
1733 			tty_debug(tty, "bad link = %p\n", o_tty->link);
1734 			return -1;
1735 		}
1736 	}
1737 #endif
1738 	return 0;
1739 }
1740 
1741 /**
1742  *	tty_release		-	vfs callback for close
1743  *	@inode: inode of tty
1744  *	@filp: file pointer for handle to tty
1745  *
1746  *	Called the last time each file handle is closed that references
1747  *	this tty. There may however be several such references.
1748  *
1749  *	Locking:
1750  *		Takes bkl. See tty_release_dev
1751  *
1752  * Even releasing the tty structures is a tricky business.. We have
1753  * to be very careful that the structures are all released at the
1754  * same time, as interrupts might otherwise get the wrong pointers.
1755  *
1756  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1757  * lead to double frees or releasing memory still in use.
1758  */
1759 
1760 int tty_release(struct inode *inode, struct file *filp)
1761 {
1762 	struct tty_struct *tty = file_tty(filp);
1763 	struct tty_struct *o_tty = NULL;
1764 	int	do_sleep, final;
1765 	int	idx;
1766 	long	timeout = 0;
1767 	int	once = 1;
1768 
1769 	if (tty_paranoia_check(tty, inode, __func__))
1770 		return 0;
1771 
1772 	tty_lock(tty);
1773 	check_tty_count(tty, __func__);
1774 
1775 	__tty_fasync(-1, filp, 0);
1776 
1777 	idx = tty->index;
1778 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1779 	    tty->driver->subtype == PTY_TYPE_MASTER)
1780 		o_tty = tty->link;
1781 
1782 	if (tty_release_checks(tty, idx)) {
1783 		tty_unlock(tty);
1784 		return 0;
1785 	}
1786 
1787 	tty_debug_hangup(tty, "(tty count=%d)...\n", tty->count);
1788 
1789 	if (tty->ops->close)
1790 		tty->ops->close(tty, filp);
1791 
1792 	/* If tty is pty master, lock the slave pty (stable lock order) */
1793 	tty_lock_slave(o_tty);
1794 
1795 	/*
1796 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1797 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1798 	 * wait queues and kick everyone out _before_ actually starting to
1799 	 * close.  This ensures that we won't block while releasing the tty
1800 	 * structure.
1801 	 *
1802 	 * The test for the o_tty closing is necessary, since the master and
1803 	 * slave sides may close in any order.  If the slave side closes out
1804 	 * first, its count will be one, since the master side holds an open.
1805 	 * Thus this test wouldn't be triggered at the time the slave closed,
1806 	 * so we do it now.
1807 	 */
1808 	while (1) {
1809 		do_sleep = 0;
1810 
1811 		if (tty->count <= 1) {
1812 			if (waitqueue_active(&tty->read_wait)) {
1813 				wake_up_poll(&tty->read_wait, POLLIN);
1814 				do_sleep++;
1815 			}
1816 			if (waitqueue_active(&tty->write_wait)) {
1817 				wake_up_poll(&tty->write_wait, POLLOUT);
1818 				do_sleep++;
1819 			}
1820 		}
1821 		if (o_tty && o_tty->count <= 1) {
1822 			if (waitqueue_active(&o_tty->read_wait)) {
1823 				wake_up_poll(&o_tty->read_wait, POLLIN);
1824 				do_sleep++;
1825 			}
1826 			if (waitqueue_active(&o_tty->write_wait)) {
1827 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1828 				do_sleep++;
1829 			}
1830 		}
1831 		if (!do_sleep)
1832 			break;
1833 
1834 		if (once) {
1835 			once = 0;
1836 			printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1837 			       __func__, tty_name(tty));
1838 		}
1839 		schedule_timeout_killable(timeout);
1840 		if (timeout < 120 * HZ)
1841 			timeout = 2 * timeout + 1;
1842 		else
1843 			timeout = MAX_SCHEDULE_TIMEOUT;
1844 	}
1845 
1846 	if (o_tty) {
1847 		if (--o_tty->count < 0) {
1848 			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1849 				__func__, o_tty->count, tty_name(o_tty));
1850 			o_tty->count = 0;
1851 		}
1852 	}
1853 	if (--tty->count < 0) {
1854 		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1855 				__func__, tty->count, tty_name(tty));
1856 		tty->count = 0;
1857 	}
1858 
1859 	/*
1860 	 * We've decremented tty->count, so we need to remove this file
1861 	 * descriptor off the tty->tty_files list; this serves two
1862 	 * purposes:
1863 	 *  - check_tty_count sees the correct number of file descriptors
1864 	 *    associated with this tty.
1865 	 *  - do_tty_hangup no longer sees this file descriptor as
1866 	 *    something that needs to be handled for hangups.
1867 	 */
1868 	tty_del_file(filp);
1869 
1870 	/*
1871 	 * Perform some housekeeping before deciding whether to return.
1872 	 *
1873 	 * If _either_ side is closing, make sure there aren't any
1874 	 * processes that still think tty or o_tty is their controlling
1875 	 * tty.
1876 	 */
1877 	if (!tty->count) {
1878 		read_lock(&tasklist_lock);
1879 		session_clear_tty(tty->session);
1880 		if (o_tty)
1881 			session_clear_tty(o_tty->session);
1882 		read_unlock(&tasklist_lock);
1883 	}
1884 
1885 	/* check whether both sides are closing ... */
1886 	final = !tty->count && !(o_tty && o_tty->count);
1887 
1888 	tty_unlock_slave(o_tty);
1889 	tty_unlock(tty);
1890 
1891 	/* At this point, the tty->count == 0 should ensure a dead tty
1892 	   cannot be re-opened by a racing opener */
1893 
1894 	if (!final)
1895 		return 0;
1896 
1897 	tty_debug_hangup(tty, "final close\n");
1898 	/*
1899 	 * Ask the line discipline code to release its structures
1900 	 */
1901 	tty_ldisc_release(tty);
1902 
1903 	/* Wait for pending work before tty destruction commmences */
1904 	tty_flush_works(tty);
1905 
1906 	tty_debug_hangup(tty, "freeing structure...\n");
1907 	/*
1908 	 * The release_tty function takes care of the details of clearing
1909 	 * the slots and preserving the termios structure. The tty_unlock_pair
1910 	 * should be safe as we keep a kref while the tty is locked (so the
1911 	 * unlock never unlocks a freed tty).
1912 	 */
1913 	mutex_lock(&tty_mutex);
1914 	release_tty(tty, idx);
1915 	mutex_unlock(&tty_mutex);
1916 
1917 	return 0;
1918 }
1919 
1920 /**
1921  *	tty_open_current_tty - get locked tty of current task
1922  *	@device: device number
1923  *	@filp: file pointer to tty
1924  *	@return: locked tty of the current task iff @device is /dev/tty
1925  *
1926  *	Performs a re-open of the current task's controlling tty.
1927  *
1928  *	We cannot return driver and index like for the other nodes because
1929  *	devpts will not work then. It expects inodes to be from devpts FS.
1930  */
1931 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1932 {
1933 	struct tty_struct *tty;
1934 	int retval;
1935 
1936 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1937 		return NULL;
1938 
1939 	tty = get_current_tty();
1940 	if (!tty)
1941 		return ERR_PTR(-ENXIO);
1942 
1943 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1944 	/* noctty = 1; */
1945 	tty_lock(tty);
1946 	tty_kref_put(tty);	/* safe to drop the kref now */
1947 
1948 	retval = tty_reopen(tty);
1949 	if (retval < 0) {
1950 		tty_unlock(tty);
1951 		tty = ERR_PTR(retval);
1952 	}
1953 	return tty;
1954 }
1955 
1956 /**
1957  *	tty_lookup_driver - lookup a tty driver for a given device file
1958  *	@device: device number
1959  *	@filp: file pointer to tty
1960  *	@noctty: set if the device should not become a controlling tty
1961  *	@index: index for the device in the @return driver
1962  *	@return: driver for this inode (with increased refcount)
1963  *
1964  * 	If @return is not erroneous, the caller is responsible to decrement the
1965  * 	refcount by tty_driver_kref_put.
