xref: /openbmc/linux/drivers/tty/tty_io.c (revision 781095f903f398148cd0b646d3984234a715f29e)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 #ifdef TTY_DEBUG_HANGUP
110 # define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
111 #else
112 # define tty_debug_hangup(tty, f, args...)	do { } while (0)
113 #endif
114 
115 #define TTY_PARANOIA_CHECK 1
116 #define CHECK_TTY_COUNT 1
117 
118 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
119 	.c_iflag = ICRNL | IXON,
120 	.c_oflag = OPOST | ONLCR,
121 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
122 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
123 		   ECHOCTL | ECHOKE | IEXTEN,
124 	.c_cc = INIT_C_CC,
125 	.c_ispeed = 38400,
126 	.c_ospeed = 38400
127 };
128 
129 EXPORT_SYMBOL(tty_std_termios);
130 
131 /* This list gets poked at by procfs and various bits of boot up code. This
132    could do with some rationalisation such as pulling the tty proc function
133    into this file */
134 
135 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
136 
137 /* Mutex to protect creating and releasing a tty. This is shared with
138    vt.c for deeply disgusting hack reasons */
139 DEFINE_MUTEX(tty_mutex);
140 EXPORT_SYMBOL(tty_mutex);
141 
142 /* Spinlock to protect the tty->tty_files list */
143 DEFINE_SPINLOCK(tty_files_lock);
144 
145 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
146 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
147 ssize_t redirected_tty_write(struct file *, const char __user *,
148 							size_t, loff_t *);
149 static unsigned int tty_poll(struct file *, poll_table *);
150 static int tty_open(struct inode *, struct file *);
151 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
152 #ifdef CONFIG_COMPAT
153 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
154 				unsigned long arg);
155 #else
156 #define tty_compat_ioctl NULL
157 #endif
158 static int __tty_fasync(int fd, struct file *filp, int on);
159 static int tty_fasync(int fd, struct file *filp, int on);
160 static void release_tty(struct tty_struct *tty, int idx);
161 
162 /**
163  *	free_tty_struct		-	free a disused tty
164  *	@tty: tty struct to free
165  *
166  *	Free the write buffers, tty queue and tty memory itself.
167  *
168  *	Locking: none. Must be called after tty is definitely unused
169  */
170 
171 void free_tty_struct(struct tty_struct *tty)
172 {
173 	if (!tty)
174 		return;
175 	put_device(tty->dev);
176 	kfree(tty->write_buf);
177 	tty->magic = 0xDEADDEAD;
178 	kfree(tty);
179 }
180 
181 static inline struct tty_struct *file_tty(struct file *file)
182 {
183 	return ((struct tty_file_private *)file->private_data)->tty;
184 }
185 
186 int tty_alloc_file(struct file *file)
187 {
188 	struct tty_file_private *priv;
189 
190 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
191 	if (!priv)
192 		return -ENOMEM;
193 
194 	file->private_data = priv;
195 
196 	return 0;
197 }
198 
199 /* Associate a new file with the tty structure */
200 void tty_add_file(struct tty_struct *tty, struct file *file)
201 {
202 	struct tty_file_private *priv = file->private_data;
203 
204 	priv->tty = tty;
205 	priv->file = file;
206 
207 	spin_lock(&tty_files_lock);
208 	list_add(&priv->list, &tty->tty_files);
209 	spin_unlock(&tty_files_lock);
210 }
211 
212 /**
213  * tty_free_file - free file->private_data
214  *
215  * This shall be used only for fail path handling when tty_add_file was not
216  * called yet.
217  */
218 void tty_free_file(struct file *file)
219 {
220 	struct tty_file_private *priv = file->private_data;
221 
222 	file->private_data = NULL;
223 	kfree(priv);
224 }
225 
226 /* Delete file from its tty */
227 static void tty_del_file(struct file *file)
228 {
229 	struct tty_file_private *priv = file->private_data;
230 
231 	spin_lock(&tty_files_lock);
232 	list_del(&priv->list);
233 	spin_unlock(&tty_files_lock);
234 	tty_free_file(file);
235 }
236 
237 
238 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
239 
240 /**
241  *	tty_name	-	return tty naming
242  *	@tty: tty structure
243  *
244  *	Convert a tty structure into a name. The name reflects the kernel
245  *	naming policy and if udev is in use may not reflect user space
246  *
247  *	Locking: none
248  */
249 
250 const char *tty_name(const struct tty_struct *tty)
251 {
252 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
253 		return "NULL tty";
254 	return tty->name;
255 }
256 
257 EXPORT_SYMBOL(tty_name);
258 
259 const char *tty_driver_name(const struct tty_struct *tty)
260 {
261 	if (!tty || !tty->driver)
262 		return "";
263 	return tty->driver->name;
264 }
265 
266 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
267 			      const char *routine)
268 {
269 #ifdef TTY_PARANOIA_CHECK
270 	if (!tty) {
271 		pr_warn("(%d:%d): %s: NULL tty\n",
272 			imajor(inode), iminor(inode), routine);
273 		return 1;
274 	}
275 	if (tty->magic != TTY_MAGIC) {
276 		pr_warn("(%d:%d): %s: bad magic number\n",
277 			imajor(inode), iminor(inode), routine);
278 		return 1;
279 	}
280 #endif
281 	return 0;
282 }
283 
284 /* Caller must hold tty_lock */
285 static int check_tty_count(struct tty_struct *tty, const char *routine)
286 {
287 #ifdef CHECK_TTY_COUNT
288 	struct list_head *p;
289 	int count = 0;
290 
291 	spin_lock(&tty_files_lock);
292 	list_for_each(p, &tty->tty_files) {
293 		count++;
294 	}
295 	spin_unlock(&tty_files_lock);
296 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
297 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
298 	    tty->link && tty->link->count)
299 		count++;
300 	if (tty->count != count) {
301 		tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n",
302 			 routine, tty->count, count);
303 		return count;
304 	}
305 #endif
306 	return 0;
307 }
308 
309 /**
310  *	get_tty_driver		-	find device of a tty
311  *	@dev_t: device identifier
312  *	@index: returns the index of the tty
313  *
314  *	This routine returns a tty driver structure, given a device number
315  *	and also passes back the index number.
316  *
317  *	Locking: caller must hold tty_mutex
318  */
319 
320 static struct tty_driver *get_tty_driver(dev_t device, int *index)
321 {
322 	struct tty_driver *p;
323 
324 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
325 		dev_t base = MKDEV(p->major, p->minor_start);
326 		if (device < base || device >= base + p->num)
327 			continue;
328 		*index = device - base;
329 		return tty_driver_kref_get(p);
330 	}
331 	return NULL;
332 }
333 
334 #ifdef CONFIG_CONSOLE_POLL
335 
336 /**
337  *	tty_find_polling_driver	-	find device of a polled tty
338  *	@name: name string to match
339  *	@line: pointer to resulting tty line nr
340  *
341  *	This routine returns a tty driver structure, given a name
342  *	and the condition that the tty driver is capable of polled
343  *	operation.
344  */
345 struct tty_driver *tty_find_polling_driver(char *name, int *line)
346 {
347 	struct tty_driver *p, *res = NULL;
348 	int tty_line = 0;
349 	int len;
350 	char *str, *stp;
351 
352 	for (str = name; *str; str++)
353 		if ((*str >= '0' && *str <= '9') || *str == ',')
354 			break;
355 	if (!*str)
356 		return NULL;
357 
358 	len = str - name;
359 	tty_line = simple_strtoul(str, &str, 10);
360 
361 	mutex_lock(&tty_mutex);
362 	/* Search through the tty devices to look for a match */
363 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
364 		if (strncmp(name, p->name, len) != 0)
365 			continue;
366 		stp = str;
367 		if (*stp == ',')
368 			stp++;
369 		if (*stp == '\0')
370 			stp = NULL;
371 
372 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
373 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
374 			res = tty_driver_kref_get(p);
375 			*line = tty_line;
376 			break;
377 		}
378 	}
379 	mutex_unlock(&tty_mutex);
380 
381 	return res;
382 }
383 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
384 #endif
385 
386 /**
387  *	tty_check_change	-	check for POSIX terminal changes
388  *	@tty: tty to check
389  *
390  *	If we try to write to, or set the state of, a terminal and we're
391  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
392  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
393  *
394  *	Locking: ctrl_lock
395  */
396 
397 int __tty_check_change(struct tty_struct *tty, int sig)
398 {
399 	unsigned long flags;
400 	struct pid *pgrp, *tty_pgrp;
401 	int ret = 0;
402 
403 	if (current->signal->tty != tty)
404 		return 0;
405 
406 	rcu_read_lock();
407 	pgrp = task_pgrp(current);
408 
409 	spin_lock_irqsave(&tty->ctrl_lock, flags);
410 	tty_pgrp = tty->pgrp;
411 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
412 
413 	if (tty_pgrp && pgrp != tty->pgrp) {
414 		if (is_ignored(sig)) {
415 			if (sig == SIGTTIN)
416 				ret = -EIO;
417 		} else if (is_current_pgrp_orphaned())
418 			ret = -EIO;
419 		else {
420 			kill_pgrp(pgrp, sig, 1);
421 			set_thread_flag(TIF_SIGPENDING);
422 			ret = -ERESTARTSYS;
423 		}
424 	}
425 	rcu_read_unlock();
426 
427 	if (!tty_pgrp)
428 		tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig);
429 
430 	return ret;
431 }
432 
433 int tty_check_change(struct tty_struct *tty)
434 {
435 	return __tty_check_change(tty, SIGTTOU);
436 }
437 EXPORT_SYMBOL(tty_check_change);
438 
439 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
440 				size_t count, loff_t *ppos)
441 {
442 	return 0;
443 }
444 
445 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
446 				 size_t count, loff_t *ppos)
447 {
448 	return -EIO;
449 }
450 
451 /* No kernel lock held - none needed ;) */
452 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
453 {
454 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
455 }
456 
457 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
458 		unsigned long arg)
459 {
460 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
461 }
462 
463 static long hung_up_tty_compat_ioctl(struct file *file,
464 				     unsigned int cmd, unsigned long arg)
465 {
466 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
467 }
468 
469 static const struct file_operations tty_fops = {
470 	.llseek		= no_llseek,
471 	.read		= tty_read,
472 	.write		= tty_write,
473 	.poll		= tty_poll,
474 	.unlocked_ioctl	= tty_ioctl,
475 	.compat_ioctl	= tty_compat_ioctl,
476 	.open		= tty_open,
477 	.release	= tty_release,
478 	.fasync		= tty_fasync,
479 };
480 
481 static const struct file_operations console_fops = {
482 	.llseek		= no_llseek,
483 	.read		= tty_read,
484 	.write		= redirected_tty_write,
485 	.poll		= tty_poll,
486 	.unlocked_ioctl	= tty_ioctl,
487 	.compat_ioctl	= tty_compat_ioctl,
488 	.open		= tty_open,
489 	.release	= tty_release,
490 	.fasync		= tty_fasync,
491 };
492 
493 static const struct file_operations hung_up_tty_fops = {
494 	.llseek		= no_llseek,
495 	.read		= hung_up_tty_read,
496 	.write		= hung_up_tty_write,
497 	.poll		= hung_up_tty_poll,
498 	.unlocked_ioctl	= hung_up_tty_ioctl,
499 	.compat_ioctl	= hung_up_tty_compat_ioctl,
500 	.release	= tty_release,
501 };
502 
503 static DEFINE_SPINLOCK(redirect_lock);
504 static struct file *redirect;
505 
506 
507 void proc_clear_tty(struct task_struct *p)
508 {
509 	unsigned long flags;
510 	struct tty_struct *tty;
511 	spin_lock_irqsave(&p->sighand->siglock, flags);
512 	tty = p->signal->tty;
513 	p->signal->tty = NULL;
514 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
515 	tty_kref_put(tty);
516 }
517 
518 /**
519  * proc_set_tty -  set the controlling terminal
520  *
521  * Only callable by the session leader and only if it does not already have
522  * a controlling terminal.
523  *
524  * Caller must hold:  tty_lock()
525  *		      a readlock on tasklist_lock
526  *		      sighand lock
527  */
528 static void __proc_set_tty(struct tty_struct *tty)
529 {
530 	unsigned long flags;
531 
532 	spin_lock_irqsave(&tty->ctrl_lock, flags);
533 	/*
534 	 * The session and fg pgrp references will be non-NULL if
535 	 * tiocsctty() is stealing the controlling tty
536 	 */
537 	put_pid(tty->session);
538 	put_pid(tty->pgrp);
539 	tty->pgrp = get_pid(task_pgrp(current));
540 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
541 	tty->session = get_pid(task_session(current));
542 	if (current->signal->tty) {
543 		tty_debug(tty, "current tty %s not NULL!!\n",
544 			  current->signal->tty->name);
545 		tty_kref_put(current->signal->tty);
546 	}
547 	put_pid(current->signal->tty_old_pgrp);
548 	current->signal->tty = tty_kref_get(tty);
549 	current->signal->tty_old_pgrp = NULL;
550 }
551 
552 static void proc_set_tty(struct tty_struct *tty)
553 {
554 	spin_lock_irq(&current->sighand->siglock);
555 	__proc_set_tty(tty);
556 	spin_unlock_irq(&current->sighand->siglock);
557 }
558 
559 struct tty_struct *get_current_tty(void)
560 {
561 	struct tty_struct *tty;
562 	unsigned long flags;
563 
564 	spin_lock_irqsave(&current->sighand->siglock, flags);
565 	tty = tty_kref_get(current->signal->tty);
566 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
567 	return tty;
568 }
569 EXPORT_SYMBOL_GPL(get_current_tty);
570 
571 static void session_clear_tty(struct pid *session)
572 {
573 	struct task_struct *p;
574 	do_each_pid_task(session, PIDTYPE_SID, p) {
575 		proc_clear_tty(p);
576 	} while_each_pid_task(session, PIDTYPE_SID, p);
577 }
578 
579 /**
580  *	tty_wakeup	-	request more data
581  *	@tty: terminal
582  *
583  *	Internal and external helper for wakeups of tty. This function
584  *	informs the line discipline if present that the driver is ready
585  *	to receive more output data.
