1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 */ 5 6 /* 7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 8 * or rs-channels. It also implements echoing, cooked mode etc. 9 * 10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 11 * 12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 13 * tty_struct and tty_queue structures. Previously there was an array 14 * of 256 tty_struct's which was statically allocated, and the 15 * tty_queue structures were allocated at boot time. Both are now 16 * dynamically allocated only when the tty is open. 17 * 18 * Also restructured routines so that there is more of a separation 19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 20 * the low-level tty routines (serial.c, pty.c, console.c). This 21 * makes for cleaner and more compact code. -TYT, 9/17/92 22 * 23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 24 * which can be dynamically activated and de-activated by the line 25 * discipline handling modules (like SLIP). 26 * 27 * NOTE: pay no attention to the line discipline code (yet); its 28 * interface is still subject to change in this version... 29 * -- TYT, 1/31/92 30 * 31 * Added functionality to the OPOST tty handling. No delays, but all 32 * other bits should be there. 33 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 34 * 35 * Rewrote canonical mode and added more termios flags. 36 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 37 * 38 * Reorganized FASYNC support so mouse code can share it. 39 * -- ctm@ardi.com, 9Sep95 40 * 41 * New TIOCLINUX variants added. 42 * -- mj@k332.feld.cvut.cz, 19-Nov-95 43 * 44 * Restrict vt switching via ioctl() 45 * -- grif@cs.ucr.edu, 5-Dec-95 46 * 47 * Move console and virtual terminal code to more appropriate files, 48 * implement CONFIG_VT and generalize console device interface. 49 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 50 * 51 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 52 * -- Bill Hawes <whawes@star.net>, June 97 53 * 54 * Added devfs support. 55 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 56 * 57 * Added support for a Unix98-style ptmx device. 58 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 59 * 60 * Reduced memory usage for older ARM systems 61 * -- Russell King <rmk@arm.linux.org.uk> 62 * 63 * Move do_SAK() into process context. Less stack use in devfs functions. 64 * alloc_tty_struct() always uses kmalloc() 65 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 66 */ 67 68 #include <linux/types.h> 69 #include <linux/major.h> 70 #include <linux/errno.h> 71 #include <linux/signal.h> 72 #include <linux/fcntl.h> 73 #include <linux/sched/signal.h> 74 #include <linux/sched/task.h> 75 #include <linux/interrupt.h> 76 #include <linux/tty.h> 77 #include <linux/tty_driver.h> 78 #include <linux/tty_flip.h> 79 #include <linux/devpts_fs.h> 80 #include <linux/file.h> 81 #include <linux/fdtable.h> 82 #include <linux/console.h> 83 #include <linux/timer.h> 84 #include <linux/ctype.h> 85 #include <linux/kd.h> 86 #include <linux/mm.h> 87 #include <linux/string.h> 88 #include <linux/slab.h> 89 #include <linux/poll.h> 90 #include <linux/ppp-ioctl.h> 91 #include <linux/proc_fs.h> 92 #include <linux/init.h> 93 #include <linux/module.h> 94 #include <linux/device.h> 95 #include <linux/wait.h> 96 #include <linux/bitops.h> 97 #include <linux/delay.h> 98 #include <linux/seq_file.h> 99 #include <linux/serial.h> 100 #include <linux/ratelimit.h> 101 #include <linux/compat.h> 102 #include <linux/uaccess.h> 103 #include <linux/termios_internal.h> 104 105 #include <linux/kbd_kern.h> 106 #include <linux/vt_kern.h> 107 #include <linux/selection.h> 108 109 #include <linux/kmod.h> 110 #include <linux/nsproxy.h> 111 #include "tty.h" 112 113 #undef TTY_DEBUG_HANGUP 114 #ifdef TTY_DEBUG_HANGUP 115 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args) 116 #else 117 # define tty_debug_hangup(tty, f, args...) do { } while (0) 118 #endif 119 120 #define TTY_PARANOIA_CHECK 1 121 #define CHECK_TTY_COUNT 1 122 123 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 124 .c_iflag = ICRNL | IXON, 125 .c_oflag = OPOST | ONLCR, 126 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 127 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 128 ECHOCTL | ECHOKE | IEXTEN, 129 .c_cc = INIT_C_CC, 130 .c_ispeed = 38400, 131 .c_ospeed = 38400, 132 /* .c_line = N_TTY, */ 133 }; 134 EXPORT_SYMBOL(tty_std_termios); 135 136 /* This list gets poked at by procfs and various bits of boot up code. This 137 * could do with some rationalisation such as pulling the tty proc function 138 * into this file. 139 */ 140 141 LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 142 143 /* Mutex to protect creating and releasing a tty */ 144 DEFINE_MUTEX(tty_mutex); 145 146 static ssize_t tty_read(struct kiocb *, struct iov_iter *); 147 static ssize_t tty_write(struct kiocb *, struct iov_iter *); 148 static __poll_t tty_poll(struct file *, poll_table *); 149 static int tty_open(struct inode *, struct file *); 150 #ifdef CONFIG_COMPAT 151 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 152 unsigned long arg); 153 #else 154 #define tty_compat_ioctl NULL 155 #endif 156 static int __tty_fasync(int fd, struct file *filp, int on); 157 static int tty_fasync(int fd, struct file *filp, int on); 158 static void release_tty(struct tty_struct *tty, int idx); 159 160 /** 161 * free_tty_struct - free a disused tty 162 * @tty: tty struct to free 163 * 164 * Free the write buffers, tty queue and tty memory itself. 165 * 166 * Locking: none. Must be called after tty is definitely unused 167 */ 168 static void free_tty_struct(struct tty_struct *tty) 169 { 170 tty_ldisc_deinit(tty); 171 put_device(tty->dev); 172 kvfree(tty->write_buf); 173 kfree(tty); 174 } 175 176 static inline struct tty_struct *file_tty(struct file *file) 177 { 178 return ((struct tty_file_private *)file->private_data)->tty; 179 } 180 181 int tty_alloc_file(struct file *file) 182 { 183 struct tty_file_private *priv; 184 185 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 186 if (!priv) 187 return -ENOMEM; 188 189 file->private_data = priv; 190 191 return 0; 192 } 193 194 /* Associate a new file with the tty structure */ 195 void tty_add_file(struct tty_struct *tty, struct file *file) 196 { 197 struct tty_file_private *priv = file->private_data; 198 199 priv->tty = tty; 200 priv->file = file; 201 202 spin_lock(&tty->files_lock); 203 list_add(&priv->list, &tty->tty_files); 204 spin_unlock(&tty->files_lock); 205 } 206 207 /** 208 * tty_free_file - free file->private_data 209 * @file: to free private_data of 210 * 211 * This shall be used only for fail path handling when tty_add_file was not 212 * called yet. 213 */ 214 void tty_free_file(struct file *file) 215 { 216 struct tty_file_private *priv = file->private_data; 217 218 file->private_data = NULL; 219 kfree(priv); 220 } 221 222 /* Delete file from its tty */ 223 static void tty_del_file(struct file *file) 224 { 225 struct tty_file_private *priv = file->private_data; 226 struct tty_struct *tty = priv->tty; 227 228 spin_lock(&tty->files_lock); 229 list_del(&priv->list); 230 spin_unlock(&tty->files_lock); 231 tty_free_file(file); 232 } 233 234 /** 235 * tty_name - return tty naming 236 * @tty: tty structure 237 * 238 * Convert a tty structure into a name. The name reflects the kernel naming 239 * policy and if udev is in use may not reflect user space 240 * 241 * Locking: none 242 */ 243 const char *tty_name(const struct tty_struct *tty) 244 { 245 if (!tty) /* Hmm. NULL pointer. That's fun. */ 246 return "NULL tty"; 247 return tty->name; 248 } 249 EXPORT_SYMBOL(tty_name); 250 251 const char *tty_driver_name(const struct tty_struct *tty) 252 { 253 if (!tty || !tty->driver) 254 return ""; 255 return tty->driver->name; 256 } 257 258 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 259 const char *routine) 260 { 261 #ifdef TTY_PARANOIA_CHECK 262 if (!tty) { 263 pr_warn("(%d:%d): %s: NULL tty\n", 264 imajor(inode), iminor(inode), routine); 265 return 1; 266 } 267 #endif 268 return 0; 269 } 270 271 /* Caller must hold tty_lock */ 272 static int check_tty_count(struct tty_struct *tty, const char *routine) 273 { 274 #ifdef CHECK_TTY_COUNT 275 struct list_head *p; 276 int count = 0, kopen_count = 0; 277 278 spin_lock(&tty->files_lock); 279 list_for_each(p, &tty->tty_files) { 280 count++; 281 } 282 spin_unlock(&tty->files_lock); 283 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 284 tty->driver->subtype == PTY_TYPE_SLAVE && 285 tty->link && tty->link->count) 286 count++; 287 if (tty_port_kopened(tty->port)) 288 kopen_count++; 289 if (tty->count != (count + kopen_count)) { 290 tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n", 291 routine, tty->count, count, kopen_count); 292 return (count + kopen_count); 293 } 294 #endif 295 return 0; 296 } 297 298 /** 299 * get_tty_driver - find device of a tty 300 * @device: device identifier 301 * @index: returns the index of the tty 302 * 303 * This routine returns a tty driver structure, given a device number and also 304 * passes back the index number. 305 * 306 * Locking: caller must hold tty_mutex 307 */ 308 static struct tty_driver *get_tty_driver(dev_t device, int *index) 309 { 310 struct tty_driver *p; 311 312 list_for_each_entry(p, &tty_drivers, tty_drivers) { 313 dev_t base = MKDEV(p->major, p->minor_start); 314 315 if (device < base || device >= base + p->num) 316 continue; 317 *index = device - base; 318 return tty_driver_kref_get(p); 319 } 320 return NULL; 321 } 322 323 /** 324 * tty_dev_name_to_number - return dev_t for device name 325 * @name: user space name of device under /dev 326 * @number: pointer to dev_t that this function will populate 327 * 328 * This function converts device names like ttyS0 or ttyUSB1 into dev_t like 329 * (4, 64) or (188, 1). If no corresponding driver is registered then the 330 * function returns -%ENODEV. 331 * 332 * Locking: this acquires tty_mutex to protect the tty_drivers list from 333 * being modified while we are traversing it, and makes sure to 334 * release it before exiting. 335 */ 336 int tty_dev_name_to_number(const char *name, dev_t *number) 337 { 338 struct tty_driver *p; 339 int ret; 340 int index, prefix_length = 0; 341 const char *str; 342 343 for (str = name; *str && !isdigit(*str); str++) 344 ; 345 346 if (!*str) 347 return -EINVAL; 348 349 ret = kstrtoint(str, 10, &index); 350 if (ret) 351 return ret; 352 353 prefix_length = str - name; 354 mutex_lock(&tty_mutex); 355 356 list_for_each_entry(p, &tty_drivers, tty_drivers) 357 if (prefix_length == strlen(p->name) && strncmp(name, 358 p->name, prefix_length) == 0) { 359 if (index < p->num) { 360 *number = MKDEV(p->major, p->minor_start + index); 361 goto out; 362 } 363 } 364 365 /* if here then driver wasn't found */ 366 ret = -ENODEV; 367 out: 368 mutex_unlock(&tty_mutex); 369 return ret; 370 } 371 EXPORT_SYMBOL_GPL(tty_dev_name_to_number); 372 373 #ifdef CONFIG_CONSOLE_POLL 374 375 /** 376 * tty_find_polling_driver - find device of a polled tty 377 * @name: name string to match 378 * @line: pointer to resulting tty line nr 379 * 380 * This routine returns a tty driver structure, given a name and the condition 381 * that the tty driver is capable of polled operation. 382 */ 383 struct tty_driver *tty_find_polling_driver(char *name, int *line) 384 { 385 struct tty_driver *p, *res = NULL; 386 int tty_line = 0; 387 int len; 388 char *str, *stp; 389 390 for (str = name; *str; str++) 391 if ((*str >= '0' && *str <= '9') || *str == ',') 392 break; 393 if (!