1966  *
1967  *	Locking: tty_mutex protects get_tty_driver
1968  */
1969 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1970 		int *noctty, int *index)
1971 {
1972 	struct tty_driver *driver;
1973 
1974 	switch (device) {
1975 #ifdef CONFIG_VT
1976 	case MKDEV(TTY_MAJOR, 0): {
1977 		extern struct tty_driver *console_driver;
1978 		driver = tty_driver_kref_get(console_driver);
1979 		*index = fg_console;
1980 		*noctty = 1;
1981 		break;
1982 	}
1983 #endif
1984 	case MKDEV(TTYAUX_MAJOR, 1): {
1985 		struct tty_driver *console_driver = console_device(index);
1986 		if (console_driver) {
1987 			driver = tty_driver_kref_get(console_driver);
1988 			if (driver) {
1989 				/* Don't let /dev/console block */
1990 				filp->f_flags |= O_NONBLOCK;
1991 				*noctty = 1;
1992 				break;
1993 			}
1994 		}
1995 		return ERR_PTR(-ENODEV);
1996 	}
1997 	default:
1998 		driver = get_tty_driver(device, index);
1999 		if (!driver)
2000 			return ERR_PTR(-ENODEV);
2001 		break;
2002 	}
2003 	return driver;
2004 }
2005 
2006 /**
2007  *	tty_open		-	open a tty device
2008  *	@inode: inode of device file
2009  *	@filp: file pointer to tty
2010  *
2011  *	tty_open and tty_release keep up the tty count that contains the
2012  *	number of opens done on a tty. We cannot use the inode-count, as
2013  *	different inodes might point to the same tty.
2014  *
2015  *	Open-counting is needed for pty masters, as well as for keeping
2016  *	track of serial lines: DTR is dropped when the last close happens.
2017  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2018  *
2019  *	The termios state of a pty is reset on first open so that
2020  *	settings don't persist across reuse.
2021  *
2022  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2023  *		 tty->count should protect the rest.
2024  *		 ->siglock protects ->signal/->sighand
2025  *
2026  *	Note: the tty_unlock/lock cases without a ref are only safe due to
2027  *	tty_mutex
2028  */
2029 
2030 static int tty_open(struct inode *inode, struct file *filp)
2031 {
2032 	struct tty_struct *tty;
2033 	int noctty, retval;
2034 	struct tty_driver *driver = NULL;
2035 	int index;
2036 	dev_t device = inode->i_rdev;
2037 	unsigned saved_flags = filp->f_flags;
2038 
2039 	nonseekable_open(inode, filp);
2040 
2041 retry_open:
2042 	retval = tty_alloc_file(filp);
2043 	if (retval)
2044 		return -ENOMEM;
2045 
2046 	noctty = filp->f_flags & O_NOCTTY;
2047 	index  = -1;
2048 	retval = 0;
2049 
2050 	tty = tty_open_current_tty(device, filp);
2051 	if (!tty) {
2052 		mutex_lock(&tty_mutex);
2053 		driver = tty_lookup_driver(device, filp, &noctty, &index);
2054 		if (IS_ERR(driver)) {
2055 			retval = PTR_ERR(driver);
2056 			goto err_unlock;
2057 		}
2058 
2059 		/* check whether we're reopening an existing tty */
2060 		tty = tty_driver_lookup_tty(driver, inode, index);
2061 		if (IS_ERR(tty)) {
2062 			retval = PTR_ERR(tty);
2063 			goto err_unlock;
2064 		}
2065 
2066 		if (tty) {
2067 			mutex_unlock(&tty_mutex);
2068 			tty_lock(tty);
2069 			/* safe to drop the kref from tty_driver_lookup_tty() */
2070 			tty_kref_put(tty);
2071 			retval = tty_reopen(tty);
2072 			if (retval < 0) {
2073 				tty_unlock(tty);
2074 				tty = ERR_PTR(retval);
2075 			}
2076 		} else { /* Returns with the tty_lock held for now */
2077 			tty = tty_init_dev(driver, index);
2078 			mutex_unlock(&tty_mutex);
2079 		}
2080 
2081 		tty_driver_kref_put(driver);
2082 	}
2083 
2084 	if (IS_ERR(tty)) {
2085 		retval = PTR_ERR(tty);
2086 		goto err_file;
2087 	}
2088 
2089 	tty_add_file(tty, filp);
2090 
2091 	check_tty_count(tty, __func__);
2092 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2093 	    tty->driver->subtype == PTY_TYPE_MASTER)
2094 		noctty = 1;
2095 
2096 	tty_debug_hangup(tty, "(tty count=%d)\n", tty->count);
2097 
2098 	if (tty->ops->open)
2099 		retval = tty->ops->open(tty, filp);
2100 	else
2101 		retval = -ENODEV;
2102 	filp->f_flags = saved_flags;
2103 
2104 	if (retval) {
2105 		tty_debug_hangup(tty, "error %d, releasing...\n", retval);
2106 
2107 		tty_unlock(tty); /* need to call tty_release without BTM */
2108 		tty_release(inode, filp);
2109 		if (retval != -ERESTARTSYS)
2110 			return retval;
2111 
2112 		if (signal_pending(current))
2113 			return retval;
2114 
2115 		schedule();
2116 		/*
2117 		 * Need to reset f_op in case a hangup happened.
2118 		 */
2119 		if (tty_hung_up_p(filp))
2120 			filp->f_op = &tty_fops;
2121 		goto retry_open;
2122 	}
2123 	clear_bit(TTY_HUPPED, &tty->flags);
2124 
2125 
2126 	read_lock(&tasklist_lock);
2127 	spin_lock_irq(&current->sighand->siglock);
2128 	if (!noctty &&
2129 	    current->signal->leader &&
2130 	    !current->signal->tty &&
2131 	    tty->session == NULL)
2132 		__proc_set_tty(tty);
2133 	spin_unlock_irq(&current->sighand->siglock);
2134 	read_unlock(&tasklist_lock);
2135 	tty_unlock(tty);
2136 	return 0;
2137 err_unlock:
2138 	mutex_unlock(&tty_mutex);
2139 	/* after locks to avoid deadlock */
2140 	if (!IS_ERR_OR_NULL(driver))
2141 		tty_driver_kref_put(driver);
2142 err_file:
2143 	tty_free_file(filp);
2144 	return retval;
2145 }
2146 
2147 
2148 
2149 /**
2150  *	tty_poll	-	check tty status
2151  *	@filp: file being polled
2152  *	@wait: poll wait structures to update
2153  *
2154  *	Call the line discipline polling method to obtain the poll
2155  *	status of the device.
2156  *
2157  *	Locking: locks called line discipline but ldisc poll method
2158  *	may be re-entered freely by other callers.