586  */
587 
588 void tty_wakeup(struct tty_struct *tty)
589 {
590 	struct tty_ldisc *ld;
591 
592 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
593 		ld = tty_ldisc_ref(tty);
594 		if (ld) {
595 			if (ld->ops->write_wakeup)
596 				ld->ops->write_wakeup(tty);
597 			tty_ldisc_deref(ld);
598 		}
599 	}
600 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
601 }
602 
603 EXPORT_SYMBOL_GPL(tty_wakeup);
604 
605 /**
606  *	tty_signal_session_leader	- sends SIGHUP to session leader
607  *	@tty		controlling tty
608  *	@exit_session	if non-zero, signal all foreground group processes
609  *
610  *	Send SIGHUP and SIGCONT to the session leader and its process group.
611  *	Optionally, signal all processes in the foreground process group.
612  *
613  *	Returns the number of processes in the session with this tty
614  *	as their controlling terminal. This value is used to drop
615  *	tty references for those processes.
616  */
617 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
618 {
619 	struct task_struct *p;
620 	int refs = 0;
621 	struct pid *tty_pgrp = NULL;
622 
623 	read_lock(&tasklist_lock);
624 	if (tty->session) {
625 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
626 			spin_lock_irq(&p->sighand->siglock);
627 			if (p->signal->tty == tty) {
628 				p->signal->tty = NULL;
629 				/* We defer the dereferences outside fo
630 				   the tasklist lock */
631 				refs++;
632 			}
633 			if (!p->signal->leader) {
634 				spin_unlock_irq(&p->sighand->siglock);
635 				continue;
636 			}
637 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
638 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
639 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
640 			spin_lock(&tty->ctrl_lock);
641 			tty_pgrp = get_pid(tty->pgrp);
642 			if (tty->pgrp)
643 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
644 			spin_unlock(&tty->ctrl_lock);
645 			spin_unlock_irq(&p->sighand->siglock);
646 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
647 	}
648 	read_unlock(&tasklist_lock);
649 
650 	if (tty_pgrp) {
651 		if (exit_session)
652 			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
653 		put_pid(tty_pgrp);
654 	}
655 
656 	return refs;
657 }
658 
659 /**
660  *	__tty_hangup		-	actual handler for hangup events
661  *	@work: tty device
662  *
663  *	This can be called by a "kworker" kernel thread.  That is process
664  *	synchronous but doesn't hold any locks, so we need to make sure we
665  *	have the appropriate locks for what we're doing.
666  *
667  *	The hangup event clears any pending redirections onto the hung up
668  *	device. It ensures future writes will error and it does the needed
669  *	line discipline hangup and signal delivery. The tty object itself
670  *	remains intact.
671  *
672  *	Locking:
673  *		BTM
674  *		  redirect lock for undoing redirection
675  *		  file list lock for manipulating list of ttys
676  *		  tty_ldiscs_lock from called functions
677  *		  termios_rwsem resetting termios data
678  *		  tasklist_lock to walk task list for hangup event
679  *		    ->siglock to protect ->signal/->sighand
680  */
681 static void __tty_hangup(struct tty_struct *tty, int exit_session)
682 {
683 	struct file *cons_filp = NULL;
684 	struct file *filp, *f = NULL;
685 	struct tty_file_private *priv;
686 	int    closecount = 0, n;
687 	int refs;
688 
689 	if (!tty)
690 		return;
691 
692 
693 	spin_lock(&redirect_lock);
694 	if (redirect && file_tty(redirect) == tty) {
695 		f = redirect;
696 		redirect = NULL;
697 	}
698 	spin_unlock(&redirect_lock);
699 
700 	tty_lock(tty);
701 
702 	if (test_bit(TTY_HUPPED, &tty->flags)) {
703 		tty_unlock(tty);
704 		return;
705 	}
706 
707 	/* inuse_filps is protected by the single tty lock,
708 	   this really needs to change if we want to flush the
709 	   workqueue with the lock held */
710 	check_tty_count(tty, "tty_hangup");
711 
712 	spin_lock(&tty_files_lock);
713 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
714 	list_for_each_entry(priv, &tty->tty_files, list) {
715 		filp = priv->file;
716 		if (filp->f_op->write == redirected_tty_write)
717 			cons_filp = filp;
718 		if (filp->f_op->write != tty_write)
719 			continue;
720 		closecount++;
721 		__tty_fasync(-1, filp, 0);	/* can't block */
722 		filp->f_op = &hung_up_tty_fops;
723 	}
724 	spin_unlock(&tty_files_lock);
725 
726 	refs = tty_signal_session_leader(tty, exit_session);
727 	/* Account for the p->signal references we killed */
728 	while (refs--)
729 		tty_kref_put(tty);
730 
731 	tty_ldisc_hangup(tty);
732 
733 	spin_lock_irq(&tty->ctrl_lock);
734 	clear_bit(TTY_THROTTLED, &tty->flags);
735 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
736 	put_pid(tty->session);
737 	put_pid(tty->pgrp);
738 	tty->session = NULL;
739 	tty->pgrp = NULL;
740 	tty->ctrl_status = 0;
741 	spin_unlock_irq(&tty->ctrl_lock);
742 
743 	/*
744 	 * If one of the devices matches a console pointer, we
745 	 * cannot just call hangup() because that will cause
746 	 * tty->count and state->count to go out of sync.
747 	 * So we just call close() the right number of times.
748 	 */
749 	if (cons_filp) {
750 		if (tty->ops->close)
751 			for (n = 0; n < closecount; n++)
752 				tty->ops->close(tty, cons_filp);
753 	} else if (tty->ops->hangup)
754 		tty->ops->hangup(tty);
755 	/*
756 	 * We don't want to have driver/ldisc interactions beyond
757 	 * the ones we did here. The driver layer expects no
758 	 * calls after ->hangup() from the ldisc side. However we
759 	 * can't yet guarantee all that.
760 	 */
761 	set_bit(TTY_HUPPED, &tty->flags);
762 	tty_unlock(tty);
763 
764 	if (f)
765 		fput(f);
766 }
767 
768 static void do_tty_hangup(struct work_struct *work)
769 {
770 	struct tty_struct *tty =
771 		container_of(work, struct tty_struct, hangup_work);
772 
773 	__tty_hangup(tty, 0);
774 }
775 
776 /**
777  *	tty_hangup		-	trigger a hangup event
778  *	@tty: tty to hangup
779  *
780  *	A carrier loss (virtual or otherwise) has occurred on this like
781  *	schedule a hangup sequence to run after this event.
782  */
783 
784 void tty_hangup(struct tty_struct *tty)
785 {
786 	tty_debug_hangup(tty, "hangup\n");
787 	schedule_work(&tty->hangup_work);
788 }
789 
790 EXPORT_SYMBOL(tty_hangup);
791 
792 /**
793  *	tty_vhangup		-	process vhangup
794  *	@tty: tty to hangup
795  *
796  *	The user has asked via system call for the terminal to be hung up.
797  *	We do this synchronously so that when the syscall returns the process
798  *	is complete. That guarantee is necessary for security reasons.
799  */
800 
801 void tty_vhangup(struct tty_struct *tty)
802 {
803 	tty_debug_hangup(tty, "vhangup\n");
804 	__tty_hangup(tty, 0);
805 }
806 
807 EXPORT_SYMBOL(tty_vhangup);
808 
809 
810 /**
811  *	tty_vhangup_self	-	process vhangup for own ctty
812  *
813  *	Perform a vhangup on the current controlling tty
814  */
815 
816 void tty_vhangup_self(void)
817 {
818 	struct tty_struct *tty;
819 
820 	tty = get_current_tty();
821 	if (tty) {
822 		tty_vhangup(tty);
823 		tty_kref_put(tty);
824 	}
825 }
826 
827 /**
828  *	tty_vhangup_session		-	hangup session leader exit
829  *	@tty: tty to hangup
830  *
831  *	The session leader is exiting and hanging up its controlling terminal.
832  *	Every process in the foreground process group is signalled SIGHUP.
833  *
834  *	We do this synchronously so that when the syscall returns the process
835  *	is complete. That guarantee is necessary for security reasons.
836  */
837 
838 static void tty_vhangup_session(struct tty_struct *tty)
839 {
840 	tty_debug_hangup(tty, "session hangup\n");
841 	__tty_hangup(tty, 1);
842 }
843 
844 /**
845  *	tty_hung_up_p		-	was tty hung up
846  *	@filp: file pointer of tty
847  *
848  *	Return true if the tty has been subject to a vhangup or a carrier
849  *	loss
850  */
851 
852 int tty_hung_up_p(struct file *filp)
853 {
854 	return (filp->f_op == &hung_up_tty_fops);
855 }
856 
857 EXPORT_SYMBOL(tty_hung_up_p);
858 
859 /**
860  *	disassociate_ctty	-	disconnect controlling tty
861  *	@on_exit: true if exiting so need to "hang up" the session
862  *
863  *	This function is typically called only by the session leader, when
864  *	it wants to disassociate itself from its controlling tty.
865  *
866  *	It performs the following functions:
867  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
868  * 	(2)  Clears the tty from being controlling the session
869  * 	(3)  Clears the controlling tty for all processes in the
870  * 		session group.
871  *
872  *	The argument on_exit is set to 1 if called when a process is
873  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
874  *
875  *	Locking:
876  *		BTM is taken for hysterical raisins, and held when
877  *		  called from no_tty().
878  *		  tty_mutex is taken to protect tty
879  *		  ->siglock is taken to protect ->signal/->sighand
880  *		  tasklist_lock is taken to walk process list for sessions
881  *		    ->siglock is taken to protect ->signal/->sighand
882  */
883 
884 void disassociate_ctty(int on_exit)
885 {
886 	struct tty_struct *tty;
887 
888 	if (!current->signal->leader)
889 		return;
890 
891 	tty = get_current_tty();
892 	if (tty) {
893 		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
894 			tty_vhangup_session(tty);
895 		} else {
896 			struct pid *tty_pgrp = tty_get_pgrp(tty);
897 			if (tty_pgrp) {
898 				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
899 				if (!on_exit)
900 					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
901 				put_pid(tty_pgrp);
902 			}
903 		}
904 		tty_kref_put(tty);
905 
906 	} else if (on_exit) {
907 		struct pid *old_pgrp;
908 		spin_lock_irq(&current->sighand->siglock);
909 		old_pgrp = current->signal->tty_old_pgrp;
910 		current->signal->tty_old_pgrp = NULL;
911 		spin_unlock_irq(&current->sighand->siglock);
912 		if (old_pgrp) {
913 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
914 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
915 			put_pid(old_pgrp);
916 		}
917 		return;
918 	}
919 
920 	spin_lock_irq(&current->sighand->siglock);
921 	put_pid(current->signal->tty_old_pgrp);
922 	current->signal->tty_old_pgrp = NULL;
923 
924 	tty = tty_kref_get(current->signal->tty);
925 	if (tty) {
926 		unsigned long flags;
927 		spin_lock_irqsave(&tty->ctrl_lock, flags);
928 		put_pid(tty->session);
929 		put_pid(tty->pgrp);
930 		tty->session = NULL;
931 		tty->pgrp = NULL;
932 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
933 		tty_kref_put(tty);
934 	} else
935 		tty_debug_hangup(tty, "no current tty\n");
936 
937 	spin_unlock_irq(&current->sighand->siglock);
938 	/* Now clear signal->tty under the lock */
939 	read_lock(&tasklist_lock);
940 	session_clear_tty(task_session(current));
941 	read_unlock(&tasklist_lock);
942 }
943 
944 /**
945  *
946  *	no_tty	- Ensure the current process does not have a controlling tty
947  */
948 void no_tty(void)
949 {
950 	/* FIXME: Review locking here. The tty_lock never covered any race
951 	   between a new association and proc_clear_tty but possible we need
952 	   to protect against this anyway */
953 	struct task_struct *tsk = current;
954 	disassociate_ctty(0);
955 	proc_clear_tty(tsk);
956 }
957 
958 
959 /**
960  *	stop_tty	-	propagate flow control
961  *	@tty: tty to stop
962  *
963  *	Perform flow control to the driver. May be called
964  *	on an already stopped device and will not re-call the driver
965  *	method.
966  *
967  *	This functionality is used by both the line disciplines for
968  *	halting incoming flow and by the driver. It may therefore be
969  *	called from any context, may be under the tty atomic_write_lock
970  *	but not always.
971  *
972  *	Locking:
973  *		flow_lock
974  */
975 
976 void __stop_tty(struct tty_struct *tty)
977 {
978 	if (tty->stopped)
979 		return;
980 	tty->stopped = 1;
981 	if (tty->ops->stop)
982 		tty->ops->stop(tty);
983 }
984 
985 void stop_tty(struct tty_struct *tty)
986 {
987 	unsigned long flags;
988 
989 	spin_lock_irqsave(&tty->flow_lock, flags);
990 	__stop_tty(tty);
991 	spin_unlock_irqrestore(&tty->flow_lock, flags);
992 }
993 EXPORT_SYMBOL(stop_tty);
994 
995 /**
996  *	start_tty	-	propagate flow control
997  *	@tty: tty to start
998  *
999  *	Start a tty that has been stopped if at all possible. If this
1000  *	tty was previous stopped and is now being started, the driver
1001  *	start method is invoked and the line discipline woken.
1002  *
1003  *	Locking:
1004  *		flow_lock
1005  */
1006 
1007 void __start_tty(struct tty_struct *tty)
1008 {
1009 	if (!tty->stopped || tty->flow_stopped)
1010 		return;
1011 	tty->stopped = 0;
1012 	if (tty->ops->start)
1013 		tty->ops->start(tty);
1014 	tty_wakeup(tty);
1015 }
1016 
1017 void start_tty(struct tty_struct *tty)
1018 {
1019 	unsigned long flags;
1020 
1021 	spin_lock_irqsave(&tty->flow_lock, flags);
1022 	__start_tty(tty);
1023 	spin_unlock_irqrestore(&tty->flow_lock, flags);
1024 }
1025 EXPORT_SYMBOL(start_tty);
1026 
1027 static void tty_update_time(struct timespec *time)
1028 {
1029 	unsigned long sec = get_seconds();
1030 
1031 	/*
1032 	 * We only care if the two values differ in anything other than the
1033 	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1034 	 * the time of the tty device, otherwise it could be construded as a
1035 	 * security leak to let userspace know the exact timing of the tty.
