xref: /openbmc/linux/drivers/tty/tty_io.c (revision 97da55fc)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112 
113 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
114 	.c_iflag = ICRNL | IXON,
115 	.c_oflag = OPOST | ONLCR,
116 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 		   ECHOCTL | ECHOKE | IEXTEN,
119 	.c_cc = INIT_C_CC,
120 	.c_ispeed = 38400,
121 	.c_ospeed = 38400
122 };
123 
124 EXPORT_SYMBOL(tty_std_termios);
125 
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129 
130 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
131 
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136 
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139 
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 							size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 				unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 
159 /**
160  *	alloc_tty_struct	-	allocate a tty object
161  *
162  *	Return a new empty tty structure. The data fields have not
163  *	been initialized in any way but has been zeroed
164  *
165  *	Locking: none
166  */
167 
168 struct tty_struct *alloc_tty_struct(void)
169 {
170 	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172 
173 /**
174  *	free_tty_struct		-	free a disused tty
175  *	@tty: tty struct to free
176  *
177  *	Free the write buffers, tty queue and tty memory itself.
178  *
179  *	Locking: none. Must be called after tty is definitely unused
180  */
181 
182 void free_tty_struct(struct tty_struct *tty)
183 {
184 	if (!tty)
185 		return;
186 	if (tty->dev)
187 		put_device(tty->dev);
188 	kfree(tty->write_buf);
189 	tty->magic = 0xDEADDEAD;
190 	kfree(tty);
191 }
192 
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195 	return ((struct tty_file_private *)file->private_data)->tty;
196 }
197 
198 int tty_alloc_file(struct file *file)
199 {
200 	struct tty_file_private *priv;
201 
202 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203 	if (!priv)
204 		return -ENOMEM;
205 
206 	file->private_data = priv;
207 
208 	return 0;
209 }
210 
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214 	struct tty_file_private *priv = file->private_data;
215 
216 	priv->tty = tty;
217 	priv->file = file;
218 
219 	spin_lock(&tty_files_lock);
220 	list_add(&priv->list, &tty->tty_files);
221 	spin_unlock(&tty_files_lock);
222 }
223 
224 /**
225  * tty_free_file - free file->private_data
226  *
227  * This shall be used only for fail path handling when tty_add_file was not
228  * called yet.
229  */
230 void tty_free_file(struct file *file)
231 {
232 	struct tty_file_private *priv = file->private_data;
233 
234 	file->private_data = NULL;
235 	kfree(priv);
236 }
237 
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241 	struct tty_file_private *priv = file->private_data;
242 
243 	spin_lock(&tty_files_lock);
244 	list_del(&priv->list);
245 	spin_unlock(&tty_files_lock);
246 	tty_free_file(file);
247 }
248 
249 
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251 
252 /**
253  *	tty_name	-	return tty naming
254  *	@tty: tty structure
255  *	@buf: buffer for output
256  *
257  *	Convert a tty structure into a name. The name reflects the kernel
258  *	naming policy and if udev is in use may not reflect user space
259  *
260  *	Locking: none
261  */
262 
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
266 		strcpy(buf, "NULL tty");
267 	else
268 		strcpy(buf, tty->name);
269 	return buf;
270 }
271 
272 EXPORT_SYMBOL(tty_name);
273 
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275 			      const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278 	if (!tty) {
279 		printk(KERN_WARNING
280 			"null TTY for (%d:%d) in %s\n",
281 			imajor(inode), iminor(inode), routine);
282 		return 1;
283 	}
284 	if (tty->magic != TTY_MAGIC) {
285 		printk(KERN_WARNING
286 			"bad magic number for tty struct (%d:%d) in %s\n",
287 			imajor(inode), iminor(inode), routine);
288 		return 1;
289 	}
290 #endif
291 	return 0;
292 }
293 
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297 	struct list_head *p;
298 	int count = 0;
299 
300 	spin_lock(&tty_files_lock);
301 	list_for_each(p, &tty->tty_files) {
302 		count++;
303 	}
304 	spin_unlock(&tty_files_lock);
305 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
307 	    tty->link && tty->link->count)
308 		count++;
309 	if (tty->count != count) {
310 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311 				    "!= #fd's(%d) in %s\n",
312 		       tty->name, tty->count, count, routine);
313 		return count;
314 	}
315 #endif
316 	return 0;
317 }
318 
319 /**
320  *	get_tty_driver		-	find device of a tty
321  *	@dev_t: device identifier
322  *	@index: returns the index of the tty
323  *
324  *	This routine returns a tty driver structure, given a device number
325  *	and also passes back the index number.
326  *
327  *	Locking: caller must hold tty_mutex
328  */
329 
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332 	struct tty_driver *p;
333 
334 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
335 		dev_t base = MKDEV(p->major, p->minor_start);
336 		if (device < base || device >= base + p->num)
337 			continue;
338 		*index = device - base;
339 		return tty_driver_kref_get(p);
340 	}
341 	return NULL;
342 }
343 
344 #ifdef CONFIG_CONSOLE_POLL
345 
346 /**
347  *	tty_find_polling_driver	-	find device of a polled tty
348  *	@name: name string to match
349  *	@line: pointer to resulting tty line nr
350  *
351  *	This routine returns a tty driver structure, given a name
352  *	and the condition that the tty driver is capable of polled
353  *	operation.
354  */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357 	struct tty_driver *p, *res = NULL;
358 	int tty_line = 0;
359 	int len;
360 	char *str, *stp;
361 
362 	for (str = name; *str; str++)
363 		if ((*str >= '0' && *str <= '9') || *str == ',')
364 			break;
365 	if (!*str)
366 		return NULL;
367 
368 	len = str - name;
369 	tty_line = simple_strtoul(str, &str, 10);
370 
371 	mutex_lock(&tty_mutex);
372 	/* Search through the tty devices to look for a match */
373 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
374 		if (strncmp(name, p->name, len) != 0)
375 			continue;
376 		stp = str;
377 		if (*stp == ',')
378 			stp++;
379 		if (*stp == '\0')
380 			stp = NULL;
381 
382 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
383 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384 			res = tty_driver_kref_get(p);
385 			*line = tty_line;
386 			break;
387 		}
388 	}
389 	mutex_unlock(&tty_mutex);
390 
391 	return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395 
396 /**
397  *	tty_check_change	-	check for POSIX terminal changes
398  *	@tty: tty to check
399  *
400  *	If we try to write to, or set the state of, a terminal and we're
401  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
402  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
403  *
404  *	Locking: ctrl_lock
405  */
406 
407 int tty_check_change(struct tty_struct *tty)
408 {
409 	unsigned long flags;
410 	int ret = 0;
411 
412 	if (current->signal->tty != tty)
413 		return 0;
414 
415 	spin_lock_irqsave(&tty->ctrl_lock, flags);
416 
417 	if (!tty->pgrp) {
418 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419 		goto out_unlock;
420 	}
421 	if (task_pgrp(current) == tty->pgrp)
422 		goto out_unlock;
423 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424 	if (is_ignored(SIGTTOU))
425 		goto out;
426 	if (is_current_pgrp_orphaned()) {
427 		ret = -EIO;
428 		goto out;
429 	}
430 	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431 	set_thread_flag(TIF_SIGPENDING);
432 	ret = -ERESTARTSYS;
433 out:
434 	return ret;
435 out_unlock:
436 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437 	return ret;
438 }
439 
440 EXPORT_SYMBOL(tty_check_change);
441 
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443 				size_t count, loff_t *ppos)
444 {
445 	return 0;
446 }
447 
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449 				 size_t count, loff_t *ppos)
450 {
451 	return -EIO;
452 }
453 
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459 
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461 		unsigned long arg)
462 {
463 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465 
466 static long hung_up_tty_compat_ioctl(struct file *file,
467 				     unsigned int cmd, unsigned long arg)
468 {
469 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471 
472 static const struct file_operations tty_fops = {
473 	.llseek		= no_llseek,
474 	.read		= tty_read,
475 	.write		= tty_write,
476 	.poll		= tty_poll,
477 	.unlocked_ioctl	= tty_ioctl,
478 	.compat_ioctl	= tty_compat_ioctl,
479 	.open		= tty_open,
480 	.release	= tty_release,
481 	.fasync		= tty_fasync,
482 };
483 
484 static const struct file_operations console_fops = {
485 	.llseek		= no_llseek,
486 	.read		= tty_read,
487 	.write		= redirected_tty_write,
488 	.poll		= tty_poll,
489 	.unlocked_ioctl	= tty_ioctl,
490 	.compat_ioctl	= tty_compat_ioctl,
491 	.open		= tty_open,
492 	.release	= tty_release,
493 	.fasync		= tty_fasync,
494 };
495 
496 static const struct file_operations hung_up_tty_fops = {
497 	.llseek		= no_llseek,
498 	.read		= hung_up_tty_read,
499 	.write		= hung_up_tty_write,
500 	.poll		= hung_up_tty_poll,
501 	.unlocked_ioctl	= hung_up_tty_ioctl,
502 	.compat_ioctl	= hung_up_tty_compat_ioctl,
503 	.release	= tty_release,
504 };
505 
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508 
509 /**
510  *	tty_wakeup	-	request more data
511  *	@tty: terminal
512  *
513  *	Internal and external helper for wakeups of tty. This function
514  *	informs the line discipline if present that the driver is ready
515  *	to receive more output data.
516  */
517 
518 void tty_wakeup(struct tty_struct *tty)
519 {
520 	struct tty_ldisc *ld;
521 
522 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523 		ld = tty_ldisc_ref(tty);
524 		if (ld) {
525 			if (ld->ops->write_wakeup)
526 				ld->ops->write_wakeup(tty);
527 			tty_ldisc_deref(ld);
528 		}
529 	}
530 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532 
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534 
535 /**
536  *	__tty_hangup		-	actual handler for hangup events
537  *	@work: tty device
538  *
539  *	This can be called by a "kworker" kernel thread.  That is process
540  *	synchronous but doesn't hold any locks, so we need to make sure we
541  *	have the appropriate locks for what we're doing.
542  *
543  *	The hangup event clears any pending redirections onto the hung up
544  *	device. It ensures future writes will error and it does the needed
545  *	line discipline hangup and signal delivery. The tty object itself
546  *	remains intact.
547  *
548  *	Locking:
549  *		BTM
550  *		  redirect lock for undoing redirection
551  *		  file list lock for manipulating list of ttys
552  *		  tty_ldisc_lock from called functions
553  *		  termios_mutex resetting termios data
554  *		  tasklist_lock to walk task list for hangup event
555  *		    ->siglock to protect ->signal/->sighand
556  */
557 static void __tty_hangup(struct tty_struct *tty)
558 {
559 	struct file *cons_filp = NULL;
560 	struct file *filp, *f = NULL;
561 	struct task_struct *p;
562 	struct tty_file_private *priv;
563 	int    closecount = 0, n;
564 	unsigned long flags;
565 	int refs = 0;
566 
567 	if (!tty)
568 		return;
569 
570 
571 	spin_lock(&redirect_lock);
572 	if (redirect && file_tty(redirect) == tty) {
573 		f = redirect;
574 		redirect = NULL;
575 	}
576 	spin_unlock(&redirect_lock);
577 
578 	tty_lock(tty);
579 
580 	/* some functions below drop BTM, so we need this bit */
581 	set_bit(TTY_HUPPING, &tty->flags);
582 
583 	/* inuse_filps is protected by the single tty lock,
584 	   this really needs to change if we want to flush the
585 	   workqueue with the lock held */
586 	check_tty_count(tty, "tty_hangup");
587 
588 	spin_lock(&tty_files_lock);
589 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
590 	list_for_each_entry(priv, &tty->tty_files, list) {
591 		filp = priv->file;
592 		if (filp->f_op->write == redirected_tty_write)
593 			cons_filp = filp;
594 		if (filp->f_op->write != tty_write)
595 			continue;
596 		closecount++;
597 		__tty_fasync(-1, filp, 0);	/* can't block */
598 		filp->f_op = &hung_up_tty_fops;
599 	}
600 	spin_unlock(&tty_files_lock);
601 
602 	/*
603 	 * it drops BTM and thus races with reopen
604 	 * we protect the race by TTY_HUPPING
605 	 */
606 	tty_ldisc_hangup(tty);
607 
608 	read_lock(&tasklist_lock);
609 	if (tty->session) {
610 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
611 			spin_lock_irq(&p->sighand->siglock);
612 			if (p->signal->tty == tty) {
613 				p->signal->tty = NULL;
614 				/* We defer the dereferences outside fo
615 				   the tasklist lock */
616 				refs++;
617 			}
618 			if (!p->signal->leader) {
619 				spin_unlock_irq(&p->sighand->siglock);
620 				continue;
621 			}
622 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
623 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
624 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
625 			spin_lock_irqsave(&tty->ctrl_lock, flags);
626 			if (tty->pgrp)
627 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
628 			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
629 			spin_unlock_irq(&p->sighand->siglock);
630 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
631 	}
632 	read_unlock(&tasklist_lock);
633 
634 	spin_lock_irqsave(&tty->ctrl_lock, flags);
635 	clear_bit(TTY_THROTTLED, &tty->flags);
636 	clear_bit(TTY_PUSH, &tty->flags);
637 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
638 	put_pid(tty->session);
639 	put_pid(tty->pgrp);
640 	tty->session = NULL;
641 	tty->pgrp = NULL;
642 	tty->ctrl_status = 0;
643 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
644 
645 	/* Account for the p->signal references we killed */
646 	while (refs--)
647 		tty_kref_put(tty);
648 
649 	/*
650 	 * If one of the devices matches a console pointer, we
651 	 * cannot just call hangup() because that will cause
652 	 * tty->count and state->count to go out of sync.
