xref: /openbmc/linux/drivers/tty/tty_io.c (revision 9c1f8594)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 #include <asm/system.h>
101 
102 #include <linux/kbd_kern.h>
103 #include <linux/vt_kern.h>
104 #include <linux/selection.h>
105 
106 #include <linux/kmod.h>
107 #include <linux/nsproxy.h>
108 
109 #undef TTY_DEBUG_HANGUP
110 
111 #define TTY_PARANOIA_CHECK 1
112 #define CHECK_TTY_COUNT 1
113 
114 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
115 	.c_iflag = ICRNL | IXON,
116 	.c_oflag = OPOST | ONLCR,
117 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
118 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
119 		   ECHOCTL | ECHOKE | IEXTEN,
120 	.c_cc = INIT_C_CC,
121 	.c_ispeed = 38400,
122 	.c_ospeed = 38400
123 };
124 
125 EXPORT_SYMBOL(tty_std_termios);
126 
127 /* This list gets poked at by procfs and various bits of boot up code. This
128    could do with some rationalisation such as pulling the tty proc function
129    into this file */
130 
131 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
132 
133 /* Mutex to protect creating and releasing a tty. This is shared with
134    vt.c for deeply disgusting hack reasons */
135 DEFINE_MUTEX(tty_mutex);
136 EXPORT_SYMBOL(tty_mutex);
137 
138 /* Spinlock to protect the tty->tty_files list */
139 DEFINE_SPINLOCK(tty_files_lock);
140 
141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143 ssize_t redirected_tty_write(struct file *, const char __user *,
144 							size_t, loff_t *);
145 static unsigned int tty_poll(struct file *, poll_table *);
146 static int tty_open(struct inode *, struct file *);
147 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148 #ifdef CONFIG_COMPAT
149 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
150 				unsigned long arg);
151 #else
152 #define tty_compat_ioctl NULL
153 #endif
154 static int __tty_fasync(int fd, struct file *filp, int on);
155 static int tty_fasync(int fd, struct file *filp, int on);
156 static void release_tty(struct tty_struct *tty, int idx);
157 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159 
160 /**
161  *	alloc_tty_struct	-	allocate a tty object
162  *
163  *	Return a new empty tty structure. The data fields have not
164  *	been initialized in any way but has been zeroed
165  *
166  *	Locking: none
167  */
168 
169 struct tty_struct *alloc_tty_struct(void)
170 {
171 	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
172 }
173 
174 /**
175  *	free_tty_struct		-	free a disused tty
176  *	@tty: tty struct to free
177  *
178  *	Free the write buffers, tty queue and tty memory itself.
179  *
180  *	Locking: none. Must be called after tty is definitely unused
181  */
182 
183 void free_tty_struct(struct tty_struct *tty)
184 {
185 	if (tty->dev)
186 		put_device(tty->dev);
187 	kfree(tty->write_buf);
188 	tty_buffer_free_all(tty);
189 	kfree(tty);
190 }
191 
192 static inline struct tty_struct *file_tty(struct file *file)
193 {
194 	return ((struct tty_file_private *)file->private_data)->tty;
195 }
196 
197 /* Associate a new file with the tty structure */
198 int tty_add_file(struct tty_struct *tty, struct file *file)
199 {
200 	struct tty_file_private *priv;
201 
202 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203 	if (!priv)
204 		return -ENOMEM;
205 
206 	priv->tty = tty;
207 	priv->file = file;
208 	file->private_data = priv;
209 
210 	spin_lock(&tty_files_lock);
211 	list_add(&priv->list, &tty->tty_files);
212 	spin_unlock(&tty_files_lock);
213 
214 	return 0;
215 }
216 
217 /* Delete file from its tty */
218 void tty_del_file(struct file *file)
219 {
220 	struct tty_file_private *priv = file->private_data;
221 
222 	spin_lock(&tty_files_lock);
223 	list_del(&priv->list);
224 	spin_unlock(&tty_files_lock);
225 	file->private_data = NULL;
226 	kfree(priv);
227 }
228 
229 
230 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
231 
232 /**
233  *	tty_name	-	return tty naming
234  *	@tty: tty structure
235  *	@buf: buffer for output
236  *
237  *	Convert a tty structure into a name. The name reflects the kernel
238  *	naming policy and if udev is in use may not reflect user space
239  *
240  *	Locking: none
241  */
242 
243 char *tty_name(struct tty_struct *tty, char *buf)
244 {
245 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
246 		strcpy(buf, "NULL tty");
247 	else
248 		strcpy(buf, tty->name);
249 	return buf;
250 }
251 
252 EXPORT_SYMBOL(tty_name);
253 
254 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
255 			      const char *routine)
256 {
257 #ifdef TTY_PARANOIA_CHECK
258 	if (!tty) {
259 		printk(KERN_WARNING
260 			"null TTY for (%d:%d) in %s\n",
261 			imajor(inode), iminor(inode), routine);
262 		return 1;
263 	}
264 	if (tty->magic != TTY_MAGIC) {
265 		printk(KERN_WARNING
266 			"bad magic number for tty struct (%d:%d) in %s\n",
267 			imajor(inode), iminor(inode), routine);
268 		return 1;
269 	}
270 #endif
271 	return 0;
272 }
273 
274 static int check_tty_count(struct tty_struct *tty, const char *routine)
275 {
276 #ifdef CHECK_TTY_COUNT
277 	struct list_head *p;
278 	int count = 0;
279 
280 	spin_lock(&tty_files_lock);
281 	list_for_each(p, &tty->tty_files) {
282 		count++;
283 	}
284 	spin_unlock(&tty_files_lock);
285 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
286 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
287 	    tty->link && tty->link->count)
288 		count++;
289 	if (tty->count != count) {
290 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
291 				    "!= #fd's(%d) in %s\n",
292 		       tty->name, tty->count, count, routine);
293 		return count;
294 	}
295 #endif
296 	return 0;
297 }
298 
299 /**
300  *	get_tty_driver		-	find device of a tty
301  *	@dev_t: device identifier
302  *	@index: returns the index of the tty
303  *
304  *	This routine returns a tty driver structure, given a device number
305  *	and also passes back the index number.
306  *
307  *	Locking: caller must hold tty_mutex
308  */
309 
310 static struct tty_driver *get_tty_driver(dev_t device, int *index)
311 {
312 	struct tty_driver *p;
313 
314 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
315 		dev_t base = MKDEV(p->major, p->minor_start);
316 		if (device < base || device >= base + p->num)
317 			continue;
318 		*index = device - base;
319 		return tty_driver_kref_get(p);
320 	}
321 	return NULL;
322 }
323 
324 #ifdef CONFIG_CONSOLE_POLL
325 
326 /**
327  *	tty_find_polling_driver	-	find device of a polled tty
328  *	@name: name string to match
329  *	@line: pointer to resulting tty line nr
330  *
331  *	This routine returns a tty driver structure, given a name
332  *	and the condition that the tty driver is capable of polled
333  *	operation.
334  */
335 struct tty_driver *tty_find_polling_driver(char *name, int *line)
336 {
337 	struct tty_driver *p, *res = NULL;
338 	int tty_line = 0;
339 	int len;
340 	char *str, *stp;
341 
342 	for (str = name; *str; str++)
343 		if ((*str >= '0' && *str <= '9') || *str == ',')
344 			break;
345 	if (!*str)
346 		return NULL;
347 
348 	len = str - name;
349 	tty_line = simple_strtoul(str, &str, 10);
350 
351 	mutex_lock(&tty_mutex);
352 	/* Search through the tty devices to look for a match */
353 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
354 		if (strncmp(name, p->name, len) != 0)
355 			continue;
356 		stp = str;
357 		if (*stp == ',')
358 			stp++;
359 		if (*stp == '\0')
360 			stp = NULL;
361 
362 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
363 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
364 			res = tty_driver_kref_get(p);
365 			*line = tty_line;
366 			break;
367 		}
368 	}
369 	mutex_unlock(&tty_mutex);
370 
371 	return res;
372 }
373 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
374 #endif
375 
376 /**
377  *	tty_check_change	-	check for POSIX terminal changes
378  *	@tty: tty to check
379  *
380  *	If we try to write to, or set the state of, a terminal and we're
381  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
382  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
383  *
384  *	Locking: ctrl_lock
385  */
386 
387 int tty_check_change(struct tty_struct *tty)
388 {
389 	unsigned long flags;
390 	int ret = 0;
391 
392 	if (current->signal->tty != tty)
393 		return 0;
394 
395 	spin_lock_irqsave(&tty->ctrl_lock, flags);
396 
397 	if (!tty->pgrp) {
398 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
399 		goto out_unlock;
400 	}
401 	if (task_pgrp(current) == tty->pgrp)
402 		goto out_unlock;
403 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
404 	if (is_ignored(SIGTTOU))
405 		goto out;
406 	if (is_current_pgrp_orphaned()) {
407 		ret = -EIO;
408 		goto out;
409 	}
410 	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
411 	set_thread_flag(TIF_SIGPENDING);
412 	ret = -ERESTARTSYS;
413 out:
414 	return ret;
415 out_unlock:
416 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
417 	return ret;
418 }
419 
420 EXPORT_SYMBOL(tty_check_change);
421 
422 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
423 				size_t count, loff_t *ppos)
424 {
425 	return 0;
426 }
427 
428 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
429 				 size_t count, loff_t *ppos)
430 {
431 	return -EIO;
432 }
433 
434 /* No kernel lock held - none needed ;) */
435 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
436 {
437 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
438 }
439 
440 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
441 		unsigned long arg)
442 {
443 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
444 }
445 
446 static long hung_up_tty_compat_ioctl(struct file *file,
447 				     unsigned int cmd, unsigned long arg)
448 {
449 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
450 }
451 
452 static const struct file_operations tty_fops = {
453 	.llseek		= no_llseek,
454 	.read		= tty_read,
455 	.write		= tty_write,
456 	.poll		= tty_poll,
457 	.unlocked_ioctl	= tty_ioctl,
458 	.compat_ioctl	= tty_compat_ioctl,
459 	.open		= tty_open,
460 	.release	= tty_release,
461 	.fasync		= tty_fasync,
462 };
463 
464 static const struct file_operations console_fops = {
465 	.llseek		= no_llseek,
466 	.read		= tty_read,
467 	.write		= redirected_tty_write,
468 	.poll		= tty_poll,
469 	.unlocked_ioctl	= tty_ioctl,
470 	.compat_ioctl	= tty_compat_ioctl,
471 	.open		= tty_open,
472 	.release	= tty_release,
473 	.fasync		= tty_fasync,
474 };
475 
476 static const struct file_operations hung_up_tty_fops = {
477 	.llseek		= no_llseek,
478 	.read		= hung_up_tty_read,
479 	.write		= hung_up_tty_write,
480 	.poll		= hung_up_tty_poll,
481 	.unlocked_ioctl	= hung_up_tty_ioctl,
482 	.compat_ioctl	= hung_up_tty_compat_ioctl,
483 	.release	= tty_release,
484 };
485 
486 static DEFINE_SPINLOCK(redirect_lock);
487 static struct file *redirect;
488 
489 /**
490  *	tty_wakeup	-	request more data
491  *	@tty: terminal
492  *
493  *	Internal and external helper for wakeups of tty. This function
494  *	informs the line discipline if present that the driver is ready
495  *	to receive more output data.
496  */
497 
498 void tty_wakeup(struct tty_struct *tty)
499 {
500 	struct tty_ldisc *ld;
501 
502 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
503 		ld = tty_ldisc_ref(tty);
504 		if (ld) {
505 			if (ld->ops->write_wakeup)
506 				ld->ops->write_wakeup(tty);
507 			tty_ldisc_deref(ld);
508 		}
509 	}
510 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
511 }
512 
513 EXPORT_SYMBOL_GPL(tty_wakeup);
514 
515 /**
516  *	__tty_hangup		-	actual handler for hangup events
517  *	@work: tty device
518  *
519  *	This can be called by the "eventd" kernel thread.  That is process
520  *	synchronous but doesn't hold any locks, so we need to make sure we
521  *	have the appropriate locks for what we're doing.
522  *
523  *	The hangup event clears any pending redirections onto the hung up
524  *	device. It ensures future writes will error and it does the needed
525  *	line discipline hangup and signal delivery. The tty object itself
526  *	remains intact.
