xref: /openbmc/linux/drivers/tty/tty_io.c (revision 9cfc5c90)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 #ifdef TTY_DEBUG_HANGUP
110 # define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
111 #else
112 # define tty_debug_hangup(tty, f, args...)	do { } while (0)
113 #endif
114 
115 #define TTY_PARANOIA_CHECK 1
116 #define CHECK_TTY_COUNT 1
117 
118 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
119 	.c_iflag = ICRNL | IXON,
120 	.c_oflag = OPOST | ONLCR,
121 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
122 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
123 		   ECHOCTL | ECHOKE | IEXTEN,
124 	.c_cc = INIT_C_CC,
125 	.c_ispeed = 38400,
126 	.c_ospeed = 38400
127 };
128 
129 EXPORT_SYMBOL(tty_std_termios);
130 
131 /* This list gets poked at by procfs and various bits of boot up code. This
132    could do with some rationalisation such as pulling the tty proc function
133    into this file */
134 
135 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
136 
137 /* Mutex to protect creating and releasing a tty. This is shared with
138    vt.c for deeply disgusting hack reasons */
139 DEFINE_MUTEX(tty_mutex);
140 EXPORT_SYMBOL(tty_mutex);
141 
142 /* Spinlock to protect the tty->tty_files list */
143 DEFINE_SPINLOCK(tty_files_lock);
144 
145 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
146 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
147 ssize_t redirected_tty_write(struct file *, const char __user *,
148 							size_t, loff_t *);
149 static unsigned int tty_poll(struct file *, poll_table *);
150 static int tty_open(struct inode *, struct file *);
151 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
152 #ifdef CONFIG_COMPAT
153 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
154 				unsigned long arg);
155 #else
156 #define tty_compat_ioctl NULL
157 #endif
158 static int __tty_fasync(int fd, struct file *filp, int on);
159 static int tty_fasync(int fd, struct file *filp, int on);
160 static void release_tty(struct tty_struct *tty, int idx);
161 
162 /**
163  *	free_tty_struct		-	free a disused tty
164  *	@tty: tty struct to free
165  *
166  *	Free the write buffers, tty queue and tty memory itself.
167  *
168  *	Locking: none. Must be called after tty is definitely unused
169  */
170 
171 void free_tty_struct(struct tty_struct *tty)
172 {
173 	if (!tty)
174 		return;
175 	put_device(tty->dev);
176 	kfree(tty->write_buf);
177 	tty->magic = 0xDEADDEAD;
178 	kfree(tty);
179 }
180 
181 static inline struct tty_struct *file_tty(struct file *file)
182 {
183 	return ((struct tty_file_private *)file->private_data)->tty;
184 }
185 
186 int tty_alloc_file(struct file *file)
187 {
188 	struct tty_file_private *priv;
189 
190 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
191 	if (!priv)
192 		return -ENOMEM;
193 
194 	file->private_data = priv;
195 
196 	return 0;
197 }
198 
199 /* Associate a new file with the tty structure */
200 void tty_add_file(struct tty_struct *tty, struct file *file)
201 {
202 	struct tty_file_private *priv = file->private_data;
203 
204 	priv->tty = tty;
205 	priv->file = file;
206 
207 	spin_lock(&tty_files_lock);
208 	list_add(&priv->list, &tty->tty_files);
209 	spin_unlock(&tty_files_lock);
210 }
211 
212 /**
213  * tty_free_file - free file->private_data
214  *
215  * This shall be used only for fail path handling when tty_add_file was not
216  * called yet.
217  */
218 void tty_free_file(struct file *file)
219 {
220 	struct tty_file_private *priv = file->private_data;
221 
222 	file->private_data = NULL;
223 	kfree(priv);
224 }
225 
226 /* Delete file from its tty */
227 static void tty_del_file(struct file *file)
228 {
229 	struct tty_file_private *priv = file->private_data;
230 
231 	spin_lock(&tty_files_lock);
232 	list_del(&priv->list);
233 	spin_unlock(&tty_files_lock);
234 	tty_free_file(file);
235 }
236 
237 
238 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
239 
240 /**
241  *	tty_name	-	return tty naming
242  *	@tty: tty structure
243  *
244  *	Convert a tty structure into a name. The name reflects the kernel
245  *	naming policy and if udev is in use may not reflect user space
246  *
247  *	Locking: none
248  */
249 
250 const char *tty_name(const struct tty_struct *tty)
251 {
252 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
253 		return "NULL tty";
254 	return tty->name;
255 }
256 
257 EXPORT_SYMBOL(tty_name);
258 
259 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
260 			      const char *routine)
261 {
262 #ifdef TTY_PARANOIA_CHECK
263 	if (!tty) {
264 		printk(KERN_WARNING
265 			"null TTY for (%d:%d) in %s\n",
266 			imajor(inode), iminor(inode), routine);
267 		return 1;
268 	}
269 	if (tty->magic != TTY_MAGIC) {
270 		printk(KERN_WARNING
271 			"bad magic number for tty struct (%d:%d) in %s\n",
272 			imajor(inode), iminor(inode), routine);
273 		return 1;
274 	}
275 #endif
276 	return 0;
277 }
278 
279 /* Caller must hold tty_lock */
280 static int check_tty_count(struct tty_struct *tty, const char *routine)
281 {
282 #ifdef CHECK_TTY_COUNT
283 	struct list_head *p;
284 	int count = 0;
285 
286 	spin_lock(&tty_files_lock);
287 	list_for_each(p, &tty->tty_files) {
288 		count++;
289 	}
290 	spin_unlock(&tty_files_lock);
291 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
293 	    tty->link && tty->link->count)
294 		count++;
295 	if (tty->count != count) {
296 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
297 				    "!= #fd's(%d) in %s\n",
298 		       tty->name, tty->count, count, routine);
299 		return count;
300 	}
301 #endif
302 	return 0;
303 }
304 
305 /**
306  *	get_tty_driver		-	find device of a tty
307  *	@dev_t: device identifier
308  *	@index: returns the index of the tty
309  *
310  *	This routine returns a tty driver structure, given a device number
311  *	and also passes back the index number.
312  *
313  *	Locking: caller must hold tty_mutex
314  */
315 
316 static struct tty_driver *get_tty_driver(dev_t device, int *index)
317 {
318 	struct tty_driver *p;
319 
320 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
321 		dev_t base = MKDEV(p->major, p->minor_start);
322 		if (device < base || device >= base + p->num)
323 			continue;
324 		*index = device - base;
325 		return tty_driver_kref_get(p);
326 	}
327 	return NULL;
328 }
329 
330 #ifdef CONFIG_CONSOLE_POLL
331 
332 /**
333  *	tty_find_polling_driver	-	find device of a polled tty
334  *	@name: name string to match
335  *	@line: pointer to resulting tty line nr
336  *
337  *	This routine returns a tty driver structure, given a name
338  *	and the condition that the tty driver is capable of polled
339  *	operation.
340  */
341 struct tty_driver *tty_find_polling_driver(char *name, int *line)
342 {
343 	struct tty_driver *p, *res = NULL;
344 	int tty_line = 0;
345 	int len;
346 	char *str, *stp;
347 
348 	for (str = name; *str; str++)
349 		if ((*str >= '0' && *str <= '9') || *str == ',')
350 			break;
351 	if (!*str)
352 		return NULL;
353 
354 	len = str - name;
355 	tty_line = simple_strtoul(str, &str, 10);
356 
357 	mutex_lock(&tty_mutex);
358 	/* Search through the tty devices to look for a match */
359 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
360 		if (strncmp(name, p->name, len) != 0)
361 			continue;
362 		stp = str;
363 		if (*stp == ',')
364 			stp++;
365 		if (*stp == '\0')
366 			stp = NULL;
367 
368 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
369 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
370 			res = tty_driver_kref_get(p);
371 			*line = tty_line;
372 			break;
373 		}
374 	}
375 	mutex_unlock(&tty_mutex);
376 
377 	return res;
378 }
379 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
380 #endif
381 
382 /**
383  *	tty_check_change	-	check for POSIX terminal changes
384  *	@tty: tty to check
385  *
386  *	If we try to write to, or set the state of, a terminal and we're
387  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
388  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
389  *
390  *	Locking: ctrl_lock
391  */
392 
393 int __tty_check_change(struct tty_struct *tty, int sig)
394 {
395 	unsigned long flags;
396 	struct pid *pgrp, *tty_pgrp;
397 	int ret = 0;
398 
399 	if (current->signal->tty != tty)
400 		return 0;
401 
402 	rcu_read_lock();
403 	pgrp = task_pgrp(current);
404 
405 	spin_lock_irqsave(&tty->ctrl_lock, flags);
406 	tty_pgrp = tty->pgrp;
407 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
408 
409 	if (tty_pgrp && pgrp != tty->pgrp) {
410 		if (is_ignored(sig)) {
411 			if (sig == SIGTTIN)
412 				ret = -EIO;
413 		} else if (is_current_pgrp_orphaned())
414 			ret = -EIO;
415 		else {
416 			kill_pgrp(pgrp, sig, 1);
417 			set_thread_flag(TIF_SIGPENDING);
418 			ret = -ERESTARTSYS;
419 		}
420 	}
421 	rcu_read_unlock();
422 
423 	if (!tty_pgrp) {
424 		pr_warn("%s: tty_check_change: sig=%d, tty->pgrp == NULL!\n",
425 			tty_name(tty), sig);
426 	}
427 
428 	return ret;
429 }
430 
431 int tty_check_change(struct tty_struct *tty)
432 {
433 	return __tty_check_change(tty, SIGTTOU);
434 }
435 EXPORT_SYMBOL(tty_check_change);
436 
437 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
438 				size_t count, loff_t *ppos)
439 {
440 	return 0;
441 }
442 
443 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
444 				 size_t count, loff_t *ppos)
445 {
446 	return -EIO;
447 }
448 
449 /* No kernel lock held - none needed ;) */
450 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
451 {
452 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
453 }
454 
455 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
456 		unsigned long arg)
457 {
458 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
459 }
460 
461 static long hung_up_tty_compat_ioctl(struct file *file,
462 				     unsigned int cmd, unsigned long arg)
463 {
464 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
465 }
466 
467 static const struct file_operations tty_fops = {
468 	.llseek		= no_llseek,
469 	.read		= tty_read,
470 	.write		= tty_write,
471 	.poll		= tty_poll,
472 	.unlocked_ioctl	= tty_ioctl,
473 	.compat_ioctl	= tty_compat_ioctl,
474 	.open		= tty_open,
475 	.release	= tty_release,
476 	.fasync		= tty_fasync,
477 };
478 
479 static const struct file_operations console_fops = {
480 	.llseek		= no_llseek,
481 	.read		= tty_read,
482 	.write		= redirected_tty_write,
483 	.poll		= tty_poll,
484 	.unlocked_ioctl	= tty_ioctl,
485 	.compat_ioctl	= tty_compat_ioctl,
486 	.open		= tty_open,
487 	.release	= tty_release,
488 	.fasync		= tty_fasync,
489 };
490 
491 static const struct file_operations hung_up_tty_fops = {
492 	.llseek		= no_llseek,
493 	.read		= hung_up_tty_read,
494 	.write		= hung_up_tty_write,
495 	.poll		= hung_up_tty_poll,
496 	.unlocked_ioctl	= hung_up_tty_ioctl,
497 	.compat_ioctl	= hung_up_tty_compat_ioctl,
498 	.release	= tty_release,
499 };
500 
501 static DEFINE_SPINLOCK(redirect_lock);
502 static struct file *redirect;
503 
504 
505 void proc_clear_tty(struct task_struct *p)
506 {
507 	unsigned long flags;
508 	struct tty_struct *tty;
509 	spin_lock_irqsave(&p->sighand->siglock, flags);
510 	tty = p->signal->tty;
511 	p->signal->tty = NULL;
512 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
513 	tty_kref_put(tty);
514 }
515 
516 /**
517  * proc_set_tty -  set the controlling terminal
518  *
519  * Only callable by the session leader and only if it does not already have
520  * a controlling terminal.
521  *
522  * Caller must hold:  tty_lock()
523  *		      a readlock on tasklist_lock
524  *		      sighand lock
525  */
526 static void __proc_set_tty(struct tty_struct *tty)
527 {
528 	unsigned long flags;
529 
530 	spin_lock_irqsave(&tty->ctrl_lock, flags);
531 	/*
532 	 * The session and fg pgrp references will be non-NULL if
533 	 * tiocsctty() is stealing the controlling tty
534 	 */
535 	put_pid(tty->session);
536 	put_pid(tty->pgrp);
537 	tty->pgrp = get_pid(task_pgrp(current));
538 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
539 	tty->session = get_pid(task_session(current));
540 	if (current->signal->tty) {
541 		tty_debug(tty, "current tty %s not NULL!!\n",
542 			  current->signal->tty->name);
543 		tty_kref_put(current->signal->tty);
544 	}
545 	put_pid(current->signal->tty_old_pgrp);
546 	current->signal->tty = tty_kref_get(tty);
547 	current->signal->tty_old_pgrp = NULL;
548 }
549 
550 static void proc_set_tty(struct tty_struct *tty)
551 {
552 	spin_lock_irq(&current->sighand->siglock);
553 	__proc_set_tty(tty);
554 	spin_unlock_irq(&current->sighand->siglock);
555 }
556 
557 struct tty_struct *get_current_tty(void)
558 {
559 	struct tty_struct *tty;
560 	unsigned long flags;
561 
562 	spin_lock_irqsave(&current->sighand->siglock, flags);
563 	tty = tty_kref_get(current->signal->tty);
564 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
565 	return tty;
566 }
567 EXPORT_SYMBOL_GPL(get_current_tty);
568 
569 static void session_clear_tty(struct pid *session)
570 {
571 	struct task_struct *p;
572 	do_each_pid_task(session, PIDTYPE_SID, p) {
573 		proc_clear_tty(p);
574 	} while_each_pid_task(session, PIDTYPE_SID, p);
575 }
576 
577 /**
578  *	tty_wakeup	-	request more data
579  *	@tty: terminal
580  *
581  *	Internal and external helper for wakeups of tty. This function
582  *	informs the line discipline if present that the driver is ready
583  *	to receive more output data.
