xref: /openbmc/linux/drivers/tty/tty_io.c (revision 6c870213d6f3a25981c10728f46294a3bed1703f)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112 
113 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
114 	.c_iflag = ICRNL | IXON,
115 	.c_oflag = OPOST | ONLCR,
116 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 		   ECHOCTL | ECHOKE | IEXTEN,
119 	.c_cc = INIT_C_CC,
120 	.c_ispeed = 38400,
121 	.c_ospeed = 38400
122 };
123 
124 EXPORT_SYMBOL(tty_std_termios);
125 
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129 
130 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
131 
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136 
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139 
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 							size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 				unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 
159 /**
160  *	alloc_tty_struct	-	allocate a tty object
161  *
162  *	Return a new empty tty structure. The data fields have not
163  *	been initialized in any way but has been zeroed
164  *
165  *	Locking: none
166  */
167 
168 struct tty_struct *alloc_tty_struct(void)
169 {
170 	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172 
173 /**
174  *	free_tty_struct		-	free a disused tty
175  *	@tty: tty struct to free
176  *
177  *	Free the write buffers, tty queue and tty memory itself.
178  *
179  *	Locking: none. Must be called after tty is definitely unused
180  */
181 
182 void free_tty_struct(struct tty_struct *tty)
183 {
184 	if (!tty)
185 		return;
186 	if (tty->dev)
187 		put_device(tty->dev);
188 	kfree(tty->write_buf);
189 	tty->magic = 0xDEADDEAD;
190 	kfree(tty);
191 }
192 
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195 	return ((struct tty_file_private *)file->private_data)->tty;
196 }
197 
198 int tty_alloc_file(struct file *file)
199 {
200 	struct tty_file_private *priv;
201 
202 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203 	if (!priv)
204 		return -ENOMEM;
205 
206 	file->private_data = priv;
207 
208 	return 0;
209 }
210 
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214 	struct tty_file_private *priv = file->private_data;
215 
216 	priv->tty = tty;
217 	priv->file = file;
218 
219 	spin_lock(&tty_files_lock);
220 	list_add(&priv->list, &tty->tty_files);
221 	spin_unlock(&tty_files_lock);
222 }
223 
224 /**
225  * tty_free_file - free file->private_data
226  *
227  * This shall be used only for fail path handling when tty_add_file was not
228  * called yet.
229  */
230 void tty_free_file(struct file *file)
231 {
232 	struct tty_file_private *priv = file->private_data;
233 
234 	file->private_data = NULL;
235 	kfree(priv);
236 }
237 
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241 	struct tty_file_private *priv = file->private_data;
242 
243 	spin_lock(&tty_files_lock);
244 	list_del(&priv->list);
245 	spin_unlock(&tty_files_lock);
246 	tty_free_file(file);
247 }
248 
249 
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251 
252 /**
253  *	tty_name	-	return tty naming
254  *	@tty: tty structure
255  *	@buf: buffer for output
256  *
257  *	Convert a tty structure into a name. The name reflects the kernel
258  *	naming policy and if udev is in use may not reflect user space
259  *
260  *	Locking: none
261  */
262 
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
266 		strcpy(buf, "NULL tty");
267 	else
268 		strcpy(buf, tty->name);
269 	return buf;
270 }
271 
272 EXPORT_SYMBOL(tty_name);
273 
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275 			      const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278 	if (!tty) {
279 		printk(KERN_WARNING
280 			"null TTY for (%d:%d) in %s\n",
281 			imajor(inode), iminor(inode), routine);
282 		return 1;
283 	}
284 	if (tty->magic != TTY_MAGIC) {
285 		printk(KERN_WARNING
286 			"bad magic number for tty struct (%d:%d) in %s\n",
287 			imajor(inode), iminor(inode), routine);
288 		return 1;
289 	}
290 #endif
291 	return 0;
292 }
293 
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297 	struct list_head *p;
298 	int count = 0;
299 
300 	spin_lock(&tty_files_lock);
301 	list_for_each(p, &tty->tty_files) {
302 		count++;
303 	}
304 	spin_unlock(&tty_files_lock);
305 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
307 	    tty->link && tty->link->count)
308 		count++;
309 	if (tty->count != count) {
310 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311 				    "!= #fd's(%d) in %s\n",
312 		       tty->name, tty->count, count, routine);
313 		return count;
314 	}
315 #endif
316 	return 0;
317 }
318 
319 /**
320  *	get_tty_driver		-	find device of a tty
321  *	@dev_t: device identifier
322  *	@index: returns the index of the tty
323  *
324  *	This routine returns a tty driver structure, given a device number
325  *	and also passes back the index number.
326  *
327  *	Locking: caller must hold tty_mutex
328  */
329 
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332 	struct tty_driver *p;
333 
334 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
335 		dev_t base = MKDEV(p->major, p->minor_start);
336 		if (device < base || device >= base + p->num)
337 			continue;
338 		*index = device - base;
339 		return tty_driver_kref_get(p);
340 	}
341 	return NULL;
342 }
343 
344 #ifdef CONFIG_CONSOLE_POLL
345 
346 /**
347  *	tty_find_polling_driver	-	find device of a polled tty
348  *	@name: name string to match
349  *	@line: pointer to resulting tty line nr
350  *
351  *	This routine returns a tty driver structure, given a name
352  *	and the condition that the tty driver is capable of polled
353  *	operation.
354  */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357 	struct tty_driver *p, *res = NULL;
358 	int tty_line = 0;
359 	int len;
360 	char *str, *stp;
361 
362 	for (str = name; *str; str++)
363 		if ((*str >= '0' && *str <= '9') || *str == ',')
364 			break;
365 	if (!*str)
366 		return NULL;
367 
368 	len = str - name;
369 	tty_line = simple_strtoul(str, &str, 10);
370 
371 	mutex_lock(&tty_mutex);
372 	/* Search through the tty devices to look for a match */
373 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
374 		if (strncmp(name, p->name, len) != 0)
375 			continue;
376 		stp = str;
377 		if (*stp == ',')
378 			stp++;
379 		if (*stp == '\0')
380 			stp = NULL;
381 
382 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
383 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384 			res = tty_driver_kref_get(p);
385 			*line = tty_line;
386 			break;
387 		}
388 	}
389 	mutex_unlock(&tty_mutex);
390 
391 	return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395 
396 /**
397  *	tty_check_change	-	check for POSIX terminal changes
398  *	@tty: tty to check
399  *
400  *	If we try to write to, or set the state of, a terminal and we're
401  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
402  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
403  *
404  *	Locking: ctrl_lock
405  */
406 
407 int tty_check_change(struct tty_struct *tty)
408 {
409 	unsigned long flags;
410 	int ret = 0;
411 
412 	if (current->signal->tty != tty)
413 		return 0;
414 
415 	spin_lock_irqsave(&tty->ctrl_lock, flags);
416 
417 	if (!tty->pgrp) {
418 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419 		goto out_unlock;
420 	}
421 	if (task_pgrp(current) == tty->pgrp)
422 		goto out_unlock;
423 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424 	if (is_ignored(SIGTTOU))
425 		goto out;
426 	if (is_current_pgrp_orphaned()) {
427 		ret = -EIO;
428 		goto out;
429 	}
430 	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431 	set_thread_flag(TIF_SIGPENDING);
432 	ret = -ERESTARTSYS;
433 out:
434 	return ret;
435 out_unlock:
436 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437 	return ret;
438 }
439 
440 EXPORT_SYMBOL(tty_check_change);
441 
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443 				size_t count, loff_t *ppos)
444 {
445 	return 0;
446 }
447 
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449 				 size_t count, loff_t *ppos)
450 {
451 	return -EIO;
452 }
453 
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459 
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461 		unsigned long arg)
462 {
463 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465 
466 static long hung_up_tty_compat_ioctl(struct file *file,
467 				     unsigned int cmd, unsigned long arg)
468 {
469 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471 
472 static const struct file_operations tty_fops = {
473 	.llseek		= no_llseek,
474 	.read		= tty_read,
475 	.write		= tty_write,
476 	.poll		= tty_poll,
477 	.unlocked_ioctl	= tty_ioctl,
478 	.compat_ioctl	= tty_compat_ioctl,
479 	.open		= tty_open,
480 	.release	= tty_release,
481 	.fasync		= tty_fasync,
482 };
483 
484 static const struct file_operations console_fops = {
485 	.llseek		= no_llseek,
486 	.read		= tty_read,
487 	.write		= redirected_tty_write,
488 	.poll		= tty_poll,
489 	.unlocked_ioctl	= tty_ioctl,
490 	.compat_ioctl	= tty_compat_ioctl,
491 	.open		= tty_open,
492 	.release	= tty_release,
493 	.fasync		= tty_fasync,
494 };
495 
496 static const struct file_operations hung_up_tty_fops = {
497 	.llseek		= no_llseek,
498 	.read		= hung_up_tty_read,
499 	.write		= hung_up_tty_write,
500 	.poll		= hung_up_tty_poll,
501 	.unlocked_ioctl	= hung_up_tty_ioctl,
502 	.compat_ioctl	= hung_up_tty_compat_ioctl,
503 	.release	= tty_release,
504 };
505 
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508 
509 /**
510  *	tty_wakeup	-	request more data
511  *	@tty: terminal
512  *
513  *	Internal and external helper for wakeups of tty. This function
514  *	informs the line discipline if present that the driver is ready
515  *	to receive more output data.
516  */
517 
518 void tty_wakeup(struct tty_struct *tty)
519 {
520 	struct tty_ldisc *ld;
521 
522 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523 		ld = tty_ldisc_ref(tty);
524 		if (ld) {
525 			if (ld->ops->write_wakeup)
526 				ld->ops->write_wakeup(tty);
527 			tty_ldisc_deref(ld);
528 		}
529 	}
530 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532 
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534 
535 /**
536  *	tty_signal_session_leader	- sends SIGHUP to session leader
537  *	@tty		controlling tty
538  *	@exit_session	if non-zero, signal all foreground group processes
539  *
540  *	Send SIGHUP and SIGCONT to the session leader and its process group.
541  *	Optionally, signal all processes in the foreground process group.
542  *
543  *	Returns the number of processes in the session with this tty
544  *	as their controlling terminal. This value is used to drop
545  *	tty references for those processes.
546  */
547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
548 {
549 	struct task_struct *p;
550 	int refs = 0;
551 	struct pid *tty_pgrp = NULL;
552 
553 	read_lock(&tasklist_lock);
554 	if (tty->session) {
555 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
556 			spin_lock_irq(&p->sighand->siglock);
557 			if (p->signal->tty == tty) {
558 				p->signal->tty = NULL;
559 				/* We defer the dereferences outside fo
560 				   the tasklist lock */
561 				refs++;
562 			}
563 			if (!p->signal->leader) {
564 				spin_unlock_irq(&p->sighand->siglock);
565 				continue;
566 			}
567 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
568 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
569 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
570 			spin_lock(&tty->ctrl_lock);
571 			tty_pgrp = get_pid(tty->pgrp);
572 			if (tty->pgrp)
573 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
574 			spin_unlock(&tty->ctrl_lock);
575 			spin_unlock_irq(&p->sighand->siglock);
576 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
577 	}
578 	read_unlock(&tasklist_lock);
579 
580 	if (tty_pgrp) {
581 		if (exit_session)
582 			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
583 		put_pid(tty_pgrp);
584 	}
585 
586 	return refs;
587 }
588 
589 /**
590  *	__tty_hangup		-	actual handler for hangup events
591  *	@work: tty device
592  *
593  *	This can be called by a "kworker" kernel thread.  That is process
594  *	synchronous but doesn't hold any locks, so we need to make sure we
595  *	have the appropriate locks for what we're doing.
596  *
597  *	The hangup event clears any pending redirections onto the hung up
598  *	device. It ensures future writes will error and it does the needed
599  *	line discipline hangup and signal delivery. The tty object itself
600  *	remains intact.
601  *
602  *	Locking:
603  *		BTM
604  *		  redirect lock for undoing redirection
605  *		  file list lock for manipulating list of ttys
606  *		  tty_ldiscs_lock from called functions
607  *		  termios_rwsem resetting termios data
608  *		  tasklist_lock to walk task list for hangup event
609  *		    ->siglock to protect ->signal/->sighand
610  */
611 static void __tty_hangup(struct tty_struct *tty, int exit_session)
612 {
613 	struct file *cons_filp = NULL;
614 	struct file *filp, *f = NULL;
615 	struct tty_file_private *priv;
616 	int    closecount = 0, n;
617 	int refs;
618 
619 	if (!tty)
620 		return;
621 
622 
623 	spin_lock(&redirect_lock);
624 	if (redirect && file_tty(redirect) == tty) {
625 		f = redirect;
626 		redirect = NULL;
627 	}
628 	spin_unlock(&redirect_lock);
629 
630 	tty_lock(tty);
631 
632 	if (test_bit(TTY_HUPPED, &tty->flags)) {
633 		tty_unlock(tty);
634 		return;
635 	}
636 
637 	/* some functions below drop BTM, so we need this bit */
638 	set_bit(TTY_HUPPING, &tty->flags);
639 
640 	/* inuse_filps is protected by the single tty lock,
641 	   this really needs to change if we want to flush the
642 	   workqueue with the lock held */
643 	check_tty_count(tty, "tty_hangup");
644 
645 	spin_lock(&tty_files_lock);
646 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
647 	list_for_each_entry(priv, &tty->tty_files, list) {
648 		filp = priv->file;
649 		if (filp->f_op->write == redirected_tty_write)
650 			cons_filp = filp;
651 		if (filp->f_op->write != tty_write)
652 			continue;
653 		closecount++;
654 		__tty_fasync(-1, filp, 0);	/* can't block */
655 		filp->f_op = &hung_up_tty_fops;
656 	}
657 	spin_unlock(&tty_files_lock);
658 
659 	refs = tty_signal_session_leader(tty, exit_session);
660 	/* Account for the p->signal references we killed */
661 	while (refs--)
662 		tty_kref_put(tty);
663 
664 	/*
665 	 * it drops BTM and thus races with reopen
666 	 * we protect the race by TTY_HUPPING
667 	 */
668 	tty_ldisc_hangup(tty);
669 
670 	spin_lock_irq(&tty->ctrl_lock);
671 	clear_bit(TTY_THROTTLED, &tty->flags);
672 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
673 	put_pid(tty->session);
674 	put_pid(tty->pgrp);
675 	tty->session = NULL;
676 	tty->pgrp = NULL;
677 	tty->ctrl_status = 0;
678 	spin_unlock_irq(&tty->ctrl_lock);
679 
680 	/*
681 	 * If one of the devices matches a console pointer, we
682 	 * cannot just call hangup() because that will cause
683 	 * tty->count and state->count to go out of sync.
