xref: /openbmc/linux/drivers/tty/tty_io.c (revision 64405360)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 #include <asm/system.h>
101 
102 #include <linux/kbd_kern.h>
103 #include <linux/vt_kern.h>
104 #include <linux/selection.h>
105 
106 #include <linux/kmod.h>
107 #include <linux/nsproxy.h>
108 
109 #undef TTY_DEBUG_HANGUP
110 
111 #define TTY_PARANOIA_CHECK 1
112 #define CHECK_TTY_COUNT 1
113 
114 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
115 	.c_iflag = ICRNL | IXON,
116 	.c_oflag = OPOST | ONLCR,
117 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
118 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
119 		   ECHOCTL | ECHOKE | IEXTEN,
120 	.c_cc = INIT_C_CC,
121 	.c_ispeed = 38400,
122 	.c_ospeed = 38400
123 };
124 
125 EXPORT_SYMBOL(tty_std_termios);
126 
127 /* This list gets poked at by procfs and various bits of boot up code. This
128    could do with some rationalisation such as pulling the tty proc function
129    into this file */
130 
131 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
132 
133 /* Mutex to protect creating and releasing a tty. This is shared with
134    vt.c for deeply disgusting hack reasons */
135 DEFINE_MUTEX(tty_mutex);
136 EXPORT_SYMBOL(tty_mutex);
137 
138 /* Spinlock to protect the tty->tty_files list */
139 DEFINE_SPINLOCK(tty_files_lock);
140 
141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143 ssize_t redirected_tty_write(struct file *, const char __user *,
144 							size_t, loff_t *);
145 static unsigned int tty_poll(struct file *, poll_table *);
146 static int tty_open(struct inode *, struct file *);
147 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148 #ifdef CONFIG_COMPAT
149 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
150 				unsigned long arg);
151 #else
152 #define tty_compat_ioctl NULL
153 #endif
154 static int __tty_fasync(int fd, struct file *filp, int on);
155 static int tty_fasync(int fd, struct file *filp, int on);
156 static void release_tty(struct tty_struct *tty, int idx);
157 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159 
160 /**
161  *	alloc_tty_struct	-	allocate a tty object
162  *
163  *	Return a new empty tty structure. The data fields have not
164  *	been initialized in any way but has been zeroed
165  *
166  *	Locking: none
167  */
168 
169 struct tty_struct *alloc_tty_struct(void)
170 {
171 	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
172 }
173 
174 /**
175  *	free_tty_struct		-	free a disused tty
176  *	@tty: tty struct to free
177  *
178  *	Free the write buffers, tty queue and tty memory itself.
179  *
180  *	Locking: none. Must be called after tty is definitely unused
181  */
182 
183 void free_tty_struct(struct tty_struct *tty)
184 {
185 	if (tty->dev)
186 		put_device(tty->dev);
187 	kfree(tty->write_buf);
188 	tty_buffer_free_all(tty);
189 	kfree(tty);
190 }
191 
192 static inline struct tty_struct *file_tty(struct file *file)
193 {
194 	return ((struct tty_file_private *)file->private_data)->tty;
195 }
196 
197 int tty_alloc_file(struct file *file)
198 {
199 	struct tty_file_private *priv;
200 
201 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
202 	if (!priv)
203 		return -ENOMEM;
204 
205 	file->private_data = priv;
206 
207 	return 0;
208 }
209 
210 /* Associate a new file with the tty structure */
211 void tty_add_file(struct tty_struct *tty, struct file *file)
212 {
213 	struct tty_file_private *priv = file->private_data;
214 
215 	priv->tty = tty;
216 	priv->file = file;
217 
218 	spin_lock(&tty_files_lock);
219 	list_add(&priv->list, &tty->tty_files);
220 	spin_unlock(&tty_files_lock);
221 }
222 
223 /**
224  * tty_free_file - free file->private_data
225  *
226  * This shall be used only for fail path handling when tty_add_file was not
227  * called yet.