*str) 394 return NULL; 395 396 len = str - name; 397 tty_line = simple_strtoul(str, &str, 10); 398 399 mutex_lock(&tty_mutex); 400 /* Search through the tty devices to look for a match */ 401 list_for_each_entry(p, &tty_drivers, tty_drivers) { 402 if (!len || strncmp(name, p->name, len) != 0) 403 continue; 404 stp = str; 405 if (*stp == ',') 406 stp++; 407 if (*stp == '\0') 408 stp = NULL; 409 410 if (tty_line >= 0 && tty_line < p->num && p->ops && 411 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 412 res = tty_driver_kref_get(p); 413 *line = tty_line; 414 break; 415 } 416 } 417 mutex_unlock(&tty_mutex); 418 419 return res; 420 } 421 EXPORT_SYMBOL_GPL(tty_find_polling_driver); 422 #endif 423 424 static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to) 425 { 426 return 0; 427 } 428 429 static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from) 430 { 431 return -EIO; 432 } 433 434 /* No kernel lock held - none needed ;) */ 435 static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait) 436 { 437 return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM; 438 } 439 440 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 441 unsigned long arg) 442 { 443 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 444 } 445 446 static long hung_up_tty_compat_ioctl(struct file *file, 447 unsigned int cmd, unsigned long arg) 448 { 449 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 450 } 451 452 static int hung_up_tty_fasync(int fd, struct file *file, int on) 453 { 454 return -ENOTTY; 455 } 456 457 static void tty_show_fdinfo(struct seq_file *m, struct file *file) 458 { 459 struct tty_struct *tty = file_tty(file); 460 461 if (tty && tty->ops && tty->ops->show_fdinfo) 462 tty->ops->show_fdinfo(tty, m); 463 } 464 465 static const struct file_operations tty_fops = { 466 .llseek = no_llseek, 467 .read_iter = tty_read, 468 .write_iter = tty_write, 469 .splice_read = copy_splice_read, 470 .splice_write = iter_file_splice_write, 471 .poll = tty_poll, 472 .unlocked_ioctl = tty_ioctl, 473 .compat_ioctl = tty_compat_ioctl, 474 .open = tty_open, 475 .release = tty_release, 476 .fasync = tty_fasync, 477 .show_fdinfo = tty_show_fdinfo, 478 }; 479 480 static const struct file_operations console_fops = { 481 .llseek = no_llseek, 482 .read_iter = tty_read, 483 .write_iter = redirected_tty_write, 484 .splice_read = copy_splice_read, 485 .splice_write = iter_file_splice_write, 486 .poll = tty_poll, 487 .unlocked_ioctl = tty_ioctl, 488 .compat_ioctl = tty_compat_ioctl, 489 .open = tty_open, 490 .release = tty_release, 491 .fasync = tty_fasync, 492 }; 493 494 static const struct file_operations hung_up_tty_fops = { 495 .llseek = no_llseek, 496 .read_iter = hung_up_tty_read, 497 .write_iter = hung_up_tty_write, 498 .poll = hung_up_tty_poll, 499 .unlocked_ioctl = hung_up_tty_ioctl, 500 .compat_ioctl = hung_up_tty_compat_ioctl, 501 .release = tty_release, 502 .fasync = hung_up_tty_fasync, 503 }; 504 505 static DEFINE_SPINLOCK(redirect_lock); 506 static struct file *redirect; 507 508 /** 509 * tty_wakeup - request more data 510 * @tty: terminal 511 * 512 * Internal and external helper for wakeups of tty. This function informs the 513 * line discipline if present that the driver is ready to receive more output 514 * data. 515 */ 516 void tty_wakeup(struct tty_struct *tty) 517 { 518 struct tty_ldisc *ld; 519 520 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 521 ld = tty_ldisc_ref(tty); 522 if (ld) { 523 if (ld->ops->write_wakeup) 524 ld->ops->write_wakeup(tty); 525 tty_ldisc_deref(ld); 526 } 527 } 528 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT); 529 } 530 EXPORT_SYMBOL_GPL(tty_wakeup); 531 532 /** 533 * tty_release_redirect - Release a redirect on a pty if present 534 * @tty: tty device 535 * 536 * This is available to the pty code so if the master closes, if the slave is a 537 * redirect it can release the redirect. 538 */ 539 static struct file *tty_release_redirect(struct tty_struct *tty) 540 { 541 struct file *f = NULL; 542 543 spin_lock(&redirect_lock); 544 if (redirect && file_tty(redirect) == tty) { 545 f = redirect; 546 redirect = NULL; 547 } 548 spin_unlock(&redirect_lock); 549 550 return f; 551 } 552 553 /** 554 * __tty_hangup - actual handler for hangup events 555 * @tty: tty device 556 * @exit_session: if non-zero, signal all foreground group processes 557 * 558 * This can be called by a "kworker" kernel thread. That is process synchronous 559 * but doesn't hold any locks, so we need to make sure we have the appropriate 560 * locks for what we're doing. 561 * 562 * The hangup event clears any pending redirections onto the hung up device. It 563 * ensures future writes will error and it does the needed line discipline 564 * hangup and signal delivery. The tty object itself remains intact. 565 * 566 * Locking: 567 * * BTM 568 * 569 * * redirect lock for undoing redirection 570 * * file list lock for manipulating list of ttys 571 * * tty_ldiscs_lock from called functions 572 * * termios_rwsem resetting termios data 573 * * tasklist_lock to walk task list for hangup event 574 * 575 * * ->siglock to protect ->signal/->sighand 576 * 577 */ 578 static void __tty_hangup(struct tty_struct *tty, int exit_session) 579 { 580 struct file *cons_filp = NULL; 581 struct file *filp, *f; 582 struct tty_file_private *priv; 583 int closecount = 0, n; 584 int refs; 585 586 if (!tty) 587 return; 588 589 f = tty_release_redirect(tty); 590 591 tty_lock(tty); 592 593 if (test_bit(TTY_HUPPED, &tty->flags)) { 594 tty_unlock(tty); 595 return; 596 } 597 598 /* 599 * Some console devices aren't actually hung up for technical and 600 * historical reasons, which can lead to indefinite interruptible 601 * sleep in n_tty_read(). The following explicitly tells 602 * n_tty_read() to abort readers. 603 */ 604 set_bit(TTY_HUPPING, &tty->flags); 605 606 /* inuse_filps is protected by the single tty lock, 607 * this really needs to change if we want to flush the 608 * workqueue with the lock held. 609 */ 610 check_tty_count(tty, "tty_hangup"); 611 612 spin_lock(&tty->files_lock); 613 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 614 list_for_each_entry(priv, &tty->tty_files, list) { 615 filp = priv->file; 616 if (filp->f_op->write_iter == redirected_tty_write) 617 cons_filp = filp; 618 if (filp->f_op->write_iter != tty_write) 619 continue; 620 closecount++; 621 __tty_fasync(-1, filp, 0); /* can't block */ 622 filp->f_op = &hung_up_tty_fops; 623 } 624 spin_unlock(&tty->files_lock); 625 626 refs = tty_signal_session_leader(tty, exit_session); 627 /* Account for the p->signal references we killed */ 628 while (refs--) 629 tty_kref_put(tty); 630 631 tty_ldisc_hangup(tty, cons_filp != NULL); 632 633 spin_lock_irq(&tty->ctrl.lock); 634 clear_bit(TTY_THROTTLED, &tty->flags); 635 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 636 put_pid(tty->ctrl.session); 637 put_pid(tty->ctrl.pgrp); 638 tty->ctrl.session = NULL; 639 tty->ctrl.pgrp = NULL; 640 tty->ctrl.pktstatus = 0; 641 spin_unlock_irq(&tty->ctrl.lock); 642 643 /* 644 * If one of the devices matches a console pointer, we 645 * cannot just call hangup() because that will cause 646 * tty->count and state->count to go out of sync. 647 * So we just call close() the right number of times. 648 */ 649 if (cons_filp) { 650 if (tty->ops->close) 651 for (n = 0; n < closecount; n++) 652 tty->ops->close(tty, cons_filp); 653 } else if (tty->ops->hangup) 654 tty->ops->hangup(tty); 655 /* 656 * We don't want to have driver/ldisc interactions beyond the ones 657 * we did here. The driver layer expects no calls after ->hangup() 658 * from the ldisc side, which is now guaranteed. 659 */ 660 set_bit(TTY_HUPPED, &tty->flags); 661 clear_bit(TTY_HUPPING, &tty->flags); 662 tty_unlock(tty); 663 664 if (f) 665 fput(f); 666 } 667 668 static void do_tty_hangup(struct work_struct *work) 669 { 670 struct tty_struct *tty = 671 container_of(work, struct tty_struct, hangup_work); 672 673 __tty_hangup(tty, 0); 674 } 675 676 /** 677 * tty_hangup - trigger a hangup event 678 * @tty: tty to hangup 679 * 680 * A carrier loss (virtual or otherwise) has occurred on @tty. Schedule a 681 * hangup sequence to run after this event. 682 */ 683 void tty_hangup(struct tty_struct *tty) 684 { 685 tty_debug_hangup(tty, "hangup\n"); 686 schedule_work(&tty->hangup_work); 687 } 688 EXPORT_SYMBOL(tty_hangup); 689 690 /** 691 * tty_vhangup - process vhangup 692 * @tty: tty to hangup 693 * 694 * The user has asked via system call for the terminal to be hung up. We do 695 * this synchronously so that when the syscall returns the process is complete. 696 * That guarantee is necessary for security reasons. 697 */ 698 void tty_vhangup(struct tty_struct *tty) 699 { 700 tty_debug_hangup(tty, "vhangup\n"); 701 __tty_hangup(tty, 0); 702 } 703 EXPORT_SYMBOL(tty_vhangup); 704 705 706 /** 707 * tty_vhangup_self - process vhangup for own ctty 708 * 709 * Perform a vhangup on the current controlling tty 710 */ 711 void tty_vhangup_self(void) 712 { 713 struct tty_struct *tty; 714 715 tty = get_current_tty(); 716 if (tty) { 717 tty_vhangup(tty); 718 tty_kref_put(tty); 719 } 720 } 721 722 /** 723 * tty_vhangup_session - hangup session leader exit 724 * @tty: tty to hangup 725 * 726 * The session leader is exiting and hanging up its controlling terminal. 727 * Every process in the foreground process group is signalled %SIGHUP. 728 * 729 * We do this synchronously so that when the syscall returns the process is 730 * complete. That guarantee is necessary for security reasons. 731 */ 732 void tty_vhangup_session(struct tty_struct *tty) 733 { 734 tty_debug_hangup(tty, "session hangup\n"); 735 __tty_hangup(tty, 1); 736 } 737 738 /** 739 * tty_hung_up_p - was tty hung up 740 * @filp: file pointer of tty 741 * 742 * Return: true if the tty has been subject to a vhangup or a carrier loss 743 */ 744 int tty_hung_up_p(struct file *filp) 745 { 746 return (filp && filp->f_op == &hung_up_tty_fops); 747 } 748 EXPORT_SYMBOL(tty_hung_up_p); 749 750 void __stop_tty(struct tty_struct *tty) 751 { 752 if (tty->flow.stopped) 753 return; 754 tty->flow.stopped = true; 755 if (tty->ops->stop) 756 tty->ops->stop(tty); 757 } 758 759 /** 760 * stop_tty - propagate flow control 761 * @tty: tty to stop 762 * 763 * Perform flow control to the driver. May be called on an already stopped 764 * device and will not re-call the &tty_driver->stop() method. 765 * 766 * This functionality is used by both the line disciplines for halting incoming 767 * flow and by the driver. It may therefore be called from any context, may be 768 * under the tty %atomic_write_lock but not always. 769 * 770 * Locking: 771 * flow.lock 772 */ 773 void stop_tty(struct tty_struct *tty) 774 { 775 unsigned long flags; 776 777 spin_lock_irqsave(&tty->flow.lock, flags); 778 __stop_tty(tty); 779 spin_unlock_irqrestore(&tty->flow.lock, flags); 780 } 781 EXPORT_SYMBOL(stop_tty); 782 783 void __start_tty(struct tty_struct *tty) 784 { 785 if (!tty->flow.stopped || tty->flow.tco_stopped) 786 return; 787 tty->flow.stopped = false; 788 if (tty->ops->start) 789 tty->ops->start(tty); 790 tty_wakeup(tty); 791 } 792 793 /** 794 * start_tty - propagate flow control 795 * @tty: tty to start 796 * 797 * Start a tty that has been stopped if at all possible. If @tty was previously 798 * stopped and is now being started, the &tty_driver->start() method is invoked 799 * and the line discipline woken. 800 * 801 * Locking: 802 * flow.lock 803 */ 804 void start_tty(struct tty_struct *tty) 805 { 806 unsigned long flags; 807 808 spin_lock_irqsave(&tty->flow.lock, flags); 809 __start_tty(tty); 810 spin_unlock_irqrestore(&tty->flow.lock, flags); 811 } 812 EXPORT_SYMBOL(start_tty); 813 814 static void tty_update_time(struct timespec64 *time) 815 { 816 time64_t sec = ktime_get_real_seconds(); 817 818 /* 819 * We only care if the two values differ in anything other than the 820 * lower three bits (i.e every 8 seconds). If so, then we can update 821 * the time of the tty device, otherwise it could be construded as a 822 * security leak to let userspace know the exact timing of the tty. 823 */ 824 if ((sec ^ time->tv_sec) & ~7) 825 time->tv_sec = sec; 826 } 827 828 /* 829 * Iterate on the ldisc ->read() function until we've gotten all 830 * the data the ldisc has for us. 831 * 832 * The "cookie" is something that the ldisc read function can fill 833 * in to let us know that there is more data to be had. 834 * 835 * We promise to continue to call the ldisc until it stops returning 836 * data or clears the cookie. The cookie may be something that the 837 * ldisc maintains state for and needs to free. 838 */ 839 static int iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty, 840 struct file *file, struct iov_iter *to) 841 { 842 int retval = 0; 843 void *cookie = NULL; 844 unsigned long offset = 0; 845 char kernel_buf[64]; 846 size_t count = iov_iter_count(to); 847 848 do { 849 int size, copied; 850 851 size = count > sizeof(kernel_buf) ? sizeof(kernel_buf) : count; 852 size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset); 853 if (!size) 854 break; 855 856 if (size < 0) { 857 /* Did we have an earlier error (ie -EFAULT)? */ 858 if (retval) 859 break; 860 retval = size; 861 862 /* 863 * -EOVERFLOW means we didn't have enough space 864 * for a whole packet, and we shouldn't return 865 * a partial result. 866 */ 867 if (retval == -EOVERFLOW) 868 offset = 0; 869 break; 870 } 871 872 copied = copy_to_iter(kernel_buf, size, to); 873 offset += copied; 874 count -= copied; 875 876 /* 877 * If the user copy failed, we still need to do another ->read() 878 * call if we had a cookie to let the ldisc clear up. 879 * 880 * But make sure size is zeroed. 881 */ 882 if (unlikely(copied != size)) { 883 count = 0; 884 retval = -EFAULT; 885 } 886 } while (cookie); 887 888 /* We always clear tty buffer in case they contained passwords */ 889 memzero_explicit(kernel_buf, sizeof(kernel_buf)); 890 return offset ? offset : retval; 891 } 892 893 894 /** 895 * tty_read - read method for tty device files 896 * @iocb: kernel I/O control block 897 * @to: destination for the data read 898 * 899 * Perform the read system call function on this terminal device. Checks 900 * for hung up devices before calling the line discipline method. 