684 	 * So we just call close() the right number of times.
685 	 */
686 	if (cons_filp) {
687 		if (tty->ops->close)
688 			for (n = 0; n < closecount; n++)
689 				tty->ops->close(tty, cons_filp);
690 	} else if (tty->ops->hangup)
691 		(tty->ops->hangup)(tty);
692 	/*
693 	 * We don't want to have driver/ldisc interactions beyond
694 	 * the ones we did here. The driver layer expects no
695 	 * calls after ->hangup() from the ldisc side. However we
696 	 * can't yet guarantee all that.
697 	 */
698 	set_bit(TTY_HUPPED, &tty->flags);
699 	clear_bit(TTY_HUPPING, &tty->flags);
700 
701 	tty_unlock(tty);
702 
703 	if (f)
704 		fput(f);
705 }
706 
707 static void do_tty_hangup(struct work_struct *work)
708 {
709 	struct tty_struct *tty =
710 		container_of(work, struct tty_struct, hangup_work);
711 
712 	__tty_hangup(tty, 0);
713 }
714 
715 /**
716  *	tty_hangup		-	trigger a hangup event
717  *	@tty: tty to hangup
718  *
719  *	A carrier loss (virtual or otherwise) has occurred on this like
720  *	schedule a hangup sequence to run after this event.
721  */
722 
723 void tty_hangup(struct tty_struct *tty)
724 {
725 #ifdef TTY_DEBUG_HANGUP
726 	char	buf[64];
727 	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
728 #endif
729 	schedule_work(&tty->hangup_work);
730 }
731 
732 EXPORT_SYMBOL(tty_hangup);
733 
734 /**
735  *	tty_vhangup		-	process vhangup
736  *	@tty: tty to hangup
737  *
738  *	The user has asked via system call for the terminal to be hung up.
739  *	We do this synchronously so that when the syscall returns the process
740  *	is complete. That guarantee is necessary for security reasons.
741  */
742 
743 void tty_vhangup(struct tty_struct *tty)
744 {
745 #ifdef TTY_DEBUG_HANGUP
746 	char	buf[64];
747 
748 	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
749 #endif
750 	__tty_hangup(tty, 0);
751 }
752 
753 EXPORT_SYMBOL(tty_vhangup);
754 
755 
756 /**
757  *	tty_vhangup_self	-	process vhangup for own ctty
758  *
759  *	Perform a vhangup on the current controlling tty
760  */
761 
762 void tty_vhangup_self(void)
763 {
764 	struct tty_struct *tty;
765 
766 	tty = get_current_tty();
767 	if (tty) {
768 		tty_vhangup(tty);
769 		tty_kref_put(tty);
770 	}
771 }
772 
773 /**
774  *	tty_vhangup_session		-	hangup session leader exit
775  *	@tty: tty to hangup
776  *
777  *	The session leader is exiting and hanging up its controlling terminal.
778  *	Every process in the foreground process group is signalled SIGHUP.
779  *
780  *	We do this synchronously so that when the syscall returns the process
781  *	is complete. That guarantee is necessary for security reasons.
782  */
783 
784 static void tty_vhangup_session(struct tty_struct *tty)
785 {
786 #ifdef TTY_DEBUG_HANGUP
787 	char	buf[64];
788 
789 	printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
790 #endif
791 	__tty_hangup(tty, 1);
792 }
793 
794 /**
795  *	tty_hung_up_p		-	was tty hung up
796  *	@filp: file pointer of tty
797  *
798  *	Return true if the tty has been subject to a vhangup or a carrier
799  *	loss
800  */
801 
802 int tty_hung_up_p(struct file *filp)
803 {
804 	return (filp->f_op == &hung_up_tty_fops);
805 }
806 
807 EXPORT_SYMBOL(tty_hung_up_p);
808 
809 static void session_clear_tty(struct pid *session)
810 {
811 	struct task_struct *p;
812 	do_each_pid_task(session, PIDTYPE_SID, p) {
813 		proc_clear_tty(p);
814 	} while_each_pid_task(session, PIDTYPE_SID, p);
815 }
816 
817 /**
818  *	disassociate_ctty	-	disconnect controlling tty
819  *	@on_exit: true if exiting so need to "hang up" the session
820  *
821  *	This function is typically called only by the session leader, when
822  *	it wants to disassociate itself from its controlling tty.
823  *
824  *	It performs the following functions:
825  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
826  * 	(2)  Clears the tty from being controlling the session
827  * 	(3)  Clears the controlling tty for all processes in the
828  * 		session group.
829  *
830  *	The argument on_exit is set to 1 if called when a process is
831  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
832  *
833  *	Locking:
834  *		BTM is taken for hysterical raisins, and held when
835  *		  called from no_tty().
836  *		  tty_mutex is taken to protect tty
837  *		  ->siglock is taken to protect ->signal/->sighand
838  *		  tasklist_lock is taken to walk process list for sessions
839  *		    ->siglock is taken to protect ->signal/->sighand
840  */
841 
842 void disassociate_ctty(int on_exit)
843 {
844 	struct tty_struct *tty;
845 
846 	if (!current->signal->leader)
847 		return;
848 
849 	tty = get_current_tty();
850 	if (tty) {
851 		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
852 			tty_vhangup_session(tty);
853 		} else {
854 			struct pid *tty_pgrp = tty_get_pgrp(tty);
855 			if (tty_pgrp) {
856 				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
857 				if (!on_exit)
858 					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
859 				put_pid(tty_pgrp);
860 			}
861 		}
862 		tty_kref_put(tty);
863 
864 	} else if (on_exit) {
865 		struct pid *old_pgrp;
866 		spin_lock_irq(&current->sighand->siglock);
867 		old_pgrp = current->signal->tty_old_pgrp;
868 		current->signal->tty_old_pgrp = NULL;
869 		spin_unlock_irq(&current->sighand->siglock);
870 		if (old_pgrp) {
871 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
872 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
873 			put_pid(old_pgrp);
874 		}
875 		return;
876 	}
877 
878 	spin_lock_irq(&current->sighand->siglock);
879 	put_pid(current->signal->tty_old_pgrp);
880 	current->signal->tty_old_pgrp = NULL;
881 	spin_unlock_irq(&current->sighand->siglock);
882 
883 	tty = get_current_tty();
884 	if (tty) {
885 		unsigned long flags;
886 		spin_lock_irqsave(&tty->ctrl_lock, flags);
887 		put_pid(tty->session);
888 		put_pid(tty->pgrp);
889 		tty->session = NULL;
890 		tty->pgrp = NULL;
891 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
892 		tty_kref_put(tty);
893 	} else {
894 #ifdef TTY_DEBUG_HANGUP
895 		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
896 		       " = NULL", tty);
897 #endif
898 	}
899 
900 	/* Now clear signal->tty under the lock */
901 	read_lock(&tasklist_lock);
902 	session_clear_tty(task_session(current));
903 	read_unlock(&tasklist_lock);
904 }
905 
906 /**
907  *
908  *	no_tty	- Ensure the current process does not have a controlling tty
909  */
910 void no_tty(void)
911 {
912 	/* FIXME: Review locking here. The tty_lock never covered any race
913 	   between a new association and proc_clear_tty but possible we need
914 	   to protect against this anyway */
915 	struct task_struct *tsk = current;
916 	disassociate_ctty(0);
917 	proc_clear_tty(tsk);
918 }
919 
920 
921 /**
922  *	stop_tty	-	propagate flow control
923  *	@tty: tty to stop
924  *
925  *	Perform flow control to the driver. For PTY/TTY pairs we
926  *	must also propagate the TIOCKPKT status. May be called
927  *	on an already stopped device and will not re-call the driver
928  *	method.
929  *
930  *	This functionality is used by both the line disciplines for
931  *	halting incoming flow and by the driver. It may therefore be
932  *	called from any context, may be under the tty atomic_write_lock
933  *	but not always.
934  *
935  *	Locking:
936  *		Uses the tty control lock internally
937  */
938 
939 void stop_tty(struct tty_struct *tty)
940 {
941 	unsigned long flags;
942 	spin_lock_irqsave(&tty->ctrl_lock, flags);
943 	if (tty->stopped) {
944 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
945 		return;
946 	}
947 	tty->stopped = 1;
948 	if (tty->link && tty->link->packet) {
949 		tty->ctrl_status &= ~TIOCPKT_START;
950 		tty->ctrl_status |= TIOCPKT_STOP;
951 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
952 	}
953 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
954 	if (tty->ops->stop)
955 		(tty->ops->stop)(tty);
956 }
957 
958 EXPORT_SYMBOL(stop_tty);
959 
960 /**
961  *	start_tty	-	propagate flow control
962  *	@tty: tty to start
963  *
964  *	Start a tty that has been stopped if at all possible. Perform
965  *	any necessary wakeups and propagate the TIOCPKT status. If this
966  *	is the tty was previous stopped and is being started then the
967  *	driver start method is invoked and the line discipline woken.
968  *
969  *	Locking:
970  *		ctrl_lock
971  */
972 
973 void start_tty(struct tty_struct *tty)
974 {
975 	unsigned long flags;
976 	spin_lock_irqsave(&tty->ctrl_lock, flags);
977 	if (!tty->stopped || tty->flow_stopped) {
978 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
979 		return;
980 	}
981 	tty->stopped = 0;
982 	if (tty->link && tty->link->packet) {
983 		tty->ctrl_status &= ~TIOCPKT_STOP;
984 		tty->ctrl_status |= TIOCPKT_START;
985 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
986 	}
987 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
988 	if (tty->ops->start)
989 		(tty->ops->start)(tty);
990 	/* If we have a running line discipline it may need kicking */
991 	tty_wakeup(tty);
992 }
993 
994 EXPORT_SYMBOL(start_tty);
995 
996 /* We limit tty time update visibility to every 8 seconds or so. */
997 static void tty_update_time(struct timespec *time)
998 {
999 	unsigned long sec = get_seconds() & ~7;
1000 	if ((long)(sec - time->tv_sec) > 0)
1001 		time->tv_sec = sec;
1002 }
1003 
1004 /**
1005  *	tty_read	-	read method for tty device files
1006  *	@file: pointer to tty file
1007  *	@buf: user buffer
1008  *	@count: size of user buffer
1009  *	@ppos: unused
1010  *
1011  *	Perform the read system call function on this terminal device. Checks
1012  *	for hung up devices before calling the line discipline method.
1013  *
1014  *	Locking:
1015  *		Locks the line discipline internally while needed. Multiple
1016  *	read calls may be outstanding in parallel.
1017  */
1018 
1019 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1020 			loff_t *ppos)
1021 {
1022 	int i;
1023 	struct inode *inode = file_inode(file);
1024 	struct tty_struct *tty = file_tty(file);
1025 	struct tty_ldisc *ld;
1026 
1027 	if (tty_paranoia_check(tty, inode, "tty_read"))
1028 		return -EIO;
1029 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1030 		return -EIO;
1031 
1032 	/* We want to wait for the line discipline to sort out in this
1033 	   situation */
1034 	ld = tty_ldisc_ref_wait(tty);
1035 	if (ld->ops->read)
1036 		i = (ld->ops->read)(tty, file, buf, count);
1037 	else
1038 		i = -EIO;
1039 	tty_ldisc_deref(ld);
1040 
1041 	if (i > 0)
1042 		tty_update_time(&inode->i_atime);
1043 
1044 	return i;
1045 }
1046 
1047 void tty_write_unlock(struct tty_struct *tty)
1048 	__releases(&tty->atomic_write_lock)
1049 {
1050 	mutex_unlock(&tty->atomic_write_lock);
1051 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1052 }
1053 
1054 int tty_write_lock(struct tty_struct *tty, int ndelay)
1055 	__acquires(&tty->atomic_write_lock)
1056 {
1057 	if (!mutex_trylock(&tty->atomic_write_lock)) {
1058 		if (ndelay)
1059 			return -EAGAIN;
1060 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1061 			return -ERESTARTSYS;
1062 	}
1063 	return 0;
1064 }
1065 
1066 /*
1067  * Split writes up in sane blocksizes to avoid
1068  * denial-of-service type attacks
1069  */
1070 static inline ssize_t do_tty_write(
1071 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1072 	struct tty_struct *tty,
1073 	struct file *file,
1074 	const char __user *buf,
1075 	size_t count)
1076 {
1077 	ssize_t ret, written = 0;
1078 	unsigned int chunk;
1079 
1080 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1081 	if (ret < 0)
1082 		return ret;
1083 
1084 	/*
1085 	 * We chunk up writes into a temporary buffer. This
1086 	 * simplifies low-level drivers immensely, since they
1087 	 * don't have locking issues and user mode accesses.
