1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 */ 4 5 /* 6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 7 * or rs-channels. It also implements echoing, cooked mode etc. 8 * 9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 10 * 11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 12 * tty_struct and tty_queue structures. Previously there was an array 13 * of 256 tty_struct's which was statically allocated, and the 14 * tty_queue structures were allocated at boot time. Both are now 15 * dynamically allocated only when the tty is open. 16 * 17 * Also restructured routines so that there is more of a separation 18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 19 * the low-level tty routines (serial.c, pty.c, console.c). This 20 * makes for cleaner and more compact code. -TYT, 9/17/92 21 * 22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 23 * which can be dynamically activated and de-activated by the line 24 * discipline handling modules (like SLIP). 25 * 26 * NOTE: pay no attention to the line discipline code (yet); its 27 * interface is still subject to change in this version... 28 * -- TYT, 1/31/92 29 * 30 * Added functionality to the OPOST tty handling. No delays, but all 31 * other bits should be there. 32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 33 * 34 * Rewrote canonical mode and added more termios flags. 35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 36 * 37 * Reorganized FASYNC support so mouse code can share it. 38 * -- ctm@ardi.com, 9Sep95 39 * 40 * New TIOCLINUX variants added. 41 * -- mj@k332.feld.cvut.cz, 19-Nov-95 42 * 43 * Restrict vt switching via ioctl() 44 * -- grif@cs.ucr.edu, 5-Dec-95 45 * 46 * Move console and virtual terminal code to more appropriate files, 47 * implement CONFIG_VT and generalize console device interface. 48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 49 * 50 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 51 * -- Bill Hawes <whawes@star.net>, June 97 52 * 53 * Added devfs support. 54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 55 * 56 * Added support for a Unix98-style ptmx device. 57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 58 * 59 * Reduced memory usage for older ARM systems 60 * -- Russell King <rmk@arm.linux.org.uk> 61 * 62 * Move do_SAK() into process context. Less stack use in devfs functions. 63 * alloc_tty_struct() always uses kmalloc() 64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 65 */ 66 67 #include <linux/types.h> 68 #include <linux/major.h> 69 #include <linux/errno.h> 70 #include <linux/signal.h> 71 #include <linux/fcntl.h> 72 #include <linux/sched.h> 73 #include <linux/interrupt.h> 74 #include <linux/tty.h> 75 #include <linux/tty_driver.h> 76 #include <linux/tty_flip.h> 77 #include <linux/devpts_fs.h> 78 #include <linux/file.h> 79 #include <linux/fdtable.h> 80 #include <linux/console.h> 81 #include <linux/timer.h> 82 #include <linux/ctype.h> 83 #include <linux/kd.h> 84 #include <linux/mm.h> 85 #include <linux/string.h> 86 #include <linux/slab.h> 87 #include <linux/poll.h> 88 #include <linux/proc_fs.h> 89 #include <linux/init.h> 90 #include <linux/module.h> 91 #include <linux/device.h> 92 #include <linux/wait.h> 93 #include <linux/bitops.h> 94 #include <linux/delay.h> 95 #include <linux/seq_file.h> 96 #include <linux/serial.h> 97 #include <linux/ratelimit.h> 98 99 #include <linux/uaccess.h> 100 101 #include <linux/kbd_kern.h> 102 #include <linux/vt_kern.h> 103 #include <linux/selection.h> 104 105 #include <linux/kmod.h> 106 #include <linux/nsproxy.h> 107 108 #undef TTY_DEBUG_HANGUP 109 #ifdef TTY_DEBUG_HANGUP 110 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args) 111 #else 112 # define tty_debug_hangup(tty, f, args...) do { } while (0) 113 #endif 114 115 #define TTY_PARANOIA_CHECK 1 116 #define CHECK_TTY_COUNT 1 117 118 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 119 .c_iflag = ICRNL | IXON, 120 .c_oflag = OPOST | ONLCR, 121 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 122 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 123 ECHOCTL | ECHOKE | IEXTEN, 124 .c_cc = INIT_C_CC, 125 .c_ispeed = 38400, 126 .c_ospeed = 38400 127 }; 128 129 EXPORT_SYMBOL(tty_std_termios); 130 131 /* This list gets poked at by procfs and various bits of boot up code. This 132 could do with some rationalisation such as pulling the tty proc function 133 into this file */ 134 135 LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 136 137 /* Mutex to protect creating and releasing a tty. This is shared with 138 vt.c for deeply disgusting hack reasons */ 139 DEFINE_MUTEX(tty_mutex); 140 EXPORT_SYMBOL(tty_mutex); 141 142 /* Spinlock to protect the tty->tty_files list */ 143 DEFINE_SPINLOCK(tty_files_lock); 144 145 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *); 146 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *); 147 ssize_t redirected_tty_write(struct file *, const char __user *, 148 size_t, loff_t *); 149 static unsigned int tty_poll(struct file *, poll_table *); 150 static int tty_open(struct inode *, struct file *); 151 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 152 #ifdef CONFIG_COMPAT 153 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 154 unsigned long arg); 155 #else 156 #define tty_compat_ioctl NULL 157 #endif 158 static int __tty_fasync(int fd, struct file *filp, int on); 159 static int tty_fasync(int fd, struct file *filp, int on); 160 static void release_tty(struct tty_struct *tty, int idx); 161 162 /** 163 * free_tty_struct - free a disused tty 164 * @tty: tty struct to free 165 * 166 * Free the write buffers, tty queue and tty memory itself. 167 * 168 * Locking: none. Must be called after tty is definitely unused 169 */ 170 171 void free_tty_struct(struct tty_struct *tty) 172 { 173 if (!tty) 174 return; 175 put_device(tty->dev); 176 kfree(tty->write_buf); 177 tty->magic = 0xDEADDEAD; 178 kfree(tty); 179 } 180 181 static inline struct tty_struct *file_tty(struct file *file) 182 { 183 return ((struct tty_file_private *)file->private_data)->tty; 184 } 185 186 int tty_alloc_file(struct file *file) 187 { 188 struct tty_file_private *priv; 189 190 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 191 if (!priv) 192 return -ENOMEM; 193 194 file->private_data = priv; 195 196 return 0; 197 } 198 199 /* Associate a new file with the tty structure */ 200 void tty_add_file(struct tty_struct *tty, struct file *file) 201 { 202 struct tty_file_private *priv = file->private_data; 203 204 priv->tty = tty; 205 priv->file = file; 206 207 spin_lock(&tty_files_lock); 208 list_add(&priv->list, &tty->tty_files); 209 spin_unlock(&tty_files_lock); 210 } 211 212 /** 213 * tty_free_file - free file->private_data 214 * 215 * This shall be used only for fail path handling when tty_add_file was not 216 * called yet. 217 */ 218 void tty_free_file(struct file *file) 219 { 220 struct tty_file_private *priv = file->private_data; 221 222 file->private_data = NULL; 223 kfree(priv); 224 } 225 226 /* Delete file from its tty */ 227 static void tty_del_file(struct file *file) 228 { 229 struct tty_file_private *priv = file->private_data; 230 231 spin_lock(&tty_files_lock); 232 list_del(&priv->list); 233 spin_unlock(&tty_files_lock); 234 tty_free_file(file); 235 } 236 237 238 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base) 239 240 /** 241 * tty_name - return tty naming 242 * @tty: tty structure 243 * 244 * Convert a tty structure into a name. The name reflects the kernel 245 * naming policy and if udev is in use may not reflect user space 246 * 247 * Locking: none 248 */ 249 250 const char *tty_name(const struct tty_struct *tty) 251 { 252 if (!tty) /* Hmm. NULL pointer. That's fun. */ 253 return "NULL tty"; 254 return tty->name; 255 } 256 257 EXPORT_SYMBOL(tty_name); 258 259 const char *tty_driver_name(const struct tty_struct *tty) 260 { 261 if (!tty || !tty->driver) 262 return ""; 263 return tty->driver->name; 264 } 265 266 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 267 const char *routine) 268 { 269 #ifdef TTY_PARANOIA_CHECK 270 if (!tty) { 271 pr_warn("(%d:%d): %s: NULL tty\n", 272 imajor(inode), iminor(inode), routine); 273 return 1; 274 } 275 if (tty->magic != TTY_MAGIC) { 276 pr_warn("(%d:%d): %s: bad magic number\n", 277 imajor(inode), iminor(inode), routine); 278 return 1; 279 } 280 #endif 281 return 0; 282 } 283 284 /* Caller must hold tty_lock */ 285 static int check_tty_count(struct tty_struct *tty, const char *routine) 286 { 287 #ifdef CHECK_TTY_COUNT 288 struct list_head *p; 289 int count = 0; 290 291 spin_lock(&tty_files_lock); 292 list_for_each(p, &tty->tty_files) { 293 count++; 294 } 295 spin_unlock(&tty_files_lock); 296 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 297 tty->driver->subtype == PTY_TYPE_SLAVE && 298 tty->link && tty->link->count) 299 count++; 300 if (tty->count != count) { 301 tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n", 302 routine, tty->count, count); 303 return count; 304 } 305 #endif 306 return 0; 307 } 308 309 /** 310 * get_tty_driver - find device of a tty 311 * @dev_t: device identifier 312 * @index: returns the index of the tty 313 * 314 * This routine returns a tty driver structure, given a device number 315 * and also passes back the index number. 316 * 317 * Locking: caller must hold tty_mutex 318 */ 319 320 static struct tty_driver *get_tty_driver(dev_t device, int *index) 321 { 322 struct tty_driver *p; 323 324 list_for_each_entry(p, &tty_drivers, tty_drivers) { 325 dev_t base = MKDEV(p->major, p->minor_start); 326 if (device < base || device >= base + p->num) 327 continue; 328 *index = device - base; 329 return tty_driver_kref_get(p); 330 } 331 return NULL; 332 } 333 334 #ifdef CONFIG_CONSOLE_POLL 335 336 /** 337 * tty_find_polling_driver - find device of a polled tty 338 * @name: name string to match 339 * @line: pointer to resulting tty line nr 340 * 341 * This routine returns a tty driver structure, given a name 342 * and the condition that the tty driver is capable of polled 343 * operation. 344 */ 345 struct tty_driver *tty_find_polling_driver(char *name, int *line) 346 { 347 struct tty_driver *p, *res = NULL; 348 int tty_line = 0; 349 int len; 350 char *str, *stp; 351 352 for (str = name; *str; str++) 353 if ((*str >= '0' && *str <= '9') || *str == ',') 354 break; 355 if (!*str) 356 return NULL; 357 358 len = str - name; 359 tty_line = simple_strtoul(str, &str, 10); 360 361 mutex_lock(&tty_mutex); 362 /* Search through the tty devices to look for a match */ 363 list_for_each_entry(p, &tty_drivers, tty_drivers) { 364 if (strncmp(name, p->name, len) != 0) 365 continue; 366 stp = str; 367 if (*stp == ',') 368 stp++; 369 if (*stp == '\0') 370 stp = NULL; 371 372 if (tty_line >= 0 && tty_line < p->num && p->ops && 373 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 374 res = tty_driver_kref_get(p); 375 *line = tty_line; 376 break; 377 } 378 } 379 mutex_unlock(&tty_mutex); 380 381 return res; 382 } 383 EXPORT_SYMBOL_GPL(tty_find_polling_driver); 384 #endif 385 386 /** 387 * tty_check_change - check for POSIX terminal changes 388 * @tty: tty to check 389 * 390 * If we try to write to, or set the state of, a terminal and we're 391 * not in the foreground, send a SIGTTOU. If the signal is blocked or 392 * ignored, go ahead and perform the operation. (POSIX 7.2) 393 * 394 * Locking: ctrl_lock 395 */ 396 397 int __tty_check_change(struct tty_struct *tty, int sig) 398 { 399 unsigned long flags; 400 struct pid *pgrp, *tty_pgrp; 401 int ret = 0; 402 403 if (current->signal->tty != tty) 404 return 0; 405 406 rcu_read_lock(); 407 pgrp = task_pgrp(current); 408 409 spin_lock_irqsave(&tty->ctrl_lock, flags); 410 tty_pgrp = tty->pgrp; 411 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 412 413 if (tty_pgrp && pgrp != tty->pgrp) { 414 if (is_ignored(sig)) { 415 if (sig == SIGTTIN) 416 ret = -EIO; 417 } else if (is_current_pgrp_orphaned()) 418 ret = -EIO; 419 else { 420 kill_pgrp(pgrp, sig, 1); 421 set_thread_flag(TIF_SIGPENDING); 422 ret = -ERESTARTSYS; 423 } 424 } 425 rcu_read_unlock(); 426 427 if (!tty_pgrp) 428 tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig); 429 430 return ret; 431 } 432 433 int tty_check_change(struct tty_struct *tty) 434 { 435 return __tty_check_change(tty, SIGTTOU); 436 } 437 EXPORT_SYMBOL(tty_check_change); 438 439 static ssize_t hung_up_tty_read(struct file *file, char __user *buf, 440 size_t count, loff_t *ppos) 441 { 442 return 0; 443 } 444 445 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf, 446 size_t count, loff_t *ppos) 447 { 448 return -EIO; 449 } 450 451 /* No kernel lock held - none needed ;) */ 452 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait) 453 { 454 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM; 455 } 456 457 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 458 unsigned long arg) 459 { 460 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 461 } 462 463 static long hung_up_tty_compat_ioctl(struct file *file, 464 unsigned int cmd, unsigned long arg) 465 { 466 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 467 } 468 469 static const struct file_operations tty_fops = { 470 .llseek = no_llseek, 471 .read = tty_read, 472 .write = tty_write, 473 .poll = tty_poll, 474 .unlocked_ioctl = tty_ioctl, 475 .compat_ioctl = tty_compat_ioctl, 476 .open = tty_open, 477 .release = tty_release, 478 .fasync = tty_fasync, 479 }; 480 481 static const struct file_operations console_fops = { 482 .llseek = no_llseek, 483 .read = tty_read, 484 .write = redirected_tty_write, 485 .poll = tty_poll, 486 .unlocked_ioctl = tty_ioctl, 487 .compat_ioctl = tty_compat_ioctl, 488 .open = tty_open, 489 .release = tty_release, 490 .fasync = tty_fasync, 491 }; 492 493 static const struct file_operations hung_up_tty_fops = { 494 .llseek = no_llseek, 495 .read = hung_up_tty_read, 496 .write = hung_up_tty_write, 497 .poll = hung_up_tty_poll, 498 .unlocked_ioctl = hung_up_tty_ioctl, 499 .compat_ioctl = hung_up_tty_compat_ioctl, 500 .release = tty_release, 501 }; 502 503 static DEFINE_SPINLOCK(redirect_lock); 504 static struct file *redirect; 505 506 507 void proc_clear_tty(struct task_struct *p) 508 { 509 unsigned long flags; 510 struct tty_struct *tty; 511 spin_lock_irqsave(&p->sighand->siglock, flags); 512 tty = p->signal->tty; 513 p->signal->tty = NULL; 514 spin_unlock_irqrestore(&p->sighand->siglock, flags); 515 tty_kref_put(tty); 516 } 517 518 /** 519 * proc_set_tty - set the controlling terminal 520 * 521 * Only callable by the session leader and only if it does not already have 522 * a controlling terminal. 