527  *
528  *	Locking:
529  *		BTM
530  *		  redirect lock for undoing redirection
531  *		  file list lock for manipulating list of ttys
532  *		  tty_ldisc_lock from called functions
533  *		  termios_mutex resetting termios data
534  *		  tasklist_lock to walk task list for hangup event
535  *		    ->siglock to protect ->signal/->sighand
536  */
537 void __tty_hangup(struct tty_struct *tty)
538 {
539 	struct file *cons_filp = NULL;
540 	struct file *filp, *f = NULL;
541 	struct task_struct *p;
542 	struct tty_file_private *priv;
543 	int    closecount = 0, n;
544 	unsigned long flags;
545 	int refs = 0;
546 
547 	if (!tty)
548 		return;
549 
550 
551 	spin_lock(&redirect_lock);
552 	if (redirect && file_tty(redirect) == tty) {
553 		f = redirect;
554 		redirect = NULL;
555 	}
556 	spin_unlock(&redirect_lock);
557 
558 	tty_lock();
559 
560 	/* some functions below drop BTM, so we need this bit */
561 	set_bit(TTY_HUPPING, &tty->flags);
562 
563 	/* inuse_filps is protected by the single tty lock,
564 	   this really needs to change if we want to flush the
565 	   workqueue with the lock held */
566 	check_tty_count(tty, "tty_hangup");
567 
568 	spin_lock(&tty_files_lock);
569 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
570 	list_for_each_entry(priv, &tty->tty_files, list) {
571 		filp = priv->file;
572 		if (filp->f_op->write == redirected_tty_write)
573 			cons_filp = filp;
574 		if (filp->f_op->write != tty_write)
575 			continue;
576 		closecount++;
577 		__tty_fasync(-1, filp, 0);	/* can't block */
578 		filp->f_op = &hung_up_tty_fops;
579 	}
580 	spin_unlock(&tty_files_lock);
581 
582 	/*
583 	 * it drops BTM and thus races with reopen
584 	 * we protect the race by TTY_HUPPING
585 	 */
586 	tty_ldisc_hangup(tty);
587 
588 	read_lock(&tasklist_lock);
589 	if (tty->session) {
590 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
591 			spin_lock_irq(&p->sighand->siglock);
592 			if (p->signal->tty == tty) {
593 				p->signal->tty = NULL;
594 				/* We defer the dereferences outside fo
595 				   the tasklist lock */
596 				refs++;
597 			}
598 			if (!p->signal->leader) {
599 				spin_unlock_irq(&p->sighand->siglock);
600 				continue;
601 			}
602 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
603 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
604 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
605 			spin_lock_irqsave(&tty->ctrl_lock, flags);
606 			if (tty->pgrp)
607 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
608 			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
609 			spin_unlock_irq(&p->sighand->siglock);
610 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
611 	}
612 	read_unlock(&tasklist_lock);
613 
614 	spin_lock_irqsave(&tty->ctrl_lock, flags);
615 	clear_bit(TTY_THROTTLED, &tty->flags);
616 	clear_bit(TTY_PUSH, &tty->flags);
617 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
618 	put_pid(tty->session);
619 	put_pid(tty->pgrp);
620 	tty->session = NULL;
621 	tty->pgrp = NULL;
622 	tty->ctrl_status = 0;
623 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
624 
625 	/* Account for the p->signal references we killed */
626 	while (refs--)
627 		tty_kref_put(tty);
628 
629 	/*
630 	 * If one of the devices matches a console pointer, we
631 	 * cannot just call hangup() because that will cause
632 	 * tty->count and state->count to go out of sync.
633 	 * So we just call close() the right number of times.
634 	 */
635 	if (cons_filp) {
636 		if (tty->ops->close)
637 			for (n = 0; n < closecount; n++)
638 				tty->ops->close(tty, cons_filp);
639 	} else if (tty->ops->hangup)
640 		(tty->ops->hangup)(tty);
641 	/*
642 	 * We don't want to have driver/ldisc interactions beyond
643 	 * the ones we did here. The driver layer expects no
644 	 * calls after ->hangup() from the ldisc side. However we
645 	 * can't yet guarantee all that.
646 	 */
647 	set_bit(TTY_HUPPED, &tty->flags);
648 	clear_bit(TTY_HUPPING, &tty->flags);
649 	tty_ldisc_enable(tty);
650 
651 	tty_unlock();
652 
653 	if (f)
654 		fput(f);
655 }
656 
657 static void do_tty_hangup(struct work_struct *work)
658 {
659 	struct tty_struct *tty =
660 		container_of(work, struct tty_struct, hangup_work);
661 
662 	__tty_hangup(tty);
663 }
664 
665 /**
666  *	tty_hangup		-	trigger a hangup event
667  *	@tty: tty to hangup
668  *
669  *	A carrier loss (virtual or otherwise) has occurred on this like
670  *	schedule a hangup sequence to run after this event.
671  */
672 
673 void tty_hangup(struct tty_struct *tty)
674 {
675 #ifdef TTY_DEBUG_HANGUP
676 	char	buf[64];
677 	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
678 #endif
679 	schedule_work(&tty->hangup_work);
680 }
681 
682 EXPORT_SYMBOL(tty_hangup);
683 
684 /**
685  *	tty_vhangup		-	process vhangup
686  *	@tty: tty to hangup
687  *
688  *	The user has asked via system call for the terminal to be hung up.
689  *	We do this synchronously so that when the syscall returns the process
690  *	is complete. That guarantee is necessary for security reasons.
691  */
692 
693 void tty_vhangup(struct tty_struct *tty)
694 {
695 #ifdef TTY_DEBUG_HANGUP
696 	char	buf[64];
697 
698 	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
699 #endif
700 	__tty_hangup(tty);
701 }
702 
703 EXPORT_SYMBOL(tty_vhangup);
704 
705 
706 /**
707  *	tty_vhangup_self	-	process vhangup for own ctty
708  *
709  *	Perform a vhangup on the current controlling tty
710  */
711 
712 void tty_vhangup_self(void)
713 {
714 	struct tty_struct *tty;
715 
716 	tty = get_current_tty();
717 	if (tty) {
718 		tty_vhangup(tty);
719 		tty_kref_put(tty);
720 	}
721 }
722 
723 /**
724  *	tty_hung_up_p		-	was tty hung up
725  *	@filp: file pointer of tty
726  *
727  *	Return true if the tty has been subject to a vhangup or a carrier
728  *	loss
729  */
730 
731 int tty_hung_up_p(struct file *filp)
732 {
733 	return (filp->f_op == &hung_up_tty_fops);
734 }
735 
736 EXPORT_SYMBOL(tty_hung_up_p);
737 
738 static void session_clear_tty(struct pid *session)
739 {
740 	struct task_struct *p;
741 	do_each_pid_task(session, PIDTYPE_SID, p) {
742 		proc_clear_tty(p);
743 	} while_each_pid_task(session, PIDTYPE_SID, p);
744 }
745 
746 /**
747  *	disassociate_ctty	-	disconnect controlling tty
748  *	@on_exit: true if exiting so need to "hang up" the session
749  *
750  *	This function is typically called only by the session leader, when
751  *	it wants to disassociate itself from its controlling tty.
752  *
753  *	It performs the following functions:
754  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
755  * 	(2)  Clears the tty from being controlling the session
756  * 	(3)  Clears the controlling tty for all processes in the
757  * 		session group.
758  *
759  *	The argument on_exit is set to 1 if called when a process is
760  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
761  *
762  *	Locking:
763  *		BTM is taken for hysterical raisins, and held when
764  *		  called from no_tty().
765  *		  tty_mutex is taken to protect tty
766  *		  ->siglock is taken to protect ->signal/->sighand
767  *		  tasklist_lock is taken to walk process list for sessions
768  *		    ->siglock is taken to protect ->signal/->sighand
769  */
770 
771 void disassociate_ctty(int on_exit)
772 {
773 	struct tty_struct *tty;
774 	struct pid *tty_pgrp = NULL;
775 
776 	if (!current->signal->leader)
777 		return;
778 
779 	tty = get_current_tty();
780 	if (tty) {
781 		tty_pgrp = get_pid(tty->pgrp);
782 		if (on_exit) {
783 			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
784 				tty_vhangup(tty);
785 		}
786 		tty_kref_put(tty);
787 	} else if (on_exit) {
788 		struct pid *old_pgrp;
789 		spin_lock_irq(&current->sighand->siglock);
790 		old_pgrp = current->signal->tty_old_pgrp;
791 		current->signal->tty_old_pgrp = NULL;
792 		spin_unlock_irq(&current->sighand->siglock);
793 		if (old_pgrp) {
794 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
795 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
796 			put_pid(old_pgrp);
797 		}
798 		return;
799 	}
800 	if (tty_pgrp) {
801 		kill_pgrp(tty_pgrp, SIGHUP, on_exit);
802 		if (!on_exit)
803 			kill_pgrp(tty_pgrp, SIGCONT, on_exit);
804 		put_pid(tty_pgrp);
805 	}
806 
807 	spin_lock_irq(&current->sighand->siglock);
808 	put_pid(current->signal->tty_old_pgrp);
809 	current->signal->tty_old_pgrp = NULL;
810 	spin_unlock_irq(&current->sighand->siglock);
811 
812 	tty = get_current_tty();
813 	if (tty) {
814 		unsigned long flags;
815 		spin_lock_irqsave(&tty->ctrl_lock, flags);
816 		put_pid(tty->session);
817 		put_pid(tty->pgrp);
818 		tty->session = NULL;
819 		tty->pgrp = NULL;
820 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
821 		tty_kref_put(tty);
822 	} else {
823 #ifdef TTY_DEBUG_HANGUP
824 		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
825 		       " = NULL", tty);
826 #endif
827 	}
828 
829 	/* Now clear signal->tty under the lock */
830 	read_lock(&tasklist_lock);
831 	session_clear_tty(task_session(current));
832 	read_unlock(&tasklist_lock);
833 }
834 
835 /**
836  *
837  *	no_tty	- Ensure the current process does not have a controlling tty
838  */
839 void no_tty(void)
840 {
841 	struct task_struct *tsk = current;
842 	tty_lock();
843 	disassociate_ctty(0);
844 	tty_unlock();
845 	proc_clear_tty(tsk);
846 }
847 
848 
849 /**
850  *	stop_tty	-	propagate flow control
851  *	@tty: tty to stop
852  *
853  *	Perform flow control to the driver. For PTY/TTY pairs we
854  *	must also propagate the TIOCKPKT status. May be called
855  *	on an already stopped device and will not re-call the driver
856  *	method.
857  *
858  *	This functionality is used by both the line disciplines for
859  *	halting incoming flow and by the driver. It may therefore be
860  *	called from any context, may be under the tty atomic_write_lock
861  *	but not always.
862  *
863  *	Locking:
864  *		Uses the tty control lock internally
865  */
866 
867 void stop_tty(struct tty_struct *tty)
868 {
869 	unsigned long flags;
870 	spin_lock_irqsave(&tty->ctrl_lock, flags);
871 	if (tty->stopped) {
872 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
873 		return;
874 	}
875 	tty->stopped = 1;
876 	if (tty->link && tty->link->packet) {
877 		tty->ctrl_status &= ~TIOCPKT_START;
878 		tty->ctrl_status |= TIOCPKT_STOP;
879 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
880 	}
881 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
882 	if (tty->ops->stop)
883 		(tty->ops->stop)(tty);
884 }
885 
886 EXPORT_SYMBOL(stop_tty);
887 
888 /**
889  *	start_tty	-	propagate flow control
890  *	@tty: tty to start
891  *
892  *	Start a tty that has been stopped if at all possible. Perform
893  *	any necessary wakeups and propagate the TIOCPKT status. If this
894  *	is the tty was previous stopped and is being started then the
895  *	driver start method is invoked and the line discipline woken.
896  *
897  *	Locking:
898  *		ctrl_lock
899  */
900 
901 void start_tty(struct tty_struct *tty)
902 {
903 	unsigned long flags;
904 	spin_lock_irqsave(&tty->ctrl_lock, flags);
905 	if (!tty->stopped || tty->flow_stopped) {
906 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
907 		return;
908 	}
909 	tty->stopped = 0;
910 	if (tty->link && tty->link->packet) {
911 		tty->ctrl_status &= ~TIOCPKT_STOP;
912 		tty->ctrl_status |= TIOCPKT_START;
913 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
914 	}
915 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
916 	if (tty->ops->start)
917 		(tty->ops->start)(tty);
918 	/* If we have a running line discipline it may need kicking */
919 	tty_wakeup(tty);
920 }
921 
922 EXPORT_SYMBOL(start_tty);
923 
924 /**
925  *	tty_read	-	read method for tty device files
926  *	@file: pointer to tty file
927  *	@buf: user buffer
928  *	@count: size of user buffer
929  *	@ppos: unused
930  *
931  *	Perform the read system call function on this terminal device. Checks
932  *	for hung up devices before calling the line discipline method.
933  *
934  *	Locking:
935  *		Locks the line discipline internally while needed. Multiple
936  *	read calls may be outstanding in parallel.