584  */
585 
586 void tty_wakeup(struct tty_struct *tty)
587 {
588 	struct tty_ldisc *ld;
589 
590 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
591 		ld = tty_ldisc_ref(tty);
592 		if (ld) {
593 			if (ld->ops->write_wakeup)
594 				ld->ops->write_wakeup(tty);
595 			tty_ldisc_deref(ld);
596 		}
597 	}
598 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
599 }
600 
601 EXPORT_SYMBOL_GPL(tty_wakeup);
602 
603 /**
604  *	tty_signal_session_leader	- sends SIGHUP to session leader
605  *	@tty		controlling tty
606  *	@exit_session	if non-zero, signal all foreground group processes
607  *
608  *	Send SIGHUP and SIGCONT to the session leader and its process group.
609  *	Optionally, signal all processes in the foreground process group.
610  *
611  *	Returns the number of processes in the session with this tty
612  *	as their controlling terminal. This value is used to drop
613  *	tty references for those processes.
614  */
615 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
616 {
617 	struct task_struct *p;
618 	int refs = 0;
619 	struct pid *tty_pgrp = NULL;
620 
621 	read_lock(&tasklist_lock);
622 	if (tty->session) {
623 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
624 			spin_lock_irq(&p->sighand->siglock);
625 			if (p->signal->tty == tty) {
626 				p->signal->tty = NULL;
627 				/* We defer the dereferences outside fo
628 				   the tasklist lock */
629 				refs++;
630 			}
631 			if (!p->signal->leader) {
632 				spin_unlock_irq(&p->sighand->siglock);
633 				continue;
634 			}
635 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
636 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
637 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
638 			spin_lock(&tty->ctrl_lock);
639 			tty_pgrp = get_pid(tty->pgrp);
640 			if (tty->pgrp)
641 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
642 			spin_unlock(&tty->ctrl_lock);
643 			spin_unlock_irq(&p->sighand->siglock);
644 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
645 	}
646 	read_unlock(&tasklist_lock);
647 
648 	if (tty_pgrp) {
649 		if (exit_session)
650 			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
651 		put_pid(tty_pgrp);
652 	}
653 
654 	return refs;
655 }
656 
657 /**
658  *	__tty_hangup		-	actual handler for hangup events
659  *	@work: tty device
660  *
661  *	This can be called by a "kworker" kernel thread.  That is process
662  *	synchronous but doesn't hold any locks, so we need to make sure we
663  *	have the appropriate locks for what we're doing.
664  *
665  *	The hangup event clears any pending redirections onto the hung up
666  *	device. It ensures future writes will error and it does the needed
667  *	line discipline hangup and signal delivery. The tty object itself
668  *	remains intact.
669  *
670  *	Locking:
671  *		BTM
672  *		  redirect lock for undoing redirection
673  *		  file list lock for manipulating list of ttys
674  *		  tty_ldiscs_lock from called functions
675  *		  termios_rwsem resetting termios data
676  *		  tasklist_lock to walk task list for hangup event
677  *		    ->siglock to protect ->signal/->sighand
678  */
679 static void __tty_hangup(struct tty_struct *tty, int exit_session)
680 {
681 	struct file *cons_filp = NULL;
682 	struct file *filp, *f = NULL;
683 	struct tty_file_private *priv;
684 	int    closecount = 0, n;
685 	int refs;
686 
687 	if (!tty)
688 		return;
689 
690 
691 	spin_lock(&redirect_lock);
692 	if (redirect && file_tty(redirect) == tty) {
693 		f = redirect;
694 		redirect = NULL;
695 	}
696 	spin_unlock(&redirect_lock);
697 
698 	tty_lock(tty);
699 
700 	if (test_bit(TTY_HUPPED, &tty->flags)) {
701 		tty_unlock(tty);
702 		return;
703 	}
704 
705 	/* inuse_filps is protected by the single tty lock,
706 	   this really needs to change if we want to flush the
707 	   workqueue with the lock held */
708 	check_tty_count(tty, "tty_hangup");
709 
710 	spin_lock(&tty_files_lock);
711 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
712 	list_for_each_entry(priv, &tty->tty_files, list) {
713 		filp = priv->file;
714 		if (filp->f_op->write == redirected_tty_write)
715 			cons_filp = filp;
716 		if (filp->f_op->write != tty_write)
717 			continue;
718 		closecount++;
719 		__tty_fasync(-1, filp, 0);	/* can't block */
720 		filp->f_op = &hung_up_tty_fops;
721 	}
722 	spin_unlock(&tty_files_lock);
723 
724 	refs = tty_signal_session_leader(tty, exit_session);
725 	/* Account for the p->signal references we killed */
726 	while (refs--)
727 		tty_kref_put(tty);
728 
729 	tty_ldisc_hangup(tty);
730 
731 	spin_lock_irq(&tty->ctrl_lock);
732 	clear_bit(TTY_THROTTLED, &tty->flags);
733 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
734 	put_pid(tty->session);
735 	put_pid(tty->pgrp);
736 	tty->session = NULL;
737 	tty->pgrp = NULL;
738 	tty->ctrl_status = 0;
739 	spin_unlock_irq(&tty->ctrl_lock);
740 
741 	/*
742 	 * If one of the devices matches a console pointer, we
743 	 * cannot just call hangup() because that will cause
744 	 * tty->count and state->count to go out of sync.
745 	 * So we just call close() the right number of times.
746 	 */
747 	if (cons_filp) {
748 		if (tty->ops->close)
749 			for (n = 0; n < closecount; n++)
750 				tty->ops->close(tty, cons_filp);
751 	} else if (tty->ops->hangup)
752 		tty->ops->hangup(tty);
753 	/*
754 	 * We don't want to have driver/ldisc interactions beyond
755 	 * the ones we did here. The driver layer expects no
756 	 * calls after ->hangup() from the ldisc side. However we
757 	 * can't yet guarantee all that.
758 	 */
759 	set_bit(TTY_HUPPED, &tty->flags);
760 	tty_unlock(tty);
761 
762 	if (f)
763 		fput(f);
764 }
765 
766 static void do_tty_hangup(struct work_struct *work)
767 {
768 	struct tty_struct *tty =
769 		container_of(work, struct tty_struct, hangup_work);
770 
771 	__tty_hangup(tty, 0);
772 }
773 
774 /**
775  *	tty_hangup		-	trigger a hangup event
776  *	@tty: tty to hangup
777  *
778  *	A carrier loss (virtual or otherwise) has occurred on this like
779  *	schedule a hangup sequence to run after this event.
780  */
781 
782 void tty_hangup(struct tty_struct *tty)
783 {
784 	tty_debug_hangup(tty, "\n");
785 	schedule_work(&tty->hangup_work);
786 }
787 
788 EXPORT_SYMBOL(tty_hangup);
789 
790 /**
791  *	tty_vhangup		-	process vhangup
792  *	@tty: tty to hangup
793  *
794  *	The user has asked via system call for the terminal to be hung up.
795  *	We do this synchronously so that when the syscall returns the process
796  *	is complete. That guarantee is necessary for security reasons.
797  */
798 
799 void tty_vhangup(struct tty_struct *tty)
800 {
801 	tty_debug_hangup(tty, "\n");
802 	__tty_hangup(tty, 0);
803 }
804 
805 EXPORT_SYMBOL(tty_vhangup);
806 
807 
808 /**
809  *	tty_vhangup_self	-	process vhangup for own ctty
810  *
811  *	Perform a vhangup on the current controlling tty
812  */
813 
814 void tty_vhangup_self(void)
815 {
816 	struct tty_struct *tty;
817 
818 	tty = get_current_tty();
819 	if (tty) {
820 		tty_vhangup(tty);
821 		tty_kref_put(tty);
822 	}
823 }
824 
825 /**
826  *	tty_vhangup_session		-	hangup session leader exit
827  *	@tty: tty to hangup
828  *
829  *	The session leader is exiting and hanging up its controlling terminal.
830  *	Every process in the foreground process group is signalled SIGHUP.
831  *
832  *	We do this synchronously so that when the syscall returns the process
833  *	is complete. That guarantee is necessary for security reasons.
834  */
835 
836 static void tty_vhangup_session(struct tty_struct *tty)
837 {
838 	tty_debug_hangup(tty, "\n");
839 	__tty_hangup(tty, 1);
840 }
841 
842 /**
843  *	tty_hung_up_p		-	was tty hung up
844  *	@filp: file pointer of tty
845  *
846  *	Return true if the tty has been subject to a vhangup or a carrier
847  *	loss
848  */
849 
850 int tty_hung_up_p(struct file *filp)
851 {
852 	return (filp->f_op == &hung_up_tty_fops);
853 }
854 
855 EXPORT_SYMBOL(tty_hung_up_p);
856 
857 /**
858  *	disassociate_ctty	-	disconnect controlling tty
859  *	@on_exit: true if exiting so need to "hang up" the session
860  *
861  *	This function is typically called only by the session leader, when
862  *	it wants to disassociate itself from its controlling tty.
863  *
864  *	It performs the following functions:
865  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
866  * 	(2)  Clears the tty from being controlling the session
867  * 	(3)  Clears the controlling tty for all processes in the
868  * 		session group.
869  *
870  *	The argument on_exit is set to 1 if called when a process is
871  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
872  *
873  *	Locking:
874  *		BTM is taken for hysterical raisins, and held when
875  *		  called from no_tty().
876  *		  tty_mutex is taken to protect tty
877  *		  ->siglock is taken to protect ->signal/->sighand
878  *		  tasklist_lock is taken to walk process list for sessions
879  *		    ->siglock is taken to protect ->signal/->sighand
880  */
881 
882 void disassociate_ctty(int on_exit)
883 {
884 	struct tty_struct *tty;
885 
886 	if (!current->signal->leader)
887 		return;
888 
889 	tty = get_current_tty();
890 	if (tty) {
891 		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
892 			tty_vhangup_session(tty);
893 		} else {
894 			struct pid *tty_pgrp = tty_get_pgrp(tty);
895 			if (tty_pgrp) {
896 				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
897 				if (!on_exit)
898 					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
899 				put_pid(tty_pgrp);
900 			}
901 		}
902 		tty_kref_put(tty);
903 
904 	} else if (on_exit) {
905 		struct pid *old_pgrp;
906 		spin_lock_irq(&current->sighand->siglock);
907 		old_pgrp = current->signal->tty_old_pgrp;
908 		current->signal->tty_old_pgrp = NULL;
909 		spin_unlock_irq(&current->sighand->siglock);
910 		if (old_pgrp) {
911 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
912 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
913 			put_pid(old_pgrp);
914 		}
915 		return;
916 	}
917 
918 	spin_lock_irq(&current->sighand->siglock);
919 	put_pid(current->signal->tty_old_pgrp);
920 	current->signal->tty_old_pgrp = NULL;
921 
922 	tty = tty_kref_get(current->signal->tty);
923 	if (tty) {
924 		unsigned long flags;
925 		spin_lock_irqsave(&tty->ctrl_lock, flags);
926 		put_pid(tty->session);
927 		put_pid(tty->pgrp);
928 		tty->session = NULL;
929 		tty->pgrp = NULL;
930 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
931 		tty_kref_put(tty);
932 	} else
933 		tty_debug_hangup(tty, "no current tty\n");
934 
935 	spin_unlock_irq(&current->sighand->siglock);
936 	/* Now clear signal->tty under the lock */
937 	read_lock(&tasklist_lock);
938 	session_clear_tty(task_session(current));
939 	read_unlock(&tasklist_lock);
940 }
941 
942 /**
943  *
944  *	no_tty	- Ensure the current process does not have a controlling tty
945  */
946 void no_tty(void)
947 {
948 	/* FIXME: Review locking here. The tty_lock never covered any race
949 	   between a new association and proc_clear_tty but possible we need
950 	   to protect against this anyway */
951 	struct task_struct *tsk = current;
952 	disassociate_ctty(0);
953 	proc_clear_tty(tsk);
954 }
955 
956 
957 /**
958  *	stop_tty	-	propagate flow control
959  *	@tty: tty to stop
960  *
961  *	Perform flow control to the driver. May be called
962  *	on an already stopped device and will not re-call the driver
963  *	method.
964  *
965  *	This functionality is used by both the line disciplines for
966  *	halting incoming flow and by the driver. It may therefore be
967  *	called from any context, may be under the tty atomic_write_lock
968  *	but not always.
969  *
970  *	Locking:
971  *		flow_lock
972  */
973 
974 void __stop_tty(struct tty_struct *tty)
975 {
976 	if (tty->stopped)
977 		return;
978 	tty->stopped = 1;
979 	if (tty->ops->stop)
980 		tty->ops->stop(tty);
981 }
982 
983 void stop_tty(struct tty_struct *tty)
984 {
985 	unsigned long flags;
986 
987 	spin_lock_irqsave(&tty->flow_lock, flags);
988 	__stop_tty(tty);
989 	spin_unlock_irqrestore(&tty->flow_lock, flags);
990 }
991 EXPORT_SYMBOL(stop_tty);
992 
993 /**
994  *	start_tty	-	propagate flow control
995  *	@tty: tty to start
996  *
997  *	Start a tty that has been stopped if at all possible. If this
998  *	tty was previous stopped and is now being started, the driver
999  *	start method is invoked and the line discipline woken.
1000  *
1001  *	Locking:
1002  *		flow_lock
1003  */
1004 
1005 void __start_tty(struct tty_struct *tty)
1006 {
1007 	if (!tty->stopped || tty->flow_stopped)
1008 		return;
1009 	tty->stopped = 0;
1010 	if (tty->ops->start)
1011 		tty->ops->start(tty);
1012 	tty_wakeup(tty);
1013 }
1014 
1015 void start_tty(struct tty_struct *tty)
1016 {
1017 	unsigned long flags;
1018 
1019 	spin_lock_irqsave(&tty->flow_lock, flags);
1020 	__start_tty(tty);
1021 	spin_unlock_irqrestore(&tty->flow_lock, flags);
1022 }
1023 EXPORT_SYMBOL(start_tty);
1024 
1025 static void tty_update_time(struct timespec *time)
1026 {
1027 	unsigned long sec = get_seconds();
1028 
1029 	/*
1030 	 * We only care if the two values differ in anything other than the
1031 	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1032 	 * the time of the tty device, otherwise it could be construded as a
1033 	 * security leak to let userspace know the exact timing of the tty.