523 * 524 * Caller must hold: tty_lock() 525 * a readlock on tasklist_lock 526 * sighand lock 527 */ 528 static void __proc_set_tty(struct tty_struct *tty) 529 { 530 unsigned long flags; 531 532 spin_lock_irqsave(&tty->ctrl_lock, flags); 533 /* 534 * The session and fg pgrp references will be non-NULL if 535 * tiocsctty() is stealing the controlling tty 536 */ 537 put_pid(tty->session); 538 put_pid(tty->pgrp); 539 tty->pgrp = get_pid(task_pgrp(current)); 540 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 541 tty->session = get_pid(task_session(current)); 542 if (current->signal->tty) { 543 tty_debug(tty, "current tty %s not NULL!!\n", 544 current->signal->tty->name); 545 tty_kref_put(current->signal->tty); 546 } 547 put_pid(current->signal->tty_old_pgrp); 548 current->signal->tty = tty_kref_get(tty); 549 current->signal->tty_old_pgrp = NULL; 550 } 551 552 static void proc_set_tty(struct tty_struct *tty) 553 { 554 spin_lock_irq(¤t->sighand->siglock); 555 __proc_set_tty(tty); 556 spin_unlock_irq(¤t->sighand->siglock); 557 } 558 559 struct tty_struct *get_current_tty(void) 560 { 561 struct tty_struct *tty; 562 unsigned long flags; 563 564 spin_lock_irqsave(¤t->sighand->siglock, flags); 565 tty = tty_kref_get(current->signal->tty); 566 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 567 return tty; 568 } 569 EXPORT_SYMBOL_GPL(get_current_tty); 570 571 static void session_clear_tty(struct pid *session) 572 { 573 struct task_struct *p; 574 do_each_pid_task(session, PIDTYPE_SID, p) { 575 proc_clear_tty(p); 576 } while_each_pid_task(session, PIDTYPE_SID, p); 577 } 578 579 /** 580 * tty_wakeup - request more data 581 * @tty: terminal 582 * 583 * Internal and external helper for wakeups of tty. This function 584 * informs the line discipline if present that the driver is ready 585 * to receive more output data. 586 */ 587 588 void tty_wakeup(struct tty_struct *tty) 589 { 590 struct tty_ldisc *ld; 591 592 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 593 ld = tty_ldisc_ref(tty); 594 if (ld) { 595 if (ld->ops->write_wakeup) 596 ld->ops->write_wakeup(tty); 597 tty_ldisc_deref(ld); 598 } 599 } 600 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 601 } 602 603 EXPORT_SYMBOL_GPL(tty_wakeup); 604 605 /** 606 * tty_signal_session_leader - sends SIGHUP to session leader 607 * @tty controlling tty 608 * @exit_session if non-zero, signal all foreground group processes 609 * 610 * Send SIGHUP and SIGCONT to the session leader and its process group. 611 * Optionally, signal all processes in the foreground process group. 612 * 613 * Returns the number of processes in the session with this tty 614 * as their controlling terminal. This value is used to drop 615 * tty references for those processes. 616 */ 617 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session) 618 { 619 struct task_struct *p; 620 int refs = 0; 621 struct pid *tty_pgrp = NULL; 622 623 read_lock(&tasklist_lock); 624 if (tty->session) { 625 do_each_pid_task(tty->session, PIDTYPE_SID, p) { 626 spin_lock_irq(&p->sighand->siglock); 627 if (p->signal->tty == tty) { 628 p->signal->tty = NULL; 629 /* We defer the dereferences outside fo 630 the tasklist lock */ 631 refs++; 632 } 633 if (!p->signal->leader) { 634 spin_unlock_irq(&p->sighand->siglock); 635 continue; 636 } 637 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p); 638 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p); 639 put_pid(p->signal->tty_old_pgrp); /* A noop */ 640 spin_lock(&tty->ctrl_lock); 641 tty_pgrp = get_pid(tty->pgrp); 642 if (tty->pgrp) 643 p->signal->tty_old_pgrp = get_pid(tty->pgrp); 644 spin_unlock(&tty->ctrl_lock); 645 spin_unlock_irq(&p->sighand->siglock); 646 } while_each_pid_task(tty->session, PIDTYPE_SID, p); 647 } 648 read_unlock(&tasklist_lock); 649 650 if (tty_pgrp) { 651 if (exit_session) 652 kill_pgrp(tty_pgrp, SIGHUP, exit_session); 653 put_pid(tty_pgrp); 654 } 655 656 return refs; 657 } 658 659 /** 660 * __tty_hangup - actual handler for hangup events 661 * @work: tty device 662 * 663 * This can be called by a "kworker" kernel thread. That is process 664 * synchronous but doesn't hold any locks, so we need to make sure we 665 * have the appropriate locks for what we're doing. 666 * 667 * The hangup event clears any pending redirections onto the hung up 668 * device. It ensures future writes will error and it does the needed 669 * line discipline hangup and signal delivery. The tty object itself 670 * remains intact. 671 * 672 * Locking: 673 * BTM 674 * redirect lock for undoing redirection 675 * file list lock for manipulating list of ttys 676 * tty_ldiscs_lock from called functions 677 * termios_rwsem resetting termios data 678 * tasklist_lock to walk task list for hangup event 679 * ->siglock to protect ->signal/->sighand 680 */ 681 static void __tty_hangup(struct tty_struct *tty, int exit_session) 682 { 683 struct file *cons_filp = NULL; 684 struct file *filp, *f = NULL; 685 struct tty_file_private *priv; 686 int closecount = 0, n; 687 int refs; 688 689 if (!tty) 690 return; 691 692 693 spin_lock(&redirect_lock); 694 if (redirect && file_tty(redirect) == tty) { 695 f = redirect; 696 redirect = NULL; 697 } 698 spin_unlock(&redirect_lock); 699 700 tty_lock(tty); 701 702 if (test_bit(TTY_HUPPED, &tty->flags)) { 703 tty_unlock(tty); 704 return; 705 } 706 707 /* inuse_filps is protected by the single tty lock, 708 this really needs to change if we want to flush the 709 workqueue with the lock held */ 710 check_tty_count(tty, "tty_hangup"); 711 712 spin_lock(&tty_files_lock); 713 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 714 list_for_each_entry(priv, &tty->tty_files, list) { 715 filp = priv->file; 716 if (filp->f_op->write == redirected_tty_write) 717 cons_filp = filp; 718 if (filp->f_op->write != tty_write) 719 continue; 720 closecount++; 721 __tty_fasync(-1, filp, 0); /* can't block */ 722 filp->f_op = &hung_up_tty_fops; 723 } 724 spin_unlock(&tty_files_lock); 725 726 refs = tty_signal_session_leader(tty, exit_session); 727 /* Account for the p->signal references we killed */ 728 while (refs--) 729 tty_kref_put(tty); 730 731 tty_ldisc_hangup(tty); 732 733 spin_lock_irq(&tty->ctrl_lock); 734 clear_bit(TTY_THROTTLED, &tty->flags); 735 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 736 put_pid(tty->session); 737 put_pid(tty->pgrp); 738 tty->session = NULL; 739 tty->pgrp = NULL; 740 tty->ctrl_status = 0; 741 spin_unlock_irq(&tty->ctrl_lock); 742 743 /* 744 * If one of the devices matches a console pointer, we 745 * cannot just call hangup() because that will cause 746 * tty->count and state->count to go out of sync. 747 * So we just call close() the right number of times. 748 */ 749 if (cons_filp) { 750 if (tty->ops->close) 751 for (n = 0; n < closecount; n++) 752 tty->ops->close(tty, cons_filp); 753 } else if (tty->ops->hangup) 754 tty->ops->hangup(tty); 755 /* 756 * We don't want to have driver/ldisc interactions beyond 757 * the ones we did here. The driver layer expects no 758 * calls after ->hangup() from the ldisc side. However we 759 * can't yet guarantee all that. 760 */ 761 set_bit(TTY_HUPPED, &tty->flags); 762 tty_unlock(tty); 763 764 if (f) 765 fput(f); 766 } 767 768 static void do_tty_hangup(struct work_struct *work) 769 { 770 struct tty_struct *tty = 771 container_of(work, struct tty_struct, hangup_work); 772 773 __tty_hangup(tty, 0); 774 } 775 776 /** 777 * tty_hangup - trigger a hangup event 778 * @tty: tty to hangup 779 * 780 * A carrier loss (virtual or otherwise) has occurred on this like 781 * schedule a hangup sequence to run after this event. 782 */ 783 784 void tty_hangup(struct tty_struct *tty) 785 { 786 tty_debug_hangup(tty, "hangup\n"); 787 schedule_work(&tty->hangup_work); 788 } 789 790 EXPORT_SYMBOL(tty_hangup); 791 792 /** 793 * tty_vhangup - process vhangup 794 * @tty: tty to hangup 795 * 796 * The user has asked via system call for the terminal to be hung up. 797 * We do this synchronously so that when the syscall returns the process 798 * is complete. That guarantee is necessary for security reasons. 799 */ 800 801 void tty_vhangup(struct tty_struct *tty) 802 { 803 tty_debug_hangup(tty, "vhangup\n"); 804 __tty_hangup(tty, 0); 805 } 806 807 EXPORT_SYMBOL(tty_vhangup); 808 809 810 /** 811 * tty_vhangup_self - process vhangup for own ctty 812 * 813 * Perform a vhangup on the current controlling tty 814 */ 815 816 void tty_vhangup_self(void) 817 { 818 struct tty_struct *tty; 819 820 tty = get_current_tty(); 821 if (tty) { 822 tty_vhangup(tty); 823 tty_kref_put(tty); 824 } 825 } 826 827 /** 828 * tty_vhangup_session - hangup session leader exit 829 * @tty: tty to hangup 830 * 831 * The session leader is exiting and hanging up its controlling terminal. 832 * Every process in the foreground process group is signalled SIGHUP. 833 * 834 * We do this synchronously so that when the syscall returns the process 835 * is complete. That guarantee is necessary for security reasons. 836 */ 837 838 static void tty_vhangup_session(struct tty_struct *tty) 839 { 840 tty_debug_hangup(tty, "session hangup\n"); 841 __tty_hangup(tty, 1); 842 } 843 844 /** 845 * tty_hung_up_p - was tty hung up 846 * @filp: file pointer of tty 847 * 848 * Return true if the tty has been subject to a vhangup or a carrier 849 * loss 850 */ 851 852 int tty_hung_up_p(struct file *filp) 853 { 854 return (filp->f_op == &hung_up_tty_fops); 855 } 856 857 EXPORT_SYMBOL(tty_hung_up_p); 858 859 /** 860 * disassociate_ctty - disconnect controlling tty 861 * @on_exit: true if exiting so need to "hang up" the session 862 * 863 * This function is typically called only by the session leader, when 864 * it wants to disassociate itself from its controlling tty. 865 * 866 * It performs the following functions: 867 * (1) Sends a SIGHUP and SIGCONT to the foreground process group 868 * (2) Clears the tty from being controlling the session 869 * (3) Clears the controlling tty for all processes in the 870 * session group. 871 * 872 * The argument on_exit is set to 1 if called when a process is 873 * exiting; it is 0 if called by the ioctl TIOCNOTTY. 874 * 875 * Locking: 876 * BTM is taken for hysterical raisins, and held when 877 * called from no_tty(). 