901 * 902 * Locking: 903 * Locks the line discipline internally while needed. Multiple read calls 904 * may be outstanding in parallel. 905 */ 906 static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to) 907 { 908 int i; 909 struct file *file = iocb->ki_filp; 910 struct inode *inode = file_inode(file); 911 struct tty_struct *tty = file_tty(file); 912 struct tty_ldisc *ld; 913 914 if (tty_paranoia_check(tty, inode, "tty_read")) 915 return -EIO; 916 if (!tty || tty_io_error(tty)) 917 return -EIO; 918 919 /* We want to wait for the line discipline to sort out in this 920 * situation. 921 */ 922 ld = tty_ldisc_ref_wait(tty); 923 if (!ld) 924 return hung_up_tty_read(iocb, to); 925 i = -EIO; 926 if (ld->ops->read) 927 i = iterate_tty_read(ld, tty, file, to); 928 tty_ldisc_deref(ld); 929 930 if (i > 0) 931 tty_update_time(&inode->i_atime); 932 933 return i; 934 } 935 936 void tty_write_unlock(struct tty_struct *tty) 937 { 938 mutex_unlock(&tty->atomic_write_lock); 939 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT); 940 } 941 942 int tty_write_lock(struct tty_struct *tty, int ndelay) 943 { 944 if (!mutex_trylock(&tty->atomic_write_lock)) { 945 if (ndelay) 946 return -EAGAIN; 947 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 948 return -ERESTARTSYS; 949 } 950 return 0; 951 } 952 953 /* 954 * Split writes up in sane blocksizes to avoid 955 * denial-of-service type attacks 956 */ 957 static inline ssize_t do_tty_write( 958 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 959 struct tty_struct *tty, 960 struct file *file, 961 struct iov_iter *from) 962 { 963 size_t count = iov_iter_count(from); 964 ssize_t ret, written = 0; 965 unsigned int chunk; 966 967 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 968 if (ret < 0) 969 return ret; 970 971 /* 972 * We chunk up writes into a temporary buffer. This 973 * simplifies low-level drivers immensely, since they 974 * don't have locking issues and user mode accesses. 975 * 976 * But if TTY_NO_WRITE_SPLIT is set, we should use a 977 * big chunk-size.. 978 * 979 * The default chunk-size is 2kB, because the NTTY 980 * layer has problems with bigger chunks. It will 981 * claim to be able to handle more characters than 982 * it actually does. 983 */ 984 chunk = 2048; 985 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 986 chunk = 65536; 987 if (count < chunk) 988 chunk = count; 989 990 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 991 if (tty->write_cnt < chunk) { 992 unsigned char *buf_chunk; 993 994 if (chunk < 1024) 995 chunk = 1024; 996 997 buf_chunk = kvmalloc(chunk, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 998 if (!buf_chunk) { 999 ret = -ENOMEM; 1000 goto out; 1001 } 1002 kvfree(tty->write_buf); 1003 tty->write_cnt = chunk; 1004 tty->write_buf = buf_chunk; 1005 } 1006 1007 /* Do the write .. */ 1008 for (;;) { 1009 size_t size = count; 1010 1011 if (size > chunk) 1012 size = chunk; 1013 1014 ret = -EFAULT; 1015 if (copy_from_iter(tty->write_buf, size, from) != size) 1016 break; 1017 1018 ret = write(tty, file, tty->write_buf, size); 1019 if (ret <= 0) 1020 break; 1021 1022 written += ret; 1023 if (ret > size) 1024 break; 1025 1026 /* FIXME! Have Al check this! */ 1027 if (ret != size) 1028 iov_iter_revert(from, size-ret); 1029 1030 count -= ret; 1031 if (!count) 1032 break; 1033 ret = -ERESTARTSYS; 1034 if (signal_pending(current)) 1035 break; 1036 cond_resched(); 1037 } 1038 if (written) { 1039 tty_update_time(&file_inode(file)->i_mtime); 1040 ret = written; 1041 } 1042 out: 1043 tty_write_unlock(tty); 1044 return ret; 1045 } 1046 1047 /** 1048 * tty_write_message - write a message to a certain tty, not just the console. 1049 * @tty: the destination tty_struct 1050 * @msg: the message to write 1051 * 1052 * This is used for messages that need to be redirected to a specific tty. We 1053 * don't put it into the syslog queue right now maybe in the future if really 1054 * needed. 1055 * 1056 * We must still hold the BTM and test the CLOSING flag for the moment. 1057 */ 1058 void tty_write_message(struct tty_struct *tty, char *msg) 1059 { 1060 if (tty) { 1061 mutex_lock(&tty->atomic_write_lock); 1062 tty_lock(tty); 1063 if (tty->ops->write && tty->count > 0) 1064 tty->ops->write(tty, msg, strlen(msg)); 1065 tty_unlock(tty); 1066 tty_write_unlock(tty); 1067 } 1068 } 1069 1070 static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from) 1071 { 1072 struct tty_struct *tty = file_tty(file); 1073 struct tty_ldisc *ld; 1074 ssize_t ret; 1075 1076 if (tty_paranoia_check(tty, file_inode(file), "tty_write")) 1077 return -EIO; 1078 if (!tty || !tty->ops->write || tty_io_error(tty)) 1079 return -EIO; 1080 /* Short term debug to catch buggy drivers */ 1081 if (tty->ops->write_room == NULL) 1082 tty_err(tty, "missing write_room method\n"); 1083 ld = tty_ldisc_ref_wait(tty); 1084 if (!ld) 1085 return hung_up_tty_write(iocb, from); 1086 if (!ld->ops->write) 1087 ret = -EIO; 1088 else 1089 ret = do_tty_write(ld->ops->write, tty, file, from); 1090 tty_ldisc_deref(ld); 1091 return ret; 1092 } 1093 1094 /** 1095 * tty_write - write method for tty device file 1096 * @iocb: kernel I/O control block 1097 * @from: iov_iter with data to write 1098 * 1099 * Write data to a tty device via the line discipline. 1100 * 1101 * Locking: 1102 * Locks the line discipline as required 1103 * Writes to the tty driver are serialized by the atomic_write_lock 1104 * and are then processed in chunks to the device. The line 1105 * discipline write method will not be invoked in parallel for 1106 * each device. 1107 */ 1108 static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from) 1109 { 1110 return file_tty_write(iocb->ki_filp, iocb, from); 1111 } 1112 1113 ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter) 1114 { 1115 struct file *p = NULL; 1116 1117 spin_lock(&redirect_lock); 1118 if (redirect) 1119 p = get_file(redirect); 1120 spin_unlock(&redirect_lock); 1121 1122 /* 1123 * We know the redirected tty is just another tty, we can 1124 * call file_tty_write() directly with that file pointer. 1125 */ 1126 if (p) { 1127 ssize_t res; 1128 1129 res = file_tty_write(p, iocb, iter); 1130 fput(p); 1131 return res; 1132 } 1133 return tty_write(iocb, iter); 1134 } 1135 1136 /** 1137 * tty_send_xchar - send priority character 1138 * @tty: the tty to send to 1139 * @ch: xchar to send 1140 * 1141 * Send a high priority character to the tty even if stopped. 1142 * 1143 * Locking: none for xchar method, write ordering for write method. 1144 */ 1145 int tty_send_xchar(struct tty_struct *tty, char ch) 1146 { 1147 bool was_stopped = tty->flow.stopped; 1148 1149 if (tty->ops->send_xchar) { 1150 down_read(&tty->termios_rwsem); 1151 tty->ops->send_xchar(tty, ch); 1152 up_read(&tty->termios_rwsem); 1153 return 0; 1154 } 1155 1156 if (tty_write_lock(tty, 0) < 0) 1157 return -ERESTARTSYS; 1158 1159 down_read(&tty->termios_rwsem); 1160 if (was_stopped) 1161 start_tty(tty); 1162 tty->ops->write(tty, &ch, 1); 1163 if (was_stopped) 1164 stop_tty(tty); 1165 up_read(&tty->termios_rwsem); 1166 tty_write_unlock(tty); 1167 return 0; 1168 } 1169 1170 /** 1171 * pty_line_name - generate name for a pty 1172 * @driver: the tty driver in use 1173 * @index: the minor number 1174 * @p: output buffer of at least 6 bytes 1175 * 1176 * Generate a name from a @driver reference and write it to the output buffer 1177 * @p. 1178 * 1179 * Locking: None 1180 */ 1181 static void pty_line_name(struct tty_driver *driver, int index, char *p) 1182 { 1183 static const char ptychar[] = "pqrstuvwxyzabcde"; 1184 int i = index + driver->name_base; 1185 /* ->name is initialized to "ttyp", but "tty" is expected */ 1186 sprintf(p, "%s%c%x", 1187 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1188 ptychar[i >> 4 & 0xf], i & 0xf); 1189 } 1190 1191 /** 1192 * tty_line_name - generate name for a tty 1193 * @driver: the tty driver in use 1194 * @index: the minor number 1195 * @p: output buffer of at least 7 bytes 1196 * 1197 * Generate a name from a @driver reference and write it to the output buffer 1198 * @p. 1199 * 1200 * Locking: None 1201 */ 1202 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p) 1203 { 1204 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE) 1205 return sprintf(p, "%s", driver->name); 1206 else 1207 return sprintf(p, "%s%d", driver->name, 1208 index + driver->name_base); 1209 } 1210 1211 /** 1212 * tty_driver_lookup_tty() - find an existing tty, if any 1213 * @driver: the driver for the tty 1214 * @file: file object 1215 * @idx: the minor number 1216 * 1217 * Return: the tty, if found. If not found, return %NULL or ERR_PTR() if the 1218 * driver lookup() method returns an error. 1219 * 1220 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref. 1221 */ 1222 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1223 struct file *file, int idx) 1224 { 1225 struct tty_struct *tty; 1226 1227 if (driver->ops->lookup) { 1228 if (!file) 1229 tty = ERR_PTR(-EIO); 1230 else 1231 tty = driver->ops->lookup(driver, file, idx); 1232 } else { 1233 if (idx >= driver->num) 1234 return ERR_PTR(-EINVAL); 1235 tty = driver->ttys[idx]; 1236 } 1237 if (!IS_ERR(tty)) 1238 tty_kref_get(tty); 1239 return tty; 1240 } 1241 1242 /** 1243 * tty_init_termios - helper for termios setup 1244 * @tty: the tty to set up 1245 * 1246 * Initialise the termios structure for this tty. This runs under the 1247 * %tty_mutex currently so we can be relaxed about ordering. 1248 */ 1249 void tty_init_termios(struct tty_struct *tty) 1250 { 1251 struct ktermios *tp; 1252 int idx = tty->index; 1253 1254 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1255 tty->termios = tty->driver->init_termios; 1256 else { 1257 /* Check for lazy saved data */ 1258 tp = tty->driver->termios[idx]; 1259 if (tp != NULL) { 1260 tty->termios = *tp; 1261 tty->termios.c_line = tty->driver->init_termios.c_line; 1262 } else 1263 tty->termios = tty->driver->init_termios; 1264 } 1265 /* Compatibility until drivers always set this */ 1266 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios); 1267 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios); 1268 } 1269 EXPORT_SYMBOL_GPL(tty_init_termios); 1270 1271 /** 1272 * tty_standard_install - usual tty->ops->install 1273 * @driver: the driver for the tty 1274 * @tty: the tty 1275 * 1276 * If the @driver overrides @tty->ops->install, it still can call this function 1277 * to perform the standard install operations. 1278 */ 1279 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1280 { 1281 tty_init_termios(tty); 1282 tty_driver_kref_get(driver); 1283 tty->count++; 1284 driver->ttys[tty->index] = tty; 1285 return 0; 1286 } 1287 EXPORT_SYMBOL_GPL(tty_standard_install); 1288 1289 /** 1290 * tty_driver_install_tty() - install a tty entry in the driver 1291 * @driver: the driver for the tty 1292 * @tty: the tty 1293 * 1294 * Install a tty object into the driver tables. The @tty->index field will be 1295 * set by the time this is called. This method is responsible for ensuring any 1296 * need additional structures are allocated and configured. 1297 * 1298 * Locking: tty_mutex for now 1299 */ 1300 static int tty_driver_install_tty(struct tty_driver *driver, 1301 struct tty_struct *tty) 1302 { 1303 return driver->ops->install ? driver->ops->install(driver, tty) : 1304 tty_standard_install(driver, tty); 1305 } 1306 1307 /** 1308 * tty_driver_remove_tty() - remove a tty from the driver tables 1309 * @driver: the driver for the tty 1310 * @tty: tty to remove 1311 * 1312 * Remove a tty object from the driver tables. The tty->index field will be set 1313 * by the time this is called. 1314 * 1315 * Locking: tty_mutex for now 1316 */ 1317 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1318 { 1319 if (driver->ops->remove) 1320 driver->ops->remove(driver, tty); 1321 else 1322 driver->ttys[tty->index] = NULL; 1323 } 1324 1325 /** 1326 * tty_reopen() - fast re-open of an open tty 1327 * @tty: the tty to open 1328 * 1329 * Re-opens on master ptys are not allowed and return -%EIO. 1330 * 1331 * Locking: Caller must hold tty_lock 1332 * Return: 0 on success, -errno on error. 1333 */ 1334 static int tty_reopen(struct tty_struct *tty) 1335 { 1336 struct tty_driver *driver = tty->driver; 1337 struct tty_ldisc *ld; 1338 int retval = 0; 1339 1340 if (driver->type == TTY_DRIVER_TYPE_PTY && 1341 driver->subtype == PTY_TYPE_MASTER) 1342 return -EIO; 1343 1344 if (!tty->count) 1345 return -EAGAIN; 1346 1347 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN)) 1348 return -EBUSY; 1349 1350 ld = tty_ldisc_ref_wait(tty); 1351 if (ld) { 1352 tty_ldisc_deref(ld); 1353 } else { 1354 retval = tty_ldisc_lock(tty, 5 * HZ); 1355 if (retval) 1356 return retval; 1357 1358 if (!tty->ldisc) 1359 retval = tty_ldisc_reinit(tty, tty->termios.c_line); 1360 tty_ldisc_unlock(tty); 1361 } 1362 1363 if (retval == 0) 1364 tty->count++; 1365 1366 return retval; 1367 } 1368 1369 /** 1370 * tty_init_dev - initialise a tty device 1371 * @driver: tty driver we are opening a device on 1372 * @idx: device index 1373 * 1374 * Prepare a tty device. This may not be a "new" clean device but could also be 1375 * an active device. The pty drivers require special handling because of this. 1376 * 1377 * Locking: 1378 * The function is called under the tty_mutex, which protects us from the 1379 * tty struct or driver itself going away. 1380 * 1381 * On exit the tty device has the line discipline attached and a reference 1382 * count of 1. If a pair was created for pty/tty use and the other was a pty 1383 * master then it too has a reference count of 1. 