1034 	 */
1035 	if ((sec ^ time->tv_sec) & ~7)
1036 		time->tv_sec = sec;
1037 }
1038 
1039 /**
1040  *	tty_read	-	read method for tty device files
1041  *	@file: pointer to tty file
1042  *	@buf: user buffer
1043  *	@count: size of user buffer
1044  *	@ppos: unused
1045  *
1046  *	Perform the read system call function on this terminal device. Checks
1047  *	for hung up devices before calling the line discipline method.
1048  *
1049  *	Locking:
1050  *		Locks the line discipline internally while needed. Multiple
1051  *	read calls may be outstanding in parallel.
1052  */
1053 
1054 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1055 			loff_t *ppos)
1056 {
1057 	int i;
1058 	struct inode *inode = file_inode(file);
1059 	struct tty_struct *tty = file_tty(file);
1060 	struct tty_ldisc *ld;
1061 
1062 	if (tty_paranoia_check(tty, inode, "tty_read"))
1063 		return -EIO;
1064 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1065 		return -EIO;
1066 
1067 	/* We want to wait for the line discipline to sort out in this
1068 	   situation */
1069 	ld = tty_ldisc_ref_wait(tty);
1070 	if (ld->ops->read)
1071 		i = ld->ops->read(tty, file, buf, count);
1072 	else
1073 		i = -EIO;
1074 	tty_ldisc_deref(ld);
1075 
1076 	if (i > 0)
1077 		tty_update_time(&inode->i_atime);
1078 
1079 	return i;
1080 }
1081 
1082 static void tty_write_unlock(struct tty_struct *tty)
1083 {
1084 	mutex_unlock(&tty->atomic_write_lock);
1085 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1086 }
1087 
1088 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1089 {
1090 	if (!mutex_trylock(&tty->atomic_write_lock)) {
1091 		if (ndelay)
1092 			return -EAGAIN;
1093 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1094 			return -ERESTARTSYS;
1095 	}
1096 	return 0;
1097 }
1098 
1099 /*
1100  * Split writes up in sane blocksizes to avoid
1101  * denial-of-service type attacks
1102  */
1103 static inline ssize_t do_tty_write(
1104 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1105 	struct tty_struct *tty,
1106 	struct file *file,
1107 	const char __user *buf,
1108 	size_t count)
1109 {
1110 	ssize_t ret, written = 0;
1111 	unsigned int chunk;
1112 
1113 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1114 	if (ret < 0)
1115 		return ret;
1116 
1117 	/*
1118 	 * We chunk up writes into a temporary buffer. This
1119 	 * simplifies low-level drivers immensely, since they
1120 	 * don't have locking issues and user mode accesses.
1121 	 *
1122 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1123 	 * big chunk-size..
1124 	 *
1125 	 * The default chunk-size is 2kB, because the NTTY
1126 	 * layer has problems with bigger chunks. It will
1127 	 * claim to be able to handle more characters than
1128 	 * it actually does.
1129 	 *
1130 	 * FIXME: This can probably go away now except that 64K chunks
1131 	 * are too likely to fail unless switched to vmalloc...
1132 	 */
1133 	chunk = 2048;
1134 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1135 		chunk = 65536;
1136 	if (count < chunk)
1137 		chunk = count;
1138 
1139 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1140 	if (tty->write_cnt < chunk) {
1141 		unsigned char *buf_chunk;
1142 
1143 		if (chunk < 1024)
1144 			chunk = 1024;
1145 
1146 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1147 		if (!buf_chunk) {
1148 			ret = -ENOMEM;
1149 			goto out;
1150 		}
1151 		kfree(tty->write_buf);
1152 		tty->write_cnt = chunk;
1153 		tty->write_buf = buf_chunk;
1154 	}
1155 
1156 	/* Do the write .. */
1157 	for (;;) {
1158 		size_t size = count;
1159 		if (size > chunk)
1160 			size = chunk;
1161 		ret = -EFAULT;
1162 		if (copy_from_user(tty->write_buf, buf, size))
1163 			break;
1164 		ret = write(tty, file, tty->write_buf, size);
1165 		if (ret <= 0)
1166 			break;
1167 		written += ret;
1168 		buf += ret;
1169 		count -= ret;
1170 		if (!count)
1171 			break;
1172 		ret = -ERESTARTSYS;
1173 		if (signal_pending(current))
1174 			break;
1175 		cond_resched();
1176 	}
1177 	if (written) {
1178 		tty_update_time(&file_inode(file)->i_mtime);
1179 		ret = written;
1180 	}
1181 out:
1182 	tty_write_unlock(tty);
1183 	return ret;
1184 }
1185 
1186 /**
1187  * tty_write_message - write a message to a certain tty, not just the console.
1188  * @tty: the destination tty_struct
1189  * @msg: the message to write
1190  *
1191  * This is used for messages that need to be redirected to a specific tty.
1192  * We don't put it into the syslog queue right now maybe in the future if
1193  * really needed.
1194  *
1195  * We must still hold the BTM and test the CLOSING flag for the moment.
1196  */
1197 
1198 void tty_write_message(struct tty_struct *tty, char *msg)
1199 {
1200 	if (tty) {
1201 		mutex_lock(&tty->atomic_write_lock);
1202 		tty_lock(tty);
1203 		if (tty->ops->write && tty->count > 0)
1204 			tty->ops->write(tty, msg, strlen(msg));
1205 		tty_unlock(tty);
1206 		tty_write_unlock(tty);
1207 	}
1208 	return;
1209 }
1210 
1211 
1212 /**
1213  *	tty_write		-	write method for tty device file
1214  *	@file: tty file pointer
1215  *	@buf: user data to write
1216  *	@count: bytes to write
1217  *	@ppos: unused
1218  *
1219  *	Write data to a tty device via the line discipline.
1220  *
1221  *	Locking:
1222  *		Locks the line discipline as required
1223  *		Writes to the tty driver are serialized by the atomic_write_lock
1224  *	and are then processed in chunks to the device. The line discipline
1225  *	write method will not be invoked in parallel for each device.
1226  */
1227 
1228 static ssize_t tty_write(struct file *file, const char __user *buf,
1229 						size_t count, loff_t *ppos)
1230 {
1231 	struct tty_struct *tty = file_tty(file);
1232  	struct tty_ldisc *ld;
1233 	ssize_t ret;
1234 
1235 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1236 		return -EIO;
1237 	if (!tty || !tty->ops->write ||
1238 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1239 			return -EIO;
1240 	/* Short term debug to catch buggy drivers */
1241 	if (tty->ops->write_room == NULL)
1242 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1243 			tty->driver->name);
1244 	ld = tty_ldisc_ref_wait(tty);
1245 	if (!ld->ops->write)
1246 		ret = -EIO;
1247 	else
1248 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1249 	tty_ldisc_deref(ld);
1250 	return ret;
1251 }
1252 
1253 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1254 						size_t count, loff_t *ppos)
1255 {
1256 	struct file *p = NULL;
1257 
1258 	spin_lock(&redirect_lock);
1259 	if (redirect)
1260 		p = get_file(redirect);
1261 	spin_unlock(&redirect_lock);
1262 
1263 	if (p) {
1264 		ssize_t res;
1265 		res = vfs_write(p, buf, count, &p->f_pos);
1266 		fput(p);
1267 		return res;
1268 	}
1269 	return tty_write(file, buf, count, ppos);
1270 }
1271 
1272 /**
1273  *	tty_send_xchar	-	send priority character
1274  *
1275  *	Send a high priority character to the tty even if stopped
1276  *
1277  *	Locking: none for xchar method, write ordering for write method.
1278  */
1279 
1280 int tty_send_xchar(struct tty_struct *tty, char ch)
1281 {
1282 	int	was_stopped = tty->stopped;
1283 
1284 	if (tty->ops->send_xchar) {
1285 		tty->ops->send_xchar(tty, ch);
1286 		return 0;
1287 	}
1288 
1289 	if (tty_write_lock(tty, 0) < 0)
1290 		return -ERESTARTSYS;
1291 
1292 	if (was_stopped)
1293 		start_tty(tty);
1294 	tty->ops->write(tty, &ch, 1);
1295 	if (was_stopped)
1296 		stop_tty(tty);
1297 	tty_write_unlock(tty);
1298 	return 0;
1299 }
1300 
1301 static char ptychar[] = "pqrstuvwxyzabcde";
1302 
1303 /**
1304  *	pty_line_name	-	generate name for a pty
1305  *	@driver: the tty driver in use
1306  *	@index: the minor number
1307  *	@p: output buffer of at least 6 bytes
1308  *
1309  *	Generate a name from a driver reference and write it to the output
1310  *	buffer.
1311  *
1312  *	Locking: None
1313  */
1314 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1315 {
1316 	int i = index + driver->name_base;
1317 	/* ->name is initialized to "ttyp", but "tty" is expected */
1318 	sprintf(p, "%s%c%x",
1319 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1320 		ptychar[i >> 4 & 0xf], i & 0xf);
1321 }
1322 
1323 /**
1324  *	tty_line_name	-	generate name for a tty
1325  *	@driver: the tty driver in use
1326  *	@index: the minor number
1327  *	@p: output buffer of at least 7 bytes
1328  *
1329  *	Generate a name from a driver reference and write it to the output
1330  *	buffer.
1331  *
1332  *	Locking: None
1333  */
1334 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1335 {
1336 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1337 		return sprintf(p, "%s", driver->name);
1338 	else
1339 		return sprintf(p, "%s%d", driver->name,
1340 			       index + driver->name_base);
1341 }
1342 
1343 /**
1344  *	tty_driver_lookup_tty() - find an existing tty, if any
1345  *	@driver: the driver for the tty
1346  *	@idx:	 the minor number
1347  *
1348  *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1349  *	driver lookup() method returns an error.
1350  *
1351  *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1352  */
1353 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1354 		struct inode *inode, int idx)
1355 {
1356 	struct tty_struct *tty;
1357 
1358 	if (driver->ops->lookup)
1359 		tty = driver->ops->lookup(driver, inode, idx);
1360 	else
1361 		tty = driver->ttys[idx];
1362 
1363 	if (!IS_ERR(tty))
1364 		tty_kref_get(tty);
1365 	return tty;
1366 }
1367 
1368 /**
1369  *	tty_init_termios	-  helper for termios setup
1370  *	@tty: the tty to set up
1371  *
1372  *	Initialise the termios structures for this tty. Thus runs under
1373  *	the tty_mutex currently so we can be relaxed about ordering.
1374  */
1375 
1376 int tty_init_termios(struct tty_struct *tty)
1377 {
1378 	struct ktermios *tp;
1379 	int idx = tty->index;
1380 
1381 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1382 		tty->termios = tty->driver->init_termios;
1383 	else {
1384 		/* Check for lazy saved data */
1385 		tp = tty->driver->termios[idx];
1386 		if (tp != NULL)
1387 			tty->termios = *tp;
1388 		else
1389 			tty->termios = tty->driver->init_termios;
1390 	}
1391 	/* Compatibility until drivers always set this */
1392 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1393 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1394 	return 0;
1395 }
1396 EXPORT_SYMBOL_GPL(tty_init_termios);
1397 
1398 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1399 {
1400 	int ret = tty_init_termios(tty);
1401 	if (ret)
1402 		return ret;
1403 
1404 	tty_driver_kref_get(driver);
1405 	tty->count++;
1406 	driver->ttys[tty->index] = tty;
1407 	return 0;
1408 }
1409 EXPORT_SYMBOL_GPL(tty_standard_install);
1410 
1411 /**
1412  *	tty_driver_install_tty() - install a tty entry in the driver
1413  *	@driver: the driver for the tty
1414  *	@tty: the tty
1415  *
1416  *	Install a tty object into the driver tables. The tty->index field
1417  *	will be set by the time this is called. This method is responsible
1418  *	for ensuring any need additional structures are allocated and
1419  *	configured.
1420  *
1421  *	Locking: tty_mutex for now
1422  */
1423 static int tty_driver_install_tty(struct tty_driver *driver,
1424 						struct tty_struct *tty)
1425 {
1426 	return driver->ops->install ? driver->ops->install(driver, tty) :
1427 		tty_standard_install(driver, tty);
1428 }
1429 
1430 /**
1431  *	tty_driver_remove_tty() - remove a tty from the driver tables
1432  *	@driver: the driver for the tty
1433  *	@idx:	 the minor number
1434  *
1435  *	Remvoe a tty object from the driver tables. The tty->index field
1436  *	will be set by the time this is called.
1437  *
1438  *	Locking: tty_mutex for now
1439  */
1440 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1441 {
1442 	if (driver->ops->remove)
1443 		driver->ops->remove(driver, tty);
1444 	else
1445 		driver->ttys[tty->index] = NULL;
1446 }
1447 
1448 /*
1449  * 	tty_reopen()	- fast re-open of an open tty
1450  * 	@tty	- the tty to open
1451  *
1452  *	Return 0 on success, -errno on error.
1453  *	Re-opens on master ptys are not allowed and return -EIO.
1454  *
1455  *	Locking: Caller must hold tty_lock
1456  */
1457 static int tty_reopen(struct tty_struct *tty)
1458 {
1459 	struct tty_driver *driver = tty->driver;
1460 
1461 	if (!tty->count)
1462 		return -EIO;
1463 
1464 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1465 	    driver->subtype == PTY_TYPE_MASTER)
1466 		return -EIO;
1467 
1468 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1469 		return -EBUSY;
1470 
1471 	tty->count++;
1472 
1473 	WARN_ON(!tty->ldisc);
1474 
1475 	return 0;
1476 }
1477 
1478 /**
1479  *	tty_init_dev		-	initialise a tty device
1480  *	@driver: tty driver we are opening a device on
1481  *	@idx: device index
1482  *	@ret_tty: returned tty structure
1483  *
1484  *	Prepare a tty device. This may not be a "new" clean device but
1485  *	could also be an active device. The pty drivers require special
1486  *	handling because of this.