653 	 * So we just call close() the right number of times.
654 	 */
655 	if (cons_filp) {
656 		if (tty->ops->close)
657 			for (n = 0; n < closecount; n++)
658 				tty->ops->close(tty, cons_filp);
659 	} else if (tty->ops->hangup)
660 		(tty->ops->hangup)(tty);
661 	/*
662 	 * We don't want to have driver/ldisc interactions beyond
663 	 * the ones we did here. The driver layer expects no
664 	 * calls after ->hangup() from the ldisc side. However we
665 	 * can't yet guarantee all that.
666 	 */
667 	set_bit(TTY_HUPPED, &tty->flags);
668 	clear_bit(TTY_HUPPING, &tty->flags);
669 	tty_ldisc_enable(tty);
670 
671 	tty_unlock(tty);
672 
673 	if (f)
674 		fput(f);
675 }
676 
677 static void do_tty_hangup(struct work_struct *work)
678 {
679 	struct tty_struct *tty =
680 		container_of(work, struct tty_struct, hangup_work);
681 
682 	__tty_hangup(tty);
683 }
684 
685 /**
686  *	tty_hangup		-	trigger a hangup event
687  *	@tty: tty to hangup
688  *
689  *	A carrier loss (virtual or otherwise) has occurred on this like
690  *	schedule a hangup sequence to run after this event.
691  */
692 
693 void tty_hangup(struct tty_struct *tty)
694 {
695 #ifdef TTY_DEBUG_HANGUP
696 	char	buf[64];
697 	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
698 #endif
699 	schedule_work(&tty->hangup_work);
700 }
701 
702 EXPORT_SYMBOL(tty_hangup);
703 
704 /**
705  *	tty_vhangup		-	process vhangup
706  *	@tty: tty to hangup
707  *
708  *	The user has asked via system call for the terminal to be hung up.
709  *	We do this synchronously so that when the syscall returns the process
710  *	is complete. That guarantee is necessary for security reasons.
711  */
712 
713 void tty_vhangup(struct tty_struct *tty)
714 {
715 #ifdef TTY_DEBUG_HANGUP
716 	char	buf[64];
717 
718 	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
719 #endif
720 	__tty_hangup(tty);
721 }
722 
723 EXPORT_SYMBOL(tty_vhangup);
724 
725 
726 /**
727  *	tty_vhangup_self	-	process vhangup for own ctty
728  *
729  *	Perform a vhangup on the current controlling tty
730  */
731 
732 void tty_vhangup_self(void)
733 {
734 	struct tty_struct *tty;
735 
736 	tty = get_current_tty();
737 	if (tty) {
738 		tty_vhangup(tty);
739 		tty_kref_put(tty);
740 	}
741 }
742 
743 /**
744  *	tty_hung_up_p		-	was tty hung up
745  *	@filp: file pointer of tty
746  *
747  *	Return true if the tty has been subject to a vhangup or a carrier
748  *	loss
749  */
750 
751 int tty_hung_up_p(struct file *filp)
752 {
753 	return (filp->f_op == &hung_up_tty_fops);
754 }
755 
756 EXPORT_SYMBOL(tty_hung_up_p);
757 
758 static void session_clear_tty(struct pid *session)
759 {
760 	struct task_struct *p;
761 	do_each_pid_task(session, PIDTYPE_SID, p) {
762 		proc_clear_tty(p);
763 	} while_each_pid_task(session, PIDTYPE_SID, p);
764 }
765 
766 /**
767  *	disassociate_ctty	-	disconnect controlling tty
768  *	@on_exit: true if exiting so need to "hang up" the session
769  *
770  *	This function is typically called only by the session leader, when
771  *	it wants to disassociate itself from its controlling tty.
772  *
773  *	It performs the following functions:
774  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
775  * 	(2)  Clears the tty from being controlling the session
776  * 	(3)  Clears the controlling tty for all processes in the
777  * 		session group.
778  *
779  *	The argument on_exit is set to 1 if called when a process is
780  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
781  *
782  *	Locking:
783  *		BTM is taken for hysterical raisins, and held when
784  *		  called from no_tty().
785  *		  tty_mutex is taken to protect tty
786  *		  ->siglock is taken to protect ->signal/->sighand
787  *		  tasklist_lock is taken to walk process list for sessions
788  *		    ->siglock is taken to protect ->signal/->sighand
789  */
790 
791 void disassociate_ctty(int on_exit)
792 {
793 	struct tty_struct *tty;
794 
795 	if (!current->signal->leader)
796 		return;
797 
798 	tty = get_current_tty();
799 	if (tty) {
800 		struct pid *tty_pgrp = get_pid(tty->pgrp);
801 		if (on_exit) {
802 			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
803 				tty_vhangup(tty);
804 		}
805 		tty_kref_put(tty);
806 		if (tty_pgrp) {
807 			kill_pgrp(tty_pgrp, SIGHUP, on_exit);
808 			if (!on_exit)
809 				kill_pgrp(tty_pgrp, SIGCONT, on_exit);
810 			put_pid(tty_pgrp);
811 		}
812 	} else if (on_exit) {
813 		struct pid *old_pgrp;
814 		spin_lock_irq(&current->sighand->siglock);
815 		old_pgrp = current->signal->tty_old_pgrp;
816 		current->signal->tty_old_pgrp = NULL;
817 		spin_unlock_irq(&current->sighand->siglock);
818 		if (old_pgrp) {
819 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
820 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
821 			put_pid(old_pgrp);
822 		}
823 		return;
824 	}
825 
826 	spin_lock_irq(&current->sighand->siglock);
827 	put_pid(current->signal->tty_old_pgrp);
828 	current->signal->tty_old_pgrp = NULL;
829 	spin_unlock_irq(&current->sighand->siglock);
830 
831 	tty = get_current_tty();
832 	if (tty) {
833 		unsigned long flags;
834 		spin_lock_irqsave(&tty->ctrl_lock, flags);
835 		put_pid(tty->session);
836 		put_pid(tty->pgrp);
837 		tty->session = NULL;
838 		tty->pgrp = NULL;
839 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
840 		tty_kref_put(tty);
841 	} else {
842 #ifdef TTY_DEBUG_HANGUP
843 		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
844 		       " = NULL", tty);
845 #endif
846 	}
847 
848 	/* Now clear signal->tty under the lock */
849 	read_lock(&tasklist_lock);
850 	session_clear_tty(task_session(current));
851 	read_unlock(&tasklist_lock);
852 }
853 
854 /**
855  *
856  *	no_tty	- Ensure the current process does not have a controlling tty
857  */
858 void no_tty(void)
859 {
860 	/* FIXME: Review locking here. The tty_lock never covered any race
861 	   between a new association and proc_clear_tty but possible we need
862 	   to protect against this anyway */
863 	struct task_struct *tsk = current;
864 	disassociate_ctty(0);
865 	proc_clear_tty(tsk);
866 }
867 
868 
869 /**
870  *	stop_tty	-	propagate flow control
871  *	@tty: tty to stop
872  *
873  *	Perform flow control to the driver. For PTY/TTY pairs we
874  *	must also propagate the TIOCKPKT status. May be called
875  *	on an already stopped device and will not re-call the driver
876  *	method.
877  *
878  *	This functionality is used by both the line disciplines for
879  *	halting incoming flow and by the driver. It may therefore be
880  *	called from any context, may be under the tty atomic_write_lock
881  *	but not always.
882  *
883  *	Locking:
884  *		Uses the tty control lock internally
885  */
886 
887 void stop_tty(struct tty_struct *tty)
888 {
889 	unsigned long flags;
890 	spin_lock_irqsave(&tty->ctrl_lock, flags);
891 	if (tty->stopped) {
892 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
893 		return;
894 	}
895 	tty->stopped = 1;
896 	if (tty->link && tty->link->packet) {
897 		tty->ctrl_status &= ~TIOCPKT_START;
898 		tty->ctrl_status |= TIOCPKT_STOP;
899 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
900 	}
901 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
902 	if (tty->ops->stop)
903 		(tty->ops->stop)(tty);
904 }
905 
906 EXPORT_SYMBOL(stop_tty);
907 
908 /**
909  *	start_tty	-	propagate flow control
910  *	@tty: tty to start
911  *
912  *	Start a tty that has been stopped if at all possible. Perform
913  *	any necessary wakeups and propagate the TIOCPKT status. If this
914  *	is the tty was previous stopped and is being started then the
915  *	driver start method is invoked and the line discipline woken.
916  *
917  *	Locking:
918  *		ctrl_lock
919  */
920 
921 void start_tty(struct tty_struct *tty)
922 {
923 	unsigned long flags;
924 	spin_lock_irqsave(&tty->ctrl_lock, flags);
925 	if (!tty->stopped || tty->flow_stopped) {
926 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
927 		return;
928 	}
929 	tty->stopped = 0;
930 	if (tty->link && tty->link->packet) {
931 		tty->ctrl_status &= ~TIOCPKT_STOP;
932 		tty->ctrl_status |= TIOCPKT_START;
933 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
934 	}
935 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
936 	if (tty->ops->start)
937 		(tty->ops->start)(tty);
938 	/* If we have a running line discipline it may need kicking */
939 	tty_wakeup(tty);
940 }
941 
942 EXPORT_SYMBOL(start_tty);
943 
944 /**
945  *	tty_read	-	read method for tty device files
946  *	@file: pointer to tty file
947  *	@buf: user buffer
948  *	@count: size of user buffer
949  *	@ppos: unused
950  *
951  *	Perform the read system call function on this terminal device. Checks
952  *	for hung up devices before calling the line discipline method.
953  *
954  *	Locking:
955  *		Locks the line discipline internally while needed. Multiple
956  *	read calls may be outstanding in parallel.
957  */
958 
959 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
960 			loff_t *ppos)
961 {
962 	int i;
963 	struct tty_struct *tty = file_tty(file);
964 	struct tty_ldisc *ld;
965 
966 	if (tty_paranoia_check(tty, file_inode(file), "tty_read"))
967 		return -EIO;
968 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
969 		return -EIO;
970 
971 	/* We want to wait for the line discipline to sort out in this
972 	   situation */
973 	ld = tty_ldisc_ref_wait(tty);
974 	if (ld->ops->read)
975 		i = (ld->ops->read)(tty, file, buf, count);
976 	else
977 		i = -EIO;
978 	tty_ldisc_deref(ld);
979 
980 	return i;
981 }
982 
983 void tty_write_unlock(struct tty_struct *tty)
984 	__releases(&tty->atomic_write_lock)
985 {
986 	mutex_unlock(&tty->atomic_write_lock);
987 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
988 }
989 
990 int tty_write_lock(struct tty_struct *tty, int ndelay)
991 	__acquires(&tty->atomic_write_lock)
992 {
993 	if (!mutex_trylock(&tty->atomic_write_lock)) {
994 		if (ndelay)
995 			return -EAGAIN;
996 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
997 			return -ERESTARTSYS;
998 	}
999 	return 0;
1000 }
1001 
1002 /*
1003  * Split writes up in sane blocksizes to avoid
1004  * denial-of-service type attacks
1005  */
1006 static inline ssize_t do_tty_write(
1007 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1008 	struct tty_struct *tty,
1009 	struct file *file,
1010 	const char __user *buf,
1011 	size_t count)
1012 {
1013 	ssize_t ret, written = 0;
1014 	unsigned int chunk;
1015 
1016 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1017 	if (ret < 0)
1018 		return ret;
1019 
1020 	/*
1021 	 * We chunk up writes into a temporary buffer. This
1022 	 * simplifies low-level drivers immensely, since they
1023 	 * don't have locking issues and user mode accesses.
1024 	 *
1025 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1026 	 * big chunk-size..
1027 	 *
1028 	 * The default chunk-size is 2kB, because the NTTY
1029 	 * layer has problems with bigger chunks. It will
1030 	 * claim to be able to handle more characters than
1031 	 * it actually does.
1032 	 *
1033 	 * FIXME: This can probably go away now except that 64K chunks
1034 	 * are too likely to fail unless switched to vmalloc...