1088 	 *
1089 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1090 	 * big chunk-size..
1091 	 *
1092 	 * The default chunk-size is 2kB, because the NTTY
1093 	 * layer has problems with bigger chunks. It will
1094 	 * claim to be able to handle more characters than
1095 	 * it actually does.
1096 	 *
1097 	 * FIXME: This can probably go away now except that 64K chunks
1098 	 * are too likely to fail unless switched to vmalloc...
1099 	 */
1100 	chunk = 2048;
1101 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1102 		chunk = 65536;
1103 	if (count < chunk)
1104 		chunk = count;
1105 
1106 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1107 	if (tty->write_cnt < chunk) {
1108 		unsigned char *buf_chunk;
1109 
1110 		if (chunk < 1024)
1111 			chunk = 1024;
1112 
1113 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1114 		if (!buf_chunk) {
1115 			ret = -ENOMEM;
1116 			goto out;
1117 		}
1118 		kfree(tty->write_buf);
1119 		tty->write_cnt = chunk;
1120 		tty->write_buf = buf_chunk;
1121 	}
1122 
1123 	/* Do the write .. */
1124 	for (;;) {
1125 		size_t size = count;
1126 		if (size > chunk)
1127 			size = chunk;
1128 		ret = -EFAULT;
1129 		if (copy_from_user(tty->write_buf, buf, size))
1130 			break;
1131 		ret = write(tty, file, tty->write_buf, size);
1132 		if (ret <= 0)
1133 			break;
1134 		written += ret;
1135 		buf += ret;
1136 		count -= ret;
1137 		if (!count)
1138 			break;
1139 		ret = -ERESTARTSYS;
1140 		if (signal_pending(current))
1141 			break;
1142 		cond_resched();
1143 	}
1144 	if (written) {
1145 		tty_update_time(&file_inode(file)->i_mtime);
1146 		ret = written;
1147 	}
1148 out:
1149 	tty_write_unlock(tty);
1150 	return ret;
1151 }
1152 
1153 /**
1154  * tty_write_message - write a message to a certain tty, not just the console.
1155  * @tty: the destination tty_struct
1156  * @msg: the message to write
1157  *
1158  * This is used for messages that need to be redirected to a specific tty.
1159  * We don't put it into the syslog queue right now maybe in the future if
1160  * really needed.
1161  *
1162  * We must still hold the BTM and test the CLOSING flag for the moment.
1163  */
1164 
1165 void tty_write_message(struct tty_struct *tty, char *msg)
1166 {
1167 	if (tty) {
1168 		mutex_lock(&tty->atomic_write_lock);
1169 		tty_lock(tty);
1170 		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1171 			tty_unlock(tty);
1172 			tty->ops->write(tty, msg, strlen(msg));
1173 		} else
1174 			tty_unlock(tty);
1175 		tty_write_unlock(tty);
1176 	}
1177 	return;
1178 }
1179 
1180 
1181 /**
1182  *	tty_write		-	write method for tty device file
1183  *	@file: tty file pointer
1184  *	@buf: user data to write
1185  *	@count: bytes to write
1186  *	@ppos: unused
1187  *
1188  *	Write data to a tty device via the line discipline.
1189  *
1190  *	Locking:
1191  *		Locks the line discipline as required
1192  *		Writes to the tty driver are serialized by the atomic_write_lock
1193  *	and are then processed in chunks to the device. The line discipline
1194  *	write method will not be invoked in parallel for each device.
1195  */
1196 
1197 static ssize_t tty_write(struct file *file, const char __user *buf,
1198 						size_t count, loff_t *ppos)
1199 {
1200 	struct tty_struct *tty = file_tty(file);
1201  	struct tty_ldisc *ld;
1202 	ssize_t ret;
1203 
1204 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1205 		return -EIO;
1206 	if (!tty || !tty->ops->write ||
1207 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1208 			return -EIO;
1209 	/* Short term debug to catch buggy drivers */
1210 	if (tty->ops->write_room == NULL)
1211 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1212 			tty->driver->name);
1213 	ld = tty_ldisc_ref_wait(tty);
1214 	if (!ld->ops->write)
1215 		ret = -EIO;
1216 	else
1217 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1218 	tty_ldisc_deref(ld);
1219 	return ret;
1220 }
1221 
1222 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1223 						size_t count, loff_t *ppos)
1224 {
1225 	struct file *p = NULL;
1226 
1227 	spin_lock(&redirect_lock);
1228 	if (redirect)
1229 		p = get_file(redirect);
1230 	spin_unlock(&redirect_lock);
1231 
1232 	if (p) {
1233 		ssize_t res;
1234 		res = vfs_write(p, buf, count, &p->f_pos);
1235 		fput(p);
1236 		return res;
1237 	}
1238 	return tty_write(file, buf, count, ppos);
1239 }
1240 
1241 static char ptychar[] = "pqrstuvwxyzabcde";
1242 
1243 /**
1244  *	pty_line_name	-	generate name for a pty
1245  *	@driver: the tty driver in use
1246  *	@index: the minor number
1247  *	@p: output buffer of at least 6 bytes
1248  *
1249  *	Generate a name from a driver reference and write it to the output
1250  *	buffer.
1251  *
1252  *	Locking: None
1253  */
1254 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1255 {
1256 	int i = index + driver->name_base;
1257 	/* ->name is initialized to "ttyp", but "tty" is expected */
1258 	sprintf(p, "%s%c%x",
1259 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1260 		ptychar[i >> 4 & 0xf], i & 0xf);
1261 }
1262 
1263 /**
1264  *	tty_line_name	-	generate name for a tty
1265  *	@driver: the tty driver in use
1266  *	@index: the minor number
1267  *	@p: output buffer of at least 7 bytes
1268  *
1269  *	Generate a name from a driver reference and write it to the output
1270  *	buffer.
1271  *
1272  *	Locking: None
1273  */
1274 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1275 {
1276 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1277 		return sprintf(p, "%s", driver->name);
1278 	else
1279 		return sprintf(p, "%s%d", driver->name,
1280 			       index + driver->name_base);
1281 }
1282 
1283 /**
1284  *	tty_driver_lookup_tty() - find an existing tty, if any
1285  *	@driver: the driver for the tty
1286  *	@idx:	 the minor number
1287  *
1288  *	Return the tty, if found or ERR_PTR() otherwise.
1289  *
1290  *	Locking: tty_mutex must be held. If tty is found, the mutex must
1291  *	be held until the 'fast-open' is also done. Will change once we
1292  *	have refcounting in the driver and per driver locking
1293  */
1294 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1295 		struct inode *inode, int idx)
1296 {
1297 	if (driver->ops->lookup)
1298 		return driver->ops->lookup(driver, inode, idx);
1299 
1300 	return driver->ttys[idx];
1301 }
1302 
1303 /**
1304  *	tty_init_termios	-  helper for termios setup
1305  *	@tty: the tty to set up
1306  *
1307  *	Initialise the termios structures for this tty. Thus runs under
1308  *	the tty_mutex currently so we can be relaxed about ordering.
1309  */
1310 
1311 int tty_init_termios(struct tty_struct *tty)
1312 {
1313 	struct ktermios *tp;
1314 	int idx = tty->index;
1315 
1316 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1317 		tty->termios = tty->driver->init_termios;
1318 	else {
1319 		/* Check for lazy saved data */
1320 		tp = tty->driver->termios[idx];
1321 		if (tp != NULL)
1322 			tty->termios = *tp;
1323 		else
1324 			tty->termios = tty->driver->init_termios;
1325 	}
1326 	/* Compatibility until drivers always set this */
1327 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1328 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1329 	return 0;
1330 }
1331 EXPORT_SYMBOL_GPL(tty_init_termios);
1332 
1333 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1334 {
1335 	int ret = tty_init_termios(tty);
1336 	if (ret)
1337 		return ret;
1338 
1339 	tty_driver_kref_get(driver);
1340 	tty->count++;
1341 	driver->ttys[tty->index] = tty;
1342 	return 0;
1343 }
1344 EXPORT_SYMBOL_GPL(tty_standard_install);
1345 
1346 /**
1347  *	tty_driver_install_tty() - install a tty entry in the driver
1348  *	@driver: the driver for the tty
1349  *	@tty: the tty
1350  *
1351  *	Install a tty object into the driver tables. The tty->index field
1352  *	will be set by the time this is called. This method is responsible
1353  *	for ensuring any need additional structures are allocated and
1354  *	configured.
1355  *
1356  *	Locking: tty_mutex for now
1357  */
1358 static int tty_driver_install_tty(struct tty_driver *driver,
1359 						struct tty_struct *tty)
1360 {
1361 	return driver->ops->install ? driver->ops->install(driver, tty) :
1362 		tty_standard_install(driver, tty);
1363 }
1364 
1365 /**
1366  *	tty_driver_remove_tty() - remove a tty from the driver tables
1367  *	@driver: the driver for the tty
1368  *	@idx:	 the minor number
1369  *
1370  *	Remvoe a tty object from the driver tables. The tty->index field
1371  *	will be set by the time this is called.
1372  *
1373  *	Locking: tty_mutex for now
1374  */
1375 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1376 {
1377 	if (driver->ops->remove)
1378 		driver->ops->remove(driver, tty);
1379 	else
1380 		driver->ttys[tty->index] = NULL;
1381 }
1382 
1383 /*
1384  * 	tty_reopen()	- fast re-open of an open tty
1385  * 	@tty	- the tty to open
1386  *
1387  *	Return 0 on success, -errno on error.
1388  *
1389  *	Locking: tty_mutex must be held from the time the tty was found
1390  *		 till this open completes.
1391  */
1392 static int tty_reopen(struct tty_struct *tty)
1393 {
1394 	struct tty_driver *driver = tty->driver;
1395 
1396 	if (test_bit(TTY_CLOSING, &tty->flags) ||
1397 			test_bit(TTY_HUPPING, &tty->flags))
1398 		return -EIO;
1399 
1400 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1401 	    driver->subtype == PTY_TYPE_MASTER) {
1402 		/*
1403 		 * special case for PTY masters: only one open permitted,
1404 		 * and the slave side open count is incremented as well.
1405 		 */
1406 		if (tty->count)
1407 			return -EIO;
1408 
1409 		tty->link->count++;
1410 	}
1411 	tty->count++;
1412 
1413 	WARN_ON(!tty->ldisc);
1414 
1415 	return 0;
1416 }
1417 
1418 /**
1419  *	tty_init_dev		-	initialise a tty device
1420  *	@driver: tty driver we are opening a device on
1421  *	@idx: device index
1422  *	@ret_tty: returned tty structure
1423  *
1424  *	Prepare a tty device. This may not be a "new" clean device but
1425  *	could also be an active device. The pty drivers require special
1426  *	handling because of this.
1427  *
1428  *	Locking:
1429  *		The function is called under the tty_mutex, which
1430  *	protects us from the tty struct or driver itself going away.
1431  *
1432  *	On exit the tty device has the line discipline attached and
1433  *	a reference count of 1. If a pair was created for pty/tty use
1434  *	and the other was a pty master then it too has a reference count of 1.
1435  *
1436  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1437  * failed open.  The new code protects the open with a mutex, so it's
1438  * really quite straightforward.  The mutex locking can probably be
1439  * relaxed for the (most common) case of reopening a tty.
1440  */
1441 
1442 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1443 {
1444 	struct tty_struct *tty;
1445 	int retval;
1446 
1447 	/*
1448 	 * First time open is complex, especially for PTY devices.
1449 	 * This code guarantees that either everything succeeds and the
1450 	 * TTY is ready for operation, or else the table slots are vacated
1451 	 * and the allocated memory released.  (Except that the termios
1452 	 * and locked termios may be retained.)
1453 	 */
1454 
1455 	if (!try_module_get(driver->owner))
1456 		return ERR_PTR(-ENODEV);
1457 
1458 	tty = alloc_tty_struct();
1459 	if (!tty) {
1460 		retval = -ENOMEM;
1461 		goto err_module_put;
1462 	}
1463 	initialize_tty_struct(tty, driver, idx);
1464 
1465 	tty_lock(tty);
1466 	retval = tty_driver_install_tty(driver, tty);
1467 	if (retval < 0)
1468 		goto err_deinit_tty;
1469 
1470 	if (!tty->port)
1471 		tty->port = driver->ports[idx];
1472 
1473 	WARN_RATELIMIT(!tty->port,
1474 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1475 			__func__, tty->driver->name);
1476 
1477 	tty->port->itty = tty;
1478 
1479 	/*
1480 	 * Structures all installed ... call the ldisc open routines.
1481 	 * If we fail here just call release_tty to clean up.  No need
1482 	 * to decrement the use counts, as release_tty doesn't care.
