1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 */ 4 5 /* 6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 7 * or rs-channels. It also implements echoing, cooked mode etc. 8 * 9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 10 * 11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 12 * tty_struct and tty_queue structures. Previously there was an array 13 * of 256 tty_struct's which was statically allocated, and the 14 * tty_queue structures were allocated at boot time. Both are now 15 * dynamically allocated only when the tty is open. 16 * 17 * Also restructured routines so that there is more of a separation 18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 19 * the low-level tty routines (serial.c, pty.c, console.c). This 20 * makes for cleaner and more compact code. -TYT, 9/17/92 21 * 22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 23 * which can be dynamically activated and de-activated by the line 24 * discipline handling modules (like SLIP). 25 * 26 * NOTE: pay no attention to the line discipline code (yet); its 27 * interface is still subject to change in this version... 28 * -- TYT, 1/31/92 29 * 30 * Added functionality to the OPOST tty handling. No delays, but all 31 * other bits should be there. 32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 33 * 34 * Rewrote canonical mode and added more termios flags. 35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 36 * 37 * Reorganized FASYNC support so mouse code can share it. 38 * -- ctm@ardi.com, 9Sep95 39 * 40 * New TIOCLINUX variants added. 41 * -- mj@k332.feld.cvut.cz, 19-Nov-95 42 * 43 * Restrict vt switching via ioctl() 44 * -- grif@cs.ucr.edu, 5-Dec-95 45 * 46 * Move console and virtual terminal code to more appropriate files, 47 * implement CONFIG_VT and generalize console device interface. 48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 49 * 50 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 51 * -- Bill Hawes <whawes@star.net>, June 97 52 * 53 * Added devfs support. 54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 55 * 56 * Added support for a Unix98-style ptmx device. 57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 58 * 59 * Reduced memory usage for older ARM systems 60 * -- Russell King <rmk@arm.linux.org.uk> 61 * 62 * Move do_SAK() into process context. Less stack use in devfs functions. 63 * alloc_tty_struct() always uses kmalloc() 64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 65 */ 66 67 #include <linux/types.h> 68 #include <linux/major.h> 69 #include <linux/errno.h> 70 #include <linux/signal.h> 71 #include <linux/fcntl.h> 72 #include <linux/sched.h> 73 #include <linux/interrupt.h> 74 #include <linux/tty.h> 75 #include <linux/tty_driver.h> 76 #include <linux/tty_flip.h> 77 #include <linux/devpts_fs.h> 78 #include <linux/file.h> 79 #include <linux/fdtable.h> 80 #include <linux/console.h> 81 #include <linux/timer.h> 82 #include <linux/ctype.h> 83 #include <linux/kd.h> 84 #include <linux/mm.h> 85 #include <linux/string.h> 86 #include <linux/slab.h> 87 #include <linux/poll.h> 88 #include <linux/proc_fs.h> 89 #include <linux/init.h> 90 #include <linux/module.h> 91 #include <linux/device.h> 92 #include <linux/wait.h> 93 #include <linux/bitops.h> 94 #include <linux/delay.h> 95 #include <linux/seq_file.h> 96 #include <linux/serial.h> 97 #include <linux/ratelimit.h> 98 99 #include <linux/uaccess.h> 100 101 #include <linux/kbd_kern.h> 102 #include <linux/vt_kern.h> 103 #include <linux/selection.h> 104 105 #include <linux/kmod.h> 106 #include <linux/nsproxy.h> 107 108 #undef TTY_DEBUG_HANGUP 109 #ifdef TTY_DEBUG_HANGUP 110 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args) 111 #else 112 # define tty_debug_hangup(tty, f, args...) do { } while (0) 113 #endif 114 115 #define TTY_PARANOIA_CHECK 1 116 #define CHECK_TTY_COUNT 1 117 118 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 119 .c_iflag = ICRNL | IXON, 120 .c_oflag = OPOST | ONLCR, 121 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 122 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 123 ECHOCTL | ECHOKE | IEXTEN, 124 .c_cc = INIT_C_CC, 125 .c_ispeed = 38400, 126 .c_ospeed = 38400 127 }; 128 129 EXPORT_SYMBOL(tty_std_termios); 130 131 /* This list gets poked at by procfs and various bits of boot up code. This 132 could do with some rationalisation such as pulling the tty proc function 133 into this file */ 134 135 LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 136 137 /* Mutex to protect creating and releasing a tty. This is shared with 138 vt.c for deeply disgusting hack reasons */ 139 DEFINE_MUTEX(tty_mutex); 140 EXPORT_SYMBOL(tty_mutex); 141 142 /* Spinlock to protect the tty->tty_files list */ 143 DEFINE_SPINLOCK(tty_files_lock); 144 145 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *); 146 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *); 147 ssize_t redirected_tty_write(struct file *, const char __user *, 148 size_t, loff_t *); 149 static unsigned int tty_poll(struct file *, poll_table *); 150 static int tty_open(struct inode *, struct file *); 151 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 152 #ifdef CONFIG_COMPAT 153 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 154 unsigned long arg); 155 #else 156 #define tty_compat_ioctl NULL 157 #endif 158 static int __tty_fasync(int fd, struct file *filp, int on); 159 static int tty_fasync(int fd, struct file *filp, int on); 160 static void release_tty(struct tty_struct *tty, int idx); 161 162 /** 163 * free_tty_struct - free a disused tty 164 * @tty: tty struct to free 165 * 166 * Free the write buffers, tty queue and tty memory itself. 167 * 168 * Locking: none. Must be called after tty is definitely unused 169 */ 170 171 void free_tty_struct(struct tty_struct *tty) 172 { 173 if (!tty) 174 return; 175 put_device(tty->dev); 176 kfree(tty->write_buf); 177 tty->magic = 0xDEADDEAD; 178 kfree(tty); 179 } 180 181 static inline struct tty_struct *file_tty(struct file *file) 182 { 183 return ((struct tty_file_private *)file->private_data)->tty; 184 } 185 186 int tty_alloc_file(struct file *file) 187 { 188 struct tty_file_private *priv; 189 190 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 191 if (!priv) 192 return -ENOMEM; 193 194 file->private_data = priv; 195 196 return 0; 197 } 198 199 /* Associate a new file with the tty structure */ 200 void tty_add_file(struct tty_struct *tty, struct file *file) 201 { 202 struct tty_file_private *priv = file->private_data; 203 204 priv->tty = tty; 205 priv->file = file; 206 207 spin_lock(&tty_files_lock); 208 list_add(&priv->list, &tty->tty_files); 209 spin_unlock(&tty_files_lock); 210 } 211 212 /** 213 * tty_free_file - free file->private_data 214 * 215 * This shall be used only for fail path handling when tty_add_file was not 216 * called yet. 217 */ 218 void tty_free_file(struct file *file) 219 { 220 struct tty_file_private *priv = file->private_data; 221 222 file->private_data = NULL; 223 kfree(priv); 224 } 225 226 /* Delete file from its tty */ 227 static void tty_del_file(struct file *file) 228 { 229 struct tty_file_private *priv = file->private_data; 230 231 spin_lock(&tty_files_lock); 232 list_del(&priv->list); 233 spin_unlock(&tty_files_lock); 234 tty_free_file(file); 235 } 236 237 238 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base) 239 240 /** 241 * tty_name - return tty naming 242 * @tty: tty structure 243 * 244 * Convert a tty structure into a name. The name reflects the kernel 245 * naming policy and if udev is in use may not reflect user space 246 * 247 * Locking: none 248 */ 249 250 const char *tty_name(const struct tty_struct *tty) 251 { 252 if (!tty) /* Hmm. NULL pointer. That's fun. */ 253 return "NULL tty"; 254 return tty->name; 255 } 256 257 EXPORT_SYMBOL(tty_name); 258 259 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 260 const char *routine) 261 { 262 #ifdef TTY_PARANOIA_CHECK 263 if (!tty) { 264 printk(KERN_WARNING 265 "null TTY for (%d:%d) in %s\n", 266 imajor(inode), iminor(inode), routine); 267 return 1; 268 } 269 if (tty->magic != TTY_MAGIC) { 270 printk(KERN_WARNING 271 "bad magic number for tty struct (%d:%d) in %s\n", 272 imajor(inode), iminor(inode), routine); 273 return 1; 274 } 275 #endif 276 return 0; 277 } 278 279 /* Caller must hold tty_lock */ 280 static int check_tty_count(struct tty_struct *tty, const char *routine) 281 { 282 #ifdef CHECK_TTY_COUNT 283 struct list_head *p; 284 int count = 0; 285 286 spin_lock(&tty_files_lock); 287 list_for_each(p, &tty->tty_files) { 288 count++; 289 } 290 spin_unlock(&tty_files_lock); 291 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 292 tty->driver->subtype == PTY_TYPE_SLAVE && 293 tty->link && tty->link->count) 294 count++; 295 if (tty->count != count) { 296 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) " 297 "!= #fd's(%d) in %s\n", 298 tty->name, tty->count, count, routine); 299 return count; 300 } 301 #endif 302 return 0; 303 } 304 305 /** 306 * get_tty_driver - find device of a tty 307 * @dev_t: device identifier 308 * @index: returns the index of the tty 309 * 310 * This routine returns a tty driver structure, given a device number 311 * and also passes back the index number. 312 * 313 * Locking: caller must hold tty_mutex 314 */ 315 316 static struct tty_driver *get_tty_driver(dev_t device, int *index) 317 { 318 struct tty_driver *p; 319 320 list_for_each_entry(p, &tty_drivers, tty_drivers) { 321 dev_t base = MKDEV(p->major, p->minor_start); 322 if (device < base || device >= base + p->num) 323 continue; 324 *index = device - base; 325 return tty_driver_kref_get(p); 326 } 327 return NULL; 328 } 329 330 #ifdef CONFIG_CONSOLE_POLL 331 332 /** 333 * tty_find_polling_driver - find device of a polled tty 334 * @name: name string to match 335 * @line: pointer to resulting tty line nr 336 * 337 * This routine returns a tty driver structure, given a name 338 * and the condition that the tty driver is capable of polled 339 * operation. 340 */ 341 struct tty_driver *tty_find_polling_driver(char *name, int *line) 342 { 343 struct tty_driver *p, *res = NULL; 344 int tty_line = 0; 345 int len; 346 char *str, *stp; 347 348 for (str = name; *str; str++) 349 if ((*str >= '0' && *str <= '9') || *str == ',') 350 break; 351 if (!*str) 352 return NULL; 353 354 len = str - name; 355 tty_line = simple_strtoul(str, &str, 10); 356 357 mutex_lock(&tty_mutex); 358 /* Search through the tty devices to look for a match */ 359 list_for_each_entry(p, &tty_drivers, tty_drivers) { 360 if (strncmp(name, p->name, len) != 0) 361 continue; 362 stp = str; 363 if (*stp == ',') 364 stp++; 365 if (*stp == '\0') 366 stp = NULL; 367 368 if (tty_line >= 0 && tty_line < p->num && p->ops && 369 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 370 res = tty_driver_kref_get(p); 371 *line = tty_line; 372 break; 373 } 374 } 375 mutex_unlock(&tty_mutex); 376 377 return res; 378 } 379 EXPORT_SYMBOL_GPL(tty_find_polling_driver); 380 #endif 381 382 /** 383 * tty_check_change - check for POSIX terminal changes 384 * @tty: tty to check 385 * 386 * If we try to write to, or set the state of, a terminal and we're 387 * not in the foreground, send a SIGTTOU. If the signal is blocked or 388 * ignored, go ahead and perform the operation. (POSIX 7.2) 389 * 390 * Locking: ctrl_lock 391 */ 392 393 int __tty_check_change(struct tty_struct *tty, int sig) 394 { 395 unsigned long flags; 396 struct pid *pgrp, *tty_pgrp; 397 int ret = 0; 398 399 if (current->signal->tty != tty) 400 return 0; 401 402 rcu_read_lock(); 403 pgrp = task_pgrp(current); 404 405 spin_lock_irqsave(&tty->ctrl_lock, flags); 406 tty_pgrp = tty->pgrp; 407 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 408 409 if (tty_pgrp && pgrp != tty->pgrp) { 410 if (is_ignored(sig)) { 411 if (sig == SIGTTIN) 412 ret = -EIO; 413 } else if (is_current_pgrp_orphaned()) 414 ret = -EIO; 415 else { 416 kill_pgrp(pgrp, sig, 1); 417 set_thread_flag(TIF_SIGPENDING); 418 ret = -ERESTARTSYS; 419 } 420 } 421 rcu_read_unlock(); 422 423 if (!tty_pgrp) { 424 pr_warn("%s: tty_check_change: sig=%d, tty->pgrp == NULL!