228  */
229 void tty_free_file(struct file *file)
230 {
231 	struct tty_file_private *priv = file->private_data;
232 
233 	file->private_data = NULL;
234 	kfree(priv);
235 }
236 
237 /* Delete file from its tty */
238 void tty_del_file(struct file *file)
239 {
240 	struct tty_file_private *priv = file->private_data;
241 
242 	spin_lock(&tty_files_lock);
243 	list_del(&priv->list);
244 	spin_unlock(&tty_files_lock);
245 	tty_free_file(file);
246 }
247 
248 
249 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
250 
251 /**
252  *	tty_name	-	return tty naming
253  *	@tty: tty structure
254  *	@buf: buffer for output
255  *
256  *	Convert a tty structure into a name. The name reflects the kernel
257  *	naming policy and if udev is in use may not reflect user space
258  *
259  *	Locking: none
260  */
261 
262 char *tty_name(struct tty_struct *tty, char *buf)
263 {
264 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
265 		strcpy(buf, "NULL tty");
266 	else
267 		strcpy(buf, tty->name);
268 	return buf;
269 }
270 
271 EXPORT_SYMBOL(tty_name);
272 
273 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
274 			      const char *routine)
275 {
276 #ifdef TTY_PARANOIA_CHECK
277 	if (!tty) {
278 		printk(KERN_WARNING
279 			"null TTY for (%d:%d) in %s\n",
280 			imajor(inode), iminor(inode), routine);
281 		return 1;
282 	}
283 	if (tty->magic != TTY_MAGIC) {
284 		printk(KERN_WARNING
285 			"bad magic number for tty struct (%d:%d) in %s\n",
286 			imajor(inode), iminor(inode), routine);
287 		return 1;
288 	}
289 #endif
290 	return 0;
291 }
292 
293 static int check_tty_count(struct tty_struct *tty, const char *routine)
294 {
295 #ifdef CHECK_TTY_COUNT
296 	struct list_head *p;
297 	int count = 0;
298 
299 	spin_lock(&tty_files_lock);
300 	list_for_each(p, &tty->tty_files) {
301 		count++;
302 	}
303 	spin_unlock(&tty_files_lock);
304 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
305 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
306 	    tty->link && tty->link->count)
307 		count++;
308 	if (tty->count != count) {
309 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
310 				    "!= #fd's(%d) in %s\n",
311 		       tty->name, tty->count, count, routine);
312 		return count;
313 	}
314 #endif
315 	return 0;
316 }
317 
318 /**
319  *	get_tty_driver		-	find device of a tty
320  *	@dev_t: device identifier
321  *	@index: returns the index of the tty
322  *
323  *	This routine returns a tty driver structure, given a device number
324  *	and also passes back the index number.
325  *
326  *	Locking: caller must hold tty_mutex
327  */
328 
329 static struct tty_driver *get_tty_driver(dev_t device, int *index)
330 {
331 	struct tty_driver *p;
332 
333 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
334 		dev_t base = MKDEV(p->major, p->minor_start);
335 		if (device < base || device >= base + p->num)
336 			continue;
337 		*index = device - base;
338 		return tty_driver_kref_get(p);
339 	}
340 	return NULL;
341 }
342 
343 #ifdef CONFIG_CONSOLE_POLL
344 
345 /**
346  *	tty_find_polling_driver	-	find device of a polled tty
347  *	@name: name string to match
348  *	@line: pointer to resulting tty line nr
349  *
350  *	This routine returns a tty driver structure, given a name
351  *	and the condition that the tty driver is capable of polled
352  *	operation.
