1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 */ 4 5 /* 6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 7 * or rs-channels. It also implements echoing, cooked mode etc. 8 * 9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 10 * 11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 12 * tty_struct and tty_queue structures. Previously there was an array 13 * of 256 tty_struct's which was statically allocated, and the 14 * tty_queue structures were allocated at boot time. Both are now 15 * dynamically allocated only when the tty is open. 16 * 17 * Also restructured routines so that there is more of a separation 18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 19 * the low-level tty routines (serial.c, pty.c, console.c). This 20 * makes for cleaner and more compact code. -TYT, 9/17/92 21 * 22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 23 * which can be dynamically activated and de-activated by the line 24 * discipline handling modules (like SLIP). 25 * 26 * NOTE: pay no attention to the line discipline code (yet); its 27 * interface is still subject to change in this version... 28 * -- TYT, 1/31/92 29 * 30 * Added functionality to the OPOST tty handling. No delays, but all 31 * other bits should be there. 32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 33 * 34 * Rewrote canonical mode and added more termios flags. 35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 36 * 37 * Reorganized FASYNC support so mouse code can share it. 38 * -- ctm@ardi.com, 9Sep95 39 * 40 * New TIOCLINUX variants added. 41 * -- mj@k332.feld.cvut.cz, 19-Nov-95 42 * 43 * Restrict vt switching via ioctl() 44 * -- grif@cs.ucr.edu, 5-Dec-95 45 * 46 * Move console and virtual terminal code to more appropriate files, 47 * implement CONFIG_VT and generalize console device interface. 48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 49 * 50 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 51 * -- Bill Hawes <whawes@star.net>, June 97 52 * 53 * Added devfs support. 54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 55 * 56 * Added support for a Unix98-style ptmx device. 57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 58 * 59 * Reduced memory usage for older ARM systems 60 * -- Russell King <rmk@arm.linux.org.uk> 61 * 62 * Move do_SAK() into process context. Less stack use in devfs functions. 63 * alloc_tty_struct() always uses kmalloc() 64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 65 */ 66 67 #include <linux/types.h> 68 #include <linux/major.h> 69 #include <linux/errno.h> 70 #include <linux/signal.h> 71 #include <linux/fcntl.h> 72 #include <linux/sched.h> 73 #include <linux/interrupt.h> 74 #include <linux/tty.h> 75 #include <linux/tty_driver.h> 76 #include <linux/tty_flip.h> 77 #include <linux/devpts_fs.h> 78 #include <linux/file.h> 79 #include <linux/fdtable.h> 80 #include <linux/console.h> 81 #include <linux/timer.h> 82 #include <linux/ctype.h> 83 #include <linux/kd.h> 84 #include <linux/mm.h> 85 #include <linux/string.h> 86 #include <linux/slab.h> 87 #include <linux/poll.h> 88 #include <linux/proc_fs.h> 89 #include <linux/init.h> 90 #include <linux/module.h> 91 #include <linux/device.h> 92 #include <linux/wait.h> 93 #include <linux/bitops.h> 94 #include <linux/delay.h> 95 #include <linux/seq_file.h> 96 #include <linux/serial.h> 97 #include <linux/ratelimit.h> 98 99 #include <linux/uaccess.h> 100 101 #include <linux/kbd_kern.h> 102 #include <linux/vt_kern.h> 103 #include <linux/selection.h> 104 105 #include <linux/kmod.h> 106 #include <linux/nsproxy.h> 107 108 #undef TTY_DEBUG_HANGUP 109 110 #define TTY_PARANOIA_CHECK 1 111 #define CHECK_TTY_COUNT 1 112 113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 114 .c_iflag = ICRNL | IXON, 115 .c_oflag = OPOST | ONLCR, 116 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 118 ECHOCTL | ECHOKE | IEXTEN, 119 .c_cc = INIT_C_CC, 120 .c_ispeed = 38400, 121 .c_ospeed = 38400 122 }; 123 124 EXPORT_SYMBOL(tty_std_termios); 125 126 /* This list gets poked at by procfs and various bits of boot up code. This 127 could do with some rationalisation such as pulling the tty proc function 128 into this file */ 129 130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 131 132 /* Mutex to protect creating and releasing a tty. This is shared with 133 vt.c for deeply disgusting hack reasons */ 134 DEFINE_MUTEX(tty_mutex); 135 EXPORT_SYMBOL(tty_mutex); 136 137 /* Spinlock to protect the tty->tty_files list */ 138 DEFINE_SPINLOCK(tty_files_lock); 139 140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *); 141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *); 142 ssize_t redirected_tty_write(struct file *, const char __user *, 143 size_t, loff_t *); 144 static unsigned int tty_poll(struct file *, poll_table *); 145 static int tty_open(struct inode *, struct file *); 146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 147 #ifdef CONFIG_COMPAT 148 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 149 unsigned long arg); 150 #else 151 #define tty_compat_ioctl NULL 152 #endif 153 static int __tty_fasync(int fd, struct file *filp, int on); 154 static int tty_fasync(int fd, struct file *filp, int on); 155 static void release_tty(struct tty_struct *tty, int idx); 156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty); 157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty); 158 159 /** 160 * free_tty_struct - free a disused tty 161 * @tty: tty struct to free 162 * 163 * Free the write buffers, tty queue and tty memory itself. 164 * 165 * Locking: none. Must be called after tty is definitely unused 166 */ 167 168 void free_tty_struct(struct tty_struct *tty) 169 { 170 if (!tty) 171 return; 172 if (tty->dev) 173 put_device(tty->dev); 174 kfree(tty->write_buf); 175 tty->magic = 0xDEADDEAD; 176 kfree(tty); 177 } 178 179 static inline struct tty_struct *file_tty(struct file *file) 180 { 181 return ((struct tty_file_private *)file->private_data)->tty; 182 } 183 184 int tty_alloc_file(struct file *file) 185 { 186 struct tty_file_private *priv; 187 188 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 189 if (!priv) 190 return -ENOMEM; 191 192 file->private_data = priv; 193 194 return 0; 195 } 196 197 /* Associate a new file with the tty structure */ 198 void tty_add_file(struct tty_struct *tty, struct file *file) 199 { 200 struct tty_file_private *priv = file->private_data; 201 202 priv->tty = tty; 203 priv->file = file; 204 205 spin_lock(&tty_files_lock); 206 list_add(&priv->list, &tty->tty_files); 207 spin_unlock(&tty_files_lock); 208 } 209 210 /** 211 * tty_free_file - free file->private_data 212 * 213 * This shall be used only for fail path handling when tty_add_file was not 214 * called yet. 215 */ 216 void tty_free_file(struct file *file) 217 { 218 struct tty_file_private *priv = file->private_data; 219 220 file->private_data = NULL; 221 kfree(priv); 222 } 223 224 /* Delete file from its tty */ 225 static void tty_del_file(struct file *file) 226 { 227 struct tty_file_private *priv = file->private_data; 228 229 spin_lock(&tty_files_lock); 230 list_del(&priv->list); 231 spin_unlock(&tty_files_lock); 232 tty_free_file(file); 233 } 234 235 236 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base) 237 238 /** 239 * tty_name - return tty naming 240 * @tty: tty structure 241 * @buf: buffer for output 242 * 243 * Convert a tty structure into a name. The name reflects the kernel 244 * naming policy and if udev is in use may not reflect user space 245 * 246 * Locking: none 247 */ 248 249 char *tty_name(struct tty_struct *tty, char *buf) 250 { 251 if (!tty) /* Hmm. NULL pointer. That's fun. */ 252 strcpy(buf, "NULL tty"); 253 else 254 strcpy(buf, tty->name); 255 return buf; 256 } 257 258 EXPORT_SYMBOL(tty_name); 259 260 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 261 const char *routine) 262 { 263 #ifdef TTY_PARANOIA_CHECK 264 if (!tty) { 265 printk(KERN_WARNING 266 "null TTY for (%d:%d) in %s\n", 267 imajor(inode), iminor(inode), routine); 268 return 1; 269 } 270 if (tty->magic != TTY_MAGIC) { 271 printk(KERN_WARNING 272 "bad magic number for tty struct (%d:%d) in %s\n", 273 imajor(inode), iminor(inode), routine); 274 return 1; 275 } 276 #endif 277 return 0; 278 } 279 280 static int check_tty_count(struct tty_struct *tty, const char *routine) 281 { 282 #ifdef CHECK_TTY_COUNT 283 struct list_head *p; 284 int count = 0; 285 286 spin_lock(&tty_files_lock); 287 list_for_each(p, &tty->tty_files) { 288 count++; 289 } 290 spin_unlock(&tty_files_lock); 291 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 292 tty->driver->subtype == PTY_TYPE_SLAVE && 293 tty->link && tty->link->count) 294 count++; 295 if (tty->count != count) { 296 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) " 297 "!= #fd's(%d) in %s\n", 298 tty->name, tty->count, count, routine); 299 return count; 300 } 301 #endif 302 return 0; 303 } 304 305 /** 306 * get_tty_driver - find device of a tty 307 * @dev_t: device identifier 308 * @index: returns the index of the tty 309 * 310 * This routine returns a tty driver structure, given a device number 311 * and also passes back the index number. 312 * 313 * Locking: caller must hold tty_mutex 314 */ 315 316 static struct tty_driver *get_tty_driver(dev_t device, int *index) 317 { 318 struct tty_driver *p; 319 320 list_for_each_entry(p, &tty_drivers, tty_drivers) { 321 dev_t base = MKDEV(p->major, p->minor_start); 322 if (device < base || device >= base + p->num) 323 continue; 324 *index = device - base; 325 return tty_driver_kref_get(p); 326 } 327 return NULL; 328 } 329 330 #ifdef CONFIG_CONSOLE_POLL 331 332 /** 333 * tty_find_polling_driver - find device of a polled tty 334 * @name: name string to match 335 * @line: pointer to resulting tty line nr 336 * 337 * This routine returns a tty driver structure, given a name 338 * and the condition that the tty driver is capable of polled 339 * operation. 340 */ 341 struct tty_driver *tty_find_polling_driver(char *name, int *line) 342 { 343 struct tty_driver *p, *res = NULL; 344 int tty_line = 0; 345 int len; 346 char *str, *stp; 347 348 for (str = name; *str; str++) 349 if ((*str >= '0' && *str <= '9') || *str == ',') 350 break; 351 if (!*str) 352 return NULL; 353 354 len = str - name; 355 tty_line = simple_strtoul(str, &str, 10); 356 357 mutex_lock(&tty_mutex); 358 /* Search through the tty devices to look for a match */ 359 list_for_each_entry(p, &tty_drivers, tty_drivers) { 360 if (strncmp(name, p->name, len) != 0) 361 continue; 362 stp = str; 363 if (*stp == ',') 364 stp++; 365 if (*stp == '\0') 366 stp = NULL; 367 368 if (tty_line >= 0 && tty_line < p->num && p->ops && 369 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 370 res = tty_driver_kref_get(p); 371 *line = tty_line; 372 break; 373 } 374 } 375 mutex_unlock(&tty_mutex); 376 377 return res; 378 } 379 EXPORT_SYMBOL_GPL(tty_find_polling_driver); 380 #endif 381 382 /** 383 * tty_check_change - check for POSIX terminal changes 384 * @tty: tty to check 385 * 386 * If we try to write to, or set the state of, a terminal and we're 387 * not in the foreground, send a SIGTTOU. If the signal is blocked or 388 * ignored, go ahead and perform the operation. (POSIX 7.2) 389 * 390 * Locking: ctrl_lock 391 */ 392 393 int tty_check_change(struct tty_struct *tty) 394 { 395 unsigned long flags; 396 int ret = 0; 397 398 if (current->signal->tty != tty) 399 return 0; 400 401 spin_lock_irqsave(&tty->ctrl_lock, flags); 402 403 if (!tty->pgrp) { 404 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n"); 405 goto out_unlock; 406 } 407 if (task_pgrp(current) == tty->pgrp) 408 goto out_unlock; 409 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 410 if (is_ignored(SIGTTOU)) 411 goto out; 412 if (is_current_pgrp_orphaned()) { 413 ret = -EIO; 414 goto out; 415 } 416 kill_pgrp(task_pgrp(current), SIGTTOU, 1); 417 set_thread_flag(TIF_SIGPENDING); 418 ret = -ERESTARTSYS; 419 out: 420 return ret; 421 out_unlock: 422 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 423 return ret; 424 } 425 426 EXPORT_SYMBOL(tty_check_change); 427 428 static ssize_t hung_up_tty_read(struct file *file, char __user *buf, 429 size_t count, loff_t *ppos) 430 { 431 return 0; 432 } 433 434 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf, 435 size_t count, loff_t *ppos) 436 { 437 return -EIO; 438 } 439 440 /* No kernel lock held - none needed ;) */ 441 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait) 442 { 443 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM; 444 } 445 446 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 447 unsigned long arg) 448 { 449 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 450 } 451 452 static long hung_up_tty_compat_ioctl(struct file *file, 453 unsigned int cmd, unsigned long arg) 454 { 455 