1035 	 */
1036 	chunk = 2048;
1037 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1038 		chunk = 65536;
1039 	if (count < chunk)
1040 		chunk = count;
1041 
1042 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1043 	if (tty->write_cnt < chunk) {
1044 		unsigned char *buf_chunk;
1045 
1046 		if (chunk < 1024)
1047 			chunk = 1024;
1048 
1049 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1050 		if (!buf_chunk) {
1051 			ret = -ENOMEM;
1052 			goto out;
1053 		}
1054 		kfree(tty->write_buf);
1055 		tty->write_cnt = chunk;
1056 		tty->write_buf = buf_chunk;
1057 	}
1058 
1059 	/* Do the write .. */
1060 	for (;;) {
1061 		size_t size = count;
1062 		if (size > chunk)
1063 			size = chunk;
1064 		ret = -EFAULT;
1065 		if (copy_from_user(tty->write_buf, buf, size))
1066 			break;
1067 		ret = write(tty, file, tty->write_buf, size);
1068 		if (ret <= 0)
1069 			break;
1070 		written += ret;
1071 		buf += ret;
1072 		count -= ret;
1073 		if (!count)
1074 			break;
1075 		ret = -ERESTARTSYS;
1076 		if (signal_pending(current))
1077 			break;
1078 		cond_resched();
1079 	}
1080 	if (written)
1081 		ret = written;
1082 out:
1083 	tty_write_unlock(tty);
1084 	return ret;
1085 }
1086 
1087 /**
1088  * tty_write_message - write a message to a certain tty, not just the console.
1089  * @tty: the destination tty_struct
1090  * @msg: the message to write
1091  *
1092  * This is used for messages that need to be redirected to a specific tty.
1093  * We don't put it into the syslog queue right now maybe in the future if
1094  * really needed.
1095  *
1096  * We must still hold the BTM and test the CLOSING flag for the moment.
1097  */
1098 
1099 void tty_write_message(struct tty_struct *tty, char *msg)
1100 {
1101 	if (tty) {
1102 		mutex_lock(&tty->atomic_write_lock);
1103 		tty_lock(tty);
1104 		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1105 			tty_unlock(tty);
1106 			tty->ops->write(tty, msg, strlen(msg));
1107 		} else
1108 			tty_unlock(tty);
1109 		tty_write_unlock(tty);
1110 	}
1111 	return;
1112 }
1113 
1114 
1115 /**
1116  *	tty_write		-	write method for tty device file
1117  *	@file: tty file pointer
1118  *	@buf: user data to write
1119  *	@count: bytes to write
1120  *	@ppos: unused
1121  *
1122  *	Write data to a tty device via the line discipline.
1123  *
1124  *	Locking:
1125  *		Locks the line discipline as required
1126  *		Writes to the tty driver are serialized by the atomic_write_lock
1127  *	and are then processed in chunks to the device. The line discipline
1128  *	write method will not be invoked in parallel for each device.
1129  */
1130 
1131 static ssize_t tty_write(struct file *file, const char __user *buf,
1132 						size_t count, loff_t *ppos)
1133 {
1134 	struct tty_struct *tty = file_tty(file);
1135  	struct tty_ldisc *ld;
1136 	ssize_t ret;
1137 
1138 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1139 		return -EIO;
1140 	if (!tty || !tty->ops->write ||
1141 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1142 			return -EIO;
1143 	/* Short term debug to catch buggy drivers */
1144 	if (tty->ops->write_room == NULL)
1145 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1146 			tty->driver->name);
1147 	ld = tty_ldisc_ref_wait(tty);
1148 	if (!ld->ops->write)
1149 		ret = -EIO;
1150 	else
1151 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1152 	tty_ldisc_deref(ld);
1153 	return ret;
1154 }
1155 
1156 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1157 						size_t count, loff_t *ppos)
1158 {
1159 	struct file *p = NULL;
1160 
1161 	spin_lock(&redirect_lock);
1162 	if (redirect)
1163 		p = get_file(redirect);
1164 	spin_unlock(&redirect_lock);
1165 
1166 	if (p) {
1167 		ssize_t res;
1168 		res = vfs_write(p, buf, count, &p->f_pos);
1169 		fput(p);
1170 		return res;
1171 	}
1172 	return tty_write(file, buf, count, ppos);
1173 }
1174 
1175 static char ptychar[] = "pqrstuvwxyzabcde";
1176 
1177 /**
1178  *	pty_line_name	-	generate name for a pty
1179  *	@driver: the tty driver in use
1180  *	@index: the minor number
1181  *	@p: output buffer of at least 6 bytes
1182  *
1183  *	Generate a name from a driver reference and write it to the output
1184  *	buffer.
1185  *
1186  *	Locking: None
1187  */
1188 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1189 {
1190 	int i = index + driver->name_base;
1191 	/* ->name is initialized to "ttyp", but "tty" is expected */
1192 	sprintf(p, "%s%c%x",
1193 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1194 		ptychar[i >> 4 & 0xf], i & 0xf);
1195 }
1196 
1197 /**
1198  *	tty_line_name	-	generate name for a tty
1199  *	@driver: the tty driver in use
1200  *	@index: the minor number
1201  *	@p: output buffer of at least 7 bytes
1202  *
1203  *	Generate a name from a driver reference and write it to the output
1204  *	buffer.
1205  *
1206  *	Locking: None
1207  */
1208 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1209 {
1210 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1211 		strcpy(p, driver->name);
1212 	else
1213 		sprintf(p, "%s%d", driver->name, index + driver->name_base);
1214 }
1215 
1216 /**
1217  *	tty_driver_lookup_tty() - find an existing tty, if any
1218  *	@driver: the driver for the tty
1219  *	@idx:	 the minor number
1220  *
1221  *	Return the tty, if found or ERR_PTR() otherwise.
1222  *
1223  *	Locking: tty_mutex must be held. If tty is found, the mutex must
1224  *	be held until the 'fast-open' is also done. Will change once we
1225  *	have refcounting in the driver and per driver locking
1226  */
1227 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1228 		struct inode *inode, int idx)
1229 {
1230 	if (driver->ops->lookup)
1231 		return driver->ops->lookup(driver, inode, idx);
1232 
1233 	return driver->ttys[idx];
1234 }
1235 
1236 /**
1237  *	tty_init_termios	-  helper for termios setup
1238  *	@tty: the tty to set up
1239  *
1240  *	Initialise the termios structures for this tty. Thus runs under
1241  *	the tty_mutex currently so we can be relaxed about ordering.
1242  */
1243 
1244 int tty_init_termios(struct tty_struct *tty)
1245 {
1246 	struct ktermios *tp;
1247 	int idx = tty->index;
1248 
1249 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1250 		tty->termios = tty->driver->init_termios;
1251 	else {
1252 		/* Check for lazy saved data */
1253 		tp = tty->driver->termios[idx];
1254 		if (tp != NULL)
1255 			tty->termios = *tp;
1256 		else
1257 			tty->termios = tty->driver->init_termios;
1258 	}
1259 	/* Compatibility until drivers always set this */
1260 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1261 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1262 	return 0;
1263 }
1264 EXPORT_SYMBOL_GPL(tty_init_termios);
1265 
1266 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1267 {
1268 	int ret = tty_init_termios(tty);
1269 	if (ret)
1270 		return ret;
1271 
1272 	tty_driver_kref_get(driver);
1273 	tty->count++;
1274 	driver->ttys[tty->index] = tty;
1275 	return 0;
1276 }
1277 EXPORT_SYMBOL_GPL(tty_standard_install);
1278 
1279 /**
1280  *	tty_driver_install_tty() - install a tty entry in the driver
1281  *	@driver: the driver for the tty
1282  *	@tty: the tty
1283  *
1284  *	Install a tty object into the driver tables. The tty->index field
1285  *	will be set by the time this is called. This method is responsible
1286  *	for ensuring any need additional structures are allocated and
1287  *	configured.
1288  *
1289  *	Locking: tty_mutex for now
1290  */
1291 static int tty_driver_install_tty(struct tty_driver *driver,
1292 						struct tty_struct *tty)
1293 {
1294 	return driver->ops->install ? driver->ops->install(driver, tty) :
1295 		tty_standard_install(driver, tty);
1296 }
1297 
1298 /**
1299  *	tty_driver_remove_tty() - remove a tty from the driver tables
1300  *	@driver: the driver for the tty
1301  *	@idx:	 the minor number
1302  *
1303  *	Remvoe a tty object from the driver tables. The tty->index field
1304  *	will be set by the time this is called.
1305  *
1306  *	Locking: tty_mutex for now
1307  */
1308 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1309 {
1310 	if (driver->ops->remove)
1311 		driver->ops->remove(driver, tty);
1312 	else
1313 		driver->ttys[tty->index] = NULL;
1314 }
1315 
1316 /*
1317  * 	tty_reopen()	- fast re-open of an open tty
1318  * 	@tty	- the tty to open
1319  *
1320  *	Return 0 on success, -errno on error.
1321  *
1322  *	Locking: tty_mutex must be held from the time the tty was found
1323  *		 till this open completes.
1324  */
1325 static int tty_reopen(struct tty_struct *tty)
1326 {
1327 	struct tty_driver *driver = tty->driver;
1328 
1329 	if (test_bit(TTY_CLOSING, &tty->flags) ||
1330 			test_bit(TTY_HUPPING, &tty->flags) ||
1331 			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1332 		return -EIO;
1333 
1334 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1335 	    driver->subtype == PTY_TYPE_MASTER) {
1336 		/*
1337 		 * special case for PTY masters: only one open permitted,
1338 		 * and the slave side open count is incremented as well.
1339 		 */
1340 		if (tty->count)
1341 			return -EIO;
1342 
1343 		tty->link->count++;
1344 	}
1345 	tty->count++;
1346 
1347 	mutex_lock(&tty->ldisc_mutex);
1348 	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1349 	mutex_unlock(&tty->ldisc_mutex);
1350 
1351 	return 0;
1352 }
1353 
1354 /**
1355  *	tty_init_dev		-	initialise a tty device
1356  *	@driver: tty driver we are opening a device on
1357  *	@idx: device index
1358  *	@ret_tty: returned tty structure
1359  *
1360  *	Prepare a tty device. This may not be a "new" clean device but
1361  *	could also be an active device. The pty drivers require special
1362  *	handling because of this.
1363  *
1364  *	Locking:
1365  *		The function is called under the tty_mutex, which
1366  *	protects us from the tty struct or driver itself going away.
1367  *
1368  *	On exit the tty device has the line discipline attached and
1369  *	a reference count of 1. If a pair was created for pty/tty use
1370  *	and the other was a pty master then it too has a reference count of 1.
1371  *
1372  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1373  * failed open.  The new code protects the open with a mutex, so it's
1374  * really quite straightforward.  The mutex locking can probably be
1375  * relaxed for the (most common) case of reopening a tty.
1376  */
1377 
1378 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1379 {
1380 	struct tty_struct *tty;
1381 	int retval;
1382 
1383 	/*
1384 	 * First time open is complex, especially for PTY devices.
1385 	 * This code guarantees that either everything succeeds and the
1386 	 * TTY is ready for operation, or else the table slots are vacated
1387 	 * and the allocated memory released.  (Except that the termios
1388 	 * and locked termios may be retained.)
1389 	 */
1390 
1391 	if (!try_module_get(driver->owner))
1392 		return ERR_PTR(-ENODEV);
1393 
1394 	tty = alloc_tty_struct();
1395 	if (!tty) {
1396 		retval = -ENOMEM;
1397 		goto err_module_put;
1398 	}
1399 	initialize_tty_struct(tty, driver, idx);
1400 
1401 	tty_lock(tty);
1402 	retval = tty_driver_install_tty(driver, tty);
1403 	if (retval < 0)
1404 		goto err_deinit_tty;
1405 
1406 	if (!tty->port)
1407 		tty->port = driver->ports[idx];
1408 
1409 	WARN_RATELIMIT(!tty->port,
1410 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1411 			__func__, tty->driver->name);
1412 
1413 	tty->port->itty = tty;
1414 
1415 	/*
1416 	 * Structures all installed ... call the ldisc open routines.
1417 	 * If we fail here just call release_tty to clean up.  No need
1418 	 * to decrement the use counts, as release_tty doesn't care.
1419 	 */
1420 	retval = tty_ldisc_setup(tty, tty->link);
1421 	if (retval)
1422 		goto err_release_tty;
1423 	/* Return the tty locked so that it cannot vanish under the caller */
1424 	return tty;
1425 
1426 err_deinit_tty:
1427 	tty_unlock(tty);
1428 	deinitialize_tty_struct(tty);
1429 	free_tty_struct(tty);
1430 err_module_put:
1431 	module_put(driver->owner);
1432 	return ERR_PTR(retval);
1433 
1434 	/* call the tty release_tty routine to clean out this slot */
1435 err_release_tty:
1436 	tty_unlock(tty);
1437 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1438 				 "clearing slot %d\n", idx);
1439 	release_tty(tty, idx);
1440 	return ERR_PTR(retval);
1441 }
1442 
1443 void tty_free_termios(struct tty_struct *tty)
1444 {
1445 	struct ktermios *tp;
1446 	int idx = tty->index;
1447 
1448 	/* If the port is going to reset then it has no termios to save */
1449 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1450 		return;
1451 
1452 	/* Stash the termios data */
1453 	tp = tty->driver->termios[idx];
1454 	if (tp == NULL) {
1455 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1456 		if (tp == NULL) {
1457 			pr_warn("tty: no memory to save termios state.\n");
1458 			return;
1459 		}
1460 		tty->driver->termios[idx] = tp;
1461 	}
1462 	*tp = tty->termios;
1463 }
1464 EXPORT_SYMBOL(tty_free_termios);
1465 
1466 
1467 /**
1468  *	release_one_tty		-	release tty structure memory
1469  *	@kref: kref of tty we are obliterating
1470  *
1471  *	Releases memory associated with a tty structure, and clears out the
1472  *	driver table slots. This function is called when a device is no longer
1473  *	in use. It also gets called when setup of a device fails.