1483 	 */
1484 	retval = tty_ldisc_setup(tty, tty->link);
1485 	if (retval)
1486 		goto err_release_tty;
1487 	/* Return the tty locked so that it cannot vanish under the caller */
1488 	return tty;
1489 
1490 err_deinit_tty:
1491 	tty_unlock(tty);
1492 	deinitialize_tty_struct(tty);
1493 	free_tty_struct(tty);
1494 err_module_put:
1495 	module_put(driver->owner);
1496 	return ERR_PTR(retval);
1497 
1498 	/* call the tty release_tty routine to clean out this slot */
1499 err_release_tty:
1500 	tty_unlock(tty);
1501 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1502 				 "clearing slot %d\n", idx);
1503 	release_tty(tty, idx);
1504 	return ERR_PTR(retval);
1505 }
1506 
1507 void tty_free_termios(struct tty_struct *tty)
1508 {
1509 	struct ktermios *tp;
1510 	int idx = tty->index;
1511 
1512 	/* If the port is going to reset then it has no termios to save */
1513 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1514 		return;
1515 
1516 	/* Stash the termios data */
1517 	tp = tty->driver->termios[idx];
1518 	if (tp == NULL) {
1519 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1520 		if (tp == NULL) {
1521 			pr_warn("tty: no memory to save termios state.\n");
1522 			return;
1523 		}
1524 		tty->driver->termios[idx] = tp;
1525 	}
1526 	*tp = tty->termios;
1527 }
1528 EXPORT_SYMBOL(tty_free_termios);
1529 
1530 /**
1531  *	tty_flush_works		-	flush all works of a tty
1532  *	@tty: tty device to flush works for
1533  *
1534  *	Sync flush all works belonging to @tty.
1535  */
1536 static void tty_flush_works(struct tty_struct *tty)
1537 {
1538 	flush_work(&tty->SAK_work);
1539 	flush_work(&tty->hangup_work);
1540 }
1541 
1542 /**
1543  *	release_one_tty		-	release tty structure memory
1544  *	@kref: kref of tty we are obliterating
1545  *
1546  *	Releases memory associated with a tty structure, and clears out the
1547  *	driver table slots. This function is called when a device is no longer
1548  *	in use. It also gets called when setup of a device fails.
1549  *
1550  *	Locking:
1551  *		takes the file list lock internally when working on the list
1552  *	of ttys that the driver keeps.
1553  *
1554  *	This method gets called from a work queue so that the driver private
1555  *	cleanup ops can sleep (needed for USB at least)
1556  */
1557 static void release_one_tty(struct work_struct *work)
1558 {
1559 	struct tty_struct *tty =
1560 		container_of(work, struct tty_struct, hangup_work);
1561 	struct tty_driver *driver = tty->driver;
1562 
1563 	if (tty->ops->cleanup)
1564 		tty->ops->cleanup(tty);
1565 
1566 	tty->magic = 0;
1567 	tty_driver_kref_put(driver);
1568 	module_put(driver->owner);
1569 
1570 	spin_lock(&tty_files_lock);
1571 	list_del_init(&tty->tty_files);
1572 	spin_unlock(&tty_files_lock);
1573 
1574 	put_pid(tty->pgrp);
1575 	put_pid(tty->session);
1576 	free_tty_struct(tty);
1577 }
1578 
1579 static void queue_release_one_tty(struct kref *kref)
1580 {
1581 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1582 
1583 	/* The hangup queue is now free so we can reuse it rather than
1584 	   waste a chunk of memory for each port */
1585 	INIT_WORK(&tty->hangup_work, release_one_tty);
1586 	schedule_work(&tty->hangup_work);
1587 }
1588 
1589 /**
1590  *	tty_kref_put		-	release a tty kref
1591  *	@tty: tty device
1592  *
1593  *	Release a reference to a tty device and if need be let the kref
1594  *	layer destruct the object for us
1595  */
1596 
1597 void tty_kref_put(struct tty_struct *tty)
1598 {
1599 	if (tty)
1600 		kref_put(&tty->kref, queue_release_one_tty);
1601 }
1602 EXPORT_SYMBOL(tty_kref_put);
1603 
1604 /**
1605  *	release_tty		-	release tty structure memory
1606  *
1607  *	Release both @tty and a possible linked partner (think pty pair),
1608  *	and decrement the refcount of the backing module.
1609  *
1610  *	Locking:
1611  *		tty_mutex
1612  *		takes the file list lock internally when working on the list
1613  *	of ttys that the driver keeps.
1614  *
1615  */
1616 static void release_tty(struct tty_struct *tty, int idx)
1617 {
1618 	/* This should always be true but check for the moment */
1619 	WARN_ON(tty->index != idx);
1620 	WARN_ON(!mutex_is_locked(&tty_mutex));
1621 	if (tty->ops->shutdown)
1622 		tty->ops->shutdown(tty);
1623 	tty_free_termios(tty);
1624 	tty_driver_remove_tty(tty->driver, tty);
1625 	tty->port->itty = NULL;
1626 	if (tty->link)
1627 		tty->link->port->itty = NULL;
1628 	cancel_work_sync(&tty->port->buf.work);
1629 
1630 	if (tty->link)
1631 		tty_kref_put(tty->link);
1632 	tty_kref_put(tty);
1633 }
1634 
1635 /**
1636  *	tty_release_checks - check a tty before real release
1637  *	@tty: tty to check
1638  *	@o_tty: link of @tty (if any)
1639  *	@idx: index of the tty
1640  *
1641  *	Performs some paranoid checking before true release of the @tty.
1642  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1643  */
1644 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1645 		int idx)
1646 {
1647 #ifdef TTY_PARANOIA_CHECK
1648 	if (idx < 0 || idx >= tty->driver->num) {
1649 		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1650 				__func__, tty->name);
1651 		return -1;
1652 	}
1653 
1654 	/* not much to check for devpts */
1655 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1656 		return 0;
1657 
1658 	if (tty != tty->driver->ttys[idx]) {
1659 		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1660 				__func__, idx, tty->name);
1661 		return -1;
1662 	}
1663 	if (tty->driver->other) {
1664 		if (o_tty != tty->driver->other->ttys[idx]) {
1665 			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1666 					__func__, idx, tty->name);
1667 			return -1;
1668 		}
1669 		if (o_tty->link != tty) {
1670 			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1671 			return -1;
1672 		}
1673 	}
1674 #endif
1675 	return 0;
1676 }
1677 
1678 /**
1679  *	tty_release		-	vfs callback for close
1680  *	@inode: inode of tty
1681  *	@filp: file pointer for handle to tty
1682  *
1683  *	Called the last time each file handle is closed that references
1684  *	this tty. There may however be several such references.
1685  *
1686  *	Locking:
1687  *		Takes bkl. See tty_release_dev
1688  *
1689  * Even releasing the tty structures is a tricky business.. We have
1690  * to be very careful that the structures are all released at the
1691  * same time, as interrupts might otherwise get the wrong pointers.
1692  *
1693  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1694  * lead to double frees or releasing memory still in use.
1695  */
1696 
1697 int tty_release(struct inode *inode, struct file *filp)
1698 {
1699 	struct tty_struct *tty = file_tty(filp);
1700 	struct tty_struct *o_tty;
1701 	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1702 	int	idx;
1703 	char	buf[64];
1704 
1705 	if (tty_paranoia_check(tty, inode, __func__))
1706 		return 0;
1707 
1708 	tty_lock(tty);
1709 	check_tty_count(tty, __func__);
1710 
1711 	__tty_fasync(-1, filp, 0);
1712 
1713 	idx = tty->index;
1714 	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1715 		      tty->driver->subtype == PTY_TYPE_MASTER);
1716 	/* Review: parallel close */
1717 	o_tty = tty->link;
1718 
1719 	if (tty_release_checks(tty, o_tty, idx)) {
1720 		tty_unlock(tty);
1721 		return 0;
1722 	}
1723 
1724 #ifdef TTY_DEBUG_HANGUP
1725 	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1726 			tty_name(tty, buf), tty->count);
1727 #endif
1728 
1729 	if (tty->ops->close)
1730 		tty->ops->close(tty, filp);
1731 
1732 	tty_unlock(tty);
1733 	/*
1734 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1735 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1736 	 * wait queues and kick everyone out _before_ actually starting to
1737 	 * close.  This ensures that we won't block while releasing the tty
1738 	 * structure.
1739 	 *
1740 	 * The test for the o_tty closing is necessary, since the master and
1741 	 * slave sides may close in any order.  If the slave side closes out
1742 	 * first, its count will be one, since the master side holds an open.
1743 	 * Thus this test wouldn't be triggered at the time the slave closes,
1744 	 * so we do it now.
1745 	 *
1746 	 * Note that it's possible for the tty to be opened again while we're
1747 	 * flushing out waiters.  By recalculating the closing flags before
1748 	 * each iteration we avoid any problems.
1749 	 */
1750 	while (1) {
1751 		/* Guard against races with tty->count changes elsewhere and
1752 		   opens on /dev/tty */
1753 
1754 		mutex_lock(&tty_mutex);
1755 		tty_lock_pair(tty, o_tty);
1756 		tty_closing = tty->count <= 1;
1757 		o_tty_closing = o_tty &&
1758 			(o_tty->count <= (pty_master ? 1 : 0));
1759 		do_sleep = 0;
1760 
1761 		if (tty_closing) {
1762 			if (waitqueue_active(&tty->read_wait)) {
1763 				wake_up_poll(&tty->read_wait, POLLIN);
1764 				do_sleep++;
1765 			}
1766 			if (waitqueue_active(&tty->write_wait)) {
1767 				wake_up_poll(&tty->write_wait, POLLOUT);
1768 				do_sleep++;
1769 			}
1770 		}
1771 		if (o_tty_closing) {
1772 			if (waitqueue_active(&o_tty->read_wait)) {
1773 				wake_up_poll(&o_tty->read_wait, POLLIN);
1774 				do_sleep++;
1775 			}
1776 			if (waitqueue_active(&o_tty->write_wait)) {
1777 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1778 				do_sleep++;
1779 			}
1780 		}
1781 		if (!do_sleep)
1782 			break;
1783 
1784 		printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1785 				__func__, tty_name(tty, buf));
1786 		tty_unlock_pair(tty, o_tty);
1787 		mutex_unlock(&tty_mutex);
1788 		schedule();
1789 	}
1790 
1791 	/*
1792 	 * The closing flags are now consistent with the open counts on
1793 	 * both sides, and we've completed the last operation that could
1794 	 * block, so it's safe to proceed with closing.
1795 	 *
1796 	 * We must *not* drop the tty_mutex until we ensure that a further
1797 	 * entry into tty_open can not pick up this tty.
1798 	 */
1799 	if (pty_master) {
1800 		if (--o_tty->count < 0) {
1801 			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1802 				__func__, o_tty->count, tty_name(o_tty, buf));
1803 			o_tty->count = 0;
1804 		}
1805 	}
1806 	if (--tty->count < 0) {
1807 		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1808 				__func__, tty->count, tty_name(tty, buf));
1809 		tty->count = 0;
1810 	}
1811 
1812 	/*
1813 	 * We've decremented tty->count, so we need to remove this file
1814 	 * descriptor off the tty->tty_files list; this serves two
1815 	 * purposes:
1816 	 *  - check_tty_count sees the correct number of file descriptors
1817 	 *    associated with this tty.
1818 	 *  - do_tty_hangup no longer sees this file descriptor as
1819 	 *    something that needs to be handled for hangups.
1820 	 */
1821 	tty_del_file(filp);
1822 
1823 	/*
1824 	 * Perform some housekeeping before deciding whether to return.
1825 	 *
1826 	 * Set the TTY_CLOSING flag if this was the last open.  In the
1827 	 * case of a pty we may have to wait around for the other side
1828 	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1829 	 */
1830 	if (tty_closing)
1831 		set_bit(TTY_CLOSING, &tty->flags);
1832 	if (o_tty_closing)
1833 		set_bit(TTY_CLOSING, &o_tty->flags);
1834 
1835 	/*
1836 	 * If _either_ side is closing, make sure there aren't any
1837 	 * processes that still think tty or o_tty is their controlling
1838 	 * tty.
1839 	 */
1840 	if (tty_closing || o_tty_closing) {
1841 		read_lock(&tasklist_lock);
1842 		session_clear_tty(tty->session);
1843 		if (o_tty)
1844 			session_clear_tty(o_tty->session);
1845 		read_unlock(&tasklist_lock);
1846 	}
1847 
1848 	mutex_unlock(&tty_mutex);
1849 	tty_unlock_pair(tty, o_tty);
1850 	/* At this point the TTY_CLOSING flag should ensure a dead tty
1851 	   cannot be re-opened by a racing opener */
1852 
1853 	/* check whether both sides are closing ... */
1854 	if (!tty_closing || (o_tty && !o_tty_closing))
1855 		return 0;
1856 
1857 #ifdef TTY_DEBUG_HANGUP
1858 	printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1859 #endif
1860 	/*
1861 	 * Ask the line discipline code to release its structures
1862 	 */
1863 	tty_ldisc_release(tty, o_tty);
1864 
1865 	/* Wait for pending work before tty destruction commmences */
1866 	tty_flush_works(tty);
1867 	if (o_tty)
1868 		tty_flush_works(o_tty);
1869 
1870 #ifdef TTY_DEBUG_HANGUP
1871 	printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1872 #endif
1873 	/*
1874 	 * The release_tty function takes care of the details of clearing
1875 	 * the slots and preserving the termios structure. The tty_unlock_pair
1876 	 * should be safe as we keep a kref while the tty is locked (so the
1877 	 * unlock never unlocks a freed tty).
1878 	 */
1879 	mutex_lock(&tty_mutex);
1880 	release_tty(tty, idx);
1881 	mutex_unlock(&tty_mutex);
1882 
1883 	return 0;
1884 }
1885 
1886 /**
1887  *	tty_open_current_tty - get tty of current task for open
1888  *	@device: device number
1889  *	@filp: file pointer to tty
1890  *	@return: tty of the current task iff @device is /dev/tty
1891  *
1892  *	We cannot return driver and index like for the other nodes because
1893  *	devpts will not work then. It expects inodes to be from devpts FS.
1894  *
1895  *	We need to move to returning a refcounted object from all the lookup
1896  *	paths including this one.