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 456 } 457 458 static const struct file_operations tty_fops = { 459 .llseek = no_llseek, 460 .read = tty_read, 461 .write = tty_write, 462 .poll = tty_poll, 463 .unlocked_ioctl = tty_ioctl, 464 .compat_ioctl = tty_compat_ioctl, 465 .open = tty_open, 466 .release = tty_release, 467 .fasync = tty_fasync, 468 }; 469 470 static const struct file_operations console_fops = { 471 .llseek = no_llseek, 472 .read = tty_read, 473 .write = redirected_tty_write, 474 .poll = tty_poll, 475 .unlocked_ioctl = tty_ioctl, 476 .compat_ioctl = tty_compat_ioctl, 477 .open = tty_open, 478 .release = tty_release, 479 .fasync = tty_fasync, 480 }; 481 482 static const struct file_operations hung_up_tty_fops = { 483 .llseek = no_llseek, 484 .read = hung_up_tty_read, 485 .write = hung_up_tty_write, 486 .poll = hung_up_tty_poll, 487 .unlocked_ioctl = hung_up_tty_ioctl, 488 .compat_ioctl = hung_up_tty_compat_ioctl, 489 .release = tty_release, 490 }; 491 492 static DEFINE_SPINLOCK(redirect_lock); 493 static struct file *redirect; 494 495 /** 496 * tty_wakeup - request more data 497 * @tty: terminal 498 * 499 * Internal and external helper for wakeups of tty. This function 500 * informs the line discipline if present that the driver is ready 501 * to receive more output data. 502 */ 503 504 void tty_wakeup(struct tty_struct *tty) 505 { 506 struct tty_ldisc *ld; 507 508 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 509 ld = tty_ldisc_ref(tty); 510 if (ld) { 511 if (ld->ops->write_wakeup) 512 ld->ops->write_wakeup(tty); 513 tty_ldisc_deref(ld); 514 } 515 } 516 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 517 } 518 519 EXPORT_SYMBOL_GPL(tty_wakeup); 520 521 /** 522 * tty_signal_session_leader - sends SIGHUP to session leader 523 * @tty controlling tty 524 * @exit_session if non-zero, signal all foreground group processes 525 * 526 * Send SIGHUP and SIGCONT to the session leader and its process group. 527 * Optionally, signal all processes in the foreground process group. 528 * 529 * Returns the number of processes in the session with this tty 530 * as their controlling terminal. This value is used to drop 531 * tty references for those processes. 532 */ 533 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session) 534 { 535 struct task_struct *p; 536 int refs = 0; 537 struct pid *tty_pgrp = NULL; 538 539 read_lock(&tasklist_lock); 540 if (tty->session) { 541 do_each_pid_task(tty->session, PIDTYPE_SID, p) { 542 spin_lock_irq(&p->sighand->siglock); 543 if (p->signal->tty == tty) { 544 p->signal->tty = NULL; 545 /* We defer the dereferences outside fo 546 the tasklist lock */ 547 refs++; 548 } 549 if (!p->signal->leader) { 550 spin_unlock_irq(&p->sighand->siglock); 551 continue; 552 } 553 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p); 554 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p); 555 put_pid(p->signal->tty_old_pgrp); /* A noop */ 556 spin_lock(&tty->ctrl_lock); 557 tty_pgrp = get_pid(tty->pgrp); 558 if (tty->pgrp) 559 p->signal->tty_old_pgrp = get_pid(tty->pgrp); 560 spin_unlock(&tty->ctrl_lock); 561 spin_unlock_irq(&p->sighand->siglock); 562 } while_each_pid_task(tty->session, PIDTYPE_SID, p); 563 } 564 read_unlock(&tasklist_lock); 565 566 if (tty_pgrp) { 567 if (exit_session) 568 kill_pgrp(tty_pgrp, SIGHUP, exit_session); 569 put_pid(tty_pgrp); 570 } 571 572 return refs; 573 } 574 575 /** 576 * __tty_hangup - actual handler for hangup events 577 * @work: tty device 578 * 579 * This can be called by a "kworker" kernel thread. That is process 580 * synchronous but doesn't hold any locks, so we need to make sure we 581 * have the appropriate locks for what we're doing. 582 * 583 * The hangup event clears any pending redirections onto the hung up 584 * device. It ensures future writes will error and it does the needed 585 * line discipline hangup and signal delivery. The tty object itself 586 * remains intact. 587 * 588 * Locking: 589 * BTM 590 * redirect lock for undoing redirection 591 * file list lock for manipulating list of ttys 592 * tty_ldiscs_lock from called functions 593 * termios_rwsem resetting termios data 594 * tasklist_lock to walk task list for hangup event 595 * ->siglock to protect ->signal/->sighand 596 */ 597 static void __tty_hangup(struct tty_struct *tty, int exit_session) 598 { 599 struct file *cons_filp = NULL; 600 struct file *filp, *f = NULL; 601 struct tty_file_private *priv; 602 int closecount = 0, n; 603 int refs; 604 605 if (!tty) 606 return; 607 608 609 spin_lock(&redirect_lock); 610 if (redirect && file_tty(redirect) == tty) { 611 f = redirect; 612 redirect = NULL; 613 } 614 spin_unlock(&redirect_lock); 615 616 tty_lock(tty); 617 618 if (test_bit(TTY_HUPPED, &tty->flags)) { 619 tty_unlock(tty); 620 return; 621 } 622 623 /* some functions below drop BTM, so we need this bit */ 624 set_bit(TTY_HUPPING, &tty->flags); 625 626 /* inuse_filps is protected by the single tty lock, 627 this really needs to change if we want to flush the 628 workqueue with the lock held */ 629 check_tty_count(tty, "tty_hangup"); 630 631 spin_lock(&tty_files_lock); 632 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 633 list_for_each_entry(priv, &tty->tty_files, list) { 634 filp = priv->file; 635 if (filp->f_op->write == redirected_tty_write) 636 cons_filp = filp; 637 if (filp->f_op->write != tty_write) 638 continue; 639 closecount++; 640 __tty_fasync(-1, filp, 0); /* can't block */ 641 filp->f_op = &hung_up_tty_fops; 642 } 643 spin_unlock(&tty_files_lock); 644 645 refs = tty_signal_session_leader(tty, exit_session); 646 /* Account for the p->signal references we killed */ 647 while (refs--) 648 tty_kref_put(tty); 649 650 /* 651 * it drops BTM and thus races with reopen 652 * we protect the race by TTY_HUPPING 653 */ 654 tty_ldisc_hangup(tty); 655 656 spin_lock_irq(&tty->ctrl_lock); 657 clear_bit(TTY_THROTTLED, &tty->flags); 658 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 659 put_pid(tty->session); 660 put_pid(tty->pgrp); 661 tty->session = NULL; 662 tty->pgrp = NULL; 663 tty->ctrl_status = 0; 664 spin_unlock_irq(&tty->ctrl_lock); 665 666 /* 667 * If one of the devices matches a console pointer, we 668 * cannot just call hangup() because that will cause 669 * tty->count and state->count to go out of sync. 670 * So we just call close() the right number of times. 671 */ 672 if (cons_filp) { 673 if (tty->ops->close) 674 for (n = 0; n < closecount; n++) 675 tty->ops->close(tty, cons_filp); 676 } else if (tty->ops->hangup) 677 tty->ops->hangup(tty); 678 /* 679 * We don't want to have driver/ldisc interactions beyond 680 * the ones we did here. The driver layer expects no 681 * calls after ->hangup() from the ldisc side. However we 682 * can't yet guarantee all that. 683 */ 684 set_bit(TTY_HUPPED, &tty->flags); 685 clear_bit(TTY_HUPPING, &tty->flags); 686 687 tty_unlock(tty); 688 689 if (f) 690 fput(f); 691 } 692 693 static void do_tty_hangup(struct work_struct *work) 694 { 695 struct tty_struct *tty = 696 container_of(work, struct tty_struct, hangup_work); 697 698 __tty_hangup(tty, 0); 699 } 700 701 /** 702 * tty_hangup - trigger a hangup event 703 * @tty: tty to hangup 704 * 705 * A carrier loss (virtual or otherwise) has occurred on this like 706 * schedule a hangup sequence to run after this event. 707 */ 708 709 void tty_hangup(struct tty_struct *tty) 710 { 711 #ifdef TTY_DEBUG_HANGUP 712 char buf[64]; 713 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf)); 714 #endif 715 schedule_work(&tty->hangup_work); 716 } 717 718 EXPORT_SYMBOL(tty_hangup); 719 720 /** 721 * tty_vhangup - process vhangup 722 * @tty: tty to hangup 723 * 724 * The user has asked via system call for the terminal to be hung up. 725 * We do this synchronously so that when the syscall returns the process 726 * is complete. That guarantee is necessary for security reasons. 727 */ 728 729 void tty_vhangup(struct tty_struct *tty) 730 { 731 #ifdef TTY_DEBUG_HANGUP 732 char buf[64]; 733 734 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf)); 735 #endif 736 __tty_hangup(tty, 0); 737 } 738 739 EXPORT_SYMBOL(tty_vhangup); 740 741 742 /** 743 * tty_vhangup_self - process vhangup for own ctty 744 * 745 * Perform a vhangup on the current controlling tty 746 */ 747 748 void tty_vhangup_self(void) 749 { 750 struct tty_struct *tty; 751 752 tty = get_current_tty(); 753 if (tty) { 754 tty_vhangup(tty); 755 tty_kref_put(tty); 756 } 757 } 758 759 /** 760 * tty_vhangup_session - hangup session leader exit 761 * @tty: tty to hangup 762 * 763 * The session leader is exiting and hanging up its controlling terminal. 764 * Every process in the foreground process group is signalled SIGHUP. 765 * 766 * We do this synchronously so that when the syscall returns the process 767 * is complete. That guarantee is necessary for security reasons. 768 */ 769 770 static void tty_vhangup_session(struct tty_struct *tty) 771 { 772 #ifdef TTY_DEBUG_HANGUP 773 char buf[64]; 774 775 printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf)); 776 #endif 777 __tty_hangup(tty, 1); 778 } 779 780 /** 781 * tty_hung_up_p - was tty hung up 782 * @filp: file pointer of tty 783 * 784 * Return true if the tty has been subject to a vhangup or a carrier 785 * loss 786 */ 787 788 int tty_hung_up_p(struct file *filp) 789 { 790 return (filp->f_op == &hung_up_tty_fops); 791 } 792 793 EXPORT_SYMBOL(tty_hung_up_p); 794 795 static void session_clear_tty(struct pid *session) 796 { 797 struct task_struct *p; 798 do_each_pid_task(session, PIDTYPE_SID, p) { 799 proc_clear_tty(p); 800 } while_each_pid_task(session, PIDTYPE_SID, p); 801 } 802 803 /** 804 * disassociate_ctty - disconnect controlling tty 805 * @on_exit: true if exiting so need to "hang up" the session 806 * 807 * This function is typically called only by the session leader, when 808 * it wants to disassociate itself from its controlling tty. 809 * 810 * It performs the following functions: 811 * (1) Sends a SIGHUP and SIGCONT to the foreground process group 812 * (2) Clears the tty from being controlling the session 813 * (3) Clears the controlling tty for all processes in the 814 * session group. 815 * 816 * The argument on_exit is set to 1 if called when a process is 817 * exiting; it is 0 if called by the ioctl TIOCNOTTY. 818 * 819 * Locking: 820 * BTM is taken for hysterical raisins, and held when 821 * called from no_tty(). 822 * tty_mutex is taken to protect tty 823 * ->siglock is taken to protect ->signal/->sighand 824 * tasklist_lock is taken to walk process list for sessions 825 * ->siglock is taken to protect ->signal/->sighand 826 */ 827 828 void disassociate_ctty(int on_exit) 829 { 830 struct tty_struct *tty; 831 832 if (!current->signal->leader) 833 return; 834 835 tty = get_current_tty(); 836 if (tty) { 837 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) { 838 tty_vhangup_session(tty); 839 } else { 840 struct pid *tty_pgrp = tty_get_pgrp(tty); 841 if (tty_pgrp) { 842 kill_pgrp(tty_pgrp, SIGHUP, on_exit); 843 if (!on_exit) 844 kill_pgrp(tty_pgrp, SIGCONT, on_exit); 845 put_pid(tty_pgrp); 846 } 847 } 848 tty_kref_put(tty); 849 850 } else if (on_exit) { 851 struct pid *old_pgrp; 852 spin_lock_irq(¤t->sighand->siglock); 853 old_pgrp = current->signal->tty_old_pgrp; 854 current->signal->tty_old_pgrp = NULL; 855 spin_unlock_irq(¤t->sighand->siglock); 856 if (old_pgrp) { 857 kill_pgrp(old_pgrp, SIGHUP, on_exit); 858 kill_pgrp(old_pgrp, SIGCONT, on_exit); 859 put_pid(old_pgrp); 860 } 861 return; 862 } 863 864 spin_lock_irq(¤t->sighand->siglock); 865 put_pid(current->signal->tty_old_pgrp); 866 current->signal->tty_old_pgrp = NULL; 867 868 tty = tty_kref_get(current->signal->tty); 869 if (tty) { 870 unsigned long flags; 871 spin_lock_irqsave(&tty->ctrl_lock, flags); 872 put_pid(tty->session); 873 put_pid(tty->pgrp); 874 tty->session = NULL; 875 tty->pgrp = NULL; 876 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 877 tty_kref_put(tty); 878 } else { 879 #ifdef TTY_DEBUG_HANGUP 880 printk(KERN_DEBUG "error attempted to write to tty [0x%p]" 881 " = NULL", tty); 882 #endif 883 } 884 885 spin_unlock_irq(¤t->sighand->siglock); 886 /* Now clear signal->tty under the lock */ 887 read_lock(&tasklist_lock); 888 session_clear_tty(task_session(current)); 889 read_unlock(&tasklist_lock); 890 } 891 892 /** 893 * 894 * no_tty - Ensure the current process does not have a controlling tty 895 */ 896 void no_tty(void) 897 { 898 /* FIXME: Review locking here. The tty_lock never covered any race 899 between a new association and proc_clear_tty but possible we need 900 to protect against this anyway */ 901 struct task_struct *tsk = current; 902 disassociate_ctty(0); 903 proc_clear_tty(tsk); 904 } 905 906 907 /** 908 * stop_tty - propagate flow control 909 * @tty: tty to stop 910 * 911 * Perform flow control to the driver. May be called 912 * on an already stopped device and will not re-call the driver 913 * method. 