\n", 425 tty_name(tty), sig); 426 } 427 428 return ret; 429 } 430 431 int tty_check_change(struct tty_struct *tty) 432 { 433 return __tty_check_change(tty, SIGTTOU); 434 } 435 EXPORT_SYMBOL(tty_check_change); 436 437 static ssize_t hung_up_tty_read(struct file *file, char __user *buf, 438 size_t count, loff_t *ppos) 439 { 440 return 0; 441 } 442 443 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf, 444 size_t count, loff_t *ppos) 445 { 446 return -EIO; 447 } 448 449 /* No kernel lock held - none needed ;) */ 450 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait) 451 { 452 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM; 453 } 454 455 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 456 unsigned long arg) 457 { 458 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 459 } 460 461 static long hung_up_tty_compat_ioctl(struct file *file, 462 unsigned int cmd, unsigned long arg) 463 { 464 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 465 } 466 467 static const struct file_operations tty_fops = { 468 .llseek = no_llseek, 469 .read = tty_read, 470 .write = tty_write, 471 .poll = tty_poll, 472 .unlocked_ioctl = tty_ioctl, 473 .compat_ioctl = tty_compat_ioctl, 474 .open = tty_open, 475 .release = tty_release, 476 .fasync = tty_fasync, 477 }; 478 479 static const struct file_operations console_fops = { 480 .llseek = no_llseek, 481 .read = tty_read, 482 .write = redirected_tty_write, 483 .poll = tty_poll, 484 .unlocked_ioctl = tty_ioctl, 485 .compat_ioctl = tty_compat_ioctl, 486 .open = tty_open, 487 .release = tty_release, 488 .fasync = tty_fasync, 489 }; 490 491 static const struct file_operations hung_up_tty_fops = { 492 .llseek = no_llseek, 493 .read = hung_up_tty_read, 494 .write = hung_up_tty_write, 495 .poll = hung_up_tty_poll, 496 .unlocked_ioctl = hung_up_tty_ioctl, 497 .compat_ioctl = hung_up_tty_compat_ioctl, 498 .release = tty_release, 499 }; 500 501 static DEFINE_SPINLOCK(redirect_lock); 502 static struct file *redirect; 503 504 505 void proc_clear_tty(struct task_struct *p) 506 { 507 unsigned long flags; 508 struct tty_struct *tty; 509 spin_lock_irqsave(&p->sighand->siglock, flags); 510 tty = p->signal->tty; 511 p->signal->tty = NULL; 512 spin_unlock_irqrestore(&p->sighand->siglock, flags); 513 tty_kref_put(tty); 514 } 515 516 /** 517 * proc_set_tty - set the controlling terminal 518 * 519 * Only callable by the session leader and only if it does not already have 520 * a controlling terminal. 521 * 522 * Caller must hold: tty_lock() 523 * a readlock on tasklist_lock 524 * sighand lock 525 */ 526 static void __proc_set_tty(struct tty_struct *tty) 527 { 528 unsigned long flags; 529 530 spin_lock_irqsave(&tty->ctrl_lock, flags); 531 /* 532 * The session and fg pgrp references will be non-NULL if 533 * tiocsctty() is stealing the controlling tty 534 */ 535 put_pid(tty->session); 536 put_pid(tty->pgrp); 537 tty->pgrp = get_pid(task_pgrp(current)); 538 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 539 tty->session = get_pid(task_session(current)); 540 if (current->signal->tty) { 541 tty_debug(tty, "current tty %s not NULL!!\n", 542 current->signal->tty->name); 543 tty_kref_put(current->signal->tty); 544 } 545 put_pid(current->signal->tty_old_pgrp); 546 current->signal->tty = tty_kref_get(tty); 547 current->signal->tty_old_pgrp = NULL; 548 } 549 550 static void proc_set_tty(struct tty_struct *tty) 551 { 552 spin_lock_irq(¤t->sighand->siglock); 553 __proc_set_tty(tty); 554 spin_unlock_irq(¤t->sighand->siglock); 555 } 556 557 struct tty_struct *get_current_tty(void) 558 { 559 struct tty_struct *tty; 560 unsigned long flags; 561 562 spin_lock_irqsave(¤t->sighand->siglock, flags); 563 tty = tty_kref_get(current->signal->tty); 564 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 565 return tty; 566 } 567 EXPORT_SYMBOL_GPL(get_current_tty); 568 569 static void session_clear_tty(struct pid *session) 570 { 571 struct task_struct *p; 572 do_each_pid_task(session, PIDTYPE_SID, p) { 573 proc_clear_tty(p); 574 } while_each_pid_task(session, PIDTYPE_SID, p); 575 } 576 577 /** 578 * tty_wakeup - request more data 579 * @tty: terminal 580 * 581 * Internal and external helper for wakeups of tty. This function 582 * informs the line discipline if present that the driver is ready 583 * to receive more output data. 584 */ 585 586 void tty_wakeup(struct tty_struct *tty) 587 { 588 struct tty_ldisc *ld; 589 590 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 591 ld = tty_ldisc_ref(tty); 592 if (ld) { 593 if (ld->ops->write_wakeup) 594 ld->ops->write_wakeup(tty); 595 tty_ldisc_deref(ld); 596 } 597 } 598 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 599 } 600 601 EXPORT_SYMBOL_GPL(tty_wakeup); 602 603 /** 604 * tty_signal_session_leader - sends SIGHUP to session leader 605 * @tty controlling tty 606 * @exit_session if non-zero, signal all foreground group processes 607 * 608 * Send SIGHUP and SIGCONT to the session leader and its process group. 609 * Optionally, signal all processes in the foreground process group. 610 * 611 * Returns the number of processes in the session with this tty 612 * as their controlling terminal. This value is used to drop 613 * tty references for those processes. 614 */ 615 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session) 616 { 617 struct task_struct *p; 618 int refs = 0; 619 struct pid *tty_pgrp = NULL; 620 621 read_lock(&tasklist_lock); 622 if (tty->session) { 623 do_each_pid_task(tty->session, PIDTYPE_SID, p) { 624 spin_lock_irq(&p->sighand->siglock); 625 if (p->signal->tty == tty) { 626 p->signal->tty = NULL; 627 /* We defer the dereferences outside fo 628 the tasklist lock */ 629 refs++; 630 } 631 if (!p->signal->leader) { 632 spin_unlock_irq(&p->sighand->siglock); 633 continue; 634 } 635 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p); 636 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p); 637 put_pid(p->signal->tty_old_pgrp); /* A noop */ 638 spin_lock(&tty->ctrl_lock); 639 tty_pgrp = get_pid(tty->pgrp); 640 if (tty->pgrp) 641 p->signal->tty_old_pgrp = get_pid(tty->pgrp); 642 spin_unlock(&tty->ctrl_lock); 643 spin_unlock_irq(&p->sighand->siglock); 644 } while_each_pid_task(tty->session, PIDTYPE_SID, p); 645 } 646 read_unlock(&tasklist_lock); 647 648 if (tty_pgrp) { 649 if (exit_session) 650 kill_pgrp(tty_pgrp, SIGHUP, exit_session); 651 put_pid(tty_pgrp); 652 } 653 654 return refs; 655 } 656 657 /** 658 * __tty_hangup - actual handler for hangup events 659 * @work: tty device 660 * 661 * This can be called by a "kworker" kernel thread. That is process 662 * synchronous but doesn't hold any locks, so we need to make sure we 663 * have the appropriate locks for what we're doing. 664 * 665 * The hangup event clears any pending redirections onto the hung up 666 * device. It ensures future writes will error and it does the needed 667 * line discipline hangup and signal delivery. The tty object itself 668 * remains intact. 669 * 670 * Locking: 671 * BTM 672 * redirect lock for undoing redirection 673 * file list lock for manipulating list of ttys 674 * tty_ldiscs_lock from called functions 675 * termios_rwsem resetting termios data 676 * tasklist_lock to walk task list for hangup event 677 * ->siglock to protect ->signal/->sighand 678 */ 679 static void __tty_hangup(struct tty_struct *tty, int exit_session) 680 { 681 struct file *cons_filp = NULL; 682 struct file *filp, *f = NULL; 683 struct tty_file_private *priv; 684 int closecount = 0, n; 685 int refs; 686 687 if (!tty) 688 return; 689 690 691 spin_lock(&redirect_lock); 692 if (redirect && file_tty(redirect) == tty) { 693 f = redirect; 694 redirect = NULL; 695 } 696 spin_unlock(&redirect_lock); 697 698 tty_lock(tty); 699 700 if (test_bit(TTY_HUPPED, &tty->flags)) { 701 tty_unlock(tty); 702 return; 703 } 704 705 /* inuse_filps is protected by the single tty lock, 706 this really needs to change if we want to flush the 707 workqueue with the lock held */ 708 check_tty_count(tty, "tty_hangup"); 709 710 spin_lock(&tty_files_lock); 711 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 712 list_for_each_entry(priv, &tty->tty_files, list) { 713 filp = priv->file; 714 if (filp->f_op->write == redirected_tty_write) 715 cons_filp = filp; 716 if (filp->f_op->write != tty_write) 717 continue; 718 closecount++; 719 __tty_fasync(-1, filp, 0); /* can't block */ 720 filp->f_op = &hung_up_tty_fops; 721 } 722 spin_unlock(&tty_files_lock); 723 724 refs = tty_signal_session_leader(tty, exit_session); 725 /* Account for the p->signal references we killed */ 726 while (refs--) 727 tty_kref_put(tty); 728 729 tty_ldisc_hangup(tty); 730 731 spin_lock_irq(&tty->ctrl_lock); 732 clear_bit(TTY_THROTTLED, &tty->flags); 733 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 734 put_pid(tty->session); 735 put_pid(tty->pgrp); 736 tty->session = NULL; 737 tty->pgrp = NULL; 738 tty->ctrl_status = 0; 739 spin_unlock_irq(&tty->ctrl_lock); 740 741 /* 742 * If one of the devices matches a console pointer, we 743 * cannot just call hangup() because that will cause 744 * tty->count and state->count to go out of sync. 745 * So we just call close() the right number of times. 746 */ 747 if (cons_filp) { 748 if (tty->ops->close) 749 for (n = 0; n < closecount; n++) 750 tty->ops->close(tty, cons_filp); 751 } else if (tty->ops->hangup) 752 tty->ops->hangup(tty); 753 /* 754 * We don't want to have driver/ldisc interactions beyond 755 * the ones we did here. The driver layer expects no 756 * calls after ->hangup() from the ldisc side. However we 757 * can't yet guarantee all that. 758 */ 759 set_bit(TTY_HUPPED, &tty->flags); 760 tty_unlock(tty); 761 762 if (f) 763 fput(f); 764 } 765 766 static void do_tty_hangup(struct work_struct *work) 767 { 768 struct tty_struct *tty = 769 container_of(work, struct tty_struct, hangup_work); 770 771 __tty_hangup(tty, 0); 772 } 773 774 /** 775 * tty_hangup - trigger a hangup event 776 * @tty: tty to hangup 777 * 778 * A carrier loss (virtual or otherwise) has occurred on this like 779 * schedule a hangup sequence to run after this event. 780 */ 781 782 void tty_hangup(struct tty_struct *tty) 783 { 784 tty_debug_hangup(tty, "\n"); 785 schedule_work(&tty->hangup_work); 786 } 787 788 EXPORT_SYMBOL(tty_hangup); 789 790 /** 791 * tty_vhangup - process vhangup 792 * @tty: tty to hangup 793 * 794 * The user has asked via system call for the terminal to be hung up. 795 * We do this synchronously so that when the syscall returns the process 796 * is complete. That guarantee is necessary for security reasons. 797 */ 798 799 void tty_vhangup(struct tty_struct *tty) 800 { 801 tty_debug_hangup(tty, "\n"); 802 __tty_hangup(tty, 0); 803 } 804 805 EXPORT_SYMBOL(tty_vhangup); 806 807 808 /** 809 * tty_vhangup_self - process vhangup for own ctty 810 * 811 * Perform a vhangup on the current controlling tty 812 */ 813 814 void tty_vhangup_self(void) 815 { 816 struct tty_struct *tty; 817 818 tty = get_current_tty(); 819 if (tty) { 820 tty_vhangup(tty); 821 tty_kref_put(tty); 822 } 823 } 824 825 /** 826 * tty_vhangup_session - hangup session leader exit 827 * @tty: tty to hangup 828 * 829 * The session leader is exiting and hanging up its controlling terminal. 830 * Every process in the foreground process group is signalled SIGHUP. 831 * 832 * We do this synchronously so that when the syscall returns the process 833 * is complete. That guarantee is necessary for security reasons. 834 */ 835 836 static void tty_vhangup_session(struct tty_struct *tty) 837 { 838 tty_debug_hangup(tty, "\n"); 839 __tty_hangup(tty, 1); 840 } 841 842 /** 843 * tty_hung_up_p - was tty hung up 844 * @filp: file pointer of tty 845 * 846 * Return true if the tty has been subject to a vhangup or a carrier 847 * loss 848 */ 849 850 int tty_hung_up_p(struct file *filp) 851 { 852 return (filp->f_op == &hung_up_tty_fops); 853 } 854 855 EXPORT_SYMBOL(tty_hung_up_p); 856 857 /** 858 * disassociate_ctty - disconnect controlling tty 859 * @on_exit: true if exiting so need to "hang up" the session 860 * 861 * This function is typically called only by the session leader, when 862 * it wants to disassociate itself from its controlling tty. 863 * 864 * It performs the following functions: 865 * (1) Sends a SIGHUP and SIGCONT to the foreground process group 866 * (2) Clears the tty from being controlling the session 867 * (3) Clears the controlling tty for all processes in the 868 * session group. 869 * 870 * The argument on_exit is set to 1 if called when a process is 871 * exiting; it is 0 if called by the ioctl TIOCNOTTY. 872 * 873 * Locking: 874 * BTM is taken for hysterical raisins, and held when 875 * called from no_tty(). 