1036 	 */
1037 	if ((sec ^ time->tv_sec) & ~7)
1038 		time->tv_sec = sec;
1039 }
1040 
1041 /**
1042  *	tty_read	-	read method for tty device files
1043  *	@file: pointer to tty file
1044  *	@buf: user buffer
1045  *	@count: size of user buffer
1046  *	@ppos: unused
1047  *
1048  *	Perform the read system call function on this terminal device. Checks
1049  *	for hung up devices before calling the line discipline method.
1050  *
1051  *	Locking:
1052  *		Locks the line discipline internally while needed. Multiple
1053  *	read calls may be outstanding in parallel.
1054  */
1055 
1056 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1057 			loff_t *ppos)
1058 {
1059 	int i;
1060 	struct inode *inode = file_inode(file);
1061 	struct tty_struct *tty = file_tty(file);
1062 	struct tty_ldisc *ld;
1063 
1064 	if (tty_paranoia_check(tty, inode, "tty_read"))
1065 		return -EIO;
1066 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1067 		return -EIO;
1068 
1069 	/* We want to wait for the line discipline to sort out in this
1070 	   situation */
1071 	ld = tty_ldisc_ref_wait(tty);
1072 	if (ld->ops->read)
1073 		i = ld->ops->read(tty, file, buf, count);
1074 	else
1075 		i = -EIO;
1076 	tty_ldisc_deref(ld);
1077 
1078 	if (i > 0)
1079 		tty_update_time(&inode->i_atime);
1080 
1081 	return i;
1082 }
1083 
1084 static void tty_write_unlock(struct tty_struct *tty)
1085 {
1086 	mutex_unlock(&tty->atomic_write_lock);
1087 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1088 }
1089 
1090 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1091 {
1092 	if (!mutex_trylock(&tty->atomic_write_lock)) {
1093 		if (ndelay)
1094 			return -EAGAIN;
1095 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1096 			return -ERESTARTSYS;
1097 	}
1098 	return 0;
1099 }
1100 
1101 /*
1102  * Split writes up in sane blocksizes to avoid
1103  * denial-of-service type attacks
1104  */
1105 static inline ssize_t do_tty_write(
1106 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1107 	struct tty_struct *tty,
1108 	struct file *file,
1109 	const char __user *buf,
1110 	size_t count)
1111 {
1112 	ssize_t ret, written = 0;
1113 	unsigned int chunk;
1114 
1115 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1116 	if (ret < 0)
1117 		return ret;
1118 
1119 	/*
1120 	 * We chunk up writes into a temporary buffer. This
1121 	 * simplifies low-level drivers immensely, since they
1122 	 * don't have locking issues and user mode accesses.
1123 	 *
1124 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1125 	 * big chunk-size..
1126 	 *
1127 	 * The default chunk-size is 2kB, because the NTTY
1128 	 * layer has problems with bigger chunks. It will
1129 	 * claim to be able to handle more characters than
1130 	 * it actually does.
1131 	 *
1132 	 * FIXME: This can probably go away now except that 64K chunks
1133 	 * are too likely to fail unless switched to vmalloc...
1134 	 */
1135 	chunk = 2048;
1136 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1137 		chunk = 65536;
1138 	if (count < chunk)
1139 		chunk = count;
1140 
1141 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1142 	if (tty->write_cnt < chunk) {
1143 		unsigned char *buf_chunk;
1144 
1145 		if (chunk < 1024)
1146 			chunk = 1024;
1147 
1148 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1149 		if (!buf_chunk) {
1150 			ret = -ENOMEM;
1151 			goto out;
1152 		}
1153 		kfree(tty->write_buf);
1154 		tty->write_cnt = chunk;
1155 		tty->write_buf = buf_chunk;
1156 	}
1157 
1158 	/* Do the write .. */
1159 	for (;;) {
1160 		size_t size = count;
1161 		if (size > chunk)
1162 			size = chunk;
1163 		ret = -EFAULT;
1164 		if (copy_from_user(tty->write_buf, buf, size))
1165 			break;
1166 		ret = write(tty, file, tty->write_buf, size);
1167 		if (ret <= 0)
1168 			break;
1169 		written += ret;
1170 		buf += ret;
1171 		count -= ret;
1172 		if (!count)
1173 			break;
1174 		ret = -ERESTARTSYS;
1175 		if (signal_pending(current))
1176 			break;
1177 		cond_resched();
1178 	}
1179 	if (written) {
1180 		tty_update_time(&file_inode(file)->i_mtime);
1181 		ret = written;
1182 	}
1183 out:
1184 	tty_write_unlock(tty);
1185 	return ret;
1186 }
1187 
1188 /**
1189  * tty_write_message - write a message to a certain tty, not just the console.
1190  * @tty: the destination tty_struct
1191  * @msg: the message to write
1192  *
1193  * This is used for messages that need to be redirected to a specific tty.
1194  * We don't put it into the syslog queue right now maybe in the future if
1195  * really needed.
1196  *
1197  * We must still hold the BTM and test the CLOSING flag for the moment.
1198  */
1199 
1200 void tty_write_message(struct tty_struct *tty, char *msg)
1201 {
1202 	if (tty) {
1203 		mutex_lock(&tty->atomic_write_lock);
1204 		tty_lock(tty);
1205 		if (tty->ops->write && tty->count > 0)
1206 			tty->ops->write(tty, msg, strlen(msg));
1207 		tty_unlock(tty);
1208 		tty_write_unlock(tty);
1209 	}
1210 	return;
1211 }
1212 
1213 
1214 /**
1215  *	tty_write		-	write method for tty device file
1216  *	@file: tty file pointer
1217  *	@buf: user data to write
1218  *	@count: bytes to write
1219  *	@ppos: unused
1220  *
1221  *	Write data to a tty device via the line discipline.
1222  *
1223  *	Locking:
1224  *		Locks the line discipline as required
1225  *		Writes to the tty driver are serialized by the atomic_write_lock
1226  *	and are then processed in chunks to the device. The line discipline
1227  *	write method will not be invoked in parallel for each device.
1228  */
1229 
1230 static ssize_t tty_write(struct file *file, const char __user *buf,
1231 						size_t count, loff_t *ppos)
1232 {
1233 	struct tty_struct *tty = file_tty(file);
1234  	struct tty_ldisc *ld;
1235 	ssize_t ret;
1236 
1237 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1238 		return -EIO;
1239 	if (!tty || !tty->ops->write ||
1240 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1241 			return -EIO;
1242 	/* Short term debug to catch buggy drivers */
1243 	if (tty->ops->write_room == NULL)
1244 		tty_err(tty, "missing write_room method\n");
1245 	ld = tty_ldisc_ref_wait(tty);
1246 	if (!ld->ops->write)
1247 		ret = -EIO;
1248 	else
1249 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1250 	tty_ldisc_deref(ld);
1251 	return ret;
1252 }
1253 
1254 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1255 						size_t count, loff_t *ppos)
1256 {
1257 	struct file *p = NULL;
1258 
1259 	spin_lock(&redirect_lock);
1260 	if (redirect)
1261 		p = get_file(redirect);
1262 	spin_unlock(&redirect_lock);
1263 
1264 	if (p) {
1265 		ssize_t res;
1266 		res = vfs_write(p, buf, count, &p->f_pos);
1267 		fput(p);
1268 		return res;
1269 	}
1270 	return tty_write(file, buf, count, ppos);
1271 }
1272 
1273 /**
1274  *	tty_send_xchar	-	send priority character
1275  *
1276  *	Send a high priority character to the tty even if stopped
1277  *
1278  *	Locking: none for xchar method, write ordering for write method.
1279  */
1280 
1281 int tty_send_xchar(struct tty_struct *tty, char ch)
1282 {
1283 	int	was_stopped = tty->stopped;
1284 
1285 	if (tty->ops->send_xchar) {
1286 		down_read(&tty->termios_rwsem);
1287 		tty->ops->send_xchar(tty, ch);
1288 		up_read(&tty->termios_rwsem);
1289 		return 0;
1290 	}
1291 
1292 	if (tty_write_lock(tty, 0) < 0)
1293 		return -ERESTARTSYS;
1294 
1295 	down_read(&tty->termios_rwsem);
1296 	if (was_stopped)
1297 		start_tty(tty);
1298 	tty->ops->write(tty, &ch, 1);
1299 	if (was_stopped)
1300 		stop_tty(tty);
1301 	up_read(&tty->termios_rwsem);
1302 	tty_write_unlock(tty);
1303 	return 0;
1304 }
1305 
1306 static char ptychar[] = "pqrstuvwxyzabcde";
1307 
1308 /**
1309  *	pty_line_name	-	generate name for a pty
1310  *	@driver: the tty driver in use
1311  *	@index: the minor number
1312  *	@p: output buffer of at least 6 bytes
1313  *
1314  *	Generate a name from a driver reference and write it to the output
1315  *	buffer.
1316  *
1317  *	Locking: None
1318  */
1319 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1320 {
1321 	int i = index + driver->name_base;
1322 	/* ->name is initialized to "ttyp", but "tty" is expected */
1323 	sprintf(p, "%s%c%x",
1324 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1325 		ptychar[i >> 4 & 0xf], i & 0xf);
1326 }
1327 
1328 /**
1329  *	tty_line_name	-	generate name for a tty
1330  *	@driver: the tty driver in use
1331  *	@index: the minor number
1332  *	@p: output buffer of at least 7 bytes
1333  *
1334  *	Generate a name from a driver reference and write it to the output
1335  *	buffer.
1336  *
1337  *	Locking: None
1338  */
1339 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1340 {
1341 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1342 		return sprintf(p, "%s", driver->name);
1343 	else
1344 		return sprintf(p, "%s%d", driver->name,
1345 			       index + driver->name_base);
1346 }
1347 
1348 /**
1349  *	tty_driver_lookup_tty() - find an existing tty, if any
1350  *	@driver: the driver for the tty
1351  *	@idx:	 the minor number
1352  *
1353  *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1354  *	driver lookup() method returns an error.
1355  *
1356  *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1357  */
1358 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1359 		struct inode *inode, int idx)
1360 {
1361 	struct tty_struct *tty;
1362 
1363 	if (driver->ops->lookup)
1364 		tty = driver->ops->lookup(driver, inode, idx);
1365 	else
1366 		tty = driver->ttys[idx];
1367 
1368 	if (!IS_ERR(tty))
1369 		tty_kref_get(tty);
1370 	return tty;
1371 }
1372 
1373 /**
1374  *	tty_init_termios	-  helper for termios setup
1375  *	@tty: the tty to set up
1376  *
1377  *	Initialise the termios structures for this tty. Thus runs under
1378  *	the tty_mutex currently so we can be relaxed about ordering.
1379  */
1380 
1381 int tty_init_termios(struct tty_struct *tty)
1382 {
1383 	struct ktermios *tp;
1384 	int idx = tty->index;
1385 
1386 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1387 		tty->termios = tty->driver->init_termios;
1388 	else {
1389 		/* Check for lazy saved data */
1390 		tp = tty->driver->termios[idx];
1391 		if (tp != NULL)
1392 			tty->termios = *tp;
1393 		else
1394 			tty->termios = tty->driver->init_termios;
1395 	}
1396 	/* Compatibility until drivers always set this */
1397 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1398 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1399 	return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(tty_init_termios);
1402 
1403 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1404 {
1405 	int ret = tty_init_termios(tty);
1406 	if (ret)
1407 		return ret;
1408 
1409 	tty_driver_kref_get(driver);
1410 	tty->count++;
1411 	driver->ttys[tty->index] = tty;
1412 	return 0;
1413 }
1414 EXPORT_SYMBOL_GPL(tty_standard_install);
1415 
1416 /**
1417  *	tty_driver_install_tty() - install a tty entry in the driver
1418  *	@driver: the driver for the tty
1419  *	@tty: the tty
1420  *
1421  *	Install a tty object into the driver tables. The tty->index field
1422  *	will be set by the time this is called. This method is responsible
1423  *	for ensuring any need additional structures are allocated and
1424  *	configured.
1425  *
1426  *	Locking: tty_mutex for now
1427  */
1428 static int tty_driver_install_tty(struct tty_driver *driver,
1429 						struct tty_struct *tty)
1430 {
1431 	return driver->ops->install ? driver->ops->install(driver, tty) :
1432 		tty_standard_install(driver, tty);
1433 }
1434 
1435 /**
1436  *	tty_driver_remove_tty() - remove a tty from the driver tables
1437  *	@driver: the driver for the tty
1438  *	@idx:	 the minor number
1439  *
1440  *	Remvoe a tty object from the driver tables. The tty->index field
1441  *	will be set by the time this is called.
1442  *
1443  *	Locking: tty_mutex for now
1444  */
1445 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1446 {
1447 	if (driver->ops->remove)
1448 		driver->ops->remove(driver, tty);
1449 	else
1450 		driver->ttys[tty->index] = NULL;
1451 }
1452 
1453 /*
1454  * 	tty_reopen()	- fast re-open of an open tty
1455  * 	@tty	- the tty to open
1456  *
1457  *	Return 0 on success, -errno on error.
1458  *	Re-opens on master ptys are not allowed and return -EIO.
1459  *
1460  *	Locking: Caller must hold tty_lock
1461  */
1462 static int tty_reopen(struct tty_struct *tty)
1463 {
1464 	struct tty_driver *driver = tty->driver;
1465 
1466 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1467 	    driver->subtype == PTY_TYPE_MASTER)
1468 		return -EIO;
1469 
1470 	if (!tty->count)
1471 		return -EAGAIN;
1472 
1473 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1474 		return -EBUSY;
1475 
1476 	tty->count++;
1477 
1478 	WARN_ON(!tty->ldisc);
1479 
1480 	return 0;
1481 }
1482 
1483 /**
1484  *	tty_init_dev		-	initialise a tty device
1485  *	@driver: tty driver we are opening a device on
1486  *	@idx: device index
1487  *	@ret_tty: returned tty structure
1488  *
1489  *	Prepare a tty device. This may not be a "new" clean device but
1490  *	could also be an active device. The pty drivers require special
1491  *	handling because of this.