914 * 915 * This functionality is used by both the line disciplines for 916 * halting incoming flow and by the driver. It may therefore be 917 * called from any context, may be under the tty atomic_write_lock 918 * but not always. 919 * 920 * Locking: 921 * flow_lock 922 */ 923 924 void __stop_tty(struct tty_struct *tty) 925 { 926 if (tty->stopped) 927 return; 928 tty->stopped = 1; 929 if (tty->ops->stop) 930 (tty->ops->stop)(tty); 931 } 932 933 void stop_tty(struct tty_struct *tty) 934 { 935 unsigned long flags; 936 937 spin_lock_irqsave(&tty->flow_lock, flags); 938 __stop_tty(tty); 939 spin_unlock_irqrestore(&tty->flow_lock, flags); 940 } 941 EXPORT_SYMBOL(stop_tty); 942 943 /** 944 * start_tty - propagate flow control 945 * @tty: tty to start 946 * 947 * Start a tty that has been stopped if at all possible. If this 948 * tty was previous stopped and is now being started, the driver 949 * start method is invoked and the line discipline woken. 950 * 951 * Locking: 952 * flow_lock 953 */ 954 955 void __start_tty(struct tty_struct *tty) 956 { 957 if (!tty->stopped || tty->flow_stopped) 958 return; 959 tty->stopped = 0; 960 if (tty->ops->start) 961 (tty->ops->start)(tty); 962 tty_wakeup(tty); 963 } 964 965 void start_tty(struct tty_struct *tty) 966 { 967 unsigned long flags; 968 969 spin_lock_irqsave(&tty->flow_lock, flags); 970 __start_tty(tty); 971 spin_unlock_irqrestore(&tty->flow_lock, flags); 972 } 973 EXPORT_SYMBOL(start_tty); 974 975 /* We limit tty time update visibility to every 8 seconds or so. */ 976 static void tty_update_time(struct timespec *time) 977 { 978 unsigned long sec = get_seconds() & ~7; 979 if ((long)(sec - time->tv_sec) > 0) 980 time->tv_sec = sec; 981 } 982 983 /** 984 * tty_read - read method for tty device files 985 * @file: pointer to tty file 986 * @buf: user buffer 987 * @count: size of user buffer 988 * @ppos: unused 989 * 990 * Perform the read system call function on this terminal device. Checks 991 * for hung up devices before calling the line discipline method. 992 * 993 * Locking: 994 * Locks the line discipline internally while needed. Multiple 995 * read calls may be outstanding in parallel. 996 */ 997 998 static ssize_t tty_read(struct file *file, char __user *buf, size_t count, 999 loff_t *ppos) 1000 { 1001 int i; 1002 struct inode *inode = file_inode(file); 1003 struct tty_struct *tty = file_tty(file); 1004 struct tty_ldisc *ld; 1005 1006 if (tty_paranoia_check(tty, inode, "tty_read")) 1007 return -EIO; 1008 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags))) 1009 return -EIO; 1010 1011 /* We want to wait for the line discipline to sort out in this 1012 situation */ 1013 ld = tty_ldisc_ref_wait(tty); 1014 if (ld->ops->read) 1015 i = (ld->ops->read)(tty, file, buf, count); 1016 else 1017 i = -EIO; 1018 tty_ldisc_deref(ld); 1019 1020 if (i > 0) 1021 tty_update_time(&inode->i_atime); 1022 1023 return i; 1024 } 1025 1026 static void tty_write_unlock(struct tty_struct *tty) 1027 __releases(&tty->atomic_write_lock) 1028 { 1029 mutex_unlock(&tty->atomic_write_lock); 1030 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 1031 } 1032 1033 static int tty_write_lock(struct tty_struct *tty, int ndelay) 1034 __acquires(&tty->atomic_write_lock) 1035 { 1036 if (!mutex_trylock(&tty->atomic_write_lock)) { 1037 if (ndelay) 1038 return -EAGAIN; 1039 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 1040 return -ERESTARTSYS; 1041 } 1042 return 0; 1043 } 1044 1045 /* 1046 * Split writes up in sane blocksizes to avoid 1047 * denial-of-service type attacks 1048 */ 1049 static inline ssize_t do_tty_write( 1050 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 1051 struct tty_struct *tty, 1052 struct file *file, 1053 const char __user *buf, 1054 size_t count) 1055 { 1056 ssize_t ret, written = 0; 1057 unsigned int chunk; 1058 1059 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 1060 if (ret < 0) 1061 return ret; 1062 1063 /* 1064 * We chunk up writes into a temporary buffer. This 1065 * simplifies low-level drivers immensely, since they 1066 * don't have locking issues and user mode accesses. 1067 * 1068 * But if TTY_NO_WRITE_SPLIT is set, we should use a 1069 * big chunk-size.. 1070 * 1071 * The default chunk-size is 2kB, because the NTTY 1072 * layer has problems with bigger chunks. It will 1073 * claim to be able to handle more characters than 1074 * it actually does. 1075 * 1076 * FIXME: This can probably go away now except that 64K chunks 1077 * are too likely to fail unless switched to vmalloc... 1078 */ 1079 chunk = 2048; 1080 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 1081 chunk = 65536; 1082 if (count < chunk) 1083 chunk = count; 1084 1085 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 1086 if (tty->write_cnt < chunk) { 1087 unsigned char *buf_chunk; 1088 1089 if (chunk < 1024) 1090 chunk = 1024; 1091 1092 buf_chunk = kmalloc(chunk, GFP_KERNEL); 1093 if (!buf_chunk) { 1094 ret = -ENOMEM; 1095 goto out; 1096 } 1097 kfree(tty->write_buf); 1098 tty->write_cnt = chunk; 1099 tty->write_buf = buf_chunk; 1100 } 1101 1102 /* Do the write .. */ 1103 for (;;) { 1104 size_t size = count; 1105 if (size > chunk) 1106 size = chunk; 1107 ret = -EFAULT; 1108 if (copy_from_user(tty->write_buf, buf, size)) 1109 break; 1110 ret = write(tty, file, tty->write_buf, size); 1111 if (ret <= 0) 1112 break; 1113 written += ret; 1114 buf += ret; 1115 count -= ret; 1116 if (!count) 1117 break; 1118 ret = -ERESTARTSYS; 1119 if (signal_pending(current)) 1120 break; 1121 cond_resched(); 1122 } 1123 if (written) { 1124 tty_update_time(&file_inode(file)->i_mtime); 1125 ret = written; 1126 } 1127 out: 1128 tty_write_unlock(tty); 1129 return ret; 1130 } 1131 1132 /** 1133 * tty_write_message - write a message to a certain tty, not just the console. 1134 * @tty: the destination tty_struct 1135 * @msg: the message to write 1136 * 1137 * This is used for messages that need to be redirected to a specific tty. 1138 * We don't put it into the syslog queue right now maybe in the future if 1139 * really needed. 1140 * 1141 * We must still hold the BTM and test the CLOSING flag for the moment. 1142 */ 1143 1144 void tty_write_message(struct tty_struct *tty, char *msg) 1145 { 1146 if (tty) { 1147 mutex_lock(&tty->atomic_write_lock); 1148 tty_lock(tty); 1149 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) { 1150 tty_unlock(tty); 1151 tty->ops->write(tty, msg, strlen(msg)); 1152 } else 1153 tty_unlock(tty); 1154 tty_write_unlock(tty); 1155 } 1156 return; 1157 } 1158 1159 1160 /** 1161 * tty_write - write method for tty device file 1162 * @file: tty file pointer 1163 * @buf: user data to write 1164 * @count: bytes to write 1165 * @ppos: unused 1166 * 1167 * Write data to a tty device via the line discipline. 1168 * 1169 * Locking: 1170 * Locks the line discipline as required 1171 * Writes to the tty driver are serialized by the atomic_write_lock 1172 * and are then processed in chunks to the device. The line discipline 1173 * write method will not be invoked in parallel for each device. 1174 */ 1175 1176 static ssize_t tty_write(struct file *file, const char __user *buf, 1177 size_t count, loff_t *ppos) 1178 { 1179 struct tty_struct *tty = file_tty(file); 1180 struct tty_ldisc *ld; 1181 ssize_t ret; 1182 1183 if (tty_paranoia_check(tty, file_inode(file), "tty_write")) 1184 return -EIO; 1185 if (!tty || !tty->ops->write || 1186 (test_bit(TTY_IO_ERROR, &tty->flags))) 1187 return -EIO; 1188 /* Short term debug to catch buggy drivers */ 1189 if (tty->ops->write_room == NULL) 1190 printk(KERN_ERR "tty driver %s lacks a write_room method.\n", 1191 tty->driver->name); 1192 ld = tty_ldisc_ref_wait(tty); 1193 if (!ld->ops->write) 1194 ret = -EIO; 1195 else 1196 ret = do_tty_write(ld->ops->write, tty, file, buf, count); 1197 tty_ldisc_deref(ld); 1198 return ret; 1199 } 1200 1201 ssize_t redirected_tty_write(struct file *file, const char __user *buf, 1202 size_t count, loff_t *ppos) 1203 { 1204 struct file *p = NULL; 1205 1206 spin_lock(&redirect_lock); 1207 if (redirect) 1208 p = get_file(redirect); 1209 spin_unlock(&redirect_lock); 1210 1211 if (p) { 1212 ssize_t res; 1213 res = vfs_write(p, buf, count, &p->f_pos); 1214 fput(p); 1215 return res; 1216 } 1217 return tty_write(file, buf, count, ppos); 1218 } 1219 1220 /** 1221 * tty_send_xchar - send priority character 1222 * 1223 * Send a high priority character to the tty even if stopped 1224 * 1225 * Locking: none for xchar method, write ordering for write method. 1226 */ 1227 1228 int tty_send_xchar(struct tty_struct *tty, char ch) 1229 { 1230 int was_stopped = tty->stopped; 1231 1232 if (tty->ops->send_xchar) { 1233 tty->ops->send_xchar(tty, ch); 1234 return 0; 1235 } 1236 1237 if (tty_write_lock(tty, 0) < 0) 1238 return -ERESTARTSYS; 1239 1240 if (was_stopped) 1241 start_tty(tty); 1242 tty->ops->write(tty, &ch, 1); 1243 if (was_stopped) 1244 stop_tty(tty); 1245 tty_write_unlock(tty); 1246 return 0; 1247 } 1248 1249 static char ptychar[] = "pqrstuvwxyzabcde"; 1250 1251 /** 1252 * pty_line_name - generate name for a pty 1253 * @driver: the tty driver in use 1254 * @index: the minor number 1255 * @p: output buffer of at least 6 bytes 1256 * 1257 * Generate a name from a driver reference and write it to the output 1258 * buffer. 1259 * 1260 * Locking: None 1261 */ 1262 static void pty_line_name(struct tty_driver *driver, int index, char *p) 1263 { 1264 int i = index + driver->name_base; 1265 /* ->name is initialized to "ttyp", but "tty" is expected */ 1266 sprintf(p, "%s%c%x", 1267 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1268 ptychar[i >> 4 & 0xf], i & 0xf); 1269 } 1270 1271 /** 1272 * tty_line_name - generate name for a tty 1273 * @driver: the tty driver in use 1274 * @index: the minor number 1275 * @p: output buffer of at least 7 bytes 1276 * 1277 * Generate a name from a driver reference and write it to the output 1278 * buffer. 1279 * 1280 * Locking: None 1281 */ 1282 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p) 1283 { 1284 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE) 1285 return sprintf(p, "%s", driver->name); 1286 else 1287 return sprintf(p, "%s%d", driver->name, 1288 index + driver->name_base); 1289 } 1290 1291 /** 1292 * tty_driver_lookup_tty() - find an existing tty, if any 1293 * @driver: the driver for the tty 1294 * @idx: the minor number 1295 * 1296 * Return the tty, if found or ERR_PTR() otherwise. 1297 * 1298 * Locking: tty_mutex must be held. If tty is found, the mutex must 1299 * be held until the 'fast-open' is also done. Will change once we 1300 * have refcounting in the driver and per driver locking 1301 */ 1302 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1303 struct inode *inode, int idx) 1304 { 1305 if (driver->ops->lookup) 1306 return driver->ops->lookup(driver, inode, idx); 1307 1308 return driver->ttys[idx]; 1309 } 1310 1311 /** 1312 * tty_init_termios - helper for termios setup 1313 * @tty: the tty to set up 1314 * 1315 * Initialise the termios structures for this tty. Thus runs under 1316 * the tty_mutex currently so we can be relaxed about ordering. 1317 */ 1318 1319 int tty_init_termios(struct tty_struct *tty) 1320 { 1321 struct ktermios *tp; 1322 int idx = tty->index; 1323 1324 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1325 tty->termios = tty->driver->init_termios; 1326 else { 1327 /* Check for lazy saved data */ 1328 tp = tty->driver->termios[idx]; 1329 if (tp != NULL) 1330 tty->termios = *tp; 1331 else 1332 tty->termios = tty->driver->init_termios; 1333 } 1334 /* Compatibility until drivers always set this */ 1335 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios); 1336 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios); 1337 return 0; 1338 } 1339 EXPORT_SYMBOL_GPL(tty_init_termios); 1340 1341 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1342 { 1343 int ret = tty_init_termios(tty); 1344 if (ret) 1345 return ret; 1346 1347 tty_driver_kref_get(driver); 1348 tty->count++; 1349 driver->ttys[tty->index] = tty; 1350 return 0; 1351 } 1352 EXPORT_SYMBOL_GPL(tty_standard_install); 1353 1354 /** 1355 * tty_driver_install_tty() - install a tty entry in the driver 1356 * @driver: the driver for the tty 1357 * @tty: the tty 1358 * 1359 * Install a tty object into the driver tables. The tty->index field 1360 * will be set by the time this is called. This method is responsible 1361 * for ensuring any need additional structures are allocated and 1362 * configured. 