878 * tty_mutex is taken to protect tty 879 * ->siglock is taken to protect ->signal/->sighand 880 * tasklist_lock is taken to walk process list for sessions 881 * ->siglock is taken to protect ->signal/->sighand 882 */ 883 884 void disassociate_ctty(int on_exit) 885 { 886 struct tty_struct *tty; 887 888 if (!current->signal->leader) 889 return; 890 891 tty = get_current_tty(); 892 if (tty) { 893 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) { 894 tty_vhangup_session(tty); 895 } else { 896 struct pid *tty_pgrp = tty_get_pgrp(tty); 897 if (tty_pgrp) { 898 kill_pgrp(tty_pgrp, SIGHUP, on_exit); 899 if (!on_exit) 900 kill_pgrp(tty_pgrp, SIGCONT, on_exit); 901 put_pid(tty_pgrp); 902 } 903 } 904 tty_kref_put(tty); 905 906 } else if (on_exit) { 907 struct pid *old_pgrp; 908 spin_lock_irq(¤t->sighand->siglock); 909 old_pgrp = current->signal->tty_old_pgrp; 910 current->signal->tty_old_pgrp = NULL; 911 spin_unlock_irq(¤t->sighand->siglock); 912 if (old_pgrp) { 913 kill_pgrp(old_pgrp, SIGHUP, on_exit); 914 kill_pgrp(old_pgrp, SIGCONT, on_exit); 915 put_pid(old_pgrp); 916 } 917 return; 918 } 919 920 spin_lock_irq(¤t->sighand->siglock); 921 put_pid(current->signal->tty_old_pgrp); 922 current->signal->tty_old_pgrp = NULL; 923 924 tty = tty_kref_get(current->signal->tty); 925 if (tty) { 926 unsigned long flags; 927 spin_lock_irqsave(&tty->ctrl_lock, flags); 928 put_pid(tty->session); 929 put_pid(tty->pgrp); 930 tty->session = NULL; 931 tty->pgrp = NULL; 932 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 933 tty_kref_put(tty); 934 } else 935 tty_debug_hangup(tty, "no current tty\n"); 936 937 spin_unlock_irq(¤t->sighand->siglock); 938 /* Now clear signal->tty under the lock */ 939 read_lock(&tasklist_lock); 940 session_clear_tty(task_session(current)); 941 read_unlock(&tasklist_lock); 942 } 943 944 /** 945 * 946 * no_tty - Ensure the current process does not have a controlling tty 947 */ 948 void no_tty(void) 949 { 950 /* FIXME: Review locking here. The tty_lock never covered any race 951 between a new association and proc_clear_tty but possible we need 952 to protect against this anyway */ 953 struct task_struct *tsk = current; 954 disassociate_ctty(0); 955 proc_clear_tty(tsk); 956 } 957 958 959 /** 960 * stop_tty - propagate flow control 961 * @tty: tty to stop 962 * 963 * Perform flow control to the driver. May be called 964 * on an already stopped device and will not re-call the driver 965 * method. 966 * 967 * This functionality is used by both the line disciplines for 968 * halting incoming flow and by the driver. It may therefore be 969 * called from any context, may be under the tty atomic_write_lock 970 * but not always. 971 * 972 * Locking: 973 * flow_lock 974 */ 975 976 void __stop_tty(struct tty_struct *tty) 977 { 978 if (tty->stopped) 979 return; 980 tty->stopped = 1; 981 if (tty->ops->stop) 982 tty->ops->stop(tty); 983 } 984 985 void stop_tty(struct tty_struct *tty) 986 { 987 unsigned long flags; 988 989 spin_lock_irqsave(&tty->flow_lock, flags); 990 __stop_tty(tty); 991 spin_unlock_irqrestore(&tty->flow_lock, flags); 992 } 993 EXPORT_SYMBOL(stop_tty); 994 995 /** 996 * start_tty - propagate flow control 997 * @tty: tty to start 998 * 999 * Start a tty that has been stopped if at all possible. If this 1000 * tty was previous stopped and is now being started, the driver 1001 * start method is invoked and the line discipline woken. 1002 * 1003 * Locking: 1004 * flow_lock 1005 */ 1006 1007 void __start_tty(struct tty_struct *tty) 1008 { 1009 if (!tty->stopped || tty->flow_stopped) 1010 return; 1011 tty->stopped = 0; 1012 if (tty->ops->start) 1013 tty->ops->start(tty); 1014 tty_wakeup(tty); 1015 } 1016 1017 void start_tty(struct tty_struct *tty) 1018 { 1019 unsigned long flags; 1020 1021 spin_lock_irqsave(&tty->flow_lock, flags); 1022 __start_tty(tty); 1023 spin_unlock_irqrestore(&tty->flow_lock, flags); 1024 } 1025 EXPORT_SYMBOL(start_tty); 1026 1027 static void tty_update_time(struct timespec *time) 1028 { 1029 unsigned long sec = get_seconds(); 1030 1031 /* 1032 * We only care if the two values differ in anything other than the 1033 * lower three bits (i.e every 8 seconds). If so, then we can update 1034 * the time of the tty device, otherwise it could be construded as a 1035 * security leak to let userspace know the exact timing of the tty. 1036 */ 1037 if ((sec ^ time->tv_sec) & ~7) 1038 time->tv_sec = sec; 1039 } 1040 1041 /** 1042 * tty_read - read method for tty device files 1043 * @file: pointer to tty file 1044 * @buf: user buffer 1045 * @count: size of user buffer 1046 * @ppos: unused 1047 * 1048 * Perform the read system call function on this terminal device. Checks 1049 * for hung up devices before calling the line discipline method. 1050 * 1051 * Locking: 1052 * Locks the line discipline internally while needed. Multiple 1053 * read calls may be outstanding in parallel. 1054 */ 1055 1056 static ssize_t tty_read(struct file *file, char __user *buf, size_t count, 1057 loff_t *ppos) 1058 { 1059 int i; 1060 struct inode *inode = file_inode(file); 1061 struct tty_struct *tty = file_tty(file); 1062 struct tty_ldisc *ld; 1063 1064 if (tty_paranoia_check(tty, inode, "tty_read")) 1065 return -EIO; 1066 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags))) 1067 return -EIO; 1068 1069 /* We want to wait for the line discipline to sort out in this 1070 situation */ 1071 ld = tty_ldisc_ref_wait(tty); 1072 if (ld->ops->read) 1073 i = ld->ops->read(tty, file, buf, count); 1074 else 1075 i = -EIO; 1076 tty_ldisc_deref(ld); 1077 1078 if (i > 0) 1079 tty_update_time(&inode->i_atime); 1080 1081 return i; 1082 } 1083 1084 static void tty_write_unlock(struct tty_struct *tty) 1085 { 1086 mutex_unlock(&tty->atomic_write_lock); 1087 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 1088 } 1089 1090 static int tty_write_lock(struct tty_struct *tty, int ndelay) 1091 { 1092 if (!mutex_trylock(&tty->atomic_write_lock)) { 1093 if (ndelay) 1094 return -EAGAIN; 1095 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 1096 return -ERESTARTSYS; 1097 } 1098 return 0; 1099 } 1100 1101 /* 1102 * Split writes up in sane blocksizes to avoid 1103 * denial-of-service type attacks 1104 */ 1105 static inline ssize_t do_tty_write( 1106 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 1107 struct tty_struct *tty, 1108 struct file *file, 1109 const char __user *buf, 1110 size_t count) 1111 { 1112 ssize_t ret, written = 0; 1113 unsigned int chunk; 1114 1115 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 1116 if (ret < 0) 1117 return ret; 1118 1119 /* 1120 * We chunk up writes into a temporary buffer. This 1121 * simplifies low-level drivers immensely, since they 1122 * don't have locking issues and user mode accesses. 1123 * 1124 * But if TTY_NO_WRITE_SPLIT is set, we should use a 1125 * big chunk-size.. 1126 * 1127 * The default chunk-size is 2kB, because the NTTY 1128 * layer has problems with bigger chunks. It will 1129 * claim to be able to handle more characters than 1130 * it actually does. 1131 * 1132 * FIXME: This can probably go away now except that 64K chunks 1133 * are too likely to fail unless switched to vmalloc... 1134 */ 1135 chunk = 2048; 1136 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 1137 chunk = 65536; 1138 if (count < chunk) 1139 chunk = count; 1140 1141 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 1142 if (tty->write_cnt < chunk) { 1143 unsigned char *buf_chunk; 1144 1145 if (chunk < 1024) 1146 chunk = 1024; 1147 1148 buf_chunk = kmalloc(chunk, GFP_KERNEL); 1149 if (!buf_chunk) { 1150 ret = -ENOMEM; 1151 goto out; 1152 } 1153 kfree(tty->write_buf); 1154 tty->write_cnt = chunk; 1155 tty->write_buf = buf_chunk; 1156 } 1157 1158 /* Do the write .. */ 1159 for (;;) { 1160 size_t size = count; 1161 if (size > chunk) 1162 size = chunk; 1163 ret = -EFAULT; 1164 if (copy_from_user(tty->write_buf, buf, size)) 1165 break; 1166 ret = write(tty, file, tty->write_buf, size); 1167 if (ret <= 0) 1168 break; 1169 written += ret; 1170 buf += ret; 1171 count -= ret; 1172 if (!count) 1173 break; 1174 ret = -ERESTARTSYS; 1175 if (signal_pending(current)) 1176 break; 1177 cond_resched(); 1178 } 1179 if (written) { 1180 tty_update_time(&file_inode(file)->i_mtime); 1181 ret = written; 1182 } 1183 out: 1184 tty_write_unlock(tty); 1185 return ret; 1186 } 1187 1188 /** 1189 * tty_write_message - write a message to a certain tty, not just the console. 1190 * @tty: the destination tty_struct 1191 * @msg: the message to write 1192 * 1193 * This is used for messages that need to be redirected to a specific tty. 1194 * We don't put it into the syslog queue right now maybe in the future if 1195 * really needed. 1196 * 1197 * We must still hold the BTM and test the CLOSING flag for the moment. 1198 */ 1199 1200 void tty_write_message(struct tty_struct *tty, char *msg) 1201 { 1202 if (tty) { 1203 mutex_lock(&tty->atomic_write_lock); 1204 tty_lock(tty); 1205 if (tty->ops->write && tty->count > 0) 1206 tty->ops->write(tty, msg, strlen(msg)); 1207 tty_unlock(tty); 1208 tty_write_unlock(tty); 1209 } 1210 return; 1211 } 1212 1213 1214 /** 1215 * tty_write - write method for tty device file 1216 * @file: tty file pointer 1217 * @buf: user data to write 1218 * @count: bytes to write 1219 * @ppos: unused 1220 * 1221 * Write data to a tty device via the line discipline. 1222 * 1223 * Locking: 1224 * Locks the line discipline as required 1225 * Writes to the tty driver are serialized by the atomic_write_lock 1226 * and are then processed in chunks to the device. The line discipline 1227 * write method will not be invoked in parallel for each device. 1228 */ 1229 1230 static ssize_t tty_write(struct file *file, const char __user *buf, 1231 size_t count, loff_t *ppos) 1232 { 1233 struct tty_struct *tty = file_tty(file); 1234 struct tty_ldisc *ld; 1235 ssize_t ret; 1236 1237 if (tty_paranoia_check(tty, file_inode(file), "tty_write")) 1238 return -EIO; 1239 if (!tty || !tty->ops->write || 1240 (test_bit(TTY_IO_ERROR, &tty->flags))) 1241 return -EIO; 1242 /* Short term debug to catch buggy drivers */ 1243 if (tty->ops->write_room == NULL) 1244 tty_err(tty, "missing write_room method\n"); 1245 ld = tty_ldisc_ref_wait(tty); 1246 if (!ld->ops->write) 1247 ret = -EIO; 1248 else 1249 ret = do_tty_write(ld->ops->write, tty, file, buf, count); 1250 tty_ldisc_deref(ld); 1251 return ret; 1252 } 1253 1254 ssize_t redirected_tty_write(struct file *file, const char __user *buf, 1255 size_t count, loff_t *ppos) 1256 { 1257 struct file *p = NULL; 1258 1259 spin_lock(&redirect_lock); 1260 if (redirect) 1261 p = get_file(redirect); 1262 spin_unlock(&redirect_lock); 1263 1264 if (p) { 1265 ssize_t res; 1266 res = vfs_write(p, buf, count, &p->f_pos); 1267 fput(p); 1268 return res; 1269 } 1270 return tty_write(file, buf, count, ppos); 1271 } 1272 1273 /** 1274 * tty_send_xchar - send priority character 1275 * 1276 * Send a high priority character to the tty even if stopped 1277 * 1278 * Locking: none for xchar method, write ordering for write method. 1279 */ 1280 1281 int tty_send_xchar(struct tty_struct *tty, char ch) 1282 { 1283 int was_stopped = tty->stopped; 1284 1285 if (tty->ops->send_xchar) { 1286 down_read(&tty->termios_rwsem); 1287 tty->ops->send_xchar(tty, ch); 1288 up_read(&tty->termios_rwsem); 1289 return 0; 1290 } 1291 1292 if (tty_write_lock(tty, 0) < 0) 1293 return -ERESTARTSYS; 1294 1295 down_read(&tty->termios_rwsem); 1296 if (was_stopped) 1297 start_tty(tty); 1298 tty->ops->write(tty, &ch, 1); 1299 if (was_stopped) 1300 stop_tty(tty); 1301 up_read(&tty->termios_rwsem); 1302 tty_write_unlock(tty); 1303 return 0; 1304 } 1305 1306 static char ptychar[] = "pqrstuvwxyzabcde"; 1307 1308 /** 1309 * pty_line_name - generate name for a pty 1310 * @driver: the tty driver in use 1311 * @index: the minor number 1312 * @p: output buffer of at least 6 bytes 1313 * 1314 * Generate a name from a driver reference and write it to the output 1315 * buffer. 1316 * 1317 * Locking: None 1318 */ 1319 static void pty_line_name(struct tty_driver *driver, int index, char *p) 1320 { 1321 int i = index + driver->name_base; 1322 /* ->name is initialized to "ttyp", but "tty" is expected */ 1323 sprintf(p, "%s%c%x", 1324 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1325 ptychar[i >> 4 & 0xf], i & 0xf); 1326 } 1327 1328 /** 1329 * tty_line_name - generate name for a tty 1330 * @driver: the tty driver in use 1331 * @index: the minor number 1332 * @p: output buffer of at least 7 bytes 1333 * 1334 * Generate a name from a driver reference and write it to the output 1335 * buffer. 1336 * 1337 * Locking: None 1338 */ 1339 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p) 1340 { 1341 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE) 1342 return sprintf(p, "%s", driver->name); 1343 else 1344 return sprintf(p, "%s%d", driver->name, 1345 index + driver->name_base); 1346 } 1347 1348 /** 1349 * tty_driver_lookup_tty() - find an existing tty, if any 1350 * @driver: the driver for the tty 1351 * @idx: the minor number 1352 * 1353 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the 1354 * driver lookup() method returns an error. 1355 * 1356 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref. 1357 */ 1358 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1359 struct inode *inode, int idx) 1360 { 1361 struct tty_struct *tty; 1362 1363 if (driver->ops->lookup) 1364 tty = driver->ops->lookup(driver, inode, idx); 1365 else 1366 tty = driver->ttys[idx]; 1367 1368 if (!IS_ERR(tty)) 1369 tty_kref_get(tty); 1370 return tty; 1371 } 1372 1373 /** 1374 * tty_init_termios - helper for termios setup 1375 * @tty: the tty to set up 1376 * 1377 * Initialise the termios structures for this tty. Thus runs under 1378 * the tty_mutex currently so we can be relaxed about ordering. 