1487  *
1488  *	Locking:
1489  *		The function is called under the tty_mutex, which
1490  *	protects us from the tty struct or driver itself going away.
1491  *
1492  *	On exit the tty device has the line discipline attached and
1493  *	a reference count of 1. If a pair was created for pty/tty use
1494  *	and the other was a pty master then it too has a reference count of 1.
1495  *
1496  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1497  * failed open.  The new code protects the open with a mutex, so it's
1498  * really quite straightforward.  The mutex locking can probably be
1499  * relaxed for the (most common) case of reopening a tty.
1500  */
1501 
1502 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1503 {
1504 	struct tty_struct *tty;
1505 	int retval;
1506 
1507 	/*
1508 	 * First time open is complex, especially for PTY devices.
1509 	 * This code guarantees that either everything succeeds and the
1510 	 * TTY is ready for operation, or else the table slots are vacated
1511 	 * and the allocated memory released.  (Except that the termios
1512 	 * and locked termios may be retained.)
1513 	 */
1514 
1515 	if (!try_module_get(driver->owner))
1516 		return ERR_PTR(-ENODEV);
1517 
1518 	tty = alloc_tty_struct(driver, idx);
1519 	if (!tty) {
1520 		retval = -ENOMEM;
1521 		goto err_module_put;
1522 	}
1523 
1524 	tty_lock(tty);
1525 	retval = tty_driver_install_tty(driver, tty);
1526 	if (retval < 0)
1527 		goto err_deinit_tty;
1528 
1529 	if (!tty->port)
1530 		tty->port = driver->ports[idx];
1531 
1532 	WARN_RATELIMIT(!tty->port,
1533 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1534 			__func__, tty->driver->name);
1535 
1536 	tty->port->itty = tty;
1537 
1538 	/*
1539 	 * Structures all installed ... call the ldisc open routines.
1540 	 * If we fail here just call release_tty to clean up.  No need
1541 	 * to decrement the use counts, as release_tty doesn't care.
1542 	 */
1543 	retval = tty_ldisc_setup(tty, tty->link);
1544 	if (retval)
1545 		goto err_release_tty;
1546 	/* Return the tty locked so that it cannot vanish under the caller */
1547 	return tty;
1548 
1549 err_deinit_tty:
1550 	tty_unlock(tty);
1551 	deinitialize_tty_struct(tty);
1552 	free_tty_struct(tty);
1553 err_module_put:
1554 	module_put(driver->owner);
1555 	return ERR_PTR(retval);
1556 
1557 	/* call the tty release_tty routine to clean out this slot */
1558 err_release_tty:
1559 	tty_unlock(tty);
1560 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1561 				 "clearing slot %d\n", idx);
1562 	release_tty(tty, idx);
1563 	return ERR_PTR(retval);
1564 }
1565 
1566 void tty_free_termios(struct tty_struct *tty)
1567 {
1568 	struct ktermios *tp;
1569 	int idx = tty->index;
1570 
1571 	/* If the port is going to reset then it has no termios to save */
1572 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1573 		return;
1574 
1575 	/* Stash the termios data */
1576 	tp = tty->driver->termios[idx];
1577 	if (tp == NULL) {
1578 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1579 		if (tp == NULL) {
1580 			pr_warn("tty: no memory to save termios state.\n");
1581 			return;
1582 		}
1583 		tty->driver->termios[idx] = tp;
1584 	}
1585 	*tp = tty->termios;
1586 }
1587 EXPORT_SYMBOL(tty_free_termios);
1588 
1589 /**
1590  *	tty_flush_works		-	flush all works of a tty/pty pair
1591  *	@tty: tty device to flush works for (or either end of a pty pair)
1592  *
1593  *	Sync flush all works belonging to @tty (and the 'other' tty).
1594  */
1595 static void tty_flush_works(struct tty_struct *tty)
1596 {
1597 	flush_work(&tty->SAK_work);
1598 	flush_work(&tty->hangup_work);
1599 	if (tty->link) {
1600 		flush_work(&tty->link->SAK_work);
1601 		flush_work(&tty->link->hangup_work);
1602 	}
1603 }
1604 
1605 /**
1606  *	release_one_tty		-	release tty structure memory
1607  *	@kref: kref of tty we are obliterating
1608  *
1609  *	Releases memory associated with a tty structure, and clears out the
1610  *	driver table slots. This function is called when a device is no longer
1611  *	in use. It also gets called when setup of a device fails.
1612  *
1613  *	Locking:
1614  *		takes the file list lock internally when working on the list
1615  *	of ttys that the driver keeps.
1616  *
1617  *	This method gets called from a work queue so that the driver private
1618  *	cleanup ops can sleep (needed for USB at least)
1619  */
1620 static void release_one_tty(struct work_struct *work)
1621 {
1622 	struct tty_struct *tty =
1623 		container_of(work, struct tty_struct, hangup_work);
1624 	struct tty_driver *driver = tty->driver;
1625 	struct module *owner = driver->owner;
1626 
1627 	if (tty->ops->cleanup)
1628 		tty->ops->cleanup(tty);
1629 
1630 	tty->magic = 0;
1631 	tty_driver_kref_put(driver);
1632 	module_put(owner);
1633 
1634 	spin_lock(&tty_files_lock);
1635 	list_del_init(&tty->tty_files);
1636 	spin_unlock(&tty_files_lock);
1637 
1638 	put_pid(tty->pgrp);
1639 	put_pid(tty->session);
1640 	free_tty_struct(tty);
1641 }
1642 
1643 static void queue_release_one_tty(struct kref *kref)
1644 {
1645 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1646 
1647 	/* The hangup queue is now free so we can reuse it rather than
1648 	   waste a chunk of memory for each port */
1649 	INIT_WORK(&tty->hangup_work, release_one_tty);
1650 	schedule_work(&tty->hangup_work);
1651 }
1652 
1653 /**
1654  *	tty_kref_put		-	release a tty kref
1655  *	@tty: tty device
1656  *
1657  *	Release a reference to a tty device and if need be let the kref
1658  *	layer destruct the object for us
1659  */
1660 
1661 void tty_kref_put(struct tty_struct *tty)
1662 {
1663 	if (tty)
1664 		kref_put(&tty->kref, queue_release_one_tty);
1665 }
1666 EXPORT_SYMBOL(tty_kref_put);
1667 
1668 /**
1669  *	release_tty		-	release tty structure memory
1670  *
1671  *	Release both @tty and a possible linked partner (think pty pair),
1672  *	and decrement the refcount of the backing module.
1673  *
1674  *	Locking:
1675  *		tty_mutex
1676  *		takes the file list lock internally when working on the list
1677  *	of ttys that the driver keeps.
1678  *
1679  */
1680 static void release_tty(struct tty_struct *tty, int idx)
1681 {
1682 	/* This should always be true but check for the moment */
1683 	WARN_ON(tty->index != idx);
1684 	WARN_ON(!mutex_is_locked(&tty_mutex));
1685 	if (tty->ops->shutdown)
1686 		tty->ops->shutdown(tty);
1687 	tty_free_termios(tty);
1688 	tty_driver_remove_tty(tty->driver, tty);
1689 	tty->port->itty = NULL;
1690 	if (tty->link)
1691 		tty->link->port->itty = NULL;
1692 	tty_buffer_cancel_work(tty->port);
1693 
1694 	tty_kref_put(tty->link);
1695 	tty_kref_put(tty);
1696 }
1697 
1698 /**
1699  *	tty_release_checks - check a tty before real release
1700  *	@tty: tty to check
1701  *	@o_tty: link of @tty (if any)
1702  *	@idx: index of the tty
1703  *
1704  *	Performs some paranoid checking before true release of the @tty.
1705  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1706  */
1707 static int tty_release_checks(struct tty_struct *tty, int idx)
1708 {
1709 #ifdef TTY_PARANOIA_CHECK
1710 	if (idx < 0 || idx >= tty->driver->num) {
1711 		tty_debug(tty, "bad idx %d\n", idx);
1712 		return -1;
1713 	}
1714 
1715 	/* not much to check for devpts */
1716 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1717 		return 0;
1718 
1719 	if (tty != tty->driver->ttys[idx]) {
1720 		tty_debug(tty, "bad driver table[%d] = %p\n",
1721 			  idx, tty->driver->ttys[idx]);
1722 		return -1;
1723 	}
1724 	if (tty->driver->other) {
1725 		struct tty_struct *o_tty = tty->link;
1726 
1727 		if (o_tty != tty->driver->other->ttys[idx]) {
1728 			tty_debug(tty, "bad other table[%d] = %p\n",
1729 				  idx, tty->driver->other->ttys[idx]);
1730 			return -1;
1731 		}
1732 		if (o_tty->link != tty) {
1733 			tty_debug(tty, "bad link = %p\n", o_tty->link);
1734 			return -1;
1735 		}
1736 	}
1737 #endif
1738 	return 0;
1739 }
1740 
1741 /**
1742  *	tty_release		-	vfs callback for close
1743  *	@inode: inode of tty
1744  *	@filp: file pointer for handle to tty
1745  *
1746  *	Called the last time each file handle is closed that references
1747  *	this tty. There may however be several such references.
1748  *
1749  *	Locking:
1750  *		Takes bkl. See tty_release_dev
1751  *
1752  * Even releasing the tty structures is a tricky business.. We have
1753  * to be very careful that the structures are all released at the
1754  * same time, as interrupts might otherwise get the wrong pointers.
1755  *
1756  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1757  * lead to double frees or releasing memory still in use.
1758  */
1759 
1760 int tty_release(struct inode *inode, struct file *filp)
1761 {
1762 	struct tty_struct *tty = file_tty(filp);
1763 	struct tty_struct *o_tty = NULL;
1764 	int	do_sleep, final;
1765 	int	idx;
1766 	long	timeout = 0;
1767 	int	once = 1;
1768 
1769 	if (tty_paranoia_check(tty, inode, __func__))
1770 		return 0;
1771 
1772 	tty_lock(tty);
1773 	check_tty_count(tty, __func__);
1774 
1775 	__tty_fasync(-1, filp, 0);
1776 
1777 	idx = tty->index;
1778 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1779 	    tty->driver->subtype == PTY_TYPE_MASTER)
1780 		o_tty = tty->link;
1781 
1782 	if (tty_release_checks(tty, idx)) {
1783 		tty_unlock(tty);
1784 		return 0;
1785 	}
1786 
1787 	tty_debug_hangup(tty, "(tty count=%d)...\n", tty->count);
1788 
1789 	if (tty->ops->close)
1790 		tty->ops->close(tty, filp);
1791 
1792 	/* If tty is pty master, lock the slave pty (stable lock order) */
1793 	tty_lock_slave(o_tty);
1794 
1795 	/*
1796 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1797 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1798 	 * wait queues and kick everyone out _before_ actually starting to
1799 	 * close.  This ensures that we won't block while releasing the tty
1800 	 * structure.
1801 	 *
1802 	 * The test for the o_tty closing is necessary, since the master and
1803 	 * slave sides may close in any order.  If the slave side closes out
1804 	 * first, its count will be one, since the master side holds an open.
1805 	 * Thus this test wouldn't be triggered at the time the slave closed,
1806 	 * so we do it now.
1807 	 */
1808 	while (1) {
1809 		do_sleep = 0;
1810 
1811 		if (tty->count <= 1) {
1812 			if (waitqueue_active(&tty->read_wait)) {
1813 				wake_up_poll(&tty->read_wait, POLLIN);
1814 				do_sleep++;
1815 			}
1816 			if (waitqueue_active(&tty->write_wait)) {
1817 				wake_up_poll(&tty->write_wait, POLLOUT);
1818 				do_sleep++;
1819 			}
1820 		}
1821 		if (o_tty && o_tty->count <= 1) {
1822 			if (waitqueue_active(&o_tty->read_wait)) {
1823 				wake_up_poll(&o_tty->read_wait, POLLIN);
1824 				do_sleep++;
1825 			}
1826 			if (waitqueue_active(&o_tty->write_wait)) {
1827 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1828 				do_sleep++;
1829 			}
1830 		}
1831 		if (!do_sleep)
1832 			break;
1833 
1834 		if (once) {
1835 			once = 0;
1836 			printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1837 			       __func__, tty_name(tty));
1838 		}
1839 		schedule_timeout_killable(timeout);
1840 		if (timeout < 120 * HZ)
1841 			timeout = 2 * timeout + 1;
1842 		else
1843 			timeout = MAX_SCHEDULE_TIMEOUT;
1844 	}
1845 
1846 	if (o_tty) {
1847 		if (--o_tty->count < 0) {
1848 			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1849 				__func__, o_tty->count, tty_name(o_tty));
1850 			o_tty->count = 0;
1851 		}
1852 	}
1853 	if (--tty->count < 0) {
1854 		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1855 				__func__, tty->count, tty_name(tty));
1856 		tty->count = 0;
1857 	}
1858 
1859 	/*
1860 	 * We've decremented tty->count, so we need to remove this file
1861 	 * descriptor off the tty->tty_files list; this serves two
1862 	 * purposes:
1863 	 *  - check_tty_count sees the correct number of file descriptors
1864 	 *    associated with this tty.
1865 	 *  - do_tty_hangup no longer sees this file descriptor as
1866 	 *    something that needs to be handled for hangups.
1867 	 */
1868 	tty_del_file(filp);
1869 
1870 	/*
1871 	 * Perform some housekeeping before deciding whether to return.
1872 	 *
1873 	 * If _either_ side is closing, make sure there aren't any
1874 	 * processes that still think tty or o_tty is their controlling
1875 	 * tty.