1363 * 1364 * Locking: tty_mutex for now 1365 */ 1366 static int tty_driver_install_tty(struct tty_driver *driver, 1367 struct tty_struct *tty) 1368 { 1369 return driver->ops->install ? driver->ops->install(driver, tty) : 1370 tty_standard_install(driver, tty); 1371 } 1372 1373 /** 1374 * tty_driver_remove_tty() - remove a tty from the driver tables 1375 * @driver: the driver for the tty 1376 * @idx: the minor number 1377 * 1378 * Remvoe a tty object from the driver tables. The tty->index field 1379 * will be set by the time this is called. 1380 * 1381 * Locking: tty_mutex for now 1382 */ 1383 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1384 { 1385 if (driver->ops->remove) 1386 driver->ops->remove(driver, tty); 1387 else 1388 driver->ttys[tty->index] = NULL; 1389 } 1390 1391 /* 1392 * tty_reopen() - fast re-open of an open tty 1393 * @tty - the tty to open 1394 * 1395 * Return 0 on success, -errno on error. 1396 * 1397 * Locking: tty_mutex must be held from the time the tty was found 1398 * till this open completes. 1399 */ 1400 static int tty_reopen(struct tty_struct *tty) 1401 { 1402 struct tty_driver *driver = tty->driver; 1403 1404 if (test_bit(TTY_CLOSING, &tty->flags) || 1405 test_bit(TTY_HUPPING, &tty->flags)) 1406 return -EIO; 1407 1408 if (driver->type == TTY_DRIVER_TYPE_PTY && 1409 driver->subtype == PTY_TYPE_MASTER) { 1410 /* 1411 * special case for PTY masters: only one open permitted, 1412 * and the slave side open count is incremented as well. 1413 */ 1414 if (tty->count) 1415 return -EIO; 1416 1417 tty->link->count++; 1418 } 1419 tty->count++; 1420 1421 WARN_ON(!tty->ldisc); 1422 1423 return 0; 1424 } 1425 1426 /** 1427 * tty_init_dev - initialise a tty device 1428 * @driver: tty driver we are opening a device on 1429 * @idx: device index 1430 * @ret_tty: returned tty structure 1431 * 1432 * Prepare a tty device. This may not be a "new" clean device but 1433 * could also be an active device. The pty drivers require special 1434 * handling because of this. 1435 * 1436 * Locking: 1437 * The function is called under the tty_mutex, which 1438 * protects us from the tty struct or driver itself going away. 1439 * 1440 * On exit the tty device has the line discipline attached and 1441 * a reference count of 1. If a pair was created for pty/tty use 1442 * and the other was a pty master then it too has a reference count of 1. 1443 * 1444 * WSH 06/09/97: Rewritten to remove races and properly clean up after a 1445 * failed open. The new code protects the open with a mutex, so it's 1446 * really quite straightforward. The mutex locking can probably be 1447 * relaxed for the (most common) case of reopening a tty. 1448 */ 1449 1450 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1451 { 1452 struct tty_struct *tty; 1453 int retval; 1454 1455 /* 1456 * First time open is complex, especially for PTY devices. 1457 * This code guarantees that either everything succeeds and the 1458 * TTY is ready for operation, or else the table slots are vacated 1459 * and the allocated memory released. (Except that the termios 1460 * and locked termios may be retained.) 1461 */ 1462 1463 if (!try_module_get(driver->owner)) 1464 return ERR_PTR(-ENODEV); 1465 1466 tty = alloc_tty_struct(driver, idx); 1467 if (!tty) { 1468 retval = -ENOMEM; 1469 goto err_module_put; 1470 } 1471 1472 tty_lock(tty); 1473 retval = tty_driver_install_tty(driver, tty); 1474 if (retval < 0) 1475 goto err_deinit_tty; 1476 1477 if (!tty->port) 1478 tty->port = driver->ports[idx]; 1479 1480 WARN_RATELIMIT(!tty->port, 1481 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n", 1482 __func__, tty->driver->name); 1483 1484 tty->port->itty = tty; 1485 1486 /* 1487 * Structures all installed ... call the ldisc open routines. 1488 * If we fail here just call release_tty to clean up. No need 1489 * to decrement the use counts, as release_tty doesn't care. 1490 */ 1491 retval = tty_ldisc_setup(tty, tty->link); 1492 if (retval) 1493 goto err_release_tty; 1494 /* Return the tty locked so that it cannot vanish under the caller */ 1495 return tty; 1496 1497 err_deinit_tty: 1498 tty_unlock(tty); 1499 deinitialize_tty_struct(tty); 1500 free_tty_struct(tty); 1501 err_module_put: 1502 module_put(driver->owner); 1503 return ERR_PTR(retval); 1504 1505 /* call the tty release_tty routine to clean out this slot */ 1506 err_release_tty: 1507 tty_unlock(tty); 1508 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, " 1509 "clearing slot %d\n", idx); 1510 release_tty(tty, idx); 1511 return ERR_PTR(retval); 1512 } 1513 1514 void tty_free_termios(struct tty_struct *tty) 1515 { 1516 struct ktermios *tp; 1517 int idx = tty->index; 1518 1519 /* If the port is going to reset then it has no termios to save */ 1520 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1521 return; 1522 1523 /* Stash the termios data */ 1524 tp = tty->driver->termios[idx]; 1525 if (tp == NULL) { 1526 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL); 1527 if (tp == NULL) { 1528 pr_warn("tty: no memory to save termios state.\n"); 1529 return; 1530 } 1531 tty->driver->termios[idx] = tp; 1532 } 1533 *tp = tty->termios; 1534 } 1535 EXPORT_SYMBOL(tty_free_termios); 1536 1537 /** 1538 * tty_flush_works - flush all works of a tty 1539 * @tty: tty device to flush works for 1540 * 1541 * Sync flush all works belonging to @tty. 1542 */ 1543 static void tty_flush_works(struct tty_struct *tty) 1544 { 1545 flush_work(&tty->SAK_work); 1546 flush_work(&tty->hangup_work); 1547 } 1548 1549 /** 1550 * release_one_tty - release tty structure memory 1551 * @kref: kref of tty we are obliterating 1552 * 1553 * Releases memory associated with a tty structure, and clears out the 1554 * driver table slots. This function is called when a device is no longer 1555 * in use. It also gets called when setup of a device fails. 1556 * 1557 * Locking: 1558 * takes the file list lock internally when working on the list 1559 * of ttys that the driver keeps. 1560 * 1561 * This method gets called from a work queue so that the driver private 1562 * cleanup ops can sleep (needed for USB at least) 1563 */ 1564 static void release_one_tty(struct work_struct *work) 1565 { 1566 struct tty_struct *tty = 1567 container_of(work, struct tty_struct, hangup_work); 1568 struct tty_driver *driver = tty->driver; 1569 struct module *owner = driver->owner; 1570 1571 if (tty->ops->cleanup) 1572 tty->ops->cleanup(tty); 1573 1574 tty->magic = 0; 1575 tty_driver_kref_put(driver); 1576 module_put(owner); 1577 1578 spin_lock(&tty_files_lock); 1579 list_del_init(&tty->tty_files); 1580 spin_unlock(&tty_files_lock); 1581 1582 put_pid(tty->pgrp); 1583 put_pid(tty->session); 1584 free_tty_struct(tty); 1585 } 1586 1587 static void queue_release_one_tty(struct kref *kref) 1588 { 1589 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1590 1591 /* The hangup queue is now free so we can reuse it rather than 1592 waste a chunk of memory for each port */ 1593 INIT_WORK(&tty->hangup_work, release_one_tty); 1594 schedule_work(&tty->hangup_work); 1595 } 1596 1597 /** 1598 * tty_kref_put - release a tty kref 1599 * @tty: tty device 1600 * 1601 * Release a reference to a tty device and if need be let the kref 1602 * layer destruct the object for us 1603 */ 1604 1605 void tty_kref_put(struct tty_struct *tty) 1606 { 1607 if (tty) 1608 kref_put(&tty->kref, queue_release_one_tty); 1609 } 1610 EXPORT_SYMBOL(tty_kref_put); 1611 1612 /** 1613 * release_tty - release tty structure memory 1614 * 1615 * Release both @tty and a possible linked partner (think pty pair), 1616 * and decrement the refcount of the backing module. 1617 * 1618 * Locking: 1619 * tty_mutex 1620 * takes the file list lock internally when working on the list 1621 * of ttys that the driver keeps. 1622 * 1623 */ 1624 static void release_tty(struct tty_struct *tty, int idx) 1625 { 1626 /* This should always be true but check for the moment */ 1627 WARN_ON(tty->index != idx); 1628 WARN_ON(!mutex_is_locked(&tty_mutex)); 1629 if (tty->ops->shutdown) 1630 tty->ops->shutdown(tty); 1631 tty_free_termios(tty); 1632 tty_driver_remove_tty(tty->driver, tty); 1633 tty->port->itty = NULL; 1634 if (tty->link) 1635 tty->link->port->itty = NULL; 1636 cancel_work_sync(&tty->port->buf.work); 1637 1638 if (tty->link) 1639 tty_kref_put(tty->link); 1640 tty_kref_put(tty); 1641 } 1642 1643 /** 1644 * tty_release_checks - check a tty before real release 1645 * @tty: tty to check 1646 * @o_tty: link of @tty (if any) 1647 * @idx: index of the tty 1648 * 1649 * Performs some paranoid checking before true release of the @tty. 1650 * This is a no-op unless TTY_PARANOIA_CHECK is defined. 1651 */ 1652 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty, 1653 int idx) 1654 { 1655 #ifdef TTY_PARANOIA_CHECK 1656 if (idx < 0 || idx >= tty->driver->num) { 1657 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n", 1658 __func__, tty->name); 1659 return -1; 1660 } 1661 1662 /* not much to check for devpts */ 1663 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1664 return 0; 1665 1666 if (tty != tty->driver->ttys[idx]) { 1667 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n", 1668 __func__, idx, tty->name); 1669 return -1; 1670 } 1671 if (tty->driver->other) { 1672 if (o_tty != tty->driver->other->ttys[idx]) { 1673 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n", 1674 __func__, idx, tty->name); 1675 return -1; 1676 } 1677 if (o_tty->link != tty) { 1678 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__); 1679 return -1; 1680 } 1681 } 1682 #endif 1683 return 0; 1684 } 1685 1686 /** 1687 * tty_release - vfs callback for close 1688 * @inode: inode of tty 1689 * @filp: file pointer for handle to tty 1690 * 1691 * Called the last time each file handle is closed that references 1692 * this tty. There may however be several such references. 1693 * 1694 * Locking: 1695 * Takes bkl. See tty_release_dev 1696 * 1697 * Even releasing the tty structures is a tricky business.. We have 1698 * to be very careful that the structures are all released at the 1699 * same time, as interrupts might otherwise get the wrong pointers. 1700 * 1701 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1702 * lead to double frees or releasing memory still in use. 1703 */ 1704 1705 int tty_release(struct inode *inode, struct file *filp) 1706 { 1707 struct tty_struct *tty = file_tty(filp); 1708 struct tty_struct *o_tty; 1709 int pty_master, tty_closing, o_tty_closing, do_sleep; 1710 int idx; 1711 char buf[64]; 1712 long timeout = 0; 1713 int once = 1; 1714 1715 if (tty_paranoia_check(tty, inode, __func__)) 1716 return 0; 1717 1718 tty_lock(tty); 1719 check_tty_count(tty, __func__); 1720 1721 __tty_fasync(-1, filp, 0); 1722 1723 idx = tty->index; 1724 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1725 tty->driver->subtype == PTY_TYPE_MASTER); 1726 /* Review: parallel close */ 1727 o_tty = tty->link; 1728 1729 if (tty_release_checks(tty, o_tty, idx)) { 1730 tty_unlock(tty); 1731 return 0; 1732 } 1733 1734 #ifdef TTY_DEBUG_HANGUP 1735 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__, 1736 tty_name(tty, buf), tty->count); 1737 #endif 1738 1739 if (tty->ops->close) 1740 tty->ops->close(tty, filp); 1741 1742 tty_unlock(tty); 1743 /* 1744 * Sanity check: if tty->count is going to zero, there shouldn't be 1745 * any waiters on tty->read_wait or tty->write_wait. We test the 1746 * wait queues and kick everyone out _before_ actually starting to 1747 * close. This ensures that we won't block while releasing the tty 1748 * structure. 1749 * 1750 * The test for the o_tty closing is necessary, since the master and 1751 * slave sides may close in any order. If the slave side closes out 1752 * first, its count will be one, since the master side holds an open. 1753 * Thus this test wouldn't be triggered at the time the slave closes, 1754 * so we do it now. 1755 * 1756 * Note that it's possible for the tty to be opened again while we're 1757 * flushing out waiters. By recalculating the closing flags before 1758 * each iteration we avoid any problems. 1759 */ 1760 while (1) { 1761 /* Guard against races with tty->count changes elsewhere and 1762 opens on /dev/tty */ 1763 1764 mutex_lock(&tty_mutex); 1765 tty_lock_pair(tty, o_tty); 1766 tty_closing = tty->count <= 1; 1767 o_tty_closing = o_tty && 1768 (o_tty->count <= (pty_master ? 1 : 0)); 1769 do_sleep = 0; 1770 1771 if (tty_closing) { 1772 if (waitqueue_active(&tty->read_wait)) { 1773 wake_up_poll(&tty->read_wait, POLLIN); 1774 do_sleep++; 1775 } 1776 if (waitqueue_active(&tty->write_wait)) { 1777 wake_up_poll(&tty->write_wait, POLLOUT); 1778 do_sleep++; 1779 } 1780 } 1781 if (o_tty_closing) { 1782 if (waitqueue_active(&o_tty->read_wait)) { 1783 wake_up_poll(&o_tty->read_wait, POLLIN); 1784 do_sleep++; 1785 } 1786 if (waitqueue_active(&o_tty->write_wait)) { 1787 wake_up_poll(&o_tty->write_wait, POLLOUT); 1788 do_sleep++; 1789 } 1790 } 1791 if (!do_sleep) 1792 break; 1793 1794 if (once) { 1795 once = 0; 1796 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n", 1797 __func__, tty_name(tty, buf)); 1798 } 1799 tty_unlock_pair(tty, o_tty); 1800 mutex_unlock(&tty_mutex); 1801 schedule_timeout_killable(timeout); 1802 if (timeout < 120 * HZ) 1803 timeout = 2 * timeout + 1; 1804 else 1805 timeout = MAX_SCHEDULE_TIMEOUT; 1806 } 1807 1808 /* 1809 * The closing flags are now consistent with the open counts on 1810 * both sides, and we've completed the last operation that could 1811 * block, so it's safe to proceed with closing. 