937  */
938 
939 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
940 			loff_t *ppos)
941 {
942 	int i;
943 	struct inode *inode = file->f_path.dentry->d_inode;
944 	struct tty_struct *tty = file_tty(file);
945 	struct tty_ldisc *ld;
946 
947 	if (tty_paranoia_check(tty, inode, "tty_read"))
948 		return -EIO;
949 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
950 		return -EIO;
951 
952 	/* We want to wait for the line discipline to sort out in this
953 	   situation */
954 	ld = tty_ldisc_ref_wait(tty);
955 	if (ld->ops->read)
956 		i = (ld->ops->read)(tty, file, buf, count);
957 	else
958 		i = -EIO;
959 	tty_ldisc_deref(ld);
960 	if (i > 0)
961 		inode->i_atime = current_fs_time(inode->i_sb);
962 	return i;
963 }
964 
965 void tty_write_unlock(struct tty_struct *tty)
966 	__releases(&tty->atomic_write_lock)
967 {
968 	mutex_unlock(&tty->atomic_write_lock);
969 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
970 }
971 
972 int tty_write_lock(struct tty_struct *tty, int ndelay)
973 	__acquires(&tty->atomic_write_lock)
974 {
975 	if (!mutex_trylock(&tty->atomic_write_lock)) {
976 		if (ndelay)
977 			return -EAGAIN;
978 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
979 			return -ERESTARTSYS;
980 	}
981 	return 0;
982 }
983 
984 /*
985  * Split writes up in sane blocksizes to avoid
986  * denial-of-service type attacks
987  */
988 static inline ssize_t do_tty_write(
989 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
990 	struct tty_struct *tty,
991 	struct file *file,
992 	const char __user *buf,
993 	size_t count)
994 {
995 	ssize_t ret, written = 0;
996 	unsigned int chunk;
997 
998 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
999 	if (ret < 0)
1000 		return ret;
1001 
1002 	/*
1003 	 * We chunk up writes into a temporary buffer. This
1004 	 * simplifies low-level drivers immensely, since they
1005 	 * don't have locking issues and user mode accesses.
1006 	 *
1007 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1008 	 * big chunk-size..
1009 	 *
1010 	 * The default chunk-size is 2kB, because the NTTY
1011 	 * layer has problems with bigger chunks. It will
1012 	 * claim to be able to handle more characters than
1013 	 * it actually does.
1014 	 *
1015 	 * FIXME: This can probably go away now except that 64K chunks
1016 	 * are too likely to fail unless switched to vmalloc...
1017 	 */
1018 	chunk = 2048;
1019 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1020 		chunk = 65536;
1021 	if (count < chunk)
1022 		chunk = count;
1023 
1024 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1025 	if (tty->write_cnt < chunk) {
1026 		unsigned char *buf_chunk;
1027 
1028 		if (chunk < 1024)
1029 			chunk = 1024;
1030 
1031 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1032 		if (!buf_chunk) {
1033 			ret = -ENOMEM;
1034 			goto out;
1035 		}
1036 		kfree(tty->write_buf);
1037 		tty->write_cnt = chunk;
1038 		tty->write_buf = buf_chunk;
1039 	}
1040 
1041 	/* Do the write .. */
1042 	for (;;) {
1043 		size_t size = count;
1044 		if (size > chunk)
1045 			size = chunk;
1046 		ret = -EFAULT;
1047 		if (copy_from_user(tty->write_buf, buf, size))
1048 			break;
1049 		ret = write(tty, file, tty->write_buf, size);
1050 		if (ret <= 0)
1051 			break;
1052 		written += ret;
1053 		buf += ret;
1054 		count -= ret;
1055 		if (!count)
1056 			break;
1057 		ret = -ERESTARTSYS;
1058 		if (signal_pending(current))
1059 			break;
1060 		cond_resched();
1061 	}
1062 	if (written) {
1063 		struct inode *inode = file->f_path.dentry->d_inode;
1064 		inode->i_mtime = current_fs_time(inode->i_sb);
1065 		ret = written;
1066 	}
1067 out:
1068 	tty_write_unlock(tty);
1069 	return ret;
1070 }
1071 
1072 /**
1073  * tty_write_message - write a message to a certain tty, not just the console.
1074  * @tty: the destination tty_struct
1075  * @msg: the message to write
1076  *
1077  * This is used for messages that need to be redirected to a specific tty.
1078  * We don't put it into the syslog queue right now maybe in the future if
1079  * really needed.
1080  *
1081  * We must still hold the BTM and test the CLOSING flag for the moment.
1082  */
1083 
1084 void tty_write_message(struct tty_struct *tty, char *msg)
1085 {
1086 	if (tty) {
1087 		mutex_lock(&tty->atomic_write_lock);
1088 		tty_lock();
1089 		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1090 			tty_unlock();
1091 			tty->ops->write(tty, msg, strlen(msg));
1092 		} else
1093 			tty_unlock();
1094 		tty_write_unlock(tty);
1095 	}
1096 	return;
1097 }
1098 
1099 
1100 /**
1101  *	tty_write		-	write method for tty device file
1102  *	@file: tty file pointer
1103  *	@buf: user data to write
1104  *	@count: bytes to write
1105  *	@ppos: unused
1106  *
1107  *	Write data to a tty device via the line discipline.
1108  *
1109  *	Locking:
1110  *		Locks the line discipline as required
1111  *		Writes to the tty driver are serialized by the atomic_write_lock
1112  *	and are then processed in chunks to the device. The line discipline
1113  *	write method will not be invoked in parallel for each device.
1114  */
1115 
1116 static ssize_t tty_write(struct file *file, const char __user *buf,
1117 						size_t count, loff_t *ppos)
1118 {
1119 	struct inode *inode = file->f_path.dentry->d_inode;
1120 	struct tty_struct *tty = file_tty(file);
1121  	struct tty_ldisc *ld;
1122 	ssize_t ret;
1123 
1124 	if (tty_paranoia_check(tty, inode, "tty_write"))
1125 		return -EIO;
1126 	if (!tty || !tty->ops->write ||
1127 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1128 			return -EIO;
1129 	/* Short term debug to catch buggy drivers */
1130 	if (tty->ops->write_room == NULL)
1131 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1132 			tty->driver->name);
1133 	ld = tty_ldisc_ref_wait(tty);
1134 	if (!ld->ops->write)
1135 		ret = -EIO;
1136 	else
1137 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1138 	tty_ldisc_deref(ld);
1139 	return ret;
1140 }
1141 
1142 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1143 						size_t count, loff_t *ppos)
1144 {
1145 	struct file *p = NULL;
1146 
1147 	spin_lock(&redirect_lock);
1148 	if (redirect) {
1149 		get_file(redirect);
1150 		p = redirect;
1151 	}
1152 	spin_unlock(&redirect_lock);
1153 
1154 	if (p) {
1155 		ssize_t res;
1156 		res = vfs_write(p, buf, count, &p->f_pos);
1157 		fput(p);
1158 		return res;
1159 	}
1160 	return tty_write(file, buf, count, ppos);
1161 }
1162 
1163 static char ptychar[] = "pqrstuvwxyzabcde";
1164 
1165 /**
1166  *	pty_line_name	-	generate name for a pty
1167  *	@driver: the tty driver in use
1168  *	@index: the minor number
1169  *	@p: output buffer of at least 6 bytes
1170  *
1171  *	Generate a name from a driver reference and write it to the output
1172  *	buffer.
1173  *
1174  *	Locking: None
1175  */
1176 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1177 {
1178 	int i = index + driver->name_base;
1179 	/* ->name is initialized to "ttyp", but "tty" is expected */
1180 	sprintf(p, "%s%c%x",
1181 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1182 		ptychar[i >> 4 & 0xf], i & 0xf);
1183 }
1184 
1185 /**
1186  *	tty_line_name	-	generate name for a tty
1187  *	@driver: the tty driver in use
1188  *	@index: the minor number
1189  *	@p: output buffer of at least 7 bytes
1190  *
1191  *	Generate a name from a driver reference and write it to the output
1192  *	buffer.
1193  *
1194  *	Locking: None
1195  */
1196 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1197 {
1198 	sprintf(p, "%s%d", driver->name, index + driver->name_base);
1199 }
1200 
1201 /**
1202  *	tty_driver_lookup_tty() - find an existing tty, if any
1203  *	@driver: the driver for the tty
1204  *	@idx:	 the minor number
1205  *
1206  *	Return the tty, if found or ERR_PTR() otherwise.
1207  *
1208  *	Locking: tty_mutex must be held. If tty is found, the mutex must
1209  *	be held until the 'fast-open' is also done. Will change once we
1210  *	have refcounting in the driver and per driver locking
1211  */
1212 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1213 		struct inode *inode, int idx)
1214 {
1215 	struct tty_struct *tty;
1216 
1217 	if (driver->ops->lookup)
1218 		return driver->ops->lookup(driver, inode, idx);
1219 
1220 	tty = driver->ttys[idx];
1221 	return tty;
1222 }
1223 
1224 /**
1225  *	tty_init_termios	-  helper for termios setup
1226  *	@tty: the tty to set up
1227  *
1228  *	Initialise the termios structures for this tty. Thus runs under
1229  *	the tty_mutex currently so we can be relaxed about ordering.
1230  */
1231 
1232 int tty_init_termios(struct tty_struct *tty)
1233 {
1234 	struct ktermios *tp;
1235 	int idx = tty->index;
1236 
1237 	tp = tty->driver->termios[idx];
1238 	if (tp == NULL) {
1239 		tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1240 		if (tp == NULL)
1241 			return -ENOMEM;
1242 		memcpy(tp, &tty->driver->init_termios,
1243 						sizeof(struct ktermios));
1244 		tty->driver->termios[idx] = tp;
1245 	}
1246 	tty->termios = tp;
1247 	tty->termios_locked = tp + 1;
1248 
1249 	/* Compatibility until drivers always set this */
1250 	tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1251 	tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1252 	return 0;
1253 }
1254 EXPORT_SYMBOL_GPL(tty_init_termios);
1255 
1256 /**
1257  *	tty_driver_install_tty() - install a tty entry in the driver
1258  *	@driver: the driver for the tty
1259  *	@tty: the tty
1260  *
1261  *	Install a tty object into the driver tables. The tty->index field
1262  *	will be set by the time this is called. This method is responsible
1263  *	for ensuring any need additional structures are allocated and
1264  *	configured.
1265  *
1266  *	Locking: tty_mutex for now
1267  */
1268 static int tty_driver_install_tty(struct tty_driver *driver,
1269 						struct tty_struct *tty)
1270 {
1271 	int idx = tty->index;
1272 	int ret;
1273 
1274 	if (driver->ops->install) {
1275 		ret = driver->ops->install(driver, tty);
1276 		return ret;
1277 	}
1278 
1279 	if (tty_init_termios(tty) == 0) {
1280 		tty_driver_kref_get(driver);
1281 		tty->count++;
1282 		driver->ttys[idx] = tty;
1283 		return 0;
1284 	}
1285 	return -ENOMEM;
1286 }
1287 
1288 /**
1289  *	tty_driver_remove_tty() - remove a tty from the driver tables
1290  *	@driver: the driver for the tty
1291  *	@idx:	 the minor number
1292  *
1293  *	Remvoe a tty object from the driver tables. The tty->index field
1294  *	will be set by the time this is called.
1295  *
1296  *	Locking: tty_mutex for now
1297  */
1298 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1299 {
1300 	if (driver->ops->remove)
1301 		driver->ops->remove(driver, tty);
1302 	else
1303 		driver->ttys[tty->index] = NULL;
1304 }
1305 
1306 /*
1307  * 	tty_reopen()	- fast re-open of an open tty
1308  * 	@tty	- the tty to open
1309  *
1310  *	Return 0 on success, -errno on error.
1311  *
1312  *	Locking: tty_mutex must be held from the time the tty was found
1313  *		 till this open completes.
1314  */
1315 static int tty_reopen(struct tty_struct *tty)
1316 {
1317 	struct tty_driver *driver = tty->driver;
1318 
1319 	if (test_bit(TTY_CLOSING, &tty->flags) ||
1320 			test_bit(TTY_HUPPING, &tty->flags) ||
1321 			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1322 		return -EIO;
1323 
1324 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1325 	    driver->subtype == PTY_TYPE_MASTER) {
1326 		/*
1327 		 * special case for PTY masters: only one open permitted,
1328 		 * and the slave side open count is incremented as well.
1329 		 */
1330 		if (tty->count)
1331 			return -EIO;
1332 
1333 		tty->link->count++;
1334 	}
1335 	tty->count++;
1336 	tty->driver = driver; /* N.B. why do this every time?? */
1337 
1338 	mutex_lock(&tty->ldisc_mutex);
1339 	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1340 	mutex_unlock(&tty->ldisc_mutex);
1341 
1342 	return 0;
1343 }
1344 
1345 /**
1346  *	tty_init_dev		-	initialise a tty device
1347  *	@driver: tty driver we are opening a device on
1348  *	@idx: device index
1349  *	@ret_tty: returned tty structure
1350  *	@first_ok: ok to open a new device (used by ptmx)
1351  *
1352  *	Prepare a tty device. This may not be a "new" clean device but
1353  *	could also be an active device. The pty drivers require special
1354  *	handling because of this.
1355  *
1356  *	Locking:
1357  *		The function is called under the tty_mutex, which
1358  *	protects us from the tty struct or driver itself going away.