2159  */
2160 
2161 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2162 {
2163 	struct tty_struct *tty = file_tty(filp);
2164 	struct tty_ldisc *ld;
2165 	int ret = 0;
2166 
2167 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2168 		return 0;
2169 
2170 	ld = tty_ldisc_ref_wait(tty);
2171 	if (ld->ops->poll)
2172 		ret = ld->ops->poll(tty, filp, wait);
2173 	tty_ldisc_deref(ld);
2174 	return ret;
2175 }
2176 
2177 static int __tty_fasync(int fd, struct file *filp, int on)
2178 {
2179 	struct tty_struct *tty = file_tty(filp);
2180 	struct tty_ldisc *ldisc;
2181 	unsigned long flags;
2182 	int retval = 0;
2183 
2184 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2185 		goto out;
2186 
2187 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2188 	if (retval <= 0)
2189 		goto out;
2190 
2191 	ldisc = tty_ldisc_ref(tty);
2192 	if (ldisc) {
2193 		if (ldisc->ops->fasync)
2194 			ldisc->ops->fasync(tty, on);
2195 		tty_ldisc_deref(ldisc);
2196 	}
2197 
2198 	if (on) {
2199 		enum pid_type type;
2200 		struct pid *pid;
2201 
2202 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2203 		if (tty->pgrp) {
2204 			pid = tty->pgrp;
2205 			type = PIDTYPE_PGID;
2206 		} else {
2207 			pid = task_pid(current);
2208 			type = PIDTYPE_PID;
2209 		}
2210 		get_pid(pid);
2211 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2212 		__f_setown(filp, pid, type, 0);
2213 		put_pid(pid);
2214 		retval = 0;
2215 	}
2216 out:
2217 	return retval;
2218 }
2219 
2220 static int tty_fasync(int fd, struct file *filp, int on)
2221 {
2222 	struct tty_struct *tty = file_tty(filp);
2223 	int retval;
2224 
2225 	tty_lock(tty);
2226 	retval = __tty_fasync(fd, filp, on);
2227 	tty_unlock(tty);
2228 
2229 	return retval;
2230 }
2231 
2232 /**
2233  *	tiocsti			-	fake input character
2234  *	@tty: tty to fake input into
2235  *	@p: pointer to character
2236  *
2237  *	Fake input to a tty device. Does the necessary locking and
2238  *	input management.
2239  *
2240  *	FIXME: does not honour flow control ??
2241  *
2242  *	Locking:
2243  *		Called functions take tty_ldiscs_lock
2244  *		current->signal->tty check is safe without locks
2245  *
2246  *	FIXME: may race normal receive processing
2247  */
2248 
2249 static int tiocsti(struct tty_struct *tty, char __user *p)
2250 {
2251 	char ch, mbz = 0;
2252 	struct tty_ldisc *ld;
2253 
2254 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2255 		return -EPERM;
2256 	if (get_user(ch, p))
2257 		return -EFAULT;
2258 	tty_audit_tiocsti(tty, ch);
2259 	ld = tty_ldisc_ref_wait(tty);
2260 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2261 	tty_ldisc_deref(ld);
2262 	return 0;
2263 }
2264 
2265 /**
2266  *	tiocgwinsz		-	implement window query ioctl
2267  *	@tty; tty
2268  *	@arg: user buffer for result
2269  *
2270  *	Copies the kernel idea of the window size into the user buffer.
2271  *
2272  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2273  *		is consistent.
2274  */
2275 
2276 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2277 {
2278 	int err;
2279 
2280 	mutex_lock(&tty->winsize_mutex);
2281 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2282 	mutex_unlock(&tty->winsize_mutex);
2283 
2284 	return err ? -EFAULT: 0;
2285 }
2286 
2287 /**
2288  *	tty_do_resize		-	resize event
2289  *	@tty: tty being resized
2290  *	@rows: rows (character)
2291  *	@cols: cols (character)
2292  *
2293  *	Update the termios variables and send the necessary signals to
2294  *	peform a terminal resize correctly
2295  */
2296 
2297 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2298 {
2299 	struct pid *pgrp;
2300 
2301 	/* Lock the tty */
2302 	mutex_lock(&tty->winsize_mutex);
2303 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2304 		goto done;
2305 
2306 	/* Signal the foreground process group */
2307 	pgrp = tty_get_pgrp(tty);
2308 	if (pgrp)
2309 		kill_pgrp(pgrp, SIGWINCH, 1);
2310 	put_pid(pgrp);
2311 
2312 	tty->winsize = *ws;
2313 done:
2314 	mutex_unlock(&tty->winsize_mutex);
2315 	return 0;
2316 }
2317 EXPORT_SYMBOL(tty_do_resize);
2318 
2319 /**
2320  *	tiocswinsz		-	implement window size set ioctl
2321  *	@tty; tty side of tty
2322  *	@arg: user buffer for result
2323  *
2324  *	Copies the user idea of the window size to the kernel. Traditionally
2325  *	this is just advisory information but for the Linux console it
2326  *	actually has driver level meaning and triggers a VC resize.
2327  *
2328  *	Locking:
2329  *		Driver dependent. The default do_resize method takes the
2330  *	tty termios mutex and ctrl_lock. The console takes its own lock
2331  *	then calls into the default method.
2332  */
2333 
2334 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2335 {
2336 	struct winsize tmp_ws;
2337 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2338 		return -EFAULT;
2339 
2340 	if (tty->ops->resize)
2341 		return tty->ops->resize(tty, &tmp_ws);
2342 	else
2343 		return tty_do_resize(tty, &tmp_ws);
2344 }
2345 
2346 /**
2347  *	tioccons	-	allow admin to move logical console
2348  *	@file: the file to become console
2349  *
2350  *	Allow the administrator to move the redirected console device
2351  *
2352  *	Locking: uses redirect_lock to guard the redirect information
2353  */
2354 
2355 static int tioccons(struct file *file)
2356 {
2357 	if (!capable(CAP_SYS_ADMIN))
2358 		return -EPERM;
2359 	if (file->f_op->write == redirected_tty_write) {
2360 		struct file *f;
2361 		spin_lock(&redirect_lock);
2362 		f = redirect;
2363 		redirect = NULL;
2364 		spin_unlock(&redirect_lock);
2365 		if (f)
2366 			fput(f);
2367 		return 0;
2368 	}
2369 	spin_lock(&redirect_lock);
2370 	if (redirect) {
2371 		spin_unlock(&redirect_lock);
2372 		return -EBUSY;
2373 	}
2374 	redirect = get_file(file);
2375 	spin_unlock(&redirect_lock);
2376 	return 0;
2377 }
2378 
2379 /**
2380  *	fionbio		-	non blocking ioctl
2381  *	@file: file to set blocking value
2382  *	@p: user parameter
2383  *
2384  *	Historical tty interfaces had a blocking control ioctl before
2385  *	the generic functionality existed. This piece of history is preserved
2386  *	in the expected tty API of posix OS's.
2387  *
2388  *	Locking: none, the open file handle ensures it won't go away.
2389  */
2390 
2391 static int fionbio(struct file *file, int __user *p)
2392 {
2393 	int nonblock;
2394 
2395 	if (get_user(nonblock, p))
2396 		return -EFAULT;
2397 
2398 	spin_lock(&file->f_lock);
2399 	if (nonblock)
2400 		file->f_flags |= O_NONBLOCK;
2401 	else
2402 		file->f_flags &= ~O_NONBLOCK;
2403 	spin_unlock(&file->f_lock);
2404 	return 0;
2405 }
2406 
2407 /**
2408  *	tiocsctty	-	set controlling tty
2409  *	@tty: tty structure
2410  *	@arg: user argument
2411  *
2412  *	This ioctl is used to manage job control. It permits a session
2413  *	leader to set this tty as the controlling tty for the session.
2414  *
2415  *	Locking:
2416  *		Takes tty_lock() to serialize proc_set_tty() for this tty
2417  *		Takes tasklist_lock internally to walk sessions
2418  *		Takes ->siglock() when updating signal->tty
2419  */
2420 
2421 static int tiocsctty(struct tty_struct *tty, int arg)
2422 {
2423 	int ret = 0;
2424 
2425 	tty_lock(tty);
2426 	read_lock(&tasklist_lock);
2427 
2428 	if (current->signal->leader && (task_session(current) == tty->session))
2429 		goto unlock;
2430 
2431 	/*
2432 	 * The process must be a session leader and
2433 	 * not have a controlling tty already.