1876 	 */
1877 	if (!tty->count) {
1878 		read_lock(&tasklist_lock);
1879 		session_clear_tty(tty->session);
1880 		if (o_tty)
1881 			session_clear_tty(o_tty->session);
1882 		read_unlock(&tasklist_lock);
1883 	}
1884 
1885 	/* check whether both sides are closing ... */
1886 	final = !tty->count && !(o_tty && o_tty->count);
1887 
1888 	tty_unlock_slave(o_tty);
1889 	tty_unlock(tty);
1890 
1891 	/* At this point, the tty->count == 0 should ensure a dead tty
1892 	   cannot be re-opened by a racing opener */
1893 
1894 	if (!final)
1895 		return 0;
1896 
1897 	tty_debug_hangup(tty, "final close\n");
1898 	/*
1899 	 * Ask the line discipline code to release its structures
1900 	 */
1901 	tty_ldisc_release(tty);
1902 
1903 	/* Wait for pending work before tty destruction commmences */
1904 	tty_flush_works(tty);
1905 
1906 	tty_debug_hangup(tty, "freeing structure...\n");
1907 	/*
1908 	 * The release_tty function takes care of the details of clearing
1909 	 * the slots and preserving the termios structure. The tty_unlock_pair
1910 	 * should be safe as we keep a kref while the tty is locked (so the
1911 	 * unlock never unlocks a freed tty).
1912 	 */
1913 	mutex_lock(&tty_mutex);
1914 	release_tty(tty, idx);
1915 	mutex_unlock(&tty_mutex);
1916 
1917 	return 0;
1918 }
1919 
1920 /**
1921  *	tty_open_current_tty - get locked tty of current task
1922  *	@device: device number
1923  *	@filp: file pointer to tty
1924  *	@return: locked tty of the current task iff @device is /dev/tty
1925  *
1926  *	Performs a re-open of the current task's controlling tty.
1927  *
1928  *	We cannot return driver and index like for the other nodes because
1929  *	devpts will not work then. It expects inodes to be from devpts FS.
1930  */
1931 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1932 {
1933 	struct tty_struct *tty;
1934 	int retval;
1935 
1936 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1937 		return NULL;
1938 
1939 	tty = get_current_tty();
1940 	if (!tty)
1941 		return ERR_PTR(-ENXIO);
1942 
1943 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1944 	/* noctty = 1; */
1945 	tty_lock(tty);
1946 	tty_kref_put(tty);	/* safe to drop the kref now */
1947 
1948 	retval = tty_reopen(tty);
1949 	if (retval < 0) {
1950 		tty_unlock(tty);
1951 		tty = ERR_PTR(retval);
1952 	}
1953 	return tty;
1954 }
1955 
1956 /**
1957  *	tty_lookup_driver - lookup a tty driver for a given device file
1958  *	@device: device number
1959  *	@filp: file pointer to tty
1960  *	@noctty: set if the device should not become a controlling tty
1961  *	@index: index for the device in the @return driver
1962  *	@return: driver for this inode (with increased refcount)
1963  *
1964  * 	If @return is not erroneous, the caller is responsible to decrement the
1965  * 	refcount by tty_driver_kref_put.
1966  *
1967  *	Locking: tty_mutex protects get_tty_driver
1968  */
1969 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1970 		int *noctty, int *index)
1971 {
1972 	struct tty_driver *driver;
1973 
1974 	switch (device) {
1975 #ifdef CONFIG_VT
1976 	case MKDEV(TTY_MAJOR, 0): {
1977 		extern struct tty_driver *console_driver;
1978 		driver = tty_driver_kref_get(console_driver);
1979 		*index = fg_console;
1980 		*noctty = 1;
1981 		break;
1982 	}
1983 #endif
1984 	case MKDEV(TTYAUX_MAJOR, 1): {
1985 		struct tty_driver *console_driver = console_device(index);
1986 		if (console_driver) {
1987 			driver = tty_driver_kref_get(console_driver);
1988 			if (driver) {
1989 				/* Don't let /dev/console block */
1990 				filp->f_flags |= O_NONBLOCK;
1991 				*noctty = 1;
1992 				break;
1993 			}
1994 		}
1995 		return ERR_PTR(-ENODEV);
1996 	}
1997 	default:
1998 		driver = get_tty_driver(device, index);
1999 		if (!driver)
2000 			return ERR_PTR(-ENODEV);
2001 		break;
2002 	}
2003 	return driver;
2004 }
2005 
2006 /**
2007  *	tty_open		-	open a tty device
2008  *	@inode: inode of device file
2009  *	@filp: file pointer to tty
2010  *
2011  *	tty_open and tty_release keep up the tty count that contains the
2012  *	number of opens done on a tty. We cannot use the inode-count, as
2013  *	different inodes might point to the same tty.
2014  *
2015  *	Open-counting is needed for pty masters, as well as for keeping
2016  *	track of serial lines: DTR is dropped when the last close happens.
2017  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2018  *
2019  *	The termios state of a pty is reset on first open so that
2020  *	settings don't persist across reuse.
2021  *
2022  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2023  *		 tty->count should protect the rest.
2024  *		 ->siglock protects ->signal/->sighand
2025  *
2026  *	Note: the tty_unlock/lock cases without a ref are only safe due to
2027  *	tty_mutex
2028  */
2029 
2030 static int tty_open(struct inode *inode, struct file *filp)
2031 {
2032 	struct tty_struct *tty;
2033 	int noctty, retval;
2034 	struct tty_driver *driver = NULL;
2035 	int index;
2036 	dev_t device = inode->i_rdev;
2037 	unsigned saved_flags = filp->f_flags;
2038 
2039 	nonseekable_open(inode, filp);
2040 
2041 retry_open:
2042 	retval = tty_alloc_file(filp);
2043 	if (retval)
2044 		return -ENOMEM;
2045 
2046 	noctty = filp->f_flags & O_NOCTTY;
2047 	index  = -1;
2048 	retval = 0;
2049 
2050 	tty = tty_open_current_tty(device, filp);
2051 	if (!tty) {
2052 		mutex_lock(&tty_mutex);
2053 		driver = tty_lookup_driver(device, filp, &noctty, &index);
2054 		if (IS_ERR(driver)) {
2055 			retval = PTR_ERR(driver);
2056 			goto err_unlock;
2057 		}
2058 
2059 		/* check whether we're reopening an existing tty */
2060 		tty = tty_driver_lookup_tty(driver, inode, index);
2061 		if (IS_ERR(tty)) {
2062 			retval = PTR_ERR(tty);
2063 			goto err_unlock;
2064 		}
2065 
2066 		if (tty) {
2067 			mutex_unlock(&tty_mutex);
2068 			tty_lock(tty);
2069 			/* safe to drop the kref from tty_driver_lookup_tty() */
2070 			tty_kref_put(tty);
2071 			retval = tty_reopen(tty);
2072 			if (retval < 0) {
2073 				tty_unlock(tty);
2074 				tty = ERR_PTR(retval);
2075 			}
2076 		} else { /* Returns with the tty_lock held for now */
2077 			tty = tty_init_dev(driver, index);
2078 			mutex_unlock(&tty_mutex);
2079 		}
2080 
2081 		tty_driver_kref_put(driver);
2082 	}
2083 
2084 	if (IS_ERR(tty)) {
2085 		retval = PTR_ERR(tty);
2086 		goto err_file;
2087 	}
2088 
2089 	tty_add_file(tty, filp);
2090 
2091 	check_tty_count(tty, __func__);
2092 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2093 	    tty->driver->subtype == PTY_TYPE_MASTER)
2094 		noctty = 1;
2095 
2096 	tty_debug_hangup(tty, "(tty count=%d)\n", tty->count);
2097 
2098 	if (tty->ops->open)
2099 		retval = tty->ops->open(tty, filp);
2100 	else
2101 		retval = -ENODEV;
2102 	filp->f_flags = saved_flags;
2103 
2104 	if (retval) {
2105 		tty_debug_hangup(tty, "error %d, releasing...\n", retval);
2106 
2107 		tty_unlock(tty); /* need to call tty_release without BTM */
2108 		tty_release(inode, filp);
2109 		if (retval != -ERESTARTSYS)
2110 			return retval;
2111 
2112 		if (signal_pending(current))
2113 			return retval;
2114 
2115 		schedule();
2116 		/*
2117 		 * Need to reset f_op in case a hangup happened.
2118 		 */
2119 		if (tty_hung_up_p(filp))
2120 			filp->f_op = &tty_fops;
2121 		goto retry_open;
2122 	}
2123 	clear_bit(TTY_HUPPED, &tty->flags);
2124 
2125 
2126 	read_lock(&tasklist_lock);
2127 	spin_lock_irq(&current->sighand->siglock);
2128 	if (!noctty &&
2129 	    current->signal->leader &&
2130 	    !current->signal->tty &&
2131 	    tty->session == NULL) {
2132 		/*
2133 		 * Don't let a process that only has write access to the tty
2134 		 * obtain the privileges associated with having a tty as
2135 		 * controlling terminal (being able to reopen it with full
2136 		 * access through /dev/tty, being able to perform pushback).
2137 		 * Many distributions set the group of all ttys to "tty" and
2138 		 * grant write-only access to all terminals for setgid tty
2139 		 * binaries, which should not imply full privileges on all ttys.
2140 		 *
2141 		 * This could theoretically break old code that performs open()
2142 		 * on a write-only file descriptor. In that case, it might be
2143 		 * necessary to also permit this if
2144 		 * inode_permission(inode, MAY_READ) == 0.
2145 		 */
2146 		if (filp->f_mode & FMODE_READ)
2147 			__proc_set_tty(tty);
2148 	}
2149 	spin_unlock_irq(&current->sighand->siglock);
2150 	read_unlock(&tasklist_lock);
2151 	tty_unlock(tty);
2152 	return 0;
2153 err_unlock:
2154 	mutex_unlock(&tty_mutex);
2155 	/* after locks to avoid deadlock */
2156 	if (!IS_ERR_OR_NULL(driver))
2157 		tty_driver_kref_put(driver);
2158 err_file:
2159 	tty_free_file(filp);
2160 	return retval;
2161 }
2162 
2163 
2164 
2165 /**
2166  *	tty_poll	-	check tty status
2167  *	@filp: file being polled
2168  *	@wait: poll wait structures to update
2169  *
2170  *	Call the line discipline polling method to obtain the poll
2171  *	status of the device.
2172  *
2173  *	Locking: locks called line discipline but ldisc poll method
2174  *	may be re-entered freely by other callers.
2175  */
2176 
2177 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2178 {
2179 	struct tty_struct *tty = file_tty(filp);
2180 	struct tty_ldisc *ld;
2181 	int ret = 0;
2182 
2183 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2184 		return 0;
2185 
2186 	ld = tty_ldisc_ref_wait(tty);
2187 	if (ld->ops->poll)
2188 		ret = ld->ops->poll(tty, filp, wait);
2189 	tty_ldisc_deref(ld);
2190 	return ret;
2191 }
2192 
2193 static int __tty_fasync(int fd, struct file *filp, int on)
2194 {
2195 	struct tty_struct *tty = file_tty(filp);
2196 	struct tty_ldisc *ldisc;
2197 	unsigned long flags;
2198 	int retval = 0;
2199 
2200 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2201 		goto out;
2202 
2203 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2204 	if (retval <= 0)
2205 		goto out;
2206 
2207 	ldisc = tty_ldisc_ref(tty);
2208 	if (ldisc) {
2209 		if (ldisc->ops->fasync)
2210 			ldisc->ops->fasync(tty, on);
2211 		tty_ldisc_deref(ldisc);
2212 	}
2213 
2214 	if (on) {
2215 		enum pid_type type;
2216 		struct pid *pid;
2217 
2218 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2219 		if (tty->pgrp) {
2220 			pid = tty->pgrp;
2221 			type = PIDTYPE_PGID;
2222 		} else {
2223 			pid = task_pid(current);
2224 			type = PIDTYPE_PID;
2225 		}
2226 		get_pid(pid);
2227 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2228 		__f_setown(filp, pid, type, 0);
2229 		put_pid(pid);
2230 		retval = 0;
2231 	}
2232 out:
2233 	return retval;
2234 }
2235 
2236 static int tty_fasync(int fd, struct file *filp, int on)
2237 {
2238 	struct tty_struct *tty = file_tty(filp);
2239 	int retval;
2240 
2241 	tty_lock(tty);
2242 	retval = __tty_fasync(fd, filp, on);
2243 	tty_unlock(tty);
2244 
2245 	return retval;
2246 }
2247 
2248 /**
2249  *	tiocsti			-	fake input character
2250  *	@tty: tty to fake input into
2251  *	@p: pointer to character
2252  *
2253  *	Fake input to a tty device. Does the necessary locking and
2254  *	input management.
2255  *
2256  *	FIXME: does not honour flow control ??
2257  *
2258  *	Locking:
2259  *		Called functions take tty_ldiscs_lock
2260  *		current->signal->tty check is safe without locks
2261  *
2262  *	FIXME: may race normal receive processing
2263  */
2264 
2265 static int tiocsti(struct tty_struct *tty, char __user *p)
2266 {
2267 	char ch, mbz = 0;
2268 	struct tty_ldisc *ld;
2269 
2270 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2271 		return -EPERM;
2272 	if (get_user(ch, p))
2273 		return -EFAULT;
2274 	tty_audit_tiocsti(tty, ch);
2275 	ld = tty_ldisc_ref_wait(tty);
2276 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2277 	tty_ldisc_deref(ld);
2278 	return 0;
2279 }
2280 
2281 /**
2282  *	tiocgwinsz		-	implement window query ioctl
2283  *	@tty; tty
2284  *	@arg: user buffer for result
2285  *
2286  *	Copies the kernel idea of the window size into the user buffer.
2287  *
2288  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2289  *		is consistent.