1359  *
1360  *	On exit the tty device has the line discipline attached and
1361  *	a reference count of 1. If a pair was created for pty/tty use
1362  *	and the other was a pty master then it too has a reference count of 1.
1363  *
1364  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1365  * failed open.  The new code protects the open with a mutex, so it's
1366  * really quite straightforward.  The mutex locking can probably be
1367  * relaxed for the (most common) case of reopening a tty.
1368  */
1369 
1370 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1371 								int first_ok)
1372 {
1373 	struct tty_struct *tty;
1374 	int retval;
1375 
1376 	/* Check if pty master is being opened multiple times */
1377 	if (driver->subtype == PTY_TYPE_MASTER &&
1378 		(driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1379 		return ERR_PTR(-EIO);
1380 	}
1381 
1382 	/*
1383 	 * First time open is complex, especially for PTY devices.
1384 	 * This code guarantees that either everything succeeds and the
1385 	 * TTY is ready for operation, or else the table slots are vacated
1386 	 * and the allocated memory released.  (Except that the termios
1387 	 * and locked termios may be retained.)
1388 	 */
1389 
1390 	if (!try_module_get(driver->owner))
1391 		return ERR_PTR(-ENODEV);
1392 
1393 	tty = alloc_tty_struct();
1394 	if (!tty) {
1395 		retval = -ENOMEM;
1396 		goto err_module_put;
1397 	}
1398 	initialize_tty_struct(tty, driver, idx);
1399 
1400 	retval = tty_driver_install_tty(driver, tty);
1401 	if (retval < 0)
1402 		goto err_deinit_tty;
1403 
1404 	/*
1405 	 * Structures all installed ... call the ldisc open routines.
1406 	 * If we fail here just call release_tty to clean up.  No need
1407 	 * to decrement the use counts, as release_tty doesn't care.
1408 	 */
1409 	retval = tty_ldisc_setup(tty, tty->link);
1410 	if (retval)
1411 		goto err_release_tty;
1412 	return tty;
1413 
1414 err_deinit_tty:
1415 	deinitialize_tty_struct(tty);
1416 	free_tty_struct(tty);
1417 err_module_put:
1418 	module_put(driver->owner);
1419 	return ERR_PTR(retval);
1420 
1421 	/* call the tty release_tty routine to clean out this slot */
1422 err_release_tty:
1423 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1424 				 "clearing slot %d\n", idx);
1425 	release_tty(tty, idx);
1426 	return ERR_PTR(retval);
1427 }
1428 
1429 void tty_free_termios(struct tty_struct *tty)
1430 {
1431 	struct ktermios *tp;
1432 	int idx = tty->index;
1433 	/* Kill this flag and push into drivers for locking etc */
1434 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1435 		/* FIXME: Locking on ->termios array */
1436 		tp = tty->termios;
1437 		tty->driver->termios[idx] = NULL;
1438 		kfree(tp);
1439 	}
1440 }
1441 EXPORT_SYMBOL(tty_free_termios);
1442 
1443 void tty_shutdown(struct tty_struct *tty)
1444 {
1445 	tty_driver_remove_tty(tty->driver, tty);
1446 	tty_free_termios(tty);
1447 }
1448 EXPORT_SYMBOL(tty_shutdown);
1449 
1450 /**
1451  *	release_one_tty		-	release tty structure memory
1452  *	@kref: kref of tty we are obliterating
1453  *
1454  *	Releases memory associated with a tty structure, and clears out the
1455  *	driver table slots. This function is called when a device is no longer
1456  *	in use. It also gets called when setup of a device fails.
1457  *
1458  *	Locking:
1459  *		tty_mutex - sometimes only
1460  *		takes the file list lock internally when working on the list
1461  *	of ttys that the driver keeps.
1462  *
1463  *	This method gets called from a work queue so that the driver private
1464  *	cleanup ops can sleep (needed for USB at least)
1465  */
1466 static void release_one_tty(struct work_struct *work)
1467 {
1468 	struct tty_struct *tty =
1469 		container_of(work, struct tty_struct, hangup_work);
1470 	struct tty_driver *driver = tty->driver;
1471 
1472 	if (tty->ops->cleanup)
1473 		tty->ops->cleanup(tty);
1474 
1475 	tty->magic = 0;
1476 	tty_driver_kref_put(driver);
1477 	module_put(driver->owner);
1478 
1479 	spin_lock(&tty_files_lock);
1480 	list_del_init(&tty->tty_files);
1481 	spin_unlock(&tty_files_lock);
1482 
1483 	put_pid(tty->pgrp);
1484 	put_pid(tty->session);
1485 	free_tty_struct(tty);
1486 }
1487 
1488 static void queue_release_one_tty(struct kref *kref)
1489 {
1490 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1491 
1492 	if (tty->ops->shutdown)
1493 		tty->ops->shutdown(tty);
1494 	else
1495 		tty_shutdown(tty);
1496 
1497 	/* The hangup queue is now free so we can reuse it rather than
1498 	   waste a chunk of memory for each port */
1499 	INIT_WORK(&tty->hangup_work, release_one_tty);
1500 	schedule_work(&tty->hangup_work);
1501 }
1502 
1503 /**
1504  *	tty_kref_put		-	release a tty kref
1505  *	@tty: tty device
1506  *
1507  *	Release a reference to a tty device and if need be let the kref
1508  *	layer destruct the object for us
1509  */
1510 
1511 void tty_kref_put(struct tty_struct *tty)
1512 {
1513 	if (tty)
1514 		kref_put(&tty->kref, queue_release_one_tty);
1515 }
1516 EXPORT_SYMBOL(tty_kref_put);
1517 
1518 /**
1519  *	release_tty		-	release tty structure memory
1520  *
1521  *	Release both @tty and a possible linked partner (think pty pair),
1522  *	and decrement the refcount of the backing module.
1523  *
1524  *	Locking:
1525  *		tty_mutex - sometimes only
1526  *		takes the file list lock internally when working on the list
1527  *	of ttys that the driver keeps.
1528  *		FIXME: should we require tty_mutex is held here ??
1529  *
1530  */
1531 static void release_tty(struct tty_struct *tty, int idx)
1532 {
1533 	/* This should always be true but check for the moment */
1534 	WARN_ON(tty->index != idx);
1535 
1536 	if (tty->link)
1537 		tty_kref_put(tty->link);
1538 	tty_kref_put(tty);
1539 }
1540 
1541 /**
1542  *	tty_release		-	vfs callback for close
1543  *	@inode: inode of tty
1544  *	@filp: file pointer for handle to tty
1545  *
1546  *	Called the last time each file handle is closed that references
1547  *	this tty. There may however be several such references.
1548  *
1549  *	Locking:
1550  *		Takes bkl. See tty_release_dev
1551  *
1552  * Even releasing the tty structures is a tricky business.. We have
1553  * to be very careful that the structures are all released at the
1554  * same time, as interrupts might otherwise get the wrong pointers.
1555  *
1556  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1557  * lead to double frees or releasing memory still in use.
1558  */
1559 
1560 int tty_release(struct inode *inode, struct file *filp)
1561 {
1562 	struct tty_struct *tty = file_tty(filp);
1563 	struct tty_struct *o_tty;
1564 	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1565 	int	devpts;
1566 	int	idx;
1567 	char	buf[64];
1568 
1569 	if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1570 		return 0;
1571 
1572 	tty_lock();
1573 	check_tty_count(tty, "tty_release_dev");
1574 
1575 	__tty_fasync(-1, filp, 0);
1576 
1577 	idx = tty->index;
1578 	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1579 		      tty->driver->subtype == PTY_TYPE_MASTER);
1580 	devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1581 	o_tty = tty->link;
1582 
1583 #ifdef TTY_PARANOIA_CHECK
1584 	if (idx < 0 || idx >= tty->driver->num) {
1585 		printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1586 				  "free (%s)\n", tty->name);
1587 		tty_unlock();
1588 		return 0;
1589 	}
1590 	if (!devpts) {
1591 		if (tty != tty->driver->ttys[idx]) {
1592 			tty_unlock();
1593 			printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1594 			       "for (%s)\n", idx, tty->name);
1595 			return 0;
1596 		}
1597 		if (tty->termios != tty->driver->termios[idx]) {
1598 			tty_unlock();
1599 			printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1600 			       "for (%s)\n",
1601 			       idx, tty->name);
1602 			return 0;
1603 		}
1604 	}
1605 #endif
1606 
1607 #ifdef TTY_DEBUG_HANGUP
1608 	printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1609 	       tty_name(tty, buf), tty->count);
1610 #endif
1611 
1612 #ifdef TTY_PARANOIA_CHECK
1613 	if (tty->driver->other &&
1614 	     !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1615 		if (o_tty != tty->driver->other->ttys[idx]) {
1616 			tty_unlock();
1617 			printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1618 					  "not o_tty for (%s)\n",
1619 			       idx, tty->name);
1620 			return 0 ;
1621 		}
1622 		if (o_tty->termios != tty->driver->other->termios[idx]) {
1623 			tty_unlock();
1624 			printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1625 					  "not o_termios for (%s)\n",
1626 			       idx, tty->name);
1627 			return 0;
1628 		}
1629 		if (o_tty->link != tty) {
1630 			tty_unlock();
1631 			printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1632 			return 0;
1633 		}
1634 	}
1635 #endif
1636 	if (tty->ops->close)
1637 		tty->ops->close(tty, filp);
1638 
1639 	tty_unlock();
1640 	/*
1641 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1642 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1643 	 * wait queues and kick everyone out _before_ actually starting to
1644 	 * close.  This ensures that we won't block while releasing the tty
1645 	 * structure.
1646 	 *
1647 	 * The test for the o_tty closing is necessary, since the master and
1648 	 * slave sides may close in any order.  If the slave side closes out
1649 	 * first, its count will be one, since the master side holds an open.
1650 	 * Thus this test wouldn't be triggered at the time the slave closes,
1651 	 * so we do it now.
1652 	 *
1653 	 * Note that it's possible for the tty to be opened again while we're
1654 	 * flushing out waiters.  By recalculating the closing flags before
1655 	 * each iteration we avoid any problems.
1656 	 */
1657 	while (1) {
1658 		/* Guard against races with tty->count changes elsewhere and
1659 		   opens on /dev/tty */
1660 
1661 		mutex_lock(&tty_mutex);
1662 		tty_lock();
1663 		tty_closing = tty->count <= 1;
1664 		o_tty_closing = o_tty &&
1665 			(o_tty->count <= (pty_master ? 1 : 0));
1666 		do_sleep = 0;
1667 
1668 		if (tty_closing) {
1669 			if (waitqueue_active(&tty->read_wait)) {
1670 				wake_up_poll(&tty->read_wait, POLLIN);
1671 				do_sleep++;
1672 			}
1673 			if (waitqueue_active(&tty->write_wait)) {
1674 				wake_up_poll(&tty->write_wait, POLLOUT);
1675 				do_sleep++;
1676 			}
1677 		}
1678 		if (o_tty_closing) {
1679 			if (waitqueue_active(&o_tty->read_wait)) {
1680 				wake_up_poll(&o_tty->read_wait, POLLIN);
1681 				do_sleep++;
1682 			}
1683 			if (waitqueue_active(&o_tty->write_wait)) {
1684 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1685 				do_sleep++;
1686 			}
1687 		}
1688 		if (!do_sleep)
1689 			break;
1690 
1691 		printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1692 				    "active!\n", tty_name(tty, buf));
1693 		tty_unlock();
1694 		mutex_unlock(&tty_mutex);
1695 		schedule();
1696 	}
1697 
1698 	/*
1699 	 * The closing flags are now consistent with the open counts on
1700 	 * both sides, and we've completed the last operation that could
1701 	 * block, so it's safe to proceed with closing.
1702 	 */
1703 	if (pty_master) {
1704 		if (--o_tty->count < 0) {
1705 			printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1706 					    "(%d) for %s\n",
1707 			       o_tty->count, tty_name(o_tty, buf));
1708 			o_tty->count = 0;
1709 		}
1710 	}
1711 	if (--tty->count < 0) {
1712 		printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1713 		       tty->count, tty_name(tty, buf));
1714 		tty->count = 0;
1715 	}
1716 
1717 	/*
1718 	 * We've decremented tty->count, so we need to remove this file
1719 	 * descriptor off the tty->tty_files list; this serves two
1720 	 * purposes:
1721 	 *  - check_tty_count sees the correct number of file descriptors
1722 	 *    associated with this tty.
1723 	 *  - do_tty_hangup no longer sees this file descriptor as
1724 	 *    something that needs to be handled for hangups.
1725 	 */
1726 	tty_del_file(filp);
1727 
1728 	/*
1729 	 * Perform some housekeeping before deciding whether to return.