1379 */ 1380 1381 int tty_init_termios(struct tty_struct *tty) 1382 { 1383 struct ktermios *tp; 1384 int idx = tty->index; 1385 1386 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1387 tty->termios = tty->driver->init_termios; 1388 else { 1389 /* Check for lazy saved data */ 1390 tp = tty->driver->termios[idx]; 1391 if (tp != NULL) 1392 tty->termios = *tp; 1393 else 1394 tty->termios = tty->driver->init_termios; 1395 } 1396 /* Compatibility until drivers always set this */ 1397 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios); 1398 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios); 1399 return 0; 1400 } 1401 EXPORT_SYMBOL_GPL(tty_init_termios); 1402 1403 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1404 { 1405 int ret = tty_init_termios(tty); 1406 if (ret) 1407 return ret; 1408 1409 tty_driver_kref_get(driver); 1410 tty->count++; 1411 driver->ttys[tty->index] = tty; 1412 return 0; 1413 } 1414 EXPORT_SYMBOL_GPL(tty_standard_install); 1415 1416 /** 1417 * tty_driver_install_tty() - install a tty entry in the driver 1418 * @driver: the driver for the tty 1419 * @tty: the tty 1420 * 1421 * Install a tty object into the driver tables. The tty->index field 1422 * will be set by the time this is called. This method is responsible 1423 * for ensuring any need additional structures are allocated and 1424 * configured. 1425 * 1426 * Locking: tty_mutex for now 1427 */ 1428 static int tty_driver_install_tty(struct tty_driver *driver, 1429 struct tty_struct *tty) 1430 { 1431 return driver->ops->install ? driver->ops->install(driver, tty) : 1432 tty_standard_install(driver, tty); 1433 } 1434 1435 /** 1436 * tty_driver_remove_tty() - remove a tty from the driver tables 1437 * @driver: the driver for the tty 1438 * @idx: the minor number 1439 * 1440 * Remvoe a tty object from the driver tables. The tty->index field 1441 * will be set by the time this is called. 1442 * 1443 * Locking: tty_mutex for now 1444 */ 1445 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1446 { 1447 if (driver->ops->remove) 1448 driver->ops->remove(driver, tty); 1449 else 1450 driver->ttys[tty->index] = NULL; 1451 } 1452 1453 /* 1454 * tty_reopen() - fast re-open of an open tty 1455 * @tty - the tty to open 1456 * 1457 * Return 0 on success, -errno on error. 1458 * Re-opens on master ptys are not allowed and return -EIO. 1459 * 1460 * Locking: Caller must hold tty_lock 1461 */ 1462 static int tty_reopen(struct tty_struct *tty) 1463 { 1464 struct tty_driver *driver = tty->driver; 1465 1466 if (driver->type == TTY_DRIVER_TYPE_PTY && 1467 driver->subtype == PTY_TYPE_MASTER) 1468 return -EIO; 1469 1470 if (!tty->count) 1471 return -EAGAIN; 1472 1473 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN)) 1474 return -EBUSY; 1475 1476 tty->count++; 1477 1478 WARN_ON(!tty->ldisc); 1479 1480 return 0; 1481 } 1482 1483 /** 1484 * tty_init_dev - initialise a tty device 1485 * @driver: tty driver we are opening a device on 1486 * @idx: device index 1487 * @ret_tty: returned tty structure 1488 * 1489 * Prepare a tty device. This may not be a "new" clean device but 1490 * could also be an active device. The pty drivers require special 1491 * handling because of this. 1492 * 1493 * Locking: 1494 * The function is called under the tty_mutex, which 1495 * protects us from the tty struct or driver itself going away. 1496 * 1497 * On exit the tty device has the line discipline attached and 1498 * a reference count of 1. If a pair was created for pty/tty use 1499 * and the other was a pty master then it too has a reference count of 1. 1500 * 1501 * WSH 06/09/97: Rewritten to remove races and properly clean up after a 1502 * failed open. The new code protects the open with a mutex, so it's 1503 * really quite straightforward. The mutex locking can probably be 1504 * relaxed for the (most common) case of reopening a tty. 1505 */ 1506 1507 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1508 { 1509 struct tty_struct *tty; 1510 int retval; 1511 1512 /* 1513 * First time open is complex, especially for PTY devices. 1514 * This code guarantees that either everything succeeds and the 1515 * TTY is ready for operation, or else the table slots are vacated 1516 * and the allocated memory released. (Except that the termios 1517 * and locked termios may be retained.) 1518 */ 1519 1520 if (!try_module_get(driver->owner)) 1521 return ERR_PTR(-ENODEV); 1522 1523 tty = alloc_tty_struct(driver, idx); 1524 if (!tty) { 1525 retval = -ENOMEM; 1526 goto err_module_put; 1527 } 1528 1529 tty_lock(tty); 1530 retval = tty_driver_install_tty(driver, tty); 1531 if (retval < 0) 1532 goto err_deinit_tty; 1533 1534 if (!tty->port) 1535 tty->port = driver->ports[idx]; 1536 1537 WARN_RATELIMIT(!tty->port, 1538 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n", 1539 __func__, tty->driver->name); 1540 1541 tty->port->itty = tty; 1542 1543 /* 1544 * Structures all installed ... call the ldisc open routines. 1545 * If we fail here just call release_tty to clean up. No need 1546 * to decrement the use counts, as release_tty doesn't care. 1547 */ 1548 retval = tty_ldisc_setup(tty, tty->link); 1549 if (retval) 1550 goto err_release_tty; 1551 /* Return the tty locked so that it cannot vanish under the caller */ 1552 return tty; 1553 1554 err_deinit_tty: 1555 tty_unlock(tty); 1556 deinitialize_tty_struct(tty); 1557 free_tty_struct(tty); 1558 err_module_put: 1559 module_put(driver->owner); 1560 return ERR_PTR(retval); 1561 1562 /* call the tty release_tty routine to clean out this slot */ 1563 err_release_tty: 1564 tty_unlock(tty); 1565 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n", 1566 retval, idx); 1567 release_tty(tty, idx); 1568 return ERR_PTR(retval); 1569 } 1570 1571 void tty_free_termios(struct tty_struct *tty) 1572 { 1573 struct ktermios *tp; 1574 int idx = tty->index; 1575 1576 /* If the port is going to reset then it has no termios to save */ 1577 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1578 return; 1579 1580 /* Stash the termios data */ 1581 tp = tty->driver->termios[idx]; 1582 if (tp == NULL) { 1583 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL); 1584 if (tp == NULL) 1585 return; 1586 tty->driver->termios[idx] = tp; 1587 } 1588 *tp = tty->termios; 1589 } 1590 EXPORT_SYMBOL(tty_free_termios); 1591 1592 /** 1593 * tty_flush_works - flush all works of a tty/pty pair 1594 * @tty: tty device to flush works for (or either end of a pty pair) 1595 * 1596 * Sync flush all works belonging to @tty (and the 'other' tty). 1597 */ 1598 static void tty_flush_works(struct tty_struct *tty) 1599 { 1600 flush_work(&tty->SAK_work); 1601 flush_work(&tty->hangup_work); 1602 if (tty->link) { 1603 flush_work(&tty->link->SAK_work); 1604 flush_work(&tty->link->hangup_work); 1605 } 1606 } 1607 1608 /** 1609 * release_one_tty - release tty structure memory 1610 * @kref: kref of tty we are obliterating 1611 * 1612 * Releases memory associated with a tty structure, and clears out the 1613 * driver table slots. This function is called when a device is no longer 1614 * in use. It also gets called when setup of a device fails. 1615 * 1616 * Locking: 1617 * takes the file list lock internally when working on the list 1618 * of ttys that the driver keeps. 1619 * 1620 * This method gets called from a work queue so that the driver private 1621 * cleanup ops can sleep (needed for USB at least) 1622 */ 1623 static void release_one_tty(struct work_struct *work) 1624 { 1625 struct tty_struct *tty = 1626 container_of(work, struct tty_struct, hangup_work); 1627 struct tty_driver *driver = tty->driver; 1628 struct module *owner = driver->owner; 1629 1630 if (tty->ops->cleanup) 1631 tty->ops->cleanup(tty); 1632 1633 tty->magic = 0; 1634 tty_driver_kref_put(driver); 1635 module_put(owner); 1636 1637 spin_lock(&tty_files_lock); 1638 list_del_init(&tty->tty_files); 1639 spin_unlock(&tty_files_lock); 1640 1641 put_pid(tty->pgrp); 1642 put_pid(tty->session); 1643 free_tty_struct(tty); 1644 } 1645 1646 static void queue_release_one_tty(struct kref *kref) 1647 { 1648 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1649 1650 /* The hangup queue is now free so we can reuse it rather than 1651 waste a chunk of memory for each port */ 1652 INIT_WORK(&tty->hangup_work, release_one_tty); 1653 schedule_work(&tty->hangup_work); 1654 } 1655 1656 /** 1657 * tty_kref_put - release a tty kref 1658 * @tty: tty device 1659 * 1660 * Release a reference to a tty device and if need be let the kref 1661 * layer destruct the object for us 1662 */ 1663 1664 void tty_kref_put(struct tty_struct *tty) 1665 { 1666 if (tty) 1667 kref_put(&tty->kref, queue_release_one_tty); 1668 } 1669 EXPORT_SYMBOL(tty_kref_put); 1670 1671 /** 1672 * release_tty - release tty structure memory 1673 * 1674 * Release both @tty and a possible linked partner (think pty pair), 1675 * and decrement the refcount of the backing module. 1676 * 1677 * Locking: 1678 * tty_mutex 1679 * takes the file list lock internally when working on the list 1680 * of ttys that the driver keeps. 1681 * 1682 */ 1683 static void release_tty(struct tty_struct *tty, int idx) 1684 { 1685 /* This should always be true but check for the moment */ 1686 WARN_ON(tty->index != idx); 1687 WARN_ON(!mutex_is_locked(&tty_mutex)); 1688 if (tty->ops->shutdown) 1689 tty->ops->shutdown(tty); 1690 tty_free_termios(tty); 1691 tty_driver_remove_tty(tty->driver, tty); 1692 tty->port->itty = NULL; 1693 if (tty->link) 1694 tty->link->port->itty = NULL; 1695 tty_buffer_cancel_work(tty->port); 1696 1697 tty_kref_put(tty->link); 1698 tty_kref_put(tty); 1699 } 1700 1701 /** 1702 * tty_release_checks - check a tty before real release 1703 * @tty: tty to check 1704 * @o_tty: link of @tty (if any) 1705 * @idx: index of the tty 1706 * 1707 * Performs some paranoid checking before true release of the @tty. 1708 * This is a no-op unless TTY_PARANOIA_CHECK is defined. 1709 */ 1710 static int tty_release_checks(struct tty_struct *tty, int idx) 1711 { 1712 #ifdef TTY_PARANOIA_CHECK 1713 if (idx < 0 || idx >= tty->driver->num) { 1714 tty_debug(tty, "bad idx %d\n", idx); 1715 return -1; 1716 } 1717 1718 /* not much to check for devpts */ 1719 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1720 return 0; 1721 1722 if (tty != tty->driver->ttys[idx]) { 1723 tty_debug(tty, "bad driver table[%d] = %p\n", 1724 idx, tty->driver->ttys[idx]); 1725 return -1; 1726 } 1727 if (tty->driver->other) { 1728 struct tty_struct *o_tty = tty->link; 1729 1730 if (o_tty != tty->driver->other->ttys[idx]) { 1731 tty_debug(tty, "bad other table[%d] = %p\n", 1732 idx, tty->driver->other->ttys[idx]); 1733 return -1; 1734 } 1735 if (o_tty->link != tty) { 1736 tty_debug(tty, "bad link = %p\n", o_tty->link); 1737 return -1; 1738 } 1739 } 1740 #endif 1741 return 0; 1742 } 1743 1744 /** 1745 * tty_release - vfs callback for close 1746 * @inode: inode of tty 1747 * @filp: file pointer for handle to tty 1748 * 1749 * Called the last time each file handle is closed that references 1750 * this tty. There may however be several such references. 1751 * 1752 * Locking: 1753 * Takes bkl. See tty_release_dev 1754 * 1755 * Even releasing the tty structures is a tricky business.. We have 1756 * to be very careful that the structures are all released at the 1757 * same time, as interrupts might otherwise get the wrong pointers. 1758 * 1759 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1760 * lead to double frees or releasing memory still in use. 1761 */ 1762 1763 int tty_release(struct inode *inode, struct file *filp) 1764 { 1765 struct tty_struct *tty = file_tty(filp); 1766 struct tty_struct *o_tty = NULL; 1767 int do_sleep, final; 1768 int idx; 1769 long timeout = 0; 1770 int once = 1; 1771 1772 if (tty_paranoia_check(tty, inode, __func__)) 1773 return 0; 1774 1775 tty_lock(tty); 1776 check_tty_count(tty, __func__); 1777 1778 __tty_fasync(-1, filp, 0); 1779 1780 idx = tty->index; 1781 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1782 tty->driver->subtype == PTY_TYPE_MASTER) 1783 o_tty = tty->link; 1784 1785 if (tty_release_checks(tty, idx)) { 1786 tty_unlock(tty); 1787 return 0; 1788 } 1789 1790 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count); 1791 1792 if (tty->ops->close) 1793 tty->ops->close(tty, filp); 1794 1795 /* If tty is pty master, lock the slave pty (stable lock order) */ 1796 tty_lock_slave(o_tty); 1797 1798 /* 1799 * Sanity check: if tty->count is going to zero, there shouldn't be 1800 * any waiters on tty->read_wait or tty->write_wait. We test the 1801 * wait queues and kick everyone out _before_ actually starting to 1802 * close. This ensures that we won't block while releasing the tty 1803 * structure. 