1492  *
1493  *	Locking:
1494  *		The function is called under the tty_mutex, which
1495  *	protects us from the tty struct or driver itself going away.
1496  *
1497  *	On exit the tty device has the line discipline attached and
1498  *	a reference count of 1. If a pair was created for pty/tty use
1499  *	and the other was a pty master then it too has a reference count of 1.
1500  *
1501  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1502  * failed open.  The new code protects the open with a mutex, so it's
1503  * really quite straightforward.  The mutex locking can probably be
1504  * relaxed for the (most common) case of reopening a tty.
1505  */
1506 
1507 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1508 {
1509 	struct tty_struct *tty;
1510 	int retval;
1511 
1512 	/*
1513 	 * First time open is complex, especially for PTY devices.
1514 	 * This code guarantees that either everything succeeds and the
1515 	 * TTY is ready for operation, or else the table slots are vacated
1516 	 * and the allocated memory released.  (Except that the termios
1517 	 * and locked termios may be retained.)
1518 	 */
1519 
1520 	if (!try_module_get(driver->owner))
1521 		return ERR_PTR(-ENODEV);
1522 
1523 	tty = alloc_tty_struct(driver, idx);
1524 	if (!tty) {
1525 		retval = -ENOMEM;
1526 		goto err_module_put;
1527 	}
1528 
1529 	tty_lock(tty);
1530 	retval = tty_driver_install_tty(driver, tty);
1531 	if (retval < 0)
1532 		goto err_deinit_tty;
1533 
1534 	if (!tty->port)
1535 		tty->port = driver->ports[idx];
1536 
1537 	WARN_RATELIMIT(!tty->port,
1538 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1539 			__func__, tty->driver->name);
1540 
1541 	tty->port->itty = tty;
1542 
1543 	/*
1544 	 * Structures all installed ... call the ldisc open routines.
1545 	 * If we fail here just call release_tty to clean up.  No need
1546 	 * to decrement the use counts, as release_tty doesn't care.
1547 	 */
1548 	retval = tty_ldisc_setup(tty, tty->link);
1549 	if (retval)
1550 		goto err_release_tty;
1551 	/* Return the tty locked so that it cannot vanish under the caller */
1552 	return tty;
1553 
1554 err_deinit_tty:
1555 	tty_unlock(tty);
1556 	deinitialize_tty_struct(tty);
1557 	free_tty_struct(tty);
1558 err_module_put:
1559 	module_put(driver->owner);
1560 	return ERR_PTR(retval);
1561 
1562 	/* call the tty release_tty routine to clean out this slot */
1563 err_release_tty:
1564 	tty_unlock(tty);
1565 	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1566 			     retval, idx);
1567 	release_tty(tty, idx);
1568 	return ERR_PTR(retval);
1569 }
1570 
1571 void tty_free_termios(struct tty_struct *tty)
1572 {
1573 	struct ktermios *tp;
1574 	int idx = tty->index;
1575 
1576 	/* If the port is going to reset then it has no termios to save */
1577 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1578 		return;
1579 
1580 	/* Stash the termios data */
1581 	tp = tty->driver->termios[idx];
1582 	if (tp == NULL) {
1583 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1584 		if (tp == NULL)
1585 			return;
1586 		tty->driver->termios[idx] = tp;
1587 	}
1588 	*tp = tty->termios;
1589 }
1590 EXPORT_SYMBOL(tty_free_termios);
1591 
1592 /**
1593  *	tty_flush_works		-	flush all works of a tty/pty pair
1594  *	@tty: tty device to flush works for (or either end of a pty pair)
1595  *
1596  *	Sync flush all works belonging to @tty (and the 'other' tty).
1597  */
1598 static void tty_flush_works(struct tty_struct *tty)
1599 {
1600 	flush_work(&tty->SAK_work);
1601 	flush_work(&tty->hangup_work);
1602 	if (tty->link) {
1603 		flush_work(&tty->link->SAK_work);
1604 		flush_work(&tty->link->hangup_work);
1605 	}
1606 }
1607 
1608 /**
1609  *	release_one_tty		-	release tty structure memory
1610  *	@kref: kref of tty we are obliterating
1611  *
1612  *	Releases memory associated with a tty structure, and clears out the
1613  *	driver table slots. This function is called when a device is no longer
1614  *	in use. It also gets called when setup of a device fails.
1615  *
1616  *	Locking:
1617  *		takes the file list lock internally when working on the list
1618  *	of ttys that the driver keeps.
1619  *
1620  *	This method gets called from a work queue so that the driver private
1621  *	cleanup ops can sleep (needed for USB at least)
1622  */
1623 static void release_one_tty(struct work_struct *work)
1624 {
1625 	struct tty_struct *tty =
1626 		container_of(work, struct tty_struct, hangup_work);
1627 	struct tty_driver *driver = tty->driver;
1628 	struct module *owner = driver->owner;
1629 
1630 	if (tty->ops->cleanup)
1631 		tty->ops->cleanup(tty);
1632 
1633 	tty->magic = 0;
1634 	tty_driver_kref_put(driver);
1635 	module_put(owner);
1636 
1637 	spin_lock(&tty_files_lock);
1638 	list_del_init(&tty->tty_files);
1639 	spin_unlock(&tty_files_lock);
1640 
1641 	put_pid(tty->pgrp);
1642 	put_pid(tty->session);
1643 	free_tty_struct(tty);
1644 }
1645 
1646 static void queue_release_one_tty(struct kref *kref)
1647 {
1648 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1649 
1650 	/* The hangup queue is now free so we can reuse it rather than
1651 	   waste a chunk of memory for each port */
1652 	INIT_WORK(&tty->hangup_work, release_one_tty);
1653 	schedule_work(&tty->hangup_work);
1654 }
1655 
1656 /**
1657  *	tty_kref_put		-	release a tty kref
1658  *	@tty: tty device
1659  *
1660  *	Release a reference to a tty device and if need be let the kref
1661  *	layer destruct the object for us
1662  */
1663 
1664 void tty_kref_put(struct tty_struct *tty)
1665 {
1666 	if (tty)
1667 		kref_put(&tty->kref, queue_release_one_tty);
1668 }
1669 EXPORT_SYMBOL(tty_kref_put);
1670 
1671 /**
1672  *	release_tty		-	release tty structure memory
1673  *
1674  *	Release both @tty and a possible linked partner (think pty pair),
1675  *	and decrement the refcount of the backing module.
1676  *
1677  *	Locking:
1678  *		tty_mutex
1679  *		takes the file list lock internally when working on the list
1680  *	of ttys that the driver keeps.
1681  *
1682  */
1683 static void release_tty(struct tty_struct *tty, int idx)
1684 {
1685 	/* This should always be true but check for the moment */
1686 	WARN_ON(tty->index != idx);
1687 	WARN_ON(!mutex_is_locked(&tty_mutex));
1688 	if (tty->ops->shutdown)
1689 		tty->ops->shutdown(tty);
1690 	tty_free_termios(tty);
1691 	tty_driver_remove_tty(tty->driver, tty);
1692 	tty->port->itty = NULL;
1693 	if (tty->link)
1694 		tty->link->port->itty = NULL;
1695 	tty_buffer_cancel_work(tty->port);
1696 
1697 	tty_kref_put(tty->link);
1698 	tty_kref_put(tty);
1699 }
1700 
1701 /**
1702  *	tty_release_checks - check a tty before real release
1703  *	@tty: tty to check
1704  *	@o_tty: link of @tty (if any)
1705  *	@idx: index of the tty
1706  *
1707  *	Performs some paranoid checking before true release of the @tty.
1708  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1709  */
1710 static int tty_release_checks(struct tty_struct *tty, int idx)
1711 {
1712 #ifdef TTY_PARANOIA_CHECK
1713 	if (idx < 0 || idx >= tty->driver->num) {
1714 		tty_debug(tty, "bad idx %d\n", idx);
1715 		return -1;
1716 	}
1717 
1718 	/* not much to check for devpts */
1719 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1720 		return 0;
1721 
1722 	if (tty != tty->driver->ttys[idx]) {
1723 		tty_debug(tty, "bad driver table[%d] = %p\n",
1724 			  idx, tty->driver->ttys[idx]);
1725 		return -1;
1726 	}
1727 	if (tty->driver->other) {
1728 		struct tty_struct *o_tty = tty->link;
1729 
1730 		if (o_tty != tty->driver->other->ttys[idx]) {
1731 			tty_debug(tty, "bad other table[%d] = %p\n",
1732 				  idx, tty->driver->other->ttys[idx]);
1733 			return -1;
1734 		}
1735 		if (o_tty->link != tty) {
1736 			tty_debug(tty, "bad link = %p\n", o_tty->link);
1737 			return -1;
1738 		}
1739 	}
1740 #endif
1741 	return 0;
1742 }
1743 
1744 /**
1745  *	tty_release		-	vfs callback for close
1746  *	@inode: inode of tty
1747  *	@filp: file pointer for handle to tty
1748  *
1749  *	Called the last time each file handle is closed that references
1750  *	this tty. There may however be several such references.
1751  *
1752  *	Locking:
1753  *		Takes bkl. See tty_release_dev
1754  *
1755  * Even releasing the tty structures is a tricky business.. We have
1756  * to be very careful that the structures are all released at the
1757  * same time, as interrupts might otherwise get the wrong pointers.
1758  *
1759  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1760  * lead to double frees or releasing memory still in use.
1761  */
1762 
1763 int tty_release(struct inode *inode, struct file *filp)
1764 {
1765 	struct tty_struct *tty = file_tty(filp);
1766 	struct tty_struct *o_tty = NULL;
1767 	int	do_sleep, final;
1768 	int	idx;
1769 	long	timeout = 0;
1770 	int	once = 1;
1771 
1772 	if (tty_paranoia_check(tty, inode, __func__))
1773 		return 0;
1774 
1775 	tty_lock(tty);
1776 	check_tty_count(tty, __func__);
1777 
1778 	__tty_fasync(-1, filp, 0);
1779 
1780 	idx = tty->index;
1781 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1782 	    tty->driver->subtype == PTY_TYPE_MASTER)
1783 		o_tty = tty->link;
1784 
1785 	if (tty_release_checks(tty, idx)) {
1786 		tty_unlock(tty);
1787 		return 0;
1788 	}
1789 
1790 	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1791 
1792 	if (tty->ops->close)
1793 		tty->ops->close(tty, filp);
1794 
1795 	/* If tty is pty master, lock the slave pty (stable lock order) */
1796 	tty_lock_slave(o_tty);
1797 
1798 	/*
1799 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1800 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1801 	 * wait queues and kick everyone out _before_ actually starting to
1802 	 * close.  This ensures that we won't block while releasing the tty
1803 	 * structure.
1804 	 *
1805 	 * The test for the o_tty closing is necessary, since the master and
1806 	 * slave sides may close in any order.  If the slave side closes out
1807 	 * first, its count will be one, since the master side holds an open.
1808 	 * Thus this test wouldn't be triggered at the time the slave closed,
1809 	 * so we do it now.
1810 	 */
1811 	while (1) {
1812 		do_sleep = 0;
1813 
1814 		if (tty->count <= 1) {
1815 			if (waitqueue_active(&tty->read_wait)) {
1816 				wake_up_poll(&tty->read_wait, POLLIN);
1817 				do_sleep++;
1818 			}
1819 			if (waitqueue_active(&tty->write_wait)) {
1820 				wake_up_poll(&tty->write_wait, POLLOUT);
1821 				do_sleep++;
1822 			}
1823 		}
1824 		if (o_tty && o_tty->count <= 1) {
1825 			if (waitqueue_active(&o_tty->read_wait)) {
1826 				wake_up_poll(&o_tty->read_wait, POLLIN);
1827 				do_sleep++;
1828 			}
1829 			if (waitqueue_active(&o_tty->write_wait)) {
1830 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1831 				do_sleep++;
1832 			}
1833 		}
1834 		if (!do_sleep)
1835 			break;
1836 
1837 		if (once) {
1838 			once = 0;
1839 			tty_warn(tty, "read/write wait queue active!\n");
1840 		}
1841 		schedule_timeout_killable(timeout);
1842 		if (timeout < 120 * HZ)
1843 			timeout = 2 * timeout + 1;
1844 		else
1845 			timeout = MAX_SCHEDULE_TIMEOUT;
1846 	}
1847 
1848 	if (o_tty) {
1849 		if (--o_tty->count < 0) {
1850 			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1851 			o_tty->count = 0;
1852 		}
1853 	}
1854 	if (--tty->count < 0) {
1855 		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1856 		tty->count = 0;
1857 	}
1858 
1859 	/*
1860 	 * We've decremented tty->count, so we need to remove this file
1861 	 * descriptor off the tty->tty_files list; this serves two
1862 	 * purposes:
1863 	 *  - check_tty_count sees the correct number of file descriptors
1864 	 *    associated with this tty.
1865 	 *  - do_tty_hangup no longer sees this file descriptor as
1866 	 *    something that needs to be handled for hangups.
1867 	 */
1868 	tty_del_file(filp);
1869 
1870 	/*
1871 	 * Perform some housekeeping before deciding whether to return.
1872 	 *
1873 	 * If _either_ side is closing, make sure there aren't any
1874 	 * processes that still think tty or o_tty is their controlling
1875 	 * tty.
1876 	 */
1877 	if (!tty->count) {
1878 		read_lock(&tasklist_lock);
1879 		session_clear_tty(tty->session);
1880 		if (o_tty)
1881 			session_clear_tty(o_tty->session);
1882 		read_unlock(&tasklist_lock);
1883 	}
1884 
1885 	/* check whether both sides are closing ... */
1886 	final = !tty->count && !(o_tty && o_tty->count);
1887 
1888 	tty_unlock_slave(o_tty);
1889 	tty_unlock(tty);
1890 
1891 	/* At this point, the tty->count == 0 should ensure a dead tty
1892 	   cannot be re-opened by a racing opener */
1893 
1894 	if (!final)
1895 		return 0;
1896 
1897 	tty_debug_hangup(tty, "final close\n");
1898 	/*
1899 	 * Ask the line discipline code to release its structures
1900 	 */
1901 	tty_ldisc_release(tty);
1902 
1903 	/* Wait for pending work before tty destruction commmences */
1904 	tty_flush_works(tty);
1905 
1906 	tty_debug_hangup(tty, "freeing structure\n");
1907 	/*
1908 	 * The release_tty function takes care of the details of clearing
1909 	 * the slots and preserving the termios structure. The tty_unlock_pair
1910 	 * should be safe as we keep a kref while the tty is locked (so the
1911 	 * unlock never unlocks a freed tty).