876 * tty_mutex is taken to protect tty 877 * ->siglock is taken to protect ->signal/->sighand 878 * tasklist_lock is taken to walk process list for sessions 879 * ->siglock is taken to protect ->signal/->sighand 880 */ 881 882 void disassociate_ctty(int on_exit) 883 { 884 struct tty_struct *tty; 885 886 if (!current->signal->leader) 887 return; 888 889 tty = get_current_tty(); 890 if (tty) { 891 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) { 892 tty_vhangup_session(tty); 893 } else { 894 struct pid *tty_pgrp = tty_get_pgrp(tty); 895 if (tty_pgrp) { 896 kill_pgrp(tty_pgrp, SIGHUP, on_exit); 897 if (!on_exit) 898 kill_pgrp(tty_pgrp, SIGCONT, on_exit); 899 put_pid(tty_pgrp); 900 } 901 } 902 tty_kref_put(tty); 903 904 } else if (on_exit) { 905 struct pid *old_pgrp; 906 spin_lock_irq(¤t->sighand->siglock); 907 old_pgrp = current->signal->tty_old_pgrp; 908 current->signal->tty_old_pgrp = NULL; 909 spin_unlock_irq(¤t->sighand->siglock); 910 if (old_pgrp) { 911 kill_pgrp(old_pgrp, SIGHUP, on_exit); 912 kill_pgrp(old_pgrp, SIGCONT, on_exit); 913 put_pid(old_pgrp); 914 } 915 return; 916 } 917 918 spin_lock_irq(¤t->sighand->siglock); 919 put_pid(current->signal->tty_old_pgrp); 920 current->signal->tty_old_pgrp = NULL; 921 922 tty = tty_kref_get(current->signal->tty); 923 if (tty) { 924 unsigned long flags; 925 spin_lock_irqsave(&tty->ctrl_lock, flags); 926 put_pid(tty->session); 927 put_pid(tty->pgrp); 928 tty->session = NULL; 929 tty->pgrp = NULL; 930 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 931 tty_kref_put(tty); 932 } else 933 tty_debug_hangup(tty, "no current tty\n"); 934 935 spin_unlock_irq(¤t->sighand->siglock); 936 /* Now clear signal->tty under the lock */ 937 read_lock(&tasklist_lock); 938 session_clear_tty(task_session(current)); 939 read_unlock(&tasklist_lock); 940 } 941 942 /** 943 * 944 * no_tty - Ensure the current process does not have a controlling tty 945 */ 946 void no_tty(void) 947 { 948 /* FIXME: Review locking here. The tty_lock never covered any race 949 between a new association and proc_clear_tty but possible we need 950 to protect against this anyway */ 951 struct task_struct *tsk = current; 952 disassociate_ctty(0); 953 proc_clear_tty(tsk); 954 } 955 956 957 /** 958 * stop_tty - propagate flow control 959 * @tty: tty to stop 960 * 961 * Perform flow control to the driver. May be called 962 * on an already stopped device and will not re-call the driver 963 * method. 964 * 965 * This functionality is used by both the line disciplines for 966 * halting incoming flow and by the driver. It may therefore be 967 * called from any context, may be under the tty atomic_write_lock 968 * but not always. 969 * 970 * Locking: 971 * flow_lock 972 */ 973 974 void __stop_tty(struct tty_struct *tty) 975 { 976 if (tty->stopped) 977 return; 978 tty->stopped = 1; 979 if (tty->ops->stop) 980 tty->ops->stop(tty); 981 } 982 983 void stop_tty(struct tty_struct *tty) 984 { 985 unsigned long flags; 986 987 spin_lock_irqsave(&tty->flow_lock, flags); 988 __stop_tty(tty); 989 spin_unlock_irqrestore(&tty->flow_lock, flags); 990 } 991 EXPORT_SYMBOL(stop_tty); 992 993 /** 994 * start_tty - propagate flow control 995 * @tty: tty to start 996 * 997 * Start a tty that has been stopped if at all possible. If this 998 * tty was previous stopped and is now being started, the driver 999 * start method is invoked and the line discipline woken. 1000 * 1001 * Locking: 1002 * flow_lock 1003 */ 1004 1005 void __start_tty(struct tty_struct *tty) 1006 { 1007 if (!tty->stopped || tty->flow_stopped) 1008 return; 1009 tty->stopped = 0; 1010 if (tty->ops->start) 1011 tty->ops->start(tty); 1012 tty_wakeup(tty); 1013 } 1014 1015 void start_tty(struct tty_struct *tty) 1016 { 1017 unsigned long flags; 1018 1019 spin_lock_irqsave(&tty->flow_lock, flags); 1020 __start_tty(tty); 1021 spin_unlock_irqrestore(&tty->flow_lock, flags); 1022 } 1023 EXPORT_SYMBOL(start_tty); 1024 1025 static void tty_update_time(struct timespec *time) 1026 { 1027 unsigned long sec = get_seconds(); 1028 1029 /* 1030 * We only care if the two values differ in anything other than the 1031 * lower three bits (i.e every 8 seconds). If so, then we can update 1032 * the time of the tty device, otherwise it could be construded as a 1033 * security leak to let userspace know the exact timing of the tty. 1034 */ 1035 if ((sec ^ time->tv_sec) & ~7) 1036 time->tv_sec = sec; 1037 } 1038 1039 /** 1040 * tty_read - read method for tty device files 1041 * @file: pointer to tty file 1042 * @buf: user buffer 1043 * @count: size of user buffer 1044 * @ppos: unused 1045 * 1046 * Perform the read system call function on this terminal device. Checks 1047 * for hung up devices before calling the line discipline method. 1048 * 1049 * Locking: 1050 * Locks the line discipline internally while needed. Multiple 1051 * read calls may be outstanding in parallel. 1052 */ 1053 1054 static ssize_t tty_read(struct file *file, char __user *buf, size_t count, 1055 loff_t *ppos) 1056 { 1057 int i; 1058 struct inode *inode = file_inode(file); 1059 struct tty_struct *tty = file_tty(file); 1060 struct tty_ldisc *ld; 1061 1062 if (tty_paranoia_check(tty, inode, "tty_read")) 1063 return -EIO; 1064 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags))) 1065 return -EIO; 1066 1067 /* We want to wait for the line discipline to sort out in this 1068 situation */ 1069 ld = tty_ldisc_ref_wait(tty); 1070 if (ld->ops->read) 1071 i = ld->ops->read(tty, file, buf, count); 1072 else 1073 i = -EIO; 1074 tty_ldisc_deref(ld); 1075 1076 if (i > 0) 1077 tty_update_time(&inode->i_atime); 1078 1079 return i; 1080 } 1081 1082 static void tty_write_unlock(struct tty_struct *tty) 1083 { 1084 mutex_unlock(&tty->atomic_write_lock); 1085 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 1086 } 1087 1088 static int tty_write_lock(struct tty_struct *tty, int ndelay) 1089 { 1090 if (!mutex_trylock(&tty->atomic_write_lock)) { 1091 if (ndelay) 1092 return -EAGAIN; 1093 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 1094 return -ERESTARTSYS; 1095 } 1096 return 0; 1097 } 1098 1099 /* 1100 * Split writes up in sane blocksizes to avoid 1101 * denial-of-service type attacks 1102 */ 1103 static inline ssize_t do_tty_write( 1104 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 1105 struct tty_struct *tty, 1106 struct file *file, 1107 const char __user *buf, 1108 size_t count) 1109 { 1110 ssize_t ret, written = 0; 1111 unsigned int chunk; 1112 1113 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 1114 if (ret < 0) 1115 return ret; 1116 1117 /* 1118 * We chunk up writes into a temporary buffer. This 1119 * simplifies low-level drivers immensely, since they 1120 * don't have locking issues and user mode accesses. 1121 * 1122 * But if TTY_NO_WRITE_SPLIT is set, we should use a 1123 * big chunk-size.. 1124 * 1125 * The default chunk-size is 2kB, because the NTTY 1126 * layer has problems with bigger chunks. It will 1127 * claim to be able to handle more characters than 1128 * it actually does. 1129 * 1130 * FIXME: This can probably go away now except that 64K chunks 1131 * are too likely to fail unless switched to vmalloc... 1132 */ 1133 chunk = 2048; 1134 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 1135 chunk = 65536; 1136 if (count < chunk) 1137 chunk = count; 1138 1139 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 1140 if (tty->write_cnt < chunk) { 1141 unsigned char *buf_chunk; 1142 1143 if (chunk < 1024) 1144 chunk = 1024; 1145 1146 buf_chunk = kmalloc(chunk, GFP_KERNEL); 1147 if (!buf_chunk) { 1148 ret = -ENOMEM; 1149 goto out; 1150 } 1151 kfree(tty->write_buf); 1152 tty->write_cnt = chunk; 1153 tty->write_buf = buf_chunk; 1154 } 1155 1156 /* Do the write .. */ 1157 for (;;) { 1158 size_t size = count; 1159 if (size > chunk) 1160 size = chunk; 1161 ret = -EFAULT; 1162 if (copy_from_user(tty->write_buf, buf, size)) 1163 break; 1164 ret = write(tty, file, tty->write_buf, size); 1165 if (ret <= 0) 1166 break; 1167 written += ret; 1168 buf += ret; 1169 count -= ret; 1170 if (!count) 1171 break; 1172 ret = -ERESTARTSYS; 1173 if (signal_pending(current)) 1174 break; 1175 cond_resched(); 1176 } 1177 if (written) { 1178 tty_update_time(&file_inode(file)->i_mtime); 1179 ret = written; 1180 } 1181 out: 1182 tty_write_unlock(tty); 1183 return ret; 1184 } 1185 1186 /** 1187 * tty_write_message - write a message to a certain tty, not just the console. 1188 * @tty: the destination tty_struct 1189 * @msg: the message to write 1190 * 1191 * This is used for messages that need to be redirected to a specific tty. 1192 * We don't put it into the syslog queue right now maybe in the future if 1193 * really needed. 1194 * 1195 * We must still hold the BTM and test the CLOSING flag for the moment. 1196 */ 1197 1198 void tty_write_message(struct tty_struct *tty, char *msg) 1199 { 1200 if (tty) { 1201 mutex_lock(&tty->atomic_write_lock); 1202 tty_lock(tty); 1203 if (tty->ops->write && tty->count > 0) 1204 tty->ops->write(tty, msg, strlen(msg)); 1205 tty_unlock(tty); 1206 tty_write_unlock(tty); 1207 } 1208 return; 1209 } 1210 1211 1212 /** 1213 * tty_write - write method for tty device file 1214 * @file: tty file pointer 1215 * @buf: user data to write 1216 * @count: bytes to write 1217 * @ppos: unused 1218 * 1219 * Write data to a tty device via the line discipline. 1220 * 1221 * Locking: 1222 * Locks the line discipline as required 1223 * Writes to the tty driver are serialized by the atomic_write_lock 1224 * and are then processed in chunks to the device. The line discipline 1225 * write method will not be invoked in parallel for each device. 1226 */ 1227 1228 static ssize_t tty_write(struct file *file, const char __user *buf, 1229 size_t count, loff_t *ppos) 1230 { 1231 struct tty_struct *tty = file_tty(file); 1232 struct tty_ldisc *ld; 1233 ssize_t ret; 1234 1235 if (tty_paranoia_check(tty, file_inode(file), "tty_write")) 1236 return -EIO; 1237 if (!tty || !tty->ops->write || 1238 (test_bit(TTY_IO_ERROR, &tty->flags))) 1239 return -EIO; 1240 /* Short term debug to catch buggy drivers */ 1241 if (tty->ops->write_room == NULL) 1242 printk(KERN_ERR "tty driver %s lacks a write_room method.\n", 1243 tty->driver->name); 1244 ld = tty_ldisc_ref_wait(tty); 1245 if (!ld->ops->write) 1246 ret = -EIO; 1247 else 1248 ret = do_tty_write(ld->ops->write, tty, file, buf, count); 1249 tty_ldisc_deref(ld); 1250 return ret; 1251 } 1252 1253 ssize_t redirected_tty_write(struct file *file, const char __user *buf, 1254 size_t count, loff_t *ppos) 1255 { 1256 struct file *p = NULL; 1257 1258 spin_lock(&redirect_lock); 1259 if (redirect) 1260 p = get_file(redirect); 1261 spin_unlock(&redirect_lock); 1262 1263 if (p) { 1264 ssize_t res; 1265 res = vfs_write(p, buf, count, &p->f_pos); 1266 fput(p); 1267 return res; 1268 } 1269 return tty_write(file, buf, count, ppos); 1270 } 1271 1272 /** 1273 * tty_send_xchar - send priority character 1274 * 1275 * Send a high priority character to the tty even if stopped 1276 * 1277 * Locking: none for xchar method, write ordering for write method. 1278 */ 1279 1280 int tty_send_xchar(struct tty_struct *tty, char ch) 1281 { 1282 int was_stopped = tty->stopped; 1283 1284 if (tty->ops->send_xchar) { 1285 tty->ops->send_xchar(tty, ch); 1286 return 0; 1287 } 1288 1289 if (tty_write_lock(tty, 0) < 0) 1290 return -ERESTARTSYS; 1291 1292 if (was_stopped) 1293 start_tty(tty); 1294 tty->ops->write(tty, &ch, 1); 1295 if (was_stopped) 1296 stop_tty(tty); 1297 tty_write_unlock(tty); 1298 return 0; 1299 } 1300 1301 static char ptychar[] = "pqrstuvwxyzabcde"; 1302 1303 /** 1304 * pty_line_name - generate name for a pty 1305 * @driver: the tty driver in use 1306 * @index: the minor number 1307 * @p: output buffer of at least 6 bytes 1308 * 1309 * Generate a name from a driver reference and write it to the output 1310 * buffer. 1311 * 1312 * Locking: None 1313 */ 1314 static void pty_line_name(struct tty_driver *driver, int index, char *p) 1315 { 1316 int i = index + driver->name_base; 1317 /* ->name is initialized to "ttyp", but "tty" is expected */ 1318 sprintf(p, "%s%c%x", 1319 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1320 ptychar[i >> 4 & 0xf], i & 0xf); 1321 } 1322 1323 /** 1324 * tty_line_name - generate name for a tty 1325 * @driver: the tty driver in use 1326 * @index: the minor number 1327 * @p: output buffer of at least 7 bytes 1328 * 1329 * Generate a name from a driver reference and write it to the output 1330 * buffer. 1331 * 1332 * Locking: None 1333 */ 1334 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p) 1335 { 1336 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE) 1337 return sprintf(p, "%s", driver->name); 1338 else 1339 return sprintf(p, "%s%d", driver->name, 1340 index + driver->name_base); 1341 } 1342 1343 /** 1344 * tty_driver_lookup_tty() - find an existing tty, if any 1345 * @driver: the driver for the tty 1346 * @idx: the minor number 1347 * 1348 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the 1349 * driver lookup() method returns an error. 1350 * 1351 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref. 1352 */ 1353 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1354 struct inode *inode, int idx) 1355 { 1356 struct tty_struct *tty; 1357 1358 if (driver->ops->lookup) 1359 tty = driver->ops->lookup(driver, inode, idx); 1360 else 1361 tty = driver->ttys[idx]; 1362 1363 if (!IS_ERR(tty)) 1364 tty_kref_get(tty); 1365 return tty; 1366 } 1367 1368 /** 1369 * tty_init_termios - helper for termios setup 1370 * @tty: the tty to set up 1371 * 1372 * Initialise the termios structures for this tty. Thus runs under 1373 * the tty_mutex currently so we can be relaxed about ordering. 