1804 * 1805 * The test for the o_tty closing is necessary, since the master and 1806 * slave sides may close in any order. If the slave side closes out 1807 * first, its count will be one, since the master side holds an open. 1808 * Thus this test wouldn't be triggered at the time the slave closed, 1809 * so we do it now. 1810 */ 1811 while (1) { 1812 do_sleep = 0; 1813 1814 if (tty->count <= 1) { 1815 if (waitqueue_active(&tty->read_wait)) { 1816 wake_up_poll(&tty->read_wait, POLLIN); 1817 do_sleep++; 1818 } 1819 if (waitqueue_active(&tty->write_wait)) { 1820 wake_up_poll(&tty->write_wait, POLLOUT); 1821 do_sleep++; 1822 } 1823 } 1824 if (o_tty && o_tty->count <= 1) { 1825 if (waitqueue_active(&o_tty->read_wait)) { 1826 wake_up_poll(&o_tty->read_wait, POLLIN); 1827 do_sleep++; 1828 } 1829 if (waitqueue_active(&o_tty->write_wait)) { 1830 wake_up_poll(&o_tty->write_wait, POLLOUT); 1831 do_sleep++; 1832 } 1833 } 1834 if (!do_sleep) 1835 break; 1836 1837 if (once) { 1838 once = 0; 1839 tty_warn(tty, "read/write wait queue active!\n"); 1840 } 1841 schedule_timeout_killable(timeout); 1842 if (timeout < 120 * HZ) 1843 timeout = 2 * timeout + 1; 1844 else 1845 timeout = MAX_SCHEDULE_TIMEOUT; 1846 } 1847 1848 if (o_tty) { 1849 if (--o_tty->count < 0) { 1850 tty_warn(tty, "bad slave count (%d)\n", o_tty->count); 1851 o_tty->count = 0; 1852 } 1853 } 1854 if (--tty->count < 0) { 1855 tty_warn(tty, "bad tty->count (%d)\n", tty->count); 1856 tty->count = 0; 1857 } 1858 1859 /* 1860 * We've decremented tty->count, so we need to remove this file 1861 * descriptor off the tty->tty_files list; this serves two 1862 * purposes: 1863 * - check_tty_count sees the correct number of file descriptors 1864 * associated with this tty. 1865 * - do_tty_hangup no longer sees this file descriptor as 1866 * something that needs to be handled for hangups. 1867 */ 1868 tty_del_file(filp); 1869 1870 /* 1871 * Perform some housekeeping before deciding whether to return. 1872 * 1873 * If _either_ side is closing, make sure there aren't any 1874 * processes that still think tty or o_tty is their controlling 1875 * tty. 1876 */ 1877 if (!tty->count) { 1878 read_lock(&tasklist_lock); 1879 session_clear_tty(tty->session); 1880 if (o_tty) 1881 session_clear_tty(o_tty->session); 1882 read_unlock(&tasklist_lock); 1883 } 1884 1885 /* check whether both sides are closing ... */ 1886 final = !tty->count && !(o_tty && o_tty->count); 1887 1888 tty_unlock_slave(o_tty); 1889 tty_unlock(tty); 1890 1891 /* At this point, the tty->count == 0 should ensure a dead tty 1892 cannot be re-opened by a racing opener */ 1893 1894 if (!final) 1895 return 0; 1896 1897 tty_debug_hangup(tty, "final close\n"); 1898 /* 1899 * Ask the line discipline code to release its structures 1900 */ 1901 tty_ldisc_release(tty); 1902 1903 /* Wait for pending work before tty destruction commmences */ 1904 tty_flush_works(tty); 1905 1906 tty_debug_hangup(tty, "freeing structure\n"); 1907 /* 1908 * The release_tty function takes care of the details of clearing 1909 * the slots and preserving the termios structure. The tty_unlock_pair 1910 * should be safe as we keep a kref while the tty is locked (so the 1911 * unlock never unlocks a freed tty). 1912 */ 1913 mutex_lock(&tty_mutex); 1914 release_tty(tty, idx); 1915 mutex_unlock(&tty_mutex); 1916 1917 return 0; 1918 } 1919 1920 /** 1921 * tty_open_current_tty - get locked tty of current task 1922 * @device: device number 1923 * @filp: file pointer to tty 1924 * @return: locked tty of the current task iff @device is /dev/tty 1925 * 1926 * Performs a re-open of the current task's controlling tty. 1927 * 1928 * We cannot return driver and index like for the other nodes because 1929 * devpts will not work then. It expects inodes to be from devpts FS. 1930 */ 1931 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1932 { 1933 struct tty_struct *tty; 1934 int retval; 1935 1936 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1937 return NULL; 1938 1939 tty = get_current_tty(); 1940 if (!tty) 1941 return ERR_PTR(-ENXIO); 1942 1943 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1944 /* noctty = 1; */ 1945 tty_lock(tty); 1946 tty_kref_put(tty); /* safe to drop the kref now */ 1947 1948 retval = tty_reopen(tty); 1949 if (retval < 0) { 1950 tty_unlock(tty); 1951 tty = ERR_PTR(retval); 1952 } 1953 return tty; 1954 } 1955 1956 /** 1957 * tty_lookup_driver - lookup a tty driver for a given device file 1958 * @device: device number 1959 * @filp: file pointer to tty 1960 * @noctty: set if the device should not become a controlling tty 1961 * @index: index for the device in the @return driver 1962 * @return: driver for this inode (with increased refcount) 1963 * 1964 * If @return is not erroneous, the caller is responsible to decrement the 1965 * refcount by tty_driver_kref_put. 1966 * 1967 * Locking: tty_mutex protects get_tty_driver 1968 */ 1969 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1970 int *noctty, int *index) 1971 { 1972 struct tty_driver *driver; 1973 1974 switch (device) { 1975 #ifdef CONFIG_VT 1976 case MKDEV(TTY_MAJOR, 0): { 1977 extern struct tty_driver *console_driver; 1978 driver = tty_driver_kref_get(console_driver); 1979 *index = fg_console; 1980 *noctty = 1; 1981 break; 1982 } 1983 #endif 1984 case MKDEV(TTYAUX_MAJOR, 1): { 1985 struct tty_driver *console_driver = console_device(index); 1986 if (console_driver) { 1987 driver = tty_driver_kref_get(console_driver); 1988 if (driver) { 1989 /* Don't let /dev/console block */ 1990 filp->f_flags |= O_NONBLOCK; 1991 *noctty = 1; 1992 break; 1993 } 1994 } 1995 return ERR_PTR(-ENODEV); 1996 } 1997 default: 1998 driver = get_tty_driver(device, index); 1999 if (!driver) 2000 return ERR_PTR(-ENODEV); 2001 break; 2002 } 2003 return driver; 2004 } 2005 2006 /** 2007 * tty_open - open a tty device 2008 * @inode: inode of device file 2009 * @filp: file pointer to tty 2010 * 2011 * tty_open and tty_release keep up the tty count that contains the 2012 * number of opens done on a tty. We cannot use the inode-count, as 2013 * different inodes might point to the same tty. 2014 * 2015 * Open-counting is needed for pty masters, as well as for keeping 2016 * track of serial lines: DTR is dropped when the last close happens. 2017 * (This is not done solely through tty->count, now. - Ted 1/27/92) 2018 * 2019 * The termios state of a pty is reset on first open so that 2020 * settings don't persist across reuse. 2021 * 2022 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev. 2023 * tty->count should protect the rest. 2024 * ->siglock protects ->signal/->sighand 2025 * 2026 * Note: the tty_unlock/lock cases without a ref are only safe due to 2027 * tty_mutex 2028 */ 2029 2030 static int tty_open(struct inode *inode, struct file *filp) 2031 { 2032 struct tty_struct *tty; 2033 int noctty, retval; 2034 struct tty_driver *driver = NULL; 2035 int index; 2036 dev_t device = inode->i_rdev; 2037 unsigned saved_flags = filp->f_flags; 2038 2039 nonseekable_open(inode, filp); 2040 2041 retry_open: 2042 retval = tty_alloc_file(filp); 2043 if (retval) 2044 return -ENOMEM; 2045 2046 noctty = filp->f_flags & O_NOCTTY; 2047 index = -1; 2048 retval = 0; 2049 2050 tty = tty_open_current_tty(device, filp); 2051 if (!tty) { 2052 mutex_lock(&tty_mutex); 2053 driver = tty_lookup_driver(device, filp, &noctty, &index); 2054 if (IS_ERR(driver)) { 2055 retval = PTR_ERR(driver); 2056 goto err_unlock; 2057 } 2058 2059 /* check whether we're reopening an existing tty */ 2060 tty = tty_driver_lookup_tty(driver, inode, index); 2061 if (IS_ERR(tty)) { 2062 retval = PTR_ERR(tty); 2063 goto err_unlock; 2064 } 2065 2066 if (tty) { 2067 mutex_unlock(&tty_mutex); 2068 retval = tty_lock_interruptible(tty); 2069 if (retval) { 2070 if (retval == -EINTR) 2071 retval = -ERESTARTSYS; 2072 goto err_unref; 2073 } 2074 /* safe to drop the kref from tty_driver_lookup_tty() */ 2075 tty_kref_put(tty); 2076 retval = tty_reopen(tty); 2077 if (retval < 0) { 2078 tty_unlock(tty); 2079 tty = ERR_PTR(retval); 2080 } 2081 } else { /* Returns with the tty_lock held for now */ 2082 tty = tty_init_dev(driver, index); 2083 mutex_unlock(&tty_mutex); 2084 } 2085 2086 tty_driver_kref_put(driver); 2087 } 2088 2089 if (IS_ERR(tty)) { 2090 retval = PTR_ERR(tty); 2091 if (retval != -EAGAIN || signal_pending(current)) 2092 goto err_file; 2093 tty_free_file(filp); 2094 schedule(); 2095 goto retry_open; 2096 } 2097 2098 tty_add_file(tty, filp); 2099 2100 check_tty_count(tty, __func__); 2101 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2102 tty->driver->subtype == PTY_TYPE_MASTER) 2103 noctty = 1; 2104 2105 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count); 2106 2107 if (tty->ops->open) 2108 retval = tty->ops->open(tty, filp); 2109 else 2110 retval = -ENODEV; 2111 filp->f_flags = saved_flags; 2112 2113 if (retval) { 2114 tty_debug_hangup(tty, "open error %d, releasing\n", retval); 2115 2116 tty_unlock(tty); /* need to call tty_release without BTM */ 2117 tty_release(inode, filp); 2118 if (retval != -ERESTARTSYS) 2119 return retval; 2120 2121 if (signal_pending(current)) 2122 return retval; 2123 2124 schedule(); 2125 /* 2126 * Need to reset f_op in case a hangup happened. 2127 */ 2128 if (tty_hung_up_p(filp)) 2129 filp->f_op = &tty_fops; 2130 goto retry_open; 2131 } 2132 clear_bit(TTY_HUPPED, &tty->flags); 2133 2134 2135 read_lock(&tasklist_lock); 2136 spin_lock_irq(¤t->sighand->siglock); 2137 if (!noctty && 2138 current->signal->leader && 2139 !current->signal->tty && 2140 tty->session == NULL) { 2141 /* 2142 * Don't let a process that only has write access to the tty 2143 * obtain the privileges associated with having a tty as 2144 * controlling terminal (being able to reopen it with full 2145 * access through /dev/tty, being able to perform pushback). 2146 * Many distributions set the group of all ttys to "tty" and 2147 * grant write-only access to all terminals for setgid tty 2148 * binaries, which should not imply full privileges on all ttys. 2149 * 2150 * This could theoretically break old code that performs open() 2151 * on a write-only file descriptor. In that case, it might be 2152 * necessary to also permit this if 2153 * inode_permission(inode, MAY_READ) == 0. 2154 */ 2155 if (filp->f_mode & FMODE_READ) 2156 __proc_set_tty(tty); 2157 } 2158 spin_unlock_irq(¤t->sighand->siglock); 2159 read_unlock(&tasklist_lock); 2160 tty_unlock(tty); 2161 return 0; 2162 err_unlock: 2163 mutex_unlock(&tty_mutex); 2164 err_unref: 2165 /* after locks to avoid deadlock */ 2166 if (!IS_ERR_OR_NULL(driver)) 2167 tty_driver_kref_put(driver); 2168 err_file: 2169 tty_free_file(filp); 2170 return retval; 2171 } 2172 2173 2174 2175 /** 2176 * tty_poll - check tty status 2177 * @filp: file being polled 2178 * @wait: poll wait structures to update 2179 * 2180 * Call the line discipline polling method to obtain the poll 2181 * status of the device. 2182 * 2183 * Locking: locks called line discipline but ldisc poll method 2184 * may be re-entered freely by other callers. 2185 */ 2186 2187 static unsigned int tty_poll(struct file *filp, poll_table *wait) 2188 { 2189 struct tty_struct *tty = file_tty(filp); 2190 struct tty_ldisc *ld; 2191 int ret = 0; 2192 2193 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll")) 2194 return 0; 2195 2196 ld = tty_ldisc_ref_wait(tty); 2197 if (ld->ops->poll) 2198 ret = ld->ops->poll(tty, filp, wait); 2199 tty_ldisc_deref(ld); 2200 return ret; 2201 } 2202 2203 static int __tty_fasync(int fd, struct file *filp, int on) 2204 { 2205 struct tty_struct *tty = file_tty(filp); 2206 struct tty_ldisc *ldisc; 2207 unsigned long flags; 2208 int retval = 0; 2209 2210 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync")) 2211 goto out; 2212 2213 retval = fasync_helper(fd, filp, on, &tty->fasync); 2214 if (retval <= 0) 2215 goto out; 2216 2217 ldisc = tty_ldisc_ref(tty); 2218 if (ldisc) { 2219 if (ldisc->ops->fasync) 2220 ldisc->ops->fasync(tty, on); 2221 tty_ldisc_deref(ldisc); 2222 } 2223 2224 if (on) { 2225 enum pid_type type; 2226 struct pid *pid; 2227 2228 spin_lock_irqsave(&tty->ctrl_lock, flags); 2229 if (tty->pgrp) { 2230 pid = tty->pgrp; 2231 type = PIDTYPE_PGID; 2232 } else { 2233 pid = task_pid(current); 2234 type = PIDTYPE_PID; 2235 } 2236 get_pid(pid); 2237 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2238 __f_setown(filp, pid, type, 0); 2239 put_pid(pid); 2240 retval = 0; 2241 } 2242 out: 2243 return retval; 2244 } 2245 2246 static int tty_fasync(int fd, struct file *filp, int on) 2247 { 2248 struct tty_struct *tty = file_tty(filp); 2249 int retval; 2250 2251 tty_lock(tty); 2252 retval = __tty_fasync(fd, filp, on); 2253 tty_unlock(tty); 2254 2255 return retval; 2256 } 2257 2258 /** 2259 * tiocsti - fake input character 2260 * @tty: tty to fake input into 2261 * @p: pointer to character 2262 * 2263 * Fake input to a tty device. Does the necessary locking and 2264 * input management. 2265 * 2266 * FIXME: does not honour flow control ?? 