1474  *
1475  *	Locking:
1476  *		takes the file list lock internally when working on the list
1477  *	of ttys that the driver keeps.
1478  *
1479  *	This method gets called from a work queue so that the driver private
1480  *	cleanup ops can sleep (needed for USB at least)
1481  */
1482 static void release_one_tty(struct work_struct *work)
1483 {
1484 	struct tty_struct *tty =
1485 		container_of(work, struct tty_struct, hangup_work);
1486 	struct tty_driver *driver = tty->driver;
1487 
1488 	if (tty->ops->cleanup)
1489 		tty->ops->cleanup(tty);
1490 
1491 	tty->magic = 0;
1492 	tty_driver_kref_put(driver);
1493 	module_put(driver->owner);
1494 
1495 	spin_lock(&tty_files_lock);
1496 	list_del_init(&tty->tty_files);
1497 	spin_unlock(&tty_files_lock);
1498 
1499 	put_pid(tty->pgrp);
1500 	put_pid(tty->session);
1501 	free_tty_struct(tty);
1502 }
1503 
1504 static void queue_release_one_tty(struct kref *kref)
1505 {
1506 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1507 
1508 	/* The hangup queue is now free so we can reuse it rather than
1509 	   waste a chunk of memory for each port */
1510 	INIT_WORK(&tty->hangup_work, release_one_tty);
1511 	schedule_work(&tty->hangup_work);
1512 }
1513 
1514 /**
1515  *	tty_kref_put		-	release a tty kref
1516  *	@tty: tty device
1517  *
1518  *	Release a reference to a tty device and if need be let the kref
1519  *	layer destruct the object for us
1520  */
1521 
1522 void tty_kref_put(struct tty_struct *tty)
1523 {
1524 	if (tty)
1525 		kref_put(&tty->kref, queue_release_one_tty);
1526 }
1527 EXPORT_SYMBOL(tty_kref_put);
1528 
1529 /**
1530  *	release_tty		-	release tty structure memory
1531  *
1532  *	Release both @tty and a possible linked partner (think pty pair),
1533  *	and decrement the refcount of the backing module.
1534  *
1535  *	Locking:
1536  *		tty_mutex
1537  *		takes the file list lock internally when working on the list
1538  *	of ttys that the driver keeps.
1539  *
1540  */
1541 static void release_tty(struct tty_struct *tty, int idx)
1542 {
1543 	/* This should always be true but check for the moment */
1544 	WARN_ON(tty->index != idx);
1545 	WARN_ON(!mutex_is_locked(&tty_mutex));
1546 	if (tty->ops->shutdown)
1547 		tty->ops->shutdown(tty);
1548 	tty_free_termios(tty);
1549 	tty_driver_remove_tty(tty->driver, tty);
1550 	tty->port->itty = NULL;
1551 
1552 	if (tty->link)
1553 		tty_kref_put(tty->link);
1554 	tty_kref_put(tty);
1555 }
1556 
1557 /**
1558  *	tty_release_checks - check a tty before real release
1559  *	@tty: tty to check
1560  *	@o_tty: link of @tty (if any)
1561  *	@idx: index of the tty
1562  *
1563  *	Performs some paranoid checking before true release of the @tty.
1564  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1565  */
1566 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1567 		int idx)
1568 {
1569 #ifdef TTY_PARANOIA_CHECK
1570 	if (idx < 0 || idx >= tty->driver->num) {
1571 		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1572 				__func__, tty->name);
1573 		return -1;
1574 	}
1575 
1576 	/* not much to check for devpts */
1577 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1578 		return 0;
1579 
1580 	if (tty != tty->driver->ttys[idx]) {
1581 		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1582 				__func__, idx, tty->name);
1583 		return -1;
1584 	}
1585 	if (tty->driver->other) {
1586 		if (o_tty != tty->driver->other->ttys[idx]) {
1587 			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1588 					__func__, idx, tty->name);
1589 			return -1;
1590 		}
1591 		if (o_tty->link != tty) {
1592 			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1593 			return -1;
1594 		}
1595 	}
1596 #endif
1597 	return 0;
1598 }
1599 
1600 /**
1601  *	tty_release		-	vfs callback for close
1602  *	@inode: inode of tty
1603  *	@filp: file pointer for handle to tty
1604  *
1605  *	Called the last time each file handle is closed that references
1606  *	this tty. There may however be several such references.
1607  *
1608  *	Locking:
1609  *		Takes bkl. See tty_release_dev
1610  *
1611  * Even releasing the tty structures is a tricky business.. We have
1612  * to be very careful that the structures are all released at the
1613  * same time, as interrupts might otherwise get the wrong pointers.
1614  *
1615  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1616  * lead to double frees or releasing memory still in use.
1617  */
1618 
1619 int tty_release(struct inode *inode, struct file *filp)
1620 {
1621 	struct tty_struct *tty = file_tty(filp);
1622 	struct tty_struct *o_tty;
1623 	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1624 	int	idx;
1625 	char	buf[64];
1626 
1627 	if (tty_paranoia_check(tty, inode, __func__))
1628 		return 0;
1629 
1630 	tty_lock(tty);
1631 	check_tty_count(tty, __func__);
1632 
1633 	__tty_fasync(-1, filp, 0);
1634 
1635 	idx = tty->index;
1636 	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1637 		      tty->driver->subtype == PTY_TYPE_MASTER);
1638 	/* Review: parallel close */
1639 	o_tty = tty->link;
1640 
1641 	if (tty_release_checks(tty, o_tty, idx)) {
1642 		tty_unlock(tty);
1643 		return 0;
1644 	}
1645 
1646 #ifdef TTY_DEBUG_HANGUP
1647 	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1648 			tty_name(tty, buf), tty->count);
1649 #endif
1650 
1651 	if (tty->ops->close)
1652 		tty->ops->close(tty, filp);
1653 
1654 	tty_unlock(tty);
1655 	/*
1656 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1657 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1658 	 * wait queues and kick everyone out _before_ actually starting to
1659 	 * close.  This ensures that we won't block while releasing the tty
1660 	 * structure.
1661 	 *
1662 	 * The test for the o_tty closing is necessary, since the master and
1663 	 * slave sides may close in any order.  If the slave side closes out
1664 	 * first, its count will be one, since the master side holds an open.
1665 	 * Thus this test wouldn't be triggered at the time the slave closes,
1666 	 * so we do it now.
1667 	 *
1668 	 * Note that it's possible for the tty to be opened again while we're
1669 	 * flushing out waiters.  By recalculating the closing flags before
1670 	 * each iteration we avoid any problems.
1671 	 */
1672 	while (1) {
1673 		/* Guard against races with tty->count changes elsewhere and
1674 		   opens on /dev/tty */
1675 
1676 		mutex_lock(&tty_mutex);
1677 		tty_lock_pair(tty, o_tty);
1678 		tty_closing = tty->count <= 1;
1679 		o_tty_closing = o_tty &&
1680 			(o_tty->count <= (pty_master ? 1 : 0));
1681 		do_sleep = 0;
1682 
1683 		if (tty_closing) {
1684 			if (waitqueue_active(&tty->read_wait)) {
1685 				wake_up_poll(&tty->read_wait, POLLIN);
1686 				do_sleep++;
1687 			}
1688 			if (waitqueue_active(&tty->write_wait)) {
1689 				wake_up_poll(&tty->write_wait, POLLOUT);
1690 				do_sleep++;
1691 			}
1692 		}
1693 		if (o_tty_closing) {
1694 			if (waitqueue_active(&o_tty->read_wait)) {
1695 				wake_up_poll(&o_tty->read_wait, POLLIN);
1696 				do_sleep++;
1697 			}
1698 			if (waitqueue_active(&o_tty->write_wait)) {
1699 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1700 				do_sleep++;
1701 			}
1702 		}
1703 		if (!do_sleep)
1704 			break;
1705 
1706 		printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1707 				__func__, tty_name(tty, buf));
1708 		tty_unlock_pair(tty, o_tty);
1709 		mutex_unlock(&tty_mutex);
1710 		schedule();
1711 	}
1712 
1713 	/*
1714 	 * The closing flags are now consistent with the open counts on
1715 	 * both sides, and we've completed the last operation that could
1716 	 * block, so it's safe to proceed with closing.
1717 	 *
1718 	 * We must *not* drop the tty_mutex until we ensure that a further
1719 	 * entry into tty_open can not pick up this tty.
1720 	 */
1721 	if (pty_master) {
1722 		if (--o_tty->count < 0) {
1723 			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1724 				__func__, o_tty->count, tty_name(o_tty, buf));
1725 			o_tty->count = 0;
1726 		}
1727 	}
1728 	if (--tty->count < 0) {
1729 		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1730 				__func__, tty->count, tty_name(tty, buf));
1731 		tty->count = 0;
1732 	}
1733 
1734 	/*
1735 	 * We've decremented tty->count, so we need to remove this file
1736 	 * descriptor off the tty->tty_files list; this serves two
1737 	 * purposes:
1738 	 *  - check_tty_count sees the correct number of file descriptors
1739 	 *    associated with this tty.
1740 	 *  - do_tty_hangup no longer sees this file descriptor as
1741 	 *    something that needs to be handled for hangups.
1742 	 */
1743 	tty_del_file(filp);
1744 
1745 	/*
1746 	 * Perform some housekeeping before deciding whether to return.
1747 	 *
1748 	 * Set the TTY_CLOSING flag if this was the last open.  In the
1749 	 * case of a pty we may have to wait around for the other side
1750 	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1751 	 */
1752 	if (tty_closing)
1753 		set_bit(TTY_CLOSING, &tty->flags);
1754 	if (o_tty_closing)
1755 		set_bit(TTY_CLOSING, &o_tty->flags);
1756 
1757 	/*
1758 	 * If _either_ side is closing, make sure there aren't any
1759 	 * processes that still think tty or o_tty is their controlling
1760 	 * tty.
1761 	 */
1762 	if (tty_closing || o_tty_closing) {
1763 		read_lock(&tasklist_lock);
1764 		session_clear_tty(tty->session);
1765 		if (o_tty)
1766 			session_clear_tty(o_tty->session);
1767 		read_unlock(&tasklist_lock);
1768 	}
1769 
1770 	mutex_unlock(&tty_mutex);
1771 	tty_unlock_pair(tty, o_tty);
1772 	/* At this point the TTY_CLOSING flag should ensure a dead tty
1773 	   cannot be re-opened by a racing opener */
1774 
1775 	/* check whether both sides are closing ... */
1776 	if (!tty_closing || (o_tty && !o_tty_closing))
1777 		return 0;
1778 
1779 #ifdef TTY_DEBUG_HANGUP
1780 	printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1781 #endif
1782 	/*
1783 	 * Ask the line discipline code to release its structures
1784 	 */
1785 	tty_ldisc_release(tty, o_tty);
1786 	/*
1787 	 * The release_tty function takes care of the details of clearing
1788 	 * the slots and preserving the termios structure. The tty_unlock_pair
1789 	 * should be safe as we keep a kref while the tty is locked (so the
1790 	 * unlock never unlocks a freed tty).
1791 	 */
1792 	mutex_lock(&tty_mutex);
1793 	release_tty(tty, idx);
1794 	mutex_unlock(&tty_mutex);
1795 
1796 	return 0;
1797 }
1798 
1799 /**
1800  *	tty_open_current_tty - get tty of current task for open
1801  *	@device: device number
1802  *	@filp: file pointer to tty
1803  *	@return: tty of the current task iff @device is /dev/tty
1804  *
1805  *	We cannot return driver and index like for the other nodes because
1806  *	devpts will not work then. It expects inodes to be from devpts FS.
1807  *
1808  *	We need to move to returning a refcounted object from all the lookup
1809  *	paths including this one.
1810  */
1811 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1812 {
1813 	struct tty_struct *tty;
1814 
1815 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1816 		return NULL;
1817 
1818 	tty = get_current_tty();
1819 	if (!tty)
1820 		return ERR_PTR(-ENXIO);
1821 
1822 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1823 	/* noctty = 1; */
1824 	tty_kref_put(tty);
1825 	/* FIXME: we put a reference and return a TTY! */
1826 	/* This is only safe because the caller holds tty_mutex */
1827 	return tty;
1828 }
1829 
1830 /**
1831  *	tty_lookup_driver - lookup a tty driver for a given device file
1832  *	@device: device number
1833  *	@filp: file pointer to tty
1834  *	@noctty: set if the device should not become a controlling tty
1835  *	@index: index for the device in the @return driver
1836  *	@return: driver for this inode (with increased refcount)
1837  *
1838  * 	If @return is not erroneous, the caller is responsible to decrement the
1839  * 	refcount by tty_driver_kref_put.