1374 */ 1375 1376 int tty_init_termios(struct tty_struct *tty) 1377 { 1378 struct ktermios *tp; 1379 int idx = tty->index; 1380 1381 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1382 tty->termios = tty->driver->init_termios; 1383 else { 1384 /* Check for lazy saved data */ 1385 tp = tty->driver->termios[idx]; 1386 if (tp != NULL) 1387 tty->termios = *tp; 1388 else 1389 tty->termios = tty->driver->init_termios; 1390 } 1391 /* Compatibility until drivers always set this */ 1392 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios); 1393 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios); 1394 return 0; 1395 } 1396 EXPORT_SYMBOL_GPL(tty_init_termios); 1397 1398 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1399 { 1400 int ret = tty_init_termios(tty); 1401 if (ret) 1402 return ret; 1403 1404 tty_driver_kref_get(driver); 1405 tty->count++; 1406 driver->ttys[tty->index] = tty; 1407 return 0; 1408 } 1409 EXPORT_SYMBOL_GPL(tty_standard_install); 1410 1411 /** 1412 * tty_driver_install_tty() - install a tty entry in the driver 1413 * @driver: the driver for the tty 1414 * @tty: the tty 1415 * 1416 * Install a tty object into the driver tables. The tty->index field 1417 * will be set by the time this is called. This method is responsible 1418 * for ensuring any need additional structures are allocated and 1419 * configured. 1420 * 1421 * Locking: tty_mutex for now 1422 */ 1423 static int tty_driver_install_tty(struct tty_driver *driver, 1424 struct tty_struct *tty) 1425 { 1426 return driver->ops->install ? driver->ops->install(driver, tty) : 1427 tty_standard_install(driver, tty); 1428 } 1429 1430 /** 1431 * tty_driver_remove_tty() - remove a tty from the driver tables 1432 * @driver: the driver for the tty 1433 * @idx: the minor number 1434 * 1435 * Remvoe a tty object from the driver tables. The tty->index field 1436 * will be set by the time this is called. 1437 * 1438 * Locking: tty_mutex for now 1439 */ 1440 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1441 { 1442 if (driver->ops->remove) 1443 driver->ops->remove(driver, tty); 1444 else 1445 driver->ttys[tty->index] = NULL; 1446 } 1447 1448 /* 1449 * tty_reopen() - fast re-open of an open tty 1450 * @tty - the tty to open 1451 * 1452 * Return 0 on success, -errno on error. 1453 * Re-opens on master ptys are not allowed and return -EIO. 1454 * 1455 * Locking: Caller must hold tty_lock 1456 */ 1457 static int tty_reopen(struct tty_struct *tty) 1458 { 1459 struct tty_driver *driver = tty->driver; 1460 1461 if (!tty->count) 1462 return -EIO; 1463 1464 if (driver->type == TTY_DRIVER_TYPE_PTY && 1465 driver->subtype == PTY_TYPE_MASTER) 1466 return -EIO; 1467 1468 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN)) 1469 return -EBUSY; 1470 1471 tty->count++; 1472 1473 WARN_ON(!tty->ldisc); 1474 1475 return 0; 1476 } 1477 1478 /** 1479 * tty_init_dev - initialise a tty device 1480 * @driver: tty driver we are opening a device on 1481 * @idx: device index 1482 * @ret_tty: returned tty structure 1483 * 1484 * Prepare a tty device. This may not be a "new" clean device but 1485 * could also be an active device. The pty drivers require special 1486 * handling because of this. 1487 * 1488 * Locking: 1489 * The function is called under the tty_mutex, which 1490 * protects us from the tty struct or driver itself going away. 1491 * 1492 * On exit the tty device has the line discipline attached and 1493 * a reference count of 1. If a pair was created for pty/tty use 1494 * and the other was a pty master then it too has a reference count of 1. 1495 * 1496 * WSH 06/09/97: Rewritten to remove races and properly clean up after a 1497 * failed open. The new code protects the open with a mutex, so it's 1498 * really quite straightforward. The mutex locking can probably be 1499 * relaxed for the (most common) case of reopening a tty. 1500 */ 1501 1502 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1503 { 1504 struct tty_struct *tty; 1505 int retval; 1506 1507 /* 1508 * First time open is complex, especially for PTY devices. 1509 * This code guarantees that either everything succeeds and the 1510 * TTY is ready for operation, or else the table slots are vacated 1511 * and the allocated memory released. (Except that the termios 1512 * and locked termios may be retained.) 1513 */ 1514 1515 if (!try_module_get(driver->owner)) 1516 return ERR_PTR(-ENODEV); 1517 1518 tty = alloc_tty_struct(driver, idx); 1519 if (!tty) { 1520 retval = -ENOMEM; 1521 goto err_module_put; 1522 } 1523 1524 tty_lock(tty); 1525 retval = tty_driver_install_tty(driver, tty); 1526 if (retval < 0) 1527 goto err_deinit_tty; 1528 1529 if (!tty->port) 1530 tty->port = driver->ports[idx]; 1531 1532 WARN_RATELIMIT(!tty->port, 1533 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n", 1534 __func__, tty->driver->name); 1535 1536 tty->port->itty = tty; 1537 1538 /* 1539 * Structures all installed ... call the ldisc open routines. 1540 * If we fail here just call release_tty to clean up. No need 1541 * to decrement the use counts, as release_tty doesn't care. 1542 */ 1543 retval = tty_ldisc_setup(tty, tty->link); 1544 if (retval) 1545 goto err_release_tty; 1546 /* Return the tty locked so that it cannot vanish under the caller */ 1547 return tty; 1548 1549 err_deinit_tty: 1550 tty_unlock(tty); 1551 deinitialize_tty_struct(tty); 1552 free_tty_struct(tty); 1553 err_module_put: 1554 module_put(driver->owner); 1555 return ERR_PTR(retval); 1556 1557 /* call the tty release_tty routine to clean out this slot */ 1558 err_release_tty: 1559 tty_unlock(tty); 1560 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, " 1561 "clearing slot %d\n", idx); 1562 release_tty(tty, idx); 1563 return ERR_PTR(retval); 1564 } 1565 1566 void tty_free_termios(struct tty_struct *tty) 1567 { 1568 struct ktermios *tp; 1569 int idx = tty->index; 1570 1571 /* If the port is going to reset then it has no termios to save */ 1572 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1573 return; 1574 1575 /* Stash the termios data */ 1576 tp = tty->driver->termios[idx]; 1577 if (tp == NULL) { 1578 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL); 1579 if (tp == NULL) { 1580 pr_warn("tty: no memory to save termios state.\n"); 1581 return; 1582 } 1583 tty->driver->termios[idx] = tp; 1584 } 1585 *tp = tty->termios; 1586 } 1587 EXPORT_SYMBOL(tty_free_termios); 1588 1589 /** 1590 * tty_flush_works - flush all works of a tty/pty pair 1591 * @tty: tty device to flush works for (or either end of a pty pair) 1592 * 1593 * Sync flush all works belonging to @tty (and the 'other' tty). 1594 */ 1595 static void tty_flush_works(struct tty_struct *tty) 1596 { 1597 flush_work(&tty->SAK_work); 1598 flush_work(&tty->hangup_work); 1599 if (tty->link) { 1600 flush_work(&tty->link->SAK_work); 1601 flush_work(&tty->link->hangup_work); 1602 } 1603 } 1604 1605 /** 1606 * release_one_tty - release tty structure memory 1607 * @kref: kref of tty we are obliterating 1608 * 1609 * Releases memory associated with a tty structure, and clears out the 1610 * driver table slots. This function is called when a device is no longer 1611 * in use. It also gets called when setup of a device fails. 1612 * 1613 * Locking: 1614 * takes the file list lock internally when working on the list 1615 * of ttys that the driver keeps. 1616 * 1617 * This method gets called from a work queue so that the driver private 1618 * cleanup ops can sleep (needed for USB at least) 1619 */ 1620 static void release_one_tty(struct work_struct *work) 1621 { 1622 struct tty_struct *tty = 1623 container_of(work, struct tty_struct, hangup_work); 1624 struct tty_driver *driver = tty->driver; 1625 struct module *owner = driver->owner; 1626 1627 if (tty->ops->cleanup) 1628 tty->ops->cleanup(tty); 1629 1630 tty->magic = 0; 1631 tty_driver_kref_put(driver); 1632 module_put(owner); 1633 1634 spin_lock(&tty_files_lock); 1635 list_del_init(&tty->tty_files); 1636 spin_unlock(&tty_files_lock); 1637 1638 put_pid(tty->pgrp); 1639 put_pid(tty->session); 1640 free_tty_struct(tty); 1641 } 1642 1643 static void queue_release_one_tty(struct kref *kref) 1644 { 1645 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1646 1647 /* The hangup queue is now free so we can reuse it rather than 1648 waste a chunk of memory for each port */ 1649 INIT_WORK(&tty->hangup_work, release_one_tty); 1650 schedule_work(&tty->hangup_work); 1651 } 1652 1653 /** 1654 * tty_kref_put - release a tty kref 1655 * @tty: tty device 1656 * 1657 * Release a reference to a tty device and if need be let the kref 1658 * layer destruct the object for us 1659 */ 1660 1661 void tty_kref_put(struct tty_struct *tty) 1662 { 1663 if (tty) 1664 kref_put(&tty->kref, queue_release_one_tty); 1665 } 1666 EXPORT_SYMBOL(tty_kref_put); 1667 1668 /** 1669 * release_tty - release tty structure memory 1670 * 1671 * Release both @tty and a possible linked partner (think pty pair), 1672 * and decrement the refcount of the backing module. 1673 * 1674 * Locking: 1675 * tty_mutex 1676 * takes the file list lock internally when working on the list 1677 * of ttys that the driver keeps. 1678 * 1679 */ 1680 static void release_tty(struct tty_struct *tty, int idx) 1681 { 1682 /* This should always be true but check for the moment */ 1683 WARN_ON(tty->index != idx); 1684 WARN_ON(!mutex_is_locked(&tty_mutex)); 1685 if (tty->ops->shutdown) 1686 tty->ops->shutdown(tty); 1687 tty_free_termios(tty); 1688 tty_driver_remove_tty(tty->driver, tty); 1689 tty->port->itty = NULL; 1690 if (tty->link) 1691 tty->link->port->itty = NULL; 1692 tty_buffer_cancel_work(tty->port); 1693 1694 tty_kref_put(tty->link); 1695 tty_kref_put(tty); 1696 } 1697 1698 /** 1699 * tty_release_checks - check a tty before real release 1700 * @tty: tty to check 1701 * @o_tty: link of @tty (if any) 1702 * @idx: index of the tty 1703 * 1704 * Performs some paranoid checking before true release of the @tty. 1705 * This is a no-op unless TTY_PARANOIA_CHECK is defined. 1706 */ 1707 static int tty_release_checks(struct tty_struct *tty, int idx) 1708 { 1709 #ifdef TTY_PARANOIA_CHECK 1710 if (idx < 0 || idx >= tty->driver->num) { 1711 tty_debug(tty, "bad idx %d\n", idx); 1712 return -1; 1713 } 1714 1715 /* not much to check for devpts */ 1716 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1717 return 0; 1718 1719 if (tty != tty->driver->ttys[idx]) { 1720 tty_debug(tty, "bad driver table[%d] = %p\n", 1721 idx, tty->driver->ttys[idx]); 1722 return -1; 1723 } 1724 if (tty->driver->other) { 1725 struct tty_struct *o_tty = tty->link; 1726 1727 if (o_tty != tty->driver->other->ttys[idx]) { 1728 tty_debug(tty, "bad other table[%d] = %p\n", 1729 idx, tty->driver->other->ttys[idx]); 1730 return -1; 1731 } 1732 if (o_tty->link != tty) { 1733 tty_debug(tty, "bad link = %p\n", o_tty->link); 1734 return -1; 1735 } 1736 } 1737 #endif 1738 return 0; 1739 } 1740 1741 /** 1742 * tty_release - vfs callback for close 1743 * @inode: inode of tty 1744 * @filp: file pointer for handle to tty 1745 * 1746 * Called the last time each file handle is closed that references 1747 * this tty. There may however be several such references. 1748 * 1749 * Locking: 1750 * Takes bkl. See tty_release_dev 1751 * 1752 * Even releasing the tty structures is a tricky business.. We have 1753 * to be very careful that the structures are all released at the 1754 * same time, as interrupts might otherwise get the wrong pointers. 1755 * 1756 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1757 * lead to double frees or releasing memory still in use. 1758 */ 1759 1760 int tty_release(struct inode *inode, struct file *filp) 1761 { 1762 struct tty_struct *tty = file_tty(filp); 1763 struct tty_struct *o_tty = NULL; 1764 int do_sleep, final; 1765 int idx; 1766 long timeout = 0; 1767 int once = 1; 1768 1769 if (tty_paranoia_check(tty, inode, __func__)) 1770 return 0; 1771 1772 tty_lock(tty); 1773 check_tty_count(tty, __func__); 1774 1775 __tty_fasync(-1, filp, 0); 1776 1777 idx = tty->index; 1778 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1779 tty->driver->subtype == PTY_TYPE_MASTER) 1780 o_tty = tty->link; 1781 1782 if (tty_release_checks(tty, idx)) { 1783 tty_unlock(tty); 1784 return 0; 1785 } 1786 1787 tty_debug_hangup(tty, "(tty count=%d)...\n", tty->count); 1788 1789 if (tty->ops->close) 1790 tty->ops->close(tty, filp); 1791 1792 /* If tty is pty master, lock the slave pty (stable lock order) */ 1793 tty_lock_slave(o_tty); 1794 1795 /* 1796 * Sanity check: if tty->count is going to zero, there shouldn't be 1797 * any waiters on tty->read_wait or tty->write_wait. We test the 1798 * wait queues and kick everyone out _before_ actually starting to 1799 * close. This ensures that we won't block while releasing the tty 1800 * structure. 