2267 * 2268 * Locking: 2269 * Called functions take tty_ldiscs_lock 2270 * current->signal->tty check is safe without locks 2271 * 2272 * FIXME: may race normal receive processing 2273 */ 2274 2275 static int tiocsti(struct tty_struct *tty, char __user *p) 2276 { 2277 char ch, mbz = 0; 2278 struct tty_ldisc *ld; 2279 2280 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2281 return -EPERM; 2282 if (get_user(ch, p)) 2283 return -EFAULT; 2284 tty_audit_tiocsti(tty, ch); 2285 ld = tty_ldisc_ref_wait(tty); 2286 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2287 tty_ldisc_deref(ld); 2288 return 0; 2289 } 2290 2291 /** 2292 * tiocgwinsz - implement window query ioctl 2293 * @tty; tty 2294 * @arg: user buffer for result 2295 * 2296 * Copies the kernel idea of the window size into the user buffer. 2297 * 2298 * Locking: tty->winsize_mutex is taken to ensure the winsize data 2299 * is consistent. 2300 */ 2301 2302 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2303 { 2304 int err; 2305 2306 mutex_lock(&tty->winsize_mutex); 2307 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2308 mutex_unlock(&tty->winsize_mutex); 2309 2310 return err ? -EFAULT: 0; 2311 } 2312 2313 /** 2314 * tty_do_resize - resize event 2315 * @tty: tty being resized 2316 * @rows: rows (character) 2317 * @cols: cols (character) 2318 * 2319 * Update the termios variables and send the necessary signals to 2320 * peform a terminal resize correctly 2321 */ 2322 2323 int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2324 { 2325 struct pid *pgrp; 2326 2327 /* Lock the tty */ 2328 mutex_lock(&tty->winsize_mutex); 2329 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2330 goto done; 2331 2332 /* Signal the foreground process group */ 2333 pgrp = tty_get_pgrp(tty); 2334 if (pgrp) 2335 kill_pgrp(pgrp, SIGWINCH, 1); 2336 put_pid(pgrp); 2337 2338 tty->winsize = *ws; 2339 done: 2340 mutex_unlock(&tty->winsize_mutex); 2341 return 0; 2342 } 2343 EXPORT_SYMBOL(tty_do_resize); 2344 2345 /** 2346 * tiocswinsz - implement window size set ioctl 2347 * @tty; tty side of tty 2348 * @arg: user buffer for result 2349 * 2350 * Copies the user idea of the window size to the kernel. Traditionally 2351 * this is just advisory information but for the Linux console it 2352 * actually has driver level meaning and triggers a VC resize. 2353 * 2354 * Locking: 2355 * Driver dependent. The default do_resize method takes the 2356 * tty termios mutex and ctrl_lock. The console takes its own lock 2357 * then calls into the default method. 2358 */ 2359 2360 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2361 { 2362 struct winsize tmp_ws; 2363 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2364 return -EFAULT; 2365 2366 if (tty->ops->resize) 2367 return tty->ops->resize(tty, &tmp_ws); 2368 else 2369 return tty_do_resize(tty, &tmp_ws); 2370 } 2371 2372 /** 2373 * tioccons - allow admin to move logical console 2374 * @file: the file to become console 2375 * 2376 * Allow the administrator to move the redirected console device 2377 * 2378 * Locking: uses redirect_lock to guard the redirect information 2379 */ 2380 2381 static int tioccons(struct file *file) 2382 { 2383 if (!capable(CAP_SYS_ADMIN)) 2384 return -EPERM; 2385 if (file->f_op->write == redirected_tty_write) { 2386 struct file *f; 2387 spin_lock(&redirect_lock); 2388 f = redirect; 2389 redirect = NULL; 2390 spin_unlock(&redirect_lock); 2391 if (f) 2392 fput(f); 2393 return 0; 2394 } 2395 spin_lock(&redirect_lock); 2396 if (redirect) { 2397 spin_unlock(&redirect_lock); 2398 return -EBUSY; 2399 } 2400 redirect = get_file(file); 2401 spin_unlock(&redirect_lock); 2402 return 0; 2403 } 2404 2405 /** 2406 * fionbio - non blocking ioctl 2407 * @file: file to set blocking value 2408 * @p: user parameter 2409 * 2410 * Historical tty interfaces had a blocking control ioctl before 2411 * the generic functionality existed. This piece of history is preserved 2412 * in the expected tty API of posix OS's. 2413 * 2414 * Locking: none, the open file handle ensures it won't go away. 2415 */ 2416 2417 static int fionbio(struct file *file, int __user *p) 2418 { 2419 int nonblock; 2420 2421 if (get_user(nonblock, p)) 2422 return -EFAULT; 2423 2424 spin_lock(&file->f_lock); 2425 if (nonblock) 2426 file->f_flags |= O_NONBLOCK; 2427 else 2428 file->f_flags &= ~O_NONBLOCK; 2429 spin_unlock(&file->f_lock); 2430 return 0; 2431 } 2432 2433 /** 2434 * tiocsctty - set controlling tty 2435 * @tty: tty structure 2436 * @arg: user argument 2437 * 2438 * This ioctl is used to manage job control. It permits a session 2439 * leader to set this tty as the controlling tty for the session. 2440 * 2441 * Locking: 2442 * Takes tty_lock() to serialize proc_set_tty() for this tty 2443 * Takes tasklist_lock internally to walk sessions 2444 * Takes ->siglock() when updating signal->tty 2445 */ 2446 2447 static int tiocsctty(struct tty_struct *tty, struct file *file, int arg) 2448 { 2449 int ret = 0; 2450 2451 tty_lock(tty); 2452 read_lock(&tasklist_lock); 2453 2454 if (current->signal->leader && (task_session(current) == tty->session)) 2455 goto unlock; 2456 2457 /* 2458 * The process must be a session leader and 2459 * not have a controlling tty already. 2460 */ 2461 if (!current->signal->leader || current->signal->tty) { 2462 ret = -EPERM; 2463 goto unlock; 2464 } 2465 2466 if (tty->session) { 2467 /* 2468 * This tty is already the controlling 2469 * tty for another session group! 2470 */ 2471 if (arg == 1 && capable(CAP_SYS_ADMIN)) { 2472 /* 2473 * Steal it away 2474 */ 2475 session_clear_tty(tty->session); 2476 } else { 2477 ret = -EPERM; 2478 goto unlock; 2479 } 2480 } 2481 2482 /* See the comment in tty_open(). */ 2483 if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) { 2484 ret = -EPERM; 2485 goto unlock; 2486 } 2487 2488 proc_set_tty(tty); 2489 unlock: 2490 read_unlock(&tasklist_lock); 2491 tty_unlock(tty); 2492 return ret; 2493 } 2494 2495 /** 2496 * tty_get_pgrp - return a ref counted pgrp pid 2497 * @tty: tty to read 2498 * 2499 * Returns a refcounted instance of the pid struct for the process 2500 * group controlling the tty. 2501 */ 2502 2503 struct pid *tty_get_pgrp(struct tty_struct *tty) 2504 { 2505 unsigned long flags; 2506 struct pid *pgrp; 2507 2508 spin_lock_irqsave(&tty->ctrl_lock, flags); 2509 pgrp = get_pid(tty->pgrp); 2510 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2511 2512 return pgrp; 2513 } 2514 EXPORT_SYMBOL_GPL(tty_get_pgrp); 2515 2516 /* 2517 * This checks not only the pgrp, but falls back on the pid if no 2518 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 2519 * without this... 2520 * 2521 * The caller must hold rcu lock or the tasklist lock. 2522 */ 2523 static struct pid *session_of_pgrp(struct pid *pgrp) 2524 { 2525 struct task_struct *p; 2526 struct pid *sid = NULL; 2527 2528 p = pid_task(pgrp, PIDTYPE_PGID); 2529 if (p == NULL) 2530 p = pid_task(pgrp, PIDTYPE_PID); 2531 if (p != NULL) 2532 sid = task_session(p); 2533 2534 return sid; 2535 } 2536 2537 /** 2538 * tiocgpgrp - get process group 2539 * @tty: tty passed by user 2540 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2541 * @p: returned pid 2542 * 2543 * Obtain the process group of the tty. If there is no process group 2544 * return an error. 2545 * 2546 * Locking: none. Reference to current->signal->tty is safe. 2547 */ 2548 2549 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2550 { 2551 struct pid *pid; 2552 int ret; 2553 /* 2554 * (tty == real_tty) is a cheap way of 2555 * testing if the tty is NOT a master pty. 2556 */ 2557 if (tty == real_tty && current->signal->tty != real_tty) 2558 return -ENOTTY; 2559 pid = tty_get_pgrp(real_tty); 2560 ret = put_user(pid_vnr(pid), p); 2561 put_pid(pid); 2562 return ret; 2563 } 2564 2565 /** 2566 * tiocspgrp - attempt to set process group 2567 * @tty: tty passed by user 2568 * @real_tty: tty side device matching tty passed by user 2569 * @p: pid pointer 2570 * 2571 * Set the process group of the tty to the session passed. Only 2572 * permitted where the tty session is our session. 2573 * 2574 * Locking: RCU, ctrl lock 2575 */ 2576 2577 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2578 { 2579 struct pid *pgrp; 2580 pid_t pgrp_nr; 2581 int retval = tty_check_change(real_tty); 2582 2583 if (retval == -EIO) 2584 return -ENOTTY; 2585 if (retval) 2586 return retval; 2587 if (!current->signal->tty || 2588 (current->signal->tty != real_tty) || 2589 (real_tty->session != task_session(current))) 2590 return -ENOTTY; 2591 if (get_user(pgrp_nr, p)) 2592 return -EFAULT; 2593 if (pgrp_nr < 0) 2594 return -EINVAL; 2595 rcu_read_lock(); 2596 pgrp = find_vpid(pgrp_nr); 2597 retval = -ESRCH; 2598 if (!pgrp) 2599 goto out_unlock; 2600 retval = -EPERM; 2601 if (session_of_pgrp(pgrp) != task_session(current)) 2602 goto out_unlock; 2603 retval = 0; 2604 spin_lock_irq(&tty->ctrl_lock); 2605 put_pid(real_tty->pgrp); 2606 real_tty->pgrp = get_pid(pgrp); 2607 spin_unlock_irq(&tty->ctrl_lock); 2608 out_unlock: 2609 rcu_read_unlock(); 2610 return retval; 2611 } 2612 2613 /** 2614 * tiocgsid - get session id 2615 * @tty: tty passed by user 2616 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2617 * @p: pointer to returned session id 2618 * 2619 * Obtain the session id of the tty. If there is no session 2620 * return an error. 2621 * 2622 * Locking: none. Reference to current->signal->tty is safe. 2623 */ 2624 2625 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2626 { 2627 /* 2628 * (tty == real_tty) is a cheap way of 2629 * testing if the tty is NOT a master pty. 2630 */ 2631 if (tty == real_tty && current->signal->tty != real_tty) 2632 return -ENOTTY; 2633 if (!real_tty->session) 2634 return -ENOTTY; 2635 return put_user(pid_vnr(real_tty->session), p); 2636 } 2637 2638 /** 2639 * tiocsetd - set line discipline 2640 * @tty: tty device 2641 * @p: pointer to user data 2642 * 2643 * Set the line discipline according to user request. 2644 * 2645 * Locking: see tty_set_ldisc, this function is just a helper 2646 */ 2647 2648 static int tiocsetd(struct tty_struct *tty, int __user *p) 2649 { 2650 int ldisc; 2651 int ret; 2652 2653 if (get_user(ldisc, p)) 2654 return -EFAULT; 2655 2656 ret = tty_set_ldisc(tty, ldisc); 2657 2658 return ret; 2659 } 2660 2661 /** 2662 * tiocgetd - get line discipline 2663 * @tty: tty device 2664 * @p: pointer to user data 2665 * 2666 * Retrieves the line discipline id directly from the ldisc. 2667 * 2668 * Locking: waits for ldisc reference (in case the line discipline 2669 * is changing or the tty is being hungup) 2670 */ 2671 2672 static int tiocgetd(struct tty_struct *tty, int __user *p) 2673 { 2674 struct tty_ldisc *ld; 2675 int ret; 2676 2677 ld = tty_ldisc_ref_wait(tty); 2678 ret = put_user(ld->ops->num, p); 2679 tty_ldisc_deref(ld); 2680 return ret; 2681 } 2682 2683 /** 2684 * send_break - performed time break 2685 * @tty: device to break on 2686 * @duration: timeout in mS 2687 * 2688 * Perform a timed break on hardware that lacks its own driver level 2689 * timed break functionality. 2690 * 2691 * Locking: 2692 * atomic_write_lock serializes 2693 * 2694 */ 2695 2696 static int send_break(struct tty_struct *tty, unsigned int duration) 2697 { 2698 int retval; 2699 2700 if (tty->ops->break_ctl == NULL) 2701 return 0; 2702 2703 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2704 retval = tty->ops->break_ctl(tty, duration); 2705 else { 2706 /* Do the work ourselves */ 2707 if (tty_write_lock(tty, 0) < 0) 2708 return -EINTR; 2709 retval = tty->ops->break_ctl(tty, -1); 2710 if (retval) 2711 goto out; 2712 if (!signal_pending(current)) 2713 msleep_interruptible(duration); 2714 retval = tty->ops->break_ctl(tty, 0); 2715 out: 2716 tty_write_unlock(tty); 2717 if (signal_pending(current)) 2718 retval = -EINTR; 2719 } 2720 return retval; 2721 } 2722 2723 /** 2724 * tty_tiocmget - get modem status 2725 * @tty: tty device 2726 * @file: user file pointer 2727 * @p: pointer to result 2728 * 2729 * Obtain the modem status bits from the tty driver if the feature 2730 * is supported. Return -EINVAL if it is not available. 2731 * 2732 * Locking: none (up to the driver) 2733 */ 2734 2735 static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2736 { 2737 int retval = -EINVAL; 2738 2739 if (tty->ops->tiocmget) { 2740 retval = tty->ops->tiocmget(tty); 2741 2742 if (retval >= 0) 2743 retval = put_user(retval, p); 2744 } 2745 return retval; 2746 } 2747 2748 /** 2749 * tty_tiocmset - set modem status 2750 * @tty: tty device 2751 * @cmd: command - clear bits, set bits or set all 2752 * @p: pointer to desired bits 2753 * 2754 * Set the modem status bits from the tty driver if the feature 2755 * is supported. Return -EINVAL if it is not available. 