1730 	 *
1731 	 * Set the TTY_CLOSING flag if this was the last open.  In the
1732 	 * case of a pty we may have to wait around for the other side
1733 	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1734 	 */
1735 	if (tty_closing)
1736 		set_bit(TTY_CLOSING, &tty->flags);
1737 	if (o_tty_closing)
1738 		set_bit(TTY_CLOSING, &o_tty->flags);
1739 
1740 	/*
1741 	 * If _either_ side is closing, make sure there aren't any
1742 	 * processes that still think tty or o_tty is their controlling
1743 	 * tty.
1744 	 */
1745 	if (tty_closing || o_tty_closing) {
1746 		read_lock(&tasklist_lock);
1747 		session_clear_tty(tty->session);
1748 		if (o_tty)
1749 			session_clear_tty(o_tty->session);
1750 		read_unlock(&tasklist_lock);
1751 	}
1752 
1753 	mutex_unlock(&tty_mutex);
1754 
1755 	/* check whether both sides are closing ... */
1756 	if (!tty_closing || (o_tty && !o_tty_closing)) {
1757 		tty_unlock();
1758 		return 0;
1759 	}
1760 
1761 #ifdef TTY_DEBUG_HANGUP
1762 	printk(KERN_DEBUG "freeing tty structure...");
1763 #endif
1764 	/*
1765 	 * Ask the line discipline code to release its structures
1766 	 */
1767 	tty_ldisc_release(tty, o_tty);
1768 	/*
1769 	 * The release_tty function takes care of the details of clearing
1770 	 * the slots and preserving the termios structure.
1771 	 */
1772 	release_tty(tty, idx);
1773 
1774 	/* Make this pty number available for reallocation */
1775 	if (devpts)
1776 		devpts_kill_index(inode, idx);
1777 	tty_unlock();
1778 	return 0;
1779 }
1780 
1781 /**
1782  *	tty_open		-	open a tty device
1783  *	@inode: inode of device file
1784  *	@filp: file pointer to tty
1785  *
1786  *	tty_open and tty_release keep up the tty count that contains the
1787  *	number of opens done on a tty. We cannot use the inode-count, as
1788  *	different inodes might point to the same tty.
1789  *
1790  *	Open-counting is needed for pty masters, as well as for keeping
1791  *	track of serial lines: DTR is dropped when the last close happens.
1792  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1793  *
1794  *	The termios state of a pty is reset on first open so that
1795  *	settings don't persist across reuse.
1796  *
1797  *	Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1798  *		 tty->count should protect the rest.
1799  *		 ->siglock protects ->signal/->sighand
1800  */
1801 
1802 static int tty_open(struct inode *inode, struct file *filp)
1803 {
1804 	struct tty_struct *tty = NULL;
1805 	int noctty, retval;
1806 	struct tty_driver *driver;
1807 	int index;
1808 	dev_t device = inode->i_rdev;
1809 	unsigned saved_flags = filp->f_flags;
1810 
1811 	nonseekable_open(inode, filp);
1812 
1813 retry_open:
1814 	noctty = filp->f_flags & O_NOCTTY;
1815 	index  = -1;
1816 	retval = 0;
1817 
1818 	mutex_lock(&tty_mutex);
1819 	tty_lock();
1820 
1821 	if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1822 		tty = get_current_tty();
1823 		if (!tty) {
1824 			tty_unlock();
1825 			mutex_unlock(&tty_mutex);
1826 			return -ENXIO;
1827 		}
1828 		driver = tty_driver_kref_get(tty->driver);
1829 		index = tty->index;
1830 		filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1831 		/* noctty = 1; */
1832 		/* FIXME: Should we take a driver reference ? */
1833 		tty_kref_put(tty);
1834 		goto got_driver;
1835 	}
1836 #ifdef CONFIG_VT
1837 	if (device == MKDEV(TTY_MAJOR, 0)) {
1838 		extern struct tty_driver *console_driver;
1839 		driver = tty_driver_kref_get(console_driver);
1840 		index = fg_console;
1841 		noctty = 1;
1842 		goto got_driver;
1843 	}
1844 #endif
1845 	if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1846 		struct tty_driver *console_driver = console_device(&index);
1847 		if (console_driver) {
1848 			driver = tty_driver_kref_get(console_driver);
1849 			if (driver) {
1850 				/* Don't let /dev/console block */
1851 				filp->f_flags |= O_NONBLOCK;
1852 				noctty = 1;
1853 				goto got_driver;
1854 			}
1855 		}
1856 		tty_unlock();
1857 		mutex_unlock(&tty_mutex);
1858 		return -ENODEV;
1859 	}
1860 
1861 	driver = get_tty_driver(device, &index);
1862 	if (!driver) {
1863 		tty_unlock();
1864 		mutex_unlock(&tty_mutex);
1865 		return -ENODEV;
1866 	}
1867 got_driver:
1868 	if (!tty) {
1869 		/* check whether we're reopening an existing tty */
1870 		tty = tty_driver_lookup_tty(driver, inode, index);
1871 
1872 		if (IS_ERR(tty)) {
1873 			tty_unlock();
1874 			mutex_unlock(&tty_mutex);
1875 			return PTR_ERR(tty);
1876 		}
1877 	}
1878 
1879 	if (tty) {
1880 		retval = tty_reopen(tty);
1881 		if (retval)
1882 			tty = ERR_PTR(retval);
1883 	} else
1884 		tty = tty_init_dev(driver, index, 0);
1885 
1886 	mutex_unlock(&tty_mutex);
1887 	tty_driver_kref_put(driver);
1888 	if (IS_ERR(tty)) {
1889 		tty_unlock();
1890 		return PTR_ERR(tty);
1891 	}
1892 
1893 	retval = tty_add_file(tty, filp);
1894 	if (retval) {
1895 		tty_unlock();
1896 		tty_release(inode, filp);
1897 		return retval;
1898 	}
1899 
1900 	check_tty_count(tty, "tty_open");
1901 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1902 	    tty->driver->subtype == PTY_TYPE_MASTER)
1903 		noctty = 1;
1904 #ifdef TTY_DEBUG_HANGUP
1905 	printk(KERN_DEBUG "opening %s...", tty->name);
1906 #endif
1907 	if (tty->ops->open)
1908 		retval = tty->ops->open(tty, filp);
1909 	else
1910 		retval = -ENODEV;
1911 	filp->f_flags = saved_flags;
1912 
1913 	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1914 						!capable(CAP_SYS_ADMIN))
1915 		retval = -EBUSY;
1916 
1917 	if (retval) {
1918 #ifdef TTY_DEBUG_HANGUP
1919 		printk(KERN_DEBUG "error %d in opening %s...", retval,
1920 		       tty->name);
1921 #endif
1922 		tty_unlock(); /* need to call tty_release without BTM */
1923 		tty_release(inode, filp);
1924 		if (retval != -ERESTARTSYS)
1925 			return retval;
1926 
1927 		if (signal_pending(current))
1928 			return retval;
1929 
1930 		schedule();
1931 		/*
1932 		 * Need to reset f_op in case a hangup happened.
1933 		 */
1934 		tty_lock();
1935 		if (filp->f_op == &hung_up_tty_fops)
1936 			filp->f_op = &tty_fops;
1937 		tty_unlock();
1938 		goto retry_open;
1939 	}
1940 	tty_unlock();
1941 
1942 
1943 	mutex_lock(&tty_mutex);
1944 	tty_lock();
1945 	spin_lock_irq(&current->sighand->siglock);
1946 	if (!noctty &&
1947 	    current->signal->leader &&
1948 	    !current->signal->tty &&
1949 	    tty->session == NULL)
1950 		__proc_set_tty(current, tty);
1951 	spin_unlock_irq(&current->sighand->siglock);
1952 	tty_unlock();
1953 	mutex_unlock(&tty_mutex);
1954 	return 0;
1955 }
1956 
1957 
1958 
1959 /**
1960  *	tty_poll	-	check tty status
1961  *	@filp: file being polled
1962  *	@wait: poll wait structures to update
1963  *
1964  *	Call the line discipline polling method to obtain the poll
1965  *	status of the device.
1966  *
1967  *	Locking: locks called line discipline but ldisc poll method
1968  *	may be re-entered freely by other callers.
1969  */
1970 
1971 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1972 {
1973 	struct tty_struct *tty = file_tty(filp);
1974 	struct tty_ldisc *ld;
1975 	int ret = 0;
1976 
1977 	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1978 		return 0;
1979 
1980 	ld = tty_ldisc_ref_wait(tty);
1981 	if (ld->ops->poll)
1982 		ret = (ld->ops->poll)(tty, filp, wait);
1983 	tty_ldisc_deref(ld);
1984 	return ret;
1985 }
1986 
1987 static int __tty_fasync(int fd, struct file *filp, int on)
1988 {
1989 	struct tty_struct *tty = file_tty(filp);
1990 	unsigned long flags;
1991 	int retval = 0;
1992 
1993 	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1994 		goto out;
1995 
1996 	retval = fasync_helper(fd, filp, on, &tty->fasync);
1997 	if (retval <= 0)
1998 		goto out;
1999 
2000 	if (on) {
2001 		enum pid_type type;
2002 		struct pid *pid;
2003 		if (!waitqueue_active(&tty->read_wait))
2004 			tty->minimum_to_wake = 1;
2005 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2006 		if (tty->pgrp) {
2007 			pid = tty->pgrp;
2008 			type = PIDTYPE_PGID;
2009 		} else {
2010 			pid = task_pid(current);
2011 			type = PIDTYPE_PID;
2012 		}
2013 		get_pid(pid);
2014 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2015 		retval = __f_setown(filp, pid, type, 0);
2016 		put_pid(pid);
2017 		if (retval)
2018 			goto out;
2019 	} else {
2020 		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2021 			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2022 	}
2023 	retval = 0;
2024 out:
2025 	return retval;
2026 }
2027 
2028 static int tty_fasync(int fd, struct file *filp, int on)
2029 {
2030 	int retval;
2031 	tty_lock();
2032 	retval = __tty_fasync(fd, filp, on);
2033 	tty_unlock();
2034 	return retval;
2035 }
2036 
2037 /**
2038  *	tiocsti			-	fake input character
2039  *	@tty: tty to fake input into
2040  *	@p: pointer to character
2041  *
2042  *	Fake input to a tty device. Does the necessary locking and
2043  *	input management.
2044  *
2045  *	FIXME: does not honour flow control ??
2046  *
2047  *	Locking:
2048  *		Called functions take tty_ldisc_lock
2049  *		current->signal->tty check is safe without locks
2050  *
2051  *	FIXME: may race normal receive processing
2052  */
2053 
2054 static int tiocsti(struct tty_struct *tty, char __user *p)
2055 {
2056 	char ch, mbz = 0;
2057 	struct tty_ldisc *ld;
2058 
2059 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2060 		return -EPERM;
2061 	if (get_user(ch, p))
2062 		return -EFAULT;
2063 	tty_audit_tiocsti(tty, ch);
2064 	ld = tty_ldisc_ref_wait(tty);
2065 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2066 	tty_ldisc_deref(ld);
2067 	return 0;
2068 }
2069 
2070 /**
2071  *	tiocgwinsz		-	implement window query ioctl
2072  *	@tty; tty
2073  *	@arg: user buffer for result
2074  *
2075  *	Copies the kernel idea of the window size into the user buffer.
2076  *
2077  *	Locking: tty->termios_mutex is taken to ensure the winsize data
2078  *		is consistent.
2079  */
2080 
2081 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2082 {
2083 	int err;
2084 
2085 	mutex_lock(&tty->termios_mutex);
2086 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2087 	mutex_unlock(&tty->termios_mutex);
2088 
2089 	return err ? -EFAULT: 0;
2090 }
2091 
2092 /**
2093  *	tty_do_resize		-	resize event
2094  *	@tty: tty being resized
2095  *	@rows: rows (character)
2096  *	@cols: cols (character)
2097  *
2098  *	Update the termios variables and send the necessary signals to
2099  *	peform a terminal resize correctly
2100  */
2101 
2102 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2103 {
2104 	struct pid *pgrp;
2105 	unsigned long flags;
2106 
2107 	/* Lock the tty */
2108 	mutex_lock(&tty->termios_mutex);
2109 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2110 		goto done;
2111 	/* Get the PID values and reference them so we can
2112 	   avoid holding the tty ctrl lock while sending signals */
2113 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2114 	pgrp = get_pid(tty->pgrp);
2115 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2116 
2117 	if (pgrp)
2118 		kill_pgrp(pgrp, SIGWINCH, 1);
2119 	put_pid(pgrp);
2120 
2121 	tty->winsize = *ws;
2122 done:
2123 	mutex_unlock(&tty->termios_mutex);
2124 	return 0;
2125 }
2126 
2127 /**
2128  *	tiocswinsz		-	implement window size set ioctl
2129  *	@tty; tty side of tty
2130  *	@arg: user buffer for result
2131  *
2132  *	Copies the user idea of the window size to the kernel. Traditionally
2133  *	this is just advisory information but for the Linux console it
2134  *	actually has driver level meaning and triggers a VC resize.