1812 * 1813 * We must *not* drop the tty_mutex until we ensure that a further 1814 * entry into tty_open can not pick up this tty. 1815 */ 1816 if (pty_master) { 1817 if (--o_tty->count < 0) { 1818 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n", 1819 __func__, o_tty->count, tty_name(o_tty, buf)); 1820 o_tty->count = 0; 1821 } 1822 } 1823 if (--tty->count < 0) { 1824 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n", 1825 __func__, tty->count, tty_name(tty, buf)); 1826 tty->count = 0; 1827 } 1828 1829 /* 1830 * We've decremented tty->count, so we need to remove this file 1831 * descriptor off the tty->tty_files list; this serves two 1832 * purposes: 1833 * - check_tty_count sees the correct number of file descriptors 1834 * associated with this tty. 1835 * - do_tty_hangup no longer sees this file descriptor as 1836 * something that needs to be handled for hangups. 1837 */ 1838 tty_del_file(filp); 1839 1840 /* 1841 * Perform some housekeeping before deciding whether to return. 1842 * 1843 * Set the TTY_CLOSING flag if this was the last open. In the 1844 * case of a pty we may have to wait around for the other side 1845 * to close, and TTY_CLOSING makes sure we can't be reopened. 1846 */ 1847 if (tty_closing) 1848 set_bit(TTY_CLOSING, &tty->flags); 1849 if (o_tty_closing) 1850 set_bit(TTY_CLOSING, &o_tty->flags); 1851 1852 /* 1853 * If _either_ side is closing, make sure there aren't any 1854 * processes that still think tty or o_tty is their controlling 1855 * tty. 1856 */ 1857 if (tty_closing || o_tty_closing) { 1858 read_lock(&tasklist_lock); 1859 session_clear_tty(tty->session); 1860 if (o_tty) 1861 session_clear_tty(o_tty->session); 1862 read_unlock(&tasklist_lock); 1863 } 1864 1865 mutex_unlock(&tty_mutex); 1866 tty_unlock_pair(tty, o_tty); 1867 /* At this point the TTY_CLOSING flag should ensure a dead tty 1868 cannot be re-opened by a racing opener */ 1869 1870 /* check whether both sides are closing ... */ 1871 if (!tty_closing || (o_tty && !o_tty_closing)) 1872 return 0; 1873 1874 #ifdef TTY_DEBUG_HANGUP 1875 printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf)); 1876 #endif 1877 /* 1878 * Ask the line discipline code to release its structures 1879 */ 1880 tty_ldisc_release(tty, o_tty); 1881 1882 /* Wait for pending work before tty destruction commmences */ 1883 tty_flush_works(tty); 1884 if (o_tty) 1885 tty_flush_works(o_tty); 1886 1887 #ifdef TTY_DEBUG_HANGUP 1888 printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf)); 1889 #endif 1890 /* 1891 * The release_tty function takes care of the details of clearing 1892 * the slots and preserving the termios structure. The tty_unlock_pair 1893 * should be safe as we keep a kref while the tty is locked (so the 1894 * unlock never unlocks a freed tty). 1895 */ 1896 mutex_lock(&tty_mutex); 1897 release_tty(tty, idx); 1898 mutex_unlock(&tty_mutex); 1899 1900 return 0; 1901 } 1902 1903 /** 1904 * tty_open_current_tty - get tty of current task for open 1905 * @device: device number 1906 * @filp: file pointer to tty 1907 * @return: tty of the current task iff @device is /dev/tty 1908 * 1909 * We cannot return driver and index like for the other nodes because 1910 * devpts will not work then. It expects inodes to be from devpts FS. 1911 * 1912 * We need to move to returning a refcounted object from all the lookup 1913 * paths including this one. 1914 */ 1915 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1916 { 1917 struct tty_struct *tty; 1918 1919 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1920 return NULL; 1921 1922 tty = get_current_tty(); 1923 if (!tty) 1924 return ERR_PTR(-ENXIO); 1925 1926 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1927 /* noctty = 1; */ 1928 tty_kref_put(tty); 1929 /* FIXME: we put a reference and return a TTY! */ 1930 /* This is only safe because the caller holds tty_mutex */ 1931 return tty; 1932 } 1933 1934 /** 1935 * tty_lookup_driver - lookup a tty driver for a given device file 1936 * @device: device number 1937 * @filp: file pointer to tty 1938 * @noctty: set if the device should not become a controlling tty 1939 * @index: index for the device in the @return driver 1940 * @return: driver for this inode (with increased refcount) 1941 * 1942 * If @return is not erroneous, the caller is responsible to decrement the 1943 * refcount by tty_driver_kref_put. 1944 * 1945 * Locking: tty_mutex protects get_tty_driver 1946 */ 1947 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1948 int *noctty, int *index) 1949 { 1950 struct tty_driver *driver; 1951 1952 switch (device) { 1953 #ifdef CONFIG_VT 1954 case MKDEV(TTY_MAJOR, 0): { 1955 extern struct tty_driver *console_driver; 1956 driver = tty_driver_kref_get(console_driver); 1957 *index = fg_console; 1958 *noctty = 1; 1959 break; 1960 } 1961 #endif 1962 case MKDEV(TTYAUX_MAJOR, 1): { 1963 struct tty_driver *console_driver = console_device(index); 1964 if (console_driver) { 1965 driver = tty_driver_kref_get(console_driver); 1966 if (driver) { 1967 /* Don't let /dev/console block */ 1968 filp->f_flags |= O_NONBLOCK; 1969 *noctty = 1; 1970 break; 1971 } 1972 } 1973 return ERR_PTR(-ENODEV); 1974 } 1975 default: 1976 driver = get_tty_driver(device, index); 1977 if (!driver) 1978 return ERR_PTR(-ENODEV); 1979 break; 1980 } 1981 return driver; 1982 } 1983 1984 /** 1985 * tty_open - open a tty device 1986 * @inode: inode of device file 1987 * @filp: file pointer to tty 1988 * 1989 * tty_open and tty_release keep up the tty count that contains the 1990 * number of opens done on a tty. We cannot use the inode-count, as 1991 * different inodes might point to the same tty. 1992 * 1993 * Open-counting is needed for pty masters, as well as for keeping 1994 * track of serial lines: DTR is dropped when the last close happens. 1995 * (This is not done solely through tty->count, now. - Ted 1/27/92) 1996 * 1997 * The termios state of a pty is reset on first open so that 1998 * settings don't persist across reuse. 1999 * 2000 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev. 2001 * tty->count should protect the rest. 2002 * ->siglock protects ->signal/->sighand 2003 * 2004 * Note: the tty_unlock/lock cases without a ref are only safe due to 2005 * tty_mutex 2006 */ 2007 2008 static int tty_open(struct inode *inode, struct file *filp) 2009 { 2010 struct tty_struct *tty; 2011 int noctty, retval; 2012 struct tty_driver *driver = NULL; 2013 int index; 2014 dev_t device = inode->i_rdev; 2015 unsigned saved_flags = filp->f_flags; 2016 2017 nonseekable_open(inode, filp); 2018 2019 retry_open: 2020 retval = tty_alloc_file(filp); 2021 if (retval) 2022 return -ENOMEM; 2023 2024 noctty = filp->f_flags & O_NOCTTY; 2025 index = -1; 2026 retval = 0; 2027 2028 mutex_lock(&tty_mutex); 2029 /* This is protected by the tty_mutex */ 2030 tty = tty_open_current_tty(device, filp); 2031 if (IS_ERR(tty)) { 2032 retval = PTR_ERR(tty); 2033 goto err_unlock; 2034 } else if (!tty) { 2035 driver = tty_lookup_driver(device, filp, &noctty, &index); 2036 if (IS_ERR(driver)) { 2037 retval = PTR_ERR(driver); 2038 goto err_unlock; 2039 } 2040 2041 /* check whether we're reopening an existing tty */ 2042 tty = tty_driver_lookup_tty(driver, inode, index); 2043 if (IS_ERR(tty)) { 2044 retval = PTR_ERR(tty); 2045 goto err_unlock; 2046 } 2047 } 2048 2049 if (tty) { 2050 tty_lock(tty); 2051 retval = tty_reopen(tty); 2052 if (retval < 0) { 2053 tty_unlock(tty); 2054 tty = ERR_PTR(retval); 2055 } 2056 } else /* Returns with the tty_lock held for now */ 2057 tty = tty_init_dev(driver, index); 2058 2059 mutex_unlock(&tty_mutex); 2060 if (driver) 2061 tty_driver_kref_put(driver); 2062 if (IS_ERR(tty)) { 2063 retval = PTR_ERR(tty); 2064 goto err_file; 2065 } 2066 2067 tty_add_file(tty, filp); 2068 2069 check_tty_count(tty, __func__); 2070 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2071 tty->driver->subtype == PTY_TYPE_MASTER) 2072 noctty = 1; 2073 #ifdef TTY_DEBUG_HANGUP 2074 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name); 2075 #endif 2076 if (tty->ops->open) 2077 retval = tty->ops->open(tty, filp); 2078 else 2079 retval = -ENODEV; 2080 filp->f_flags = saved_flags; 2081 2082 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && 2083 !capable(CAP_SYS_ADMIN)) 2084 retval = -EBUSY; 2085 2086 if (retval) { 2087 #ifdef TTY_DEBUG_HANGUP 2088 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__, 2089 retval, tty->name); 2090 #endif 2091 tty_unlock(tty); /* need to call tty_release without BTM */ 2092 tty_release(inode, filp); 2093 if (retval != -ERESTARTSYS) 2094 return retval; 2095 2096 if (signal_pending(current)) 2097 return retval; 2098 2099 schedule(); 2100 /* 2101 * Need to reset f_op in case a hangup happened. 2102 */ 2103 if (filp->f_op == &hung_up_tty_fops) 2104 filp->f_op = &tty_fops; 2105 goto retry_open; 2106 } 2107 clear_bit(TTY_HUPPED, &tty->flags); 2108 tty_unlock(tty); 2109 2110 2111 mutex_lock(&tty_mutex); 2112 tty_lock(tty); 2113 spin_lock_irq(¤t->sighand->siglock); 2114 if (!noctty && 2115 current->signal->leader && 2116 !current->signal->tty && 2117 tty->session == NULL) 2118 __proc_set_tty(current, tty); 2119 spin_unlock_irq(¤t->sighand->siglock); 2120 tty_unlock(tty); 2121 mutex_unlock(&tty_mutex); 2122 return 0; 2123 err_unlock: 2124 mutex_unlock(&tty_mutex); 2125 /* after locks to avoid deadlock */ 2126 if (!IS_ERR_OR_NULL(driver)) 2127 tty_driver_kref_put(driver); 2128 err_file: 2129 tty_free_file(filp); 2130 return retval; 2131 } 2132 2133 2134 2135 /** 2136 * tty_poll - check tty status 2137 * @filp: file being polled 2138 * @wait: poll wait structures to update 2139 * 2140 * Call the line discipline polling method to obtain the poll 2141 * status of the device. 2142 * 2143 * Locking: locks called line discipline but ldisc poll method 2144 * may be re-entered freely by other callers. 2145 */ 2146 2147 static unsigned int tty_poll(struct file *filp, poll_table *wait) 2148 { 2149 struct tty_struct *tty = file_tty(filp); 2150 struct tty_ldisc *ld; 2151 int ret = 0; 2152 2153 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll")) 2154 return 0; 2155 2156 ld = tty_ldisc_ref_wait(tty); 2157 if (ld->ops->poll) 2158 ret = (ld->ops->poll)(tty, filp, wait); 2159 tty_ldisc_deref(ld); 2160 return ret; 2161 } 2162 2163 static int __tty_fasync(int fd, struct file *filp, int on) 2164 { 2165 struct tty_struct *tty = file_tty(filp); 2166 struct tty_ldisc *ldisc; 2167 unsigned long flags; 2168 int retval = 0; 2169 2170 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync")) 2171 goto out; 2172 2173 retval = fasync_helper(fd, filp, on, &tty->fasync); 2174 if (retval <= 0) 2175 goto out; 2176 2177 ldisc = tty_ldisc_ref(tty); 2178 if (ldisc) { 2179 if (ldisc->ops->fasync) 2180 ldisc->ops->fasync(tty, on); 2181 tty_ldisc_deref(ldisc); 2182 } 2183 2184 if (on) { 2185 enum pid_type type; 2186 struct pid *pid; 2187 2188 spin_lock_irqsave(&tty->ctrl_lock, flags); 2189 if (tty->pgrp) { 2190 pid = tty->pgrp; 2191 type = PIDTYPE_PGID; 2192 } else { 2193 pid = task_pid(current); 2194 type = PIDTYPE_PID; 2195 } 2196 get_pid(pid); 2197 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2198 __f_setown(filp, pid, type, 0); 2199 put_pid(pid); 2200 retval = 0; 2201 } 2202 out: 2203 return retval; 2204 } 2205 2206 static int tty_fasync(int fd, struct file *filp, int on) 2207 { 2208 struct tty_struct *tty = file_tty(filp); 2209 int retval; 2210 2211 tty_lock(tty); 2212 retval = __tty_fasync(fd, filp, on); 2213 tty_unlock(tty); 2214 2215 return retval; 2216 } 2217 2218 /** 2219 * tiocsti - fake input character 2220 * @tty: tty to fake input into 2221 * @p: pointer to character 2222 * 2223 * Fake input to a tty device. Does the necessary locking and 2224 * input management. 2225 * 2226 * FIXME: does not honour flow control ?? 2227 * 2228 * Locking: 2229 * Called functions take tty_ldiscs_lock 2230 * current->signal->tty check is safe without locks 2231 * 2232 * FIXME: may race normal receive processing 2233 */ 2234 2235 static int tiocsti(struct tty_struct *tty, char __user *p) 2236 { 2237 char ch, mbz = 0; 2238 struct tty_ldisc *ld; 2239 2240 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2241 return -EPERM; 2242 if (get_user(ch, p)) 2243 return -EFAULT; 2244 tty_audit_tiocsti(tty, ch); 2245 ld = tty_ldisc_ref_wait(tty); 2246 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2247 tty_ldisc_deref(ld); 2248 return 0; 2249 } 2250 2251 /** 2252 * tiocgwinsz - implement window query ioctl 2253 * @tty; tty 2254 * @arg: user buffer for result 2255 * 2256 * Copies the kernel idea of the window size into the user buffer. 