2290  */
2291 
2292 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2293 {
2294 	int err;
2295 
2296 	mutex_lock(&tty->winsize_mutex);
2297 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2298 	mutex_unlock(&tty->winsize_mutex);
2299 
2300 	return err ? -EFAULT: 0;
2301 }
2302 
2303 /**
2304  *	tty_do_resize		-	resize event
2305  *	@tty: tty being resized
2306  *	@rows: rows (character)
2307  *	@cols: cols (character)
2308  *
2309  *	Update the termios variables and send the necessary signals to
2310  *	peform a terminal resize correctly
2311  */
2312 
2313 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2314 {
2315 	struct pid *pgrp;
2316 
2317 	/* Lock the tty */
2318 	mutex_lock(&tty->winsize_mutex);
2319 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2320 		goto done;
2321 
2322 	/* Signal the foreground process group */
2323 	pgrp = tty_get_pgrp(tty);
2324 	if (pgrp)
2325 		kill_pgrp(pgrp, SIGWINCH, 1);
2326 	put_pid(pgrp);
2327 
2328 	tty->winsize = *ws;
2329 done:
2330 	mutex_unlock(&tty->winsize_mutex);
2331 	return 0;
2332 }
2333 EXPORT_SYMBOL(tty_do_resize);
2334 
2335 /**
2336  *	tiocswinsz		-	implement window size set ioctl
2337  *	@tty; tty side of tty
2338  *	@arg: user buffer for result
2339  *
2340  *	Copies the user idea of the window size to the kernel. Traditionally
2341  *	this is just advisory information but for the Linux console it
2342  *	actually has driver level meaning and triggers a VC resize.
2343  *
2344  *	Locking:
2345  *		Driver dependent. The default do_resize method takes the
2346  *	tty termios mutex and ctrl_lock. The console takes its own lock
2347  *	then calls into the default method.
2348  */
2349 
2350 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2351 {
2352 	struct winsize tmp_ws;
2353 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2354 		return -EFAULT;
2355 
2356 	if (tty->ops->resize)
2357 		return tty->ops->resize(tty, &tmp_ws);
2358 	else
2359 		return tty_do_resize(tty, &tmp_ws);
2360 }
2361 
2362 /**
2363  *	tioccons	-	allow admin to move logical console
2364  *	@file: the file to become console
2365  *
2366  *	Allow the administrator to move the redirected console device
2367  *
2368  *	Locking: uses redirect_lock to guard the redirect information
2369  */
2370 
2371 static int tioccons(struct file *file)
2372 {
2373 	if (!capable(CAP_SYS_ADMIN))
2374 		return -EPERM;
2375 	if (file->f_op->write == redirected_tty_write) {
2376 		struct file *f;
2377 		spin_lock(&redirect_lock);
2378 		f = redirect;
2379 		redirect = NULL;
2380 		spin_unlock(&redirect_lock);
2381 		if (f)
2382 			fput(f);
2383 		return 0;
2384 	}
2385 	spin_lock(&redirect_lock);
2386 	if (redirect) {
2387 		spin_unlock(&redirect_lock);
2388 		return -EBUSY;
2389 	}
2390 	redirect = get_file(file);
2391 	spin_unlock(&redirect_lock);
2392 	return 0;
2393 }
2394 
2395 /**
2396  *	fionbio		-	non blocking ioctl
2397  *	@file: file to set blocking value
2398  *	@p: user parameter
2399  *
2400  *	Historical tty interfaces had a blocking control ioctl before
2401  *	the generic functionality existed. This piece of history is preserved
2402  *	in the expected tty API of posix OS's.
2403  *
2404  *	Locking: none, the open file handle ensures it won't go away.
2405  */
2406 
2407 static int fionbio(struct file *file, int __user *p)
2408 {
2409 	int nonblock;
2410 
2411 	if (get_user(nonblock, p))
2412 		return -EFAULT;
2413 
2414 	spin_lock(&file->f_lock);
2415 	if (nonblock)
2416 		file->f_flags |= O_NONBLOCK;
2417 	else
2418 		file->f_flags &= ~O_NONBLOCK;
2419 	spin_unlock(&file->f_lock);
2420 	return 0;
2421 }
2422 
2423 /**
2424  *	tiocsctty	-	set controlling tty
2425  *	@tty: tty structure
2426  *	@arg: user argument
2427  *
2428  *	This ioctl is used to manage job control. It permits a session
2429  *	leader to set this tty as the controlling tty for the session.
2430  *
2431  *	Locking:
2432  *		Takes tty_lock() to serialize proc_set_tty() for this tty
2433  *		Takes tasklist_lock internally to walk sessions
2434  *		Takes ->siglock() when updating signal->tty
2435  */
2436 
2437 static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2438 {
2439 	int ret = 0;
2440 
2441 	tty_lock(tty);
2442 	read_lock(&tasklist_lock);
2443 
2444 	if (current->signal->leader && (task_session(current) == tty->session))
2445 		goto unlock;
2446 
2447 	/*
2448 	 * The process must be a session leader and
2449 	 * not have a controlling tty already.
2450 	 */
2451 	if (!current->signal->leader || current->signal->tty) {
2452 		ret = -EPERM;
2453 		goto unlock;
2454 	}
2455 
2456 	if (tty->session) {
2457 		/*
2458 		 * This tty is already the controlling
2459 		 * tty for another session group!
2460 		 */
2461 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2462 			/*
2463 			 * Steal it away
2464 			 */
2465 			session_clear_tty(tty->session);
2466 		} else {
2467 			ret = -EPERM;
2468 			goto unlock;
2469 		}
2470 	}
2471 
2472 	/* See the comment in tty_open(). */
2473 	if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2474 		ret = -EPERM;
2475 		goto unlock;
2476 	}
2477 
2478 	proc_set_tty(tty);
2479 unlock:
2480 	read_unlock(&tasklist_lock);
2481 	tty_unlock(tty);
2482 	return ret;
2483 }
2484 
2485 /**
2486  *	tty_get_pgrp	-	return a ref counted pgrp pid
2487  *	@tty: tty to read
2488  *
2489  *	Returns a refcounted instance of the pid struct for the process
2490  *	group controlling the tty.
2491  */
2492 
2493 struct pid *tty_get_pgrp(struct tty_struct *tty)
2494 {
2495 	unsigned long flags;
2496 	struct pid *pgrp;
2497 
2498 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2499 	pgrp = get_pid(tty->pgrp);
2500 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2501 
2502 	return pgrp;
2503 }
2504 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2505 
2506 /*
2507  * This checks not only the pgrp, but falls back on the pid if no
2508  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2509  * without this...
2510  *
2511  * The caller must hold rcu lock or the tasklist lock.
2512  */
2513 static struct pid *session_of_pgrp(struct pid *pgrp)
2514 {
2515 	struct task_struct *p;
2516 	struct pid *sid = NULL;
2517 
2518 	p = pid_task(pgrp, PIDTYPE_PGID);
2519 	if (p == NULL)
2520 		p = pid_task(pgrp, PIDTYPE_PID);
2521 	if (p != NULL)
2522 		sid = task_session(p);
2523 
2524 	return sid;
2525 }
2526 
2527 /**
2528  *	tiocgpgrp		-	get process group
2529  *	@tty: tty passed by user
2530  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2531  *	@p: returned pid
2532  *
2533  *	Obtain the process group of the tty. If there is no process group
2534  *	return an error.
2535  *
2536  *	Locking: none. Reference to current->signal->tty is safe.
2537  */
2538 
2539 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2540 {
2541 	struct pid *pid;
2542 	int ret;
2543 	/*
2544 	 * (tty == real_tty) is a cheap way of
2545 	 * testing if the tty is NOT a master pty.
2546 	 */
2547 	if (tty == real_tty && current->signal->tty != real_tty)
2548 		return -ENOTTY;
2549 	pid = tty_get_pgrp(real_tty);
2550 	ret =  put_user(pid_vnr(pid), p);
2551 	put_pid(pid);
2552 	return ret;
2553 }
2554 
2555 /**
2556  *	tiocspgrp		-	attempt to set process group
2557  *	@tty: tty passed by user
2558  *	@real_tty: tty side device matching tty passed by user
2559  *	@p: pid pointer
2560  *
2561  *	Set the process group of the tty to the session passed. Only
2562  *	permitted where the tty session is our session.
2563  *
2564  *	Locking: RCU, ctrl lock
2565  */
2566 
2567 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2568 {
2569 	struct pid *pgrp;
2570 	pid_t pgrp_nr;
2571 	int retval = tty_check_change(real_tty);
2572 
2573 	if (retval == -EIO)
2574 		return -ENOTTY;
2575 	if (retval)
2576 		return retval;
2577 	if (!current->signal->tty ||
2578 	    (current->signal->tty != real_tty) ||
2579 	    (real_tty->session != task_session(current)))
2580 		return -ENOTTY;
2581 	if (get_user(pgrp_nr, p))
2582 		return -EFAULT;
2583 	if (pgrp_nr < 0)
2584 		return -EINVAL;
2585 	rcu_read_lock();
2586 	pgrp = find_vpid(pgrp_nr);
2587 	retval = -ESRCH;
2588 	if (!pgrp)
2589 		goto out_unlock;
2590 	retval = -EPERM;
2591 	if (session_of_pgrp(pgrp) != task_session(current))
2592 		goto out_unlock;
2593 	retval = 0;
2594 	spin_lock_irq(&tty->ctrl_lock);
2595 	put_pid(real_tty->pgrp);
2596 	real_tty->pgrp = get_pid(pgrp);
2597 	spin_unlock_irq(&tty->ctrl_lock);
2598 out_unlock:
2599 	rcu_read_unlock();
2600 	return retval;
2601 }
2602 
2603 /**
2604  *	tiocgsid		-	get session id
2605  *	@tty: tty passed by user
2606  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2607  *	@p: pointer to returned session id
2608  *
2609  *	Obtain the session id of the tty. If there is no session
2610  *	return an error.
2611  *
2612  *	Locking: none. Reference to current->signal->tty is safe.
2613  */
2614 
2615 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2616 {
2617 	/*
2618 	 * (tty == real_tty) is a cheap way of
2619 	 * testing if the tty is NOT a master pty.
2620 	*/
2621 	if (tty == real_tty && current->signal->tty != real_tty)
2622 		return -ENOTTY;
2623 	if (!real_tty->session)
2624 		return -ENOTTY;
2625 	return put_user(pid_vnr(real_tty->session), p);
2626 }
2627 
2628 /**
2629  *	tiocsetd	-	set line discipline
2630  *	@tty: tty device
2631  *	@p: pointer to user data
2632  *
2633  *	Set the line discipline according to user request.
2634  *
2635  *	Locking: see tty_set_ldisc, this function is just a helper
2636  */
2637 
2638 static int tiocsetd(struct tty_struct *tty, int __user *p)
2639 {
2640 	int ldisc;
2641 	int ret;
2642 
2643 	if (get_user(ldisc, p))
2644 		return -EFAULT;
2645 
2646 	ret = tty_set_ldisc(tty, ldisc);
2647 
2648 	return ret;
2649 }
2650 
2651 /**
2652  *	send_break	-	performed time break
2653  *	@tty: device to break on
2654  *	@duration: timeout in mS
2655  *
2656  *	Perform a timed break on hardware that lacks its own driver level
2657  *	timed break functionality.
2658  *
2659  *	Locking:
2660  *		atomic_write_lock serializes
2661  *
2662  */
2663 
2664 static int send_break(struct tty_struct *tty, unsigned int duration)
2665 {
2666 	int retval;
2667 
2668 	if (tty->ops->break_ctl == NULL)
2669 		return 0;
2670 
2671 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2672 		retval = tty->ops->break_ctl(tty, duration);
2673 	else {
2674 		/* Do the work ourselves */
2675 		if (tty_write_lock(tty, 0) < 0)
2676 			return -EINTR;
2677 		retval = tty->ops->break_ctl(tty, -1);
2678 		if (retval)
2679 			goto out;
2680 		if (!signal_pending(current))
2681 			msleep_interruptible(duration);
2682 		retval = tty->ops->break_ctl(tty, 0);
2683 out:
2684 		tty_write_unlock(tty);
2685 		if (signal_pending(current))
2686 			retval = -EINTR;
2687 	}
2688 	return retval;
2689 }
2690 
2691 /**
2692  *	tty_tiocmget		-	get modem status
2693  *	@tty: tty device
2694  *	@file: user file pointer
2695  *	@p: pointer to result
2696  *
2697  *	Obtain the modem status bits from the tty driver if the feature
2698  *	is supported. Return -EINVAL if it is not available.
2699  *
2700  *	Locking: none (up to the driver)
2701  */
2702 
2703 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2704 {
2705 	int retval = -EINVAL;
2706 
2707 	if (tty->ops->tiocmget) {
2708 		retval = tty->ops->tiocmget(tty);
2709 
2710 		if (retval >= 0)
2711 			retval = put_user(retval, p);
2712 	}
2713 	return retval;
2714 }
2715 
2716 /**
2717  *	tty_tiocmset		-	set modem status
2718  *	@tty: tty device
2719  *	@cmd: command - clear bits, set bits or set all
2720  *	@p: pointer to desired bits
2721  *
2722  *	Set the modem status bits from the tty driver if the feature
2723  *	is supported. Return -EINVAL if it is not available.
2724  *
2725  *	Locking: none (up to the driver)
2726  */
2727 
2728 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2729 	     unsigned __user *p)
2730 {
2731 	int retval;
2732 	unsigned int set, clear, val;
2733 
2734 	if (tty->ops->tiocmset == NULL)
2735 		return -EINVAL;
2736 
2737 	retval = get_user(val, p);
2738 	if (retval)
2739 		return retval;
2740 	set = clear = 0;
2741 	switch (cmd) {
2742 	case TIOCMBIS:
2743 		set = val;
2744 		break;
2745 	case TIOCMBIC:
2746 		clear = val;
2747 		break;
2748 	case TIOCMSET:
2749 		set = val;
2750 		clear = ~val;
2751 		break;
2752 	}
2753 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2754 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2755 	return tty->ops->tiocmset(tty, set, clear);
2756 }
2757 
2758 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2759 {
2760 	int retval = -EINVAL;
2761 	struct serial_icounter_struct icount;
2762 	memset(&icount, 0, sizeof(icount));
2763 	if (tty->ops->get_icount)
2764 		retval = tty->ops->get_icount(tty, &icount);
2765 	if (retval != 0)
2766 		return retval;
2767 	if (copy_to_user(arg, &icount, sizeof(icount)))
2768 		return -EFAULT;
2769 	return 0;
2770 }
2771 
2772 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2773 {
2774 	static DEFINE_RATELIMIT_STATE(depr_flags,
2775 			DEFAULT_RATELIMIT_INTERVAL,
2776 			DEFAULT_RATELIMIT_BURST);
2777 	char comm[TASK_COMM_LEN];
2778 	int flags;
2779 
2780 	if (get_user(flags, &ss->flags))
2781 		return;
2782 
2783 	flags &= ASYNC_DEPRECATED;
2784 
2785 	if (flags && __ratelimit(&depr_flags))
2786 		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2787 				__func__, get_task_comm(comm, current), flags);
2788 }
2789 
2790 /*
2791  * if pty, return the slave side (real_tty)
2792  * otherwise, return self
2793  */
2794 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2795 {
2796 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2797 	    tty->driver->subtype == PTY_TYPE_MASTER)
2798 		tty = tty->link;
2799 	return tty;
2800 }
2801 
2802 /*
2803  * Split this up, as gcc can choke on it otherwise..