2135  *
2136  *	Locking:
2137  *		Driver dependent. The default do_resize method takes the
2138  *	tty termios mutex and ctrl_lock. The console takes its own lock
2139  *	then calls into the default method.
2140  */
2141 
2142 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2143 {
2144 	struct winsize tmp_ws;
2145 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2146 		return -EFAULT;
2147 
2148 	if (tty->ops->resize)
2149 		return tty->ops->resize(tty, &tmp_ws);
2150 	else
2151 		return tty_do_resize(tty, &tmp_ws);
2152 }
2153 
2154 /**
2155  *	tioccons	-	allow admin to move logical console
2156  *	@file: the file to become console
2157  *
2158  *	Allow the administrator to move the redirected console device
2159  *
2160  *	Locking: uses redirect_lock to guard the redirect information
2161  */
2162 
2163 static int tioccons(struct file *file)
2164 {
2165 	if (!capable(CAP_SYS_ADMIN))
2166 		return -EPERM;
2167 	if (file->f_op->write == redirected_tty_write) {
2168 		struct file *f;
2169 		spin_lock(&redirect_lock);
2170 		f = redirect;
2171 		redirect = NULL;
2172 		spin_unlock(&redirect_lock);
2173 		if (f)
2174 			fput(f);
2175 		return 0;
2176 	}
2177 	spin_lock(&redirect_lock);
2178 	if (redirect) {
2179 		spin_unlock(&redirect_lock);
2180 		return -EBUSY;
2181 	}
2182 	get_file(file);
2183 	redirect = file;
2184 	spin_unlock(&redirect_lock);
2185 	return 0;
2186 }
2187 
2188 /**
2189  *	fionbio		-	non blocking ioctl
2190  *	@file: file to set blocking value
2191  *	@p: user parameter
2192  *
2193  *	Historical tty interfaces had a blocking control ioctl before
2194  *	the generic functionality existed. This piece of history is preserved
2195  *	in the expected tty API of posix OS's.
2196  *
2197  *	Locking: none, the open file handle ensures it won't go away.
2198  */
2199 
2200 static int fionbio(struct file *file, int __user *p)
2201 {
2202 	int nonblock;
2203 
2204 	if (get_user(nonblock, p))
2205 		return -EFAULT;
2206 
2207 	spin_lock(&file->f_lock);
2208 	if (nonblock)
2209 		file->f_flags |= O_NONBLOCK;
2210 	else
2211 		file->f_flags &= ~O_NONBLOCK;
2212 	spin_unlock(&file->f_lock);
2213 	return 0;
2214 }
2215 
2216 /**
2217  *	tiocsctty	-	set controlling tty
2218  *	@tty: tty structure
2219  *	@arg: user argument
2220  *
2221  *	This ioctl is used to manage job control. It permits a session
2222  *	leader to set this tty as the controlling tty for the session.
2223  *
2224  *	Locking:
2225  *		Takes tty_mutex() to protect tty instance
2226  *		Takes tasklist_lock internally to walk sessions
2227  *		Takes ->siglock() when updating signal->tty
2228  */
2229 
2230 static int tiocsctty(struct tty_struct *tty, int arg)
2231 {
2232 	int ret = 0;
2233 	if (current->signal->leader && (task_session(current) == tty->session))
2234 		return ret;
2235 
2236 	mutex_lock(&tty_mutex);
2237 	/*
2238 	 * The process must be a session leader and
2239 	 * not have a controlling tty already.
2240 	 */
2241 	if (!current->signal->leader || current->signal->tty) {
2242 		ret = -EPERM;
2243 		goto unlock;
2244 	}
2245 
2246 	if (tty->session) {
2247 		/*
2248 		 * This tty is already the controlling
2249 		 * tty for another session group!
2250 		 */
2251 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2252 			/*
2253 			 * Steal it away
2254 			 */
2255 			read_lock(&tasklist_lock);
2256 			session_clear_tty(tty->session);
2257 			read_unlock(&tasklist_lock);
2258 		} else {
2259 			ret = -EPERM;
2260 			goto unlock;
2261 		}
2262 	}
2263 	proc_set_tty(current, tty);
2264 unlock:
2265 	mutex_unlock(&tty_mutex);
2266 	return ret;
2267 }
2268 
2269 /**
2270  *	tty_get_pgrp	-	return a ref counted pgrp pid
2271  *	@tty: tty to read
2272  *
2273  *	Returns a refcounted instance of the pid struct for the process
2274  *	group controlling the tty.
2275  */
2276 
2277 struct pid *tty_get_pgrp(struct tty_struct *tty)
2278 {
2279 	unsigned long flags;
2280 	struct pid *pgrp;
2281 
2282 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2283 	pgrp = get_pid(tty->pgrp);
2284 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2285 
2286 	return pgrp;
2287 }
2288 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2289 
2290 /**
2291  *	tiocgpgrp		-	get process group
2292  *	@tty: tty passed by user
2293  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2294  *	@p: returned pid
2295  *
2296  *	Obtain the process group of the tty. If there is no process group
2297  *	return an error.
2298  *
2299  *	Locking: none. Reference to current->signal->tty is safe.
2300  */
2301 
2302 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2303 {
2304 	struct pid *pid;
2305 	int ret;
2306 	/*
2307 	 * (tty == real_tty) is a cheap way of
2308 	 * testing if the tty is NOT a master pty.
2309 	 */
2310 	if (tty == real_tty && current->signal->tty != real_tty)
2311 		return -ENOTTY;
2312 	pid = tty_get_pgrp(real_tty);
2313 	ret =  put_user(pid_vnr(pid), p);
2314 	put_pid(pid);
2315 	return ret;
2316 }
2317 
2318 /**
2319  *	tiocspgrp		-	attempt to set process group
2320  *	@tty: tty passed by user
2321  *	@real_tty: tty side device matching tty passed by user
2322  *	@p: pid pointer
2323  *
2324  *	Set the process group of the tty to the session passed. Only
2325  *	permitted where the tty session is our session.
2326  *
2327  *	Locking: RCU, ctrl lock
2328  */
2329 
2330 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2331 {
2332 	struct pid *pgrp;
2333 	pid_t pgrp_nr;
2334 	int retval = tty_check_change(real_tty);
2335 	unsigned long flags;
2336 
2337 	if (retval == -EIO)
2338 		return -ENOTTY;
2339 	if (retval)
2340 		return retval;
2341 	if (!current->signal->tty ||
2342 	    (current->signal->tty != real_tty) ||
2343 	    (real_tty->session != task_session(current)))
2344 		return -ENOTTY;
2345 	if (get_user(pgrp_nr, p))
2346 		return -EFAULT;
2347 	if (pgrp_nr < 0)
2348 		return -EINVAL;
2349 	rcu_read_lock();
2350 	pgrp = find_vpid(pgrp_nr);
2351 	retval = -ESRCH;
2352 	if (!pgrp)
2353 		goto out_unlock;
2354 	retval = -EPERM;
2355 	if (session_of_pgrp(pgrp) != task_session(current))
2356 		goto out_unlock;
2357 	retval = 0;
2358 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2359 	put_pid(real_tty->pgrp);
2360 	real_tty->pgrp = get_pid(pgrp);
2361 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2362 out_unlock:
2363 	rcu_read_unlock();
2364 	return retval;
2365 }
2366 
2367 /**
2368  *	tiocgsid		-	get session id
2369  *	@tty: tty passed by user
2370  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2371  *	@p: pointer to returned session id
2372  *
2373  *	Obtain the session id of the tty. If there is no session
2374  *	return an error.
2375  *
2376  *	Locking: none. Reference to current->signal->tty is safe.
2377  */
2378 
2379 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2380 {
2381 	/*
2382 	 * (tty == real_tty) is a cheap way of
2383 	 * testing if the tty is NOT a master pty.
2384 	*/
2385 	if (tty == real_tty && current->signal->tty != real_tty)
2386 		return -ENOTTY;
2387 	if (!real_tty->session)
2388 		return -ENOTTY;
2389 	return put_user(pid_vnr(real_tty->session), p);
2390 }
2391 
2392 /**
2393  *	tiocsetd	-	set line discipline
2394  *	@tty: tty device
2395  *	@p: pointer to user data
2396  *
2397  *	Set the line discipline according to user request.
2398  *
2399  *	Locking: see tty_set_ldisc, this function is just a helper
2400  */
2401 
2402 static int tiocsetd(struct tty_struct *tty, int __user *p)
2403 {
2404 	int ldisc;
2405 	int ret;
2406 
2407 	if (get_user(ldisc, p))
2408 		return -EFAULT;
2409 
2410 	ret = tty_set_ldisc(tty, ldisc);
2411 
2412 	return ret;
2413 }
2414 
2415 /**
2416  *	send_break	-	performed time break
2417  *	@tty: device to break on
2418  *	@duration: timeout in mS
2419  *
2420  *	Perform a timed break on hardware that lacks its own driver level
2421  *	timed break functionality.
2422  *
2423  *	Locking:
2424  *		atomic_write_lock serializes
2425  *
2426  */
2427 
2428 static int send_break(struct tty_struct *tty, unsigned int duration)
2429 {
2430 	int retval;
2431 
2432 	if (tty->ops->break_ctl == NULL)
2433 		return 0;
2434 
2435 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2436 		retval = tty->ops->break_ctl(tty, duration);
2437 	else {
2438 		/* Do the work ourselves */
2439 		if (tty_write_lock(tty, 0) < 0)
2440 			return -EINTR;
2441 		retval = tty->ops->break_ctl(tty, -1);
2442 		if (retval)
2443 			goto out;
2444 		if (!signal_pending(current))
2445 			msleep_interruptible(duration);
2446 		retval = tty->ops->break_ctl(tty, 0);
2447 out:
2448 		tty_write_unlock(tty);
2449 		if (signal_pending(current))
2450 			retval = -EINTR;
2451 	}
2452 	return retval;
2453 }
2454 
2455 /**
2456  *	tty_tiocmget		-	get modem status
2457  *	@tty: tty device
2458  *	@file: user file pointer
2459  *	@p: pointer to result
2460  *
2461  *	Obtain the modem status bits from the tty driver if the feature
2462  *	is supported. Return -EINVAL if it is not available.
2463  *
2464  *	Locking: none (up to the driver)
2465  */
2466 
2467 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2468 {
2469 	int retval = -EINVAL;
2470 
2471 	if (tty->ops->tiocmget) {
2472 		retval = tty->ops->tiocmget(tty);
2473 
2474 		if (retval >= 0)
2475 			retval = put_user(retval, p);
2476 	}
2477 	return retval;
2478 }
2479 
2480 /**
2481  *	tty_tiocmset		-	set modem status
2482  *	@tty: tty device
2483  *	@cmd: command - clear bits, set bits or set all
2484  *	@p: pointer to desired bits
2485  *
2486  *	Set the modem status bits from the tty driver if the feature
2487  *	is supported. Return -EINVAL if it is not available.
2488  *
2489  *	Locking: none (up to the driver)
2490  */
2491 
2492 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2493 	     unsigned __user *p)
2494 {
2495 	int retval;
2496 	unsigned int set, clear, val;
2497 
2498 	if (tty->ops->tiocmset == NULL)
2499 		return -EINVAL;
2500 
2501 	retval = get_user(val, p);
2502 	if (retval)
2503 		return retval;
2504 	set = clear = 0;
2505 	switch (cmd) {
2506 	case TIOCMBIS:
2507 		set = val;
2508 		break;
2509 	case TIOCMBIC:
2510 		clear = val;
2511 		break;
2512 	case TIOCMSET:
2513 		set = val;
2514 		clear = ~val;
2515 		break;
2516 	}
2517 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2518 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2519 	return tty->ops->tiocmset(tty, set, clear);
2520 }
2521 
2522 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2523 {
2524 	int retval = -EINVAL;
2525 	struct serial_icounter_struct icount;
2526 	memset(&icount, 0, sizeof(icount));
2527 	if (tty->ops->get_icount)
2528 		retval = tty->ops->get_icount(tty, &icount);
2529 	if (retval != 0)
2530 		return retval;
2531 	if (copy_to_user(arg, &icount, sizeof(icount)))
2532 		return -EFAULT;
2533 	return 0;
2534 }
2535 
2536 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2537 {
2538 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2539 	    tty->driver->subtype == PTY_TYPE_MASTER)
2540 		tty = tty->link;
2541 	return tty;
2542 }
2543 EXPORT_SYMBOL(tty_pair_get_tty);
2544 
2545 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2546 {
2547 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2548 	    tty->driver->subtype == PTY_TYPE_MASTER)
2549 	    return tty;
2550 	return tty->link;
2551 }
2552 EXPORT_SYMBOL(tty_pair_get_pty);
2553 
2554 /*
2555  * Split this up, as gcc can choke on it otherwise..