2257 * 2258 * Locking: tty->winsize_mutex is taken to ensure the winsize data 2259 * is consistent. 2260 */ 2261 2262 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2263 { 2264 int err; 2265 2266 mutex_lock(&tty->winsize_mutex); 2267 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2268 mutex_unlock(&tty->winsize_mutex); 2269 2270 return err ? -EFAULT: 0; 2271 } 2272 2273 /** 2274 * tty_do_resize - resize event 2275 * @tty: tty being resized 2276 * @rows: rows (character) 2277 * @cols: cols (character) 2278 * 2279 * Update the termios variables and send the necessary signals to 2280 * peform a terminal resize correctly 2281 */ 2282 2283 int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2284 { 2285 struct pid *pgrp; 2286 unsigned long flags; 2287 2288 /* Lock the tty */ 2289 mutex_lock(&tty->winsize_mutex); 2290 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2291 goto done; 2292 /* Get the PID values and reference them so we can 2293 avoid holding the tty ctrl lock while sending signals */ 2294 spin_lock_irqsave(&tty->ctrl_lock, flags); 2295 pgrp = get_pid(tty->pgrp); 2296 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2297 2298 if (pgrp) 2299 kill_pgrp(pgrp, SIGWINCH, 1); 2300 put_pid(pgrp); 2301 2302 tty->winsize = *ws; 2303 done: 2304 mutex_unlock(&tty->winsize_mutex); 2305 return 0; 2306 } 2307 EXPORT_SYMBOL(tty_do_resize); 2308 2309 /** 2310 * tiocswinsz - implement window size set ioctl 2311 * @tty; tty side of tty 2312 * @arg: user buffer for result 2313 * 2314 * Copies the user idea of the window size to the kernel. Traditionally 2315 * this is just advisory information but for the Linux console it 2316 * actually has driver level meaning and triggers a VC resize. 2317 * 2318 * Locking: 2319 * Driver dependent. The default do_resize method takes the 2320 * tty termios mutex and ctrl_lock. The console takes its own lock 2321 * then calls into the default method. 2322 */ 2323 2324 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2325 { 2326 struct winsize tmp_ws; 2327 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2328 return -EFAULT; 2329 2330 if (tty->ops->resize) 2331 return tty->ops->resize(tty, &tmp_ws); 2332 else 2333 return tty_do_resize(tty, &tmp_ws); 2334 } 2335 2336 /** 2337 * tioccons - allow admin to move logical console 2338 * @file: the file to become console 2339 * 2340 * Allow the administrator to move the redirected console device 2341 * 2342 * Locking: uses redirect_lock to guard the redirect information 2343 */ 2344 2345 static int tioccons(struct file *file) 2346 { 2347 if (!capable(CAP_SYS_ADMIN)) 2348 return -EPERM; 2349 if (file->f_op->write == redirected_tty_write) { 2350 struct file *f; 2351 spin_lock(&redirect_lock); 2352 f = redirect; 2353 redirect = NULL; 2354 spin_unlock(&redirect_lock); 2355 if (f) 2356 fput(f); 2357 return 0; 2358 } 2359 spin_lock(&redirect_lock); 2360 if (redirect) { 2361 spin_unlock(&redirect_lock); 2362 return -EBUSY; 2363 } 2364 redirect = get_file(file); 2365 spin_unlock(&redirect_lock); 2366 return 0; 2367 } 2368 2369 /** 2370 * fionbio - non blocking ioctl 2371 * @file: file to set blocking value 2372 * @p: user parameter 2373 * 2374 * Historical tty interfaces had a blocking control ioctl before 2375 * the generic functionality existed. This piece of history is preserved 2376 * in the expected tty API of posix OS's. 2377 * 2378 * Locking: none, the open file handle ensures it won't go away. 2379 */ 2380 2381 static int fionbio(struct file *file, int __user *p) 2382 { 2383 int nonblock; 2384 2385 if (get_user(nonblock, p)) 2386 return -EFAULT; 2387 2388 spin_lock(&file->f_lock); 2389 if (nonblock) 2390 file->f_flags |= O_NONBLOCK; 2391 else 2392 file->f_flags &= ~O_NONBLOCK; 2393 spin_unlock(&file->f_lock); 2394 return 0; 2395 } 2396 2397 /** 2398 * tiocsctty - set controlling tty 2399 * @tty: tty structure 2400 * @arg: user argument 2401 * 2402 * This ioctl is used to manage job control. It permits a session 2403 * leader to set this tty as the controlling tty for the session. 2404 * 2405 * Locking: 2406 * Takes tty_mutex() to protect tty instance 2407 * Takes tasklist_lock internally to walk sessions 2408 * Takes ->siglock() when updating signal->tty 2409 */ 2410 2411 static int tiocsctty(struct tty_struct *tty, int arg) 2412 { 2413 int ret = 0; 2414 if (current->signal->leader && (task_session(current) == tty->session)) 2415 return ret; 2416 2417 mutex_lock(&tty_mutex); 2418 /* 2419 * The process must be a session leader and 2420 * not have a controlling tty already. 2421 */ 2422 if (!current->signal->leader || current->signal->tty) { 2423 ret = -EPERM; 2424 goto unlock; 2425 } 2426 2427 if (tty->session) { 2428 /* 2429 * This tty is already the controlling 2430 * tty for another session group! 2431 */ 2432 if (arg == 1 && capable(CAP_SYS_ADMIN)) { 2433 /* 2434 * Steal it away 2435 */ 2436 read_lock(&tasklist_lock); 2437 session_clear_tty(tty->session); 2438 read_unlock(&tasklist_lock); 2439 } else { 2440 ret = -EPERM; 2441 goto unlock; 2442 } 2443 } 2444 proc_set_tty(current, tty); 2445 unlock: 2446 mutex_unlock(&tty_mutex); 2447 return ret; 2448 } 2449 2450 /** 2451 * tty_get_pgrp - return a ref counted pgrp pid 2452 * @tty: tty to read 2453 * 2454 * Returns a refcounted instance of the pid struct for the process 2455 * group controlling the tty. 2456 */ 2457 2458 struct pid *tty_get_pgrp(struct tty_struct *tty) 2459 { 2460 unsigned long flags; 2461 struct pid *pgrp; 2462 2463 spin_lock_irqsave(&tty->ctrl_lock, flags); 2464 pgrp = get_pid(tty->pgrp); 2465 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2466 2467 return pgrp; 2468 } 2469 EXPORT_SYMBOL_GPL(tty_get_pgrp); 2470 2471 /** 2472 * tiocgpgrp - get process group 2473 * @tty: tty passed by user 2474 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2475 * @p: returned pid 2476 * 2477 * Obtain the process group of the tty. If there is no process group 2478 * return an error. 2479 * 2480 * Locking: none. Reference to current->signal->tty is safe. 2481 */ 2482 2483 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2484 { 2485 struct pid *pid; 2486 int ret; 2487 /* 2488 * (tty == real_tty) is a cheap way of 2489 * testing if the tty is NOT a master pty. 2490 */ 2491 if (tty == real_tty && current->signal->tty != real_tty) 2492 return -ENOTTY; 2493 pid = tty_get_pgrp(real_tty); 2494 ret = put_user(pid_vnr(pid), p); 2495 put_pid(pid); 2496 return ret; 2497 } 2498 2499 /** 2500 * tiocspgrp - attempt to set process group 2501 * @tty: tty passed by user 2502 * @real_tty: tty side device matching tty passed by user 2503 * @p: pid pointer 2504 * 2505 * Set the process group of the tty to the session passed. Only 2506 * permitted where the tty session is our session. 2507 * 2508 * Locking: RCU, ctrl lock 2509 */ 2510 2511 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2512 { 2513 struct pid *pgrp; 2514 pid_t pgrp_nr; 2515 int retval = tty_check_change(real_tty); 2516 unsigned long flags; 2517 2518 if (retval == -EIO) 2519 return -ENOTTY; 2520 if (retval) 2521 return retval; 2522 if (!current->signal->tty || 2523 (current->signal->tty != real_tty) || 2524 (real_tty->session != task_session(current))) 2525 return -ENOTTY; 2526 if (get_user(pgrp_nr, p)) 2527 return -EFAULT; 2528 if (pgrp_nr < 0) 2529 return -EINVAL; 2530 rcu_read_lock(); 2531 pgrp = find_vpid(pgrp_nr); 2532 retval = -ESRCH; 2533 if (!pgrp) 2534 goto out_unlock; 2535 retval = -EPERM; 2536 if (session_of_pgrp(pgrp) != task_session(current)) 2537 goto out_unlock; 2538 retval = 0; 2539 spin_lock_irqsave(&tty->ctrl_lock, flags); 2540 put_pid(real_tty->pgrp); 2541 real_tty->pgrp = get_pid(pgrp); 2542 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2543 out_unlock: 2544 rcu_read_unlock(); 2545 return retval; 2546 } 2547 2548 /** 2549 * tiocgsid - get session id 2550 * @tty: tty passed by user 2551 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2552 * @p: pointer to returned session id 2553 * 2554 * Obtain the session id of the tty. If there is no session 2555 * return an error. 2556 * 2557 * Locking: none. Reference to current->signal->tty is safe. 2558 */ 2559 2560 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2561 { 2562 /* 2563 * (tty == real_tty) is a cheap way of 2564 * testing if the tty is NOT a master pty. 2565 */ 2566 if (tty == real_tty && current->signal->tty != real_tty) 2567 return -ENOTTY; 2568 if (!real_tty->session) 2569 return -ENOTTY; 2570 return put_user(pid_vnr(real_tty->session), p); 2571 } 2572 2573 /** 2574 * tiocsetd - set line discipline 2575 * @tty: tty device 2576 * @p: pointer to user data 2577 * 2578 * Set the line discipline according to user request. 2579 * 2580 * Locking: see tty_set_ldisc, this function is just a helper 2581 */ 2582 2583 static int tiocsetd(struct tty_struct *tty, int __user *p) 2584 { 2585 int ldisc; 2586 int ret; 2587 2588 if (get_user(ldisc, p)) 2589 return -EFAULT; 2590 2591 ret = tty_set_ldisc(tty, ldisc); 2592 2593 return ret; 2594 } 2595 2596 /** 2597 * send_break - performed time break 2598 * @tty: device to break on 2599 * @duration: timeout in mS 2600 * 2601 * Perform a timed break on hardware that lacks its own driver level 2602 * timed break functionality. 2603 * 2604 * Locking: 2605 * atomic_write_lock serializes 2606 * 2607 */ 2608 2609 static int send_break(struct tty_struct *tty, unsigned int duration) 2610 { 2611 int retval; 2612 2613 if (tty->ops->break_ctl == NULL) 2614 return 0; 2615 2616 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2617 retval = tty->ops->break_ctl(tty, duration); 2618 else { 2619 /* Do the work ourselves */ 2620 if (tty_write_lock(tty, 0) < 0) 2621 return -EINTR; 2622 retval = tty->ops->break_ctl(tty, -1); 2623 if (retval) 2624 goto out; 2625 if (!signal_pending(current)) 2626 msleep_interruptible(duration); 2627 retval = tty->ops->break_ctl(tty, 0); 2628 out: 2629 tty_write_unlock(tty); 2630 if (signal_pending(current)) 2631 retval = -EINTR; 2632 } 2633 return retval; 2634 } 2635 2636 /** 2637 * tty_tiocmget - get modem status 2638 * @tty: tty device 2639 * @file: user file pointer 2640 * @p: pointer to result 2641 * 2642 * Obtain the modem status bits from the tty driver if the feature 2643 * is supported. Return -EINVAL if it is not available. 2644 * 2645 * Locking: none (up to the driver) 2646 */ 2647 2648 static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2649 { 2650 int retval = -EINVAL; 2651 2652 if (tty->ops->tiocmget) { 2653 retval = tty->ops->tiocmget(tty); 2654 2655 if (retval >= 0) 2656 retval = put_user(retval, p); 2657 } 2658 return retval; 2659 } 2660 2661 /** 2662 * tty_tiocmset - set modem status 2663 * @tty: tty device 2664 * @cmd: command - clear bits, set bits or set all 2665 * @p: pointer to desired bits 2666 * 2667 * Set the modem status bits from the tty driver if the feature 2668 * is supported. Return -EINVAL if it is not available. 2669 * 2670 * Locking: none (up to the driver) 2671 */ 2672 2673 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2674 unsigned __user *p) 2675 { 2676 int retval; 2677 unsigned int set, clear, val; 2678 2679 if (tty->ops->tiocmset == NULL) 2680 return -EINVAL; 2681 2682 retval = get_user(val, p); 2683 if (retval) 2684 return retval; 2685 set = clear = 0; 2686 switch (cmd) { 2687 case TIOCMBIS: 2688 set = val; 2689 break; 2690 case TIOCMBIC: 2691 clear = val; 2692 break; 2693 case TIOCMSET: 2694 set = val; 2695 clear = ~val; 2696 break; 2697 } 2698 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2699 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2700 return tty->ops->tiocmset(tty, set, clear); 2701 } 2702 2703 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2704 { 2705 int retval = -EINVAL; 2706 struct serial_icounter_struct icount; 2707 memset(&icount, 0, sizeof(icount)); 2708 if (tty->ops->get_icount) 2709 retval = tty->ops->get_icount(tty, &icount); 2710 if (retval != 0) 2711 return retval; 2712 if (copy_to_user(arg, &icount, sizeof(icount))) 2713 return -EFAULT; 2714 return 0; 2715 } 2716 2717 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2718 { 2719 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2720 tty->driver->subtype == PTY_TYPE_MASTER) 2721 tty = tty->link; 2722 return tty; 2723 } 2724 EXPORT_SYMBOL(tty_pair_get_tty); 2725 2726 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty) 2727 { 2728 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2729 tty->driver->subtype == PTY_TYPE_MASTER) 2730 return tty; 2731 return tty->link; 2732 } 2733 EXPORT_SYMBOL(tty_pair_get_pty); 2734 2735 /* 2736 * Split this up, as gcc can choke on it otherwise.. 