1840  *
1841  *	Locking: tty_mutex protects get_tty_driver
1842  */
1843 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1844 		int *noctty, int *index)
1845 {
1846 	struct tty_driver *driver;
1847 
1848 	switch (device) {
1849 #ifdef CONFIG_VT
1850 	case MKDEV(TTY_MAJOR, 0): {
1851 		extern struct tty_driver *console_driver;
1852 		driver = tty_driver_kref_get(console_driver);
1853 		*index = fg_console;
1854 		*noctty = 1;
1855 		break;
1856 	}
1857 #endif
1858 	case MKDEV(TTYAUX_MAJOR, 1): {
1859 		struct tty_driver *console_driver = console_device(index);
1860 		if (console_driver) {
1861 			driver = tty_driver_kref_get(console_driver);
1862 			if (driver) {
1863 				/* Don't let /dev/console block */
1864 				filp->f_flags |= O_NONBLOCK;
1865 				*noctty = 1;
1866 				break;
1867 			}
1868 		}
1869 		return ERR_PTR(-ENODEV);
1870 	}
1871 	default:
1872 		driver = get_tty_driver(device, index);
1873 		if (!driver)
1874 			return ERR_PTR(-ENODEV);
1875 		break;
1876 	}
1877 	return driver;
1878 }
1879 
1880 /**
1881  *	tty_open		-	open a tty device
1882  *	@inode: inode of device file
1883  *	@filp: file pointer to tty
1884  *
1885  *	tty_open and tty_release keep up the tty count that contains the
1886  *	number of opens done on a tty. We cannot use the inode-count, as
1887  *	different inodes might point to the same tty.
1888  *
1889  *	Open-counting is needed for pty masters, as well as for keeping
1890  *	track of serial lines: DTR is dropped when the last close happens.
1891  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1892  *
1893  *	The termios state of a pty is reset on first open so that
1894  *	settings don't persist across reuse.
1895  *
1896  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1897  *		 tty->count should protect the rest.
1898  *		 ->siglock protects ->signal/->sighand
1899  *
1900  *	Note: the tty_unlock/lock cases without a ref are only safe due to
1901  *	tty_mutex
1902  */
1903 
1904 static int tty_open(struct inode *inode, struct file *filp)
1905 {
1906 	struct tty_struct *tty;
1907 	int noctty, retval;
1908 	struct tty_driver *driver = NULL;
1909 	int index;
1910 	dev_t device = inode->i_rdev;
1911 	unsigned saved_flags = filp->f_flags;
1912 
1913 	nonseekable_open(inode, filp);
1914 
1915 retry_open:
1916 	retval = tty_alloc_file(filp);
1917 	if (retval)
1918 		return -ENOMEM;
1919 
1920 	noctty = filp->f_flags & O_NOCTTY;
1921 	index  = -1;
1922 	retval = 0;
1923 
1924 	mutex_lock(&tty_mutex);
1925 	/* This is protected by the tty_mutex */
1926 	tty = tty_open_current_tty(device, filp);
1927 	if (IS_ERR(tty)) {
1928 		retval = PTR_ERR(tty);
1929 		goto err_unlock;
1930 	} else if (!tty) {
1931 		driver = tty_lookup_driver(device, filp, &noctty, &index);
1932 		if (IS_ERR(driver)) {
1933 			retval = PTR_ERR(driver);
1934 			goto err_unlock;
1935 		}
1936 
1937 		/* check whether we're reopening an existing tty */
1938 		tty = tty_driver_lookup_tty(driver, inode, index);
1939 		if (IS_ERR(tty)) {
1940 			retval = PTR_ERR(tty);
1941 			goto err_unlock;
1942 		}
1943 	}
1944 
1945 	if (tty) {
1946 		tty_lock(tty);
1947 		retval = tty_reopen(tty);
1948 		if (retval < 0) {
1949 			tty_unlock(tty);
1950 			tty = ERR_PTR(retval);
1951 		}
1952 	} else	/* Returns with the tty_lock held for now */
1953 		tty = tty_init_dev(driver, index);
1954 
1955 	mutex_unlock(&tty_mutex);
1956 	if (driver)
1957 		tty_driver_kref_put(driver);
1958 	if (IS_ERR(tty)) {
1959 		retval = PTR_ERR(tty);
1960 		goto err_file;
1961 	}
1962 
1963 	tty_add_file(tty, filp);
1964 
1965 	check_tty_count(tty, __func__);
1966 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1967 	    tty->driver->subtype == PTY_TYPE_MASTER)
1968 		noctty = 1;
1969 #ifdef TTY_DEBUG_HANGUP
1970 	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1971 #endif
1972 	if (tty->ops->open)
1973 		retval = tty->ops->open(tty, filp);
1974 	else
1975 		retval = -ENODEV;
1976 	filp->f_flags = saved_flags;
1977 
1978 	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1979 						!capable(CAP_SYS_ADMIN))
1980 		retval = -EBUSY;
1981 
1982 	if (retval) {
1983 #ifdef TTY_DEBUG_HANGUP
1984 		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1985 				retval, tty->name);
1986 #endif
1987 		tty_unlock(tty); /* need to call tty_release without BTM */
1988 		tty_release(inode, filp);
1989 		if (retval != -ERESTARTSYS)
1990 			return retval;
1991 
1992 		if (signal_pending(current))
1993 			return retval;
1994 
1995 		schedule();
1996 		/*
1997 		 * Need to reset f_op in case a hangup happened.
1998 		 */
1999 		if (filp->f_op == &hung_up_tty_fops)
2000 			filp->f_op = &tty_fops;
2001 		goto retry_open;
2002 	}
2003 	tty_unlock(tty);
2004 
2005 
2006 	mutex_lock(&tty_mutex);
2007 	tty_lock(tty);
2008 	spin_lock_irq(&current->sighand->siglock);
2009 	if (!noctty &&
2010 	    current->signal->leader &&
2011 	    !current->signal->tty &&
2012 	    tty->session == NULL)
2013 		__proc_set_tty(current, tty);
2014 	spin_unlock_irq(&current->sighand->siglock);
2015 	tty_unlock(tty);
2016 	mutex_unlock(&tty_mutex);
2017 	return 0;
2018 err_unlock:
2019 	mutex_unlock(&tty_mutex);
2020 	/* after locks to avoid deadlock */
2021 	if (!IS_ERR_OR_NULL(driver))
2022 		tty_driver_kref_put(driver);
2023 err_file:
2024 	tty_free_file(filp);
2025 	return retval;
2026 }
2027 
2028 
2029 
2030 /**
2031  *	tty_poll	-	check tty status
2032  *	@filp: file being polled
2033  *	@wait: poll wait structures to update
2034  *
2035  *	Call the line discipline polling method to obtain the poll
2036  *	status of the device.
2037  *
2038  *	Locking: locks called line discipline but ldisc poll method
2039  *	may be re-entered freely by other callers.
2040  */
2041 
2042 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2043 {
2044 	struct tty_struct *tty = file_tty(filp);
2045 	struct tty_ldisc *ld;
2046 	int ret = 0;
2047 
2048 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2049 		return 0;
2050 
2051 	ld = tty_ldisc_ref_wait(tty);
2052 	if (ld->ops->poll)
2053 		ret = (ld->ops->poll)(tty, filp, wait);
2054 	tty_ldisc_deref(ld);
2055 	return ret;
2056 }
2057 
2058 static int __tty_fasync(int fd, struct file *filp, int on)
2059 {
2060 	struct tty_struct *tty = file_tty(filp);
2061 	unsigned long flags;
2062 	int retval = 0;
2063 
2064 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2065 		goto out;
2066 
2067 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2068 	if (retval <= 0)
2069 		goto out;
2070 
2071 	if (on) {
2072 		enum pid_type type;
2073 		struct pid *pid;
2074 		if (!waitqueue_active(&tty->read_wait))
2075 			tty->minimum_to_wake = 1;
2076 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2077 		if (tty->pgrp) {
2078 			pid = tty->pgrp;
2079 			type = PIDTYPE_PGID;
2080 		} else {
2081 			pid = task_pid(current);
2082 			type = PIDTYPE_PID;
2083 		}
2084 		get_pid(pid);
2085 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2086 		retval = __f_setown(filp, pid, type, 0);
2087 		put_pid(pid);
2088 		if (retval)
2089 			goto out;
2090 	} else {
2091 		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2092 			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2093 	}
2094 	retval = 0;
2095 out:
2096 	return retval;
2097 }
2098 
2099 static int tty_fasync(int fd, struct file *filp, int on)
2100 {
2101 	struct tty_struct *tty = file_tty(filp);
2102 	int retval;
2103 
2104 	tty_lock(tty);
2105 	retval = __tty_fasync(fd, filp, on);
2106 	tty_unlock(tty);
2107 
2108 	return retval;
2109 }
2110 
2111 /**
2112  *	tiocsti			-	fake input character
2113  *	@tty: tty to fake input into
2114  *	@p: pointer to character
2115  *
2116  *	Fake input to a tty device. Does the necessary locking and
2117  *	input management.
2118  *
2119  *	FIXME: does not honour flow control ??
2120  *
2121  *	Locking:
2122  *		Called functions take tty_ldisc_lock
2123  *		current->signal->tty check is safe without locks
2124  *
2125  *	FIXME: may race normal receive processing
2126  */
2127 
2128 static int tiocsti(struct tty_struct *tty, char __user *p)
2129 {
2130 	char ch, mbz = 0;
2131 	struct tty_ldisc *ld;
2132 
2133 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2134 		return -EPERM;
2135 	if (get_user(ch, p))
2136 		return -EFAULT;
2137 	tty_audit_tiocsti(tty, ch);
2138 	ld = tty_ldisc_ref_wait(tty);
2139 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2140 	tty_ldisc_deref(ld);
2141 	return 0;
2142 }
2143 
2144 /**
2145  *	tiocgwinsz		-	implement window query ioctl
2146  *	@tty; tty
2147  *	@arg: user buffer for result
2148  *
2149  *	Copies the kernel idea of the window size into the user buffer.
2150  *
2151  *	Locking: tty->termios_mutex is taken to ensure the winsize data
2152  *		is consistent.
2153  */
2154 
2155 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2156 {
2157 	int err;
2158 
2159 	mutex_lock(&tty->termios_mutex);
2160 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2161 	mutex_unlock(&tty->termios_mutex);
2162 
2163 	return err ? -EFAULT: 0;
2164 }
2165 
2166 /**
2167  *	tty_do_resize		-	resize event
2168  *	@tty: tty being resized
2169  *	@rows: rows (character)
2170  *	@cols: cols (character)
2171  *
2172  *	Update the termios variables and send the necessary signals to
2173  *	peform a terminal resize correctly
2174  */
2175 
2176 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2177 {
2178 	struct pid *pgrp;
2179 	unsigned long flags;
2180 
2181 	/* Lock the tty */
2182 	mutex_lock(&tty->termios_mutex);
2183 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2184 		goto done;
2185 	/* Get the PID values and reference them so we can
2186 	   avoid holding the tty ctrl lock while sending signals */
2187 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2188 	pgrp = get_pid(tty->pgrp);
2189 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2190 
2191 	if (pgrp)
2192 		kill_pgrp(pgrp, SIGWINCH, 1);
2193 	put_pid(pgrp);
2194 
2195 	tty->winsize = *ws;
2196 done:
2197 	mutex_unlock(&tty->termios_mutex);
2198 	return 0;
2199 }
2200 EXPORT_SYMBOL(tty_do_resize);
2201 
2202 /**
2203  *	tiocswinsz		-	implement window size set ioctl
2204  *	@tty; tty side of tty
2205  *	@arg: user buffer for result
2206  *
2207  *	Copies the user idea of the window size to the kernel. Traditionally
2208  *	this is just advisory information but for the Linux console it
2209  *	actually has driver level meaning and triggers a VC resize.
2210  *
2211  *	Locking:
2212  *		Driver dependent. The default do_resize method takes the
2213  *	tty termios mutex and ctrl_lock. The console takes its own lock
2214  *	then calls into the default method.
2215  */
2216 
2217 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2218 {
2219 	struct winsize tmp_ws;
2220 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2221 		return -EFAULT;
2222 
2223 	if (tty->ops->resize)
2224 		return tty->ops->resize(tty, &tmp_ws);
2225 	else
2226 		return tty_do_resize(tty, &tmp_ws);
2227 }
2228 
2229 /**
2230  *	tioccons	-	allow admin to move logical console
2231  *	@file: the file to become console
2232  *
2233  *	Allow the administrator to move the redirected console device
2234  *
2235  *	Locking: uses redirect_lock to guard the redirect information
2236  */
2237 
2238 static int tioccons(struct file *file)
2239 {
2240 	if (!capable(CAP_SYS_ADMIN))
2241 		return -EPERM;
2242 	if (file->f_op->write == redirected_tty_write) {
2243 		struct file *f;
2244 		spin_lock(&redirect_lock);
2245 		f = redirect;
2246 		redirect = NULL;
2247 		spin_unlock(&redirect_lock);
2248 		if (f)
2249 			fput(f);
2250 		return 0;
2251 	}
2252 	spin_lock(&redirect_lock);
2253 	if (redirect) {
2254 		spin_unlock(&redirect_lock);
2255 		return -EBUSY;
2256 	}
2257 	redirect = get_file(file);
2258 	spin_unlock(&redirect_lock);
2259 	return 0;
2260 }
2261 
2262 /**
2263  *	fionbio		-	non blocking ioctl
2264  *	@file: file to set blocking value
2265  *	@p: user parameter
2266  *
2267  *	Historical tty interfaces had a blocking control ioctl before
2268  *	the generic functionality existed. This piece of history is preserved
2269  *	in the expected tty API of posix OS's.