2556  */
2557 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2558 {
2559 	struct tty_struct *tty = file_tty(file);
2560 	struct tty_struct *real_tty;
2561 	void __user *p = (void __user *)arg;
2562 	int retval;
2563 	struct tty_ldisc *ld;
2564 	struct inode *inode = file->f_dentry->d_inode;
2565 
2566 	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2567 		return -EINVAL;
2568 
2569 	real_tty = tty_pair_get_tty(tty);
2570 
2571 	/*
2572 	 * Factor out some common prep work
2573 	 */
2574 	switch (cmd) {
2575 	case TIOCSETD:
2576 	case TIOCSBRK:
2577 	case TIOCCBRK:
2578 	case TCSBRK:
2579 	case TCSBRKP:
2580 		retval = tty_check_change(tty);
2581 		if (retval)
2582 			return retval;
2583 		if (cmd != TIOCCBRK) {
2584 			tty_wait_until_sent(tty, 0);
2585 			if (signal_pending(current))
2586 				return -EINTR;
2587 		}
2588 		break;
2589 	}
2590 
2591 	/*
2592 	 *	Now do the stuff.
2593 	 */
2594 	switch (cmd) {
2595 	case TIOCSTI:
2596 		return tiocsti(tty, p);
2597 	case TIOCGWINSZ:
2598 		return tiocgwinsz(real_tty, p);
2599 	case TIOCSWINSZ:
2600 		return tiocswinsz(real_tty, p);
2601 	case TIOCCONS:
2602 		return real_tty != tty ? -EINVAL : tioccons(file);
2603 	case FIONBIO:
2604 		return fionbio(file, p);
2605 	case TIOCEXCL:
2606 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2607 		return 0;
2608 	case TIOCNXCL:
2609 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2610 		return 0;
2611 	case TIOCNOTTY:
2612 		if (current->signal->tty != tty)
2613 			return -ENOTTY;
2614 		no_tty();
2615 		return 0;
2616 	case TIOCSCTTY:
2617 		return tiocsctty(tty, arg);
2618 	case TIOCGPGRP:
2619 		return tiocgpgrp(tty, real_tty, p);
2620 	case TIOCSPGRP:
2621 		return tiocspgrp(tty, real_tty, p);
2622 	case TIOCGSID:
2623 		return tiocgsid(tty, real_tty, p);
2624 	case TIOCGETD:
2625 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2626 	case TIOCSETD:
2627 		return tiocsetd(tty, p);
2628 	case TIOCVHANGUP:
2629 		if (!capable(CAP_SYS_ADMIN))
2630 			return -EPERM;
2631 		tty_vhangup(tty);
2632 		return 0;
2633 	case TIOCGDEV:
2634 	{
2635 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2636 		return put_user(ret, (unsigned int __user *)p);
2637 	}
2638 	/*
2639 	 * Break handling
2640 	 */
2641 	case TIOCSBRK:	/* Turn break on, unconditionally */
2642 		if (tty->ops->break_ctl)
2643 			return tty->ops->break_ctl(tty, -1);
2644 		return 0;
2645 	case TIOCCBRK:	/* Turn break off, unconditionally */
2646 		if (tty->ops->break_ctl)
2647 			return tty->ops->break_ctl(tty, 0);
2648 		return 0;
2649 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2650 		/* non-zero arg means wait for all output data
2651 		 * to be sent (performed above) but don't send break.
2652 		 * This is used by the tcdrain() termios function.
2653 		 */
2654 		if (!arg)
2655 			return send_break(tty, 250);
2656 		return 0;
2657 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2658 		return send_break(tty, arg ? arg*100 : 250);
2659 
2660 	case TIOCMGET:
2661 		return tty_tiocmget(tty, p);
2662 	case TIOCMSET:
2663 	case TIOCMBIC:
2664 	case TIOCMBIS:
2665 		return tty_tiocmset(tty, cmd, p);
2666 	case TIOCGICOUNT:
2667 		retval = tty_tiocgicount(tty, p);
2668 		/* For the moment allow fall through to the old method */
2669         	if (retval != -EINVAL)
2670 			return retval;
2671 		break;
2672 	case TCFLSH:
2673 		switch (arg) {
2674 		case TCIFLUSH:
2675 		case TCIOFLUSH:
2676 		/* flush tty buffer and allow ldisc to process ioctl */
2677 			tty_buffer_flush(tty);
2678 			break;
2679 		}
2680 		break;
2681 	}
2682 	if (tty->ops->ioctl) {
2683 		retval = (tty->ops->ioctl)(tty, cmd, arg);
2684 		if (retval != -ENOIOCTLCMD)
2685 			return retval;
2686 	}
2687 	ld = tty_ldisc_ref_wait(tty);
2688 	retval = -EINVAL;
2689 	if (ld->ops->ioctl) {
2690 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2691 		if (retval == -ENOIOCTLCMD)
2692 			retval = -EINVAL;
2693 	}
2694 	tty_ldisc_deref(ld);
2695 	return retval;
2696 }
2697 
2698 #ifdef CONFIG_COMPAT
2699 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2700 				unsigned long arg)
2701 {
2702 	struct inode *inode = file->f_dentry->d_inode;
2703 	struct tty_struct *tty = file_tty(file);
2704 	struct tty_ldisc *ld;
2705 	int retval = -ENOIOCTLCMD;
2706 
2707 	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2708 		return -EINVAL;
2709 
2710 	if (tty->ops->compat_ioctl) {
2711 		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2712 		if (retval != -ENOIOCTLCMD)
2713 			return retval;
2714 	}
2715 
2716 	ld = tty_ldisc_ref_wait(tty);
2717 	if (ld->ops->compat_ioctl)
2718 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2719 	tty_ldisc_deref(ld);
2720 
2721 	return retval;
2722 }
2723 #endif
2724 
2725 /*
2726  * This implements the "Secure Attention Key" ---  the idea is to
2727  * prevent trojan horses by killing all processes associated with this
2728  * tty when the user hits the "Secure Attention Key".  Required for
2729  * super-paranoid applications --- see the Orange Book for more details.
2730  *
2731  * This code could be nicer; ideally it should send a HUP, wait a few
2732  * seconds, then send a INT, and then a KILL signal.  But you then
2733  * have to coordinate with the init process, since all processes associated
2734  * with the current tty must be dead before the new getty is allowed
2735  * to spawn.
2736  *
2737  * Now, if it would be correct ;-/ The current code has a nasty hole -
2738  * it doesn't catch files in flight. We may send the descriptor to ourselves
2739  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2740  *
2741  * Nasty bug: do_SAK is being called in interrupt context.  This can
2742  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2743  */
2744 void __do_SAK(struct tty_struct *tty)
2745 {
2746 #ifdef TTY_SOFT_SAK
2747 	tty_hangup(tty);
2748 #else
2749 	struct task_struct *g, *p;
2750 	struct pid *session;
2751 	int		i;
2752 	struct file	*filp;
2753 	struct fdtable *fdt;
2754 
2755 	if (!tty)
2756 		return;
2757 	session = tty->session;
2758 
2759 	tty_ldisc_flush(tty);
2760 
2761 	tty_driver_flush_buffer(tty);
2762 
2763 	read_lock(&tasklist_lock);
2764 	/* Kill the entire session */
2765 	do_each_pid_task(session, PIDTYPE_SID, p) {
2766 		printk(KERN_NOTICE "SAK: killed process %d"
2767 			" (%s): task_session(p)==tty->session\n",
2768 			task_pid_nr(p), p->comm);
2769 		send_sig(SIGKILL, p, 1);
2770 	} while_each_pid_task(session, PIDTYPE_SID, p);
2771 	/* Now kill any processes that happen to have the
2772 	 * tty open.
2773 	 */
2774 	do_each_thread(g, p) {
2775 		if (p->signal->tty == tty) {
2776 			printk(KERN_NOTICE "SAK: killed process %d"
2777 			    " (%s): task_session(p)==tty->session\n",
2778 			    task_pid_nr(p), p->comm);
2779 			send_sig(SIGKILL, p, 1);
2780 			continue;
2781 		}
2782 		task_lock(p);
2783 		if (p->files) {
2784 			/*
2785 			 * We don't take a ref to the file, so we must
2786 			 * hold ->file_lock instead.
2787 			 */
2788 			spin_lock(&p->files->file_lock);
2789 			fdt = files_fdtable(p->files);
2790 			for (i = 0; i < fdt->max_fds; i++) {
2791 				filp = fcheck_files(p->files, i);
2792 				if (!filp)
2793 					continue;
2794 				if (filp->f_op->read == tty_read &&
2795 				    file_tty(filp) == tty) {
2796 					printk(KERN_NOTICE "SAK: killed process %d"
2797 					    " (%s): fd#%d opened to the tty\n",
2798 					    task_pid_nr(p), p->comm, i);
2799 					force_sig(SIGKILL, p);
2800 					break;
2801 				}
2802 			}
2803 			spin_unlock(&p->files->file_lock);
2804 		}
2805 		task_unlock(p);
2806 	} while_each_thread(g, p);
2807 	read_unlock(&tasklist_lock);
2808 #endif
2809 }
2810 
2811 static void do_SAK_work(struct work_struct *work)
2812 {
2813 	struct tty_struct *tty =
2814 		container_of(work, struct tty_struct, SAK_work);
2815 	__do_SAK(tty);
2816 }
2817 
2818 /*
2819  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2820  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2821  * the values which we write to it will be identical to the values which it
2822  * already has. --akpm
2823  */
2824 void do_SAK(struct tty_struct *tty)
2825 {
2826 	if (!tty)
2827 		return;
2828 	schedule_work(&tty->SAK_work);
2829 }
2830 
2831 EXPORT_SYMBOL(do_SAK);
2832 
2833 static int dev_match_devt(struct device *dev, void *data)
2834 {
2835 	dev_t *devt = data;
2836 	return dev->devt == *devt;
2837 }
2838 
2839 /* Must put_device() after it's unused! */
2840 static struct device *tty_get_device(struct tty_struct *tty)
2841 {
2842 	dev_t devt = tty_devnum(tty);
2843 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2844 }
2845 
2846 
2847 /**
2848  *	initialize_tty_struct
2849  *	@tty: tty to initialize
2850  *
2851  *	This subroutine initializes a tty structure that has been newly
2852  *	allocated.
2853  *
2854  *	Locking: none - tty in question must not be exposed at this point
2855  */
2856 
2857 void initialize_tty_struct(struct tty_struct *tty,
2858 		struct tty_driver *driver, int idx)
2859 {
2860 	memset(tty, 0, sizeof(struct tty_struct));
2861 	kref_init(&tty->kref);
2862 	tty->magic = TTY_MAGIC;
2863 	tty_ldisc_init(tty);
2864 	tty->session = NULL;
2865 	tty->pgrp = NULL;
2866 	tty->overrun_time = jiffies;
2867 	tty->buf.head = tty->buf.tail = NULL;
2868 	tty_buffer_init(tty);
2869 	mutex_init(&tty->termios_mutex);
2870 	mutex_init(&tty->ldisc_mutex);
2871 	init_waitqueue_head(&tty->write_wait);
2872 	init_waitqueue_head(&tty->read_wait);
2873 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2874 	mutex_init(&tty->atomic_read_lock);
2875 	mutex_init(&tty->atomic_write_lock);
2876 	mutex_init(&tty->output_lock);
2877 	mutex_init(&tty->echo_lock);
2878 	spin_lock_init(&tty->read_lock);
2879 	spin_lock_init(&tty->ctrl_lock);
2880 	INIT_LIST_HEAD(&tty->tty_files);
2881 	INIT_WORK(&tty->SAK_work, do_SAK_work);
2882 
2883 	tty->driver = driver;
2884 	tty->ops = driver->ops;
2885 	tty->index = idx;
2886 	tty_line_name(driver, idx, tty->name);
2887 	tty->dev = tty_get_device(tty);
2888 }
2889 
2890 /**
2891  *	deinitialize_tty_struct
2892  *	@tty: tty to deinitialize
2893  *
2894  *	This subroutine deinitializes a tty structure that has been newly
2895  *	allocated but tty_release cannot be called on that yet.
2896  *
2897  *	Locking: none - tty in question must not be exposed at this point
2898  */
2899 void deinitialize_tty_struct(struct tty_struct *tty)
2900 {
2901 	tty_ldisc_deinit(tty);
2902 }
2903 
2904 /**
2905  *	tty_put_char	-	write one character to a tty
2906  *	@tty: tty
2907  *	@ch: character
2908  *
2909  *	Write one byte to the tty using the provided put_char method
2910  *	if present. Returns the number of characters successfully output.
2911  *
2912  *	Note: the specific put_char operation in the driver layer may go
2913  *	away soon. Don't call it directly, use this method
2914  */
2915 
2916 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2917 {
2918 	if (tty->ops->put_char)
2919 		return tty->ops->put_char(tty, ch);
2920 	return tty->ops->write(tty, &ch, 1);
2921 }
2922 EXPORT_SYMBOL_GPL(tty_put_char);
2923 
2924 struct class *tty_class;
2925 
2926 /**
2927  *	tty_register_device - register a tty device
2928  *	@driver: the tty driver that describes the tty device
2929  *	@index: the index in the tty driver for this tty device
2930  *	@device: a struct device that is associated with this tty device.