2756 * 2757 * Locking: none (up to the driver) 2758 */ 2759 2760 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2761 unsigned __user *p) 2762 { 2763 int retval; 2764 unsigned int set, clear, val; 2765 2766 if (tty->ops->tiocmset == NULL) 2767 return -EINVAL; 2768 2769 retval = get_user(val, p); 2770 if (retval) 2771 return retval; 2772 set = clear = 0; 2773 switch (cmd) { 2774 case TIOCMBIS: 2775 set = val; 2776 break; 2777 case TIOCMBIC: 2778 clear = val; 2779 break; 2780 case TIOCMSET: 2781 set = val; 2782 clear = ~val; 2783 break; 2784 } 2785 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2786 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2787 return tty->ops->tiocmset(tty, set, clear); 2788 } 2789 2790 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2791 { 2792 int retval = -EINVAL; 2793 struct serial_icounter_struct icount; 2794 memset(&icount, 0, sizeof(icount)); 2795 if (tty->ops->get_icount) 2796 retval = tty->ops->get_icount(tty, &icount); 2797 if (retval != 0) 2798 return retval; 2799 if (copy_to_user(arg, &icount, sizeof(icount))) 2800 return -EFAULT; 2801 return 0; 2802 } 2803 2804 static void tty_warn_deprecated_flags(struct serial_struct __user *ss) 2805 { 2806 static DEFINE_RATELIMIT_STATE(depr_flags, 2807 DEFAULT_RATELIMIT_INTERVAL, 2808 DEFAULT_RATELIMIT_BURST); 2809 char comm[TASK_COMM_LEN]; 2810 int flags; 2811 2812 if (get_user(flags, &ss->flags)) 2813 return; 2814 2815 flags &= ASYNC_DEPRECATED; 2816 2817 if (flags && __ratelimit(&depr_flags)) 2818 pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n", 2819 __func__, get_task_comm(comm, current), flags); 2820 } 2821 2822 /* 2823 * if pty, return the slave side (real_tty) 2824 * otherwise, return self 2825 */ 2826 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2827 { 2828 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2829 tty->driver->subtype == PTY_TYPE_MASTER) 2830 tty = tty->link; 2831 return tty; 2832 } 2833 2834 /* 2835 * Split this up, as gcc can choke on it otherwise.. 2836 */ 2837 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2838 { 2839 struct tty_struct *tty = file_tty(file); 2840 struct tty_struct *real_tty; 2841 void __user *p = (void __user *)arg; 2842 int retval; 2843 struct tty_ldisc *ld; 2844 2845 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2846 return -EINVAL; 2847 2848 real_tty = tty_pair_get_tty(tty); 2849 2850 /* 2851 * Factor out some common prep work 2852 */ 2853 switch (cmd) { 2854 case TIOCSETD: 2855 case TIOCSBRK: 2856 case TIOCCBRK: 2857 case TCSBRK: 2858 case TCSBRKP: 2859 retval = tty_check_change(tty); 2860 if (retval) 2861 return retval; 2862 if (cmd != TIOCCBRK) { 2863 tty_wait_until_sent(tty, 0); 2864 if (signal_pending(current)) 2865 return -EINTR; 2866 } 2867 break; 2868 } 2869 2870 /* 2871 * Now do the stuff. 2872 */ 2873 switch (cmd) { 2874 case TIOCSTI: 2875 return tiocsti(tty, p); 2876 case TIOCGWINSZ: 2877 return tiocgwinsz(real_tty, p); 2878 case TIOCSWINSZ: 2879 return tiocswinsz(real_tty, p); 2880 case TIOCCONS: 2881 return real_tty != tty ? -EINVAL : tioccons(file); 2882 case FIONBIO: 2883 return fionbio(file, p); 2884 case TIOCEXCL: 2885 set_bit(TTY_EXCLUSIVE, &tty->flags); 2886 return 0; 2887 case TIOCNXCL: 2888 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2889 return 0; 2890 case TIOCGEXCL: 2891 { 2892 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags); 2893 return put_user(excl, (int __user *)p); 2894 } 2895 case TIOCNOTTY: 2896 if (current->signal->tty != tty) 2897 return -ENOTTY; 2898 no_tty(); 2899 return 0; 2900 case TIOCSCTTY: 2901 return tiocsctty(real_tty, file, arg); 2902 case TIOCGPGRP: 2903 return tiocgpgrp(tty, real_tty, p); 2904 case TIOCSPGRP: 2905 return tiocspgrp(tty, real_tty, p); 2906 case TIOCGSID: 2907 return tiocgsid(tty, real_tty, p); 2908 case TIOCGETD: 2909 return tiocgetd(tty, p); 2910 case TIOCSETD: 2911 return tiocsetd(tty, p); 2912 case TIOCVHANGUP: 2913 if (!capable(CAP_SYS_ADMIN)) 2914 return -EPERM; 2915 tty_vhangup(tty); 2916 return 0; 2917 case TIOCGDEV: 2918 { 2919 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2920 return put_user(ret, (unsigned int __user *)p); 2921 } 2922 /* 2923 * Break handling 2924 */ 2925 case TIOCSBRK: /* Turn break on, unconditionally */ 2926 if (tty->ops->break_ctl) 2927 return tty->ops->break_ctl(tty, -1); 2928 return 0; 2929 case TIOCCBRK: /* Turn break off, unconditionally */ 2930 if (tty->ops->break_ctl) 2931 return tty->ops->break_ctl(tty, 0); 2932 return 0; 2933 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2934 /* non-zero arg means wait for all output data 2935 * to be sent (performed above) but don't send break. 2936 * This is used by the tcdrain() termios function. 2937 */ 2938 if (!arg) 2939 return send_break(tty, 250); 2940 return 0; 2941 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2942 return send_break(tty, arg ? arg*100 : 250); 2943 2944 case TIOCMGET: 2945 return tty_tiocmget(tty, p); 2946 case TIOCMSET: 2947 case TIOCMBIC: 2948 case TIOCMBIS: 2949 return tty_tiocmset(tty, cmd, p); 2950 case TIOCGICOUNT: 2951 retval = tty_tiocgicount(tty, p); 2952 /* For the moment allow fall through to the old method */ 2953 if (retval != -EINVAL) 2954 return retval; 2955 break; 2956 case TCFLSH: 2957 switch (arg) { 2958 case TCIFLUSH: 2959 case TCIOFLUSH: 2960 /* flush tty buffer and allow ldisc to process ioctl */ 2961 tty_buffer_flush(tty, NULL); 2962 break; 2963 } 2964 break; 2965 case TIOCSSERIAL: 2966 tty_warn_deprecated_flags(p); 2967 break; 2968 } 2969 if (tty->ops->ioctl) { 2970 retval = tty->ops->ioctl(tty, cmd, arg); 2971 if (retval != -ENOIOCTLCMD) 2972 return retval; 2973 } 2974 ld = tty_ldisc_ref_wait(tty); 2975 retval = -EINVAL; 2976 if (ld->ops->ioctl) { 2977 retval = ld->ops->ioctl(tty, file, cmd, arg); 2978 if (retval == -ENOIOCTLCMD) 2979 retval = -ENOTTY; 2980 } 2981 tty_ldisc_deref(ld); 2982 return retval; 2983 } 2984 2985 #ifdef CONFIG_COMPAT 2986 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 2987 unsigned long arg) 2988 { 2989 struct tty_struct *tty = file_tty(file); 2990 struct tty_ldisc *ld; 2991 int retval = -ENOIOCTLCMD; 2992 2993 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2994 return -EINVAL; 2995 2996 if (tty->ops->compat_ioctl) { 2997 retval = tty->ops->compat_ioctl(tty, cmd, arg); 2998 if (retval != -ENOIOCTLCMD) 2999 return retval; 3000 } 3001 3002 ld = tty_ldisc_ref_wait(tty); 3003 if (ld->ops->compat_ioctl) 3004 retval = ld->ops->compat_ioctl(tty, file, cmd, arg); 3005 else 3006 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg); 3007 tty_ldisc_deref(ld); 3008 3009 return retval; 3010 } 3011 #endif 3012 3013 static int this_tty(const void *t, struct file *file, unsigned fd) 3014 { 3015 if (likely(file->f_op->read != tty_read)) 3016 return 0; 3017 return file_tty(file) != t ? 0 : fd + 1; 3018 } 3019 3020 /* 3021 * This implements the "Secure Attention Key" --- the idea is to 3022 * prevent trojan horses by killing all processes associated with this 3023 * tty when the user hits the "Secure Attention Key". Required for 3024 * super-paranoid applications --- see the Orange Book for more details. 3025 * 3026 * This code could be nicer; ideally it should send a HUP, wait a few 3027 * seconds, then send a INT, and then a KILL signal. But you then 3028 * have to coordinate with the init process, since all processes associated 3029 * with the current tty must be dead before the new getty is allowed 3030 * to spawn. 3031 * 3032 * Now, if it would be correct ;-/ The current code has a nasty hole - 3033 * it doesn't catch files in flight. We may send the descriptor to ourselves 3034 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 3035 * 3036 * Nasty bug: do_SAK is being called in interrupt context. This can 3037 * deadlock. We punt it up to process context. AKPM - 16Mar2001 3038 */ 3039 void __do_SAK(struct tty_struct *tty) 3040 { 3041 #ifdef TTY_SOFT_SAK 3042 tty_hangup(tty); 3043 #else 3044 struct task_struct *g, *p; 3045 struct pid *session; 3046 int i; 3047 3048 if (!tty) 3049 return; 3050 session = tty->session; 3051 3052 tty_ldisc_flush(tty); 3053 3054 tty_driver_flush_buffer(tty); 3055 3056 read_lock(&tasklist_lock); 3057 /* Kill the entire session */ 3058 do_each_pid_task(session, PIDTYPE_SID, p) { 3059 tty_notice(tty, "SAK: killed process %d (%s): by session\n", 3060 task_pid_nr(p), p->comm); 3061 send_sig(SIGKILL, p, 1); 3062 } while_each_pid_task(session, PIDTYPE_SID, p); 3063 3064 /* Now kill any processes that happen to have the tty open */ 3065 do_each_thread(g, p) { 3066 if (p->signal->tty == tty) { 3067 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n", 3068 task_pid_nr(p), p->comm); 3069 send_sig(SIGKILL, p, 1); 3070 continue; 3071 } 3072 task_lock(p); 3073 i = iterate_fd(p->files, 0, this_tty, tty); 3074 if (i != 0) { 3075 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n", 3076 task_pid_nr(p), p->comm, i - 1); 3077 force_sig(SIGKILL, p); 3078 } 3079 task_unlock(p); 3080 } while_each_thread(g, p); 3081 read_unlock(&tasklist_lock); 3082 #endif 3083 } 3084 3085 static void do_SAK_work(struct work_struct *work) 3086 { 3087 struct tty_struct *tty = 3088 container_of(work, struct tty_struct, SAK_work); 3089 __do_SAK(tty); 3090 } 3091 3092 /* 3093 * The tq handling here is a little racy - tty->SAK_work may already be queued. 3094 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 3095 * the values which we write to it will be identical to the values which it 3096 * already has. --akpm 3097 */ 3098 void do_SAK(struct tty_struct *tty) 3099 { 3100 if (!tty) 3101 return; 3102 schedule_work(&tty->SAK_work); 3103 } 3104 3105 EXPORT_SYMBOL(do_SAK); 3106 3107 static int dev_match_devt(struct device *dev, const void *data) 3108 { 3109 const dev_t *devt = data; 3110 return dev->devt == *devt; 3111 } 3112 3113 /* Must put_device() after it's unused! */ 3114 static struct device *tty_get_device(struct tty_struct *tty) 3115 { 3116 dev_t devt = tty_devnum(tty); 3117 return class_find_device(tty_class, NULL, &devt, dev_match_devt); 3118 } 3119 3120 3121 /** 3122 * alloc_tty_struct 3123 * 3124 * This subroutine allocates and initializes a tty structure. 3125 * 3126 * Locking: none - tty in question is not exposed at this point 3127 */ 3128 3129 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx) 3130 { 3131 struct tty_struct *tty; 3132 3133 tty = kzalloc(sizeof(*tty), GFP_KERNEL); 3134 if (!tty) 3135 return NULL; 3136 3137 kref_init(&tty->kref); 3138 tty->magic = TTY_MAGIC; 3139 tty_ldisc_init(tty); 3140 tty->session = NULL; 3141 tty->pgrp = NULL; 3142 mutex_init(&tty->legacy_mutex); 3143 mutex_init(&tty->throttle_mutex); 3144 init_rwsem(&tty->termios_rwsem); 3145 mutex_init(&tty->winsize_mutex); 3146 init_ldsem(&tty->ldisc_sem); 3147 init_waitqueue_head(&tty->write_wait); 3148 init_waitqueue_head(&tty->read_wait); 3149 INIT_WORK(&tty->hangup_work, do_tty_hangup); 3150 mutex_init(&tty->atomic_write_lock); 3151 spin_lock_init(&tty->ctrl_lock); 3152 spin_lock_init(&tty->flow_lock); 3153 INIT_LIST_HEAD(&tty->tty_files); 3154 INIT_WORK(&tty->SAK_work, do_SAK_work); 3155 3156 tty->driver = driver; 3157 tty->ops = driver->ops; 3158 tty->index = idx; 3159 tty_line_name(driver, idx, tty->name); 3160 tty->dev = tty_get_device(tty); 3161 3162 return tty; 3163 } 3164 3165 /** 3166 * deinitialize_tty_struct 3167 * @tty: tty to deinitialize 3168 * 3169 * This subroutine deinitializes a tty structure that has been newly 3170 * allocated but tty_release cannot be called on that yet. 3171 * 3172 * Locking: none - tty in question must not be exposed at this point 3173 */ 3174 void deinitialize_tty_struct(struct tty_struct *tty) 3175 { 3176 tty_ldisc_deinit(tty); 3177 } 3178 3179 /** 3180 * tty_put_char - write one character to a tty 3181 * @tty: tty 3182 * @ch: character 3183 * 3184 * Write one byte to the tty using the provided put_char method 3185 * if present. Returns the number of characters successfully output. 3186 * 3187 * Note: the specific put_char operation in the driver layer may go 3188 * away soon. Don't call it directly, use this method 3189 */ 3190 3191 int tty_put_char(struct tty_struct *tty, unsigned char ch) 3192 { 3193 if (tty->ops->put_char) 3194 return tty->ops->put_char(tty, ch); 3195 return tty->ops->write(tty, &ch, 1); 3196 } 3197 EXPORT_SYMBOL_GPL(tty_put_char); 3198 3199 struct class *tty_class; 3200 3201 static int tty_cdev_add(struct tty_driver *driver, dev_t dev, 3202 unsigned int index, unsigned int count) 3203 { 3204 int err; 3205 3206 /* init here, since reused cdevs cause crashes */ 3207 driver->cdevs[index] = cdev_alloc(); 3208 if (!driver->cdevs[index]) 3209 return -ENOMEM; 3210 driver->cdevs[index]->ops = &tty_fops; 3211 driver->cdevs[index]->owner = driver->owner; 3212 err = cdev_add(driver->cdevs[index], dev, count); 3213 if (err) 3214 kobject_put(&driver->cdevs[index]->kobj); 3215 return err; 3216 } 3217 3218 /** 3219 * tty_register_device - register a tty device 3220 * @driver: the tty driver that describes the tty device 3221 * @index: the index in the tty driver for this tty device 3222 * @device: a struct device that is associated with this tty device. 3223 * This field is optional, if there is no known struct device 3224 * for this tty device it can be set to NULL safely. 3225 * 3226 * Returns a pointer to the struct device for this tty device 3227 * (or ERR_PTR(-EFOO) on error). 