2737 */ 2738 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2739 { 2740 struct tty_struct *tty = file_tty(file); 2741 struct tty_struct *real_tty; 2742 void __user *p = (void __user *)arg; 2743 int retval; 2744 struct tty_ldisc *ld; 2745 2746 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2747 return -EINVAL; 2748 2749 real_tty = tty_pair_get_tty(tty); 2750 2751 /* 2752 * Factor out some common prep work 2753 */ 2754 switch (cmd) { 2755 case TIOCSETD: 2756 case TIOCSBRK: 2757 case TIOCCBRK: 2758 case TCSBRK: 2759 case TCSBRKP: 2760 retval = tty_check_change(tty); 2761 if (retval) 2762 return retval; 2763 if (cmd != TIOCCBRK) { 2764 tty_wait_until_sent(tty, 0); 2765 if (signal_pending(current)) 2766 return -EINTR; 2767 } 2768 break; 2769 } 2770 2771 /* 2772 * Now do the stuff. 2773 */ 2774 switch (cmd) { 2775 case TIOCSTI: 2776 return tiocsti(tty, p); 2777 case TIOCGWINSZ: 2778 return tiocgwinsz(real_tty, p); 2779 case TIOCSWINSZ: 2780 return tiocswinsz(real_tty, p); 2781 case TIOCCONS: 2782 return real_tty != tty ? -EINVAL : tioccons(file); 2783 case FIONBIO: 2784 return fionbio(file, p); 2785 case TIOCEXCL: 2786 set_bit(TTY_EXCLUSIVE, &tty->flags); 2787 return 0; 2788 case TIOCNXCL: 2789 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2790 return 0; 2791 case TIOCGEXCL: 2792 { 2793 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags); 2794 return put_user(excl, (int __user *)p); 2795 } 2796 case TIOCNOTTY: 2797 if (current->signal->tty != tty) 2798 return -ENOTTY; 2799 no_tty(); 2800 return 0; 2801 case TIOCSCTTY: 2802 return tiocsctty(tty, arg); 2803 case TIOCGPGRP: 2804 return tiocgpgrp(tty, real_tty, p); 2805 case TIOCSPGRP: 2806 return tiocspgrp(tty, real_tty, p); 2807 case TIOCGSID: 2808 return tiocgsid(tty, real_tty, p); 2809 case TIOCGETD: 2810 return put_user(tty->ldisc->ops->num, (int __user *)p); 2811 case TIOCSETD: 2812 return tiocsetd(tty, p); 2813 case TIOCVHANGUP: 2814 if (!capable(CAP_SYS_ADMIN)) 2815 return -EPERM; 2816 tty_vhangup(tty); 2817 return 0; 2818 case TIOCGDEV: 2819 { 2820 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2821 return put_user(ret, (unsigned int __user *)p); 2822 } 2823 /* 2824 * Break handling 2825 */ 2826 case TIOCSBRK: /* Turn break on, unconditionally */ 2827 if (tty->ops->break_ctl) 2828 return tty->ops->break_ctl(tty, -1); 2829 return 0; 2830 case TIOCCBRK: /* Turn break off, unconditionally */ 2831 if (tty->ops->break_ctl) 2832 return tty->ops->break_ctl(tty, 0); 2833 return 0; 2834 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2835 /* non-zero arg means wait for all output data 2836 * to be sent (performed above) but don't send break. 2837 * This is used by the tcdrain() termios function. 2838 */ 2839 if (!arg) 2840 return send_break(tty, 250); 2841 return 0; 2842 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2843 return send_break(tty, arg ? arg*100 : 250); 2844 2845 case TIOCMGET: 2846 return tty_tiocmget(tty, p); 2847 case TIOCMSET: 2848 case TIOCMBIC: 2849 case TIOCMBIS: 2850 return tty_tiocmset(tty, cmd, p); 2851 case TIOCGICOUNT: 2852 retval = tty_tiocgicount(tty, p); 2853 /* For the moment allow fall through to the old method */ 2854 if (retval != -EINVAL) 2855 return retval; 2856 break; 2857 case TCFLSH: 2858 switch (arg) { 2859 case TCIFLUSH: 2860 case TCIOFLUSH: 2861 /* flush tty buffer and allow ldisc to process ioctl */ 2862 tty_buffer_flush(tty); 2863 break; 2864 } 2865 break; 2866 } 2867 if (tty->ops->ioctl) { 2868 retval = (tty->ops->ioctl)(tty, cmd, arg); 2869 if (retval != -ENOIOCTLCMD) 2870 return retval; 2871 } 2872 ld = tty_ldisc_ref_wait(tty); 2873 retval = -EINVAL; 2874 if (ld->ops->ioctl) { 2875 retval = ld->ops->ioctl(tty, file, cmd, arg); 2876 if (retval == -ENOIOCTLCMD) 2877 retval = -ENOTTY; 2878 } 2879 tty_ldisc_deref(ld); 2880 return retval; 2881 } 2882 2883 #ifdef CONFIG_COMPAT 2884 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 2885 unsigned long arg) 2886 { 2887 struct tty_struct *tty = file_tty(file); 2888 struct tty_ldisc *ld; 2889 int retval = -ENOIOCTLCMD; 2890 2891 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2892 return -EINVAL; 2893 2894 if (tty->ops->compat_ioctl) { 2895 retval = (tty->ops->compat_ioctl)(tty, cmd, arg); 2896 if (retval != -ENOIOCTLCMD) 2897 return retval; 2898 } 2899 2900 ld = tty_ldisc_ref_wait(tty); 2901 if (ld->ops->compat_ioctl) 2902 retval = ld->ops->compat_ioctl(tty, file, cmd, arg); 2903 else 2904 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg); 2905 tty_ldisc_deref(ld); 2906 2907 return retval; 2908 } 2909 #endif 2910 2911 static int this_tty(const void *t, struct file *file, unsigned fd) 2912 { 2913 if (likely(file->f_op->read != tty_read)) 2914 return 0; 2915 return file_tty(file) != t ? 0 : fd + 1; 2916 } 2917 2918 /* 2919 * This implements the "Secure Attention Key" --- the idea is to 2920 * prevent trojan horses by killing all processes associated with this 2921 * tty when the user hits the "Secure Attention Key". Required for 2922 * super-paranoid applications --- see the Orange Book for more details. 2923 * 2924 * This code could be nicer; ideally it should send a HUP, wait a few 2925 * seconds, then send a INT, and then a KILL signal. But you then 2926 * have to coordinate with the init process, since all processes associated 2927 * with the current tty must be dead before the new getty is allowed 2928 * to spawn. 2929 * 2930 * Now, if it would be correct ;-/ The current code has a nasty hole - 2931 * it doesn't catch files in flight. We may send the descriptor to ourselves 2932 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 2933 * 2934 * Nasty bug: do_SAK is being called in interrupt context. This can 2935 * deadlock. We punt it up to process context. AKPM - 16Mar2001 2936 */ 2937 void __do_SAK(struct tty_struct *tty) 2938 { 2939 #ifdef TTY_SOFT_SAK 2940 tty_hangup(tty); 2941 #else 2942 struct task_struct *g, *p; 2943 struct pid *session; 2944 int i; 2945 2946 if (!tty) 2947 return; 2948 session = tty->session; 2949 2950 tty_ldisc_flush(tty); 2951 2952 tty_driver_flush_buffer(tty); 2953 2954 read_lock(&tasklist_lock); 2955 /* Kill the entire session */ 2956 do_each_pid_task(session, PIDTYPE_SID, p) { 2957 printk(KERN_NOTICE "SAK: killed process %d" 2958 " (%s): task_session(p)==tty->session\n", 2959 task_pid_nr(p), p->comm); 2960 send_sig(SIGKILL, p, 1); 2961 } while_each_pid_task(session, PIDTYPE_SID, p); 2962 /* Now kill any processes that happen to have the 2963 * tty open. 2964 */ 2965 do_each_thread(g, p) { 2966 if (p->signal->tty == tty) { 2967 printk(KERN_NOTICE "SAK: killed process %d" 2968 " (%s): task_session(p)==tty->session\n", 2969 task_pid_nr(p), p->comm); 2970 send_sig(SIGKILL, p, 1); 2971 continue; 2972 } 2973 task_lock(p); 2974 i = iterate_fd(p->files, 0, this_tty, tty); 2975 if (i != 0) { 2976 printk(KERN_NOTICE "SAK: killed process %d" 2977 " (%s): fd#%d opened to the tty\n", 2978 task_pid_nr(p), p->comm, i - 1); 2979 force_sig(SIGKILL, p); 2980 } 2981 task_unlock(p); 2982 } while_each_thread(g, p); 2983 read_unlock(&tasklist_lock); 2984 #endif 2985 } 2986 2987 static void do_SAK_work(struct work_struct *work) 2988 { 2989 struct tty_struct *tty = 2990 container_of(work, struct tty_struct, SAK_work); 2991 __do_SAK(tty); 2992 } 2993 2994 /* 2995 * The tq handling here is a little racy - tty->SAK_work may already be queued. 2996 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 2997 * the values which we write to it will be identical to the values which it 2998 * already has. --akpm 2999 */ 3000 void do_SAK(struct tty_struct *tty) 3001 { 3002 if (!tty) 3003 return; 3004 schedule_work(&tty->SAK_work); 3005 } 3006 3007 EXPORT_SYMBOL(do_SAK); 3008 3009 static int dev_match_devt(struct device *dev, const void *data) 3010 { 3011 const dev_t *devt = data; 3012 return dev->devt == *devt; 3013 } 3014 3015 /* Must put_device() after it's unused! */ 3016 static struct device *tty_get_device(struct tty_struct *tty) 3017 { 3018 dev_t devt = tty_devnum(tty); 3019 return class_find_device(tty_class, NULL, &devt, dev_match_devt); 3020 } 3021 3022 3023 /** 3024 * alloc_tty_struct 3025 * 3026 * This subroutine allocates and initializes a tty structure. 3027 * 3028 * Locking: none - tty in question is not exposed at this point 3029 */ 3030 3031 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx) 3032 { 3033 struct tty_struct *tty; 3034 3035 tty = kzalloc(sizeof(*tty), GFP_KERNEL); 3036 if (!tty) 3037 return NULL; 3038 3039 kref_init(&tty->kref); 3040 tty->magic = TTY_MAGIC; 3041 tty_ldisc_init(tty); 3042 tty->session = NULL; 3043 tty->pgrp = NULL; 3044 mutex_init(&tty->legacy_mutex); 3045 mutex_init(&tty->throttle_mutex); 3046 init_rwsem(&tty->termios_rwsem); 3047 mutex_init(&tty->winsize_mutex); 3048 init_ldsem(&tty->ldisc_sem); 3049 init_waitqueue_head(&tty->write_wait); 3050 init_waitqueue_head(&tty->read_wait); 3051 INIT_WORK(&tty->hangup_work, do_tty_hangup); 3052 mutex_init(&tty->atomic_write_lock); 3053 spin_lock_init(&tty->ctrl_lock); 3054 spin_lock_init(&tty->flow_lock); 3055 INIT_LIST_HEAD(&tty->tty_files); 3056 INIT_WORK(&tty->SAK_work, do_SAK_work); 3057 3058 tty->driver = driver; 3059 tty->ops = driver->ops; 3060 tty->index = idx; 3061 tty_line_name(driver, idx, tty->name); 3062 tty->dev = tty_get_device(tty); 3063 3064 return tty; 3065 } 3066 3067 /** 3068 * deinitialize_tty_struct 3069 * @tty: tty to deinitialize 3070 * 3071 * This subroutine deinitializes a tty structure that has been newly 3072 * allocated but tty_release cannot be called on that yet. 3073 * 3074 * Locking: none - tty in question must not be exposed at this point 3075 */ 3076 void deinitialize_tty_struct(struct tty_struct *tty) 3077 { 3078 tty_ldisc_deinit(tty); 3079 } 3080 3081 /** 3082 * tty_put_char - write one character to a tty 3083 * @tty: tty 3084 * @ch: character 3085 * 3086 * Write one byte to the tty using the provided put_char method 3087 * if present. Returns the number of characters successfully output. 3088 * 3089 * Note: the specific put_char operation in the driver layer may go 3090 * away soon. Don't call it directly, use this method 3091 */ 3092 3093 int tty_put_char(struct tty_struct *tty, unsigned char ch) 3094 { 3095 if (tty->ops->put_char) 3096 return tty->ops->put_char(tty, ch); 3097 return tty->ops->write(tty, &ch, 1); 3098 } 3099 EXPORT_SYMBOL_GPL(tty_put_char); 3100 3101 struct class *tty_class; 3102 3103 static int tty_cdev_add(struct tty_driver *driver, dev_t dev, 3104 unsigned int index, unsigned int count) 3105 { 3106 /* init here, since reused cdevs cause crashes */ 3107 cdev_init(&driver->cdevs[index], &tty_fops); 3108 driver->cdevs[index].owner = driver->owner; 3109 return cdev_add(&driver->cdevs[index], dev, count); 3110 } 3111 3112 /** 3113 * tty_register_device - register a tty device 3114 * @driver: the tty driver that describes the tty device 3115 * @index: the index in the tty driver for this tty device 3116 * @device: a struct device that is associated with this tty device. 3117 * This field is optional, if there is no known struct device 3118 * for this tty device it can be set to NULL safely. 3119 * 3120 * Returns a pointer to the struct device for this tty device 3121 * (or ERR_PTR(-EFOO) on error). 3122 * 3123 * This call is required to be made to register an individual tty device 3124 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3125 * that bit is not set, this function should not be called by a tty 3126 * driver. 3127 * 3128 * Locking: ?? 3129 */ 3130 3131 struct device *tty_register_device(struct tty_driver *driver, unsigned index, 3132 struct device *device) 3133 { 3134 return tty_register_device_attr(driver, index, device, NULL, NULL); 3135 } 3136 EXPORT_SYMBOL(tty_register_device); 3137 3138 static void tty_device_create_release(struct device *dev) 3139 { 3140 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3141 kfree(dev); 3142 } 3143 3144 /** 3145 * tty_register_device_attr - register a tty device 3146 * @driver: the tty driver that describes the tty device 3147 * @index: the index in the tty driver for this tty device 3148 * @device: a struct device that is associated with this tty device. 3149 * This field is optional, if there is no known struct device 3150 * for this tty device it can be set to NULL safely. 3151 * @drvdata: Driver data to be set to device. 3152 * @attr_grp: Attribute group to be set on device. 3153 * 3154 * Returns a pointer to the struct device for this tty device 3155 * (or ERR_PTR(-EFOO) on error). 3156 * 3157 * This call is required to be made to register an individual tty device 3158 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3159 * that bit is not set, this function should not be called by a tty 3160 * driver. 