1897  */
1898 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1899 {
1900 	struct tty_struct *tty;
1901 
1902 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1903 		return NULL;
1904 
1905 	tty = get_current_tty();
1906 	if (!tty)
1907 		return ERR_PTR(-ENXIO);
1908 
1909 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1910 	/* noctty = 1; */
1911 	tty_kref_put(tty);
1912 	/* FIXME: we put a reference and return a TTY! */
1913 	/* This is only safe because the caller holds tty_mutex */
1914 	return tty;
1915 }
1916 
1917 /**
1918  *	tty_lookup_driver - lookup a tty driver for a given device file
1919  *	@device: device number
1920  *	@filp: file pointer to tty
1921  *	@noctty: set if the device should not become a controlling tty
1922  *	@index: index for the device in the @return driver
1923  *	@return: driver for this inode (with increased refcount)
1924  *
1925  * 	If @return is not erroneous, the caller is responsible to decrement the
1926  * 	refcount by tty_driver_kref_put.
1927  *
1928  *	Locking: tty_mutex protects get_tty_driver
1929  */
1930 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1931 		int *noctty, int *index)
1932 {
1933 	struct tty_driver *driver;
1934 
1935 	switch (device) {
1936 #ifdef CONFIG_VT
1937 	case MKDEV(TTY_MAJOR, 0): {
1938 		extern struct tty_driver *console_driver;
1939 		driver = tty_driver_kref_get(console_driver);
1940 		*index = fg_console;
1941 		*noctty = 1;
1942 		break;
1943 	}
1944 #endif
1945 	case MKDEV(TTYAUX_MAJOR, 1): {
1946 		struct tty_driver *console_driver = console_device(index);
1947 		if (console_driver) {
1948 			driver = tty_driver_kref_get(console_driver);
1949 			if (driver) {
1950 				/* Don't let /dev/console block */
1951 				filp->f_flags |= O_NONBLOCK;
1952 				*noctty = 1;
1953 				break;
1954 			}
1955 		}
1956 		return ERR_PTR(-ENODEV);
1957 	}
1958 	default:
1959 		driver = get_tty_driver(device, index);
1960 		if (!driver)
1961 			return ERR_PTR(-ENODEV);
1962 		break;
1963 	}
1964 	return driver;
1965 }
1966 
1967 /**
1968  *	tty_open		-	open a tty device
1969  *	@inode: inode of device file
1970  *	@filp: file pointer to tty
1971  *
1972  *	tty_open and tty_release keep up the tty count that contains the
1973  *	number of opens done on a tty. We cannot use the inode-count, as
1974  *	different inodes might point to the same tty.
1975  *
1976  *	Open-counting is needed for pty masters, as well as for keeping
1977  *	track of serial lines: DTR is dropped when the last close happens.
1978  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1979  *
1980  *	The termios state of a pty is reset on first open so that
1981  *	settings don't persist across reuse.
1982  *
1983  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1984  *		 tty->count should protect the rest.
1985  *		 ->siglock protects ->signal/->sighand
1986  *
1987  *	Note: the tty_unlock/lock cases without a ref are only safe due to
1988  *	tty_mutex
1989  */
1990 
1991 static int tty_open(struct inode *inode, struct file *filp)
1992 {
1993 	struct tty_struct *tty;
1994 	int noctty, retval;
1995 	struct tty_driver *driver = NULL;
1996 	int index;
1997 	dev_t device = inode->i_rdev;
1998 	unsigned saved_flags = filp->f_flags;
1999 
2000 	nonseekable_open(inode, filp);
2001 
2002 retry_open:
2003 	retval = tty_alloc_file(filp);
2004 	if (retval)
2005 		return -ENOMEM;
2006 
2007 	noctty = filp->f_flags & O_NOCTTY;
2008 	index  = -1;
2009 	retval = 0;
2010 
2011 	mutex_lock(&tty_mutex);
2012 	/* This is protected by the tty_mutex */
2013 	tty = tty_open_current_tty(device, filp);
2014 	if (IS_ERR(tty)) {
2015 		retval = PTR_ERR(tty);
2016 		goto err_unlock;
2017 	} else if (!tty) {
2018 		driver = tty_lookup_driver(device, filp, &noctty, &index);
2019 		if (IS_ERR(driver)) {
2020 			retval = PTR_ERR(driver);
2021 			goto err_unlock;
2022 		}
2023 
2024 		/* check whether we're reopening an existing tty */
2025 		tty = tty_driver_lookup_tty(driver, inode, index);
2026 		if (IS_ERR(tty)) {
2027 			retval = PTR_ERR(tty);
2028 			goto err_unlock;
2029 		}
2030 	}
2031 
2032 	if (tty) {
2033 		tty_lock(tty);
2034 		retval = tty_reopen(tty);
2035 		if (retval < 0) {
2036 			tty_unlock(tty);
2037 			tty = ERR_PTR(retval);
2038 		}
2039 	} else	/* Returns with the tty_lock held for now */
2040 		tty = tty_init_dev(driver, index);
2041 
2042 	mutex_unlock(&tty_mutex);
2043 	if (driver)
2044 		tty_driver_kref_put(driver);
2045 	if (IS_ERR(tty)) {
2046 		retval = PTR_ERR(tty);
2047 		goto err_file;
2048 	}
2049 
2050 	tty_add_file(tty, filp);
2051 
2052 	check_tty_count(tty, __func__);
2053 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2054 	    tty->driver->subtype == PTY_TYPE_MASTER)
2055 		noctty = 1;
2056 #ifdef TTY_DEBUG_HANGUP
2057 	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2058 #endif
2059 	if (tty->ops->open)
2060 		retval = tty->ops->open(tty, filp);
2061 	else
2062 		retval = -ENODEV;
2063 	filp->f_flags = saved_flags;
2064 
2065 	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2066 						!capable(CAP_SYS_ADMIN))
2067 		retval = -EBUSY;
2068 
2069 	if (retval) {
2070 #ifdef TTY_DEBUG_HANGUP
2071 		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2072 				retval, tty->name);
2073 #endif
2074 		tty_unlock(tty); /* need to call tty_release without BTM */
2075 		tty_release(inode, filp);
2076 		if (retval != -ERESTARTSYS)
2077 			return retval;
2078 
2079 		if (signal_pending(current))
2080 			return retval;
2081 
2082 		schedule();
2083 		/*
2084 		 * Need to reset f_op in case a hangup happened.
2085 		 */
2086 		if (filp->f_op == &hung_up_tty_fops)
2087 			filp->f_op = &tty_fops;
2088 		goto retry_open;
2089 	}
2090 	clear_bit(TTY_HUPPED, &tty->flags);
2091 	tty_unlock(tty);
2092 
2093 
2094 	mutex_lock(&tty_mutex);
2095 	tty_lock(tty);
2096 	spin_lock_irq(&current->sighand->siglock);
2097 	if (!noctty &&
2098 	    current->signal->leader &&
2099 	    !current->signal->tty &&
2100 	    tty->session == NULL)
2101 		__proc_set_tty(current, tty);
2102 	spin_unlock_irq(&current->sighand->siglock);
2103 	tty_unlock(tty);
2104 	mutex_unlock(&tty_mutex);
2105 	return 0;
2106 err_unlock:
2107 	mutex_unlock(&tty_mutex);
2108 	/* after locks to avoid deadlock */
2109 	if (!IS_ERR_OR_NULL(driver))
2110 		tty_driver_kref_put(driver);
2111 err_file:
2112 	tty_free_file(filp);
2113 	return retval;
2114 }
2115 
2116 
2117 
2118 /**
2119  *	tty_poll	-	check tty status
2120  *	@filp: file being polled
2121  *	@wait: poll wait structures to update
2122  *
2123  *	Call the line discipline polling method to obtain the poll
2124  *	status of the device.
2125  *
2126  *	Locking: locks called line discipline but ldisc poll method
2127  *	may be re-entered freely by other callers.
2128  */
2129 
2130 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2131 {
2132 	struct tty_struct *tty = file_tty(filp);
2133 	struct tty_ldisc *ld;
2134 	int ret = 0;
2135 
2136 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2137 		return 0;
2138 
2139 	ld = tty_ldisc_ref_wait(tty);
2140 	if (ld->ops->poll)
2141 		ret = (ld->ops->poll)(tty, filp, wait);
2142 	tty_ldisc_deref(ld);
2143 	return ret;
2144 }
2145 
2146 static int __tty_fasync(int fd, struct file *filp, int on)
2147 {
2148 	struct tty_struct *tty = file_tty(filp);
2149 	struct tty_ldisc *ldisc;
2150 	unsigned long flags;
2151 	int retval = 0;
2152 
2153 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2154 		goto out;
2155 
2156 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2157 	if (retval <= 0)
2158 		goto out;
2159 
2160 	ldisc = tty_ldisc_ref(tty);
2161 	if (ldisc) {
2162 		if (ldisc->ops->fasync)
2163 			ldisc->ops->fasync(tty, on);
2164 		tty_ldisc_deref(ldisc);
2165 	}
2166 
2167 	if (on) {
2168 		enum pid_type type;
2169 		struct pid *pid;
2170 
2171 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2172 		if (tty->pgrp) {
2173 			pid = tty->pgrp;
2174 			type = PIDTYPE_PGID;
2175 		} else {
2176 			pid = task_pid(current);
2177 			type = PIDTYPE_PID;
2178 		}
2179 		get_pid(pid);
2180 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2181 		retval = __f_setown(filp, pid, type, 0);
2182 		put_pid(pid);
2183 	}
2184 out:
2185 	return retval;
2186 }
2187 
2188 static int tty_fasync(int fd, struct file *filp, int on)
2189 {
2190 	struct tty_struct *tty = file_tty(filp);
2191 	int retval;
2192 
2193 	tty_lock(tty);
2194 	retval = __tty_fasync(fd, filp, on);
2195 	tty_unlock(tty);
2196 
2197 	return retval;
2198 }
2199 
2200 /**
2201  *	tiocsti			-	fake input character
2202  *	@tty: tty to fake input into
2203  *	@p: pointer to character
2204  *
2205  *	Fake input to a tty device. Does the necessary locking and
2206  *	input management.
2207  *
2208  *	FIXME: does not honour flow control ??
2209  *
2210  *	Locking:
2211  *		Called functions take tty_ldiscs_lock
2212  *		current->signal->tty check is safe without locks
2213  *
2214  *	FIXME: may race normal receive processing
2215  */
2216 
2217 static int tiocsti(struct tty_struct *tty, char __user *p)
2218 {
2219 	char ch, mbz = 0;
2220 	struct tty_ldisc *ld;
2221 
2222 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2223 		return -EPERM;
2224 	if (get_user(ch, p))
2225 		return -EFAULT;
2226 	tty_audit_tiocsti(tty, ch);
2227 	ld = tty_ldisc_ref_wait(tty);
2228 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2229 	tty_ldisc_deref(ld);
2230 	return 0;
2231 }
2232 
2233 /**
2234  *	tiocgwinsz		-	implement window query ioctl
2235  *	@tty; tty
2236  *	@arg: user buffer for result
2237  *
2238  *	Copies the kernel idea of the window size into the user buffer.
2239  *
2240  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2241  *		is consistent.
2242  */
2243 
2244 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2245 {
2246 	int err;
2247 
2248 	mutex_lock(&tty->winsize_mutex);
2249 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2250 	mutex_unlock(&tty->winsize_mutex);
2251 
2252 	return err ? -EFAULT: 0;
2253 }
2254 
2255 /**
2256  *	tty_do_resize		-	resize event
2257  *	@tty: tty being resized
2258  *	@rows: rows (character)
2259  *	@cols: cols (character)
2260  *
2261  *	Update the termios variables and send the necessary signals to
2262  *	peform a terminal resize correctly
2263  */
2264 
2265 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2266 {
2267 	struct pid *pgrp;
2268 	unsigned long flags;
2269 
2270 	/* Lock the tty */
2271 	mutex_lock(&tty->winsize_mutex);
2272 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2273 		goto done;
2274 	/* Get the PID values and reference them so we can
2275 	   avoid holding the tty ctrl lock while sending signals */
2276 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2277 	pgrp = get_pid(tty->pgrp);
2278 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2279 
2280 	if (pgrp)
2281 		kill_pgrp(pgrp, SIGWINCH, 1);
2282 	put_pid(pgrp);
2283 
2284 	tty->winsize = *ws;
2285 done:
2286 	mutex_unlock(&tty->winsize_mutex);
2287 	return 0;
2288 }
2289 EXPORT_SYMBOL(tty_do_resize);
2290 
2291 /**
2292  *	tiocswinsz		-	implement window size set ioctl
2293  *	@tty; tty side of tty
2294  *	@arg: user buffer for result
2295  *
2296  *	Copies the user idea of the window size to the kernel. Traditionally
2297  *	this is just advisory information but for the Linux console it
2298  *	actually has driver level meaning and triggers a VC resize.
2299  *
2300  *	Locking:
2301  *		Driver dependent. The default do_resize method takes the
2302  *	tty termios mutex and ctrl_lock. The console takes its own lock
2303  *	then calls into the default method.