2434 	 */
2435 	if (!current->signal->leader || current->signal->tty) {
2436 		ret = -EPERM;
2437 		goto unlock;
2438 	}
2439 
2440 	if (tty->session) {
2441 		/*
2442 		 * This tty is already the controlling
2443 		 * tty for another session group!
2444 		 */
2445 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2446 			/*
2447 			 * Steal it away
2448 			 */
2449 			session_clear_tty(tty->session);
2450 		} else {
2451 			ret = -EPERM;
2452 			goto unlock;
2453 		}
2454 	}
2455 	proc_set_tty(tty);
2456 unlock:
2457 	read_unlock(&tasklist_lock);
2458 	tty_unlock(tty);
2459 	return ret;
2460 }
2461 
2462 /**
2463  *	tty_get_pgrp	-	return a ref counted pgrp pid
2464  *	@tty: tty to read
2465  *
2466  *	Returns a refcounted instance of the pid struct for the process
2467  *	group controlling the tty.
2468  */
2469 
2470 struct pid *tty_get_pgrp(struct tty_struct *tty)
2471 {
2472 	unsigned long flags;
2473 	struct pid *pgrp;
2474 
2475 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2476 	pgrp = get_pid(tty->pgrp);
2477 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2478 
2479 	return pgrp;
2480 }
2481 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2482 
2483 /*
2484  * This checks not only the pgrp, but falls back on the pid if no
2485  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2486  * without this...
2487  *
2488  * The caller must hold rcu lock or the tasklist lock.
2489  */
2490 static struct pid *session_of_pgrp(struct pid *pgrp)
2491 {
2492 	struct task_struct *p;
2493 	struct pid *sid = NULL;
2494 
2495 	p = pid_task(pgrp, PIDTYPE_PGID);
2496 	if (p == NULL)
2497 		p = pid_task(pgrp, PIDTYPE_PID);
2498 	if (p != NULL)
2499 		sid = task_session(p);
2500 
2501 	return sid;
2502 }
2503 
2504 /**
2505  *	tiocgpgrp		-	get process group
2506  *	@tty: tty passed by user
2507  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2508  *	@p: returned pid
2509  *
2510  *	Obtain the process group of the tty. If there is no process group
2511  *	return an error.
2512  *
2513  *	Locking: none. Reference to current->signal->tty is safe.
2514  */
2515 
2516 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2517 {
2518 	struct pid *pid;
2519 	int ret;
2520 	/*
2521 	 * (tty == real_tty) is a cheap way of
2522 	 * testing if the tty is NOT a master pty.
2523 	 */
2524 	if (tty == real_tty && current->signal->tty != real_tty)
2525 		return -ENOTTY;
2526 	pid = tty_get_pgrp(real_tty);
2527 	ret =  put_user(pid_vnr(pid), p);
2528 	put_pid(pid);
2529 	return ret;
2530 }
2531 
2532 /**
2533  *	tiocspgrp		-	attempt to set process group
2534  *	@tty: tty passed by user
2535  *	@real_tty: tty side device matching tty passed by user
2536  *	@p: pid pointer
2537  *
2538  *	Set the process group of the tty to the session passed. Only
2539  *	permitted where the tty session is our session.
2540  *
2541  *	Locking: RCU, ctrl lock
2542  */
2543 
2544 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2545 {
2546 	struct pid *pgrp;
2547 	pid_t pgrp_nr;
2548 	int retval = tty_check_change(real_tty);
2549 	unsigned long flags;
2550 
2551 	if (retval == -EIO)
2552 		return -ENOTTY;
2553 	if (retval)
2554 		return retval;
2555 	if (!current->signal->tty ||
2556 	    (current->signal->tty != real_tty) ||
2557 	    (real_tty->session != task_session(current)))
2558 		return -ENOTTY;
2559 	if (get_user(pgrp_nr, p))
2560 		return -EFAULT;
2561 	if (pgrp_nr < 0)
2562 		return -EINVAL;
2563 	rcu_read_lock();
2564 	pgrp = find_vpid(pgrp_nr);
2565 	retval = -ESRCH;
2566 	if (!pgrp)
2567 		goto out_unlock;
2568 	retval = -EPERM;
2569 	if (session_of_pgrp(pgrp) != task_session(current))
2570 		goto out_unlock;
2571 	retval = 0;
2572 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2573 	put_pid(real_tty->pgrp);
2574 	real_tty->pgrp = get_pid(pgrp);
2575 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2576 out_unlock:
2577 	rcu_read_unlock();
2578 	return retval;
2579 }
2580 
2581 /**
2582  *	tiocgsid		-	get session id
2583  *	@tty: tty passed by user
2584  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2585  *	@p: pointer to returned session id
2586  *
2587  *	Obtain the session id of the tty. If there is no session
2588  *	return an error.
2589  *
2590  *	Locking: none. Reference to current->signal->tty is safe.
2591  */
2592 
2593 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2594 {
2595 	/*
2596 	 * (tty == real_tty) is a cheap way of
2597 	 * testing if the tty is NOT a master pty.
2598 	*/
2599 	if (tty == real_tty && current->signal->tty != real_tty)
2600 		return -ENOTTY;
2601 	if (!real_tty->session)
2602 		return -ENOTTY;
2603 	return put_user(pid_vnr(real_tty->session), p);
2604 }
2605 
2606 /**
2607  *	tiocsetd	-	set line discipline
2608  *	@tty: tty device
2609  *	@p: pointer to user data
2610  *
2611  *	Set the line discipline according to user request.
2612  *
2613  *	Locking: see tty_set_ldisc, this function is just a helper
2614  */
2615 
2616 static int tiocsetd(struct tty_struct *tty, int __user *p)
2617 {
2618 	int ldisc;
2619 	int ret;
2620 
2621 	if (get_user(ldisc, p))
2622 		return -EFAULT;
2623 
2624 	ret = tty_set_ldisc(tty, ldisc);
2625 
2626 	return ret;
2627 }
2628 
2629 /**
2630  *	send_break	-	performed time break
2631  *	@tty: device to break on
2632  *	@duration: timeout in mS
2633  *
2634  *	Perform a timed break on hardware that lacks its own driver level
2635  *	timed break functionality.
2636  *
2637  *	Locking:
2638  *		atomic_write_lock serializes
2639  *
2640  */
2641 
2642 static int send_break(struct tty_struct *tty, unsigned int duration)
2643 {
2644 	int retval;
2645 
2646 	if (tty->ops->break_ctl == NULL)
2647 		return 0;
2648 
2649 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2650 		retval = tty->ops->break_ctl(tty, duration);
2651 	else {
2652 		/* Do the work ourselves */
2653 		if (tty_write_lock(tty, 0) < 0)
2654 			return -EINTR;
2655 		retval = tty->ops->break_ctl(tty, -1);
2656 		if (retval)
2657 			goto out;
2658 		if (!signal_pending(current))
2659 			msleep_interruptible(duration);
2660 		retval = tty->ops->break_ctl(tty, 0);
2661 out:
2662 		tty_write_unlock(tty);
2663 		if (signal_pending(current))
2664 			retval = -EINTR;
2665 	}
2666 	return retval;
2667 }
2668 
2669 /**
2670  *	tty_tiocmget		-	get modem status
2671  *	@tty: tty device
2672  *	@file: user file pointer
2673  *	@p: pointer to result
2674  *
2675  *	Obtain the modem status bits from the tty driver if the feature
2676  *	is supported. Return -EINVAL if it is not available.