1912 	 */
1913 	mutex_lock(&tty_mutex);
1914 	release_tty(tty, idx);
1915 	mutex_unlock(&tty_mutex);
1916 
1917 	return 0;
1918 }
1919 
1920 /**
1921  *	tty_open_current_tty - get locked tty of current task
1922  *	@device: device number
1923  *	@filp: file pointer to tty
1924  *	@return: locked tty of the current task iff @device is /dev/tty
1925  *
1926  *	Performs a re-open of the current task's controlling tty.
1927  *
1928  *	We cannot return driver and index like for the other nodes because
1929  *	devpts will not work then. It expects inodes to be from devpts FS.
1930  */
1931 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1932 {
1933 	struct tty_struct *tty;
1934 	int retval;
1935 
1936 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1937 		return NULL;
1938 
1939 	tty = get_current_tty();
1940 	if (!tty)
1941 		return ERR_PTR(-ENXIO);
1942 
1943 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1944 	/* noctty = 1; */
1945 	tty_lock(tty);
1946 	tty_kref_put(tty);	/* safe to drop the kref now */
1947 
1948 	retval = tty_reopen(tty);
1949 	if (retval < 0) {
1950 		tty_unlock(tty);
1951 		tty = ERR_PTR(retval);
1952 	}
1953 	return tty;
1954 }
1955 
1956 /**
1957  *	tty_lookup_driver - lookup a tty driver for a given device file
1958  *	@device: device number
1959  *	@filp: file pointer to tty
1960  *	@noctty: set if the device should not become a controlling tty
1961  *	@index: index for the device in the @return driver
1962  *	@return: driver for this inode (with increased refcount)
1963  *
1964  * 	If @return is not erroneous, the caller is responsible to decrement the
1965  * 	refcount by tty_driver_kref_put.
1966  *
1967  *	Locking: tty_mutex protects get_tty_driver
1968  */
1969 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1970 		int *noctty, int *index)
1971 {
1972 	struct tty_driver *driver;
1973 
1974 	switch (device) {
1975 #ifdef CONFIG_VT
1976 	case MKDEV(TTY_MAJOR, 0): {
1977 		extern struct tty_driver *console_driver;
1978 		driver = tty_driver_kref_get(console_driver);
1979 		*index = fg_console;
1980 		*noctty = 1;
1981 		break;
1982 	}
1983 #endif
1984 	case MKDEV(TTYAUX_MAJOR, 1): {
1985 		struct tty_driver *console_driver = console_device(index);
1986 		if (console_driver) {
1987 			driver = tty_driver_kref_get(console_driver);
1988 			if (driver) {
1989 				/* Don't let /dev/console block */
1990 				filp->f_flags |= O_NONBLOCK;
1991 				*noctty = 1;
1992 				break;
1993 			}
1994 		}
1995 		return ERR_PTR(-ENODEV);
1996 	}
1997 	default:
1998 		driver = get_tty_driver(device, index);
1999 		if (!driver)
2000 			return ERR_PTR(-ENODEV);
2001 		break;
2002 	}
2003 	return driver;
2004 }
2005 
2006 /**
2007  *	tty_open		-	open a tty device
2008  *	@inode: inode of device file
2009  *	@filp: file pointer to tty
2010  *
2011  *	tty_open and tty_release keep up the tty count that contains the
2012  *	number of opens done on a tty. We cannot use the inode-count, as
2013  *	different inodes might point to the same tty.
2014  *
2015  *	Open-counting is needed for pty masters, as well as for keeping
2016  *	track of serial lines: DTR is dropped when the last close happens.
2017  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2018  *
2019  *	The termios state of a pty is reset on first open so that
2020  *	settings don't persist across reuse.
2021  *
2022  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2023  *		 tty->count should protect the rest.
2024  *		 ->siglock protects ->signal/->sighand
2025  *
2026  *	Note: the tty_unlock/lock cases without a ref are only safe due to
2027  *	tty_mutex
2028  */
2029 
2030 static int tty_open(struct inode *inode, struct file *filp)
2031 {
2032 	struct tty_struct *tty;
2033 	int noctty, retval;
2034 	struct tty_driver *driver = NULL;
2035 	int index;
2036 	dev_t device = inode->i_rdev;
2037 	unsigned saved_flags = filp->f_flags;
2038 
2039 	nonseekable_open(inode, filp);
2040 
2041 retry_open:
2042 	retval = tty_alloc_file(filp);
2043 	if (retval)
2044 		return -ENOMEM;
2045 
2046 	noctty = filp->f_flags & O_NOCTTY;
2047 	index  = -1;
2048 	retval = 0;
2049 
2050 	tty = tty_open_current_tty(device, filp);
2051 	if (!tty) {
2052 		mutex_lock(&tty_mutex);
2053 		driver = tty_lookup_driver(device, filp, &noctty, &index);
2054 		if (IS_ERR(driver)) {
2055 			retval = PTR_ERR(driver);
2056 			goto err_unlock;
2057 		}
2058 
2059 		/* check whether we're reopening an existing tty */
2060 		tty = tty_driver_lookup_tty(driver, inode, index);
2061 		if (IS_ERR(tty)) {
2062 			retval = PTR_ERR(tty);
2063 			goto err_unlock;
2064 		}
2065 
2066 		if (tty) {
2067 			mutex_unlock(&tty_mutex);
2068 			retval = tty_lock_interruptible(tty);
2069 			if (retval) {
2070 				if (retval == -EINTR)
2071 					retval = -ERESTARTSYS;
2072 				goto err_unref;
2073 			}
2074 			/* safe to drop the kref from tty_driver_lookup_tty() */
2075 			tty_kref_put(tty);
2076 			retval = tty_reopen(tty);
2077 			if (retval < 0) {
2078 				tty_unlock(tty);
2079 				tty = ERR_PTR(retval);
2080 			}
2081 		} else { /* Returns with the tty_lock held for now */
2082 			tty = tty_init_dev(driver, index);
2083 			mutex_unlock(&tty_mutex);
2084 		}
2085 
2086 		tty_driver_kref_put(driver);
2087 	}
2088 
2089 	if (IS_ERR(tty)) {
2090 		retval = PTR_ERR(tty);
2091 		if (retval != -EAGAIN || signal_pending(current))
2092 			goto err_file;
2093 		tty_free_file(filp);
2094 		schedule();
2095 		goto retry_open;
2096 	}
2097 
2098 	tty_add_file(tty, filp);
2099 
2100 	check_tty_count(tty, __func__);
2101 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2102 	    tty->driver->subtype == PTY_TYPE_MASTER)
2103 		noctty = 1;
2104 
2105 	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2106 
2107 	if (tty->ops->open)
2108 		retval = tty->ops->open(tty, filp);
2109 	else
2110 		retval = -ENODEV;
2111 	filp->f_flags = saved_flags;
2112 
2113 	if (retval) {
2114 		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2115 
2116 		tty_unlock(tty); /* need to call tty_release without BTM */
2117 		tty_release(inode, filp);
2118 		if (retval != -ERESTARTSYS)
2119 			return retval;
2120 
2121 		if (signal_pending(current))
2122 			return retval;
2123 
2124 		schedule();
2125 		/*
2126 		 * Need to reset f_op in case a hangup happened.
2127 		 */
2128 		if (tty_hung_up_p(filp))
2129 			filp->f_op = &tty_fops;
2130 		goto retry_open;
2131 	}
2132 	clear_bit(TTY_HUPPED, &tty->flags);
2133 
2134 
2135 	read_lock(&tasklist_lock);
2136 	spin_lock_irq(&current->sighand->siglock);
2137 	if (!noctty &&
2138 	    current->signal->leader &&
2139 	    !current->signal->tty &&
2140 	    tty->session == NULL) {
2141 		/*
2142 		 * Don't let a process that only has write access to the tty
2143 		 * obtain the privileges associated with having a tty as
2144 		 * controlling terminal (being able to reopen it with full
2145 		 * access through /dev/tty, being able to perform pushback).
2146 		 * Many distributions set the group of all ttys to "tty" and
2147 		 * grant write-only access to all terminals for setgid tty
2148 		 * binaries, which should not imply full privileges on all ttys.
2149 		 *
2150 		 * This could theoretically break old code that performs open()
2151 		 * on a write-only file descriptor. In that case, it might be
2152 		 * necessary to also permit this if
2153 		 * inode_permission(inode, MAY_READ) == 0.
2154 		 */
2155 		if (filp->f_mode & FMODE_READ)
2156 			__proc_set_tty(tty);
2157 	}
2158 	spin_unlock_irq(&current->sighand->siglock);
2159 	read_unlock(&tasklist_lock);
2160 	tty_unlock(tty);
2161 	return 0;
2162 err_unlock:
2163 	mutex_unlock(&tty_mutex);
2164 err_unref:
2165 	/* after locks to avoid deadlock */
2166 	if (!IS_ERR_OR_NULL(driver))
2167 		tty_driver_kref_put(driver);
2168 err_file:
2169 	tty_free_file(filp);
2170 	return retval;
2171 }
2172 
2173 
2174 
2175 /**
2176  *	tty_poll	-	check tty status
2177  *	@filp: file being polled
2178  *	@wait: poll wait structures to update
2179  *
2180  *	Call the line discipline polling method to obtain the poll
2181  *	status of the device.
2182  *
2183  *	Locking: locks called line discipline but ldisc poll method
2184  *	may be re-entered freely by other callers.
2185  */
2186 
2187 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2188 {
2189 	struct tty_struct *tty = file_tty(filp);
2190 	struct tty_ldisc *ld;
2191 	int ret = 0;
2192 
2193 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2194 		return 0;
2195 
2196 	ld = tty_ldisc_ref_wait(tty);
2197 	if (ld->ops->poll)
2198 		ret = ld->ops->poll(tty, filp, wait);
2199 	tty_ldisc_deref(ld);
2200 	return ret;
2201 }
2202 
2203 static int __tty_fasync(int fd, struct file *filp, int on)
2204 {
2205 	struct tty_struct *tty = file_tty(filp);
2206 	struct tty_ldisc *ldisc;
2207 	unsigned long flags;
2208 	int retval = 0;
2209 
2210 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2211 		goto out;
2212 
2213 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2214 	if (retval <= 0)
2215 		goto out;
2216 
2217 	ldisc = tty_ldisc_ref(tty);
2218 	if (ldisc) {
2219 		if (ldisc->ops->fasync)
2220 			ldisc->ops->fasync(tty, on);
2221 		tty_ldisc_deref(ldisc);
2222 	}
2223 
2224 	if (on) {
2225 		enum pid_type type;
2226 		struct pid *pid;
2227 
2228 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2229 		if (tty->pgrp) {
2230 			pid = tty->pgrp;
2231 			type = PIDTYPE_PGID;
2232 		} else {
2233 			pid = task_pid(current);
2234 			type = PIDTYPE_PID;
2235 		}
2236 		get_pid(pid);
2237 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2238 		__f_setown(filp, pid, type, 0);
2239 		put_pid(pid);
2240 		retval = 0;
2241 	}
2242 out:
2243 	return retval;
2244 }
2245 
2246 static int tty_fasync(int fd, struct file *filp, int on)
2247 {
2248 	struct tty_struct *tty = file_tty(filp);
2249 	int retval;
2250 
2251 	tty_lock(tty);
2252 	retval = __tty_fasync(fd, filp, on);
2253 	tty_unlock(tty);
2254 
2255 	return retval;
2256 }
2257 
2258 /**
2259  *	tiocsti			-	fake input character
2260  *	@tty: tty to fake input into
2261  *	@p: pointer to character
2262  *
2263  *	Fake input to a tty device. Does the necessary locking and
2264  *	input management.
2265  *
2266  *	FIXME: does not honour flow control ??
2267  *
2268  *	Locking:
2269  *		Called functions take tty_ldiscs_lock
2270  *		current->signal->tty check is safe without locks
2271  *
2272  *	FIXME: may race normal receive processing
2273  */
2274 
2275 static int tiocsti(struct tty_struct *tty, char __user *p)
2276 {
2277 	char ch, mbz = 0;
2278 	struct tty_ldisc *ld;
2279 
2280 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2281 		return -EPERM;
2282 	if (get_user(ch, p))
2283 		return -EFAULT;
2284 	tty_audit_tiocsti(tty, ch);
2285 	ld = tty_ldisc_ref_wait(tty);
2286 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2287 	tty_ldisc_deref(ld);
2288 	return 0;
2289 }
2290 
2291 /**
2292  *	tiocgwinsz		-	implement window query ioctl
2293  *	@tty; tty
2294  *	@arg: user buffer for result
2295  *
2296  *	Copies the kernel idea of the window size into the user buffer.
2297  *
2298  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2299  *		is consistent.
2300  */
2301 
2302 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2303 {
2304 	int err;
2305 
2306 	mutex_lock(&tty->winsize_mutex);
2307 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2308 	mutex_unlock(&tty->winsize_mutex);
2309 
2310 	return err ? -EFAULT: 0;
2311 }
2312 
2313 /**
2314  *	tty_do_resize		-	resize event
2315  *	@tty: tty being resized
2316  *	@rows: rows (character)
2317  *	@cols: cols (character)
2318  *
2319  *	Update the termios variables and send the necessary signals to
2320  *	peform a terminal resize correctly
2321  */
2322 
2323 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2324 {
2325 	struct pid *pgrp;
2326 
2327 	/* Lock the tty */
2328 	mutex_lock(&tty->winsize_mutex);
2329 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2330 		goto done;
2331 
2332 	/* Signal the foreground process group */
2333 	pgrp = tty_get_pgrp(tty);
2334 	if (pgrp)
2335 		kill_pgrp(pgrp, SIGWINCH, 1);
2336 	put_pid(pgrp);
2337 
2338 	tty->winsize = *ws;
2339 done:
2340 	mutex_unlock(&tty->winsize_mutex);
2341 	return 0;
2342 }
2343 EXPORT_SYMBOL(tty_do_resize);
2344 
2345 /**
2346  *	tiocswinsz		-	implement window size set ioctl
2347  *	@tty; tty side of tty
2348  *	@arg: user buffer for result
2349  *
2350  *	Copies the user idea of the window size to the kernel. Traditionally
2351  *	this is just advisory information but for the Linux console it
2352  *	actually has driver level meaning and triggers a VC resize.