1384 * 1385 * WSH 06/09/97: Rewritten to remove races and properly clean up after a failed 1386 * open. The new code protects the open with a mutex, so it's really quite 1387 * straightforward. The mutex locking can probably be relaxed for the (most 1388 * common) case of reopening a tty. 1389 * 1390 * Return: new tty structure 1391 */ 1392 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1393 { 1394 struct tty_struct *tty; 1395 int retval; 1396 1397 /* 1398 * First time open is complex, especially for PTY devices. 1399 * This code guarantees that either everything succeeds and the 1400 * TTY is ready for operation, or else the table slots are vacated 1401 * and the allocated memory released. (Except that the termios 1402 * may be retained.) 1403 */ 1404 1405 if (!try_module_get(driver->owner)) 1406 return ERR_PTR(-ENODEV); 1407 1408 tty = alloc_tty_struct(driver, idx); 1409 if (!tty) { 1410 retval = -ENOMEM; 1411 goto err_module_put; 1412 } 1413 1414 tty_lock(tty); 1415 retval = tty_driver_install_tty(driver, tty); 1416 if (retval < 0) 1417 goto err_free_tty; 1418 1419 if (!tty->port) 1420 tty->port = driver->ports[idx]; 1421 1422 if (WARN_RATELIMIT(!tty->port, 1423 "%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n", 1424 __func__, tty->driver->name)) { 1425 retval = -EINVAL; 1426 goto err_release_lock; 1427 } 1428 1429 retval = tty_ldisc_lock(tty, 5 * HZ); 1430 if (retval) 1431 goto err_release_lock; 1432 tty->port->itty = tty; 1433 1434 /* 1435 * Structures all installed ... call the ldisc open routines. 1436 * If we fail here just call release_tty to clean up. No need 1437 * to decrement the use counts, as release_tty doesn't care. 1438 */ 1439 retval = tty_ldisc_setup(tty, tty->link); 1440 if (retval) 1441 goto err_release_tty; 1442 tty_ldisc_unlock(tty); 1443 /* Return the tty locked so that it cannot vanish under the caller */ 1444 return tty; 1445 1446 err_free_tty: 1447 tty_unlock(tty); 1448 free_tty_struct(tty); 1449 err_module_put: 1450 module_put(driver->owner); 1451 return ERR_PTR(retval); 1452 1453 /* call the tty release_tty routine to clean out this slot */ 1454 err_release_tty: 1455 tty_ldisc_unlock(tty); 1456 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n", 1457 retval, idx); 1458 err_release_lock: 1459 tty_unlock(tty); 1460 release_tty(tty, idx); 1461 return ERR_PTR(retval); 1462 } 1463 1464 /** 1465 * tty_save_termios() - save tty termios data in driver table 1466 * @tty: tty whose termios data to save 1467 * 1468 * Locking: Caller guarantees serialisation with tty_init_termios(). 1469 */ 1470 void tty_save_termios(struct tty_struct *tty) 1471 { 1472 struct ktermios *tp; 1473 int idx = tty->index; 1474 1475 /* If the port is going to reset then it has no termios to save */ 1476 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1477 return; 1478 1479 /* Stash the termios data */ 1480 tp = tty->driver->termios[idx]; 1481 if (tp == NULL) { 1482 tp = kmalloc(sizeof(*tp), GFP_KERNEL); 1483 if (tp == NULL) 1484 return; 1485 tty->driver->termios[idx] = tp; 1486 } 1487 *tp = tty->termios; 1488 } 1489 EXPORT_SYMBOL_GPL(tty_save_termios); 1490 1491 /** 1492 * tty_flush_works - flush all works of a tty/pty pair 1493 * @tty: tty device to flush works for (or either end of a pty pair) 1494 * 1495 * Sync flush all works belonging to @tty (and the 'other' tty). 1496 */ 1497 static void tty_flush_works(struct tty_struct *tty) 1498 { 1499 flush_work(&tty->SAK_work); 1500 flush_work(&tty->hangup_work); 1501 if (tty->link) { 1502 flush_work(&tty->link->SAK_work); 1503 flush_work(&tty->link->hangup_work); 1504 } 1505 } 1506 1507 /** 1508 * release_one_tty - release tty structure memory 1509 * @work: work of tty we are obliterating 1510 * 1511 * Releases memory associated with a tty structure, and clears out the 1512 * driver table slots. This function is called when a device is no longer 1513 * in use. It also gets called when setup of a device fails. 1514 * 1515 * Locking: 1516 * takes the file list lock internally when working on the list of ttys 1517 * that the driver keeps. 1518 * 1519 * This method gets called from a work queue so that the driver private 1520 * cleanup ops can sleep (needed for USB at least) 1521 */ 1522 static void release_one_tty(struct work_struct *work) 1523 { 1524 struct tty_struct *tty = 1525 container_of(work, struct tty_struct, hangup_work); 1526 struct tty_driver *driver = tty->driver; 1527 struct module *owner = driver->owner; 1528 1529 if (tty->ops->cleanup) 1530 tty->ops->cleanup(tty); 1531 1532 tty_driver_kref_put(driver); 1533 module_put(owner); 1534 1535 spin_lock(&tty->files_lock); 1536 list_del_init(&tty->tty_files); 1537 spin_unlock(&tty->files_lock); 1538 1539 put_pid(tty->ctrl.pgrp); 1540 put_pid(tty->ctrl.session); 1541 free_tty_struct(tty); 1542 } 1543 1544 static void queue_release_one_tty(struct kref *kref) 1545 { 1546 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1547 1548 /* The hangup queue is now free so we can reuse it rather than 1549 * waste a chunk of memory for each port. 1550 */ 1551 INIT_WORK(&tty->hangup_work, release_one_tty); 1552 schedule_work(&tty->hangup_work); 1553 } 1554 1555 /** 1556 * tty_kref_put - release a tty kref 1557 * @tty: tty device 1558 * 1559 * Release a reference to the @tty device and if need be let the kref layer 1560 * destruct the object for us. 1561 */ 1562 void tty_kref_put(struct tty_struct *tty) 1563 { 1564 if (tty) 1565 kref_put(&tty->kref, queue_release_one_tty); 1566 } 1567 EXPORT_SYMBOL(tty_kref_put); 1568 1569 /** 1570 * release_tty - release tty structure memory 1571 * @tty: tty device release 1572 * @idx: index of the tty device release 1573 * 1574 * Release both @tty and a possible linked partner (think pty pair), 1575 * and decrement the refcount of the backing module. 1576 * 1577 * Locking: 1578 * tty_mutex 1579 * takes the file list lock internally when working on the list of ttys 1580 * that the driver keeps. 1581 */ 1582 static void release_tty(struct tty_struct *tty, int idx) 1583 { 1584 /* This should always be true but check for the moment */ 1585 WARN_ON(tty->index != idx); 1586 WARN_ON(!mutex_is_locked(&tty_mutex)); 1587 if (tty->ops->shutdown) 1588 tty->ops->shutdown(tty); 1589 tty_save_termios(tty); 1590 tty_driver_remove_tty(tty->driver, tty); 1591 if (tty->port) 1592 tty->port->itty = NULL; 1593 if (tty->link) 1594 tty->link->port->itty = NULL; 1595 if (tty->port) 1596 tty_buffer_cancel_work(tty->port); 1597 if (tty->link) 1598 tty_buffer_cancel_work(tty->link->port); 1599 1600 tty_kref_put(tty->link); 1601 tty_kref_put(tty); 1602 } 1603 1604 /** 1605 * tty_release_checks - check a tty before real release 1606 * @tty: tty to check 1607 * @idx: index of the tty 1608 * 1609 * Performs some paranoid checking before true release of the @tty. This is a 1610 * no-op unless %TTY_PARANOIA_CHECK is defined. 1611 */ 1612 static int tty_release_checks(struct tty_struct *tty, int idx) 1613 { 1614 #ifdef TTY_PARANOIA_CHECK 1615 if (idx < 0 || idx >= tty->driver->num) { 1616 tty_debug(tty, "bad idx %d\n", idx); 1617 return -1; 1618 } 1619 1620 /* not much to check for devpts */ 1621 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1622 return 0; 1623 1624 if (tty != tty->driver->ttys[idx]) { 1625 tty_debug(tty, "bad driver table[%d] = %p\n", 1626 idx, tty->driver->ttys[idx]); 1627 return -1; 1628 } 1629 if (tty->driver->other) { 1630 struct tty_struct *o_tty = tty->link; 1631 1632 if (o_tty != tty->driver->other->ttys[idx]) { 1633 tty_debug(tty, "bad other table[%d] = %p\n", 1634 idx, tty->driver->other->ttys[idx]); 1635 return -1; 1636 } 1637 if (o_tty->link != tty) { 1638 tty_debug(tty, "bad link = %p\n", o_tty->link); 1639 return -1; 1640 } 1641 } 1642 #endif 1643 return 0; 1644 } 1645 1646 /** 1647 * tty_kclose - closes tty opened by tty_kopen 1648 * @tty: tty device 1649 * 1650 * Performs the final steps to release and free a tty device. It is the same as 1651 * tty_release_struct() except that it also resets %TTY_PORT_KOPENED flag on 1652 * @tty->port. 1653 */ 1654 void tty_kclose(struct tty_struct *tty) 1655 { 1656 /* 1657 * Ask the line discipline code to release its structures 1658 */ 1659 tty_ldisc_release(tty); 1660 1661 /* Wait for pending work before tty destruction commences */ 1662 tty_flush_works(tty); 1663 1664 tty_debug_hangup(tty, "freeing structure\n"); 1665 /* 1666 * The release_tty function takes care of the details of clearing 1667 * the slots and preserving the termios structure. 1668 */ 1669 mutex_lock(&tty_mutex); 1670 tty_port_set_kopened(tty->port, 0); 1671 release_tty(tty, tty->index); 1672 mutex_unlock(&tty_mutex); 1673 } 1674 EXPORT_SYMBOL_GPL(tty_kclose); 1675 1676 /** 1677 * tty_release_struct - release a tty struct 1678 * @tty: tty device 1679 * @idx: index of the tty 1680 * 1681 * Performs the final steps to release and free a tty device. It is roughly the 1682 * reverse of tty_init_dev(). 1683 */ 1684 void tty_release_struct(struct tty_struct *tty, int idx) 1685 { 1686 /* 1687 * Ask the line discipline code to release its structures 1688 */ 1689 tty_ldisc_release(tty); 1690 1691 /* Wait for pending work before tty destruction commmences */ 1692 tty_flush_works(tty); 1693 1694 tty_debug_hangup(tty, "freeing structure\n"); 1695 /* 1696 * The release_tty function takes care of the details of clearing 1697 * the slots and preserving the termios structure. 1698 */ 1699 mutex_lock(&tty_mutex); 1700 release_tty(tty, idx); 1701 mutex_unlock(&tty_mutex); 1702 } 1703 EXPORT_SYMBOL_GPL(tty_release_struct); 1704 1705 /** 1706 * tty_release - vfs callback for close 1707 * @inode: inode of tty 1708 * @filp: file pointer for handle to tty 1709 * 1710 * Called the last time each file handle is closed that references this tty. 1711 * There may however be several such references. 1712 * 1713 * Locking: 1714 * Takes BKL. See tty_release_dev(). 1715 * 1716 * Even releasing the tty structures is a tricky business. We have to be very 1717 * careful that the structures are all released at the same time, as interrupts 1718 * might otherwise get the wrong pointers. 1719 * 1720 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1721 * lead to double frees or releasing memory still in use. 1722 */ 1723 int tty_release(struct inode *inode, struct file *filp) 1724 { 1725 struct tty_struct *tty = file_tty(filp); 1726 struct tty_struct *o_tty = NULL; 1727 int do_sleep, final; 1728 int idx; 1729 long timeout = 0; 1730 int once = 1; 1731 1732 if (tty_paranoia_check(tty, inode, __func__)) 1733 return 0; 1734 1735 tty_lock(tty); 1736 check_tty_count(tty, __func__); 1737 1738 __tty_fasync(-1, filp, 0); 1739 1740 idx = tty->index; 1741 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1742 tty->driver->subtype == PTY_TYPE_MASTER) 1743 o_tty = tty->link; 1744 1745 if (tty_release_checks(tty, idx)) { 1746 tty_unlock(tty); 1747 return 0; 1748 } 1749 1750 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count); 1751 1752 if (tty->ops->close) 1753 tty->ops->close(tty, filp); 1754 1755 /* If tty is pty master, lock the slave pty (stable lock order) */ 1756 tty_lock_slave(o_tty); 1757 1758 /* 1759 * Sanity check: if tty->count is going to zero, there shouldn't be 1760 * any waiters on tty->read_wait or tty->write_wait. We test the 1761 * wait queues and kick everyone out _before_ actually starting to 1762 * close. This ensures that we won't block while releasing the tty 1763 * structure. 1764 * 1765 * The test for the o_tty closing is necessary, since the master and 1766 * slave sides may close in any order. If the slave side closes out 1767 * first, its count will be one, since the master side holds an open. 1768 * Thus this test wouldn't be triggered at the time the slave closed, 1769 * so we do it now. 1770 */ 1771 while (1) { 1772 do_sleep = 0; 1773 1774 if (tty->count <= 1) { 1775 if (waitqueue_active(&tty->read_wait)) { 1776 wake_up_poll(&tty->read_wait, EPOLLIN); 1777 do_sleep++; 1778 } 1779 if (waitqueue_active(&tty->write_wait)) { 1780 wake_up_poll(&tty->write_wait, EPOLLOUT); 1781 do_sleep++; 1782 } 1783 } 1784 if (o_tty && o_tty->count <= 1) { 1785 if (waitqueue_active(&o_tty->read_wait)) { 1786 wake_up_poll(&o_tty->read_wait, EPOLLIN); 1787 do_sleep++; 1788 } 1789 if (waitqueue_active(&o_tty->write_wait)) { 1790 wake_up_poll(&o_tty->write_wait, EPOLLOUT); 1791 do_sleep++; 1792 } 1793 } 1794 if (!do_sleep) 1795 break; 1796 1797 if (once) { 1798 once = 0; 1799 tty_warn(tty, "read/write wait queue active!