3228 * 3229 * This call is required to be made to register an individual tty device 3230 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3231 * that bit is not set, this function should not be called by a tty 3232 * driver. 3233 * 3234 * Locking: ?? 3235 */ 3236 3237 struct device *tty_register_device(struct tty_driver *driver, unsigned index, 3238 struct device *device) 3239 { 3240 return tty_register_device_attr(driver, index, device, NULL, NULL); 3241 } 3242 EXPORT_SYMBOL(tty_register_device); 3243 3244 static void tty_device_create_release(struct device *dev) 3245 { 3246 dev_dbg(dev, "releasing...\n"); 3247 kfree(dev); 3248 } 3249 3250 /** 3251 * tty_register_device_attr - register a tty device 3252 * @driver: the tty driver that describes the tty device 3253 * @index: the index in the tty driver for this tty device 3254 * @device: a struct device that is associated with this tty device. 3255 * This field is optional, if there is no known struct device 3256 * for this tty device it can be set to NULL safely. 3257 * @drvdata: Driver data to be set to device. 3258 * @attr_grp: Attribute group to be set on device. 3259 * 3260 * Returns a pointer to the struct device for this tty device 3261 * (or ERR_PTR(-EFOO) on error). 3262 * 3263 * This call is required to be made to register an individual tty device 3264 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3265 * that bit is not set, this function should not be called by a tty 3266 * driver. 3267 * 3268 * Locking: ?? 3269 */ 3270 struct device *tty_register_device_attr(struct tty_driver *driver, 3271 unsigned index, struct device *device, 3272 void *drvdata, 3273 const struct attribute_group **attr_grp) 3274 { 3275 char name[64]; 3276 dev_t devt = MKDEV(driver->major, driver->minor_start) + index; 3277 struct device *dev = NULL; 3278 int retval = -ENODEV; 3279 bool cdev = false; 3280 3281 if (index >= driver->num) { 3282 pr_err("%s: Attempt to register invalid tty line number (%d)\n", 3283 driver->name, index); 3284 return ERR_PTR(-EINVAL); 3285 } 3286 3287 if (driver->type == TTY_DRIVER_TYPE_PTY) 3288 pty_line_name(driver, index, name); 3289 else 3290 tty_line_name(driver, index, name); 3291 3292 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3293 retval = tty_cdev_add(driver, devt, index, 1); 3294 if (retval) 3295 goto error; 3296 cdev = true; 3297 } 3298 3299 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3300 if (!dev) { 3301 retval = -ENOMEM; 3302 goto error; 3303 } 3304 3305 dev->devt = devt; 3306 dev->class = tty_class; 3307 dev->parent = device; 3308 dev->release = tty_device_create_release; 3309 dev_set_name(dev, "%s", name); 3310 dev->groups = attr_grp; 3311 dev_set_drvdata(dev, drvdata); 3312 3313 retval = device_register(dev); 3314 if (retval) 3315 goto error; 3316 3317 return dev; 3318 3319 error: 3320 put_device(dev); 3321 if (cdev) { 3322 cdev_del(driver->cdevs[index]); 3323 driver->cdevs[index] = NULL; 3324 } 3325 return ERR_PTR(retval); 3326 } 3327 EXPORT_SYMBOL_GPL(tty_register_device_attr); 3328 3329 /** 3330 * tty_unregister_device - unregister a tty device 3331 * @driver: the tty driver that describes the tty device 3332 * @index: the index in the tty driver for this tty device 3333 * 3334 * If a tty device is registered with a call to tty_register_device() then 3335 * this function must be called when the tty device is gone. 3336 * 3337 * Locking: ?? 3338 */ 3339 3340 void tty_unregister_device(struct tty_driver *driver, unsigned index) 3341 { 3342 device_destroy(tty_class, 3343 MKDEV(driver->major, driver->minor_start) + index); 3344 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3345 cdev_del(driver->cdevs[index]); 3346 driver->cdevs[index] = NULL; 3347 } 3348 } 3349 EXPORT_SYMBOL(tty_unregister_device); 3350 3351 /** 3352 * __tty_alloc_driver -- allocate tty driver 3353 * @lines: count of lines this driver can handle at most 3354 * @owner: module which is repsonsible for this driver 3355 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags 3356 * 3357 * This should not be called directly, some of the provided macros should be 3358 * used instead. Use IS_ERR and friends on @retval. 3359 */ 3360 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner, 3361 unsigned long flags) 3362 { 3363 struct tty_driver *driver; 3364 unsigned int cdevs = 1; 3365 int err; 3366 3367 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1)) 3368 return ERR_PTR(-EINVAL); 3369 3370 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL); 3371 if (!driver) 3372 return ERR_PTR(-ENOMEM); 3373 3374 kref_init(&driver->kref); 3375 driver->magic = TTY_DRIVER_MAGIC; 3376 driver->num = lines; 3377 driver->owner = owner; 3378 driver->flags = flags; 3379 3380 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) { 3381 driver->ttys = kcalloc(lines, sizeof(*driver->ttys), 3382 GFP_KERNEL); 3383 driver->termios = kcalloc(lines, sizeof(*driver->termios), 3384 GFP_KERNEL); 3385 if (!driver->ttys || !driver->termios) { 3386 err = -ENOMEM; 3387 goto err_free_all; 3388 } 3389 } 3390 3391 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3392 driver->ports = kcalloc(lines, sizeof(*driver->ports), 3393 GFP_KERNEL); 3394 if (!driver->ports) { 3395 err = -ENOMEM; 3396 goto err_free_all; 3397 } 3398 cdevs = lines; 3399 } 3400 3401 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL); 3402 if (!driver->cdevs) { 3403 err = -ENOMEM; 3404 goto err_free_all; 3405 } 3406 3407 return driver; 3408 err_free_all: 3409 kfree(driver->ports); 3410 kfree(driver->ttys); 3411 kfree(driver->termios); 3412 kfree(driver->cdevs); 3413 kfree(driver); 3414 return ERR_PTR(err); 3415 } 3416 EXPORT_SYMBOL(__tty_alloc_driver); 3417 3418 static void destruct_tty_driver(struct kref *kref) 3419 { 3420 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3421 int i; 3422 struct ktermios *tp; 3423 3424 if (driver->flags & TTY_DRIVER_INSTALLED) { 3425 /* 3426 * Free the termios and termios_locked structures because 3427 * we don't want to get memory leaks when modular tty 3428 * drivers are removed from the kernel. 3429 */ 3430 for (i = 0; i < driver->num; i++) { 3431 tp = driver->termios[i]; 3432 if (tp) { 3433 driver->termios[i] = NULL; 3434 kfree(tp); 3435 } 3436 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3437 tty_unregister_device(driver, i); 3438 } 3439 proc_tty_unregister_driver(driver); 3440 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) 3441 cdev_del(driver->cdevs[0]); 3442 } 3443 kfree(driver->cdevs); 3444 kfree(driver->ports); 3445 kfree(driver->termios); 3446 kfree(driver->ttys); 3447 kfree(driver); 3448 } 3449 3450 void tty_driver_kref_put(struct tty_driver *driver) 3451 { 3452 kref_put(&driver->kref, destruct_tty_driver); 3453 } 3454 EXPORT_SYMBOL(tty_driver_kref_put); 3455 3456 void tty_set_operations(struct tty_driver *driver, 3457 const struct tty_operations *op) 3458 { 3459 driver->ops = op; 3460 }; 3461 EXPORT_SYMBOL(tty_set_operations); 3462 3463 void put_tty_driver(struct tty_driver *d) 3464 { 3465 tty_driver_kref_put(d); 3466 } 3467 EXPORT_SYMBOL(put_tty_driver); 3468 3469 /* 3470 * Called by a tty driver to register itself. 3471 */ 3472 int tty_register_driver(struct tty_driver *driver) 3473 { 3474 int error; 3475 int i; 3476 dev_t dev; 3477 struct device *d; 3478 3479 if (!driver->major) { 3480 error = alloc_chrdev_region(&dev, driver->minor_start, 3481 driver->num, driver->name); 3482 if (!error) { 3483 driver->major = MAJOR(dev); 3484 driver->minor_start = MINOR(dev); 3485 } 3486 } else { 3487 dev = MKDEV(driver->major, driver->minor_start); 3488 error = register_chrdev_region(dev, driver->num, driver->name); 3489 } 3490 if (error < 0) 3491 goto err; 3492 3493 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) { 3494 error = tty_cdev_add(driver, dev, 0, driver->num); 3495 if (error) 3496 goto err_unreg_char; 3497 } 3498 3499 mutex_lock(&tty_mutex); 3500 list_add(&driver->tty_drivers, &tty_drivers); 3501 mutex_unlock(&tty_mutex); 3502 3503 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3504 for (i = 0; i < driver->num; i++) { 3505 d = tty_register_device(driver, i, NULL); 3506 if (IS_ERR(d)) { 3507 error = PTR_ERR(d); 3508 goto err_unreg_devs; 3509 } 3510 } 3511 } 3512 proc_tty_register_driver(driver); 3513 driver->flags |= TTY_DRIVER_INSTALLED; 3514 return 0; 3515 3516 err_unreg_devs: 3517 for (i--; i >= 0; i--) 3518 tty_unregister_device(driver, i); 3519 3520 mutex_lock(&tty_mutex); 3521 list_del(&driver->tty_drivers); 3522 mutex_unlock(&tty_mutex); 3523 3524 err_unreg_char: 3525 unregister_chrdev_region(dev, driver->num); 3526 err: 3527 return error; 3528 } 3529 EXPORT_SYMBOL(tty_register_driver); 3530 3531 /* 3532 * Called by a tty driver to unregister itself. 3533 */ 3534 int tty_unregister_driver(struct tty_driver *driver) 3535 { 3536 #if 0 3537 /* FIXME */ 3538 if (driver->refcount) 3539 return -EBUSY; 3540 #endif 3541 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3542 driver->num); 3543 mutex_lock(&tty_mutex); 3544 list_del(&driver->tty_drivers); 3545 mutex_unlock(&tty_mutex); 3546 return 0; 3547 } 3548 3549 EXPORT_SYMBOL(tty_unregister_driver); 3550 3551 dev_t tty_devnum(struct tty_struct *tty) 3552 { 3553 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3554 } 3555 EXPORT_SYMBOL(tty_devnum); 3556 3557 void tty_default_fops(struct file_operations *fops) 3558 { 3559 *fops = tty_fops; 3560 } 3561 3562 /* 3563 * Initialize the console device. This is called *early*, so 3564 * we can't necessarily depend on lots of kernel help here. 3565 * Just do some early initializations, and do the complex setup 3566 * later. 3567 */ 3568 void __init console_init(void) 3569 { 3570 initcall_t *call; 3571 3572 /* Setup the default TTY line discipline. */ 3573 tty_ldisc_begin(); 3574 3575 /* 3576 * set up the console device so that later boot sequences can 3577 * inform about problems etc.. 3578 */ 3579 call = __con_initcall_start; 3580 while (call < __con_initcall_end) { 3581 (*call)(); 3582 call++; 3583 } 3584 } 3585 3586 static char *tty_devnode(struct device *dev, umode_t *mode) 3587 { 3588 if (!mode) 3589 return NULL; 3590 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3591 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3592 *mode = 0666; 3593 return NULL; 3594 } 3595 3596 static int __init tty_class_init(void) 3597 { 3598 tty_class = class_create(THIS_MODULE, "tty"); 3599 if (IS_ERR(tty_class)) 3600 return PTR_ERR(tty_class); 3601 tty_class->devnode = tty_devnode; 3602 return 0; 3603 } 3604 3605 postcore_initcall(tty_class_init); 3606 3607 /* 3/2004 jmc: why do these devices exist? */ 3608 static struct cdev tty_cdev, console_cdev; 3609 3610 static ssize_t show_cons_active(struct device *dev, 3611 struct device_attribute *attr, char *buf) 3612 { 3613 struct console *cs[16]; 3614 int i = 0; 3615 struct console *c; 3616 ssize_t count = 0; 3617 3618 console_lock(); 3619 for_each_console(c) { 3620 if (!c->device) 3621 continue; 3622 if (!c->write) 3623 continue; 3624 if ((c->flags & CON_ENABLED) == 0) 3625 continue; 3626 cs[i++] = c; 3627 if (i >= ARRAY_SIZE(cs)) 3628 break; 3629 } 3630 while (i--) { 3631 int index = cs[i]->index; 3632 struct tty_driver *drv = cs[i]->device(cs[i], &index); 3633 3634 /* don't resolve tty0 as some programs depend on it */ 3635 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR)) 3636 count += tty_line_name(drv, index, buf + count); 3637 else 3638 count += sprintf(buf + count, "%s%d", 3639 cs[i]->name, cs[i]->index); 3640 3641 count += sprintf(buf + count, "%c", i ? ' ':'\n'); 3642 } 3643 console_unlock(); 3644 3645 return count; 3646 } 3647 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3648 3649 static struct attribute *cons_dev_attrs[] = { 3650 &dev_attr_active.attr, 3651 NULL 3652 }; 3653 3654 ATTRIBUTE_GROUPS(cons_dev); 3655 3656 static struct device *consdev; 3657 3658 void console_sysfs_notify(void) 3659 { 3660 if (consdev) 3661 sysfs_notify(&consdev->kobj, NULL, "active"); 3662 } 3663 3664 /* 3665 * Ok, now we can initialize the rest of the tty devices and can count 3666 * on memory allocations, interrupts etc.. 3667 */ 3668 int __init tty_init(void) 3669 { 3670 cdev_init(&tty_cdev, &tty_fops); 3671 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3672 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3673 panic("Couldn't register /dev/tty driver\n"); 3674 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3675 3676 cdev_init(&console_cdev, &console_fops); 3677 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3678 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3679 panic("Couldn't register /dev/console driver\n"); 3680 consdev = device_create_with_groups(tty_class, NULL, 3681 MKDEV(TTYAUX_MAJOR, 1), NULL, 3682 cons_dev_groups, "console"); 3683 if (IS_ERR(consdev)) 3684 consdev = NULL; 3685 3686 #ifdef CONFIG_VT 3687 vty_init(&console_fops); 3688 #endif 3689 return 0; 3690 } 3691 3692