1801 * 1802 * The test for the o_tty closing is necessary, since the master and 1803 * slave sides may close in any order. If the slave side closes out 1804 * first, its count will be one, since the master side holds an open. 1805 * Thus this test wouldn't be triggered at the time the slave closed, 1806 * so we do it now. 1807 */ 1808 while (1) { 1809 do_sleep = 0; 1810 1811 if (tty->count <= 1) { 1812 if (waitqueue_active(&tty->read_wait)) { 1813 wake_up_poll(&tty->read_wait, POLLIN); 1814 do_sleep++; 1815 } 1816 if (waitqueue_active(&tty->write_wait)) { 1817 wake_up_poll(&tty->write_wait, POLLOUT); 1818 do_sleep++; 1819 } 1820 } 1821 if (o_tty && o_tty->count <= 1) { 1822 if (waitqueue_active(&o_tty->read_wait)) { 1823 wake_up_poll(&o_tty->read_wait, POLLIN); 1824 do_sleep++; 1825 } 1826 if (waitqueue_active(&o_tty->write_wait)) { 1827 wake_up_poll(&o_tty->write_wait, POLLOUT); 1828 do_sleep++; 1829 } 1830 } 1831 if (!do_sleep) 1832 break; 1833 1834 if (once) { 1835 once = 0; 1836 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n", 1837 __func__, tty_name(tty)); 1838 } 1839 schedule_timeout_killable(timeout); 1840 if (timeout < 120 * HZ) 1841 timeout = 2 * timeout + 1; 1842 else 1843 timeout = MAX_SCHEDULE_TIMEOUT; 1844 } 1845 1846 if (o_tty) { 1847 if (--o_tty->count < 0) { 1848 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n", 1849 __func__, o_tty->count, tty_name(o_tty)); 1850 o_tty->count = 0; 1851 } 1852 } 1853 if (--tty->count < 0) { 1854 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n", 1855 __func__, tty->count, tty_name(tty)); 1856 tty->count = 0; 1857 } 1858 1859 /* 1860 * We've decremented tty->count, so we need to remove this file 1861 * descriptor off the tty->tty_files list; this serves two 1862 * purposes: 1863 * - check_tty_count sees the correct number of file descriptors 1864 * associated with this tty. 1865 * - do_tty_hangup no longer sees this file descriptor as 1866 * something that needs to be handled for hangups. 1867 */ 1868 tty_del_file(filp); 1869 1870 /* 1871 * Perform some housekeeping before deciding whether to return. 1872 * 1873 * If _either_ side is closing, make sure there aren't any 1874 * processes that still think tty or o_tty is their controlling 1875 * tty. 1876 */ 1877 if (!tty->count) { 1878 read_lock(&tasklist_lock); 1879 session_clear_tty(tty->session); 1880 if (o_tty) 1881 session_clear_tty(o_tty->session); 1882 read_unlock(&tasklist_lock); 1883 } 1884 1885 /* check whether both sides are closing ... */ 1886 final = !tty->count && !(o_tty && o_tty->count); 1887 1888 tty_unlock_slave(o_tty); 1889 tty_unlock(tty); 1890 1891 /* At this point, the tty->count == 0 should ensure a dead tty 1892 cannot be re-opened by a racing opener */ 1893 1894 if (!final) 1895 return 0; 1896 1897 tty_debug_hangup(tty, "final close\n"); 1898 /* 1899 * Ask the line discipline code to release its structures 1900 */ 1901 tty_ldisc_release(tty); 1902 1903 /* Wait for pending work before tty destruction commmences */ 1904 tty_flush_works(tty); 1905 1906 tty_debug_hangup(tty, "freeing structure...\n"); 1907 /* 1908 * The release_tty function takes care of the details of clearing 1909 * the slots and preserving the termios structure. The tty_unlock_pair 1910 * should be safe as we keep a kref while the tty is locked (so the 1911 * unlock never unlocks a freed tty). 1912 */ 1913 mutex_lock(&tty_mutex); 1914 release_tty(tty, idx); 1915 mutex_unlock(&tty_mutex); 1916 1917 return 0; 1918 } 1919 1920 /** 1921 * tty_open_current_tty - get locked tty of current task 1922 * @device: device number 1923 * @filp: file pointer to tty 1924 * @return: locked tty of the current task iff @device is /dev/tty 1925 * 1926 * Performs a re-open of the current task's controlling tty. 1927 * 1928 * We cannot return driver and index like for the other nodes because 1929 * devpts will not work then. It expects inodes to be from devpts FS. 1930 */ 1931 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1932 { 1933 struct tty_struct *tty; 1934 int retval; 1935 1936 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1937 return NULL; 1938 1939 tty = get_current_tty(); 1940 if (!tty) 1941 return ERR_PTR(-ENXIO); 1942 1943 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1944 /* noctty = 1; */ 1945 tty_lock(tty); 1946 tty_kref_put(tty); /* safe to drop the kref now */ 1947 1948 retval = tty_reopen(tty); 1949 if (retval < 0) { 1950 tty_unlock(tty); 1951 tty = ERR_PTR(retval); 1952 } 1953 return tty; 1954 } 1955 1956 /** 1957 * tty_lookup_driver - lookup a tty driver for a given device file 1958 * @device: device number 1959 * @filp: file pointer to tty 1960 * @noctty: set if the device should not become a controlling tty 1961 * @index: index for the device in the @return driver 1962 * @return: driver for this inode (with increased refcount) 1963 * 1964 * If @return is not erroneous, the caller is responsible to decrement the 1965 * refcount by tty_driver_kref_put. 1966 * 1967 * Locking: tty_mutex protects get_tty_driver 1968 */ 1969 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1970 int *noctty, int *index) 1971 { 1972 struct tty_driver *driver; 1973 1974 switch (device) { 1975 #ifdef CONFIG_VT 1976 case MKDEV(TTY_MAJOR, 0): { 1977 extern struct tty_driver *console_driver; 1978 driver = tty_driver_kref_get(console_driver); 1979 *index = fg_console; 1980 *noctty = 1; 1981 break; 1982 } 1983 #endif 1984 case MKDEV(TTYAUX_MAJOR, 1): { 1985 struct tty_driver *console_driver = console_device(index); 1986 if (console_driver) { 1987 driver = tty_driver_kref_get(console_driver); 1988 if (driver) { 1989 /* Don't let /dev/console block */ 1990 filp->f_flags |= O_NONBLOCK; 1991 *noctty = 1; 1992 break; 1993 } 1994 } 1995 return ERR_PTR(-ENODEV); 1996 } 1997 default: 1998 driver = get_tty_driver(device, index); 1999 if (!driver) 2000 return ERR_PTR(-ENODEV); 2001 break; 2002 } 2003 return driver; 2004 } 2005 2006 /** 2007 * tty_open - open a tty device 2008 * @inode: inode of device file 2009 * @filp: file pointer to tty 2010 * 2011 * tty_open and tty_release keep up the tty count that contains the 2012 * number of opens done on a tty. We cannot use the inode-count, as 2013 * different inodes might point to the same tty. 2014 * 2015 * Open-counting is needed for pty masters, as well as for keeping 2016 * track of serial lines: DTR is dropped when the last close happens. 2017 * (This is not done solely through tty->count, now. - Ted 1/27/92) 2018 * 2019 * The termios state of a pty is reset on first open so that 2020 * settings don't persist across reuse. 2021 * 2022 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev. 2023 * tty->count should protect the rest. 2024 * ->siglock protects ->signal/->sighand 2025 * 2026 * Note: the tty_unlock/lock cases without a ref are only safe due to 2027 * tty_mutex 2028 */ 2029 2030 static int tty_open(struct inode *inode, struct file *filp) 2031 { 2032 struct tty_struct *tty; 2033 int noctty, retval; 2034 struct tty_driver *driver = NULL; 2035 int index; 2036 dev_t device = inode->i_rdev; 2037 unsigned saved_flags = filp->f_flags; 2038 2039 nonseekable_open(inode, filp); 2040 2041 retry_open: 2042 retval = tty_alloc_file(filp); 2043 if (retval) 2044 return -ENOMEM; 2045 2046 noctty = filp->f_flags & O_NOCTTY; 2047 index = -1; 2048 retval = 0; 2049 2050 tty = tty_open_current_tty(device, filp); 2051 if (!tty) { 2052 mutex_lock(&tty_mutex); 2053 driver = tty_lookup_driver(device, filp, &noctty, &index); 2054 if (IS_ERR(driver)) { 2055 retval = PTR_ERR(driver); 2056 goto err_unlock; 2057 } 2058 2059 /* check whether we're reopening an existing tty */ 2060 tty = tty_driver_lookup_tty(driver, inode, index); 2061 if (IS_ERR(tty)) { 2062 retval = PTR_ERR(tty); 2063 goto err_unlock; 2064 } 2065 2066 if (tty) { 2067 mutex_unlock(&tty_mutex); 2068 tty_lock(tty); 2069 /* safe to drop the kref from tty_driver_lookup_tty() */ 2070 tty_kref_put(tty); 2071 retval = tty_reopen(tty); 2072 if (retval < 0) { 2073 tty_unlock(tty); 2074 tty = ERR_PTR(retval); 2075 } 2076 } else { /* Returns with the tty_lock held for now */ 2077 tty = tty_init_dev(driver, index); 2078 mutex_unlock(&tty_mutex); 2079 } 2080 2081 tty_driver_kref_put(driver); 2082 } 2083 2084 if (IS_ERR(tty)) { 2085 retval = PTR_ERR(tty); 2086 goto err_file; 2087 } 2088 2089 tty_add_file(tty, filp); 2090 2091 check_tty_count(tty, __func__); 2092 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2093 tty->driver->subtype == PTY_TYPE_MASTER) 2094 noctty = 1; 2095 2096 tty_debug_hangup(tty, "(tty count=%d)\n", tty->count); 2097 2098 if (tty->ops->open) 2099 retval = tty->ops->open(tty, filp); 2100 else 2101 retval = -ENODEV; 2102 filp->f_flags = saved_flags; 2103 2104 if (retval) { 2105 tty_debug_hangup(tty, "error %d, releasing...\n", retval); 2106 2107 tty_unlock(tty); /* need to call tty_release without BTM */ 2108 tty_release(inode, filp); 2109 if (retval != -ERESTARTSYS) 2110 return retval; 2111 2112 if (signal_pending(current)) 2113 return retval; 2114 2115 schedule(); 2116 /* 2117 * Need to reset f_op in case a hangup happened. 2118 */ 2119 if (tty_hung_up_p(filp)) 2120 filp->f_op = &tty_fops; 2121 goto retry_open; 2122 } 2123 clear_bit(TTY_HUPPED, &tty->flags); 2124 2125 2126 read_lock(&tasklist_lock); 2127 spin_lock_irq(¤t->sighand->siglock); 2128 if (!noctty && 2129 current->signal->leader && 2130 !current->signal->tty && 2131 tty->session == NULL) { 2132 /* 2133 * Don't let a process that only has write access to the tty 2134 * obtain the privileges associated with having a tty as 2135 * controlling terminal (being able to reopen it with full 2136 * access through /dev/tty, being able to perform pushback). 2137 * Many distributions set the group of all ttys to "tty" and 2138 * grant write-only access to all terminals for setgid tty 2139 * binaries, which should not imply full privileges on all ttys. 2140 * 2141 * This could theoretically break old code that performs open() 2142 * on a write-only file descriptor. In that case, it might be 2143 * necessary to also permit this if 2144 * inode_permission(inode, MAY_READ) == 0. 2145 */ 2146 if (filp->f_mode & FMODE_READ) 2147 __proc_set_tty(tty); 2148 } 2149 spin_unlock_irq(¤t->sighand->siglock); 2150 read_unlock(&tasklist_lock); 2151 tty_unlock(tty); 2152 return 0; 2153 err_unlock: 2154 mutex_unlock(&tty_mutex); 2155 /* after locks to avoid deadlock */ 2156 if (!IS_ERR_OR_NULL(driver)) 2157 tty_driver_kref_put(driver); 2158 err_file: 2159 tty_free_file(filp); 2160 return retval; 2161 } 2162 2163 2164 2165 /** 2166 * tty_poll - check tty status 2167 * @filp: file being polled 2168 * @wait: poll wait structures to update 2169 * 2170 * Call the line discipline polling method to obtain the poll 2171 * status of the device. 2172 * 2173 * Locking: locks called line discipline but ldisc poll method 2174 * may be re-entered freely by other callers. 2175 */ 2176 2177 static unsigned int tty_poll(struct file *filp, poll_table *wait) 2178 { 2179 struct tty_struct *tty = file_tty(filp); 2180 struct tty_ldisc *ld; 2181 int ret = 0; 2182 2183 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll")) 2184 return 0; 2185 2186 ld = tty_ldisc_ref_wait(tty); 2187 if (ld->ops->poll) 2188 ret = ld->ops->poll(tty, filp, wait); 2189 tty_ldisc_deref(ld); 2190 return ret; 2191 } 2192 2193 static int __tty_fasync(int fd, struct file *filp, int on) 2194 { 2195 struct tty_struct *tty = file_tty(filp); 2196 struct tty_ldisc *ldisc; 2197 unsigned long flags; 2198 int retval = 0; 2199 2200 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync")) 2201 goto out; 2202 2203 retval = fasync_helper(fd, filp, on, &tty->fasync); 2204 if (retval <= 0) 2205 goto out; 2206 2207 ldisc = tty_ldisc_ref(tty); 2208 if (ldisc) { 2209 if (ldisc->ops->fasync) 2210 ldisc->ops->fasync(tty, on); 2211 tty_ldisc_deref(ldisc); 2212 } 2213 2214 if (on) { 2215 enum pid_type type; 2216 struct pid *pid; 2217 2218 spin_lock_irqsave(&tty->ctrl_lock, flags); 2219 if (tty->pgrp) { 2220 pid = tty->pgrp; 2221 type = PIDTYPE_PGID; 2222 } else { 2223 pid = task_pid(current); 2224 type = PIDTYPE_PID; 2225 } 2226 get_pid(pid); 2227 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2228 __f_setown(filp, pid, type, 0); 2229 put_pid(pid); 2230 retval = 0; 2231 } 2232 out: 2233 return retval; 2234 } 2235 2236 static int tty_fasync(int fd, struct file *filp, int on) 2237 { 2238 struct tty_struct *tty = file_tty(filp); 2239 int retval; 2240 2241 tty_lock(tty); 2242 retval = __tty_fasync(fd, filp, on); 2243 tty_unlock(tty); 2244 2245 return retval; 2246 } 2247 2248 /** 2249 * tiocsti - fake input character 2250 * @tty: tty to fake input into 2251 * @p: pointer to character 2252 * 2253 * Fake input to a tty device. Does the necessary locking and 2254 * input management. 2255 * 2256 * FIXME: does not honour flow control ?? 