\n"); 1800 } 1801 schedule_timeout_killable(timeout); 1802 if (timeout < 120 * HZ) 1803 timeout = 2 * timeout + 1; 1804 else 1805 timeout = MAX_SCHEDULE_TIMEOUT; 1806 } 1807 1808 if (o_tty) { 1809 if (--o_tty->count < 0) { 1810 tty_warn(tty, "bad slave count (%d)\n", o_tty->count); 1811 o_tty->count = 0; 1812 } 1813 } 1814 if (--tty->count < 0) { 1815 tty_warn(tty, "bad tty->count (%d)\n", tty->count); 1816 tty->count = 0; 1817 } 1818 1819 /* 1820 * We've decremented tty->count, so we need to remove this file 1821 * descriptor off the tty->tty_files list; this serves two 1822 * purposes: 1823 * - check_tty_count sees the correct number of file descriptors 1824 * associated with this tty. 1825 * - do_tty_hangup no longer sees this file descriptor as 1826 * something that needs to be handled for hangups. 1827 */ 1828 tty_del_file(filp); 1829 1830 /* 1831 * Perform some housekeeping before deciding whether to return. 1832 * 1833 * If _either_ side is closing, make sure there aren't any 1834 * processes that still think tty or o_tty is their controlling 1835 * tty. 1836 */ 1837 if (!tty->count) { 1838 read_lock(&tasklist_lock); 1839 session_clear_tty(tty->ctrl.session); 1840 if (o_tty) 1841 session_clear_tty(o_tty->ctrl.session); 1842 read_unlock(&tasklist_lock); 1843 } 1844 1845 /* check whether both sides are closing ... */ 1846 final = !tty->count && !(o_tty && o_tty->count); 1847 1848 tty_unlock_slave(o_tty); 1849 tty_unlock(tty); 1850 1851 /* At this point, the tty->count == 0 should ensure a dead tty 1852 * cannot be re-opened by a racing opener. 1853 */ 1854 1855 if (!final) 1856 return 0; 1857 1858 tty_debug_hangup(tty, "final close\n"); 1859 1860 tty_release_struct(tty, idx); 1861 return 0; 1862 } 1863 1864 /** 1865 * tty_open_current_tty - get locked tty of current task 1866 * @device: device number 1867 * @filp: file pointer to tty 1868 * @return: locked tty of the current task iff @device is /dev/tty 1869 * 1870 * Performs a re-open of the current task's controlling tty. 1871 * 1872 * We cannot return driver and index like for the other nodes because devpts 1873 * will not work then. It expects inodes to be from devpts FS. 1874 */ 1875 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1876 { 1877 struct tty_struct *tty; 1878 int retval; 1879 1880 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1881 return NULL; 1882 1883 tty = get_current_tty(); 1884 if (!tty) 1885 return ERR_PTR(-ENXIO); 1886 1887 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1888 /* noctty = 1; */ 1889 tty_lock(tty); 1890 tty_kref_put(tty); /* safe to drop the kref now */ 1891 1892 retval = tty_reopen(tty); 1893 if (retval < 0) { 1894 tty_unlock(tty); 1895 tty = ERR_PTR(retval); 1896 } 1897 return tty; 1898 } 1899 1900 /** 1901 * tty_lookup_driver - lookup a tty driver for a given device file 1902 * @device: device number 1903 * @filp: file pointer to tty 1904 * @index: index for the device in the @return driver 1905 * 1906 * If returned value is not erroneous, the caller is responsible to decrement 1907 * the refcount by tty_driver_kref_put(). 1908 * 1909 * Locking: %tty_mutex protects get_tty_driver() 1910 * 1911 * Return: driver for this inode (with increased refcount) 1912 */ 1913 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1914 int *index) 1915 { 1916 struct tty_driver *driver = NULL; 1917 1918 switch (device) { 1919 #ifdef CONFIG_VT 1920 case MKDEV(TTY_MAJOR, 0): { 1921 extern struct tty_driver *console_driver; 1922 1923 driver = tty_driver_kref_get(console_driver); 1924 *index = fg_console; 1925 break; 1926 } 1927 #endif 1928 case MKDEV(TTYAUX_MAJOR, 1): { 1929 struct tty_driver *console_driver = console_device(index); 1930 1931 if (console_driver) { 1932 driver = tty_driver_kref_get(console_driver); 1933 if (driver && filp) { 1934 /* Don't let /dev/console block */ 1935 filp->f_flags |= O_NONBLOCK; 1936 break; 1937 } 1938 } 1939 if (driver) 1940 tty_driver_kref_put(driver); 1941 return ERR_PTR(-ENODEV); 1942 } 1943 default: 1944 driver = get_tty_driver(device, index); 1945 if (!driver) 1946 return ERR_PTR(-ENODEV); 1947 break; 1948 } 1949 return driver; 1950 } 1951 1952 static struct tty_struct *tty_kopen(dev_t device, int shared) 1953 { 1954 struct tty_struct *tty; 1955 struct tty_driver *driver; 1956 int index = -1; 1957 1958 mutex_lock(&tty_mutex); 1959 driver = tty_lookup_driver(device, NULL, &index); 1960 if (IS_ERR(driver)) { 1961 mutex_unlock(&tty_mutex); 1962 return ERR_CAST(driver); 1963 } 1964 1965 /* check whether we're reopening an existing tty */ 1966 tty = tty_driver_lookup_tty(driver, NULL, index); 1967 if (IS_ERR(tty) || shared) 1968 goto out; 1969 1970 if (tty) { 1971 /* drop kref from tty_driver_lookup_tty() */ 1972 tty_kref_put(tty); 1973 tty = ERR_PTR(-EBUSY); 1974 } else { /* tty_init_dev returns tty with the tty_lock held */ 1975 tty = tty_init_dev(driver, index); 1976 if (IS_ERR(tty)) 1977 goto out; 1978 tty_port_set_kopened(tty->port, 1); 1979 } 1980 out: 1981 mutex_unlock(&tty_mutex); 1982 tty_driver_kref_put(driver); 1983 return tty; 1984 } 1985 1986 /** 1987 * tty_kopen_exclusive - open a tty device for kernel 1988 * @device: dev_t of device to open 1989 * 1990 * Opens tty exclusively for kernel. Performs the driver lookup, makes sure 1991 * it's not already opened and performs the first-time tty initialization. 1992 * 1993 * Claims the global %tty_mutex to serialize: 1994 * * concurrent first-time tty initialization 1995 * * concurrent tty driver removal w/ lookup 1996 * * concurrent tty removal from driver table 1997 * 1998 * Return: the locked initialized &tty_struct 1999 */ 2000 struct tty_struct *tty_kopen_exclusive(dev_t device) 2001 { 2002 return tty_kopen(device, 0); 2003 } 2004 EXPORT_SYMBOL_GPL(tty_kopen_exclusive); 2005 2006 /** 2007 * tty_kopen_shared - open a tty device for shared in-kernel use 2008 * @device: dev_t of device to open 2009 * 2010 * Opens an already existing tty for in-kernel use. Compared to 2011 * tty_kopen_exclusive() above it doesn't ensure to be the only user. 2012 * 2013 * Locking: identical to tty_kopen() above. 2014 */ 2015 struct tty_struct *tty_kopen_shared(dev_t device) 2016 { 2017 return tty_kopen(device, 1); 2018 } 2019 EXPORT_SYMBOL_GPL(tty_kopen_shared); 2020 2021 /** 2022 * tty_open_by_driver - open a tty device 2023 * @device: dev_t of device to open 2024 * @filp: file pointer to tty 2025 * 2026 * Performs the driver lookup, checks for a reopen, or otherwise performs the 2027 * first-time tty initialization. 2028 * 2029 * 2030 * Claims the global tty_mutex to serialize: 2031 * * concurrent first-time tty initialization 2032 * * concurrent tty driver removal w/ lookup 2033 * * concurrent tty removal from driver table 2034 * 2035 * Return: the locked initialized or re-opened &tty_struct 2036 */ 2037 static struct tty_struct *tty_open_by_driver(dev_t device, 2038 struct file *filp) 2039 { 2040 struct tty_struct *tty; 2041 struct tty_driver *driver = NULL; 2042 int index = -1; 2043 int retval; 2044 2045 mutex_lock(&tty_mutex); 2046 driver = tty_lookup_driver(device, filp, &index); 2047 if (IS_ERR(driver)) { 2048 mutex_unlock(&tty_mutex); 2049 return ERR_CAST(driver); 2050 } 2051 2052 /* check whether we're reopening an existing tty */ 2053 tty = tty_driver_lookup_tty(driver, filp, index); 2054 if (IS_ERR(tty)) { 2055 mutex_unlock(&tty_mutex); 2056 goto out; 2057 } 2058 2059 if (tty) { 2060 if (tty_port_kopened(tty->port)) { 2061 tty_kref_put(tty); 2062 mutex_unlock(&tty_mutex); 2063 tty = ERR_PTR(-EBUSY); 2064 goto out; 2065 } 2066 mutex_unlock(&tty_mutex); 2067 retval = tty_lock_interruptible(tty); 2068 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */ 2069 if (retval) { 2070 if (retval == -EINTR) 2071 retval = -ERESTARTSYS; 2072 tty = ERR_PTR(retval); 2073 goto out; 2074 } 2075 retval = tty_reopen(tty); 2076 if (retval < 0) { 2077 tty_unlock(tty); 2078 tty = ERR_PTR(retval); 2079 } 2080 } else { /* Returns with the tty_lock held for now */ 2081 tty = tty_init_dev(driver, index); 2082 mutex_unlock(&tty_mutex); 2083 } 2084 out: 2085 tty_driver_kref_put(driver); 2086 return tty; 2087 } 2088 2089 /** 2090 * tty_open - open a tty device 2091 * @inode: inode of device file 2092 * @filp: file pointer to tty 2093 * 2094 * tty_open() and tty_release() keep up the tty count that contains the number 2095 * of opens done on a tty. We cannot use the inode-count, as different inodes 2096 * might point to the same tty. 2097 * 2098 * Open-counting is needed for pty masters, as well as for keeping track of 2099 * serial lines: DTR is dropped when the last close happens. 2100 * (This is not done solely through tty->count, now. - Ted 1/27/92) 2101 * 2102 * The termios state of a pty is reset on the first open so that settings don't 2103 * persist across reuse. 2104 * 2105 * Locking: 2106 * * %tty_mutex protects tty, tty_lookup_driver() and tty_init_dev(). 2107 * * @tty->count should protect the rest. 2108 * * ->siglock protects ->signal/->sighand 2109 * 2110 * Note: the tty_unlock/lock cases without a ref are only safe due to %tty_mutex 2111 */ 2112 static int tty_open(struct inode *inode, struct file *filp) 2113 { 2114 struct tty_struct *tty; 2115 int noctty, retval; 2116 dev_t device = inode->i_rdev; 2117 unsigned saved_flags = filp->f_flags; 2118 2119 nonseekable_open(inode, filp); 2120 2121 retry_open: 2122 retval = tty_alloc_file(filp); 2123 if (retval) 2124 return -ENOMEM; 2125 2126 tty = tty_open_current_tty(device, filp); 2127 if (!tty) 2128 tty = tty_open_by_driver(device, filp); 2129 2130 if (IS_ERR(tty)) { 2131 tty_free_file(filp); 2132 retval = PTR_ERR(tty); 2133 if (retval != -EAGAIN || signal_pending(current)) 2134 return retval; 2135 schedule(); 2136 goto retry_open; 2137 } 2138 2139 tty_add_file(tty, filp); 2140 2141 check_tty_count(tty, __func__); 2142 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count); 2143 2144 if (tty->ops->open) 2145 retval = tty->ops->open(tty, filp); 2146 else 2147 retval = -ENODEV; 2148 filp->f_flags = saved_flags; 2149 2150 if (retval) { 2151 tty_debug_hangup(tty, "open error %d, releasing\n", retval); 2152 2153 tty_unlock(tty); /* need to call tty_release without BTM */ 2154 tty_release(inode, filp); 2155 if (retval != -ERESTARTSYS) 2156 return retval; 2157 2158 if (signal_pending(current)) 2159 return retval; 2160 2161 schedule(); 2162 /* 2163 * Need to reset f_op in case a hangup happened. 2164 */ 2165 if (tty_hung_up_p(filp)) 2166 filp->f_op = &tty_fops; 2167 goto retry_open; 2168 } 2169 clear_bit(TTY_HUPPED, &tty->flags); 2170 2171 noctty = (filp->f_flags & O_NOCTTY) || 2172 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) || 2173 device == MKDEV(TTYAUX_MAJOR, 1) || 2174 (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2175 tty->driver->subtype == PTY_TYPE_MASTER); 2176 if (!noctty) 2177 tty_open_proc_set_tty(filp, tty); 2178 tty_unlock(tty); 2179 return 0; 2180 } 2181 2182 2183 /** 2184 * tty_poll - check tty status 2185 * @filp: file being polled 2186 * @wait: poll wait structures to update 2187 * 2188 * Call the line discipline polling method to obtain the poll status of the 2189 * device. 2190 * 2191 * Locking: locks called line discipline but ldisc poll method may be 2192 * re-entered freely by other callers. 2193 */ 2194 static __poll_t tty_poll(struct file *filp, poll_table *wait) 2195 { 2196 struct tty_struct *tty = file_tty(filp); 2197 struct tty_ldisc *ld; 2198 __poll_t ret = 0; 2199 2200 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll")) 2201 return 0; 2202 2203 ld = tty_ldisc_ref_wait(tty); 2204 if (!ld) 2205 return hung_up_tty_poll(filp, wait); 2206 if (ld->ops->poll) 2207 ret = ld->ops->poll(tty, filp, wait); 2208 tty_ldisc_deref(ld); 2209 return ret; 2210 } 2211 2212 static int __tty_fasync(int fd, struct file *filp, int on) 2213 { 2214 struct tty_struct *tty = file_tty(filp); 2215 unsigned long flags; 2216 int retval = 0; 2217 2218 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync")) 2219 goto out; 2220 2221 retval = fasync_helper(fd, filp, on, &tty->fasync); 2222 if (retval <= 0) 2223 goto out; 2224 2225 if (on) { 2226 enum pid_type type; 2227 struct pid *pid; 2228 2229 spin_lock_irqsave(&tty->ctrl.lock, flags); 2230 if (tty->ctrl.pgrp) { 2231 pid = tty->ctrl.pgrp; 2232 type = PIDTYPE_PGID; 2233 } else { 2234 pid = task_pid(current); 2235 type = PIDTYPE_TGID; 2236 } 2237 get_pid(pid); 2238 spin_unlock_irqrestore(&tty->ctrl.lock, flags); 2239 __f_setown(filp, pid, type, 0); 2240 put_pid(pid); 2241 retval = 0; 2242 } 2243 out: 2244 return retval; 2245 } 2246 2247 static int tty_fasync(int fd, struct file *filp, int on) 2248 { 2249 struct tty_struct *tty = file_tty(filp); 2250 int retval = -ENOTTY; 2251 2252 tty_lock(tty); 2253 if (!tty_hung_up_p(filp)) 2254 retval = __tty_fasync(fd, filp, on); 2255 tty_unlock(tty); 2256 2257 return retval; 2258 } 2259 2260 static bool tty_legacy_tiocsti __read_mostly = IS_ENABLED(CONFIG_LEGACY_TIOCSTI); 2261 /** 2262 * tiocsti - fake input character 2263 * @tty: tty to fake input into 2264 * @p: pointer to character 2265 * 2266 * Fake input to a tty device. Does the necessary locking and input management. 