2677  *
2678  *	Locking: none (up to the driver)
2679  */
2680 
2681 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2682 {
2683 	int retval = -EINVAL;
2684 
2685 	if (tty->ops->tiocmget) {
2686 		retval = tty->ops->tiocmget(tty);
2687 
2688 		if (retval >= 0)
2689 			retval = put_user(retval, p);
2690 	}
2691 	return retval;
2692 }
2693 
2694 /**
2695  *	tty_tiocmset		-	set modem status
2696  *	@tty: tty device
2697  *	@cmd: command - clear bits, set bits or set all
2698  *	@p: pointer to desired bits
2699  *
2700  *	Set the modem status bits from the tty driver if the feature
2701  *	is supported. Return -EINVAL if it is not available.
2702  *
2703  *	Locking: none (up to the driver)
2704  */
2705 
2706 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2707 	     unsigned __user *p)
2708 {
2709 	int retval;
2710 	unsigned int set, clear, val;
2711 
2712 	if (tty->ops->tiocmset == NULL)
2713 		return -EINVAL;
2714 
2715 	retval = get_user(val, p);
2716 	if (retval)
2717 		return retval;
2718 	set = clear = 0;
2719 	switch (cmd) {
2720 	case TIOCMBIS:
2721 		set = val;
2722 		break;
2723 	case TIOCMBIC:
2724 		clear = val;
2725 		break;
2726 	case TIOCMSET:
2727 		set = val;
2728 		clear = ~val;
2729 		break;
2730 	}
2731 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2732 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2733 	return tty->ops->tiocmset(tty, set, clear);
2734 }
2735 
2736 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2737 {
2738 	int retval = -EINVAL;
2739 	struct serial_icounter_struct icount;
2740 	memset(&icount, 0, sizeof(icount));
2741 	if (tty->ops->get_icount)
2742 		retval = tty->ops->get_icount(tty, &icount);
2743 	if (retval != 0)
2744 		return retval;
2745 	if (copy_to_user(arg, &icount, sizeof(icount)))
2746 		return -EFAULT;
2747 	return 0;
2748 }
2749 
2750 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2751 {
2752 	static DEFINE_RATELIMIT_STATE(depr_flags,
2753 			DEFAULT_RATELIMIT_INTERVAL,
2754 			DEFAULT_RATELIMIT_BURST);
2755 	char comm[TASK_COMM_LEN];
2756 	int flags;
2757 
2758 	if (get_user(flags, &ss->flags))
2759 		return;
2760 
2761 	flags &= ASYNC_DEPRECATED;
2762 
2763 	if (flags && __ratelimit(&depr_flags))
2764 		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2765 				__func__, get_task_comm(comm, current), flags);
2766 }
2767 
2768 /*
2769  * if pty, return the slave side (real_tty)
2770  * otherwise, return self
2771  */
2772 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2773 {
2774 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2775 	    tty->driver->subtype == PTY_TYPE_MASTER)
2776 		tty = tty->link;
2777 	return tty;
2778 }
2779 
2780 /*
2781  * Split this up, as gcc can choke on it otherwise..
2782  */
2783 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2784 {
2785 	struct tty_struct *tty = file_tty(file);
2786 	struct tty_struct *real_tty;
2787 	void __user *p = (void __user *)arg;
2788 	int retval;
2789 	struct tty_ldisc *ld;
2790 
2791 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2792 		return -EINVAL;
2793 
2794 	real_tty = tty_pair_get_tty(tty);
2795 
2796 	/*
2797 	 * Factor out some common prep work
2798 	 */
2799 	switch (cmd) {
2800 	case TIOCSETD:
2801 	case TIOCSBRK:
2802 	case TIOCCBRK:
2803 	case TCSBRK:
2804 	case TCSBRKP:
2805 		retval = tty_check_change(tty);
2806 		if (retval)
2807 			return retval;
2808 		if (cmd != TIOCCBRK) {
2809 			tty_wait_until_sent(tty, 0);
2810 			if (signal_pending(current))
2811 				return -EINTR;
2812 		}
2813 		break;
2814 	}
2815 
2816 	/*
2817 	 *	Now do the stuff.
2818 	 */
2819 	switch (cmd) {
2820 	case TIOCSTI:
2821 		return tiocsti(tty, p);
2822 	case TIOCGWINSZ:
2823 		return tiocgwinsz(real_tty, p);
2824 	case TIOCSWINSZ:
2825 		return tiocswinsz(real_tty, p);
2826 	case TIOCCONS:
2827 		return real_tty != tty ? -EINVAL : tioccons(file);
2828 	case FIONBIO:
2829 		return fionbio(file, p);
2830 	case TIOCEXCL:
2831 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2832 		return 0;
2833 	case TIOCNXCL:
2834 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2835 		return 0;
2836 	case TIOCGEXCL:
2837 	{
2838 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2839 		return put_user(excl, (int __user *)p);
2840 	}
2841 	case TIOCNOTTY:
2842 		if (current->signal->tty != tty)
2843 			return -ENOTTY;
2844 		no_tty();
2845 		return 0;
2846 	case TIOCSCTTY:
2847 		return tiocsctty(tty, arg);
2848 	case TIOCGPGRP:
2849 		return tiocgpgrp(tty, real_tty, p);
2850 	case TIOCSPGRP:
2851 		return tiocspgrp(tty, real_tty, p);
2852 	case TIOCGSID:
2853 		return tiocgsid(tty, real_tty, p);
2854 	case TIOCGETD:
2855 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2856 	case TIOCSETD:
2857 		return tiocsetd(tty, p);
2858 	case TIOCVHANGUP:
2859 		if (!capable(CAP_SYS_ADMIN))
2860 			return -EPERM;
2861 		tty_vhangup(tty);
2862 		return 0;
2863 	case TIOCGDEV:
2864 	{
2865 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2866 		return put_user(ret, (unsigned int __user *)p);
2867 	}
2868 	/*
2869 	 * Break handling
2870 	 */
2871 	case TIOCSBRK:	/* Turn break on, unconditionally */
2872 		if (tty->ops->break_ctl)
2873 			return tty->ops->break_ctl(tty, -1);
2874 		return 0;
2875 	case TIOCCBRK:	/* Turn break off, unconditionally */
2876 		if (tty->ops->break_ctl)
2877 			return tty->ops->break_ctl(tty, 0);
2878 		return 0;
2879 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2880 		/* non-zero arg means wait for all output data
2881 		 * to be sent (performed above) but don't send break.
2882 		 * This is used by the tcdrain() termios function.