2257 * 2258 * Locking: 2259 * Called functions take tty_ldiscs_lock 2260 * current->signal->tty check is safe without locks 2261 * 2262 * FIXME: may race normal receive processing 2263 */ 2264 2265 static int tiocsti(struct tty_struct *tty, char __user *p) 2266 { 2267 char ch, mbz = 0; 2268 struct tty_ldisc *ld; 2269 2270 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2271 return -EPERM; 2272 if (get_user(ch, p)) 2273 return -EFAULT; 2274 tty_audit_tiocsti(tty, ch); 2275 ld = tty_ldisc_ref_wait(tty); 2276 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2277 tty_ldisc_deref(ld); 2278 return 0; 2279 } 2280 2281 /** 2282 * tiocgwinsz - implement window query ioctl 2283 * @tty; tty 2284 * @arg: user buffer for result 2285 * 2286 * Copies the kernel idea of the window size into the user buffer. 2287 * 2288 * Locking: tty->winsize_mutex is taken to ensure the winsize data 2289 * is consistent. 2290 */ 2291 2292 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2293 { 2294 int err; 2295 2296 mutex_lock(&tty->winsize_mutex); 2297 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2298 mutex_unlock(&tty->winsize_mutex); 2299 2300 return err ? -EFAULT: 0; 2301 } 2302 2303 /** 2304 * tty_do_resize - resize event 2305 * @tty: tty being resized 2306 * @rows: rows (character) 2307 * @cols: cols (character) 2308 * 2309 * Update the termios variables and send the necessary signals to 2310 * peform a terminal resize correctly 2311 */ 2312 2313 int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2314 { 2315 struct pid *pgrp; 2316 2317 /* Lock the tty */ 2318 mutex_lock(&tty->winsize_mutex); 2319 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2320 goto done; 2321 2322 /* Signal the foreground process group */ 2323 pgrp = tty_get_pgrp(tty); 2324 if (pgrp) 2325 kill_pgrp(pgrp, SIGWINCH, 1); 2326 put_pid(pgrp); 2327 2328 tty->winsize = *ws; 2329 done: 2330 mutex_unlock(&tty->winsize_mutex); 2331 return 0; 2332 } 2333 EXPORT_SYMBOL(tty_do_resize); 2334 2335 /** 2336 * tiocswinsz - implement window size set ioctl 2337 * @tty; tty side of tty 2338 * @arg: user buffer for result 2339 * 2340 * Copies the user idea of the window size to the kernel. Traditionally 2341 * this is just advisory information but for the Linux console it 2342 * actually has driver level meaning and triggers a VC resize. 2343 * 2344 * Locking: 2345 * Driver dependent. The default do_resize method takes the 2346 * tty termios mutex and ctrl_lock. The console takes its own lock 2347 * then calls into the default method. 2348 */ 2349 2350 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2351 { 2352 struct winsize tmp_ws; 2353 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2354 return -EFAULT; 2355 2356 if (tty->ops->resize) 2357 return tty->ops->resize(tty, &tmp_ws); 2358 else 2359 return tty_do_resize(tty, &tmp_ws); 2360 } 2361 2362 /** 2363 * tioccons - allow admin to move logical console 2364 * @file: the file to become console 2365 * 2366 * Allow the administrator to move the redirected console device 2367 * 2368 * Locking: uses redirect_lock to guard the redirect information 2369 */ 2370 2371 static int tioccons(struct file *file) 2372 { 2373 if (!capable(CAP_SYS_ADMIN)) 2374 return -EPERM; 2375 if (file->f_op->write == redirected_tty_write) { 2376 struct file *f; 2377 spin_lock(&redirect_lock); 2378 f = redirect; 2379 redirect = NULL; 2380 spin_unlock(&redirect_lock); 2381 if (f) 2382 fput(f); 2383 return 0; 2384 } 2385 spin_lock(&redirect_lock); 2386 if (redirect) { 2387 spin_unlock(&redirect_lock); 2388 return -EBUSY; 2389 } 2390 redirect = get_file(file); 2391 spin_unlock(&redirect_lock); 2392 return 0; 2393 } 2394 2395 /** 2396 * fionbio - non blocking ioctl 2397 * @file: file to set blocking value 2398 * @p: user parameter 2399 * 2400 * Historical tty interfaces had a blocking control ioctl before 2401 * the generic functionality existed. This piece of history is preserved 2402 * in the expected tty API of posix OS's. 2403 * 2404 * Locking: none, the open file handle ensures it won't go away. 2405 */ 2406 2407 static int fionbio(struct file *file, int __user *p) 2408 { 2409 int nonblock; 2410 2411 if (get_user(nonblock, p)) 2412 return -EFAULT; 2413 2414 spin_lock(&file->f_lock); 2415 if (nonblock) 2416 file->f_flags |= O_NONBLOCK; 2417 else 2418 file->f_flags &= ~O_NONBLOCK; 2419 spin_unlock(&file->f_lock); 2420 return 0; 2421 } 2422 2423 /** 2424 * tiocsctty - set controlling tty 2425 * @tty: tty structure 2426 * @arg: user argument 2427 * 2428 * This ioctl is used to manage job control. It permits a session 2429 * leader to set this tty as the controlling tty for the session. 2430 * 2431 * Locking: 2432 * Takes tty_lock() to serialize proc_set_tty() for this tty 2433 * Takes tasklist_lock internally to walk sessions 2434 * Takes ->siglock() when updating signal->tty 2435 */ 2436 2437 static int tiocsctty(struct tty_struct *tty, struct file *file, int arg) 2438 { 2439 int ret = 0; 2440 2441 tty_lock(tty); 2442 read_lock(&tasklist_lock); 2443 2444 if (current->signal->leader && (task_session(current) == tty->session)) 2445 goto unlock; 2446 2447 /* 2448 * The process must be a session leader and 2449 * not have a controlling tty already. 2450 */ 2451 if (!current->signal->leader || current->signal->tty) { 2452 ret = -EPERM; 2453 goto unlock; 2454 } 2455 2456 if (tty->session) { 2457 /* 2458 * This tty is already the controlling 2459 * tty for another session group! 2460 */ 2461 if (arg == 1 && capable(CAP_SYS_ADMIN)) { 2462 /* 2463 * Steal it away 2464 */ 2465 session_clear_tty(tty->session); 2466 } else { 2467 ret = -EPERM; 2468 goto unlock; 2469 } 2470 } 2471 2472 /* See the comment in tty_open(). */ 2473 if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) { 2474 ret = -EPERM; 2475 goto unlock; 2476 } 2477 2478 proc_set_tty(tty); 2479 unlock: 2480 read_unlock(&tasklist_lock); 2481 tty_unlock(tty); 2482 return ret; 2483 } 2484 2485 /** 2486 * tty_get_pgrp - return a ref counted pgrp pid 2487 * @tty: tty to read 2488 * 2489 * Returns a refcounted instance of the pid struct for the process 2490 * group controlling the tty. 2491 */ 2492 2493 struct pid *tty_get_pgrp(struct tty_struct *tty) 2494 { 2495 unsigned long flags; 2496 struct pid *pgrp; 2497 2498 spin_lock_irqsave(&tty->ctrl_lock, flags); 2499 pgrp = get_pid(tty->pgrp); 2500 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2501 2502 return pgrp; 2503 } 2504 EXPORT_SYMBOL_GPL(tty_get_pgrp); 2505 2506 /* 2507 * This checks not only the pgrp, but falls back on the pid if no 2508 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 2509 * without this... 2510 * 2511 * The caller must hold rcu lock or the tasklist lock. 2512 */ 2513 static struct pid *session_of_pgrp(struct pid *pgrp) 2514 { 2515 struct task_struct *p; 2516 struct pid *sid = NULL; 2517 2518 p = pid_task(pgrp, PIDTYPE_PGID); 2519 if (p == NULL) 2520 p = pid_task(pgrp, PIDTYPE_PID); 2521 if (p != NULL) 2522 sid = task_session(p); 2523 2524 return sid; 2525 } 2526 2527 /** 2528 * tiocgpgrp - get process group 2529 * @tty: tty passed by user 2530 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2531 * @p: returned pid 2532 * 2533 * Obtain the process group of the tty. If there is no process group 2534 * return an error. 2535 * 2536 * Locking: none. Reference to current->signal->tty is safe. 2537 */ 2538 2539 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2540 { 2541 struct pid *pid; 2542 int ret; 2543 /* 2544 * (tty == real_tty) is a cheap way of 2545 * testing if the tty is NOT a master pty. 2546 */ 2547 if (tty == real_tty && current->signal->tty != real_tty) 2548 return -ENOTTY; 2549 pid = tty_get_pgrp(real_tty); 2550 ret = put_user(pid_vnr(pid), p); 2551 put_pid(pid); 2552 return ret; 2553 } 2554 2555 /** 2556 * tiocspgrp - attempt to set process group 2557 * @tty: tty passed by user 2558 * @real_tty: tty side device matching tty passed by user 2559 * @p: pid pointer 2560 * 2561 * Set the process group of the tty to the session passed. Only 2562 * permitted where the tty session is our session. 2563 * 2564 * Locking: RCU, ctrl lock 2565 */ 2566 2567 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2568 { 2569 struct pid *pgrp; 2570 pid_t pgrp_nr; 2571 int retval = tty_check_change(real_tty); 2572 2573 if (retval == -EIO) 2574 return -ENOTTY; 2575 if (retval) 2576 return retval; 2577 if (!current->signal->tty || 2578 (current->signal->tty != real_tty) || 2579 (real_tty->session != task_session(current))) 2580 return -ENOTTY; 2581 if (get_user(pgrp_nr, p)) 2582 return -EFAULT; 2583 if (pgrp_nr < 0) 2584 return -EINVAL; 2585 rcu_read_lock(); 2586 pgrp = find_vpid(pgrp_nr); 2587 retval = -ESRCH; 2588 if (!pgrp) 2589 goto out_unlock; 2590 retval = -EPERM; 2591 if (session_of_pgrp(pgrp) != task_session(current)) 2592 goto out_unlock; 2593 retval = 0; 2594 spin_lock_irq(&tty->ctrl_lock); 2595 put_pid(real_tty->pgrp); 2596 real_tty->pgrp = get_pid(pgrp); 2597 spin_unlock_irq(&tty->ctrl_lock); 2598 out_unlock: 2599 rcu_read_unlock(); 2600 return retval; 2601 } 2602 2603 /** 2604 * tiocgsid - get session id 2605 * @tty: tty passed by user 2606 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2607 * @p: pointer to returned session id 2608 * 2609 * Obtain the session id of the tty. If there is no session 2610 * return an error. 2611 * 2612 * Locking: none. Reference to current->signal->tty is safe. 2613 */ 2614 2615 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2616 { 2617 /* 2618 * (tty == real_tty) is a cheap way of 2619 * testing if the tty is NOT a master pty. 2620 */ 2621 if (tty == real_tty && current->signal->tty != real_tty) 2622 return -ENOTTY; 2623 if (!real_tty->session) 2624 return -ENOTTY; 2625 return put_user(pid_vnr(real_tty->session), p); 2626 } 2627 2628 /** 2629 * tiocsetd - set line discipline 2630 * @tty: tty device 2631 * @p: pointer to user data 2632 * 2633 * Set the line discipline according to user request. 2634 * 2635 * Locking: see tty_set_ldisc, this function is just a helper 2636 */ 2637 2638 static int tiocsetd(struct tty_struct *tty, int __user *p) 2639 { 2640 int ldisc; 2641 int ret; 2642 2643 if (get_user(ldisc, p)) 2644 return -EFAULT; 2645 2646 ret = tty_set_ldisc(tty, ldisc); 2647 2648 return ret; 2649 } 2650 2651 /** 2652 * send_break - performed time break 2653 * @tty: device to break on 2654 * @duration: timeout in mS 2655 * 2656 * Perform a timed break on hardware that lacks its own driver level 2657 * timed break functionality. 2658 * 2659 * Locking: 2660 * atomic_write_lock serializes 2661 * 2662 */ 2663 2664 static int send_break(struct tty_struct *tty, unsigned int duration) 2665 { 2666 int retval; 2667 2668 if (tty->ops->break_ctl == NULL) 2669 return 0; 2670 2671 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2672 retval = tty->ops->break_ctl(tty, duration); 2673 else { 2674 /* Do the work ourselves */ 2675 if (tty_write_lock(tty, 0) < 0) 2676 return -EINTR; 2677 retval = tty->ops->break_ctl(tty, -1); 2678 if (retval) 2679 goto out; 2680 if (!signal_pending(current)) 2681 msleep_interruptible(duration); 2682 retval = tty->ops->break_ctl(tty, 0); 2683 out: 2684 tty_write_unlock(tty); 2685 if (signal_pending(current)) 2686 retval = -EINTR; 2687 } 2688 return retval; 2689 } 2690 2691 /** 2692 * tty_tiocmget - get modem status 2693 * @tty: tty device 2694 * @file: user file pointer 2695 * @p: pointer to result 2696 * 2697 * Obtain the modem status bits from the tty driver if the feature 2698 * is supported. Return -EINVAL if it is not available. 2699 * 2700 * Locking: none (up to the driver) 2701 */ 2702 2703 static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2704 { 2705 int retval = -EINVAL; 2706 2707 if (tty->ops->tiocmget) { 2708 retval = tty->ops->tiocmget(tty); 2709 2710 if (retval >= 0) 2711 retval = put_user(retval, p); 2712 } 2713 return retval; 2714 } 2715 2716 /** 2717 * tty_tiocmset - set modem status 2718 * @tty: tty device 2719 * @cmd: command - clear bits, set bits or set all 2720 * @p: pointer to desired bits 2721 * 2722 * Set the modem status bits from the tty driver if the feature 2723 * is supported. Return -EINVAL if it is not available. 