2267 * 2268 * FIXME: does not honour flow control ?? 2269 * 2270 * Locking: 2271 * * Called functions take tty_ldiscs_lock 2272 * * current->signal->tty check is safe without locks 2273 */ 2274 static int tiocsti(struct tty_struct *tty, char __user *p) 2275 { 2276 char ch, mbz = 0; 2277 struct tty_ldisc *ld; 2278 2279 if (!tty_legacy_tiocsti) 2280 return -EIO; 2281 2282 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2283 return -EPERM; 2284 if (get_user(ch, p)) 2285 return -EFAULT; 2286 tty_audit_tiocsti(tty, ch); 2287 ld = tty_ldisc_ref_wait(tty); 2288 if (!ld) 2289 return -EIO; 2290 tty_buffer_lock_exclusive(tty->port); 2291 if (ld->ops->receive_buf) 2292 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2293 tty_buffer_unlock_exclusive(tty->port); 2294 tty_ldisc_deref(ld); 2295 return 0; 2296 } 2297 2298 /** 2299 * tiocgwinsz - implement window query ioctl 2300 * @tty: tty 2301 * @arg: user buffer for result 2302 * 2303 * Copies the kernel idea of the window size into the user buffer. 2304 * 2305 * Locking: @tty->winsize_mutex is taken to ensure the winsize data is 2306 * consistent. 2307 */ 2308 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2309 { 2310 int err; 2311 2312 mutex_lock(&tty->winsize_mutex); 2313 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2314 mutex_unlock(&tty->winsize_mutex); 2315 2316 return err ? -EFAULT : 0; 2317 } 2318 2319 /** 2320 * tty_do_resize - resize event 2321 * @tty: tty being resized 2322 * @ws: new dimensions 2323 * 2324 * Update the termios variables and send the necessary signals to peform a 2325 * terminal resize correctly. 2326 */ 2327 int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2328 { 2329 struct pid *pgrp; 2330 2331 /* Lock the tty */ 2332 mutex_lock(&tty->winsize_mutex); 2333 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2334 goto done; 2335 2336 /* Signal the foreground process group */ 2337 pgrp = tty_get_pgrp(tty); 2338 if (pgrp) 2339 kill_pgrp(pgrp, SIGWINCH, 1); 2340 put_pid(pgrp); 2341 2342 tty->winsize = *ws; 2343 done: 2344 mutex_unlock(&tty->winsize_mutex); 2345 return 0; 2346 } 2347 EXPORT_SYMBOL(tty_do_resize); 2348 2349 /** 2350 * tiocswinsz - implement window size set ioctl 2351 * @tty: tty side of tty 2352 * @arg: user buffer for result 2353 * 2354 * Copies the user idea of the window size to the kernel. Traditionally this is 2355 * just advisory information but for the Linux console it actually has driver 2356 * level meaning and triggers a VC resize. 2357 * 2358 * Locking: 2359 * Driver dependent. The default do_resize method takes the tty termios 2360 * mutex and ctrl.lock. The console takes its own lock then calls into the 2361 * default method. 2362 */ 2363 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2364 { 2365 struct winsize tmp_ws; 2366 2367 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2368 return -EFAULT; 2369 2370 if (tty->ops->resize) 2371 return tty->ops->resize(tty, &tmp_ws); 2372 else 2373 return tty_do_resize(tty, &tmp_ws); 2374 } 2375 2376 /** 2377 * tioccons - allow admin to move logical console 2378 * @file: the file to become console 2379 * 2380 * Allow the administrator to move the redirected console device. 2381 * 2382 * Locking: uses redirect_lock to guard the redirect information 2383 */ 2384 static int tioccons(struct file *file) 2385 { 2386 if (!capable(CAP_SYS_ADMIN)) 2387 return -EPERM; 2388 if (file->f_op->write_iter == redirected_tty_write) { 2389 struct file *f; 2390 2391 spin_lock(&redirect_lock); 2392 f = redirect; 2393 redirect = NULL; 2394 spin_unlock(&redirect_lock); 2395 if (f) 2396 fput(f); 2397 return 0; 2398 } 2399 if (file->f_op->write_iter != tty_write) 2400 return -ENOTTY; 2401 if (!(file->f_mode & FMODE_WRITE)) 2402 return -EBADF; 2403 if (!(file->f_mode & FMODE_CAN_WRITE)) 2404 return -EINVAL; 2405 spin_lock(&redirect_lock); 2406 if (redirect) { 2407 spin_unlock(&redirect_lock); 2408 return -EBUSY; 2409 } 2410 redirect = get_file(file); 2411 spin_unlock(&redirect_lock); 2412 return 0; 2413 } 2414 2415 /** 2416 * tiocsetd - set line discipline 2417 * @tty: tty device 2418 * @p: pointer to user data 2419 * 2420 * Set the line discipline according to user request. 2421 * 2422 * Locking: see tty_set_ldisc(), this function is just a helper 2423 */ 2424 static int tiocsetd(struct tty_struct *tty, int __user *p) 2425 { 2426 int disc; 2427 int ret; 2428 2429 if (get_user(disc, p)) 2430 return -EFAULT; 2431 2432 ret = tty_set_ldisc(tty, disc); 2433 2434 return ret; 2435 } 2436 2437 /** 2438 * tiocgetd - get line discipline 2439 * @tty: tty device 2440 * @p: pointer to user data 2441 * 2442 * Retrieves the line discipline id directly from the ldisc. 2443 * 2444 * Locking: waits for ldisc reference (in case the line discipline is changing 2445 * or the @tty is being hungup) 2446 */ 2447 static int tiocgetd(struct tty_struct *tty, int __user *p) 2448 { 2449 struct tty_ldisc *ld; 2450 int ret; 2451 2452 ld = tty_ldisc_ref_wait(tty); 2453 if (!ld) 2454 return -EIO; 2455 ret = put_user(ld->ops->num, p); 2456 tty_ldisc_deref(ld); 2457 return ret; 2458 } 2459 2460 /** 2461 * send_break - performed time break 2462 * @tty: device to break on 2463 * @duration: timeout in mS 2464 * 2465 * Perform a timed break on hardware that lacks its own driver level timed 2466 * break functionality. 2467 * 2468 * Locking: 2469 * @tty->atomic_write_lock serializes 2470 */ 2471 static int send_break(struct tty_struct *tty, unsigned int duration) 2472 { 2473 int retval; 2474 2475 if (tty->ops->break_ctl == NULL) 2476 return 0; 2477 2478 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2479 retval = tty->ops->break_ctl(tty, duration); 2480 else { 2481 /* Do the work ourselves */ 2482 if (tty_write_lock(tty, 0) < 0) 2483 return -EINTR; 2484 retval = tty->ops->break_ctl(tty, -1); 2485 if (retval) 2486 goto out; 2487 if (!signal_pending(current)) 2488 msleep_interruptible(duration); 2489 retval = tty->ops->break_ctl(tty, 0); 2490 out: 2491 tty_write_unlock(tty); 2492 if (signal_pending(current)) 2493 retval = -EINTR; 2494 } 2495 return retval; 2496 } 2497 2498 /** 2499 * tty_tiocmget - get modem status 2500 * @tty: tty device 2501 * @p: pointer to result 2502 * 2503 * Obtain the modem status bits from the tty driver if the feature is 2504 * supported. Return -%ENOTTY if it is not available. 2505 * 2506 * Locking: none (up to the driver) 2507 */ 2508 static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2509 { 2510 int retval = -ENOTTY; 2511 2512 if (tty->ops->tiocmget) { 2513 retval = tty->ops->tiocmget(tty); 2514 2515 if (retval >= 0) 2516 retval = put_user(retval, p); 2517 } 2518 return retval; 2519 } 2520 2521 /** 2522 * tty_tiocmset - set modem status 2523 * @tty: tty device 2524 * @cmd: command - clear bits, set bits or set all 2525 * @p: pointer to desired bits 2526 * 2527 * Set the modem status bits from the tty driver if the feature 2528 * is supported. Return -%ENOTTY if it is not available. 2529 * 2530 * Locking: none (up to the driver) 2531 */ 2532 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2533 unsigned __user *p) 2534 { 2535 int retval; 2536 unsigned int set, clear, val; 2537 2538 if (tty->ops->tiocmset == NULL) 2539 return -ENOTTY; 2540 2541 retval = get_user(val, p); 2542 if (retval) 2543 return retval; 2544 set = clear = 0; 2545 switch (cmd) { 2546 case TIOCMBIS: 2547 set = val; 2548 break; 2549 case TIOCMBIC: 2550 clear = val; 2551 break; 2552 case TIOCMSET: 2553 set = val; 2554 clear = ~val; 2555 break; 2556 } 2557 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2558 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2559 return tty->ops->tiocmset(tty, set, clear); 2560 } 2561 2562 /** 2563 * tty_get_icount - get tty statistics 2564 * @tty: tty device 2565 * @icount: output parameter 2566 * 2567 * Gets a copy of the @tty's icount statistics. 2568 * 2569 * Locking: none (up to the driver) 2570 */ 2571 int tty_get_icount(struct tty_struct *tty, 2572 struct serial_icounter_struct *icount) 2573 { 2574 memset(icount, 0, sizeof(*icount)); 2575 2576 if (tty->ops->get_icount) 2577 return tty->ops->get_icount(tty, icount); 2578 else 2579 return -ENOTTY; 2580 } 2581 EXPORT_SYMBOL_GPL(tty_get_icount); 2582 2583 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2584 { 2585 struct serial_icounter_struct icount; 2586 int retval; 2587 2588 retval = tty_get_icount(tty, &icount); 2589 if (retval != 0) 2590 return retval; 2591 2592 if (copy_to_user(arg, &icount, sizeof(icount))) 2593 return -EFAULT; 2594 return 0; 2595 } 2596 2597 static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss) 2598 { 2599 char comm[TASK_COMM_LEN]; 2600 int flags; 2601 2602 flags = ss->flags & ASYNC_DEPRECATED; 2603 2604 if (flags) 2605 pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n", 2606 __func__, get_task_comm(comm, current), flags); 2607 2608 if (!tty->ops->set_serial) 2609 return -ENOTTY; 2610 2611 return tty->ops->set_serial(tty, ss); 2612 } 2613 2614 static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss) 2615 { 2616 struct serial_struct v; 2617 2618 if (copy_from_user(&v, ss, sizeof(*ss))) 2619 return -EFAULT; 2620 2621 return tty_set_serial(tty, &v); 2622 } 2623 2624 static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss) 2625 { 2626 struct serial_struct v; 2627 int err; 2628 2629 memset(&v, 0, sizeof(v)); 2630 if (!tty->ops->get_serial) 2631 return -ENOTTY; 2632 err = tty->ops->get_serial(tty, &v); 2633 if (!err && copy_to_user(ss, &v, sizeof(v))) 2634 err = -EFAULT; 2635 return err; 2636 } 2637 2638 /* 2639 * if pty, return the slave side (real_tty) 2640 * otherwise, return self 2641 */ 2642 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2643 { 2644 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2645 tty->driver->subtype == PTY_TYPE_MASTER) 2646 tty = tty->link; 2647 return tty; 2648 } 2649 2650 /* 2651 * Split this up, as gcc can choke on it otherwise.. 2652 */ 2653 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2654 { 2655 struct tty_struct *tty = file_tty(file); 2656 struct tty_struct *real_tty; 2657 void __user *p = (void __user *)arg; 2658 int retval; 2659 struct tty_ldisc *ld; 2660 2661 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2662 return -EINVAL; 2663 2664 real_tty = tty_pair_get_tty(tty); 2665 2666 /* 2667 * Factor out some common prep work 2668 */ 2669 switch (cmd) { 2670 case TIOCSETD: 2671 case TIOCSBRK: 2672 case TIOCCBRK: 2673 case TCSBRK: 2674 case TCSBRKP: 2675 retval = tty_check_change(tty); 2676 if (retval) 2677 return retval; 2678 if (cmd != TIOCCBRK) { 2679 tty_wait_until_sent(tty, 0); 2680 if (signal_pending(current)) 2681 return -EINTR; 2682 } 2683 break; 2684 } 2685 2686 /* 2687 * Now do the stuff. 2688 */ 2689 switch (cmd) { 2690 case TIOCSTI: 2691 return tiocsti(tty, p); 2692 case TIOCGWINSZ: 2693 return tiocgwinsz(real_tty, p); 2694 case TIOCSWINSZ: 2695 return tiocswinsz(real_tty, p); 2696 case TIOCCONS: 2697 return real_tty != tty ? -EINVAL : tioccons(file); 2698 case TIOCEXCL: 2699 set_bit(TTY_EXCLUSIVE, &tty->flags); 2700 return 0; 2701 case TIOCNXCL: 2702 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2703 return 0; 2704 case TIOCGEXCL: 2705 { 2706 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags); 2707 2708 return put_user(excl, (int __user *)p); 2709 } 2710 case TIOCGETD: 2711 return tiocgetd(tty, p); 2712 case TIOCSETD: 2713 return tiocsetd(tty, p); 2714 case TIOCVHANGUP: 2715 if (!capable(CAP_SYS_ADMIN)) 2716 return -EPERM; 2717 tty_vhangup(tty); 2718 return 0; 2719 case TIOCGDEV: 2720 { 2721 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2722 2723 return put_user(ret, (unsigned int __user *)p); 2724 } 2725 /* 2726 * Break handling 2727 */ 2728 case TIOCSBRK: /* Turn break on, unconditionally */ 2729 if (tty->ops->break_ctl) 2730 return tty->ops->break_ctl(tty, -1); 2731 return 0; 2732 case TIOCCBRK: /* Turn break off, unconditionally */ 2733 if (tty->ops->break_ctl) 2734 return tty->ops->break_ctl(tty, 0); 2735 return 0; 2736 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2737 /* non-zero arg means wait for all output data 2738 * to be sent (performed above) but don't send break. 2739 * This is used by the tcdrain() termios function. 