2353  *
2354  *	Locking:
2355  *		Driver dependent. The default do_resize method takes the
2356  *	tty termios mutex and ctrl_lock. The console takes its own lock
2357  *	then calls into the default method.
2358  */
2359 
2360 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2361 {
2362 	struct winsize tmp_ws;
2363 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2364 		return -EFAULT;
2365 
2366 	if (tty->ops->resize)
2367 		return tty->ops->resize(tty, &tmp_ws);
2368 	else
2369 		return tty_do_resize(tty, &tmp_ws);
2370 }
2371 
2372 /**
2373  *	tioccons	-	allow admin to move logical console
2374  *	@file: the file to become console
2375  *
2376  *	Allow the administrator to move the redirected console device
2377  *
2378  *	Locking: uses redirect_lock to guard the redirect information
2379  */
2380 
2381 static int tioccons(struct file *file)
2382 {
2383 	if (!capable(CAP_SYS_ADMIN))
2384 		return -EPERM;
2385 	if (file->f_op->write == redirected_tty_write) {
2386 		struct file *f;
2387 		spin_lock(&redirect_lock);
2388 		f = redirect;
2389 		redirect = NULL;
2390 		spin_unlock(&redirect_lock);
2391 		if (f)
2392 			fput(f);
2393 		return 0;
2394 	}
2395 	spin_lock(&redirect_lock);
2396 	if (redirect) {
2397 		spin_unlock(&redirect_lock);
2398 		return -EBUSY;
2399 	}
2400 	redirect = get_file(file);
2401 	spin_unlock(&redirect_lock);
2402 	return 0;
2403 }
2404 
2405 /**
2406  *	fionbio		-	non blocking ioctl
2407  *	@file: file to set blocking value
2408  *	@p: user parameter
2409  *
2410  *	Historical tty interfaces had a blocking control ioctl before
2411  *	the generic functionality existed. This piece of history is preserved
2412  *	in the expected tty API of posix OS's.
2413  *
2414  *	Locking: none, the open file handle ensures it won't go away.
2415  */
2416 
2417 static int fionbio(struct file *file, int __user *p)
2418 {
2419 	int nonblock;
2420 
2421 	if (get_user(nonblock, p))
2422 		return -EFAULT;
2423 
2424 	spin_lock(&file->f_lock);
2425 	if (nonblock)
2426 		file->f_flags |= O_NONBLOCK;
2427 	else
2428 		file->f_flags &= ~O_NONBLOCK;
2429 	spin_unlock(&file->f_lock);
2430 	return 0;
2431 }
2432 
2433 /**
2434  *	tiocsctty	-	set controlling tty
2435  *	@tty: tty structure
2436  *	@arg: user argument
2437  *
2438  *	This ioctl is used to manage job control. It permits a session
2439  *	leader to set this tty as the controlling tty for the session.
2440  *
2441  *	Locking:
2442  *		Takes tty_lock() to serialize proc_set_tty() for this tty
2443  *		Takes tasklist_lock internally to walk sessions
2444  *		Takes ->siglock() when updating signal->tty
2445  */
2446 
2447 static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2448 {
2449 	int ret = 0;
2450 
2451 	tty_lock(tty);
2452 	read_lock(&tasklist_lock);
2453 
2454 	if (current->signal->leader && (task_session(current) == tty->session))
2455 		goto unlock;
2456 
2457 	/*
2458 	 * The process must be a session leader and
2459 	 * not have a controlling tty already.
2460 	 */
2461 	if (!current->signal->leader || current->signal->tty) {
2462 		ret = -EPERM;
2463 		goto unlock;
2464 	}
2465 
2466 	if (tty->session) {
2467 		/*
2468 		 * This tty is already the controlling
2469 		 * tty for another session group!
2470 		 */
2471 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2472 			/*
2473 			 * Steal it away
2474 			 */
2475 			session_clear_tty(tty->session);
2476 		} else {
2477 			ret = -EPERM;
2478 			goto unlock;
2479 		}
2480 	}
2481 
2482 	/* See the comment in tty_open(). */
2483 	if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2484 		ret = -EPERM;
2485 		goto unlock;
2486 	}
2487 
2488 	proc_set_tty(tty);
2489 unlock:
2490 	read_unlock(&tasklist_lock);
2491 	tty_unlock(tty);
2492 	return ret;
2493 }
2494 
2495 /**
2496  *	tty_get_pgrp	-	return a ref counted pgrp pid
2497  *	@tty: tty to read
2498  *
2499  *	Returns a refcounted instance of the pid struct for the process
2500  *	group controlling the tty.
2501  */
2502 
2503 struct pid *tty_get_pgrp(struct tty_struct *tty)
2504 {
2505 	unsigned long flags;
2506 	struct pid *pgrp;
2507 
2508 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2509 	pgrp = get_pid(tty->pgrp);
2510 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2511 
2512 	return pgrp;
2513 }
2514 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2515 
2516 /*
2517  * This checks not only the pgrp, but falls back on the pid if no
2518  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2519  * without this...
2520  *
2521  * The caller must hold rcu lock or the tasklist lock.
2522  */
2523 static struct pid *session_of_pgrp(struct pid *pgrp)
2524 {
2525 	struct task_struct *p;
2526 	struct pid *sid = NULL;
2527 
2528 	p = pid_task(pgrp, PIDTYPE_PGID);
2529 	if (p == NULL)
2530 		p = pid_task(pgrp, PIDTYPE_PID);
2531 	if (p != NULL)
2532 		sid = task_session(p);
2533 
2534 	return sid;
2535 }
2536 
2537 /**
2538  *	tiocgpgrp		-	get process group
2539  *	@tty: tty passed by user
2540  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2541  *	@p: returned pid
2542  *
2543  *	Obtain the process group of the tty. If there is no process group
2544  *	return an error.
2545  *
2546  *	Locking: none. Reference to current->signal->tty is safe.
2547  */
2548 
2549 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2550 {
2551 	struct pid *pid;
2552 	int ret;
2553 	/*
2554 	 * (tty == real_tty) is a cheap way of
2555 	 * testing if the tty is NOT a master pty.
2556 	 */
2557 	if (tty == real_tty && current->signal->tty != real_tty)
2558 		return -ENOTTY;
2559 	pid = tty_get_pgrp(real_tty);
2560 	ret =  put_user(pid_vnr(pid), p);
2561 	put_pid(pid);
2562 	return ret;
2563 }
2564 
2565 /**
2566  *	tiocspgrp		-	attempt to set process group
2567  *	@tty: tty passed by user
2568  *	@real_tty: tty side device matching tty passed by user
2569  *	@p: pid pointer
2570  *
2571  *	Set the process group of the tty to the session passed. Only
2572  *	permitted where the tty session is our session.
2573  *
2574  *	Locking: RCU, ctrl lock
2575  */
2576 
2577 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2578 {
2579 	struct pid *pgrp;
2580 	pid_t pgrp_nr;
2581 	int retval = tty_check_change(real_tty);
2582 
2583 	if (retval == -EIO)
2584 		return -ENOTTY;
2585 	if (retval)
2586 		return retval;
2587 	if (!current->signal->tty ||
2588 	    (current->signal->tty != real_tty) ||
2589 	    (real_tty->session != task_session(current)))
2590 		return -ENOTTY;
2591 	if (get_user(pgrp_nr, p))
2592 		return -EFAULT;
2593 	if (pgrp_nr < 0)
2594 		return -EINVAL;
2595 	rcu_read_lock();
2596 	pgrp = find_vpid(pgrp_nr);
2597 	retval = -ESRCH;
2598 	if (!pgrp)
2599 		goto out_unlock;
2600 	retval = -EPERM;
2601 	if (session_of_pgrp(pgrp) != task_session(current))
2602 		goto out_unlock;
2603 	retval = 0;
2604 	spin_lock_irq(&tty->ctrl_lock);
2605 	put_pid(real_tty->pgrp);
2606 	real_tty->pgrp = get_pid(pgrp);
2607 	spin_unlock_irq(&tty->ctrl_lock);
2608 out_unlock:
2609 	rcu_read_unlock();
2610 	return retval;
2611 }
2612 
2613 /**
2614  *	tiocgsid		-	get session id
2615  *	@tty: tty passed by user
2616  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2617  *	@p: pointer to returned session id
2618  *
2619  *	Obtain the session id of the tty. If there is no session
2620  *	return an error.
2621  *
2622  *	Locking: none. Reference to current->signal->tty is safe.
2623  */
2624 
2625 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2626 {
2627 	/*
2628 	 * (tty == real_tty) is a cheap way of
2629 	 * testing if the tty is NOT a master pty.
2630 	*/
2631 	if (tty == real_tty && current->signal->tty != real_tty)
2632 		return -ENOTTY;
2633 	if (!real_tty->session)
2634 		return -ENOTTY;
2635 	return put_user(pid_vnr(real_tty->session), p);
2636 }
2637 
2638 /**
2639  *	tiocsetd	-	set line discipline
2640  *	@tty: tty device
2641  *	@p: pointer to user data
2642  *
2643  *	Set the line discipline according to user request.
2644  *
2645  *	Locking: see tty_set_ldisc, this function is just a helper
2646  */
2647 
2648 static int tiocsetd(struct tty_struct *tty, int __user *p)
2649 {
2650 	int ldisc;
2651 	int ret;
2652 
2653 	if (get_user(ldisc, p))
2654 		return -EFAULT;
2655 
2656 	ret = tty_set_ldisc(tty, ldisc);
2657 
2658 	return ret;
2659 }
2660 
2661 /**
2662  *	tiocgetd	-	get line discipline
2663  *	@tty: tty device
2664  *	@p: pointer to user data
2665  *
2666  *	Retrieves the line discipline id directly from the ldisc.
2667  *
2668  *	Locking: waits for ldisc reference (in case the line discipline
2669  *		is changing or the tty is being hungup)
2670  */
2671 
2672 static int tiocgetd(struct tty_struct *tty, int __user *p)
2673 {
2674 	struct tty_ldisc *ld;
2675 	int ret;
2676 
2677 	ld = tty_ldisc_ref_wait(tty);
2678 	ret = put_user(ld->ops->num, p);
2679 	tty_ldisc_deref(ld);
2680 	return ret;
2681 }
2682 
2683 /**
2684  *	send_break	-	performed time break
2685  *	@tty: device to break on
2686  *	@duration: timeout in mS
2687  *
2688  *	Perform a timed break on hardware that lacks its own driver level
2689  *	timed break functionality.
2690  *
2691  *	Locking:
2692  *		atomic_write_lock serializes
2693  *
2694  */
2695 
2696 static int send_break(struct tty_struct *tty, unsigned int duration)
2697 {
2698 	int retval;
2699 
2700 	if (tty->ops->break_ctl == NULL)
2701 		return 0;
2702 
2703 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2704 		retval = tty->ops->break_ctl(tty, duration);
2705 	else {
2706 		/* Do the work ourselves */
2707 		if (tty_write_lock(tty, 0) < 0)
2708 			return -EINTR;
2709 		retval = tty->ops->break_ctl(tty, -1);
2710 		if (retval)
2711 			goto out;
2712 		if (!signal_pending(current))
2713 			msleep_interruptible(duration);
2714 		retval = tty->ops->break_ctl(tty, 0);
2715 out:
2716 		tty_write_unlock(tty);
2717 		if (signal_pending(current))
2718 			retval = -EINTR;
2719 	}
2720 	return retval;
2721 }
2722 
2723 /**
2724  *	tty_tiocmget		-	get modem status
2725  *	@tty: tty device
2726  *	@file: user file pointer
2727  *	@p: pointer to result
2728  *
2729  *	Obtain the modem status bits from the tty driver if the feature
2730  *	is supported. Return -EINVAL if it is not available.
2731  *
2732  *	Locking: none (up to the driver)
2733  */
2734 
2735 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2736 {
2737 	int retval = -EINVAL;
2738 
2739 	if (tty->ops->tiocmget) {
2740 		retval = tty->ops->tiocmget(tty);
2741 
2742 		if (retval >= 0)
2743 			retval = put_user(retval, p);
2744 	}
2745 	return retval;
2746 }
2747 
2748 /**
2749  *	tty_tiocmset		-	set modem status
2750  *	@tty: tty device
2751  *	@cmd: command - clear bits, set bits or set all
2752  *	@p: pointer to desired bits
2753  *
2754  *	Set the modem status bits from the tty driver if the feature
2755  *	is supported. Return -EINVAL if it is not available.