2724 * 2725 * Locking: none (up to the driver) 2726 */ 2727 2728 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2729 unsigned __user *p) 2730 { 2731 int retval; 2732 unsigned int set, clear, val; 2733 2734 if (tty->ops->tiocmset == NULL) 2735 return -EINVAL; 2736 2737 retval = get_user(val, p); 2738 if (retval) 2739 return retval; 2740 set = clear = 0; 2741 switch (cmd) { 2742 case TIOCMBIS: 2743 set = val; 2744 break; 2745 case TIOCMBIC: 2746 clear = val; 2747 break; 2748 case TIOCMSET: 2749 set = val; 2750 clear = ~val; 2751 break; 2752 } 2753 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2754 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2755 return tty->ops->tiocmset(tty, set, clear); 2756 } 2757 2758 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2759 { 2760 int retval = -EINVAL; 2761 struct serial_icounter_struct icount; 2762 memset(&icount, 0, sizeof(icount)); 2763 if (tty->ops->get_icount) 2764 retval = tty->ops->get_icount(tty, &icount); 2765 if (retval != 0) 2766 return retval; 2767 if (copy_to_user(arg, &icount, sizeof(icount))) 2768 return -EFAULT; 2769 return 0; 2770 } 2771 2772 static void tty_warn_deprecated_flags(struct serial_struct __user *ss) 2773 { 2774 static DEFINE_RATELIMIT_STATE(depr_flags, 2775 DEFAULT_RATELIMIT_INTERVAL, 2776 DEFAULT_RATELIMIT_BURST); 2777 char comm[TASK_COMM_LEN]; 2778 int flags; 2779 2780 if (get_user(flags, &ss->flags)) 2781 return; 2782 2783 flags &= ASYNC_DEPRECATED; 2784 2785 if (flags && __ratelimit(&depr_flags)) 2786 pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n", 2787 __func__, get_task_comm(comm, current), flags); 2788 } 2789 2790 /* 2791 * if pty, return the slave side (real_tty) 2792 * otherwise, return self 2793 */ 2794 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2795 { 2796 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2797 tty->driver->subtype == PTY_TYPE_MASTER) 2798 tty = tty->link; 2799 return tty; 2800 } 2801 2802 /* 2803 * Split this up, as gcc can choke on it otherwise.. 2804 */ 2805 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2806 { 2807 struct tty_struct *tty = file_tty(file); 2808 struct tty_struct *real_tty; 2809 void __user *p = (void __user *)arg; 2810 int retval; 2811 struct tty_ldisc *ld; 2812 2813 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2814 return -EINVAL; 2815 2816 real_tty = tty_pair_get_tty(tty); 2817 2818 /* 2819 * Factor out some common prep work 2820 */ 2821 switch (cmd) { 2822 case TIOCSETD: 2823 case TIOCSBRK: 2824 case TIOCCBRK: 2825 case TCSBRK: 2826 case TCSBRKP: 2827 retval = tty_check_change(tty); 2828 if (retval) 2829 return retval; 2830 if (cmd != TIOCCBRK) { 2831 tty_wait_until_sent(tty, 0); 2832 if (signal_pending(current)) 2833 return -EINTR; 2834 } 2835 break; 2836 } 2837 2838 /* 2839 * Now do the stuff. 2840 */ 2841 switch (cmd) { 2842 case TIOCSTI: 2843 return tiocsti(tty, p); 2844 case TIOCGWINSZ: 2845 return tiocgwinsz(real_tty, p); 2846 case TIOCSWINSZ: 2847 return tiocswinsz(real_tty, p); 2848 case TIOCCONS: 2849 return real_tty != tty ? -EINVAL : tioccons(file); 2850 case FIONBIO: 2851 return fionbio(file, p); 2852 case TIOCEXCL: 2853 set_bit(TTY_EXCLUSIVE, &tty->flags); 2854 return 0; 2855 case TIOCNXCL: 2856 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2857 return 0; 2858 case TIOCGEXCL: 2859 { 2860 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags); 2861 return put_user(excl, (int __user *)p); 2862 } 2863 case TIOCNOTTY: 2864 if (current->signal->tty != tty) 2865 return -ENOTTY; 2866 no_tty(); 2867 return 0; 2868 case TIOCSCTTY: 2869 return tiocsctty(tty, file, arg); 2870 case TIOCGPGRP: 2871 return tiocgpgrp(tty, real_tty, p); 2872 case TIOCSPGRP: 2873 return tiocspgrp(tty, real_tty, p); 2874 case TIOCGSID: 2875 return tiocgsid(tty, real_tty, p); 2876 case TIOCGETD: 2877 return put_user(tty->ldisc->ops->num, (int __user *)p); 2878 case TIOCSETD: 2879 return tiocsetd(tty, p); 2880 case TIOCVHANGUP: 2881 if (!capable(CAP_SYS_ADMIN)) 2882 return -EPERM; 2883 tty_vhangup(tty); 2884 return 0; 2885 case TIOCGDEV: 2886 { 2887 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2888 return put_user(ret, (unsigned int __user *)p); 2889 } 2890 /* 2891 * Break handling 2892 */ 2893 case TIOCSBRK: /* Turn break on, unconditionally */ 2894 if (tty->ops->break_ctl) 2895 return tty->ops->break_ctl(tty, -1); 2896 return 0; 2897 case TIOCCBRK: /* Turn break off, unconditionally */ 2898 if (tty->ops->break_ctl) 2899 return tty->ops->break_ctl(tty, 0); 2900 return 0; 2901 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2902 /* non-zero arg means wait for all output data 2903 * to be sent (performed above) but don't send break. 2904 * This is used by the tcdrain() termios function. 2905 */ 2906 if (!arg) 2907 return send_break(tty, 250); 2908 return 0; 2909 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2910 return send_break(tty, arg ? arg*100 : 250); 2911 2912 case TIOCMGET: 2913 return tty_tiocmget(tty, p); 2914 case TIOCMSET: 2915 case TIOCMBIC: 2916 case TIOCMBIS: 2917 return tty_tiocmset(tty, cmd, p); 2918 case TIOCGICOUNT: 2919 retval = tty_tiocgicount(tty, p); 2920 /* For the moment allow fall through to the old method */ 2921 if (retval != -EINVAL) 2922 return retval; 2923 break; 2924 case TCFLSH: 2925 switch (arg) { 2926 case TCIFLUSH: 2927 case TCIOFLUSH: 2928 /* flush tty buffer and allow ldisc to process ioctl */ 2929 tty_buffer_flush(tty, NULL); 2930 break; 2931 } 2932 break; 2933 case TIOCSSERIAL: 2934 tty_warn_deprecated_flags(p); 2935 break; 2936 } 2937 if (tty->ops->ioctl) { 2938 retval = tty->ops->ioctl(tty, cmd, arg); 2939 if (retval != -ENOIOCTLCMD) 2940 return retval; 2941 } 2942 ld = tty_ldisc_ref_wait(tty); 2943 retval = -EINVAL; 2944 if (ld->ops->ioctl) { 2945 retval = ld->ops->ioctl(tty, file, cmd, arg); 2946 if (retval == -ENOIOCTLCMD) 2947 retval = -ENOTTY; 2948 } 2949 tty_ldisc_deref(ld); 2950 return retval; 2951 } 2952 2953 #ifdef CONFIG_COMPAT 2954 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 2955 unsigned long arg) 2956 { 2957 struct tty_struct *tty = file_tty(file); 2958 struct tty_ldisc *ld; 2959 int retval = -ENOIOCTLCMD; 2960 2961 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2962 return -EINVAL; 2963 2964 if (tty->ops->compat_ioctl) { 2965 retval = tty->ops->compat_ioctl(tty, cmd, arg); 2966 if (retval != -ENOIOCTLCMD) 2967 return retval; 2968 } 2969 2970 ld = tty_ldisc_ref_wait(tty); 2971 if (ld->ops->compat_ioctl) 2972 retval = ld->ops->compat_ioctl(tty, file, cmd, arg); 2973 else 2974 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg); 2975 tty_ldisc_deref(ld); 2976 2977 return retval; 2978 } 2979 #endif 2980 2981 static int this_tty(const void *t, struct file *file, unsigned fd) 2982 { 2983 if (likely(file->f_op->read != tty_read)) 2984 return 0; 2985 return file_tty(file) != t ? 0 : fd + 1; 2986 } 2987 2988 /* 2989 * This implements the "Secure Attention Key" --- the idea is to 2990 * prevent trojan horses by killing all processes associated with this 2991 * tty when the user hits the "Secure Attention Key". Required for 2992 * super-paranoid applications --- see the Orange Book for more details. 2993 * 2994 * This code could be nicer; ideally it should send a HUP, wait a few 2995 * seconds, then send a INT, and then a KILL signal. But you then 2996 * have to coordinate with the init process, since all processes associated 2997 * with the current tty must be dead before the new getty is allowed 2998 * to spawn. 2999 * 3000 * Now, if it would be correct ;-/ The current code has a nasty hole - 3001 * it doesn't catch files in flight. We may send the descriptor to ourselves 3002 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 3003 * 3004 * Nasty bug: do_SAK is being called in interrupt context. This can 3005 * deadlock. We punt it up to process context. AKPM - 16Mar2001 3006 */ 3007 void __do_SAK(struct tty_struct *tty) 3008 { 3009 #ifdef TTY_SOFT_SAK 3010 tty_hangup(tty); 3011 #else 3012 struct task_struct *g, *p; 3013 struct pid *session; 3014 int i; 3015 3016 if (!tty) 3017 return; 3018 session = tty->session; 3019 3020 tty_ldisc_flush(tty); 3021 3022 tty_driver_flush_buffer(tty); 3023 3024 read_lock(&tasklist_lock); 3025 /* Kill the entire session */ 3026 do_each_pid_task(session, PIDTYPE_SID, p) { 3027 printk(KERN_NOTICE "SAK: killed process %d" 3028 " (%s): task_session(p)==tty->session\n", 3029 task_pid_nr(p), p->comm); 3030 send_sig(SIGKILL, p, 1); 3031 } while_each_pid_task(session, PIDTYPE_SID, p); 3032 /* Now kill any processes that happen to have the 3033 * tty open. 3034 */ 3035 do_each_thread(g, p) { 3036 if (p->signal->tty == tty) { 3037 printk(KERN_NOTICE "SAK: killed process %d" 3038 " (%s): task_session(p)==tty->session\n", 3039 task_pid_nr(p), p->comm); 3040 send_sig(SIGKILL, p, 1); 3041 continue; 3042 } 3043 task_lock(p); 3044 i = iterate_fd(p->files, 0, this_tty, tty); 3045 if (i != 0) { 3046 printk(KERN_NOTICE "SAK: killed process %d" 3047 " (%s): fd#%d opened to the tty\n", 3048 task_pid_nr(p), p->comm, i - 1); 3049 force_sig(SIGKILL, p); 3050 } 3051 task_unlock(p); 3052 } while_each_thread(g, p); 3053 read_unlock(&tasklist_lock); 3054 #endif 3055 } 3056 3057 static void do_SAK_work(struct work_struct *work) 3058 { 3059 struct tty_struct *tty = 3060 container_of(work, struct tty_struct, SAK_work); 3061 __do_SAK(tty); 3062 } 3063 3064 /* 3065 * The tq handling here is a little racy - tty->SAK_work may already be queued. 3066 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 3067 * the values which we write to it will be identical to the values which it 3068 * already has. --akpm 3069 */ 3070 void do_SAK(struct tty_struct *tty) 3071 { 3072 if (!tty) 3073 return; 3074 schedule_work(&tty->SAK_work); 3075 } 3076 3077 EXPORT_SYMBOL(do_SAK); 3078 3079 static int dev_match_devt(struct device *dev, const void *data) 3080 { 3081 const dev_t *devt = data; 3082 return dev->devt == *devt; 3083 } 3084 3085 /* Must put_device() after it's unused! */ 3086 static struct device *tty_get_device(struct tty_struct *tty) 3087 { 3088 dev_t devt = tty_devnum(tty); 3089 return class_find_device(tty_class, NULL, &devt, dev_match_devt); 3090 } 3091 3092 3093 /** 3094 * alloc_tty_struct 3095 * 3096 * This subroutine allocates and initializes a tty structure. 3097 * 3098 * Locking: none - tty in question is not exposed at this point 3099 */ 3100 3101 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx) 3102 { 3103 struct tty_struct *tty; 3104 3105 tty = kzalloc(sizeof(*tty), GFP_KERNEL); 3106 if (!tty) 3107 return NULL; 3108 3109 kref_init(&tty->kref); 3110 tty->magic = TTY_MAGIC; 3111 tty_ldisc_init(tty); 3112 tty->session = NULL; 3113 tty->pgrp = NULL; 3114 mutex_init(&tty->legacy_mutex); 3115 mutex_init(&tty->throttle_mutex); 3116 init_rwsem(&tty->termios_rwsem); 3117 mutex_init(&tty->winsize_mutex); 3118 init_ldsem(&tty->ldisc_sem); 3119 init_waitqueue_head(&tty->write_wait); 3120 init_waitqueue_head(&tty->read_wait); 3121 INIT_WORK(&tty->hangup_work, do_tty_hangup); 3122 mutex_init(&tty->atomic_write_lock); 3123 spin_lock_init(&tty->ctrl_lock); 3124 spin_lock_init(&tty->flow_lock); 3125 INIT_LIST_HEAD(&tty->tty_files); 3126 INIT_WORK(&tty->SAK_work, do_SAK_work); 3127 3128 tty->driver = driver; 3129 tty->ops = driver->ops; 3130 tty->index = idx; 3131 tty_line_name(driver, idx, tty->name); 3132 tty->dev = tty_get_device(tty); 3133 3134 return tty; 3135 } 3136 3137 /** 3138 * deinitialize_tty_struct 3139 * @tty: tty to deinitialize 3140 * 3141 * This subroutine deinitializes a tty structure that has been newly 3142 * allocated but tty_release cannot be called on that yet. 3143 * 3144 * Locking: none - tty in question must not be exposed at this point 3145 */ 3146 void deinitialize_tty_struct(struct tty_struct *tty) 3147 { 3148 tty_ldisc_deinit(tty); 3149 } 3150 3151 /** 3152 * tty_put_char - write one character to a tty 3153 * @tty: tty 3154 * @ch: character 3155 * 3156 * Write one byte to the tty using the provided put_char method 3157 * if present. Returns the number of characters successfully output. 3158 * 3159 * Note: the specific put_char operation in the driver layer may go 3160 * away soon. Don't call it directly, use this method 3161 */ 3162 3163 int tty_put_char(struct tty_struct *tty, unsigned char ch) 3164 { 3165 if (tty->ops->put_char) 3166 return tty->ops->put_char(tty, ch); 3167 return tty->ops->write(tty, &ch, 1); 3168 } 3169 EXPORT_SYMBOL_GPL(tty_put_char); 3170 3171 struct class *tty_class; 3172 3173 static int tty_cdev_add(struct tty_driver *driver, dev_t dev, 3174 unsigned int index, unsigned int count) 3175 { 3176 int err; 3177 3178 /* init here, since reused cdevs cause crashes */ 3179 driver->cdevs[index] = cdev_alloc(); 3180 if (!driver->cdevs[index]) 3181 return -ENOMEM; 3182 driver->cdevs[index]->ops = &tty_fops; 3183 driver->cdevs[index]->owner = driver->owner; 3184 err = cdev_add(driver->cdevs[index], dev, count); 3185 if (err) 3186 kobject_put(&driver->cdevs[index]->kobj); 3187 return err; 3188 } 3189 3190 /** 3191 * tty_register_device - register a tty device 3192 * @driver: the tty driver that describes the tty device 3193 * @index: the index in the tty driver for this tty device 3194 * @device: a struct device that is associated with this tty device. 3195 * This field is optional, if there is no known struct device 3196 * for this tty device it can be set to NULL safely. 3197 * 3198 * Returns a pointer to the struct device for this tty device 3199 * (or ERR_PTR(-EFOO) on error). 