2740 */ 2741 if (!arg) 2742 return send_break(tty, 250); 2743 return 0; 2744 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2745 return send_break(tty, arg ? arg*100 : 250); 2746 2747 case TIOCMGET: 2748 return tty_tiocmget(tty, p); 2749 case TIOCMSET: 2750 case TIOCMBIC: 2751 case TIOCMBIS: 2752 return tty_tiocmset(tty, cmd, p); 2753 case TIOCGICOUNT: 2754 return tty_tiocgicount(tty, p); 2755 case TCFLSH: 2756 switch (arg) { 2757 case TCIFLUSH: 2758 case TCIOFLUSH: 2759 /* flush tty buffer and allow ldisc to process ioctl */ 2760 tty_buffer_flush(tty, NULL); 2761 break; 2762 } 2763 break; 2764 case TIOCSSERIAL: 2765 return tty_tiocsserial(tty, p); 2766 case TIOCGSERIAL: 2767 return tty_tiocgserial(tty, p); 2768 case TIOCGPTPEER: 2769 /* Special because the struct file is needed */ 2770 return ptm_open_peer(file, tty, (int)arg); 2771 default: 2772 retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg); 2773 if (retval != -ENOIOCTLCMD) 2774 return retval; 2775 } 2776 if (tty->ops->ioctl) { 2777 retval = tty->ops->ioctl(tty, cmd, arg); 2778 if (retval != -ENOIOCTLCMD) 2779 return retval; 2780 } 2781 ld = tty_ldisc_ref_wait(tty); 2782 if (!ld) 2783 return hung_up_tty_ioctl(file, cmd, arg); 2784 retval = -EINVAL; 2785 if (ld->ops->ioctl) { 2786 retval = ld->ops->ioctl(tty, cmd, arg); 2787 if (retval == -ENOIOCTLCMD) 2788 retval = -ENOTTY; 2789 } 2790 tty_ldisc_deref(ld); 2791 return retval; 2792 } 2793 2794 #ifdef CONFIG_COMPAT 2795 2796 struct serial_struct32 { 2797 compat_int_t type; 2798 compat_int_t line; 2799 compat_uint_t port; 2800 compat_int_t irq; 2801 compat_int_t flags; 2802 compat_int_t xmit_fifo_size; 2803 compat_int_t custom_divisor; 2804 compat_int_t baud_base; 2805 unsigned short close_delay; 2806 char io_type; 2807 char reserved_char; 2808 compat_int_t hub6; 2809 unsigned short closing_wait; /* time to wait before closing */ 2810 unsigned short closing_wait2; /* no longer used... */ 2811 compat_uint_t iomem_base; 2812 unsigned short iomem_reg_shift; 2813 unsigned int port_high; 2814 /* compat_ulong_t iomap_base FIXME */ 2815 compat_int_t reserved; 2816 }; 2817 2818 static int compat_tty_tiocsserial(struct tty_struct *tty, 2819 struct serial_struct32 __user *ss) 2820 { 2821 struct serial_struct32 v32; 2822 struct serial_struct v; 2823 2824 if (copy_from_user(&v32, ss, sizeof(*ss))) 2825 return -EFAULT; 2826 2827 memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base)); 2828 v.iomem_base = compat_ptr(v32.iomem_base); 2829 v.iomem_reg_shift = v32.iomem_reg_shift; 2830 v.port_high = v32.port_high; 2831 v.iomap_base = 0; 2832 2833 return tty_set_serial(tty, &v); 2834 } 2835 2836 static int compat_tty_tiocgserial(struct tty_struct *tty, 2837 struct serial_struct32 __user *ss) 2838 { 2839 struct serial_struct32 v32; 2840 struct serial_struct v; 2841 int err; 2842 2843 memset(&v, 0, sizeof(v)); 2844 memset(&v32, 0, sizeof(v32)); 2845 2846 if (!tty->ops->get_serial) 2847 return -ENOTTY; 2848 err = tty->ops->get_serial(tty, &v); 2849 if (!err) { 2850 memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base)); 2851 v32.iomem_base = (unsigned long)v.iomem_base >> 32 ? 2852 0xfffffff : ptr_to_compat(v.iomem_base); 2853 v32.iomem_reg_shift = v.iomem_reg_shift; 2854 v32.port_high = v.port_high; 2855 if (copy_to_user(ss, &v32, sizeof(v32))) 2856 err = -EFAULT; 2857 } 2858 return err; 2859 } 2860 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 2861 unsigned long arg) 2862 { 2863 struct tty_struct *tty = file_tty(file); 2864 struct tty_ldisc *ld; 2865 int retval = -ENOIOCTLCMD; 2866 2867 switch (cmd) { 2868 case TIOCOUTQ: 2869 case TIOCSTI: 2870 case TIOCGWINSZ: 2871 case TIOCSWINSZ: 2872 case TIOCGEXCL: 2873 case TIOCGETD: 2874 case TIOCSETD: 2875 case TIOCGDEV: 2876 case TIOCMGET: 2877 case TIOCMSET: 2878 case TIOCMBIC: 2879 case TIOCMBIS: 2880 case TIOCGICOUNT: 2881 case TIOCGPGRP: 2882 case TIOCSPGRP: 2883 case TIOCGSID: 2884 case TIOCSERGETLSR: 2885 case TIOCGRS485: 2886 case TIOCSRS485: 2887 #ifdef TIOCGETP 2888 case TIOCGETP: 2889 case TIOCSETP: 2890 case TIOCSETN: 2891 #endif 2892 #ifdef TIOCGETC 2893 case TIOCGETC: 2894 case TIOCSETC: 2895 #endif 2896 #ifdef TIOCGLTC 2897 case TIOCGLTC: 2898 case TIOCSLTC: 2899 #endif 2900 case TCSETSF: 2901 case TCSETSW: 2902 case TCSETS: 2903 case TCGETS: 2904 #ifdef TCGETS2 2905 case TCGETS2: 2906 case TCSETSF2: 2907 case TCSETSW2: 2908 case TCSETS2: 2909 #endif 2910 case TCGETA: 2911 case TCSETAF: 2912 case TCSETAW: 2913 case TCSETA: 2914 case TIOCGLCKTRMIOS: 2915 case TIOCSLCKTRMIOS: 2916 #ifdef TCGETX 2917 case TCGETX: 2918 case TCSETX: 2919 case TCSETXW: 2920 case TCSETXF: 2921 #endif 2922 case TIOCGSOFTCAR: 2923 case TIOCSSOFTCAR: 2924 2925 case PPPIOCGCHAN: 2926 case PPPIOCGUNIT: 2927 return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg)); 2928 case TIOCCONS: 2929 case TIOCEXCL: 2930 case TIOCNXCL: 2931 case TIOCVHANGUP: 2932 case TIOCSBRK: 2933 case TIOCCBRK: 2934 case TCSBRK: 2935 case TCSBRKP: 2936 case TCFLSH: 2937 case TIOCGPTPEER: 2938 case TIOCNOTTY: 2939 case TIOCSCTTY: 2940 case TCXONC: 2941 case TIOCMIWAIT: 2942 case TIOCSERCONFIG: 2943 return tty_ioctl(file, cmd, arg); 2944 } 2945 2946 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2947 return -EINVAL; 2948 2949 switch (cmd) { 2950 case TIOCSSERIAL: 2951 return compat_tty_tiocsserial(tty, compat_ptr(arg)); 2952 case TIOCGSERIAL: 2953 return compat_tty_tiocgserial(tty, compat_ptr(arg)); 2954 } 2955 if (tty->ops->compat_ioctl) { 2956 retval = tty->ops->compat_ioctl(tty, cmd, arg); 2957 if (retval != -ENOIOCTLCMD) 2958 return retval; 2959 } 2960 2961 ld = tty_ldisc_ref_wait(tty); 2962 if (!ld) 2963 return hung_up_tty_compat_ioctl(file, cmd, arg); 2964 if (ld->ops->compat_ioctl) 2965 retval = ld->ops->compat_ioctl(tty, cmd, arg); 2966 if (retval == -ENOIOCTLCMD && ld->ops->ioctl) 2967 retval = ld->ops->ioctl(tty, (unsigned long)compat_ptr(cmd), 2968 arg); 2969 tty_ldisc_deref(ld); 2970 2971 return retval; 2972 } 2973 #endif 2974 2975 static int this_tty(const void *t, struct file *file, unsigned fd) 2976 { 2977 if (likely(file->f_op->read_iter != tty_read)) 2978 return 0; 2979 return file_tty(file) != t ? 0 : fd + 1; 2980 } 2981 2982 /* 2983 * This implements the "Secure Attention Key" --- the idea is to 2984 * prevent trojan horses by killing all processes associated with this 2985 * tty when the user hits the "Secure Attention Key". Required for 2986 * super-paranoid applications --- see the Orange Book for more details. 2987 * 2988 * This code could be nicer; ideally it should send a HUP, wait a few 2989 * seconds, then send a INT, and then a KILL signal. But you then 2990 * have to coordinate with the init process, since all processes associated 2991 * with the current tty must be dead before the new getty is allowed 2992 * to spawn. 2993 * 2994 * Now, if it would be correct ;-/ The current code has a nasty hole - 2995 * it doesn't catch files in flight. We may send the descriptor to ourselves 2996 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 2997 * 2998 * Nasty bug: do_SAK is being called in interrupt context. This can 2999 * deadlock. We punt it up to process context. AKPM - 16Mar2001 3000 */ 3001 void __do_SAK(struct tty_struct *tty) 3002 { 3003 struct task_struct *g, *p; 3004 struct pid *session; 3005 int i; 3006 unsigned long flags; 3007 3008 spin_lock_irqsave(&tty->ctrl.lock, flags); 3009 session = get_pid(tty->ctrl.session); 3010 spin_unlock_irqrestore(&tty->ctrl.lock, flags); 3011 3012 tty_ldisc_flush(tty); 3013 3014 tty_driver_flush_buffer(tty); 3015 3016 read_lock(&tasklist_lock); 3017 /* Kill the entire session */ 3018 do_each_pid_task(session, PIDTYPE_SID, p) { 3019 tty_notice(tty, "SAK: killed process %d (%s): by session\n", 3020 task_pid_nr(p), p->comm); 3021 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID); 3022 } while_each_pid_task(session, PIDTYPE_SID, p); 3023 3024 /* Now kill any processes that happen to have the tty open */ 3025 do_each_thread(g, p) { 3026 if (p->signal->tty == tty) { 3027 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n", 3028 task_pid_nr(p), p->comm); 3029 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, 3030 PIDTYPE_SID); 3031 continue; 3032 } 3033 task_lock(p); 3034 i = iterate_fd(p->files, 0, this_tty, tty); 3035 if (i != 0) { 3036 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n", 3037 task_pid_nr(p), p->comm, i - 1); 3038 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, 3039 PIDTYPE_SID); 3040 } 3041 task_unlock(p); 3042 } while_each_thread(g, p); 3043 read_unlock(&tasklist_lock); 3044 put_pid(session); 3045 } 3046 3047 static void do_SAK_work(struct work_struct *work) 3048 { 3049 struct tty_struct *tty = 3050 container_of(work, struct tty_struct, SAK_work); 3051 __do_SAK(tty); 3052 } 3053 3054 /* 3055 * The tq handling here is a little racy - tty->SAK_work may already be queued. 3056 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 3057 * the values which we write to it will be identical to the values which it 3058 * already has. --akpm 3059 */ 3060 void do_SAK(struct tty_struct *tty) 3061 { 3062 if (!tty) 3063 return; 3064 schedule_work(&tty->SAK_work); 3065 } 3066 EXPORT_SYMBOL(do_SAK); 3067 3068 /* Must put_device() after it's unused! */ 3069 static struct device *tty_get_device(struct tty_struct *tty) 3070 { 3071 dev_t devt = tty_devnum(tty); 3072 3073 return class_find_device_by_devt(&tty_class, devt); 3074 } 3075 3076 3077 /** 3078 * alloc_tty_struct - allocate a new tty 3079 * @driver: driver which will handle the returned tty 3080 * @idx: minor of the tty 3081 * 3082 * This subroutine allocates and initializes a tty structure. 3083 * 3084 * Locking: none - @tty in question is not exposed at this point 3085 */ 3086 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx) 3087 { 3088 struct tty_struct *tty; 3089 3090 tty = kzalloc(sizeof(*tty), GFP_KERNEL_ACCOUNT); 3091 if (!tty) 3092 return NULL; 3093 3094 kref_init(&tty->kref); 3095 if (tty_ldisc_init(tty)) { 3096 kfree(tty); 3097 return NULL; 3098 } 3099 tty->ctrl.session = NULL; 3100 tty->ctrl.pgrp = NULL; 3101 mutex_init(&tty->legacy_mutex); 3102 mutex_init(&tty->throttle_mutex); 3103 init_rwsem(&tty->termios_rwsem); 3104 mutex_init(&tty->winsize_mutex); 3105 init_ldsem(&tty->ldisc_sem); 3106 init_waitqueue_head(&tty->write_wait); 3107 init_waitqueue_head(&tty->read_wait); 3108 INIT_WORK(&tty->hangup_work, do_tty_hangup); 3109 mutex_init(&tty->atomic_write_lock); 3110 spin_lock_init(&tty->ctrl.lock); 3111 spin_lock_init(&tty->flow.lock); 3112 spin_lock_init(&tty->files_lock); 3113 INIT_LIST_HEAD(&tty->tty_files); 3114 INIT_WORK(&tty->SAK_work, do_SAK_work); 3115 3116 tty->driver = driver; 3117 tty->ops = driver->ops; 3118 tty->index = idx; 3119 tty_line_name(driver, idx, tty->name); 3120 tty->dev = tty_get_device(tty); 3121 3122 return tty; 3123 } 3124 3125 /** 3126 * tty_put_char - write one character to a tty 3127 * @tty: tty 3128 * @ch: character to write 3129 * 3130 * Write one byte to the @tty using the provided @tty->ops->put_char() method 3131 * if present. 3132 * 3133 * Note: the specific put_char operation in the driver layer may go 3134 * away soon. Don't call it directly, use this method 3135 * 3136 * Return: the number of characters successfully output. 3137 */ 3138 int tty_put_char(struct tty_struct *tty, unsigned char ch) 3139 { 3140 if (tty->ops->put_char) 3141 return tty->ops->put_char(tty, ch); 3142 return tty->ops->write(tty, &ch, 1); 3143 } 3144 EXPORT_SYMBOL_GPL(tty_put_char); 3145 3146 static int tty_cdev_add(struct tty_driver *driver, dev_t dev, 3147 unsigned int index, unsigned int count) 3148 { 3149 int err; 3150 3151 /* init here, since reused cdevs cause crashes */ 3152 driver->cdevs[index] = cdev_alloc(); 3153 if (!driver->cdevs[index]) 3154 return -ENOMEM; 3155 driver->cdevs[index]->ops = &tty_fops; 3156 driver->cdevs[index]->owner = driver->owner; 3157 err = cdev_add(driver->cdevs[index], dev, count); 3158 if (err) 3159 kobject_put(&driver->cdevs[index]->kobj); 3160 return err; 3161 } 3162 3163 /** 3164 * tty_register_device - register a tty device 3165 * @driver: the tty driver that describes the tty device 3166 * @index: the index in the tty driver for this tty device 3167 * @device: a struct device that is associated with this tty device. 3168 * This field is optional, if there is no known struct device 3169 * for this tty device it can be set to NULL safely. 3170 * 3171 * This call is required to be made to register an individual tty device 3172 * if the tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If 3173 * that bit is not set, this function should not be called by a tty 3174 * driver. 3175 * 3176 * Locking: ?? 3177 * 3178 * Return: A pointer to the struct device for this tty device (or 3179 * ERR_PTR(-EFOO) on error). 3180 */ 3181 struct device *tty_register_device(struct tty_driver *driver, unsigned index, 3182 struct device *device) 3183 { 3184 return tty_register_device_attr(driver, index, device, NULL, NULL); 3185 } 3186 EXPORT_SYMBOL(tty_register_device); 3187 3188 static void tty_device_create_release(struct device *dev) 3189 { 3190 dev_dbg(dev, "releasing...