2304  */
2305 
2306 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2307 {
2308 	struct winsize tmp_ws;
2309 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2310 		return -EFAULT;
2311 
2312 	if (tty->ops->resize)
2313 		return tty->ops->resize(tty, &tmp_ws);
2314 	else
2315 		return tty_do_resize(tty, &tmp_ws);
2316 }
2317 
2318 /**
2319  *	tioccons	-	allow admin to move logical console
2320  *	@file: the file to become console
2321  *
2322  *	Allow the administrator to move the redirected console device
2323  *
2324  *	Locking: uses redirect_lock to guard the redirect information
2325  */
2326 
2327 static int tioccons(struct file *file)
2328 {
2329 	if (!capable(CAP_SYS_ADMIN))
2330 		return -EPERM;
2331 	if (file->f_op->write == redirected_tty_write) {
2332 		struct file *f;
2333 		spin_lock(&redirect_lock);
2334 		f = redirect;
2335 		redirect = NULL;
2336 		spin_unlock(&redirect_lock);
2337 		if (f)
2338 			fput(f);
2339 		return 0;
2340 	}
2341 	spin_lock(&redirect_lock);
2342 	if (redirect) {
2343 		spin_unlock(&redirect_lock);
2344 		return -EBUSY;
2345 	}
2346 	redirect = get_file(file);
2347 	spin_unlock(&redirect_lock);
2348 	return 0;
2349 }
2350 
2351 /**
2352  *	fionbio		-	non blocking ioctl
2353  *	@file: file to set blocking value
2354  *	@p: user parameter
2355  *
2356  *	Historical tty interfaces had a blocking control ioctl before
2357  *	the generic functionality existed. This piece of history is preserved
2358  *	in the expected tty API of posix OS's.
2359  *
2360  *	Locking: none, the open file handle ensures it won't go away.
2361  */
2362 
2363 static int fionbio(struct file *file, int __user *p)
2364 {
2365 	int nonblock;
2366 
2367 	if (get_user(nonblock, p))
2368 		return -EFAULT;
2369 
2370 	spin_lock(&file->f_lock);
2371 	if (nonblock)
2372 		file->f_flags |= O_NONBLOCK;
2373 	else
2374 		file->f_flags &= ~O_NONBLOCK;
2375 	spin_unlock(&file->f_lock);
2376 	return 0;
2377 }
2378 
2379 /**
2380  *	tiocsctty	-	set controlling tty
2381  *	@tty: tty structure
2382  *	@arg: user argument
2383  *
2384  *	This ioctl is used to manage job control. It permits a session
2385  *	leader to set this tty as the controlling tty for the session.
2386  *
2387  *	Locking:
2388  *		Takes tty_mutex() to protect tty instance
2389  *		Takes tasklist_lock internally to walk sessions
2390  *		Takes ->siglock() when updating signal->tty
2391  */
2392 
2393 static int tiocsctty(struct tty_struct *tty, int arg)
2394 {
2395 	int ret = 0;
2396 	if (current->signal->leader && (task_session(current) == tty->session))
2397 		return ret;
2398 
2399 	mutex_lock(&tty_mutex);
2400 	/*
2401 	 * The process must be a session leader and
2402 	 * not have a controlling tty already.
2403 	 */
2404 	if (!current->signal->leader || current->signal->tty) {
2405 		ret = -EPERM;
2406 		goto unlock;
2407 	}
2408 
2409 	if (tty->session) {
2410 		/*
2411 		 * This tty is already the controlling
2412 		 * tty for another session group!
2413 		 */
2414 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2415 			/*
2416 			 * Steal it away
2417 			 */
2418 			read_lock(&tasklist_lock);
2419 			session_clear_tty(tty->session);
2420 			read_unlock(&tasklist_lock);
2421 		} else {
2422 			ret = -EPERM;
2423 			goto unlock;
2424 		}
2425 	}
2426 	proc_set_tty(current, tty);
2427 unlock:
2428 	mutex_unlock(&tty_mutex);
2429 	return ret;
2430 }
2431 
2432 /**
2433  *	tty_get_pgrp	-	return a ref counted pgrp pid
2434  *	@tty: tty to read
2435  *
2436  *	Returns a refcounted instance of the pid struct for the process
2437  *	group controlling the tty.
2438  */
2439 
2440 struct pid *tty_get_pgrp(struct tty_struct *tty)
2441 {
2442 	unsigned long flags;
2443 	struct pid *pgrp;
2444 
2445 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2446 	pgrp = get_pid(tty->pgrp);
2447 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2448 
2449 	return pgrp;
2450 }
2451 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2452 
2453 /**
2454  *	tiocgpgrp		-	get process group
2455  *	@tty: tty passed by user
2456  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2457  *	@p: returned pid
2458  *
2459  *	Obtain the process group of the tty. If there is no process group
2460  *	return an error.
2461  *
2462  *	Locking: none. Reference to current->signal->tty is safe.
2463  */
2464 
2465 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2466 {
2467 	struct pid *pid;
2468 	int ret;
2469 	/*
2470 	 * (tty == real_tty) is a cheap way of
2471 	 * testing if the tty is NOT a master pty.
2472 	 */
2473 	if (tty == real_tty && current->signal->tty != real_tty)
2474 		return -ENOTTY;
2475 	pid = tty_get_pgrp(real_tty);
2476 	ret =  put_user(pid_vnr(pid), p);
2477 	put_pid(pid);
2478 	return ret;
2479 }
2480 
2481 /**
2482  *	tiocspgrp		-	attempt to set process group
2483  *	@tty: tty passed by user
2484  *	@real_tty: tty side device matching tty passed by user
2485  *	@p: pid pointer
2486  *
2487  *	Set the process group of the tty to the session passed. Only
2488  *	permitted where the tty session is our session.
2489  *
2490  *	Locking: RCU, ctrl lock
2491  */
2492 
2493 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2494 {
2495 	struct pid *pgrp;
2496 	pid_t pgrp_nr;
2497 	int retval = tty_check_change(real_tty);
2498 	unsigned long flags;
2499 
2500 	if (retval == -EIO)
2501 		return -ENOTTY;
2502 	if (retval)
2503 		return retval;
2504 	if (!current->signal->tty ||
2505 	    (current->signal->tty != real_tty) ||
2506 	    (real_tty->session != task_session(current)))
2507 		return -ENOTTY;
2508 	if (get_user(pgrp_nr, p))
2509 		return -EFAULT;
2510 	if (pgrp_nr < 0)
2511 		return -EINVAL;
2512 	rcu_read_lock();
2513 	pgrp = find_vpid(pgrp_nr);
2514 	retval = -ESRCH;
2515 	if (!pgrp)
2516 		goto out_unlock;
2517 	retval = -EPERM;
2518 	if (session_of_pgrp(pgrp) != task_session(current))
2519 		goto out_unlock;
2520 	retval = 0;
2521 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2522 	put_pid(real_tty->pgrp);
2523 	real_tty->pgrp = get_pid(pgrp);
2524 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2525 out_unlock:
2526 	rcu_read_unlock();
2527 	return retval;
2528 }
2529 
2530 /**
2531  *	tiocgsid		-	get session id
2532  *	@tty: tty passed by user
2533  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2534  *	@p: pointer to returned session id
2535  *
2536  *	Obtain the session id of the tty. If there is no session
2537  *	return an error.
2538  *
2539  *	Locking: none. Reference to current->signal->tty is safe.
2540  */
2541 
2542 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2543 {
2544 	/*
2545 	 * (tty == real_tty) is a cheap way of
2546 	 * testing if the tty is NOT a master pty.
2547 	*/
2548 	if (tty == real_tty && current->signal->tty != real_tty)
2549 		return -ENOTTY;
2550 	if (!real_tty->session)
2551 		return -ENOTTY;
2552 	return put_user(pid_vnr(real_tty->session), p);
2553 }
2554 
2555 /**
2556  *	tiocsetd	-	set line discipline
2557  *	@tty: tty device
2558  *	@p: pointer to user data
2559  *
2560  *	Set the line discipline according to user request.
2561  *
2562  *	Locking: see tty_set_ldisc, this function is just a helper
2563  */
2564 
2565 static int tiocsetd(struct tty_struct *tty, int __user *p)
2566 {
2567 	int ldisc;
2568 	int ret;
2569 
2570 	if (get_user(ldisc, p))
2571 		return -EFAULT;
2572 
2573 	ret = tty_set_ldisc(tty, ldisc);
2574 
2575 	return ret;
2576 }
2577 
2578 /**
2579  *	send_break	-	performed time break
2580  *	@tty: device to break on
2581  *	@duration: timeout in mS
2582  *
2583  *	Perform a timed break on hardware that lacks its own driver level
2584  *	timed break functionality.
2585  *
2586  *	Locking:
2587  *		atomic_write_lock serializes
2588  *
2589  */
2590 
2591 static int send_break(struct tty_struct *tty, unsigned int duration)
2592 {
2593 	int retval;
2594 
2595 	if (tty->ops->break_ctl == NULL)
2596 		return 0;
2597 
2598 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2599 		retval = tty->ops->break_ctl(tty, duration);
2600 	else {
2601 		/* Do the work ourselves */
2602 		if (tty_write_lock(tty, 0) < 0)
2603 			return -EINTR;
2604 		retval = tty->ops->break_ctl(tty, -1);
2605 		if (retval)
2606 			goto out;
2607 		if (!signal_pending(current))
2608 			msleep_interruptible(duration);
2609 		retval = tty->ops->break_ctl(tty, 0);
2610 out:
2611 		tty_write_unlock(tty);
2612 		if (signal_pending(current))
2613 			retval = -EINTR;
2614 	}
2615 	return retval;
2616 }
2617 
2618 /**
2619  *	tty_tiocmget		-	get modem status
2620  *	@tty: tty device
2621  *	@file: user file pointer
2622  *	@p: pointer to result
2623  *
2624  *	Obtain the modem status bits from the tty driver if the feature
2625  *	is supported. Return -EINVAL if it is not available.
2626  *
2627  *	Locking: none (up to the driver)
2628  */
2629 
2630 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2631 {
2632 	int retval = -EINVAL;
2633 
2634 	if (tty->ops->tiocmget) {
2635 		retval = tty->ops->tiocmget(tty);
2636 
2637 		if (retval >= 0)
2638 			retval = put_user(retval, p);
2639 	}
2640 	return retval;
2641 }
2642 
2643 /**
2644  *	tty_tiocmset		-	set modem status
2645  *	@tty: tty device
2646  *	@cmd: command - clear bits, set bits or set all
2647  *	@p: pointer to desired bits
2648  *
2649  *	Set the modem status bits from the tty driver if the feature
2650  *	is supported. Return -EINVAL if it is not available.
2651  *
2652  *	Locking: none (up to the driver)
2653  */
2654 
2655 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2656 	     unsigned __user *p)
2657 {
2658 	int retval;
2659 	unsigned int set, clear, val;
2660 
2661 	if (tty->ops->tiocmset == NULL)
2662 		return -EINVAL;
2663 
2664 	retval = get_user(val, p);
2665 	if (retval)
2666 		return retval;
2667 	set = clear = 0;
2668 	switch (cmd) {
2669 	case TIOCMBIS:
2670 		set = val;
2671 		break;
2672 	case TIOCMBIC:
2673 		clear = val;
2674 		break;
2675 	case TIOCMSET:
2676 		set = val;
2677 		clear = ~val;
2678 		break;
2679 	}
2680 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2681 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2682 	return tty->ops->tiocmset(tty, set, clear);
2683 }
2684 
2685 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2686 {
2687 	int retval = -EINVAL;
2688 	struct serial_icounter_struct icount;
2689 	memset(&icount, 0, sizeof(icount));
2690 	if (tty->ops->get_icount)
2691 		retval = tty->ops->get_icount(tty, &icount);
2692 	if (retval != 0)
2693 		return retval;
2694 	if (copy_to_user(arg, &icount, sizeof(icount)))
2695 		return -EFAULT;
2696 	return 0;
2697 }
2698 
2699 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2700 {
2701 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2702 	    tty->driver->subtype == PTY_TYPE_MASTER)
2703 		tty = tty->link;
2704 	return tty;
2705 }
2706 EXPORT_SYMBOL(tty_pair_get_tty);
2707 
2708 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2709 {
2710 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2711 	    tty->driver->subtype == PTY_TYPE_MASTER)
2712 	    return tty;
2713 	return tty->link;
2714 }
2715 EXPORT_SYMBOL(tty_pair_get_pty);
2716 
2717 /*
2718  * Split this up, as gcc can choke on it otherwise..
2719  */
2720 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2721 {
2722 	struct tty_struct *tty = file_tty(file);
2723 	struct tty_struct *real_tty;
2724 	void __user *p = (void __user *)arg;
2725 	int retval;
2726 	struct tty_ldisc *ld;
2727 
2728 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2729 		return -EINVAL;
2730 
2731 	real_tty = tty_pair_get_tty(tty);
2732 
2733 	/*
2734 	 * Factor out some common prep work
2735 	 */
2736 	switch (cmd) {
2737 	case TIOCSETD:
2738 	case TIOCSBRK:
2739 	case TIOCCBRK:
2740 	case TCSBRK:
2741 	case TCSBRKP:
2742 		retval = tty_check_change(tty);
2743 		if (retval)
2744 			return retval;
2745 		if (cmd != TIOCCBRK) {
2746 			tty_wait_until_sent(tty, 0);
2747 			if (signal_pending(current))
2748 				return -EINTR;
2749 		}
2750 		break;
2751 	}
2752 
2753 	/*
2754 	 *	Now do the stuff.