3200 * 3201 * This call is required to be made to register an individual tty device 3202 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3203 * that bit is not set, this function should not be called by a tty 3204 * driver. 3205 * 3206 * Locking: ?? 3207 */ 3208 3209 struct device *tty_register_device(struct tty_driver *driver, unsigned index, 3210 struct device *device) 3211 { 3212 return tty_register_device_attr(driver, index, device, NULL, NULL); 3213 } 3214 EXPORT_SYMBOL(tty_register_device); 3215 3216 static void tty_device_create_release(struct device *dev) 3217 { 3218 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3219 kfree(dev); 3220 } 3221 3222 /** 3223 * tty_register_device_attr - register a tty device 3224 * @driver: the tty driver that describes the tty device 3225 * @index: the index in the tty driver for this tty device 3226 * @device: a struct device that is associated with this tty device. 3227 * This field is optional, if there is no known struct device 3228 * for this tty device it can be set to NULL safely. 3229 * @drvdata: Driver data to be set to device. 3230 * @attr_grp: Attribute group to be set on device. 3231 * 3232 * Returns a pointer to the struct device for this tty device 3233 * (or ERR_PTR(-EFOO) on error). 3234 * 3235 * This call is required to be made to register an individual tty device 3236 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3237 * that bit is not set, this function should not be called by a tty 3238 * driver. 3239 * 3240 * Locking: ?? 3241 */ 3242 struct device *tty_register_device_attr(struct tty_driver *driver, 3243 unsigned index, struct device *device, 3244 void *drvdata, 3245 const struct attribute_group **attr_grp) 3246 { 3247 char name[64]; 3248 dev_t devt = MKDEV(driver->major, driver->minor_start) + index; 3249 struct device *dev = NULL; 3250 int retval = -ENODEV; 3251 bool cdev = false; 3252 3253 if (index >= driver->num) { 3254 printk(KERN_ERR "Attempt to register invalid tty line number " 3255 " (%d).\n", index); 3256 return ERR_PTR(-EINVAL); 3257 } 3258 3259 if (driver->type == TTY_DRIVER_TYPE_PTY) 3260 pty_line_name(driver, index, name); 3261 else 3262 tty_line_name(driver, index, name); 3263 3264 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3265 retval = tty_cdev_add(driver, devt, index, 1); 3266 if (retval) 3267 goto error; 3268 cdev = true; 3269 } 3270 3271 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3272 if (!dev) { 3273 retval = -ENOMEM; 3274 goto error; 3275 } 3276 3277 dev->devt = devt; 3278 dev->class = tty_class; 3279 dev->parent = device; 3280 dev->release = tty_device_create_release; 3281 dev_set_name(dev, "%s", name); 3282 dev->groups = attr_grp; 3283 dev_set_drvdata(dev, drvdata); 3284 3285 retval = device_register(dev); 3286 if (retval) 3287 goto error; 3288 3289 return dev; 3290 3291 error: 3292 put_device(dev); 3293 if (cdev) { 3294 cdev_del(driver->cdevs[index]); 3295 driver->cdevs[index] = NULL; 3296 } 3297 return ERR_PTR(retval); 3298 } 3299 EXPORT_SYMBOL_GPL(tty_register_device_attr); 3300 3301 /** 3302 * tty_unregister_device - unregister a tty device 3303 * @driver: the tty driver that describes the tty device 3304 * @index: the index in the tty driver for this tty device 3305 * 3306 * If a tty device is registered with a call to tty_register_device() then 3307 * this function must be called when the tty device is gone. 3308 * 3309 * Locking: ?? 3310 */ 3311 3312 void tty_unregister_device(struct tty_driver *driver, unsigned index) 3313 { 3314 device_destroy(tty_class, 3315 MKDEV(driver->major, driver->minor_start) + index); 3316 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3317 cdev_del(driver->cdevs[index]); 3318 driver->cdevs[index] = NULL; 3319 } 3320 } 3321 EXPORT_SYMBOL(tty_unregister_device); 3322 3323 /** 3324 * __tty_alloc_driver -- allocate tty driver 3325 * @lines: count of lines this driver can handle at most 3326 * @owner: module which is repsonsible for this driver 3327 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags 3328 * 3329 * This should not be called directly, some of the provided macros should be 3330 * used instead. Use IS_ERR and friends on @retval. 3331 */ 3332 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner, 3333 unsigned long flags) 3334 { 3335 struct tty_driver *driver; 3336 unsigned int cdevs = 1; 3337 int err; 3338 3339 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1)) 3340 return ERR_PTR(-EINVAL); 3341 3342 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL); 3343 if (!driver) 3344 return ERR_PTR(-ENOMEM); 3345 3346 kref_init(&driver->kref); 3347 driver->magic = TTY_DRIVER_MAGIC; 3348 driver->num = lines; 3349 driver->owner = owner; 3350 driver->flags = flags; 3351 3352 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) { 3353 driver->ttys = kcalloc(lines, sizeof(*driver->ttys), 3354 GFP_KERNEL); 3355 driver->termios = kcalloc(lines, sizeof(*driver->termios), 3356 GFP_KERNEL); 3357 if (!driver->ttys || !driver->termios) { 3358 err = -ENOMEM; 3359 goto err_free_all; 3360 } 3361 } 3362 3363 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3364 driver->ports = kcalloc(lines, sizeof(*driver->ports), 3365 GFP_KERNEL); 3366 if (!driver->ports) { 3367 err = -ENOMEM; 3368 goto err_free_all; 3369 } 3370 cdevs = lines; 3371 } 3372 3373 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL); 3374 if (!driver->cdevs) { 3375 err = -ENOMEM; 3376 goto err_free_all; 3377 } 3378 3379 return driver; 3380 err_free_all: 3381 kfree(driver->ports); 3382 kfree(driver->ttys); 3383 kfree(driver->termios); 3384 kfree(driver->cdevs); 3385 kfree(driver); 3386 return ERR_PTR(err); 3387 } 3388 EXPORT_SYMBOL(__tty_alloc_driver); 3389 3390 static void destruct_tty_driver(struct kref *kref) 3391 { 3392 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3393 int i; 3394 struct ktermios *tp; 3395 3396 if (driver->flags & TTY_DRIVER_INSTALLED) { 3397 /* 3398 * Free the termios and termios_locked structures because 3399 * we don't want to get memory leaks when modular tty 3400 * drivers are removed from the kernel. 3401 */ 3402 for (i = 0; i < driver->num; i++) { 3403 tp = driver->termios[i]; 3404 if (tp) { 3405 driver->termios[i] = NULL; 3406 kfree(tp); 3407 } 3408 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3409 tty_unregister_device(driver, i); 3410 } 3411 proc_tty_unregister_driver(driver); 3412 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) 3413 cdev_del(driver->cdevs[0]); 3414 } 3415 kfree(driver->cdevs); 3416 kfree(driver->ports); 3417 kfree(driver->termios); 3418 kfree(driver->ttys); 3419 kfree(driver); 3420 } 3421 3422 void tty_driver_kref_put(struct tty_driver *driver) 3423 { 3424 kref_put(&driver->kref, destruct_tty_driver); 3425 } 3426 EXPORT_SYMBOL(tty_driver_kref_put); 3427 3428 void tty_set_operations(struct tty_driver *driver, 3429 const struct tty_operations *op) 3430 { 3431 driver->ops = op; 3432 }; 3433 EXPORT_SYMBOL(tty_set_operations); 3434 3435 void put_tty_driver(struct tty_driver *d) 3436 { 3437 tty_driver_kref_put(d); 3438 } 3439 EXPORT_SYMBOL(put_tty_driver); 3440 3441 /* 3442 * Called by a tty driver to register itself. 3443 */ 3444 int tty_register_driver(struct tty_driver *driver) 3445 { 3446 int error; 3447 int i; 3448 dev_t dev; 3449 struct device *d; 3450 3451 if (!driver->major) { 3452 error = alloc_chrdev_region(&dev, driver->minor_start, 3453 driver->num, driver->name); 3454 if (!error) { 3455 driver->major = MAJOR(dev); 3456 driver->minor_start = MINOR(dev); 3457 } 3458 } else { 3459 dev = MKDEV(driver->major, driver->minor_start); 3460 error = register_chrdev_region(dev, driver->num, driver->name); 3461 } 3462 if (error < 0) 3463 goto err; 3464 3465 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) { 3466 error = tty_cdev_add(driver, dev, 0, driver->num); 3467 if (error) 3468 goto err_unreg_char; 3469 } 3470 3471 mutex_lock(&tty_mutex); 3472 list_add(&driver->tty_drivers, &tty_drivers); 3473 mutex_unlock(&tty_mutex); 3474 3475 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3476 for (i = 0; i < driver->num; i++) { 3477 d = tty_register_device(driver, i, NULL); 3478 if (IS_ERR(d)) { 3479 error = PTR_ERR(d); 3480 goto err_unreg_devs; 3481 } 3482 } 3483 } 3484 proc_tty_register_driver(driver); 3485 driver->flags |= TTY_DRIVER_INSTALLED; 3486 return 0; 3487 3488 err_unreg_devs: 3489 for (i--; i >= 0; i--) 3490 tty_unregister_device(driver, i); 3491 3492 mutex_lock(&tty_mutex); 3493 list_del(&driver->tty_drivers); 3494 mutex_unlock(&tty_mutex); 3495 3496 err_unreg_char: 3497 unregister_chrdev_region(dev, driver->num); 3498 err: 3499 return error; 3500 } 3501 EXPORT_SYMBOL(tty_register_driver); 3502 3503 /* 3504 * Called by a tty driver to unregister itself. 3505 */ 3506 int tty_unregister_driver(struct tty_driver *driver) 3507 { 3508 #if 0 3509 /* FIXME */ 3510 if (driver->refcount) 3511 return -EBUSY; 3512 #endif 3513 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3514 driver->num); 3515 mutex_lock(&tty_mutex); 3516 list_del(&driver->tty_drivers); 3517 mutex_unlock(&tty_mutex); 3518 return 0; 3519 } 3520 3521 EXPORT_SYMBOL(tty_unregister_driver); 3522 3523 dev_t tty_devnum(struct tty_struct *tty) 3524 { 3525 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3526 } 3527 EXPORT_SYMBOL(tty_devnum); 3528 3529 void tty_default_fops(struct file_operations *fops) 3530 { 3531 *fops = tty_fops; 3532 } 3533 3534 /* 3535 * Initialize the console device. This is called *early*, so 3536 * we can't necessarily depend on lots of kernel help here. 3537 * Just do some early initializations, and do the complex setup 3538 * later. 3539 */ 3540 void __init console_init(void) 3541 { 3542 initcall_t *call; 3543 3544 /* Setup the default TTY line discipline. */ 3545 tty_ldisc_begin(); 3546 3547 /* 3548 * set up the console device so that later boot sequences can 3549 * inform about problems etc.. 3550 */ 3551 call = __con_initcall_start; 3552 while (call < __con_initcall_end) { 3553 (*call)(); 3554 call++; 3555 } 3556 } 3557 3558 static char *tty_devnode(struct device *dev, umode_t *mode) 3559 { 3560 if (!mode) 3561 return NULL; 3562 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3563 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3564 *mode = 0666; 3565 return NULL; 3566 } 3567 3568 static int __init tty_class_init(void) 3569 { 3570 tty_class = class_create(THIS_MODULE, "tty"); 3571 if (IS_ERR(tty_class)) 3572 return PTR_ERR(tty_class); 3573 tty_class->devnode = tty_devnode; 3574 return 0; 3575 } 3576 3577 postcore_initcall(tty_class_init); 3578 3579 /* 3/2004 jmc: why do these devices exist? */ 3580 static struct cdev tty_cdev, console_cdev; 3581 3582 static ssize_t show_cons_active(struct device *dev, 3583 struct device_attribute *attr, char *buf) 3584 { 3585 struct console *cs[16]; 3586 int i = 0; 3587 struct console *c; 3588 ssize_t count = 0; 3589 3590 console_lock(); 3591 for_each_console(c) { 3592 if (!c->device) 3593 continue; 3594 if (!c->write) 3595 continue; 3596 if ((c->flags & CON_ENABLED) == 0) 3597 continue; 3598 cs[i++] = c; 3599 if (i >= ARRAY_SIZE(cs)) 3600 break; 3601 } 3602 while (i--) { 3603 int index = cs[i]->index; 3604 struct tty_driver *drv = cs[i]->device(cs[i], &index); 3605 3606 /* don't resolve tty0 as some programs depend on it */ 3607 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR)) 3608 count += tty_line_name(drv, index, buf + count); 3609 else 3610 count += sprintf(buf + count, "%s%d", 3611 cs[i]->name, cs[i]->index); 3612 3613 count += sprintf(buf + count, "%c", i ? ' ':'\n'); 3614 } 3615 console_unlock(); 3616 3617 return count; 3618 } 3619 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3620 3621 static struct attribute *cons_dev_attrs[] = { 3622 &dev_attr_active.attr, 3623 NULL 3624 }; 3625 3626 ATTRIBUTE_GROUPS(cons_dev); 3627 3628 static struct device *consdev; 3629 3630 void console_sysfs_notify(void) 3631 { 3632 if (consdev) 3633 sysfs_notify(&consdev->kobj, NULL, "active"); 3634 } 3635 3636 /* 3637 * Ok, now we can initialize the rest of the tty devices and can count 3638 * on memory allocations, interrupts etc.. 3639 */ 3640 int __init tty_init(void) 3641 { 3642 cdev_init(&tty_cdev, &tty_fops); 3643 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3644 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3645 panic("Couldn't register /dev/tty driver\n"); 3646 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3647 3648 cdev_init(&console_cdev, &console_fops); 3649 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3650 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3651 panic("Couldn't register /dev/console driver\n"); 3652 consdev = device_create_with_groups(tty_class, NULL, 3653 MKDEV(TTYAUX_MAJOR, 1), NULL, 3654 cons_dev_groups, "console"); 3655 if (IS_ERR(consdev)) 3656 consdev = NULL; 3657 3658 #ifdef CONFIG_VT 3659 vty_init(&console_fops); 3660 #endif 3661 return 0; 3662 } 3663 3664