\n"); 3191 kfree(dev); 3192 } 3193 3194 /** 3195 * tty_register_device_attr - register a tty device 3196 * @driver: the tty driver that describes the tty device 3197 * @index: the index in the tty driver for this tty device 3198 * @device: a struct device that is associated with this tty device. 3199 * This field is optional, if there is no known struct device 3200 * for this tty device it can be set to %NULL safely. 3201 * @drvdata: Driver data to be set to device. 3202 * @attr_grp: Attribute group to be set on device. 3203 * 3204 * This call is required to be made to register an individual tty device if the 3205 * tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If that bit is 3206 * not set, this function should not be called by a tty driver. 3207 * 3208 * Locking: ?? 3209 * 3210 * Return: A pointer to the struct device for this tty device (or 3211 * ERR_PTR(-EFOO) on error). 3212 */ 3213 struct device *tty_register_device_attr(struct tty_driver *driver, 3214 unsigned index, struct device *device, 3215 void *drvdata, 3216 const struct attribute_group **attr_grp) 3217 { 3218 char name[64]; 3219 dev_t devt = MKDEV(driver->major, driver->minor_start) + index; 3220 struct ktermios *tp; 3221 struct device *dev; 3222 int retval; 3223 3224 if (index >= driver->num) { 3225 pr_err("%s: Attempt to register invalid tty line number (%d)\n", 3226 driver->name, index); 3227 return ERR_PTR(-EINVAL); 3228 } 3229 3230 if (driver->type == TTY_DRIVER_TYPE_PTY) 3231 pty_line_name(driver, index, name); 3232 else 3233 tty_line_name(driver, index, name); 3234 3235 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3236 if (!dev) 3237 return ERR_PTR(-ENOMEM); 3238 3239 dev->devt = devt; 3240 dev->class = &tty_class; 3241 dev->parent = device; 3242 dev->release = tty_device_create_release; 3243 dev_set_name(dev, "%s", name); 3244 dev->groups = attr_grp; 3245 dev_set_drvdata(dev, drvdata); 3246 3247 dev_set_uevent_suppress(dev, 1); 3248 3249 retval = device_register(dev); 3250 if (retval) 3251 goto err_put; 3252 3253 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3254 /* 3255 * Free any saved termios data so that the termios state is 3256 * reset when reusing a minor number. 3257 */ 3258 tp = driver->termios[index]; 3259 if (tp) { 3260 driver->termios[index] = NULL; 3261 kfree(tp); 3262 } 3263 3264 retval = tty_cdev_add(driver, devt, index, 1); 3265 if (retval) 3266 goto err_del; 3267 } 3268 3269 dev_set_uevent_suppress(dev, 0); 3270 kobject_uevent(&dev->kobj, KOBJ_ADD); 3271 3272 return dev; 3273 3274 err_del: 3275 device_del(dev); 3276 err_put: 3277 put_device(dev); 3278 3279 return ERR_PTR(retval); 3280 } 3281 EXPORT_SYMBOL_GPL(tty_register_device_attr); 3282 3283 /** 3284 * tty_unregister_device - unregister a tty device 3285 * @driver: the tty driver that describes the tty device 3286 * @index: the index in the tty driver for this tty device 3287 * 3288 * If a tty device is registered with a call to tty_register_device() then 3289 * this function must be called when the tty device is gone. 3290 * 3291 * Locking: ?? 3292 */ 3293 void tty_unregister_device(struct tty_driver *driver, unsigned index) 3294 { 3295 device_destroy(&tty_class, MKDEV(driver->major, driver->minor_start) + index); 3296 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3297 cdev_del(driver->cdevs[index]); 3298 driver->cdevs[index] = NULL; 3299 } 3300 } 3301 EXPORT_SYMBOL(tty_unregister_device); 3302 3303 /** 3304 * __tty_alloc_driver -- allocate tty driver 3305 * @lines: count of lines this driver can handle at most 3306 * @owner: module which is responsible for this driver 3307 * @flags: some of %TTY_DRIVER_ flags, will be set in driver->flags 3308 * 3309 * This should not be called directly, some of the provided macros should be 3310 * used instead. Use IS_ERR() and friends on @retval. 3311 */ 3312 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner, 3313 unsigned long flags) 3314 { 3315 struct tty_driver *driver; 3316 unsigned int cdevs = 1; 3317 int err; 3318 3319 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1)) 3320 return ERR_PTR(-EINVAL); 3321 3322 driver = kzalloc(sizeof(*driver), GFP_KERNEL); 3323 if (!driver) 3324 return ERR_PTR(-ENOMEM); 3325 3326 kref_init(&driver->kref); 3327 driver->num = lines; 3328 driver->owner = owner; 3329 driver->flags = flags; 3330 3331 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) { 3332 driver->ttys = kcalloc(lines, sizeof(*driver->ttys), 3333 GFP_KERNEL); 3334 driver->termios = kcalloc(lines, sizeof(*driver->termios), 3335 GFP_KERNEL); 3336 if (!driver->ttys || !driver->termios) { 3337 err = -ENOMEM; 3338 goto err_free_all; 3339 } 3340 } 3341 3342 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3343 driver->ports = kcalloc(lines, sizeof(*driver->ports), 3344 GFP_KERNEL); 3345 if (!driver->ports) { 3346 err = -ENOMEM; 3347 goto err_free_all; 3348 } 3349 cdevs = lines; 3350 } 3351 3352 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL); 3353 if (!driver->cdevs) { 3354 err = -ENOMEM; 3355 goto err_free_all; 3356 } 3357 3358 return driver; 3359 err_free_all: 3360 kfree(driver->ports); 3361 kfree(driver->ttys); 3362 kfree(driver->termios); 3363 kfree(driver->cdevs); 3364 kfree(driver); 3365 return ERR_PTR(err); 3366 } 3367 EXPORT_SYMBOL(__tty_alloc_driver); 3368 3369 static void destruct_tty_driver(struct kref *kref) 3370 { 3371 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3372 int i; 3373 struct ktermios *tp; 3374 3375 if (driver->flags & TTY_DRIVER_INSTALLED) { 3376 for (i = 0; i < driver->num; i++) { 3377 tp = driver->termios[i]; 3378 if (tp) { 3379 driver->termios[i] = NULL; 3380 kfree(tp); 3381 } 3382 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3383 tty_unregister_device(driver, i); 3384 } 3385 proc_tty_unregister_driver(driver); 3386 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) 3387 cdev_del(driver->cdevs[0]); 3388 } 3389 kfree(driver->cdevs); 3390 kfree(driver->ports); 3391 kfree(driver->termios); 3392 kfree(driver->ttys); 3393 kfree(driver); 3394 } 3395 3396 /** 3397 * tty_driver_kref_put -- drop a reference to a tty driver 3398 * @driver: driver of which to drop the reference 3399 * 3400 * The final put will destroy and free up the driver. 3401 */ 3402 void tty_driver_kref_put(struct tty_driver *driver) 3403 { 3404 kref_put(&driver->kref, destruct_tty_driver); 3405 } 3406 EXPORT_SYMBOL(tty_driver_kref_put); 3407 3408 /** 3409 * tty_register_driver -- register a tty driver 3410 * @driver: driver to register 3411 * 3412 * Called by a tty driver to register itself. 3413 */ 3414 int tty_register_driver(struct tty_driver *driver) 3415 { 3416 int error; 3417 int i; 3418 dev_t dev; 3419 struct device *d; 3420 3421 if (!driver->major) { 3422 error = alloc_chrdev_region(&dev, driver->minor_start, 3423 driver->num, driver->name); 3424 if (!error) { 3425 driver->major = MAJOR(dev); 3426 driver->minor_start = MINOR(dev); 3427 } 3428 } else { 3429 dev = MKDEV(driver->major, driver->minor_start); 3430 error = register_chrdev_region(dev, driver->num, driver->name); 3431 } 3432 if (error < 0) 3433 goto err; 3434 3435 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) { 3436 error = tty_cdev_add(driver, dev, 0, driver->num); 3437 if (error) 3438 goto err_unreg_char; 3439 } 3440 3441 mutex_lock(&tty_mutex); 3442 list_add(&driver->tty_drivers, &tty_drivers); 3443 mutex_unlock(&tty_mutex); 3444 3445 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3446 for (i = 0; i < driver->num; i++) { 3447 d = tty_register_device(driver, i, NULL); 3448 if (IS_ERR(d)) { 3449 error = PTR_ERR(d); 3450 goto err_unreg_devs; 3451 } 3452 } 3453 } 3454 proc_tty_register_driver(driver); 3455 driver->flags |= TTY_DRIVER_INSTALLED; 3456 return 0; 3457 3458 err_unreg_devs: 3459 for (i--; i >= 0; i--) 3460 tty_unregister_device(driver, i); 3461 3462 mutex_lock(&tty_mutex); 3463 list_del(&driver->tty_drivers); 3464 mutex_unlock(&tty_mutex); 3465 3466 err_unreg_char: 3467 unregister_chrdev_region(dev, driver->num); 3468 err: 3469 return error; 3470 } 3471 EXPORT_SYMBOL(tty_register_driver); 3472 3473 /** 3474 * tty_unregister_driver -- unregister a tty driver 3475 * @driver: driver to unregister 3476 * 3477 * Called by a tty driver to unregister itself. 3478 */ 3479 void tty_unregister_driver(struct tty_driver *driver) 3480 { 3481 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3482 driver->num); 3483 mutex_lock(&tty_mutex); 3484 list_del(&driver->tty_drivers); 3485 mutex_unlock(&tty_mutex); 3486 } 3487 EXPORT_SYMBOL(tty_unregister_driver); 3488 3489 dev_t tty_devnum(struct tty_struct *tty) 3490 { 3491 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3492 } 3493 EXPORT_SYMBOL(tty_devnum); 3494 3495 void tty_default_fops(struct file_operations *fops) 3496 { 3497 *fops = tty_fops; 3498 } 3499 3500 static char *tty_devnode(const struct device *dev, umode_t *mode) 3501 { 3502 if (!mode) 3503 return NULL; 3504 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3505 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3506 *mode = 0666; 3507 return NULL; 3508 } 3509 3510 const struct class tty_class = { 3511 .name = "tty", 3512 .devnode = tty_devnode, 3513 }; 3514 3515 static int __init tty_class_init(void) 3516 { 3517 return class_register(&tty_class); 3518 } 3519 3520 postcore_initcall(tty_class_init); 3521 3522 /* 3/2004 jmc: why do these devices exist? */ 3523 static struct cdev tty_cdev, console_cdev; 3524 3525 static ssize_t show_cons_active(struct device *dev, 3526 struct device_attribute *attr, char *buf) 3527 { 3528 struct console *cs[16]; 3529 int i = 0; 3530 struct console *c; 3531 ssize_t count = 0; 3532 3533 /* 3534 * Hold the console_list_lock to guarantee that no consoles are 3535 * unregistered until all console processing is complete. 3536 * This also allows safe traversal of the console list and 3537 * race-free reading of @flags. 3538 */ 3539 console_list_lock(); 3540 3541 for_each_console(c) { 3542 if (!c->device) 3543 continue; 3544 if (!c->write) 3545 continue; 3546 if ((c->flags & CON_ENABLED) == 0) 3547 continue; 3548 cs[i++] = c; 3549 if (i >= ARRAY_SIZE(cs)) 3550 break; 3551 } 3552 3553 /* 3554 * Take console_lock to serialize device() callback with 3555 * other console operations. For example, fg_console is 3556 * modified under console_lock when switching vt. 3557 */ 3558 console_lock(); 3559 while (i--) { 3560 int index = cs[i]->index; 3561 struct tty_driver *drv = cs[i]->device(cs[i], &index); 3562 3563 /* don't resolve tty0 as some programs depend on it */ 3564 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR)) 3565 count += tty_line_name(drv, index, buf + count); 3566 else 3567 count += sprintf(buf + count, "%s%d", 3568 cs[i]->name, cs[i]->index); 3569 3570 count += sprintf(buf + count, "%c", i ? ' ':'\n'); 3571 } 3572 console_unlock(); 3573 3574 console_list_unlock(); 3575 3576 return count; 3577 } 3578 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3579 3580 static struct attribute *cons_dev_attrs[] = { 3581 &dev_attr_active.attr, 3582 NULL 3583 }; 3584 3585 ATTRIBUTE_GROUPS(cons_dev); 3586 3587 static struct device *consdev; 3588 3589 void console_sysfs_notify(void) 3590 { 3591 if (consdev) 3592 sysfs_notify(&consdev->kobj, NULL, "active"); 3593 } 3594 3595 static struct ctl_table tty_table[] = { 3596 { 3597 .procname = "legacy_tiocsti", 3598 .data = &tty_legacy_tiocsti, 3599 .maxlen = sizeof(tty_legacy_tiocsti), 3600 .mode = 0644, 3601 .proc_handler = proc_dobool, 3602 }, 3603 { 3604 .procname = "ldisc_autoload", 3605 .data = &tty_ldisc_autoload, 3606 .maxlen = sizeof(tty_ldisc_autoload), 3607 .mode = 0644, 3608 .proc_handler = proc_dointvec, 3609 .extra1 = SYSCTL_ZERO, 3610 .extra2 = SYSCTL_ONE, 3611 }, 3612 { } 3613 }; 3614 3615 /* 3616 * Ok, now we can initialize the rest of the tty devices and can count 3617 * on memory allocations, interrupts etc.. 3618 */ 3619 int __init tty_init(void) 3620 { 3621 register_sysctl_init("dev/tty", tty_table); 3622 cdev_init(&tty_cdev, &tty_fops); 3623 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3624 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3625 panic("Couldn't register /dev/tty driver\n"); 3626 device_create(&tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3627 3628 cdev_init(&console_cdev, &console_fops); 3629 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3630 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3631 panic("Couldn't register /dev/console driver\n"); 3632 consdev = device_create_with_groups(&tty_class, NULL, 3633 MKDEV(TTYAUX_MAJOR, 1), NULL, 3634 cons_dev_groups, "console"); 3635 if (IS_ERR(consdev)) 3636 consdev = NULL; 3637 3638 #ifdef CONFIG_VT 3639 vty_init(&console_fops); 3640 #endif 3641 return 0; 3642 } 3643