2755 	 */
2756 	switch (cmd) {
2757 	case TIOCSTI:
2758 		return tiocsti(tty, p);
2759 	case TIOCGWINSZ:
2760 		return tiocgwinsz(real_tty, p);
2761 	case TIOCSWINSZ:
2762 		return tiocswinsz(real_tty, p);
2763 	case TIOCCONS:
2764 		return real_tty != tty ? -EINVAL : tioccons(file);
2765 	case FIONBIO:
2766 		return fionbio(file, p);
2767 	case TIOCEXCL:
2768 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2769 		return 0;
2770 	case TIOCNXCL:
2771 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2772 		return 0;
2773 	case TIOCGEXCL:
2774 	{
2775 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2776 		return put_user(excl, (int __user *)p);
2777 	}
2778 	case TIOCNOTTY:
2779 		if (current->signal->tty != tty)
2780 			return -ENOTTY;
2781 		no_tty();
2782 		return 0;
2783 	case TIOCSCTTY:
2784 		return tiocsctty(tty, arg);
2785 	case TIOCGPGRP:
2786 		return tiocgpgrp(tty, real_tty, p);
2787 	case TIOCSPGRP:
2788 		return tiocspgrp(tty, real_tty, p);
2789 	case TIOCGSID:
2790 		return tiocgsid(tty, real_tty, p);
2791 	case TIOCGETD:
2792 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2793 	case TIOCSETD:
2794 		return tiocsetd(tty, p);
2795 	case TIOCVHANGUP:
2796 		if (!capable(CAP_SYS_ADMIN))
2797 			return -EPERM;
2798 		tty_vhangup(tty);
2799 		return 0;
2800 	case TIOCGDEV:
2801 	{
2802 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2803 		return put_user(ret, (unsigned int __user *)p);
2804 	}
2805 	/*
2806 	 * Break handling
2807 	 */
2808 	case TIOCSBRK:	/* Turn break on, unconditionally */
2809 		if (tty->ops->break_ctl)
2810 			return tty->ops->break_ctl(tty, -1);
2811 		return 0;
2812 	case TIOCCBRK:	/* Turn break off, unconditionally */
2813 		if (tty->ops->break_ctl)
2814 			return tty->ops->break_ctl(tty, 0);
2815 		return 0;
2816 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2817 		/* non-zero arg means wait for all output data
2818 		 * to be sent (performed above) but don't send break.
2819 		 * This is used by the tcdrain() termios function.
2820 		 */
2821 		if (!arg)
2822 			return send_break(tty, 250);
2823 		return 0;
2824 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2825 		return send_break(tty, arg ? arg*100 : 250);
2826 
2827 	case TIOCMGET:
2828 		return tty_tiocmget(tty, p);
2829 	case TIOCMSET:
2830 	case TIOCMBIC:
2831 	case TIOCMBIS:
2832 		return tty_tiocmset(tty, cmd, p);
2833 	case TIOCGICOUNT:
2834 		retval = tty_tiocgicount(tty, p);
2835 		/* For the moment allow fall through to the old method */
2836         	if (retval != -EINVAL)
2837 			return retval;
2838 		break;
2839 	case TCFLSH:
2840 		switch (arg) {
2841 		case TCIFLUSH:
2842 		case TCIOFLUSH:
2843 		/* flush tty buffer and allow ldisc to process ioctl */
2844 			tty_buffer_flush(tty);
2845 			break;
2846 		}
2847 		break;
2848 	}
2849 	if (tty->ops->ioctl) {
2850 		retval = (tty->ops->ioctl)(tty, cmd, arg);
2851 		if (retval != -ENOIOCTLCMD)
2852 			return retval;
2853 	}
2854 	ld = tty_ldisc_ref_wait(tty);
2855 	retval = -EINVAL;
2856 	if (ld->ops->ioctl) {
2857 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2858 		if (retval == -ENOIOCTLCMD)
2859 			retval = -ENOTTY;
2860 	}
2861 	tty_ldisc_deref(ld);
2862 	return retval;
2863 }
2864 
2865 #ifdef CONFIG_COMPAT
2866 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2867 				unsigned long arg)
2868 {
2869 	struct tty_struct *tty = file_tty(file);
2870 	struct tty_ldisc *ld;
2871 	int retval = -ENOIOCTLCMD;
2872 
2873 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2874 		return -EINVAL;
2875 
2876 	if (tty->ops->compat_ioctl) {
2877 		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2878 		if (retval != -ENOIOCTLCMD)
2879 			return retval;
2880 	}
2881 
2882 	ld = tty_ldisc_ref_wait(tty);
2883 	if (ld->ops->compat_ioctl)
2884 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2885 	else
2886 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2887 	tty_ldisc_deref(ld);
2888 
2889 	return retval;
2890 }
2891 #endif
2892 
2893 static int this_tty(const void *t, struct file *file, unsigned fd)
2894 {
2895 	if (likely(file->f_op->read != tty_read))
2896 		return 0;
2897 	return file_tty(file) != t ? 0 : fd + 1;
2898 }
2899 
2900 /*
2901  * This implements the "Secure Attention Key" ---  the idea is to
2902  * prevent trojan horses by killing all processes associated with this
2903  * tty when the user hits the "Secure Attention Key".  Required for
2904  * super-paranoid applications --- see the Orange Book for more details.
2905  *
2906  * This code could be nicer; ideally it should send a HUP, wait a few
2907  * seconds, then send a INT, and then a KILL signal.  But you then
2908  * have to coordinate with the init process, since all processes associated
2909  * with the current tty must be dead before the new getty is allowed
2910  * to spawn.
2911  *
2912  * Now, if it would be correct ;-/ The current code has a nasty hole -
2913  * it doesn't catch files in flight. We may send the descriptor to ourselves
2914  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2915  *
2916  * Nasty bug: do_SAK is being called in interrupt context.  This can
2917  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2918  */
2919 void __do_SAK(struct tty_struct *tty)
2920 {
2921 #ifdef TTY_SOFT_SAK
2922 	tty_hangup(tty);
2923 #else
2924 	struct task_struct *g, *p;
2925 	struct pid *session;
2926 	int		i;
2927 
2928 	if (!tty)
2929 		return;
2930 	session = tty->session;
2931 
2932 	tty_ldisc_flush(tty);
2933 
2934 	tty_driver_flush_buffer(tty);
2935 
2936 	read_lock(&tasklist_lock);
2937 	/* Kill the entire session */
2938 	do_each_pid_task(session, PIDTYPE_SID, p) {
2939 		printk(KERN_NOTICE "SAK: killed process %d"
2940 			" (%s): task_session(p)==tty->session\n",
2941 			task_pid_nr(p), p->comm);
2942 		send_sig(SIGKILL, p, 1);
2943 	} while_each_pid_task(session, PIDTYPE_SID, p);
2944 	/* Now kill any processes that happen to have the
2945 	 * tty open.
2946 	 */
2947 	do_each_thread(g, p) {
2948 		if (p->signal->tty == tty) {
2949 			printk(KERN_NOTICE "SAK: killed process %d"
2950 			    " (%s): task_session(p)==tty->session\n",
2951 			    task_pid_nr(p), p->comm);
2952 			send_sig(SIGKILL, p, 1);
2953 			continue;
2954 		}
2955 		task_lock(p);
2956 		i = iterate_fd(p->files, 0, this_tty, tty);
2957 		if (i != 0) {
2958 			printk(KERN_NOTICE "SAK: killed process %d"
2959 			    " (%s): fd#%d opened to the tty\n",
2960 				    task_pid_nr(p), p->comm, i - 1);
2961 			force_sig(SIGKILL, p);
2962 		}
2963 		task_unlock(p);
2964 	} while_each_thread(g, p);
2965 	read_unlock(&tasklist_lock);
2966 #endif
2967 }
2968 
2969 static void do_SAK_work(struct work_struct *work)
2970 {
2971 	struct tty_struct *tty =
2972 		container_of(work, struct tty_struct, SAK_work);
2973 	__do_SAK(tty);
2974 }
2975 
2976 /*
2977  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2978  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2979  * the values which we write to it will be identical to the values which it
2980  * already has. --akpm
2981  */
2982 void do_SAK(struct tty_struct *tty)
2983 {
2984 	if (!tty)
2985 		return;
2986 	schedule_work(&tty->SAK_work);
2987 }
2988 
2989 EXPORT_SYMBOL(do_SAK);
2990 
2991 static int dev_match_devt(struct device *dev, const void *data)
2992 {
2993 	const dev_t *devt = data;
2994 	return dev->devt == *devt;
2995 }
2996 
2997 /* Must put_device() after it's unused! */
2998 static struct device *tty_get_device(struct tty_struct *tty)
2999 {
3000 	dev_t devt = tty_devnum(tty);
3001 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3002 }
3003 
3004 
3005 /**
3006  *	initialize_tty_struct
3007  *	@tty: tty to initialize
3008  *
3009  *	This subroutine initializes a tty structure that has been newly
3010  *	allocated.
3011  *
3012  *	Locking: none - tty in question must not be exposed at this point
3013  */
3014 
3015 void initialize_tty_struct(struct tty_struct *tty,
3016 		struct tty_driver *driver, int idx)
3017 {
3018 	memset(tty, 0, sizeof(struct tty_struct));
3019 	kref_init(&tty->kref);
3020 	tty->magic = TTY_MAGIC;
3021 	tty_ldisc_init(tty);
3022 	tty->session = NULL;
3023 	tty->pgrp = NULL;
3024 	mutex_init(&tty->legacy_mutex);
3025 	mutex_init(&tty->throttle_mutex);
3026 	init_rwsem(&tty->termios_rwsem);
3027 	mutex_init(&tty->winsize_mutex);
3028 	init_ldsem(&tty->ldisc_sem);
3029 	init_waitqueue_head(&tty->write_wait);
3030 	init_waitqueue_head(&tty->read_wait);
3031 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3032 	mutex_init(&tty->atomic_write_lock);
3033 	spin_lock_init(&tty->ctrl_lock);
3034 	INIT_LIST_HEAD(&tty->tty_files);
3035 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3036 
3037 	tty->driver = driver;
3038 	tty->ops = driver->ops;
3039 	tty->index = idx;
3040 	tty_line_name(driver, idx, tty->name);
3041 	tty->dev = tty_get_device(tty);
3042 }
3043 
3044 /**
3045  *	deinitialize_tty_struct
3046  *	@tty: tty to deinitialize
3047  *
3048  *	This subroutine deinitializes a tty structure that has been newly
3049  *	allocated but tty_release cannot be called on that yet.
3050  *
3051  *	Locking: none - tty in question must not be exposed at this point
3052  */
3053 void deinitialize_tty_struct(struct tty_struct *tty)
3054 {
3055 	tty_ldisc_deinit(tty);
3056 }
3057 
3058 /**
3059  *	tty_put_char	-	write one character to a tty
3060  *	@tty: tty
3061  *	@ch: character
3062  *
3063  *	Write one byte to the tty using the provided put_char method
3064  *	if present. Returns the number of characters successfully output.
3065  *
3066  *	Note: the specific put_char operation in the driver layer may go
3067  *	away soon. Don't call it directly, use this method
3068  */
3069 
3070 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3071 {
3072 	if (tty->ops->put_char)
3073 		return tty->ops->put_char(tty, ch);
3074 	return tty->ops->write(tty, &ch, 1);
3075 }
3076 EXPORT_SYMBOL_GPL(tty_put_char);
3077 
3078 struct class *tty_class;
3079 
3080 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3081 		unsigned int index, unsigned int count)
3082 {
3083 	/* init here, since reused cdevs cause crashes */
3084 	cdev_init(&driver->cdevs[index], &tty_fops);
3085 	driver->cdevs[index].owner = driver->owner;
3086 	return cdev_add(&driver->cdevs[index], dev, count);
3087 }
3088 
3089 /**
3090  *	tty_register_device - register a tty device
3091  *	@driver: the tty driver that describes the tty device
3092  *	@index: the index in the tty driver for this tty device
3093  *	@device: a struct device that is associated with this tty device.
3094  *		This field is optional, if there is no known struct device
3095  *		for this tty device it can be set to NULL safely.
3096  *
3097  *	Returns a pointer to the struct device for this tty device
3098  *	(or ERR_PTR(-EFOO) on error).
3099  *
3100  *	This call is required to be made to register an individual tty device
3101  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3102  *	that bit is not set, this function should not be called by a tty
3103  *	driver.
3104  *
3105  *	Locking: ??
3106  */
3107 
3108 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3109 				   struct device *device)
3110 {
3111 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3112 }
3113 EXPORT_SYMBOL(tty_register_device);
3114 
3115 static void tty_device_create_release(struct device *dev)
3116 {
3117 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3118 	kfree(dev);
3119 }
3120 
3121 /**
3122  *	tty_register_device_attr - register a tty device
3123  *	@driver: the tty driver that describes the tty device
3124  *	@index: the index in the tty driver for this tty device
3125  *	@device: a struct device that is associated with this tty device.
3126  *		This field is optional, if there is no known struct device
3127  *		for this tty device it can be set to NULL safely.
3128  *	@drvdata: Driver data to be set to device.
3129  *	@attr_grp: Attribute group to be set on device.
3130  *
3131  *	Returns a pointer to the struct device for this tty device
3132  *	(or ERR_PTR(-EFOO) on error).
3133  *
3134  *	This call is required to be made to register an individual tty device
3135  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3136  *	that bit is not set, this function should not be called by a tty
3137  *	driver.
3138  *
3139  *	Locking: ??