2270  *
2271  *	Locking: none, the open file handle ensures it won't go away.
2272  */
2273 
2274 static int fionbio(struct file *file, int __user *p)
2275 {
2276 	int nonblock;
2277 
2278 	if (get_user(nonblock, p))
2279 		return -EFAULT;
2280 
2281 	spin_lock(&file->f_lock);
2282 	if (nonblock)
2283 		file->f_flags |= O_NONBLOCK;
2284 	else
2285 		file->f_flags &= ~O_NONBLOCK;
2286 	spin_unlock(&file->f_lock);
2287 	return 0;
2288 }
2289 
2290 /**
2291  *	tiocsctty	-	set controlling tty
2292  *	@tty: tty structure
2293  *	@arg: user argument
2294  *
2295  *	This ioctl is used to manage job control. It permits a session
2296  *	leader to set this tty as the controlling tty for the session.
2297  *
2298  *	Locking:
2299  *		Takes tty_mutex() to protect tty instance
2300  *		Takes tasklist_lock internally to walk sessions
2301  *		Takes ->siglock() when updating signal->tty
2302  */
2303 
2304 static int tiocsctty(struct tty_struct *tty, int arg)
2305 {
2306 	int ret = 0;
2307 	if (current->signal->leader && (task_session(current) == tty->session))
2308 		return ret;
2309 
2310 	mutex_lock(&tty_mutex);
2311 	/*
2312 	 * The process must be a session leader and
2313 	 * not have a controlling tty already.
2314 	 */
2315 	if (!current->signal->leader || current->signal->tty) {
2316 		ret = -EPERM;
2317 		goto unlock;
2318 	}
2319 
2320 	if (tty->session) {
2321 		/*
2322 		 * This tty is already the controlling
2323 		 * tty for another session group!
2324 		 */
2325 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2326 			/*
2327 			 * Steal it away
2328 			 */
2329 			read_lock(&tasklist_lock);
2330 			session_clear_tty(tty->session);
2331 			read_unlock(&tasklist_lock);
2332 		} else {
2333 			ret = -EPERM;
2334 			goto unlock;
2335 		}
2336 	}
2337 	proc_set_tty(current, tty);
2338 unlock:
2339 	mutex_unlock(&tty_mutex);
2340 	return ret;
2341 }
2342 
2343 /**
2344  *	tty_get_pgrp	-	return a ref counted pgrp pid
2345  *	@tty: tty to read
2346  *
2347  *	Returns a refcounted instance of the pid struct for the process
2348  *	group controlling the tty.
2349  */
2350 
2351 struct pid *tty_get_pgrp(struct tty_struct *tty)
2352 {
2353 	unsigned long flags;
2354 	struct pid *pgrp;
2355 
2356 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2357 	pgrp = get_pid(tty->pgrp);
2358 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2359 
2360 	return pgrp;
2361 }
2362 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2363 
2364 /**
2365  *	tiocgpgrp		-	get process group
2366  *	@tty: tty passed by user
2367  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2368  *	@p: returned pid
2369  *
2370  *	Obtain the process group of the tty. If there is no process group
2371  *	return an error.
2372  *
2373  *	Locking: none. Reference to current->signal->tty is safe.
2374  */
2375 
2376 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2377 {
2378 	struct pid *pid;
2379 	int ret;
2380 	/*
2381 	 * (tty == real_tty) is a cheap way of
2382 	 * testing if the tty is NOT a master pty.
2383 	 */
2384 	if (tty == real_tty && current->signal->tty != real_tty)
2385 		return -ENOTTY;
2386 	pid = tty_get_pgrp(real_tty);
2387 	ret =  put_user(pid_vnr(pid), p);
2388 	put_pid(pid);
2389 	return ret;
2390 }
2391 
2392 /**
2393  *	tiocspgrp		-	attempt to set process group
2394  *	@tty: tty passed by user
2395  *	@real_tty: tty side device matching tty passed by user
2396  *	@p: pid pointer
2397  *
2398  *	Set the process group of the tty to the session passed. Only
2399  *	permitted where the tty session is our session.
2400  *
2401  *	Locking: RCU, ctrl lock
2402  */
2403 
2404 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2405 {
2406 	struct pid *pgrp;
2407 	pid_t pgrp_nr;
2408 	int retval = tty_check_change(real_tty);
2409 	unsigned long flags;
2410 
2411 	if (retval == -EIO)
2412 		return -ENOTTY;
2413 	if (retval)
2414 		return retval;
2415 	if (!current->signal->tty ||
2416 	    (current->signal->tty != real_tty) ||
2417 	    (real_tty->session != task_session(current)))
2418 		return -ENOTTY;
2419 	if (get_user(pgrp_nr, p))
2420 		return -EFAULT;
2421 	if (pgrp_nr < 0)
2422 		return -EINVAL;
2423 	rcu_read_lock();
2424 	pgrp = find_vpid(pgrp_nr);
2425 	retval = -ESRCH;
2426 	if (!pgrp)
2427 		goto out_unlock;
2428 	retval = -EPERM;
2429 	if (session_of_pgrp(pgrp) != task_session(current))
2430 		goto out_unlock;
2431 	retval = 0;
2432 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2433 	put_pid(real_tty->pgrp);
2434 	real_tty->pgrp = get_pid(pgrp);
2435 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2436 out_unlock:
2437 	rcu_read_unlock();
2438 	return retval;
2439 }
2440 
2441 /**
2442  *	tiocgsid		-	get session id
2443  *	@tty: tty passed by user
2444  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2445  *	@p: pointer to returned session id
2446  *
2447  *	Obtain the session id of the tty. If there is no session
2448  *	return an error.
2449  *
2450  *	Locking: none. Reference to current->signal->tty is safe.
2451  */
2452 
2453 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2454 {
2455 	/*
2456 	 * (tty == real_tty) is a cheap way of
2457 	 * testing if the tty is NOT a master pty.
2458 	*/
2459 	if (tty == real_tty && current->signal->tty != real_tty)
2460 		return -ENOTTY;
2461 	if (!real_tty->session)
2462 		return -ENOTTY;
2463 	return put_user(pid_vnr(real_tty->session), p);
2464 }
2465 
2466 /**
2467  *	tiocsetd	-	set line discipline
2468  *	@tty: tty device
2469  *	@p: pointer to user data
2470  *
2471  *	Set the line discipline according to user request.
2472  *
2473  *	Locking: see tty_set_ldisc, this function is just a helper
2474  */
2475 
2476 static int tiocsetd(struct tty_struct *tty, int __user *p)
2477 {
2478 	int ldisc;
2479 	int ret;
2480 
2481 	if (get_user(ldisc, p))
2482 		return -EFAULT;
2483 
2484 	ret = tty_set_ldisc(tty, ldisc);
2485 
2486 	return ret;
2487 }
2488 
2489 /**
2490  *	send_break	-	performed time break
2491  *	@tty: device to break on
2492  *	@duration: timeout in mS
2493  *
2494  *	Perform a timed break on hardware that lacks its own driver level
2495  *	timed break functionality.
2496  *
2497  *	Locking:
2498  *		atomic_write_lock serializes
2499  *
2500  */
2501 
2502 static int send_break(struct tty_struct *tty, unsigned int duration)
2503 {
2504 	int retval;
2505 
2506 	if (tty->ops->break_ctl == NULL)
2507 		return 0;
2508 
2509 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2510 		retval = tty->ops->break_ctl(tty, duration);
2511 	else {
2512 		/* Do the work ourselves */
2513 		if (tty_write_lock(tty, 0) < 0)
2514 			return -EINTR;
2515 		retval = tty->ops->break_ctl(tty, -1);
2516 		if (retval)
2517 			goto out;
2518 		if (!signal_pending(current))
2519 			msleep_interruptible(duration);
2520 		retval = tty->ops->break_ctl(tty, 0);
2521 out:
2522 		tty_write_unlock(tty);
2523 		if (signal_pending(current))
2524 			retval = -EINTR;
2525 	}
2526 	return retval;
2527 }
2528 
2529 /**
2530  *	tty_tiocmget		-	get modem status
2531  *	@tty: tty device
2532  *	@file: user file pointer
2533  *	@p: pointer to result
2534  *
2535  *	Obtain the modem status bits from the tty driver if the feature
2536  *	is supported. Return -EINVAL if it is not available.
2537  *
2538  *	Locking: none (up to the driver)
2539  */
2540 
2541 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2542 {
2543 	int retval = -EINVAL;
2544 
2545 	if (tty->ops->tiocmget) {
2546 		retval = tty->ops->tiocmget(tty);
2547 
2548 		if (retval >= 0)
2549 			retval = put_user(retval, p);
2550 	}
2551 	return retval;
2552 }
2553 
2554 /**
2555  *	tty_tiocmset		-	set modem status
2556  *	@tty: tty device
2557  *	@cmd: command - clear bits, set bits or set all
2558  *	@p: pointer to desired bits
2559  *
2560  *	Set the modem status bits from the tty driver if the feature
2561  *	is supported. Return -EINVAL if it is not available.
2562  *
2563  *	Locking: none (up to the driver)
2564  */
2565 
2566 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2567 	     unsigned __user *p)
2568 {
2569 	int retval;
2570 	unsigned int set, clear, val;
2571 
2572 	if (tty->ops->tiocmset == NULL)
2573 		return -EINVAL;
2574 
2575 	retval = get_user(val, p);
2576 	if (retval)
2577 		return retval;
2578 	set = clear = 0;
2579 	switch (cmd) {
2580 	case TIOCMBIS:
2581 		set = val;
2582 		break;
2583 	case TIOCMBIC:
2584 		clear = val;
2585 		break;
2586 	case TIOCMSET:
2587 		set = val;
2588 		clear = ~val;
2589 		break;
2590 	}
2591 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2592 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2593 	return tty->ops->tiocmset(tty, set, clear);
2594 }
2595 
2596 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2597 {
2598 	int retval = -EINVAL;
2599 	struct serial_icounter_struct icount;
2600 	memset(&icount, 0, sizeof(icount));
2601 	if (tty->ops->get_icount)
2602 		retval = tty->ops->get_icount(tty, &icount);
2603 	if (retval != 0)
2604 		return retval;
2605 	if (copy_to_user(arg, &icount, sizeof(icount)))
2606 		return -EFAULT;
2607 	return 0;
2608 }
2609 
2610 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2611 {
2612 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2613 	    tty->driver->subtype == PTY_TYPE_MASTER)
2614 		tty = tty->link;
2615 	return tty;
2616 }
2617 EXPORT_SYMBOL(tty_pair_get_tty);
2618 
2619 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2620 {
2621 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2622 	    tty->driver->subtype == PTY_TYPE_MASTER)
2623 	    return tty;
2624 	return tty->link;
2625 }
2626 EXPORT_SYMBOL(tty_pair_get_pty);
2627 
2628 /*
2629  * Split this up, as gcc can choke on it otherwise..
2630  */
2631 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2632 {
2633 	struct tty_struct *tty = file_tty(file);
2634 	struct tty_struct *real_tty;
2635 	void __user *p = (void __user *)arg;
2636 	int retval;
2637 	struct tty_ldisc *ld;
2638 
2639 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2640 		return -EINVAL;
2641 
2642 	real_tty = tty_pair_get_tty(tty);
2643 
2644 	/*
2645 	 * Factor out some common prep work
2646 	 */
2647 	switch (cmd) {
2648 	case TIOCSETD:
2649 	case TIOCSBRK:
2650 	case TIOCCBRK:
2651 	case TCSBRK:
2652 	case TCSBRKP:
2653 		retval = tty_check_change(tty);
2654 		if (retval)
2655 			return retval;
2656 		if (cmd != TIOCCBRK) {
2657 			tty_wait_until_sent(tty, 0);
2658 			if (signal_pending(current))
2659 				return -EINTR;
2660 		}
2661 		break;
2662 	}
2663 
2664 	/*
2665 	 *	Now do the stuff.