3161 * 3162 * Locking: ?? 3163 */ 3164 struct device *tty_register_device_attr(struct tty_driver *driver, 3165 unsigned index, struct device *device, 3166 void *drvdata, 3167 const struct attribute_group **attr_grp) 3168 { 3169 char name[64]; 3170 dev_t devt = MKDEV(driver->major, driver->minor_start) + index; 3171 struct device *dev = NULL; 3172 int retval = -ENODEV; 3173 bool cdev = false; 3174 3175 if (index >= driver->num) { 3176 printk(KERN_ERR "Attempt to register invalid tty line number " 3177 " (%d).\n", index); 3178 return ERR_PTR(-EINVAL); 3179 } 3180 3181 if (driver->type == TTY_DRIVER_TYPE_PTY) 3182 pty_line_name(driver, index, name); 3183 else 3184 tty_line_name(driver, index, name); 3185 3186 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3187 retval = tty_cdev_add(driver, devt, index, 1); 3188 if (retval) 3189 goto error; 3190 cdev = true; 3191 } 3192 3193 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3194 if (!dev) { 3195 retval = -ENOMEM; 3196 goto error; 3197 } 3198 3199 dev->devt = devt; 3200 dev->class = tty_class; 3201 dev->parent = device; 3202 dev->release = tty_device_create_release; 3203 dev_set_name(dev, "%s", name); 3204 dev->groups = attr_grp; 3205 dev_set_drvdata(dev, drvdata); 3206 3207 retval = device_register(dev); 3208 if (retval) 3209 goto error; 3210 3211 return dev; 3212 3213 error: 3214 put_device(dev); 3215 if (cdev) 3216 cdev_del(&driver->cdevs[index]); 3217 return ERR_PTR(retval); 3218 } 3219 EXPORT_SYMBOL_GPL(tty_register_device_attr); 3220 3221 /** 3222 * tty_unregister_device - unregister a tty device 3223 * @driver: the tty driver that describes the tty device 3224 * @index: the index in the tty driver for this tty device 3225 * 3226 * If a tty device is registered with a call to tty_register_device() then 3227 * this function must be called when the tty device is gone. 3228 * 3229 * Locking: ?? 3230 */ 3231 3232 void tty_unregister_device(struct tty_driver *driver, unsigned index) 3233 { 3234 device_destroy(tty_class, 3235 MKDEV(driver->major, driver->minor_start) + index); 3236 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) 3237 cdev_del(&driver->cdevs[index]); 3238 } 3239 EXPORT_SYMBOL(tty_unregister_device); 3240 3241 /** 3242 * __tty_alloc_driver -- allocate tty driver 3243 * @lines: count of lines this driver can handle at most 3244 * @owner: module which is repsonsible for this driver 3245 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags 3246 * 3247 * This should not be called directly, some of the provided macros should be 3248 * used instead. Use IS_ERR and friends on @retval. 3249 */ 3250 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner, 3251 unsigned long flags) 3252 { 3253 struct tty_driver *driver; 3254 unsigned int cdevs = 1; 3255 int err; 3256 3257 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1)) 3258 return ERR_PTR(-EINVAL); 3259 3260 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL); 3261 if (!driver) 3262 return ERR_PTR(-ENOMEM); 3263 3264 kref_init(&driver->kref); 3265 driver->magic = TTY_DRIVER_MAGIC; 3266 driver->num = lines; 3267 driver->owner = owner; 3268 driver->flags = flags; 3269 3270 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) { 3271 driver->ttys = kcalloc(lines, sizeof(*driver->ttys), 3272 GFP_KERNEL); 3273 driver->termios = kcalloc(lines, sizeof(*driver->termios), 3274 GFP_KERNEL); 3275 if (!driver->ttys || !driver->termios) { 3276 err = -ENOMEM; 3277 goto err_free_all; 3278 } 3279 } 3280 3281 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3282 driver->ports = kcalloc(lines, sizeof(*driver->ports), 3283 GFP_KERNEL); 3284 if (!driver->ports) { 3285 err = -ENOMEM; 3286 goto err_free_all; 3287 } 3288 cdevs = lines; 3289 } 3290 3291 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL); 3292 if (!driver->cdevs) { 3293 err = -ENOMEM; 3294 goto err_free_all; 3295 } 3296 3297 return driver; 3298 err_free_all: 3299 kfree(driver->ports); 3300 kfree(driver->ttys); 3301 kfree(driver->termios); 3302 kfree(driver); 3303 return ERR_PTR(err); 3304 } 3305 EXPORT_SYMBOL(__tty_alloc_driver); 3306 3307 static void destruct_tty_driver(struct kref *kref) 3308 { 3309 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3310 int i; 3311 struct ktermios *tp; 3312 3313 if (driver->flags & TTY_DRIVER_INSTALLED) { 3314 /* 3315 * Free the termios and termios_locked structures because 3316 * we don't want to get memory leaks when modular tty 3317 * drivers are removed from the kernel. 3318 */ 3319 for (i = 0; i < driver->num; i++) { 3320 tp = driver->termios[i]; 3321 if (tp) { 3322 driver->termios[i] = NULL; 3323 kfree(tp); 3324 } 3325 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3326 tty_unregister_device(driver, i); 3327 } 3328 proc_tty_unregister_driver(driver); 3329 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) 3330 cdev_del(&driver->cdevs[0]); 3331 } 3332 kfree(driver->cdevs); 3333 kfree(driver->ports); 3334 kfree(driver->termios); 3335 kfree(driver->ttys); 3336 kfree(driver); 3337 } 3338 3339 void tty_driver_kref_put(struct tty_driver *driver) 3340 { 3341 kref_put(&driver->kref, destruct_tty_driver); 3342 } 3343 EXPORT_SYMBOL(tty_driver_kref_put); 3344 3345 void tty_set_operations(struct tty_driver *driver, 3346 const struct tty_operations *op) 3347 { 3348 driver->ops = op; 3349 }; 3350 EXPORT_SYMBOL(tty_set_operations); 3351 3352 void put_tty_driver(struct tty_driver *d) 3353 { 3354 tty_driver_kref_put(d); 3355 } 3356 EXPORT_SYMBOL(put_tty_driver); 3357 3358 /* 3359 * Called by a tty driver to register itself. 3360 */ 3361 int tty_register_driver(struct tty_driver *driver) 3362 { 3363 int error; 3364 int i; 3365 dev_t dev; 3366 struct device *d; 3367 3368 if (!driver->major) { 3369 error = alloc_chrdev_region(&dev, driver->minor_start, 3370 driver->num, driver->name); 3371 if (!error) { 3372 driver->major = MAJOR(dev); 3373 driver->minor_start = MINOR(dev); 3374 } 3375 } else { 3376 dev = MKDEV(driver->major, driver->minor_start); 3377 error = register_chrdev_region(dev, driver->num, driver->name); 3378 } 3379 if (error < 0) 3380 goto err; 3381 3382 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) { 3383 error = tty_cdev_add(driver, dev, 0, driver->num); 3384 if (error) 3385 goto err_unreg_char; 3386 } 3387 3388 mutex_lock(&tty_mutex); 3389 list_add(&driver->tty_drivers, &tty_drivers); 3390 mutex_unlock(&tty_mutex); 3391 3392 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3393 for (i = 0; i < driver->num; i++) { 3394 d = tty_register_device(driver, i, NULL); 3395 if (IS_ERR(d)) { 3396 error = PTR_ERR(d); 3397 goto err_unreg_devs; 3398 } 3399 } 3400 } 3401 proc_tty_register_driver(driver); 3402 driver->flags |= TTY_DRIVER_INSTALLED; 3403 return 0; 3404 3405 err_unreg_devs: 3406 for (i--; i >= 0; i--) 3407 tty_unregister_device(driver, i); 3408 3409 mutex_lock(&tty_mutex); 3410 list_del(&driver->tty_drivers); 3411 mutex_unlock(&tty_mutex); 3412 3413 err_unreg_char: 3414 unregister_chrdev_region(dev, driver->num); 3415 err: 3416 return error; 3417 } 3418 EXPORT_SYMBOL(tty_register_driver); 3419 3420 /* 3421 * Called by a tty driver to unregister itself. 3422 */ 3423 int tty_unregister_driver(struct tty_driver *driver) 3424 { 3425 #if 0 3426 /* FIXME */ 3427 if (driver->refcount) 3428 return -EBUSY; 3429 #endif 3430 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3431 driver->num); 3432 mutex_lock(&tty_mutex); 3433 list_del(&driver->tty_drivers); 3434 mutex_unlock(&tty_mutex); 3435 return 0; 3436 } 3437 3438 EXPORT_SYMBOL(tty_unregister_driver); 3439 3440 dev_t tty_devnum(struct tty_struct *tty) 3441 { 3442 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3443 } 3444 EXPORT_SYMBOL(tty_devnum); 3445 3446 void proc_clear_tty(struct task_struct *p) 3447 { 3448 unsigned long flags; 3449 struct tty_struct *tty; 3450 spin_lock_irqsave(&p->sighand->siglock, flags); 3451 tty = p->signal->tty; 3452 p->signal->tty = NULL; 3453 spin_unlock_irqrestore(&p->sighand->siglock, flags); 3454 tty_kref_put(tty); 3455 } 3456 3457 /* Called under the sighand lock */ 3458 3459 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty) 3460 { 3461 if (tty) { 3462 unsigned long flags; 3463 /* We should not have a session or pgrp to put here but.... */ 3464 spin_lock_irqsave(&tty->ctrl_lock, flags); 3465 put_pid(tty->session); 3466 put_pid(tty->pgrp); 3467 tty->pgrp = get_pid(task_pgrp(tsk)); 3468 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 3469 tty->session = get_pid(task_session(tsk)); 3470 if (tsk->signal->tty) { 3471 printk(KERN_DEBUG "tty not NULL!!\n"); 3472 tty_kref_put(tsk->signal->tty); 3473 } 3474 } 3475 put_pid(tsk->signal->tty_old_pgrp); 3476 tsk->signal->tty = tty_kref_get(tty); 3477 tsk->signal->tty_old_pgrp = NULL; 3478 } 3479 3480 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty) 3481 { 3482 spin_lock_irq(&tsk->sighand->siglock); 3483 __proc_set_tty(tsk, tty); 3484 spin_unlock_irq(&tsk->sighand->siglock); 3485 } 3486 3487 struct tty_struct *get_current_tty(void) 3488 { 3489 struct tty_struct *tty; 3490 unsigned long flags; 3491 3492 spin_lock_irqsave(¤t->sighand->siglock, flags); 3493 tty = tty_kref_get(current->signal->tty); 3494 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 3495 return tty; 3496 } 3497 EXPORT_SYMBOL_GPL(get_current_tty); 3498 3499 void tty_default_fops(struct file_operations *fops) 3500 { 3501 *fops = tty_fops; 3502 } 3503 3504 /* 3505 * Initialize the console device. This is called *early*, so 3506 * we can't necessarily depend on lots of kernel help here. 3507 * Just do some early initializations, and do the complex setup 3508 * later. 3509 */ 3510 void __init console_init(void) 3511 { 3512 initcall_t *call; 3513 3514 /* Setup the default TTY line discipline. */ 3515 tty_ldisc_begin(); 3516 3517 /* 3518 * set up the console device so that later boot sequences can 3519 * inform about problems etc.. 3520 */ 3521 call = __con_initcall_start; 3522 while (call < __con_initcall_end) { 3523 (*call)(); 3524 call++; 3525 } 3526 } 3527 3528 static char *tty_devnode(struct device *dev, umode_t *mode) 3529 { 3530 if (!mode) 3531 return NULL; 3532 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3533 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3534 *mode = 0666; 3535 return NULL; 3536 } 3537 3538 static int __init tty_class_init(void) 3539 { 3540 tty_class = class_create(THIS_MODULE, "tty"); 3541 if (IS_ERR(tty_class)) 3542 return PTR_ERR(tty_class); 3543 tty_class->devnode = tty_devnode; 3544 return 0; 3545 } 3546 3547 postcore_initcall(tty_class_init); 3548 3549 /* 3/2004 jmc: why do these devices exist? */ 3550 static struct cdev tty_cdev, console_cdev; 3551 3552 static ssize_t show_cons_active(struct device *dev, 3553 struct device_attribute *attr, char *buf) 3554 { 3555 struct console *cs[16]; 3556 int i = 0; 3557 struct console *c; 3558 ssize_t count = 0; 3559 3560 console_lock(); 3561 for_each_console(c) { 3562 if (!c->device) 3563 continue; 3564 if (!c->write) 3565 continue; 3566 if ((c->flags & CON_ENABLED) == 0) 3567 continue; 3568 cs[i++] = c; 3569 if (i >= ARRAY_SIZE(cs)) 3570 break; 3571 } 3572 while (i--) { 3573 int index = cs[i]->index; 3574 struct tty_driver *drv = cs[i]->device(cs[i], &index); 3575 3576 /* don't resolve tty0 as some programs depend on it */ 3577 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR)) 3578 count += tty_line_name(drv, index, buf + count); 3579 else 3580 count += sprintf(buf + count, "%s%d", 3581 cs[i]->name, cs[i]->index); 3582 3583 count += sprintf(buf + count, "%c", i ? ' ':'\n'); 3584 } 3585 console_unlock(); 3586 3587 return count; 3588 } 3589 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3590 3591 static struct device *consdev; 3592 3593 void console_sysfs_notify(void) 3594 { 3595 if (consdev) 3596 sysfs_notify(&consdev->kobj, NULL, "active"); 3597 } 3598 3599 /* 3600 * Ok, now we can initialize the rest of the tty devices and can count 3601 * on memory allocations, interrupts etc.. 3602 */ 3603 int __init tty_init(void) 3604 { 3605 cdev_init(&tty_cdev, &tty_fops); 3606 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3607 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3608 panic("Couldn't register /dev/tty driver\n"); 3609 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3610 3611 cdev_init(&console_cdev, &console_fops); 3612 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3613 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3614 panic("Couldn't register /dev/console driver\n"); 3615 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL, 3616 "console"); 3617 if (IS_ERR(consdev)) 3618 consdev = NULL; 3619 else 3620 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0); 3621 3622 #ifdef CONFIG_VT 3623 vty_init(&console_fops); 3624 #endif 3625 return 0; 3626 } 3627 3628