2931  *		This field is optional, if there is no known struct device
2932  *		for this tty device it can be set to NULL safely.
2933  *
2934  *	Returns a pointer to the struct device for this tty device
2935  *	(or ERR_PTR(-EFOO) on error).
2936  *
2937  *	This call is required to be made to register an individual tty device
2938  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2939  *	that bit is not set, this function should not be called by a tty
2940  *	driver.
2941  *
2942  *	Locking: ??
2943  */
2944 
2945 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2946 				   struct device *device)
2947 {
2948 	char name[64];
2949 	dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2950 
2951 	if (index >= driver->num) {
2952 		printk(KERN_ERR "Attempt to register invalid tty line number "
2953 		       " (%d).\n", index);
2954 		return ERR_PTR(-EINVAL);
2955 	}
2956 
2957 	if (driver->type == TTY_DRIVER_TYPE_PTY)
2958 		pty_line_name(driver, index, name);
2959 	else
2960 		tty_line_name(driver, index, name);
2961 
2962 	return device_create(tty_class, device, dev, NULL, name);
2963 }
2964 EXPORT_SYMBOL(tty_register_device);
2965 
2966 /**
2967  * 	tty_unregister_device - unregister a tty device
2968  * 	@driver: the tty driver that describes the tty device
2969  * 	@index: the index in the tty driver for this tty device
2970  *
2971  * 	If a tty device is registered with a call to tty_register_device() then
2972  *	this function must be called when the tty device is gone.
2973  *
2974  *	Locking: ??
2975  */
2976 
2977 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2978 {
2979 	device_destroy(tty_class,
2980 		MKDEV(driver->major, driver->minor_start) + index);
2981 }
2982 EXPORT_SYMBOL(tty_unregister_device);
2983 
2984 struct tty_driver *alloc_tty_driver(int lines)
2985 {
2986 	struct tty_driver *driver;
2987 
2988 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2989 	if (driver) {
2990 		kref_init(&driver->kref);
2991 		driver->magic = TTY_DRIVER_MAGIC;
2992 		driver->num = lines;
2993 		/* later we'll move allocation of tables here */
2994 	}
2995 	return driver;
2996 }
2997 EXPORT_SYMBOL(alloc_tty_driver);
2998 
2999 static void destruct_tty_driver(struct kref *kref)
3000 {
3001 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3002 	int i;
3003 	struct ktermios *tp;
3004 	void *p;
3005 
3006 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3007 		/*
3008 		 * Free the termios and termios_locked structures because
3009 		 * we don't want to get memory leaks when modular tty
3010 		 * drivers are removed from the kernel.
3011 		 */
3012 		for (i = 0; i < driver->num; i++) {
3013 			tp = driver->termios[i];
3014 			if (tp) {
3015 				driver->termios[i] = NULL;
3016 				kfree(tp);
3017 			}
3018 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3019 				tty_unregister_device(driver, i);
3020 		}
3021 		p = driver->ttys;
3022 		proc_tty_unregister_driver(driver);
3023 		driver->ttys = NULL;
3024 		driver->termios = NULL;
3025 		kfree(p);
3026 		cdev_del(&driver->cdev);
3027 	}
3028 	kfree(driver);
3029 }
3030 
3031 void tty_driver_kref_put(struct tty_driver *driver)
3032 {
3033 	kref_put(&driver->kref, destruct_tty_driver);
3034 }
3035 EXPORT_SYMBOL(tty_driver_kref_put);
3036 
3037 void tty_set_operations(struct tty_driver *driver,
3038 			const struct tty_operations *op)
3039 {
3040 	driver->ops = op;
3041 };
3042 EXPORT_SYMBOL(tty_set_operations);
3043 
3044 void put_tty_driver(struct tty_driver *d)
3045 {
3046 	tty_driver_kref_put(d);
3047 }
3048 EXPORT_SYMBOL(put_tty_driver);
3049 
3050 /*
3051  * Called by a tty driver to register itself.
3052  */
3053 int tty_register_driver(struct tty_driver *driver)
3054 {
3055 	int error;
3056 	int i;
3057 	dev_t dev;
3058 	void **p = NULL;
3059 	struct device *d;
3060 
3061 	if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3062 		p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3063 		if (!p)
3064 			return -ENOMEM;
3065 	}
3066 
3067 	if (!driver->major) {
3068 		error = alloc_chrdev_region(&dev, driver->minor_start,
3069 						driver->num, driver->name);
3070 		if (!error) {
3071 			driver->major = MAJOR(dev);
3072 			driver->minor_start = MINOR(dev);
3073 		}
3074 	} else {
3075 		dev = MKDEV(driver->major, driver->minor_start);
3076 		error = register_chrdev_region(dev, driver->num, driver->name);
3077 	}
3078 	if (error < 0) {
3079 		kfree(p);
3080 		return error;
3081 	}
3082 
3083 	if (p) {
3084 		driver->ttys = (struct tty_struct **)p;
3085 		driver->termios = (struct ktermios **)(p + driver->num);
3086 	} else {
3087 		driver->ttys = NULL;
3088 		driver->termios = NULL;
3089 	}
3090 
3091 	cdev_init(&driver->cdev, &tty_fops);
3092 	driver->cdev.owner = driver->owner;
3093 	error = cdev_add(&driver->cdev, dev, driver->num);
3094 	if (error) {
3095 		unregister_chrdev_region(dev, driver->num);
3096 		driver->ttys = NULL;
3097 		driver->termios = NULL;
3098 		kfree(p);
3099 		return error;
3100 	}
3101 
3102 	mutex_lock(&tty_mutex);
3103 	list_add(&driver->tty_drivers, &tty_drivers);
3104 	mutex_unlock(&tty_mutex);
3105 
3106 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3107 		for (i = 0; i < driver->num; i++) {
3108 			d = tty_register_device(driver, i, NULL);
3109 			if (IS_ERR(d)) {
3110 				error = PTR_ERR(d);
3111 				goto err;
3112 			}
3113 		}
3114 	}
3115 	proc_tty_register_driver(driver);
3116 	driver->flags |= TTY_DRIVER_INSTALLED;
3117 	return 0;
3118 
3119 err:
3120 	for (i--; i >= 0; i--)
3121 		tty_unregister_device(driver, i);
3122 
3123 	mutex_lock(&tty_mutex);
3124 	list_del(&driver->tty_drivers);
3125 	mutex_unlock(&tty_mutex);
3126 
3127 	unregister_chrdev_region(dev, driver->num);
3128 	driver->ttys = NULL;
3129 	driver->termios = NULL;
3130 	kfree(p);
3131 	return error;
3132 }
3133 
3134 EXPORT_SYMBOL(tty_register_driver);
3135 
3136 /*
3137  * Called by a tty driver to unregister itself.
3138  */
3139 int tty_unregister_driver(struct tty_driver *driver)
3140 {
3141 #if 0
3142 	/* FIXME */
3143 	if (driver->refcount)
3144 		return -EBUSY;
3145 #endif
3146 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3147 				driver->num);
3148 	mutex_lock(&tty_mutex);
3149 	list_del(&driver->tty_drivers);
3150 	mutex_unlock(&tty_mutex);
3151 	return 0;
3152 }
3153 
3154 EXPORT_SYMBOL(tty_unregister_driver);
3155 
3156 dev_t tty_devnum(struct tty_struct *tty)
3157 {
3158 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3159 }
3160 EXPORT_SYMBOL(tty_devnum);
3161 
3162 void proc_clear_tty(struct task_struct *p)
3163 {
3164 	unsigned long flags;
3165 	struct tty_struct *tty;
3166 	spin_lock_irqsave(&p->sighand->siglock, flags);
3167 	tty = p->signal->tty;
3168 	p->signal->tty = NULL;
3169 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3170 	tty_kref_put(tty);
3171 }
3172 
3173 /* Called under the sighand lock */
3174 
3175 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3176 {
3177 	if (tty) {
3178 		unsigned long flags;
3179 		/* We should not have a session or pgrp to put here but.... */
3180 		spin_lock_irqsave(&tty->ctrl_lock, flags);
3181 		put_pid(tty->session);
3182 		put_pid(tty->pgrp);
3183 		tty->pgrp = get_pid(task_pgrp(tsk));
3184 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3185 		tty->session = get_pid(task_session(tsk));
3186 		if (tsk->signal->tty) {
3187 			printk(KERN_DEBUG "tty not NULL!!\n");
3188 			tty_kref_put(tsk->signal->tty);
3189 		}
3190 	}
3191 	put_pid(tsk->signal->tty_old_pgrp);
3192 	tsk->signal->tty = tty_kref_get(tty);
3193 	tsk->signal->tty_old_pgrp = NULL;
3194 }
3195 
3196 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3197 {
3198 	spin_lock_irq(&tsk->sighand->siglock);
3199 	__proc_set_tty(tsk, tty);
3200 	spin_unlock_irq(&tsk->sighand->siglock);
3201 }
3202 
3203 struct tty_struct *get_current_tty(void)
3204 {
3205 	struct tty_struct *tty;
3206 	unsigned long flags;
3207 
3208 	spin_lock_irqsave(&current->sighand->siglock, flags);
3209 	tty = tty_kref_get(current->signal->tty);
3210 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3211 	return tty;
3212 }
3213 EXPORT_SYMBOL_GPL(get_current_tty);
3214 
3215 void tty_default_fops(struct file_operations *fops)
3216 {
3217 	*fops = tty_fops;
3218 }
3219 
3220 /*
3221  * Initialize the console device. This is called *early*, so
3222  * we can't necessarily depend on lots of kernel help here.
3223  * Just do some early initializations, and do the complex setup
3224  * later.
3225  */
3226 void __init console_init(void)
3227 {
3228 	initcall_t *call;
3229 
3230 	/* Setup the default TTY line discipline. */
3231 	tty_ldisc_begin();
3232 
3233 	/*
3234 	 * set up the console device so that later boot sequences can
3235 	 * inform about problems etc..
3236 	 */
3237 	call = __con_initcall_start;
3238 	while (call < __con_initcall_end) {
3239 		(*call)();
3240 		call++;
3241 	}
3242 }
3243 
3244 static char *tty_devnode(struct device *dev, mode_t *mode)
3245 {
3246 	if (!mode)
3247 		return NULL;
3248 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3249 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3250 		*mode = 0666;
3251 	return NULL;
3252 }
3253 
3254 static int __init tty_class_init(void)
3255 {
3256 	tty_class = class_create(THIS_MODULE, "tty");
3257 	if (IS_ERR(tty_class))
3258 		return PTR_ERR(tty_class);
3259 	tty_class->devnode = tty_devnode;
3260 	return 0;
3261 }
3262 
3263 postcore_initcall(tty_class_init);
3264 
3265 /* 3/2004 jmc: why do these devices exist? */
3266 static struct cdev tty_cdev, console_cdev;
3267 
3268 static ssize_t show_cons_active(struct device *dev,
3269 				struct device_attribute *attr, char *buf)
3270 {
3271 	struct console *cs[16];
3272 	int i = 0;
3273 	struct console *c;
3274 	ssize_t count = 0;
3275 
3276 	console_lock();
3277 	for_each_console(c) {
3278 		if (!c->device)
3279 			continue;
3280 		if (!c->write)
3281 			continue;
3282 		if ((c->flags & CON_ENABLED) == 0)
3283 			continue;
3284 		cs[i++] = c;
3285 		if (i >= ARRAY_SIZE(cs))
3286 			break;
3287 	}
3288 	while (i--)
3289 		count += sprintf(buf + count, "%s%d%c",
3290 				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3291 	console_unlock();
3292 
3293 	return count;
3294 }
3295 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3296 
3297 static struct device *consdev;
3298 
3299 void console_sysfs_notify(void)
3300 {
3301 	if (consdev)
3302 		sysfs_notify(&consdev->kobj, NULL, "active");
3303 }
3304 
3305 /*
3306  * Ok, now we can initialize the rest of the tty devices and can count
3307  * on memory allocations, interrupts etc..
3308  */
3309 int __init tty_init(void)
3310 {
3311 	cdev_init(&tty_cdev, &tty_fops);
3312 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3313 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3314 		panic("Couldn't register /dev/tty driver\n");
3315 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3316 
3317 	cdev_init(&console_cdev, &console_fops);
3318 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3319 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3320 		panic("Couldn't register /dev/console driver\n");
3321 	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3322 			      "console");
3323 	if (IS_ERR(consdev))
3324 		consdev = NULL;
3325 	else
3326 		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3327 
3328 #ifdef CONFIG_VT
3329 	vty_init(&console_fops);
3330 #endif
3331 	return 0;
3332 }
3333 
3334