2666 	 */
2667 	switch (cmd) {
2668 	case TIOCSTI:
2669 		return tiocsti(tty, p);
2670 	case TIOCGWINSZ:
2671 		return tiocgwinsz(real_tty, p);
2672 	case TIOCSWINSZ:
2673 		return tiocswinsz(real_tty, p);
2674 	case TIOCCONS:
2675 		return real_tty != tty ? -EINVAL : tioccons(file);
2676 	case FIONBIO:
2677 		return fionbio(file, p);
2678 	case TIOCEXCL:
2679 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2680 		return 0;
2681 	case TIOCNXCL:
2682 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2683 		return 0;
2684 	case TIOCGEXCL:
2685 	{
2686 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2687 		return put_user(excl, (int __user *)p);
2688 	}
2689 	case TIOCNOTTY:
2690 		if (current->signal->tty != tty)
2691 			return -ENOTTY;
2692 		no_tty();
2693 		return 0;
2694 	case TIOCSCTTY:
2695 		return tiocsctty(tty, arg);
2696 	case TIOCGPGRP:
2697 		return tiocgpgrp(tty, real_tty, p);
2698 	case TIOCSPGRP:
2699 		return tiocspgrp(tty, real_tty, p);
2700 	case TIOCGSID:
2701 		return tiocgsid(tty, real_tty, p);
2702 	case TIOCGETD:
2703 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2704 	case TIOCSETD:
2705 		return tiocsetd(tty, p);
2706 	case TIOCVHANGUP:
2707 		if (!capable(CAP_SYS_ADMIN))
2708 			return -EPERM;
2709 		tty_vhangup(tty);
2710 		return 0;
2711 	case TIOCGDEV:
2712 	{
2713 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2714 		return put_user(ret, (unsigned int __user *)p);
2715 	}
2716 	/*
2717 	 * Break handling
2718 	 */
2719 	case TIOCSBRK:	/* Turn break on, unconditionally */
2720 		if (tty->ops->break_ctl)
2721 			return tty->ops->break_ctl(tty, -1);
2722 		return 0;
2723 	case TIOCCBRK:	/* Turn break off, unconditionally */
2724 		if (tty->ops->break_ctl)
2725 			return tty->ops->break_ctl(tty, 0);
2726 		return 0;
2727 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2728 		/* non-zero arg means wait for all output data
2729 		 * to be sent (performed above) but don't send break.
2730 		 * This is used by the tcdrain() termios function.
2731 		 */
2732 		if (!arg)
2733 			return send_break(tty, 250);
2734 		return 0;
2735 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2736 		return send_break(tty, arg ? arg*100 : 250);
2737 
2738 	case TIOCMGET:
2739 		return tty_tiocmget(tty, p);
2740 	case TIOCMSET:
2741 	case TIOCMBIC:
2742 	case TIOCMBIS:
2743 		return tty_tiocmset(tty, cmd, p);
2744 	case TIOCGICOUNT:
2745 		retval = tty_tiocgicount(tty, p);
2746 		/* For the moment allow fall through to the old method */
2747         	if (retval != -EINVAL)
2748 			return retval;
2749 		break;
2750 	case TCFLSH:
2751 		switch (arg) {
2752 		case TCIFLUSH:
2753 		case TCIOFLUSH:
2754 		/* flush tty buffer and allow ldisc to process ioctl */
2755 			tty_buffer_flush(tty);
2756 			break;
2757 		}
2758 		break;
2759 	}
2760 	if (tty->ops->ioctl) {
2761 		retval = (tty->ops->ioctl)(tty, cmd, arg);
2762 		if (retval != -ENOIOCTLCMD)
2763 			return retval;
2764 	}
2765 	ld = tty_ldisc_ref_wait(tty);
2766 	retval = -EINVAL;
2767 	if (ld->ops->ioctl) {
2768 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2769 		if (retval == -ENOIOCTLCMD)
2770 			retval = -ENOTTY;
2771 	}
2772 	tty_ldisc_deref(ld);
2773 	return retval;
2774 }
2775 
2776 #ifdef CONFIG_COMPAT
2777 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2778 				unsigned long arg)
2779 {
2780 	struct tty_struct *tty = file_tty(file);
2781 	struct tty_ldisc *ld;
2782 	int retval = -ENOIOCTLCMD;
2783 
2784 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2785 		return -EINVAL;
2786 
2787 	if (tty->ops->compat_ioctl) {
2788 		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2789 		if (retval != -ENOIOCTLCMD)
2790 			return retval;
2791 	}
2792 
2793 	ld = tty_ldisc_ref_wait(tty);
2794 	if (ld->ops->compat_ioctl)
2795 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2796 	else
2797 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2798 	tty_ldisc_deref(ld);
2799 
2800 	return retval;
2801 }
2802 #endif
2803 
2804 static int this_tty(const void *t, struct file *file, unsigned fd)
2805 {
2806 	if (likely(file->f_op->read != tty_read))
2807 		return 0;
2808 	return file_tty(file) != t ? 0 : fd + 1;
2809 }
2810 
2811 /*
2812  * This implements the "Secure Attention Key" ---  the idea is to
2813  * prevent trojan horses by killing all processes associated with this
2814  * tty when the user hits the "Secure Attention Key".  Required for
2815  * super-paranoid applications --- see the Orange Book for more details.
2816  *
2817  * This code could be nicer; ideally it should send a HUP, wait a few
2818  * seconds, then send a INT, and then a KILL signal.  But you then
2819  * have to coordinate with the init process, since all processes associated
2820  * with the current tty must be dead before the new getty is allowed
2821  * to spawn.
2822  *
2823  * Now, if it would be correct ;-/ The current code has a nasty hole -
2824  * it doesn't catch files in flight. We may send the descriptor to ourselves
2825  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2826  *
2827  * Nasty bug: do_SAK is being called in interrupt context.  This can
2828  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2829  */
2830 void __do_SAK(struct tty_struct *tty)
2831 {
2832 #ifdef TTY_SOFT_SAK
2833 	tty_hangup(tty);
2834 #else
2835 	struct task_struct *g, *p;
2836 	struct pid *session;
2837 	int		i;
2838 
2839 	if (!tty)
2840 		return;
2841 	session = tty->session;
2842 
2843 	tty_ldisc_flush(tty);
2844 
2845 	tty_driver_flush_buffer(tty);
2846 
2847 	read_lock(&tasklist_lock);
2848 	/* Kill the entire session */
2849 	do_each_pid_task(session, PIDTYPE_SID, p) {
2850 		printk(KERN_NOTICE "SAK: killed process %d"
2851 			" (%s): task_session(p)==tty->session\n",
2852 			task_pid_nr(p), p->comm);
2853 		send_sig(SIGKILL, p, 1);
2854 	} while_each_pid_task(session, PIDTYPE_SID, p);
2855 	/* Now kill any processes that happen to have the
2856 	 * tty open.
2857 	 */
2858 	do_each_thread(g, p) {
2859 		if (p->signal->tty == tty) {
2860 			printk(KERN_NOTICE "SAK: killed process %d"
2861 			    " (%s): task_session(p)==tty->session\n",
2862 			    task_pid_nr(p), p->comm);
2863 			send_sig(SIGKILL, p, 1);
2864 			continue;
2865 		}
2866 		task_lock(p);
2867 		i = iterate_fd(p->files, 0, this_tty, tty);
2868 		if (i != 0) {
2869 			printk(KERN_NOTICE "SAK: killed process %d"
2870 			    " (%s): fd#%d opened to the tty\n",
2871 				    task_pid_nr(p), p->comm, i - 1);
2872 			force_sig(SIGKILL, p);
2873 		}
2874 		task_unlock(p);
2875 	} while_each_thread(g, p);
2876 	read_unlock(&tasklist_lock);
2877 #endif
2878 }
2879 
2880 static void do_SAK_work(struct work_struct *work)
2881 {
2882 	struct tty_struct *tty =
2883 		container_of(work, struct tty_struct, SAK_work);
2884 	__do_SAK(tty);
2885 }
2886 
2887 /*
2888  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2889  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2890  * the values which we write to it will be identical to the values which it
2891  * already has. --akpm
2892  */
2893 void do_SAK(struct tty_struct *tty)
2894 {
2895 	if (!tty)
2896 		return;
2897 	schedule_work(&tty->SAK_work);
2898 }
2899 
2900 EXPORT_SYMBOL(do_SAK);
2901 
2902 static int dev_match_devt(struct device *dev, const void *data)
2903 {
2904 	const dev_t *devt = data;
2905 	return dev->devt == *devt;
2906 }
2907 
2908 /* Must put_device() after it's unused! */
2909 static struct device *tty_get_device(struct tty_struct *tty)
2910 {
2911 	dev_t devt = tty_devnum(tty);
2912 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2913 }
2914 
2915 
2916 /**
2917  *	initialize_tty_struct
2918  *	@tty: tty to initialize
2919  *
2920  *	This subroutine initializes a tty structure that has been newly
2921  *	allocated.
2922  *
2923  *	Locking: none - tty in question must not be exposed at this point
2924  */
2925 
2926 void initialize_tty_struct(struct tty_struct *tty,
2927 		struct tty_driver *driver, int idx)
2928 {
2929 	memset(tty, 0, sizeof(struct tty_struct));
2930 	kref_init(&tty->kref);
2931 	tty->magic = TTY_MAGIC;
2932 	tty_ldisc_init(tty);
2933 	tty->session = NULL;
2934 	tty->pgrp = NULL;
2935 	mutex_init(&tty->legacy_mutex);
2936 	mutex_init(&tty->termios_mutex);
2937 	mutex_init(&tty->ldisc_mutex);
2938 	init_waitqueue_head(&tty->write_wait);
2939 	init_waitqueue_head(&tty->read_wait);
2940 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2941 	mutex_init(&tty->atomic_write_lock);
2942 	spin_lock_init(&tty->ctrl_lock);
2943 	INIT_LIST_HEAD(&tty->tty_files);
2944 	INIT_WORK(&tty->SAK_work, do_SAK_work);
2945 
2946 	tty->driver = driver;
2947 	tty->ops = driver->ops;
2948 	tty->index = idx;
2949 	tty_line_name(driver, idx, tty->name);
2950 	tty->dev = tty_get_device(tty);
2951 }
2952 
2953 /**
2954  *	deinitialize_tty_struct
2955  *	@tty: tty to deinitialize
2956  *
2957  *	This subroutine deinitializes a tty structure that has been newly
2958  *	allocated but tty_release cannot be called on that yet.
2959  *
2960  *	Locking: none - tty in question must not be exposed at this point
2961  */
2962 void deinitialize_tty_struct(struct tty_struct *tty)
2963 {
2964 	tty_ldisc_deinit(tty);
2965 }
2966 
2967 /**
2968  *	tty_put_char	-	write one character to a tty
2969  *	@tty: tty
2970  *	@ch: character
2971  *
2972  *	Write one byte to the tty using the provided put_char method
2973  *	if present. Returns the number of characters successfully output.
2974  *
2975  *	Note: the specific put_char operation in the driver layer may go
2976  *	away soon. Don't call it directly, use this method
2977  */
2978 
2979 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2980 {
2981 	if (tty->ops->put_char)
2982 		return tty->ops->put_char(tty, ch);
2983 	return tty->ops->write(tty, &ch, 1);
2984 }
2985 EXPORT_SYMBOL_GPL(tty_put_char);
2986 
2987 struct class *tty_class;
2988 
2989 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
2990 		unsigned int index, unsigned int count)
2991 {
2992 	/* init here, since reused cdevs cause crashes */
2993 	cdev_init(&driver->cdevs[index], &tty_fops);
2994 	driver->cdevs[index].owner = driver->owner;
2995 	return cdev_add(&driver->cdevs[index], dev, count);
2996 }
2997 
2998 /**
2999  *	tty_register_device - register a tty device
3000  *	@driver: the tty driver that describes the tty device
3001  *	@index: the index in the tty driver for this tty device
3002  *	@device: a struct device that is associated with this tty device.
3003  *		This field is optional, if there is no known struct device
3004  *		for this tty device it can be set to NULL safely.
3005  *
3006  *	Returns a pointer to the struct device for this tty device
3007  *	(or ERR_PTR(-EFOO) on error).
3008  *
3009  *	This call is required to be made to register an individual tty device
3010  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3011  *	that bit is not set, this function should not be called by a tty
3012  *	driver.
3013  *
3014  *	Locking: ??
3015  */
3016 
3017 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3018 				   struct device *device)
3019 {
3020 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3021 }
3022 EXPORT_SYMBOL(tty_register_device);
3023 
3024 static void tty_device_create_release(struct device *dev)
3025 {
3026 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3027 	kfree(dev);
3028 }
3029 
3030 /**
3031  *	tty_register_device_attr - register a tty device
3032  *	@driver: the tty driver that describes the tty device
3033  *	@index: the index in the tty driver for this tty device
3034  *	@device: a struct device that is associated with this tty device.
3035  *		This field is optional, if there is no known struct device
3036  *		for this tty device it can be set to NULL safely.
3037  *	@drvdata: Driver data to be set to device.
3038  *	@attr_grp: Attribute group to be set on device.
3039  *
3040  *	Returns a pointer to the struct device for this tty device
3041  *	(or ERR_PTR(-EFOO) on error).
3042  *
3043  *	This call is required to be made to register an individual tty device
3044  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3045  *	that bit is not set, this function should not be called by a tty
3046  *	driver.
3047  *
3048  *	Locking: ??