2883 		 */
2884 		if (!arg)
2885 			return send_break(tty, 250);
2886 		return 0;
2887 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2888 		return send_break(tty, arg ? arg*100 : 250);
2889 
2890 	case TIOCMGET:
2891 		return tty_tiocmget(tty, p);
2892 	case TIOCMSET:
2893 	case TIOCMBIC:
2894 	case TIOCMBIS:
2895 		return tty_tiocmset(tty, cmd, p);
2896 	case TIOCGICOUNT:
2897 		retval = tty_tiocgicount(tty, p);
2898 		/* For the moment allow fall through to the old method */
2899         	if (retval != -EINVAL)
2900 			return retval;
2901 		break;
2902 	case TCFLSH:
2903 		switch (arg) {
2904 		case TCIFLUSH:
2905 		case TCIOFLUSH:
2906 		/* flush tty buffer and allow ldisc to process ioctl */
2907 			tty_buffer_flush(tty, NULL);
2908 			break;
2909 		}
2910 		break;
2911 	case TIOCSSERIAL:
2912 		tty_warn_deprecated_flags(p);
2913 		break;
2914 	}
2915 	if (tty->ops->ioctl) {
2916 		retval = tty->ops->ioctl(tty, cmd, arg);
2917 		if (retval != -ENOIOCTLCMD)
2918 			return retval;
2919 	}
2920 	ld = tty_ldisc_ref_wait(tty);
2921 	retval = -EINVAL;
2922 	if (ld->ops->ioctl) {
2923 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2924 		if (retval == -ENOIOCTLCMD)
2925 			retval = -ENOTTY;
2926 	}
2927 	tty_ldisc_deref(ld);
2928 	return retval;
2929 }
2930 
2931 #ifdef CONFIG_COMPAT
2932 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2933 				unsigned long arg)
2934 {
2935 	struct tty_struct *tty = file_tty(file);
2936 	struct tty_ldisc *ld;
2937 	int retval = -ENOIOCTLCMD;
2938 
2939 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2940 		return -EINVAL;
2941 
2942 	if (tty->ops->compat_ioctl) {
2943 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2944 		if (retval != -ENOIOCTLCMD)
2945 			return retval;
2946 	}
2947 
2948 	ld = tty_ldisc_ref_wait(tty);
2949 	if (ld->ops->compat_ioctl)
2950 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2951 	else
2952 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2953 	tty_ldisc_deref(ld);
2954 
2955 	return retval;
2956 }
2957 #endif
2958 
2959 static int this_tty(const void *t, struct file *file, unsigned fd)
2960 {
2961 	if (likely(file->f_op->read != tty_read))
2962 		return 0;
2963 	return file_tty(file) != t ? 0 : fd + 1;
2964 }
2965 
2966 /*
2967  * This implements the "Secure Attention Key" ---  the idea is to
2968  * prevent trojan horses by killing all processes associated with this
2969  * tty when the user hits the "Secure Attention Key".  Required for
2970  * super-paranoid applications --- see the Orange Book for more details.
2971  *
2972  * This code could be nicer; ideally it should send a HUP, wait a few
2973  * seconds, then send a INT, and then a KILL signal.  But you then
2974  * have to coordinate with the init process, since all processes associated
2975  * with the current tty must be dead before the new getty is allowed
2976  * to spawn.
2977  *
2978  * Now, if it would be correct ;-/ The current code has a nasty hole -
2979  * it doesn't catch files in flight. We may send the descriptor to ourselves
2980  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2981  *
2982  * Nasty bug: do_SAK is being called in interrupt context.  This can
2983  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2984  */
2985 void __do_SAK(struct tty_struct *tty)
2986 {
2987 #ifdef TTY_SOFT_SAK
2988 	tty_hangup(tty);
2989 #else
2990 	struct task_struct *g, *p;
2991 	struct pid *session;
2992 	int		i;
2993 
2994 	if (!tty)
2995 		return;
2996 	session = tty->session;
2997 
2998 	tty_ldisc_flush(tty);
2999 
3000 	tty_driver_flush_buffer(tty);
3001 
3002 	read_lock(&tasklist_lock);
3003 	/* Kill the entire session */
3004 	do_each_pid_task(session, PIDTYPE_SID, p) {
3005 		printk(KERN_NOTICE "SAK: killed process %d"
3006 			" (%s): task_session(p)==tty->session\n",
3007 			task_pid_nr(p), p->comm);
3008 		send_sig(SIGKILL, p, 1);
3009 	} while_each_pid_task(session, PIDTYPE_SID, p);
3010 	/* Now kill any processes that happen to have the
3011 	 * tty open.
3012 	 */
3013 	do_each_thread(g, p) {
3014 		if (p->signal->tty == tty) {
3015 			printk(KERN_NOTICE "SAK: killed process %d"
3016 			    " (%s): task_session(p)==tty->session\n",
3017 			    task_pid_nr(p), p->comm);
3018 			send_sig(SIGKILL, p, 1);
3019 			continue;
3020 		}
3021 		task_lock(p);
3022 		i = iterate_fd(p->files, 0, this_tty, tty);
3023 		if (i != 0) {
3024 			printk(KERN_NOTICE "SAK: killed process %d"
3025 			    " (%s): fd#%d opened to the tty\n",
3026 				    task_pid_nr(p), p->comm, i - 1);
3027 			force_sig(SIGKILL, p);
3028 		}
3029 		task_unlock(p);
3030 	} while_each_thread(g, p);
3031 	read_unlock(&tasklist_lock);
3032 #endif
3033 }
3034 
3035 static void do_SAK_work(struct work_struct *work)
3036 {
3037 	struct tty_struct *tty =
3038 		container_of(work, struct tty_struct, SAK_work);
3039 	__do_SAK(tty);
3040 }
3041 
3042 /*
3043  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3044  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3045  * the values which we write to it will be identical to the values which it
3046  * already has. --akpm
3047  */
3048 void do_SAK(struct tty_struct *tty)
3049 {
3050 	if (!tty)
3051 		return;
3052 	schedule_work(&tty->SAK_work);
3053 }
3054 
3055 EXPORT_SYMBOL(do_SAK);
3056 
3057 static int dev_match_devt(struct device *dev, const void *data)
3058 {
3059 	const dev_t *devt = data;
3060 	return dev->devt == *devt;
3061 }
3062 
3063 /* Must put_device() after it's unused! */
3064 static struct device *tty_get_device(struct tty_struct *tty)
3065 {
3066 	dev_t devt = tty_devnum(tty);
3067 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3068 }
3069 
3070 
3071 /**
3072  *	alloc_tty_struct
3073  *
3074  *	This subroutine allocates and initializes a tty structure.
3075  *
3076  *	Locking: none - tty in question is not exposed at this point
3077  */
3078 
3079 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3080 {
3081 	struct tty_struct *tty;
3082 
3083 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3084 	if (!tty)
3085 		return NULL;
3086 
3087 	kref_init(&tty->kref);
3088 	tty->magic = TTY_MAGIC;
3089 	tty_ldisc_init(tty);
3090 	tty->session = NULL;
3091 	tty->pgrp = NULL;
3092 	mutex_init(&tty->legacy_mutex);
3093 	mutex_init(&tty->throttle_mutex);
3094 	init_rwsem(&tty->termios_rwsem);
3095 	mutex_init(&tty->winsize_mutex);
3096 	init_ldsem(&tty->ldisc_sem);
3097 	init_waitqueue_head(&tty->write_wait);
3098 	init_waitqueue_head(&tty->read_wait);
3099 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3100 	mutex_init(&tty->atomic_write_lock);
3101 	spin_lock_init(&tty->ctrl_lock);
3102 	spin_lock_init(&tty->flow_lock);
3103 	INIT_LIST_HEAD(&tty->tty_files);
3104 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3105 
3106 	tty->driver = driver;
3107 	tty->ops = driver->ops;
3108 	tty->index = idx;
3109 	tty_line_name(driver, idx, tty->name);
3110 	tty->dev = tty_get_device(tty);
3111 
3112 	return tty;
3113 }
3114 
3115 /**
3116  *	deinitialize_tty_struct
3117  *	@tty: tty to deinitialize
3118  *
3119  *	This subroutine deinitializes a tty structure that has been newly
3120  *	allocated but tty_release cannot be called on that yet.
3121  *
3122  *	Locking: none - tty in question must not be exposed at this point
3123  */
3124 void deinitialize_tty_struct(struct tty_struct *tty)
3125 {
3126 	tty_ldisc_deinit(tty);
3127 }
3128 
3129 /**
3130  *	tty_put_char	-	write one character to a tty
3131  *	@tty: tty
3132  *	@ch: character
3133  *
3134  *	Write one byte to the tty using the provided put_char method
3135  *	if present. Returns the number of characters successfully output.