2804  */
2805 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2806 {
2807 	struct tty_struct *tty = file_tty(file);
2808 	struct tty_struct *real_tty;
2809 	void __user *p = (void __user *)arg;
2810 	int retval;
2811 	struct tty_ldisc *ld;
2812 
2813 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2814 		return -EINVAL;
2815 
2816 	real_tty = tty_pair_get_tty(tty);
2817 
2818 	/*
2819 	 * Factor out some common prep work
2820 	 */
2821 	switch (cmd) {
2822 	case TIOCSETD:
2823 	case TIOCSBRK:
2824 	case TIOCCBRK:
2825 	case TCSBRK:
2826 	case TCSBRKP:
2827 		retval = tty_check_change(tty);
2828 		if (retval)
2829 			return retval;
2830 		if (cmd != TIOCCBRK) {
2831 			tty_wait_until_sent(tty, 0);
2832 			if (signal_pending(current))
2833 				return -EINTR;
2834 		}
2835 		break;
2836 	}
2837 
2838 	/*
2839 	 *	Now do the stuff.
2840 	 */
2841 	switch (cmd) {
2842 	case TIOCSTI:
2843 		return tiocsti(tty, p);
2844 	case TIOCGWINSZ:
2845 		return tiocgwinsz(real_tty, p);
2846 	case TIOCSWINSZ:
2847 		return tiocswinsz(real_tty, p);
2848 	case TIOCCONS:
2849 		return real_tty != tty ? -EINVAL : tioccons(file);
2850 	case FIONBIO:
2851 		return fionbio(file, p);
2852 	case TIOCEXCL:
2853 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2854 		return 0;
2855 	case TIOCNXCL:
2856 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2857 		return 0;
2858 	case TIOCGEXCL:
2859 	{
2860 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2861 		return put_user(excl, (int __user *)p);
2862 	}
2863 	case TIOCNOTTY:
2864 		if (current->signal->tty != tty)
2865 			return -ENOTTY;
2866 		no_tty();
2867 		return 0;
2868 	case TIOCSCTTY:
2869 		return tiocsctty(tty, file, arg);
2870 	case TIOCGPGRP:
2871 		return tiocgpgrp(tty, real_tty, p);
2872 	case TIOCSPGRP:
2873 		return tiocspgrp(tty, real_tty, p);
2874 	case TIOCGSID:
2875 		return tiocgsid(tty, real_tty, p);
2876 	case TIOCGETD:
2877 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2878 	case TIOCSETD:
2879 		return tiocsetd(tty, p);
2880 	case TIOCVHANGUP:
2881 		if (!capable(CAP_SYS_ADMIN))
2882 			return -EPERM;
2883 		tty_vhangup(tty);
2884 		return 0;
2885 	case TIOCGDEV:
2886 	{
2887 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2888 		return put_user(ret, (unsigned int __user *)p);
2889 	}
2890 	/*
2891 	 * Break handling
2892 	 */
2893 	case TIOCSBRK:	/* Turn break on, unconditionally */
2894 		if (tty->ops->break_ctl)
2895 			return tty->ops->break_ctl(tty, -1);
2896 		return 0;
2897 	case TIOCCBRK:	/* Turn break off, unconditionally */
2898 		if (tty->ops->break_ctl)
2899 			return tty->ops->break_ctl(tty, 0);
2900 		return 0;
2901 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2902 		/* non-zero arg means wait for all output data
2903 		 * to be sent (performed above) but don't send break.
2904 		 * This is used by the tcdrain() termios function.
2905 		 */
2906 		if (!arg)
2907 			return send_break(tty, 250);
2908 		return 0;
2909 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2910 		return send_break(tty, arg ? arg*100 : 250);
2911 
2912 	case TIOCMGET:
2913 		return tty_tiocmget(tty, p);
2914 	case TIOCMSET:
2915 	case TIOCMBIC:
2916 	case TIOCMBIS:
2917 		return tty_tiocmset(tty, cmd, p);
2918 	case TIOCGICOUNT:
2919 		retval = tty_tiocgicount(tty, p);
2920 		/* For the moment allow fall through to the old method */
2921         	if (retval != -EINVAL)
2922 			return retval;
2923 		break;
2924 	case TCFLSH:
2925 		switch (arg) {
2926 		case TCIFLUSH:
2927 		case TCIOFLUSH:
2928 		/* flush tty buffer and allow ldisc to process ioctl */
2929 			tty_buffer_flush(tty, NULL);
2930 			break;
2931 		}
2932 		break;
2933 	case TIOCSSERIAL:
2934 		tty_warn_deprecated_flags(p);
2935 		break;
2936 	}
2937 	if (tty->ops->ioctl) {
2938 		retval = tty->ops->ioctl(tty, cmd, arg);
2939 		if (retval != -ENOIOCTLCMD)
2940 			return retval;
2941 	}
2942 	ld = tty_ldisc_ref_wait(tty);
2943 	retval = -EINVAL;
2944 	if (ld->ops->ioctl) {
2945 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2946 		if (retval == -ENOIOCTLCMD)
2947 			retval = -ENOTTY;
2948 	}
2949 	tty_ldisc_deref(ld);
2950 	return retval;
2951 }
2952 
2953 #ifdef CONFIG_COMPAT
2954 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2955 				unsigned long arg)
2956 {
2957 	struct tty_struct *tty = file_tty(file);
2958 	struct tty_ldisc *ld;
2959 	int retval = -ENOIOCTLCMD;
2960 
2961 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2962 		return -EINVAL;
2963 
2964 	if (tty->ops->compat_ioctl) {
2965 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2966 		if (retval != -ENOIOCTLCMD)
2967 			return retval;
2968 	}
2969 
2970 	ld = tty_ldisc_ref_wait(tty);
2971 	if (ld->ops->compat_ioctl)
2972 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2973 	else
2974 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2975 	tty_ldisc_deref(ld);
2976 
2977 	return retval;
2978 }
2979 #endif
2980 
2981 static int this_tty(const void *t, struct file *file, unsigned fd)
2982 {
2983 	if (likely(file->f_op->read != tty_read))
2984 		return 0;
2985 	return file_tty(file) != t ? 0 : fd + 1;
2986 }
2987 
2988 /*
2989  * This implements the "Secure Attention Key" ---  the idea is to
2990  * prevent trojan horses by killing all processes associated with this
2991  * tty when the user hits the "Secure Attention Key".  Required for
2992  * super-paranoid applications --- see the Orange Book for more details.
2993  *
2994  * This code could be nicer; ideally it should send a HUP, wait a few
2995  * seconds, then send a INT, and then a KILL signal.  But you then
2996  * have to coordinate with the init process, since all processes associated
2997  * with the current tty must be dead before the new getty is allowed
2998  * to spawn.
2999  *
3000  * Now, if it would be correct ;-/ The current code has a nasty hole -
3001  * it doesn't catch files in flight. We may send the descriptor to ourselves
3002  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3003  *
3004  * Nasty bug: do_SAK is being called in interrupt context.  This can
3005  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3006  */
3007 void __do_SAK(struct tty_struct *tty)
3008 {
3009 #ifdef TTY_SOFT_SAK
3010 	tty_hangup(tty);
3011 #else
3012 	struct task_struct *g, *p;
3013 	struct pid *session;
3014 	int		i;
3015 
3016 	if (!tty)
3017 		return;
3018 	session = tty->session;
3019 
3020 	tty_ldisc_flush(tty);
3021 
3022 	tty_driver_flush_buffer(tty);
3023 
3024 	read_lock(&tasklist_lock);
3025 	/* Kill the entire session */
3026 	do_each_pid_task(session, PIDTYPE_SID, p) {
3027 		printk(KERN_NOTICE "SAK: killed process %d"
3028 			" (%s): task_session(p)==tty->session\n",
3029 			task_pid_nr(p), p->comm);
3030 		send_sig(SIGKILL, p, 1);
3031 	} while_each_pid_task(session, PIDTYPE_SID, p);
3032 	/* Now kill any processes that happen to have the
3033 	 * tty open.
3034 	 */
3035 	do_each_thread(g, p) {
3036 		if (p->signal->tty == tty) {
3037 			printk(KERN_NOTICE "SAK: killed process %d"
3038 			    " (%s): task_session(p)==tty->session\n",
3039 			    task_pid_nr(p), p->comm);
3040 			send_sig(SIGKILL, p, 1);
3041 			continue;
3042 		}
3043 		task_lock(p);
3044 		i = iterate_fd(p->files, 0, this_tty, tty);
3045 		if (i != 0) {
3046 			printk(KERN_NOTICE "SAK: killed process %d"
3047 			    " (%s): fd#%d opened to the tty\n",
3048 				    task_pid_nr(p), p->comm, i - 1);
3049 			force_sig(SIGKILL, p);
3050 		}
3051 		task_unlock(p);
3052 	} while_each_thread(g, p);
3053 	read_unlock(&tasklist_lock);
3054 #endif
3055 }
3056 
3057 static void do_SAK_work(struct work_struct *work)
3058 {
3059 	struct tty_struct *tty =
3060 		container_of(work, struct tty_struct, SAK_work);
3061 	__do_SAK(tty);
3062 }
3063 
3064 /*
3065  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3066  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3067  * the values which we write to it will be identical to the values which it
3068  * already has. --akpm
3069  */
3070 void do_SAK(struct tty_struct *tty)
3071 {
3072 	if (!tty)
3073 		return;
3074 	schedule_work(&tty->SAK_work);
3075 }
3076 
3077 EXPORT_SYMBOL(do_SAK);
3078 
3079 static int dev_match_devt(struct device *dev, const void *data)
3080 {
3081 	const dev_t *devt = data;
3082 	return dev->devt == *devt;
3083 }
3084 
3085 /* Must put_device() after it's unused! */
3086 static struct device *tty_get_device(struct tty_struct *tty)
3087 {
3088 	dev_t devt = tty_devnum(tty);
3089 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3090 }
3091 
3092 
3093 /**
3094  *	alloc_tty_struct
3095  *
3096  *	This subroutine allocates and initializes a tty structure.
3097  *
3098  *	Locking: none - tty in question is not exposed at this point
3099  */
3100 
3101 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3102 {
3103 	struct tty_struct *tty;
3104 
3105 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3106 	if (!tty)
3107 		return NULL;
3108 
3109 	kref_init(&tty->kref);
3110 	tty->magic = TTY_MAGIC;
3111 	tty_ldisc_init(tty);
3112 	tty->session = NULL;
3113 	tty->pgrp = NULL;
3114 	mutex_init(&tty->legacy_mutex);
3115 	mutex_init(&tty->throttle_mutex);
3116 	init_rwsem(&tty->termios_rwsem);
3117 	mutex_init(&tty->winsize_mutex);
3118 	init_ldsem(&tty->ldisc_sem);
3119 	init_waitqueue_head(&tty->write_wait);
3120 	init_waitqueue_head(&tty->read_wait);
3121 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3122 	mutex_init(&tty->atomic_write_lock);
3123 	spin_lock_init(&tty->ctrl_lock);
3124 	spin_lock_init(&tty->flow_lock);
3125 	INIT_LIST_HEAD(&tty->tty_files);
3126 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3127 
3128 	tty->driver = driver;
3129 	tty->ops = driver->ops;
3130 	tty->index = idx;
3131 	tty_line_name(driver, idx, tty->name);
3132 	tty->dev = tty_get_device(tty);
3133 
3134 	return tty;
3135 }
3136 
3137 /**
3138  *	deinitialize_tty_struct
3139  *	@tty: tty to deinitialize
3140  *
3141  *	This subroutine deinitializes a tty structure that has been newly
3142  *	allocated but tty_release cannot be called on that yet.
3143  *
3144  *	Locking: none - tty in question must not be exposed at this point
3145  */
3146 void deinitialize_tty_struct(struct tty_struct *tty)
3147 {
3148 	tty_ldisc_deinit(tty);
3149 }
3150 
3151 /**
3152  *	tty_put_char	-	write one character to a tty
3153  *	@tty: tty
3154  *	@ch: character
3155  *
3156  *	Write one byte to the tty using the provided put_char method
3157  *	if present. Returns the number of characters successfully output.
3158  *
3159  *	Note: the specific put_char operation in the driver layer may go
3160  *	away soon. Don't call it directly, use this method
3161  */
3162 
3163 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3164 {
3165 	if (tty->ops->put_char)
3166 		return tty->ops->put_char(tty, ch);
3167 	return tty->ops->write(tty, &ch, 1);
3168 }
3169 EXPORT_SYMBOL_GPL(tty_put_char);
3170 
3171 struct class *tty_class;
3172 
3173 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3174 		unsigned int index, unsigned int count)
3175 {
3176 	int err;
3177 
3178 	/* init here, since reused cdevs cause crashes */
3179 	driver->cdevs[index] = cdev_alloc();
3180 	if (!driver->cdevs[index])
3181 		return -ENOMEM;
3182 	driver->cdevs[index]->ops = &tty_fops;
3183 	driver->cdevs[index]->owner = driver->owner;
3184 	err = cdev_add(driver->cdevs[index], dev, count);
3185 	if (err)
3186 		kobject_put(&driver->cdevs[index]->kobj);
3187 	return err;
3188 }
3189 
3190 /**
3191  *	tty_register_device - register a tty device
3192  *	@driver: the tty driver that describes the tty device
3193  *	@index: the index in the tty driver for this tty device
3194  *	@device: a struct device that is associated with this tty device.