3049  */
3050 struct device *tty_register_device_attr(struct tty_driver *driver,
3051 				   unsigned index, struct device *device,
3052 				   void *drvdata,
3053 				   const struct attribute_group **attr_grp)
3054 {
3055 	char name[64];
3056 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3057 	struct device *dev = NULL;
3058 	int retval = -ENODEV;
3059 	bool cdev = false;
3060 
3061 	if (index >= driver->num) {
3062 		printk(KERN_ERR "Attempt to register invalid tty line number "
3063 		       " (%d).\n", index);
3064 		return ERR_PTR(-EINVAL);
3065 	}
3066 
3067 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3068 		pty_line_name(driver, index, name);
3069 	else
3070 		tty_line_name(driver, index, name);
3071 
3072 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3073 		retval = tty_cdev_add(driver, devt, index, 1);
3074 		if (retval)
3075 			goto error;
3076 		cdev = true;
3077 	}
3078 
3079 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3080 	if (!dev) {
3081 		retval = -ENOMEM;
3082 		goto error;
3083 	}
3084 
3085 	dev->devt = devt;
3086 	dev->class = tty_class;
3087 	dev->parent = device;
3088 	dev->release = tty_device_create_release;
3089 	dev_set_name(dev, "%s", name);
3090 	dev->groups = attr_grp;
3091 	dev_set_drvdata(dev, drvdata);
3092 
3093 	retval = device_register(dev);
3094 	if (retval)
3095 		goto error;
3096 
3097 	return dev;
3098 
3099 error:
3100 	put_device(dev);
3101 	if (cdev)
3102 		cdev_del(&driver->cdevs[index]);
3103 	return ERR_PTR(retval);
3104 }
3105 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3106 
3107 /**
3108  * 	tty_unregister_device - unregister a tty device
3109  * 	@driver: the tty driver that describes the tty device
3110  * 	@index: the index in the tty driver for this tty device
3111  *
3112  * 	If a tty device is registered with a call to tty_register_device() then
3113  *	this function must be called when the tty device is gone.
3114  *
3115  *	Locking: ??
3116  */
3117 
3118 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3119 {
3120 	device_destroy(tty_class,
3121 		MKDEV(driver->major, driver->minor_start) + index);
3122 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3123 		cdev_del(&driver->cdevs[index]);
3124 }
3125 EXPORT_SYMBOL(tty_unregister_device);
3126 
3127 /**
3128  * __tty_alloc_driver -- allocate tty driver
3129  * @lines: count of lines this driver can handle at most
3130  * @owner: module which is repsonsible for this driver
3131  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3132  *
3133  * This should not be called directly, some of the provided macros should be
3134  * used instead. Use IS_ERR and friends on @retval.
3135  */
3136 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3137 		unsigned long flags)
3138 {
3139 	struct tty_driver *driver;
3140 	unsigned int cdevs = 1;
3141 	int err;
3142 
3143 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3144 		return ERR_PTR(-EINVAL);
3145 
3146 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3147 	if (!driver)
3148 		return ERR_PTR(-ENOMEM);
3149 
3150 	kref_init(&driver->kref);
3151 	driver->magic = TTY_DRIVER_MAGIC;
3152 	driver->num = lines;
3153 	driver->owner = owner;
3154 	driver->flags = flags;
3155 
3156 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3157 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3158 				GFP_KERNEL);
3159 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3160 				GFP_KERNEL);
3161 		if (!driver->ttys || !driver->termios) {
3162 			err = -ENOMEM;
3163 			goto err_free_all;
3164 		}
3165 	}
3166 
3167 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3168 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3169 				GFP_KERNEL);
3170 		if (!driver->ports) {
3171 			err = -ENOMEM;
3172 			goto err_free_all;
3173 		}
3174 		cdevs = lines;
3175 	}
3176 
3177 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3178 	if (!driver->cdevs) {
3179 		err = -ENOMEM;
3180 		goto err_free_all;
3181 	}
3182 
3183 	return driver;
3184 err_free_all:
3185 	kfree(driver->ports);
3186 	kfree(driver->ttys);
3187 	kfree(driver->termios);
3188 	kfree(driver);
3189 	return ERR_PTR(err);
3190 }
3191 EXPORT_SYMBOL(__tty_alloc_driver);
3192 
3193 static void destruct_tty_driver(struct kref *kref)
3194 {
3195 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3196 	int i;
3197 	struct ktermios *tp;
3198 
3199 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3200 		/*
3201 		 * Free the termios and termios_locked structures because
3202 		 * we don't want to get memory leaks when modular tty
3203 		 * drivers are removed from the kernel.
3204 		 */
3205 		for (i = 0; i < driver->num; i++) {
3206 			tp = driver->termios[i];
3207 			if (tp) {
3208 				driver->termios[i] = NULL;
3209 				kfree(tp);
3210 			}
3211 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3212 				tty_unregister_device(driver, i);
3213 		}
3214 		proc_tty_unregister_driver(driver);
3215 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3216 			cdev_del(&driver->cdevs[0]);
3217 	}
3218 	kfree(driver->cdevs);
3219 	kfree(driver->ports);
3220 	kfree(driver->termios);
3221 	kfree(driver->ttys);
3222 	kfree(driver);
3223 }
3224 
3225 void tty_driver_kref_put(struct tty_driver *driver)
3226 {
3227 	kref_put(&driver->kref, destruct_tty_driver);
3228 }
3229 EXPORT_SYMBOL(tty_driver_kref_put);
3230 
3231 void tty_set_operations(struct tty_driver *driver,
3232 			const struct tty_operations *op)
3233 {
3234 	driver->ops = op;
3235 };
3236 EXPORT_SYMBOL(tty_set_operations);
3237 
3238 void put_tty_driver(struct tty_driver *d)
3239 {
3240 	tty_driver_kref_put(d);
3241 }
3242 EXPORT_SYMBOL(put_tty_driver);
3243 
3244 /*
3245  * Called by a tty driver to register itself.
3246  */
3247 int tty_register_driver(struct tty_driver *driver)
3248 {
3249 	int error;
3250 	int i;
3251 	dev_t dev;
3252 	struct device *d;
3253 
3254 	if (!driver->major) {
3255 		error = alloc_chrdev_region(&dev, driver->minor_start,
3256 						driver->num, driver->name);
3257 		if (!error) {
3258 			driver->major = MAJOR(dev);
3259 			driver->minor_start = MINOR(dev);
3260 		}
3261 	} else {
3262 		dev = MKDEV(driver->major, driver->minor_start);
3263 		error = register_chrdev_region(dev, driver->num, driver->name);
3264 	}
3265 	if (error < 0)
3266 		goto err;
3267 
3268 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3269 		error = tty_cdev_add(driver, dev, 0, driver->num);
3270 		if (error)
3271 			goto err_unreg_char;
3272 	}
3273 
3274 	mutex_lock(&tty_mutex);
3275 	list_add(&driver->tty_drivers, &tty_drivers);
3276 	mutex_unlock(&tty_mutex);
3277 
3278 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3279 		for (i = 0; i < driver->num; i++) {
3280 			d = tty_register_device(driver, i, NULL);
3281 			if (IS_ERR(d)) {
3282 				error = PTR_ERR(d);
3283 				goto err_unreg_devs;
3284 			}
3285 		}
3286 	}
3287 	proc_tty_register_driver(driver);
3288 	driver->flags |= TTY_DRIVER_INSTALLED;
3289 	return 0;
3290 
3291 err_unreg_devs:
3292 	for (i--; i >= 0; i--)
3293 		tty_unregister_device(driver, i);
3294 
3295 	mutex_lock(&tty_mutex);
3296 	list_del(&driver->tty_drivers);
3297 	mutex_unlock(&tty_mutex);
3298 
3299 err_unreg_char:
3300 	unregister_chrdev_region(dev, driver->num);
3301 err:
3302 	return error;
3303 }
3304 EXPORT_SYMBOL(tty_register_driver);
3305 
3306 /*
3307  * Called by a tty driver to unregister itself.
3308  */
3309 int tty_unregister_driver(struct tty_driver *driver)
3310 {
3311 #if 0
3312 	/* FIXME */
3313 	if (driver->refcount)
3314 		return -EBUSY;
3315 #endif
3316 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3317 				driver->num);
3318 	mutex_lock(&tty_mutex);
3319 	list_del(&driver->tty_drivers);
3320 	mutex_unlock(&tty_mutex);
3321 	return 0;
3322 }
3323 
3324 EXPORT_SYMBOL(tty_unregister_driver);
3325 
3326 dev_t tty_devnum(struct tty_struct *tty)
3327 {
3328 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3329 }
3330 EXPORT_SYMBOL(tty_devnum);
3331 
3332 void proc_clear_tty(struct task_struct *p)
3333 {
3334 	unsigned long flags;
3335 	struct tty_struct *tty;
3336 	spin_lock_irqsave(&p->sighand->siglock, flags);
3337 	tty = p->signal->tty;
3338 	p->signal->tty = NULL;
3339 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3340 	tty_kref_put(tty);
3341 }
3342 
3343 /* Called under the sighand lock */
3344 
3345 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3346 {
3347 	if (tty) {
3348 		unsigned long flags;
3349 		/* We should not have a session or pgrp to put here but.... */
3350 		spin_lock_irqsave(&tty->ctrl_lock, flags);
3351 		put_pid(tty->session);
3352 		put_pid(tty->pgrp);
3353 		tty->pgrp = get_pid(task_pgrp(tsk));
3354 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3355 		tty->session = get_pid(task_session(tsk));
3356 		if (tsk->signal->tty) {
3357 			printk(KERN_DEBUG "tty not NULL!!\n");
3358 			tty_kref_put(tsk->signal->tty);
3359 		}
3360 	}
3361 	put_pid(tsk->signal->tty_old_pgrp);
3362 	tsk->signal->tty = tty_kref_get(tty);
3363 	tsk->signal->tty_old_pgrp = NULL;
3364 }
3365 
3366 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3367 {
3368 	spin_lock_irq(&tsk->sighand->siglock);
3369 	__proc_set_tty(tsk, tty);
3370 	spin_unlock_irq(&tsk->sighand->siglock);
3371 }
3372 
3373 struct tty_struct *get_current_tty(void)
3374 {
3375 	struct tty_struct *tty;
3376 	unsigned long flags;
3377 
3378 	spin_lock_irqsave(&current->sighand->siglock, flags);
3379 	tty = tty_kref_get(current->signal->tty);
3380 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3381 	return tty;
3382 }
3383 EXPORT_SYMBOL_GPL(get_current_tty);
3384 
3385 void tty_default_fops(struct file_operations *fops)
3386 {
3387 	*fops = tty_fops;
3388 }
3389 
3390 /*
3391  * Initialize the console device. This is called *early*, so
3392  * we can't necessarily depend on lots of kernel help here.
3393  * Just do some early initializations, and do the complex setup
3394  * later.
3395  */
3396 void __init console_init(void)
3397 {
3398 	initcall_t *call;
3399 
3400 	/* Setup the default TTY line discipline. */
3401 	tty_ldisc_begin();
3402 
3403 	/*
3404 	 * set up the console device so that later boot sequences can
3405 	 * inform about problems etc..
3406 	 */
3407 	call = __con_initcall_start;
3408 	while (call < __con_initcall_end) {
3409 		(*call)();
3410 		call++;
3411 	}
3412 }
3413 
3414 static char *tty_devnode(struct device *dev, umode_t *mode)
3415 {
3416 	if (!mode)
3417 		return NULL;
3418 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3419 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3420 		*mode = 0666;
3421 	return NULL;
3422 }
3423 
3424 static int __init tty_class_init(void)
3425 {
3426 	tty_class = class_create(THIS_MODULE, "tty");
3427 	if (IS_ERR(tty_class))
3428 		return PTR_ERR(tty_class);
3429 	tty_class->devnode = tty_devnode;
3430 	return 0;
3431 }
3432 
3433 postcore_initcall(tty_class_init);
3434 
3435 /* 3/2004 jmc: why do these devices exist? */
3436 static struct cdev tty_cdev, console_cdev;
3437 
3438 static ssize_t show_cons_active(struct device *dev,
3439 				struct device_attribute *attr, char *buf)
3440 {
3441 	struct console *cs[16];
3442 	int i = 0;
3443 	struct console *c;
3444 	ssize_t count = 0;
3445 
3446 	console_lock();
3447 	for_each_console(c) {
3448 		if (!c->device)
3449 			continue;
3450 		if (!c->write)
3451 			continue;
3452 		if ((c->flags & CON_ENABLED) == 0)
3453 			continue;
3454 		cs[i++] = c;
3455 		if (i >= ARRAY_SIZE(cs))
3456 			break;
3457 	}
3458 	while (i--)
3459 		count += sprintf(buf + count, "%s%d%c",
3460 				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3461 	console_unlock();
3462 
3463 	return count;
3464 }
3465 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3466 
3467 static struct device *consdev;
3468 
3469 void console_sysfs_notify(void)
3470 {
3471 	if (consdev)
3472 		sysfs_notify(&consdev->kobj, NULL, "active");
3473 }
3474 
3475 /*
3476  * Ok, now we can initialize the rest of the tty devices and can count
3477  * on memory allocations, interrupts etc..
3478  */
3479 int __init tty_init(void)
3480 {
3481 	cdev_init(&tty_cdev, &tty_fops);
3482 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3483 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3484 		panic("Couldn't register /dev/tty driver\n");
3485 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3486 
3487 	cdev_init(&console_cdev, &console_fops);
3488 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3489 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3490 		panic("Couldn't register /dev/console driver\n");
3491 	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3492 			      "console");
3493 	if (IS_ERR(consdev))
3494 		consdev = NULL;
3495 	else
3496 		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3497 
3498 #ifdef CONFIG_VT
3499 	vty_init(&console_fops);
3500 #endif
3501 	return 0;
3502 }
3503 
3504