3140  */
3141 struct device *tty_register_device_attr(struct tty_driver *driver,
3142 				   unsigned index, struct device *device,
3143 				   void *drvdata,
3144 				   const struct attribute_group **attr_grp)
3145 {
3146 	char name[64];
3147 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3148 	struct device *dev = NULL;
3149 	int retval = -ENODEV;
3150 	bool cdev = false;
3151 
3152 	if (index >= driver->num) {
3153 		printk(KERN_ERR "Attempt to register invalid tty line number "
3154 		       " (%d).\n", index);
3155 		return ERR_PTR(-EINVAL);
3156 	}
3157 
3158 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3159 		pty_line_name(driver, index, name);
3160 	else
3161 		tty_line_name(driver, index, name);
3162 
3163 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3164 		retval = tty_cdev_add(driver, devt, index, 1);
3165 		if (retval)
3166 			goto error;
3167 		cdev = true;
3168 	}
3169 
3170 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3171 	if (!dev) {
3172 		retval = -ENOMEM;
3173 		goto error;
3174 	}
3175 
3176 	dev->devt = devt;
3177 	dev->class = tty_class;
3178 	dev->parent = device;
3179 	dev->release = tty_device_create_release;
3180 	dev_set_name(dev, "%s", name);
3181 	dev->groups = attr_grp;
3182 	dev_set_drvdata(dev, drvdata);
3183 
3184 	retval = device_register(dev);
3185 	if (retval)
3186 		goto error;
3187 
3188 	return dev;
3189 
3190 error:
3191 	put_device(dev);
3192 	if (cdev)
3193 		cdev_del(&driver->cdevs[index]);
3194 	return ERR_PTR(retval);
3195 }
3196 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3197 
3198 /**
3199  * 	tty_unregister_device - unregister a tty device
3200  * 	@driver: the tty driver that describes the tty device
3201  * 	@index: the index in the tty driver for this tty device
3202  *
3203  * 	If a tty device is registered with a call to tty_register_device() then
3204  *	this function must be called when the tty device is gone.
3205  *
3206  *	Locking: ??
3207  */
3208 
3209 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3210 {
3211 	device_destroy(tty_class,
3212 		MKDEV(driver->major, driver->minor_start) + index);
3213 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3214 		cdev_del(&driver->cdevs[index]);
3215 }
3216 EXPORT_SYMBOL(tty_unregister_device);
3217 
3218 /**
3219  * __tty_alloc_driver -- allocate tty driver
3220  * @lines: count of lines this driver can handle at most
3221  * @owner: module which is repsonsible for this driver
3222  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3223  *
3224  * This should not be called directly, some of the provided macros should be
3225  * used instead. Use IS_ERR and friends on @retval.
3226  */
3227 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3228 		unsigned long flags)
3229 {
3230 	struct tty_driver *driver;
3231 	unsigned int cdevs = 1;
3232 	int err;
3233 
3234 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3235 		return ERR_PTR(-EINVAL);
3236 
3237 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3238 	if (!driver)
3239 		return ERR_PTR(-ENOMEM);
3240 
3241 	kref_init(&driver->kref);
3242 	driver->magic = TTY_DRIVER_MAGIC;
3243 	driver->num = lines;
3244 	driver->owner = owner;
3245 	driver->flags = flags;
3246 
3247 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3248 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3249 				GFP_KERNEL);
3250 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3251 				GFP_KERNEL);
3252 		if (!driver->ttys || !driver->termios) {
3253 			err = -ENOMEM;
3254 			goto err_free_all;
3255 		}
3256 	}
3257 
3258 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3259 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3260 				GFP_KERNEL);
3261 		if (!driver->ports) {
3262 			err = -ENOMEM;
3263 			goto err_free_all;
3264 		}
3265 		cdevs = lines;
3266 	}
3267 
3268 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3269 	if (!driver->cdevs) {
3270 		err = -ENOMEM;
3271 		goto err_free_all;
3272 	}
3273 
3274 	return driver;
3275 err_free_all:
3276 	kfree(driver->ports);
3277 	kfree(driver->ttys);
3278 	kfree(driver->termios);
3279 	kfree(driver);
3280 	return ERR_PTR(err);
3281 }
3282 EXPORT_SYMBOL(__tty_alloc_driver);
3283 
3284 static void destruct_tty_driver(struct kref *kref)
3285 {
3286 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3287 	int i;
3288 	struct ktermios *tp;
3289 
3290 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3291 		/*
3292 		 * Free the termios and termios_locked structures because
3293 		 * we don't want to get memory leaks when modular tty
3294 		 * drivers are removed from the kernel.
3295 		 */
3296 		for (i = 0; i < driver->num; i++) {
3297 			tp = driver->termios[i];
3298 			if (tp) {
3299 				driver->termios[i] = NULL;
3300 				kfree(tp);
3301 			}
3302 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3303 				tty_unregister_device(driver, i);
3304 		}
3305 		proc_tty_unregister_driver(driver);
3306 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3307 			cdev_del(&driver->cdevs[0]);
3308 	}
3309 	kfree(driver->cdevs);
3310 	kfree(driver->ports);
3311 	kfree(driver->termios);
3312 	kfree(driver->ttys);
3313 	kfree(driver);
3314 }
3315 
3316 void tty_driver_kref_put(struct tty_driver *driver)
3317 {
3318 	kref_put(&driver->kref, destruct_tty_driver);
3319 }
3320 EXPORT_SYMBOL(tty_driver_kref_put);
3321 
3322 void tty_set_operations(struct tty_driver *driver,
3323 			const struct tty_operations *op)
3324 {
3325 	driver->ops = op;
3326 };
3327 EXPORT_SYMBOL(tty_set_operations);
3328 
3329 void put_tty_driver(struct tty_driver *d)
3330 {
3331 	tty_driver_kref_put(d);
3332 }
3333 EXPORT_SYMBOL(put_tty_driver);
3334 
3335 /*
3336  * Called by a tty driver to register itself.
3337  */
3338 int tty_register_driver(struct tty_driver *driver)
3339 {
3340 	int error;
3341 	int i;
3342 	dev_t dev;
3343 	struct device *d;
3344 
3345 	if (!driver->major) {
3346 		error = alloc_chrdev_region(&dev, driver->minor_start,
3347 						driver->num, driver->name);
3348 		if (!error) {
3349 			driver->major = MAJOR(dev);
3350 			driver->minor_start = MINOR(dev);
3351 		}
3352 	} else {
3353 		dev = MKDEV(driver->major, driver->minor_start);
3354 		error = register_chrdev_region(dev, driver->num, driver->name);
3355 	}
3356 	if (error < 0)
3357 		goto err;
3358 
3359 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3360 		error = tty_cdev_add(driver, dev, 0, driver->num);
3361 		if (error)
3362 			goto err_unreg_char;
3363 	}
3364 
3365 	mutex_lock(&tty_mutex);
3366 	list_add(&driver->tty_drivers, &tty_drivers);
3367 	mutex_unlock(&tty_mutex);
3368 
3369 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3370 		for (i = 0; i < driver->num; i++) {
3371 			d = tty_register_device(driver, i, NULL);
3372 			if (IS_ERR(d)) {
3373 				error = PTR_ERR(d);
3374 				goto err_unreg_devs;
3375 			}
3376 		}
3377 	}
3378 	proc_tty_register_driver(driver);
3379 	driver->flags |= TTY_DRIVER_INSTALLED;
3380 	return 0;
3381 
3382 err_unreg_devs:
3383 	for (i--; i >= 0; i--)
3384 		tty_unregister_device(driver, i);
3385 
3386 	mutex_lock(&tty_mutex);
3387 	list_del(&driver->tty_drivers);
3388 	mutex_unlock(&tty_mutex);
3389 
3390 err_unreg_char:
3391 	unregister_chrdev_region(dev, driver->num);
3392 err:
3393 	return error;
3394 }
3395 EXPORT_SYMBOL(tty_register_driver);
3396 
3397 /*
3398  * Called by a tty driver to unregister itself.
3399  */
3400 int tty_unregister_driver(struct tty_driver *driver)
3401 {
3402 #if 0
3403 	/* FIXME */
3404 	if (driver->refcount)
3405 		return -EBUSY;
3406 #endif
3407 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3408 				driver->num);
3409 	mutex_lock(&tty_mutex);
3410 	list_del(&driver->tty_drivers);
3411 	mutex_unlock(&tty_mutex);
3412 	return 0;
3413 }
3414 
3415 EXPORT_SYMBOL(tty_unregister_driver);
3416 
3417 dev_t tty_devnum(struct tty_struct *tty)
3418 {
3419 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3420 }
3421 EXPORT_SYMBOL(tty_devnum);
3422 
3423 void proc_clear_tty(struct task_struct *p)
3424 {
3425 	unsigned long flags;
3426 	struct tty_struct *tty;
3427 	spin_lock_irqsave(&p->sighand->siglock, flags);
3428 	tty = p->signal->tty;
3429 	p->signal->tty = NULL;
3430 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3431 	tty_kref_put(tty);
3432 }
3433 
3434 /* Called under the sighand lock */
3435 
3436 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3437 {
3438 	if (tty) {
3439 		unsigned long flags;
3440 		/* We should not have a session or pgrp to put here but.... */
3441 		spin_lock_irqsave(&tty->ctrl_lock, flags);
3442 		put_pid(tty->session);
3443 		put_pid(tty->pgrp);
3444 		tty->pgrp = get_pid(task_pgrp(tsk));
3445 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3446 		tty->session = get_pid(task_session(tsk));
3447 		if (tsk->signal->tty) {
3448 			printk(KERN_DEBUG "tty not NULL!!\n");
3449 			tty_kref_put(tsk->signal->tty);
3450 		}
3451 	}
3452 	put_pid(tsk->signal->tty_old_pgrp);
3453 	tsk->signal->tty = tty_kref_get(tty);
3454 	tsk->signal->tty_old_pgrp = NULL;
3455 }
3456 
3457 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3458 {
3459 	spin_lock_irq(&tsk->sighand->siglock);
3460 	__proc_set_tty(tsk, tty);
3461 	spin_unlock_irq(&tsk->sighand->siglock);
3462 }
3463 
3464 struct tty_struct *get_current_tty(void)
3465 {
3466 	struct tty_struct *tty;
3467 	unsigned long flags;
3468 
3469 	spin_lock_irqsave(&current->sighand->siglock, flags);
3470 	tty = tty_kref_get(current->signal->tty);
3471 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3472 	return tty;
3473 }
3474 EXPORT_SYMBOL_GPL(get_current_tty);
3475 
3476 void tty_default_fops(struct file_operations *fops)
3477 {
3478 	*fops = tty_fops;
3479 }
3480 
3481 /*
3482  * Initialize the console device. This is called *early*, so
3483  * we can't necessarily depend on lots of kernel help here.
3484  * Just do some early initializations, and do the complex setup
3485  * later.
3486  */
3487 void __init console_init(void)
3488 {
3489 	initcall_t *call;
3490 
3491 	/* Setup the default TTY line discipline. */
3492 	tty_ldisc_begin();
3493 
3494 	/*
3495 	 * set up the console device so that later boot sequences can
3496 	 * inform about problems etc..
3497 	 */
3498 	call = __con_initcall_start;
3499 	while (call < __con_initcall_end) {
3500 		(*call)();
3501 		call++;
3502 	}
3503 }
3504 
3505 static char *tty_devnode(struct device *dev, umode_t *mode)
3506 {
3507 	if (!mode)
3508 		return NULL;
3509 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3510 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3511 		*mode = 0666;
3512 	return NULL;
3513 }
3514 
3515 static int __init tty_class_init(void)
3516 {
3517 	tty_class = class_create(THIS_MODULE, "tty");
3518 	if (IS_ERR(tty_class))
3519 		return PTR_ERR(tty_class);
3520 	tty_class->devnode = tty_devnode;
3521 	return 0;
3522 }
3523 
3524 postcore_initcall(tty_class_init);
3525 
3526 /* 3/2004 jmc: why do these devices exist? */
3527 static struct cdev tty_cdev, console_cdev;
3528 
3529 static ssize_t show_cons_active(struct device *dev,
3530 				struct device_attribute *attr, char *buf)
3531 {
3532 	struct console *cs[16];
3533 	int i = 0;
3534 	struct console *c;
3535 	ssize_t count = 0;
3536 
3537 	console_lock();
3538 	for_each_console(c) {
3539 		if (!c->device)
3540 			continue;
3541 		if (!c->write)
3542 			continue;
3543 		if ((c->flags & CON_ENABLED) == 0)
3544 			continue;
3545 		cs[i++] = c;
3546 		if (i >= ARRAY_SIZE(cs))
3547 			break;
3548 	}
3549 	while (i--) {
3550 		int index = cs[i]->index;
3551 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3552 
3553 		/* don't resolve tty0 as some programs depend on it */
3554 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3555 			count += tty_line_name(drv, index, buf + count);
3556 		else
3557 			count += sprintf(buf + count, "%s%d",
3558 					 cs[i]->name, cs[i]->index);
3559 
3560 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3561 	}
3562 	console_unlock();
3563 
3564 	return count;
3565 }
3566 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3567 
3568 static struct device *consdev;
3569 
3570 void console_sysfs_notify(void)
3571 {
3572 	if (consdev)
3573 		sysfs_notify(&consdev->kobj, NULL, "active");
3574 }
3575 
3576 /*
3577  * Ok, now we can initialize the rest of the tty devices and can count
3578  * on memory allocations, interrupts etc..
3579  */
3580 int __init tty_init(void)
3581 {
3582 	cdev_init(&tty_cdev, &tty_fops);
3583 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3584 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3585 		panic("Couldn't register /dev/tty driver\n");
3586 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3587 
3588 	cdev_init(&console_cdev, &console_fops);
3589 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3590 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3591 		panic("Couldn't register /dev/console driver\n");
3592 	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3593 			      "console");
3594 	if (IS_ERR(consdev))
3595 		consdev = NULL;
3596 	else
3597 		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3598 
3599 #ifdef CONFIG_VT
3600 	vty_init(&console_fops);
3601 #endif
3602 	return 0;
3603 }
3604 
3605