3136  *
3137  *	Note: the specific put_char operation in the driver layer may go
3138  *	away soon. Don't call it directly, use this method
3139  */
3140 
3141 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3142 {
3143 	if (tty->ops->put_char)
3144 		return tty->ops->put_char(tty, ch);
3145 	return tty->ops->write(tty, &ch, 1);
3146 }
3147 EXPORT_SYMBOL_GPL(tty_put_char);
3148 
3149 struct class *tty_class;
3150 
3151 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3152 		unsigned int index, unsigned int count)
3153 {
3154 	/* init here, since reused cdevs cause crashes */
3155 	driver->cdevs[index] = cdev_alloc();
3156 	if (!driver->cdevs[index])
3157 		return -ENOMEM;
3158 	cdev_init(driver->cdevs[index], &tty_fops);
3159 	driver->cdevs[index]->owner = driver->owner;
3160 	return cdev_add(driver->cdevs[index], dev, count);
3161 }
3162 
3163 /**
3164  *	tty_register_device - register a tty device
3165  *	@driver: the tty driver that describes the tty device
3166  *	@index: the index in the tty driver for this tty device
3167  *	@device: a struct device that is associated with this tty device.
3168  *		This field is optional, if there is no known struct device
3169  *		for this tty device it can be set to NULL safely.
3170  *
3171  *	Returns a pointer to the struct device for this tty device
3172  *	(or ERR_PTR(-EFOO) on error).
3173  *
3174  *	This call is required to be made to register an individual tty device
3175  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3176  *	that bit is not set, this function should not be called by a tty
3177  *	driver.
3178  *
3179  *	Locking: ??
3180  */
3181 
3182 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3183 				   struct device *device)
3184 {
3185 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3186 }
3187 EXPORT_SYMBOL(tty_register_device);
3188 
3189 static void tty_device_create_release(struct device *dev)
3190 {
3191 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3192 	kfree(dev);
3193 }
3194 
3195 /**
3196  *	tty_register_device_attr - register a tty device
3197  *	@driver: the tty driver that describes the tty device
3198  *	@index: the index in the tty driver for this tty device
3199  *	@device: a struct device that is associated with this tty device.
3200  *		This field is optional, if there is no known struct device
3201  *		for this tty device it can be set to NULL safely.
3202  *	@drvdata: Driver data to be set to device.
3203  *	@attr_grp: Attribute group to be set on device.
3204  *
3205  *	Returns a pointer to the struct device for this tty device
3206  *	(or ERR_PTR(-EFOO) on error).
3207  *
3208  *	This call is required to be made to register an individual tty device
3209  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3210  *	that bit is not set, this function should not be called by a tty
3211  *	driver.
3212  *
3213  *	Locking: ??
3214  */
3215 struct device *tty_register_device_attr(struct tty_driver *driver,
3216 				   unsigned index, struct device *device,
3217 				   void *drvdata,
3218 				   const struct attribute_group **attr_grp)
3219 {
3220 	char name[64];
3221 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3222 	struct device *dev = NULL;
3223 	int retval = -ENODEV;
3224 	bool cdev = false;
3225 
3226 	if (index >= driver->num) {
3227 		printk(KERN_ERR "Attempt to register invalid tty line number "
3228 		       " (%d).\n", index);
3229 		return ERR_PTR(-EINVAL);
3230 	}
3231 
3232 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3233 		pty_line_name(driver, index, name);
3234 	else
3235 		tty_line_name(driver, index, name);
3236 
3237 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3238 		retval = tty_cdev_add(driver, devt, index, 1);
3239 		if (retval)
3240 			goto error;
3241 		cdev = true;
3242 	}
3243 
3244 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3245 	if (!dev) {
3246 		retval = -ENOMEM;
3247 		goto error;
3248 	}
3249 
3250 	dev->devt = devt;
3251 	dev->class = tty_class;
3252 	dev->parent = device;
3253 	dev->release = tty_device_create_release;
3254 	dev_set_name(dev, "%s", name);
3255 	dev->groups = attr_grp;
3256 	dev_set_drvdata(dev, drvdata);
3257 
3258 	retval = device_register(dev);
3259 	if (retval)
3260 		goto error;
3261 
3262 	return dev;
3263 
3264 error:
3265 	put_device(dev);
3266 	if (cdev) {
3267 		cdev_del(driver->cdevs[index]);
3268 		driver->cdevs[index] = NULL;
3269 	}
3270 	return ERR_PTR(retval);
3271 }
3272 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3273 
3274 /**
3275  * 	tty_unregister_device - unregister a tty device
3276  * 	@driver: the tty driver that describes the tty device
3277  * 	@index: the index in the tty driver for this tty device
3278  *
3279  * 	If a tty device is registered with a call to tty_register_device() then
3280  *	this function must be called when the tty device is gone.
3281  *
3282  *	Locking: ??
3283  */
3284 
3285 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3286 {
3287 	device_destroy(tty_class,
3288 		MKDEV(driver->major, driver->minor_start) + index);
3289 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3290 		cdev_del(driver->cdevs[index]);
3291 		driver->cdevs[index] = NULL;
3292 	}
3293 }
3294 EXPORT_SYMBOL(tty_unregister_device);
3295 
3296 /**
3297  * __tty_alloc_driver -- allocate tty driver
3298  * @lines: count of lines this driver can handle at most
3299  * @owner: module which is repsonsible for this driver
3300  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3301  *
3302  * This should not be called directly, some of the provided macros should be
3303  * used instead. Use IS_ERR and friends on @retval.
3304  */
3305 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3306 		unsigned long flags)
3307 {
3308 	struct tty_driver *driver;
3309 	unsigned int cdevs = 1;
3310 	int err;
3311 
3312 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3313 		return ERR_PTR(-EINVAL);
3314 
3315 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3316 	if (!driver)
3317 		return ERR_PTR(-ENOMEM);
3318 
3319 	kref_init(&driver->kref);
3320 	driver->magic = TTY_DRIVER_MAGIC;
3321 	driver->num = lines;
3322 	driver->owner = owner;
3323 	driver->flags = flags;
3324 
3325 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3326 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3327 				GFP_KERNEL);
3328 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3329 				GFP_KERNEL);
3330 		if (!driver->ttys || !driver->termios) {
3331 			err = -ENOMEM;
3332 			goto err_free_all;
3333 		}
3334 	}
3335 
3336 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3337 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3338 				GFP_KERNEL);
3339 		if (!driver->ports) {
3340 			err = -ENOMEM;
3341 			goto err_free_all;
3342 		}
3343 		cdevs = lines;
3344 	}
3345 
3346 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3347 	if (!driver->cdevs) {
3348 		err = -ENOMEM;
3349 		goto err_free_all;
3350 	}
3351 
3352 	return driver;
3353 err_free_all:
3354 	kfree(driver->ports);
3355 	kfree(driver->ttys);
3356 	kfree(driver->termios);
3357 	kfree(driver->cdevs);
3358 	kfree(driver);
3359 	return ERR_PTR(err);
3360 }
3361 EXPORT_SYMBOL(__tty_alloc_driver);
3362 
3363 static void destruct_tty_driver(struct kref *kref)
3364 {
3365 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3366 	int i;
3367 	struct ktermios *tp;
3368 
3369 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3370 		/*
3371 		 * Free the termios and termios_locked structures because
3372 		 * we don't want to get memory leaks when modular tty
3373 		 * drivers are removed from the kernel.