3195  *		This field is optional, if there is no known struct device
3196  *		for this tty device it can be set to NULL safely.
3197  *
3198  *	Returns a pointer to the struct device for this tty device
3199  *	(or ERR_PTR(-EFOO) on error).
3200  *
3201  *	This call is required to be made to register an individual tty device
3202  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3203  *	that bit is not set, this function should not be called by a tty
3204  *	driver.
3205  *
3206  *	Locking: ??
3207  */
3208 
3209 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3210 				   struct device *device)
3211 {
3212 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3213 }
3214 EXPORT_SYMBOL(tty_register_device);
3215 
3216 static void tty_device_create_release(struct device *dev)
3217 {
3218 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3219 	kfree(dev);
3220 }
3221 
3222 /**
3223  *	tty_register_device_attr - register a tty device
3224  *	@driver: the tty driver that describes the tty device
3225  *	@index: the index in the tty driver for this tty device
3226  *	@device: a struct device that is associated with this tty device.
3227  *		This field is optional, if there is no known struct device
3228  *		for this tty device it can be set to NULL safely.
3229  *	@drvdata: Driver data to be set to device.
3230  *	@attr_grp: Attribute group to be set on device.
3231  *
3232  *	Returns a pointer to the struct device for this tty device
3233  *	(or ERR_PTR(-EFOO) on error).
3234  *
3235  *	This call is required to be made to register an individual tty device
3236  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3237  *	that bit is not set, this function should not be called by a tty
3238  *	driver.
3239  *
3240  *	Locking: ??
3241  */
3242 struct device *tty_register_device_attr(struct tty_driver *driver,
3243 				   unsigned index, struct device *device,
3244 				   void *drvdata,
3245 				   const struct attribute_group **attr_grp)
3246 {
3247 	char name[64];
3248 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3249 	struct device *dev = NULL;
3250 	int retval = -ENODEV;
3251 	bool cdev = false;
3252 
3253 	if (index >= driver->num) {
3254 		printk(KERN_ERR "Attempt to register invalid tty line number "
3255 		       " (%d).\n", index);
3256 		return ERR_PTR(-EINVAL);
3257 	}
3258 
3259 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3260 		pty_line_name(driver, index, name);
3261 	else
3262 		tty_line_name(driver, index, name);
3263 
3264 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3265 		retval = tty_cdev_add(driver, devt, index, 1);
3266 		if (retval)
3267 			goto error;
3268 		cdev = true;
3269 	}
3270 
3271 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3272 	if (!dev) {
3273 		retval = -ENOMEM;
3274 		goto error;
3275 	}
3276 
3277 	dev->devt = devt;
3278 	dev->class = tty_class;
3279 	dev->parent = device;
3280 	dev->release = tty_device_create_release;
3281 	dev_set_name(dev, "%s", name);
3282 	dev->groups = attr_grp;
3283 	dev_set_drvdata(dev, drvdata);
3284 
3285 	retval = device_register(dev);
3286 	if (retval)
3287 		goto error;
3288 
3289 	return dev;
3290 
3291 error:
3292 	put_device(dev);
3293 	if (cdev) {
3294 		cdev_del(driver->cdevs[index]);
3295 		driver->cdevs[index] = NULL;
3296 	}
3297 	return ERR_PTR(retval);
3298 }
3299 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3300 
3301 /**
3302  * 	tty_unregister_device - unregister a tty device
3303  * 	@driver: the tty driver that describes the tty device
3304  * 	@index: the index in the tty driver for this tty device
3305  *
3306  * 	If a tty device is registered with a call to tty_register_device() then
3307  *	this function must be called when the tty device is gone.
3308  *
3309  *	Locking: ??
3310  */
3311 
3312 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3313 {
3314 	device_destroy(tty_class,
3315 		MKDEV(driver->major, driver->minor_start) + index);
3316 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3317 		cdev_del(driver->cdevs[index]);
3318 		driver->cdevs[index] = NULL;
3319 	}
3320 }
3321 EXPORT_SYMBOL(tty_unregister_device);
3322 
3323 /**
3324  * __tty_alloc_driver -- allocate tty driver
3325  * @lines: count of lines this driver can handle at most
3326  * @owner: module which is repsonsible for this driver
3327  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3328  *
3329  * This should not be called directly, some of the provided macros should be
3330  * used instead. Use IS_ERR and friends on @retval.
3331  */
3332 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3333 		unsigned long flags)
3334 {
3335 	struct tty_driver *driver;
3336 	unsigned int cdevs = 1;
3337 	int err;
3338 
3339 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3340 		return ERR_PTR(-EINVAL);
3341 
3342 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3343 	if (!driver)
3344 		return ERR_PTR(-ENOMEM);
3345 
3346 	kref_init(&driver->kref);
3347 	driver->magic = TTY_DRIVER_MAGIC;
3348 	driver->num = lines;
3349 	driver->owner = owner;
3350 	driver->flags = flags;
3351 
3352 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3353 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3354 				GFP_KERNEL);
3355 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3356 				GFP_KERNEL);
3357 		if (!driver->ttys || !driver->termios) {
3358 			err = -ENOMEM;
3359 			goto err_free_all;
3360 		}
3361 	}
3362 
3363 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3364 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3365 				GFP_KERNEL);
3366 		if (!driver->ports) {
3367 			err = -ENOMEM;
3368 			goto err_free_all;
3369 		}
3370 		cdevs = lines;
3371 	}
3372 
3373 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3374 	if (!driver->cdevs) {
3375 		err = -ENOMEM;
3376 		goto err_free_all;
3377 	}
3378 
3379 	return driver;
3380 err_free_all:
3381 	kfree(driver->ports);
3382 	kfree(driver->ttys);
3383 	kfree(driver->termios);
3384 	kfree(driver->cdevs);
3385 	kfree(driver);
3386 	return ERR_PTR(err);
3387 }
3388 EXPORT_SYMBOL(__tty_alloc_driver);
3389 
3390 static void destruct_tty_driver(struct kref *kref)
3391 {
3392 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3393 	int i;
3394 	struct ktermios *tp;
3395 
3396 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3397 		/*
3398 		 * Free the termios and termios_locked structures because
3399 		 * we don't want to get memory leaks when modular tty
3400 		 * drivers are removed from the kernel.
3401 		 */
3402 		for (i = 0; i < driver->num; i++) {
3403 			tp = driver->termios[i];
3404 			if (tp) {
3405 				driver->termios[i] = NULL;
3406 				kfree(tp);
3407 			}
3408 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3409 				tty_unregister_device(driver, i);
3410 		}
3411 		proc_tty_unregister_driver(driver);
3412 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3413 			cdev_del(driver->cdevs[0]);
3414 	}
3415 	kfree(driver->cdevs);
3416 	kfree(driver->ports);
3417 	kfree(driver->termios);
3418 	kfree(driver->ttys);
3419 	kfree(driver);
3420 }
3421 
3422 void tty_driver_kref_put(struct tty_driver *driver)
3423 {
3424 	kref_put(&driver->kref, destruct_tty_driver);
3425 }
3426 EXPORT_SYMBOL(tty_driver_kref_put);
3427 
3428 void tty_set_operations(struct tty_driver *driver,
3429 			const struct tty_operations *op)
3430 {
3431 	driver->ops = op;
3432 };
3433 EXPORT_SYMBOL(tty_set_operations);
3434 
3435 void put_tty_driver(struct tty_driver *d)
3436 {
3437 	tty_driver_kref_put(d);
3438 }
3439 EXPORT_SYMBOL(put_tty_driver);
3440 
3441 /*
3442  * Called by a tty driver to register itself.
3443  */
3444 int tty_register_driver(struct tty_driver *driver)
3445 {
3446 	int error;
3447 	int i;
3448 	dev_t dev;
3449 	struct device *d;
3450 
3451 	if (!driver->major) {
3452 		error = alloc_chrdev_region(&dev, driver->minor_start,
3453 						driver->num, driver->name);
3454 		if (!error) {
3455 			driver->major = MAJOR(dev);
3456 			driver->minor_start = MINOR(dev);
3457 		}
3458 	} else {
3459 		dev = MKDEV(driver->major, driver->minor_start);
3460 		error = register_chrdev_region(dev, driver->num, driver->name);
3461 	}
3462 	if (error < 0)
3463 		goto err;
3464 
3465 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3466 		error = tty_cdev_add(driver, dev, 0, driver->num);
3467 		if (error)
3468 			goto err_unreg_char;
3469 	}
3470 
3471 	mutex_lock(&tty_mutex);
3472 	list_add(&driver->tty_drivers, &tty_drivers);
3473 	mutex_unlock(&tty_mutex);
3474 
3475 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3476 		for (i = 0; i < driver->num; i++) {
3477 			d = tty_register_device(driver, i, NULL);
3478 			if (IS_ERR(d)) {
3479 				error = PTR_ERR(d);
3480 				goto err_unreg_devs;
3481 			}
3482 		}
3483 	}
3484 	proc_tty_register_driver(driver);
3485 	driver->flags |= TTY_DRIVER_INSTALLED;
3486 	return 0;
3487 
3488 err_unreg_devs:
3489 	for (i--; i >= 0; i--)
3490 		tty_unregister_device(driver, i);
3491 
3492 	mutex_lock(&tty_mutex);
3493 	list_del(&driver->tty_drivers);
3494 	mutex_unlock(&tty_mutex);
3495 
3496 err_unreg_char:
3497 	unregister_chrdev_region(dev, driver->num);
3498 err:
3499 	return error;
3500 }
3501 EXPORT_SYMBOL(tty_register_driver);
3502 
3503 /*
3504  * Called by a tty driver to unregister itself.
3505  */
3506 int tty_unregister_driver(struct tty_driver *driver)
3507 {
3508 #if 0
3509 	/* FIXME */
3510 	if (driver->refcount)
3511 		return -EBUSY;
3512 #endif
3513 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3514 				driver->num);
3515 	mutex_lock(&tty_mutex);
3516 	list_del(&driver->tty_drivers);
3517 	mutex_unlock(&tty_mutex);
3518 	return 0;
3519 }
3520 
3521 EXPORT_SYMBOL(tty_unregister_driver);
3522 
3523 dev_t tty_devnum(struct tty_struct *tty)
3524 {
3525 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3526 }
3527 EXPORT_SYMBOL(tty_devnum);
3528 
3529 void tty_default_fops(struct file_operations *fops)
3530 {
3531 	*fops = tty_fops;
3532 }
3533 
3534 /*
3535  * Initialize the console device. This is called *early*, so
3536  * we can't necessarily depend on lots of kernel help here.
3537  * Just do some early initializations, and do the complex setup
3538  * later.
3539  */
3540 void __init console_init(void)
3541 {
3542 	initcall_t *call;
3543 
3544 	/* Setup the default TTY line discipline. */
3545 	tty_ldisc_begin();
3546 
3547 	/*
3548 	 * set up the console device so that later boot sequences can
3549 	 * inform about problems etc..
3550 	 */
3551 	call = __con_initcall_start;
3552 	while (call < __con_initcall_end) {
3553 		(*call)();
3554 		call++;
3555 	}
3556 }
3557 
3558 static char *tty_devnode(struct device *dev, umode_t *mode)
3559 {
3560 	if (!mode)
3561 		return NULL;
3562 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3563 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3564 		*mode = 0666;
3565 	return NULL;
3566 }
3567 
3568 static int __init tty_class_init(void)
3569 {
3570 	tty_class = class_create(THIS_MODULE, "tty");
3571 	if (IS_ERR(tty_class))
3572 		return PTR_ERR(tty_class);
3573 	tty_class->devnode = tty_devnode;
3574 	return 0;
3575 }
3576 
3577 postcore_initcall(tty_class_init);
3578 
3579 /* 3/2004 jmc: why do these devices exist? */
3580 static struct cdev tty_cdev, console_cdev;
3581 
3582 static ssize_t show_cons_active(struct device *dev,
3583 				struct device_attribute *attr, char *buf)
3584 {
3585 	struct console *cs[16];
3586 	int i = 0;
3587 	struct console *c;
3588 	ssize_t count = 0;
3589 
3590 	console_lock();
3591 	for_each_console(c) {
3592 		if (!c->device)
3593 			continue;
3594 		if (!c->write)
3595 			continue;
3596 		if ((c->flags & CON_ENABLED) == 0)
3597 			continue;
3598 		cs[i++] = c;
3599 		if (i >= ARRAY_SIZE(cs))
3600 			break;
3601 	}
3602 	while (i--) {
3603 		int index = cs[i]->index;
3604 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3605 
3606 		/* don't resolve tty0 as some programs depend on it */
3607 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3608 			count += tty_line_name(drv, index, buf + count);
3609 		else
3610 			count += sprintf(buf + count, "%s%d",
3611 					 cs[i]->name, cs[i]->index);
3612 
3613 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3614 	}
3615 	console_unlock();
3616 
3617 	return count;
3618 }
3619 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3620 
3621 static struct attribute *cons_dev_attrs[] = {
3622 	&dev_attr_active.attr,
3623 	NULL
3624 };
3625 
3626 ATTRIBUTE_GROUPS(cons_dev);
3627 
3628 static struct device *consdev;
3629 
3630 void console_sysfs_notify(void)
3631 {
3632 	if (consdev)
3633 		sysfs_notify(&consdev->kobj, NULL, "active");
3634 }
3635 
3636 /*
3637  * Ok, now we can initialize the rest of the tty devices and can count
3638  * on memory allocations, interrupts etc..
3639  */
3640 int __init tty_init(void)
3641 {
3642 	cdev_init(&tty_cdev, &tty_fops);
3643 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3644 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3645 		panic("Couldn't register /dev/tty driver\n");
3646 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3647 
3648 	cdev_init(&console_cdev, &console_fops);
3649 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3650 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3651 		panic("Couldn't register /dev/console driver\n");
3652 	consdev = device_create_with_groups(tty_class, NULL,
3653 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3654 					    cons_dev_groups, "console");
3655 	if (IS_ERR(consdev))
3656 		consdev = NULL;
3657 
3658 #ifdef CONFIG_VT
3659 	vty_init(&console_fops);
3660 #endif
3661 	return 0;
3662 }
3663 
3664