2756  *
2757  *	Locking: none (up to the driver)
2758  */
2759 
2760 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2761 	     unsigned __user *p)
2762 {
2763 	int retval;
2764 	unsigned int set, clear, val;
2765 
2766 	if (tty->ops->tiocmset == NULL)
2767 		return -EINVAL;
2768 
2769 	retval = get_user(val, p);
2770 	if (retval)
2771 		return retval;
2772 	set = clear = 0;
2773 	switch (cmd) {
2774 	case TIOCMBIS:
2775 		set = val;
2776 		break;
2777 	case TIOCMBIC:
2778 		clear = val;
2779 		break;
2780 	case TIOCMSET:
2781 		set = val;
2782 		clear = ~val;
2783 		break;
2784 	}
2785 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2786 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2787 	return tty->ops->tiocmset(tty, set, clear);
2788 }
2789 
2790 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2791 {
2792 	int retval = -EINVAL;
2793 	struct serial_icounter_struct icount;
2794 	memset(&icount, 0, sizeof(icount));
2795 	if (tty->ops->get_icount)
2796 		retval = tty->ops->get_icount(tty, &icount);
2797 	if (retval != 0)
2798 		return retval;
2799 	if (copy_to_user(arg, &icount, sizeof(icount)))
2800 		return -EFAULT;
2801 	return 0;
2802 }
2803 
2804 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2805 {
2806 	static DEFINE_RATELIMIT_STATE(depr_flags,
2807 			DEFAULT_RATELIMIT_INTERVAL,
2808 			DEFAULT_RATELIMIT_BURST);
2809 	char comm[TASK_COMM_LEN];
2810 	int flags;
2811 
2812 	if (get_user(flags, &ss->flags))
2813 		return;
2814 
2815 	flags &= ASYNC_DEPRECATED;
2816 
2817 	if (flags && __ratelimit(&depr_flags))
2818 		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2819 				__func__, get_task_comm(comm, current), flags);
2820 }
2821 
2822 /*
2823  * if pty, return the slave side (real_tty)
2824  * otherwise, return self
2825  */
2826 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2827 {
2828 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2829 	    tty->driver->subtype == PTY_TYPE_MASTER)
2830 		tty = tty->link;
2831 	return tty;
2832 }
2833 
2834 /*
2835  * Split this up, as gcc can choke on it otherwise..
2836  */
2837 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2838 {
2839 	struct tty_struct *tty = file_tty(file);
2840 	struct tty_struct *real_tty;
2841 	void __user *p = (void __user *)arg;
2842 	int retval;
2843 	struct tty_ldisc *ld;
2844 
2845 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2846 		return -EINVAL;
2847 
2848 	real_tty = tty_pair_get_tty(tty);
2849 
2850 	/*
2851 	 * Factor out some common prep work
2852 	 */
2853 	switch (cmd) {
2854 	case TIOCSETD:
2855 	case TIOCSBRK:
2856 	case TIOCCBRK:
2857 	case TCSBRK:
2858 	case TCSBRKP:
2859 		retval = tty_check_change(tty);
2860 		if (retval)
2861 			return retval;
2862 		if (cmd != TIOCCBRK) {
2863 			tty_wait_until_sent(tty, 0);
2864 			if (signal_pending(current))
2865 				return -EINTR;
2866 		}
2867 		break;
2868 	}
2869 
2870 	/*
2871 	 *	Now do the stuff.
2872 	 */
2873 	switch (cmd) {
2874 	case TIOCSTI:
2875 		return tiocsti(tty, p);
2876 	case TIOCGWINSZ:
2877 		return tiocgwinsz(real_tty, p);
2878 	case TIOCSWINSZ:
2879 		return tiocswinsz(real_tty, p);
2880 	case TIOCCONS:
2881 		return real_tty != tty ? -EINVAL : tioccons(file);
2882 	case FIONBIO:
2883 		return fionbio(file, p);
2884 	case TIOCEXCL:
2885 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2886 		return 0;
2887 	case TIOCNXCL:
2888 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2889 		return 0;
2890 	case TIOCGEXCL:
2891 	{
2892 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2893 		return put_user(excl, (int __user *)p);
2894 	}
2895 	case TIOCNOTTY:
2896 		if (current->signal->tty != tty)
2897 			return -ENOTTY;
2898 		no_tty();
2899 		return 0;
2900 	case TIOCSCTTY:
2901 		return tiocsctty(real_tty, file, arg);
2902 	case TIOCGPGRP:
2903 		return tiocgpgrp(tty, real_tty, p);
2904 	case TIOCSPGRP:
2905 		return tiocspgrp(tty, real_tty, p);
2906 	case TIOCGSID:
2907 		return tiocgsid(tty, real_tty, p);
2908 	case TIOCGETD:
2909 		return tiocgetd(tty, p);
2910 	case TIOCSETD:
2911 		return tiocsetd(tty, p);
2912 	case TIOCVHANGUP:
2913 		if (!capable(CAP_SYS_ADMIN))
2914 			return -EPERM;
2915 		tty_vhangup(tty);
2916 		return 0;
2917 	case TIOCGDEV:
2918 	{
2919 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2920 		return put_user(ret, (unsigned int __user *)p);
2921 	}
2922 	/*
2923 	 * Break handling
2924 	 */
2925 	case TIOCSBRK:	/* Turn break on, unconditionally */
2926 		if (tty->ops->break_ctl)
2927 			return tty->ops->break_ctl(tty, -1);
2928 		return 0;
2929 	case TIOCCBRK:	/* Turn break off, unconditionally */
2930 		if (tty->ops->break_ctl)
2931 			return tty->ops->break_ctl(tty, 0);
2932 		return 0;
2933 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2934 		/* non-zero arg means wait for all output data
2935 		 * to be sent (performed above) but don't send break.
2936 		 * This is used by the tcdrain() termios function.
2937 		 */
2938 		if (!arg)
2939 			return send_break(tty, 250);
2940 		return 0;
2941 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2942 		return send_break(tty, arg ? arg*100 : 250);
2943 
2944 	case TIOCMGET:
2945 		return tty_tiocmget(tty, p);
2946 	case TIOCMSET:
2947 	case TIOCMBIC:
2948 	case TIOCMBIS:
2949 		return tty_tiocmset(tty, cmd, p);
2950 	case TIOCGICOUNT:
2951 		retval = tty_tiocgicount(tty, p);
2952 		/* For the moment allow fall through to the old method */
2953         	if (retval != -EINVAL)
2954 			return retval;
2955 		break;
2956 	case TCFLSH:
2957 		switch (arg) {
2958 		case TCIFLUSH:
2959 		case TCIOFLUSH:
2960 		/* flush tty buffer and allow ldisc to process ioctl */
2961 			tty_buffer_flush(tty, NULL);
2962 			break;
2963 		}
2964 		break;
2965 	case TIOCSSERIAL:
2966 		tty_warn_deprecated_flags(p);
2967 		break;
2968 	}
2969 	if (tty->ops->ioctl) {
2970 		retval = tty->ops->ioctl(tty, cmd, arg);
2971 		if (retval != -ENOIOCTLCMD)
2972 			return retval;
2973 	}
2974 	ld = tty_ldisc_ref_wait(tty);
2975 	retval = -EINVAL;
2976 	if (ld->ops->ioctl) {
2977 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2978 		if (retval == -ENOIOCTLCMD)
2979 			retval = -ENOTTY;
2980 	}
2981 	tty_ldisc_deref(ld);
2982 	return retval;
2983 }
2984 
2985 #ifdef CONFIG_COMPAT
2986 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2987 				unsigned long arg)
2988 {
2989 	struct tty_struct *tty = file_tty(file);
2990 	struct tty_ldisc *ld;
2991 	int retval = -ENOIOCTLCMD;
2992 
2993 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2994 		return -EINVAL;
2995 
2996 	if (tty->ops->compat_ioctl) {
2997 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2998 		if (retval != -ENOIOCTLCMD)
2999 			return retval;
3000 	}
3001 
3002 	ld = tty_ldisc_ref_wait(tty);
3003 	if (ld->ops->compat_ioctl)
3004 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3005 	else
3006 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
3007 	tty_ldisc_deref(ld);
3008 
3009 	return retval;
3010 }
3011 #endif
3012 
3013 static int this_tty(const void *t, struct file *file, unsigned fd)
3014 {
3015 	if (likely(file->f_op->read != tty_read))
3016 		return 0;
3017 	return file_tty(file) != t ? 0 : fd + 1;
3018 }
3019 
3020 /*
3021  * This implements the "Secure Attention Key" ---  the idea is to
3022  * prevent trojan horses by killing all processes associated with this
3023  * tty when the user hits the "Secure Attention Key".  Required for
3024  * super-paranoid applications --- see the Orange Book for more details.
3025  *
3026  * This code could be nicer; ideally it should send a HUP, wait a few
3027  * seconds, then send a INT, and then a KILL signal.  But you then
3028  * have to coordinate with the init process, since all processes associated
3029  * with the current tty must be dead before the new getty is allowed
3030  * to spawn.
3031  *
3032  * Now, if it would be correct ;-/ The current code has a nasty hole -
3033  * it doesn't catch files in flight. We may send the descriptor to ourselves
3034  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3035  *
3036  * Nasty bug: do_SAK is being called in interrupt context.  This can
3037  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3038  */
3039 void __do_SAK(struct tty_struct *tty)
3040 {
3041 #ifdef TTY_SOFT_SAK
3042 	tty_hangup(tty);
3043 #else
3044 	struct task_struct *g, *p;
3045 	struct pid *session;
3046 	int		i;
3047 
3048 	if (!tty)
3049 		return;
3050 	session = tty->session;
3051 
3052 	tty_ldisc_flush(tty);
3053 
3054 	tty_driver_flush_buffer(tty);
3055 
3056 	read_lock(&tasklist_lock);
3057 	/* Kill the entire session */
3058 	do_each_pid_task(session, PIDTYPE_SID, p) {
3059 		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3060 			   task_pid_nr(p), p->comm);
3061 		send_sig(SIGKILL, p, 1);
3062 	} while_each_pid_task(session, PIDTYPE_SID, p);
3063 
3064 	/* Now kill any processes that happen to have the tty open */
3065 	do_each_thread(g, p) {
3066 		if (p->signal->tty == tty) {
3067 			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3068 				   task_pid_nr(p), p->comm);
3069 			send_sig(SIGKILL, p, 1);
3070 			continue;
3071 		}
3072 		task_lock(p);
3073 		i = iterate_fd(p->files, 0, this_tty, tty);
3074 		if (i != 0) {
3075 			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3076 				   task_pid_nr(p), p->comm, i - 1);
3077 			force_sig(SIGKILL, p);
3078 		}
3079 		task_unlock(p);
3080 	} while_each_thread(g, p);
3081 	read_unlock(&tasklist_lock);
3082 #endif
3083 }
3084 
3085 static void do_SAK_work(struct work_struct *work)
3086 {
3087 	struct tty_struct *tty =
3088 		container_of(work, struct tty_struct, SAK_work);
3089 	__do_SAK(tty);
3090 }
3091 
3092 /*
3093  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3094  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3095  * the values which we write to it will be identical to the values which it
3096  * already has. --akpm
3097  */
3098 void do_SAK(struct tty_struct *tty)
3099 {
3100 	if (!tty)
3101 		return;
3102 	schedule_work(&tty->SAK_work);
3103 }
3104 
3105 EXPORT_SYMBOL(do_SAK);
3106 
3107 static int dev_match_devt(struct device *dev, const void *data)
3108 {
3109 	const dev_t *devt = data;
3110 	return dev->devt == *devt;
3111 }
3112 
3113 /* Must put_device() after it's unused! */
3114 static struct device *tty_get_device(struct tty_struct *tty)
3115 {
3116 	dev_t devt = tty_devnum(tty);
3117 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3118 }
3119 
3120 
3121 /**
3122  *	alloc_tty_struct
3123  *
3124  *	This subroutine allocates and initializes a tty structure.
3125  *
3126  *	Locking: none - tty in question is not exposed at this point
3127  */
3128 
3129 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3130 {
3131 	struct tty_struct *tty;
3132 
3133 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3134 	if (!tty)
3135 		return NULL;
3136 
3137 	kref_init(&tty->kref);
3138 	tty->magic = TTY_MAGIC;
3139 	tty_ldisc_init(tty);
3140 	tty->session = NULL;
3141 	tty->pgrp = NULL;
3142 	mutex_init(&tty->legacy_mutex);
3143 	mutex_init(&tty->throttle_mutex);
3144 	init_rwsem(&tty->termios_rwsem);
3145 	mutex_init(&tty->winsize_mutex);
3146 	init_ldsem(&tty->ldisc_sem);
3147 	init_waitqueue_head(&tty->write_wait);
3148 	init_waitqueue_head(&tty->read_wait);
3149 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3150 	mutex_init(&tty->atomic_write_lock);
3151 	spin_lock_init(&tty->ctrl_lock);
3152 	spin_lock_init(&tty->flow_lock);
3153 	INIT_LIST_HEAD(&tty->tty_files);
3154 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3155 
3156 	tty->driver = driver;
3157 	tty->ops = driver->ops;
3158 	tty->index = idx;
3159 	tty_line_name(driver, idx, tty->name);
3160 	tty->dev = tty_get_device(tty);
3161 
3162 	return tty;
3163 }
3164 
3165 /**
3166  *	deinitialize_tty_struct
3167  *	@tty: tty to deinitialize
3168  *
3169  *	This subroutine deinitializes a tty structure that has been newly
3170  *	allocated but tty_release cannot be called on that yet.
3171  *
3172  *	Locking: none - tty in question must not be exposed at this point
3173  */
3174 void deinitialize_tty_struct(struct tty_struct *tty)
3175 {
3176 	tty_ldisc_deinit(tty);
3177 }
3178 
3179 /**
3180  *	tty_put_char	-	write one character to a tty
3181  *	@tty: tty
3182  *	@ch: character
3183  *
3184  *	Write one byte to the tty using the provided put_char method
3185  *	if present. Returns the number of characters successfully output.
3186  *
3187  *	Note: the specific put_char operation in the driver layer may go
3188  *	away soon. Don't call it directly, use this method
3189  */
3190 
3191 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3192 {
3193 	if (tty->ops->put_char)
3194 		return tty->ops->put_char(tty, ch);
3195 	return tty->ops->write(tty, &ch, 1);
3196 }
3197 EXPORT_SYMBOL_GPL(tty_put_char);
3198 
3199 struct class *tty_class;
3200 
3201 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3202 		unsigned int index, unsigned int count)
3203 {
3204 	int err;
3205 
3206 	/* init here, since reused cdevs cause crashes */
3207 	driver->cdevs[index] = cdev_alloc();
3208 	if (!driver->cdevs[index])
3209 		return -ENOMEM;
3210 	driver->cdevs[index]->ops = &tty_fops;
3211 	driver->cdevs[index]->owner = driver->owner;
3212 	err = cdev_add(driver->cdevs[index], dev, count);
3213 	if (err)
3214 		kobject_put(&driver->cdevs[index]->kobj);
3215 	return err;
3216 }
3217 
3218 /**
3219  *	tty_register_device - register a tty device
3220  *	@driver: the tty driver that describes the tty device
3221  *	@index: the index in the tty driver for this tty device
3222  *	@device: a struct device that is associated with this tty device.