3374 		 */
3375 		for (i = 0; i < driver->num; i++) {
3376 			tp = driver->termios[i];
3377 			if (tp) {
3378 				driver->termios[i] = NULL;
3379 				kfree(tp);
3380 			}
3381 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3382 				tty_unregister_device(driver, i);
3383 		}
3384 		proc_tty_unregister_driver(driver);
3385 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3386 			cdev_del(driver->cdevs[0]);
3387 	}
3388 	kfree(driver->cdevs);
3389 	kfree(driver->ports);
3390 	kfree(driver->termios);
3391 	kfree(driver->ttys);
3392 	kfree(driver);
3393 }
3394 
3395 void tty_driver_kref_put(struct tty_driver *driver)
3396 {
3397 	kref_put(&driver->kref, destruct_tty_driver);
3398 }
3399 EXPORT_SYMBOL(tty_driver_kref_put);
3400 
3401 void tty_set_operations(struct tty_driver *driver,
3402 			const struct tty_operations *op)
3403 {
3404 	driver->ops = op;
3405 };
3406 EXPORT_SYMBOL(tty_set_operations);
3407 
3408 void put_tty_driver(struct tty_driver *d)
3409 {
3410 	tty_driver_kref_put(d);
3411 }
3412 EXPORT_SYMBOL(put_tty_driver);
3413 
3414 /*
3415  * Called by a tty driver to register itself.
3416  */
3417 int tty_register_driver(struct tty_driver *driver)
3418 {
3419 	int error;
3420 	int i;
3421 	dev_t dev;
3422 	struct device *d;
3423 
3424 	if (!driver->major) {
3425 		error = alloc_chrdev_region(&dev, driver->minor_start,
3426 						driver->num, driver->name);
3427 		if (!error) {
3428 			driver->major = MAJOR(dev);
3429 			driver->minor_start = MINOR(dev);
3430 		}
3431 	} else {
3432 		dev = MKDEV(driver->major, driver->minor_start);
3433 		error = register_chrdev_region(dev, driver->num, driver->name);
3434 	}
3435 	if (error < 0)
3436 		goto err;
3437 
3438 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3439 		error = tty_cdev_add(driver, dev, 0, driver->num);
3440 		if (error)
3441 			goto err_unreg_char;
3442 	}
3443 
3444 	mutex_lock(&tty_mutex);
3445 	list_add(&driver->tty_drivers, &tty_drivers);
3446 	mutex_unlock(&tty_mutex);
3447 
3448 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3449 		for (i = 0; i < driver->num; i++) {
3450 			d = tty_register_device(driver, i, NULL);
3451 			if (IS_ERR(d)) {
3452 				error = PTR_ERR(d);
3453 				goto err_unreg_devs;
3454 			}
3455 		}
3456 	}
3457 	proc_tty_register_driver(driver);
3458 	driver->flags |= TTY_DRIVER_INSTALLED;
3459 	return 0;
3460 
3461 err_unreg_devs:
3462 	for (i--; i >= 0; i--)
3463 		tty_unregister_device(driver, i);
3464 
3465 	mutex_lock(&tty_mutex);
3466 	list_del(&driver->tty_drivers);
3467 	mutex_unlock(&tty_mutex);
3468 
3469 err_unreg_char:
3470 	unregister_chrdev_region(dev, driver->num);
3471 err:
3472 	return error;
3473 }
3474 EXPORT_SYMBOL(tty_register_driver);
3475 
3476 /*
3477  * Called by a tty driver to unregister itself.
3478  */
3479 int tty_unregister_driver(struct tty_driver *driver)
3480 {
3481 #if 0
3482 	/* FIXME */
3483 	if (driver->refcount)
3484 		return -EBUSY;
3485 #endif
3486 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3487 				driver->num);
3488 	mutex_lock(&tty_mutex);
3489 	list_del(&driver->tty_drivers);
3490 	mutex_unlock(&tty_mutex);
3491 	return 0;
3492 }
3493 
3494 EXPORT_SYMBOL(tty_unregister_driver);
3495 
3496 dev_t tty_devnum(struct tty_struct *tty)
3497 {
3498 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3499 }
3500 EXPORT_SYMBOL(tty_devnum);
3501 
3502 void tty_default_fops(struct file_operations *fops)
3503 {
3504 	*fops = tty_fops;
3505 }
3506 
3507 /*
3508  * Initialize the console device. This is called *early*, so
3509  * we can't necessarily depend on lots of kernel help here.
3510  * Just do some early initializations, and do the complex setup
3511  * later.
3512  */
3513 void __init console_init(void)
3514 {
3515 	initcall_t *call;
3516 
3517 	/* Setup the default TTY line discipline. */
3518 	tty_ldisc_begin();
3519 
3520 	/*
3521 	 * set up the console device so that later boot sequences can
3522 	 * inform about problems etc..
3523 	 */
3524 	call = __con_initcall_start;
3525 	while (call < __con_initcall_end) {
3526 		(*call)();
3527 		call++;
3528 	}
3529 }
3530 
3531 static char *tty_devnode(struct device *dev, umode_t *mode)
3532 {
3533 	if (!mode)
3534 		return NULL;
3535 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3536 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3537 		*mode = 0666;
3538 	return NULL;
3539 }
3540 
3541 static int __init tty_class_init(void)
3542 {
3543 	tty_class = class_create(THIS_MODULE, "tty");
3544 	if (IS_ERR(tty_class))
3545 		return PTR_ERR(tty_class);
3546 	tty_class->devnode = tty_devnode;
3547 	return 0;
3548 }
3549 
3550 postcore_initcall(tty_class_init);
3551 
3552 /* 3/2004 jmc: why do these devices exist? */
3553 static struct cdev tty_cdev, console_cdev;
3554 
3555 static ssize_t show_cons_active(struct device *dev,
3556 				struct device_attribute *attr, char *buf)
3557 {
3558 	struct console *cs[16];
3559 	int i = 0;
3560 	struct console *c;
3561 	ssize_t count = 0;
3562 
3563 	console_lock();
3564 	for_each_console(c) {
3565 		if (!c->device)
3566 			continue;
3567 		if (!c->write)
3568 			continue;
3569 		if ((c->flags & CON_ENABLED) == 0)
3570 			continue;
3571 		cs[i++] = c;
3572 		if (i >= ARRAY_SIZE(cs))
3573 			break;
3574 	}
3575 	while (i--) {
3576 		int index = cs[i]->index;
3577 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3578 
3579 		/* don't resolve tty0 as some programs depend on it */
3580 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3581 			count += tty_line_name(drv, index, buf + count);
3582 		else
3583 			count += sprintf(buf + count, "%s%d",
3584 					 cs[i]->name, cs[i]->index);
3585 
3586 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3587 	}
3588 	console_unlock();
3589 
3590 	return count;
3591 }
3592 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3593 
3594 static struct attribute *cons_dev_attrs[] = {
3595 	&dev_attr_active.attr,
3596 	NULL
3597 };
3598 
3599 ATTRIBUTE_GROUPS(cons_dev);
3600 
3601 static struct device *consdev;
3602 
3603 void console_sysfs_notify(void)
3604 {
3605 	if (consdev)
3606 		sysfs_notify(&consdev->kobj, NULL, "active");
3607 }
3608 
3609 /*
3610  * Ok, now we can initialize the rest of the tty devices and can count
3611  * on memory allocations, interrupts etc..
3612  */
3613 int __init tty_init(void)
3614 {
3615 	cdev_init(&tty_cdev, &tty_fops);
3616 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3617 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3618 		panic("Couldn't register /dev/tty driver\n");
3619 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3620 
3621 	cdev_init(&console_cdev, &console_fops);
3622 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3623 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3624 		panic("Couldn't register /dev/console driver\n");
3625 	consdev = device_create_with_groups(tty_class, NULL,
3626 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3627 					    cons_dev_groups, "console");
3628 	if (IS_ERR(consdev))
3629 		consdev = NULL;
3630 
3631 #ifdef CONFIG_VT
3632 	vty_init(&console_fops);
3633 #endif
3634 	return 0;
3635 }
3636 
3637