3223  *		This field is optional, if there is no known struct device
3224  *		for this tty device it can be set to NULL safely.
3225  *
3226  *	Returns a pointer to the struct device for this tty device
3227  *	(or ERR_PTR(-EFOO) on error).
3228  *
3229  *	This call is required to be made to register an individual tty device
3230  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3231  *	that bit is not set, this function should not be called by a tty
3232  *	driver.
3233  *
3234  *	Locking: ??
3235  */
3236 
3237 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3238 				   struct device *device)
3239 {
3240 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3241 }
3242 EXPORT_SYMBOL(tty_register_device);
3243 
3244 static void tty_device_create_release(struct device *dev)
3245 {
3246 	dev_dbg(dev, "releasing...\n");
3247 	kfree(dev);
3248 }
3249 
3250 /**
3251  *	tty_register_device_attr - register a tty device
3252  *	@driver: the tty driver that describes the tty device
3253  *	@index: the index in the tty driver for this tty device
3254  *	@device: a struct device that is associated with this tty device.
3255  *		This field is optional, if there is no known struct device
3256  *		for this tty device it can be set to NULL safely.
3257  *	@drvdata: Driver data to be set to device.
3258  *	@attr_grp: Attribute group to be set on device.
3259  *
3260  *	Returns a pointer to the struct device for this tty device
3261  *	(or ERR_PTR(-EFOO) on error).
3262  *
3263  *	This call is required to be made to register an individual tty device
3264  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3265  *	that bit is not set, this function should not be called by a tty
3266  *	driver.
3267  *
3268  *	Locking: ??
3269  */
3270 struct device *tty_register_device_attr(struct tty_driver *driver,
3271 				   unsigned index, struct device *device,
3272 				   void *drvdata,
3273 				   const struct attribute_group **attr_grp)
3274 {
3275 	char name[64];
3276 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3277 	struct device *dev = NULL;
3278 	int retval = -ENODEV;
3279 	bool cdev = false;
3280 
3281 	if (index >= driver->num) {
3282 		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3283 		       driver->name, index);
3284 		return ERR_PTR(-EINVAL);
3285 	}
3286 
3287 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3288 		pty_line_name(driver, index, name);
3289 	else
3290 		tty_line_name(driver, index, name);
3291 
3292 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3293 		retval = tty_cdev_add(driver, devt, index, 1);
3294 		if (retval)
3295 			goto error;
3296 		cdev = true;
3297 	}
3298 
3299 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3300 	if (!dev) {
3301 		retval = -ENOMEM;
3302 		goto error;
3303 	}
3304 
3305 	dev->devt = devt;
3306 	dev->class = tty_class;
3307 	dev->parent = device;
3308 	dev->release = tty_device_create_release;
3309 	dev_set_name(dev, "%s", name);
3310 	dev->groups = attr_grp;
3311 	dev_set_drvdata(dev, drvdata);
3312 
3313 	retval = device_register(dev);
3314 	if (retval)
3315 		goto error;
3316 
3317 	return dev;
3318 
3319 error:
3320 	put_device(dev);
3321 	if (cdev) {
3322 		cdev_del(driver->cdevs[index]);
3323 		driver->cdevs[index] = NULL;
3324 	}
3325 	return ERR_PTR(retval);
3326 }
3327 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3328 
3329 /**
3330  * 	tty_unregister_device - unregister a tty device
3331  * 	@driver: the tty driver that describes the tty device
3332  * 	@index: the index in the tty driver for this tty device
3333  *
3334  * 	If a tty device is registered with a call to tty_register_device() then
3335  *	this function must be called when the tty device is gone.
3336  *
3337  *	Locking: ??
3338  */
3339 
3340 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3341 {
3342 	device_destroy(tty_class,
3343 		MKDEV(driver->major, driver->minor_start) + index);
3344 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3345 		cdev_del(driver->cdevs[index]);
3346 		driver->cdevs[index] = NULL;
3347 	}
3348 }
3349 EXPORT_SYMBOL(tty_unregister_device);
3350 
3351 /**
3352  * __tty_alloc_driver -- allocate tty driver
3353  * @lines: count of lines this driver can handle at most
3354  * @owner: module which is repsonsible for this driver
3355  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3356  *
3357  * This should not be called directly, some of the provided macros should be
3358  * used instead. Use IS_ERR and friends on @retval.
3359  */
3360 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3361 		unsigned long flags)
3362 {
3363 	struct tty_driver *driver;
3364 	unsigned int cdevs = 1;
3365 	int err;
3366 
3367 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3368 		return ERR_PTR(-EINVAL);
3369 
3370 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3371 	if (!driver)
3372 		return ERR_PTR(-ENOMEM);
3373 
3374 	kref_init(&driver->kref);
3375 	driver->magic = TTY_DRIVER_MAGIC;
3376 	driver->num = lines;
3377 	driver->owner = owner;
3378 	driver->flags = flags;
3379 
3380 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3381 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3382 				GFP_KERNEL);
3383 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3384 				GFP_KERNEL);
3385 		if (!driver->ttys || !driver->termios) {
3386 			err = -ENOMEM;
3387 			goto err_free_all;
3388 		}
3389 	}
3390 
3391 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3392 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3393 				GFP_KERNEL);
3394 		if (!driver->ports) {
3395 			err = -ENOMEM;
3396 			goto err_free_all;
3397 		}
3398 		cdevs = lines;
3399 	}
3400 
3401 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3402 	if (!driver->cdevs) {
3403 		err = -ENOMEM;
3404 		goto err_free_all;
3405 	}
3406 
3407 	return driver;
3408 err_free_all:
3409 	kfree(driver->ports);
3410 	kfree(driver->ttys);
3411 	kfree(driver->termios);
3412 	kfree(driver->cdevs);
3413 	kfree(driver);
3414 	return ERR_PTR(err);
3415 }
3416 EXPORT_SYMBOL(__tty_alloc_driver);
3417 
3418 static void destruct_tty_driver(struct kref *kref)
3419 {
3420 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3421 	int i;
3422 	struct ktermios *tp;
3423 
3424 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3425 		/*
3426 		 * Free the termios and termios_locked structures because
3427 		 * we don't want to get memory leaks when modular tty
3428 		 * drivers are removed from the kernel.
3429 		 */
3430 		for (i = 0; i < driver->num; i++) {
3431 			tp = driver->termios[i];
3432 			if (tp) {
3433 				driver->termios[i] = NULL;
3434 				kfree(tp);
3435 			}
3436 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3437 				tty_unregister_device(driver, i);
3438 		}
3439 		proc_tty_unregister_driver(driver);
3440 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3441 			cdev_del(driver->cdevs[0]);
3442 	}
3443 	kfree(driver->cdevs);
3444 	kfree(driver->ports);
3445 	kfree(driver->termios);
3446 	kfree(driver->ttys);
3447 	kfree(driver);
3448 }
3449 
3450 void tty_driver_kref_put(struct tty_driver *driver)
3451 {
3452 	kref_put(&driver->kref, destruct_tty_driver);
3453 }
3454 EXPORT_SYMBOL(tty_driver_kref_put);
3455 
3456 void tty_set_operations(struct tty_driver *driver,
3457 			const struct tty_operations *op)
3458 {
3459 	driver->ops = op;
3460 };
3461 EXPORT_SYMBOL(tty_set_operations);
3462 
3463 void put_tty_driver(struct tty_driver *d)
3464 {
3465 	tty_driver_kref_put(d);
3466 }
3467 EXPORT_SYMBOL(put_tty_driver);
3468 
3469 /*
3470  * Called by a tty driver to register itself.
3471  */
3472 int tty_register_driver(struct tty_driver *driver)
3473 {
3474 	int error;
3475 	int i;
3476 	dev_t dev;
3477 	struct device *d;
3478 
3479 	if (!driver->major) {
3480 		error = alloc_chrdev_region(&dev, driver->minor_start,
3481 						driver->num, driver->name);
3482 		if (!error) {
3483 			driver->major = MAJOR(dev);
3484 			driver->minor_start = MINOR(dev);
3485 		}
3486 	} else {
3487 		dev = MKDEV(driver->major, driver->minor_start);
3488 		error = register_chrdev_region(dev, driver->num, driver->name);
3489 	}
3490 	if (error < 0)
3491 		goto err;
3492 
3493 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3494 		error = tty_cdev_add(driver, dev, 0, driver->num);
3495 		if (error)
3496 			goto err_unreg_char;
3497 	}
3498 
3499 	mutex_lock(&tty_mutex);
3500 	list_add(&driver->tty_drivers, &tty_drivers);
3501 	mutex_unlock(&tty_mutex);
3502 
3503 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3504 		for (i = 0; i < driver->num; i++) {
3505 			d = tty_register_device(driver, i, NULL);
3506 			if (IS_ERR(d)) {
3507 				error = PTR_ERR(d);
3508 				goto err_unreg_devs;
3509 			}
3510 		}
3511 	}
3512 	proc_tty_register_driver(driver);
3513 	driver->flags |= TTY_DRIVER_INSTALLED;
3514 	return 0;
3515 
3516 err_unreg_devs:
3517 	for (i--; i >= 0; i--)
3518 		tty_unregister_device(driver, i);
3519 
3520 	mutex_lock(&tty_mutex);
3521 	list_del(&driver->tty_drivers);
3522 	mutex_unlock(&tty_mutex);
3523 
3524 err_unreg_char:
3525 	unregister_chrdev_region(dev, driver->num);
3526 err:
3527 	return error;
3528 }
3529 EXPORT_SYMBOL(tty_register_driver);
3530 
3531 /*
3532  * Called by a tty driver to unregister itself.
3533  */
3534 int tty_unregister_driver(struct tty_driver *driver)
3535 {
3536 #if 0
3537 	/* FIXME */
3538 	if (driver->refcount)
3539 		return -EBUSY;
3540 #endif
3541 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3542 				driver->num);
3543 	mutex_lock(&tty_mutex);
3544 	list_del(&driver->tty_drivers);
3545 	mutex_unlock(&tty_mutex);
3546 	return 0;
3547 }
3548 
3549 EXPORT_SYMBOL(tty_unregister_driver);
3550 
3551 dev_t tty_devnum(struct tty_struct *tty)
3552 {
3553 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3554 }
3555 EXPORT_SYMBOL(tty_devnum);
3556 
3557 void tty_default_fops(struct file_operations *fops)
3558 {
3559 	*fops = tty_fops;
3560 }
3561 
3562 /*
3563  * Initialize the console device. This is called *early*, so
3564  * we can't necessarily depend on lots of kernel help here.
3565  * Just do some early initializations, and do the complex setup
3566  * later.
3567  */
3568 void __init console_init(void)
3569 {
3570 	initcall_t *call;
3571 
3572 	/* Setup the default TTY line discipline. */
3573 	tty_ldisc_begin();
3574 
3575 	/*
3576 	 * set up the console device so that later boot sequences can
3577 	 * inform about problems etc..
3578 	 */
3579 	call = __con_initcall_start;
3580 	while (call < __con_initcall_end) {
3581 		(*call)();
3582 		call++;
3583 	}
3584 }
3585 
3586 static char *tty_devnode(struct device *dev, umode_t *mode)
3587 {
3588 	if (!mode)
3589 		return NULL;
3590 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3591 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3592 		*mode = 0666;
3593 	return NULL;
3594 }
3595 
3596 static int __init tty_class_init(void)
3597 {
3598 	tty_class = class_create(THIS_MODULE, "tty");
3599 	if (IS_ERR(tty_class))
3600 		return PTR_ERR(tty_class);
3601 	tty_class->devnode = tty_devnode;
3602 	return 0;
3603 }
3604 
3605 postcore_initcall(tty_class_init);
3606 
3607 /* 3/2004 jmc: why do these devices exist? */
3608 static struct cdev tty_cdev, console_cdev;
3609 
3610 static ssize_t show_cons_active(struct device *dev,
3611 				struct device_attribute *attr, char *buf)
3612 {
3613 	struct console *cs[16];
3614 	int i = 0;
3615 	struct console *c;
3616 	ssize_t count = 0;
3617 
3618 	console_lock();
3619 	for_each_console(c) {
3620 		if (!c->device)
3621 			continue;
3622 		if (!c->write)
3623 			continue;
3624 		if ((c->flags & CON_ENABLED) == 0)
3625 			continue;
3626 		cs[i++] = c;
3627 		if (i >= ARRAY_SIZE(cs))
3628 			break;
3629 	}
3630 	while (i--) {
3631 		int index = cs[i]->index;
3632 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3633 
3634 		/* don't resolve tty0 as some programs depend on it */
3635 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3636 			count += tty_line_name(drv, index, buf + count);
3637 		else
3638 			count += sprintf(buf + count, "%s%d",
3639 					 cs[i]->name, cs[i]->index);
3640 
3641 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3642 	}
3643 	console_unlock();
3644 
3645 	return count;
3646 }
3647 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3648 
3649 static struct attribute *cons_dev_attrs[] = {
3650 	&dev_attr_active.attr,
3651 	NULL
3652 };
3653 
3654 ATTRIBUTE_GROUPS(cons_dev);
3655 
3656 static struct device *consdev;
3657 
3658 void console_sysfs_notify(void)
3659 {
3660 	if (consdev)
3661 		sysfs_notify(&consdev->kobj, NULL, "active");
3662 }
3663 
3664 /*
3665  * Ok, now we can initialize the rest of the tty devices and can count
3666  * on memory allocations, interrupts etc..
3667  */
3668 int __init tty_init(void)
3669 {
3670 	cdev_init(&tty_cdev, &tty_fops);
3671 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3672 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3673 		panic("Couldn't register /dev/tty driver\n");
3674 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3675 
3676 	cdev_init(&console_cdev, &console_fops);
3677 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3678 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3679 		panic("Couldn't register /dev/console driver\n");
3680 	consdev = device_create_with_groups(tty_class, NULL,
3681 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3682 					    cons_dev_groups, "console");
3683 	if (IS_ERR(consdev))
3684 		consdev = NULL;
3685 
3686 #ifdef CONFIG_VT
3687 	vty_init(&console_fops);
3688 #endif
3689 	return 0;
3690 }
3691 
3692