353  */
354 struct tty_driver *tty_find_polling_driver(char *name, int *line)
355 {
356 	struct tty_driver *p, *res = NULL;
357 	int tty_line = 0;
358 	int len;
359 	char *str, *stp;
360 
361 	for (str = name; *str; str++)
362 		if ((*str >= '0' && *str <= '9') || *str == ',')
363 			break;
364 	if (!*str)
365 		return NULL;
366 
367 	len = str - name;
368 	tty_line = simple_strtoul(str, &str, 10);
369 
370 	mutex_lock(&tty_mutex);
371 	/* Search through the tty devices to look for a match */
372 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
373 		if (strncmp(name, p->name, len) != 0)
374 			continue;
375 		stp = str;
376 		if (*stp == ',')
377 			stp++;
378 		if (*stp == '\0')
379 			stp = NULL;
380 
381 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
382 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
383 			res = tty_driver_kref_get(p);
384 			*line = tty_line;
385 			break;
386 		}
387 	}
388 	mutex_unlock(&tty_mutex);
389 
390 	return res;
391 }
392 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
393 #endif
394 
395 /**
396  *	tty_check_change	-	check for POSIX terminal changes
397  *	@tty: tty to check
398  *
399  *	If we try to write to, or set the state of, a terminal and we're
400  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
401  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
402  *
403  *	Locking: ctrl_lock
404  */
405 
406 int tty_check_change(struct tty_struct *tty)
407 {
408 	unsigned long flags;
409 	int ret = 0;
410 
411 	if (current->signal->tty != tty)
412 		return 0;
413 
414 	spin_lock_irqsave(&tty->ctrl_lock, flags);
415 
416 	if (!tty->pgrp) {
417 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
418 		goto out_unlock;
419 	}
420 	if (task_pgrp(current) == tty->pgrp)
421 		goto out_unlock;
422 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423 	if (is_ignored(SIGTTOU))
424 		goto out;
425 	if (is_current_pgrp_orphaned()) {
426 		ret = -EIO;
427 		goto out;
428 	}
429 	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
430 	set_thread_flag(TIF_SIGPENDING);
431 	ret = -ERESTARTSYS;
432 out:
433 	return ret;
434 out_unlock:
435 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
436 	return ret;
437 }
438 
439 EXPORT_SYMBOL(tty_check_change);
440 
441 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
442 				size_t count, loff_t *ppos)
443 {
444 	return 0;
445 }
446 
447 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
448 				 size_t count, loff_t *ppos)
449 {
450 	return -EIO;
451 }
452 
453 /* No kernel lock held - none needed ;) */
454 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
455 {
456 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
457 }
458 
459 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
460 		unsigned long arg)
461 {
462 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463 }
464 
465 static long hung_up_tty_compat_ioctl(struct file *file,
466 				     unsigned int cmd, unsigned long arg)
467 {
468 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
469 }
470 
471 static const struct file_operations tty_fops = {
472 	.llseek		= no_llseek,
473 	.read		= tty_read,
474 	.write		= tty_write,
475 	.poll		= tty_poll,
476 	.unlocked_ioctl	= tty_ioctl,
477 	.compat_ioctl	= tty_compat_ioctl,
478 	.open		= tty_open,
479 	.release	= tty_release,
480 	.fasync		= tty_fasync,
481 };
482 
483 static const struct file_operations console_fops = {
484 	.llseek		= no_llseek,
485 	.read		= tty_read,
486 	.write		= redirected_tty_write,
487 	.poll		= tty_poll,
488 	.unlocked_ioctl	= tty_ioctl,
489 	.compat_ioctl	= tty_compat_ioctl,
490 	.open		= tty_open,
491 	.release	= tty_release,
492 	.fasync		= tty_fasync,
493 };
494 
495 static const struct file_operations hung_up_tty_fops = {
496 	.llseek		= no_llseek,
497 	.read		= hung_up_tty_read,
498 	.write		= hung_up_tty_write,
499 	.poll		= hung_up_tty_poll,
500 	.unlocked_ioctl	= hung_up_tty_ioctl,
501 	.compat_ioctl	= hung_up_tty_compat_ioctl,
502 	.release	= tty_release,
503 };
504 
505 static DEFINE_SPINLOCK(redirect_lock);
506 static struct file *redirect;
507 
508 /**
509  *	tty_wakeup	-	request more data
510  *	@tty: terminal
511  *
512  *	Internal and external helper for wakeups of tty. This function
513  *	informs the line discipline if present that the driver is ready
514  *	to receive more output data.
515  */
516 
517 void tty_wakeup(struct tty_struct *tty)
518 {
519 	struct tty_ldisc *ld;
520 
521 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
522 		ld = tty_ldisc_ref(tty);
523 		if (ld) {
524 			if (ld->ops->write_wakeup)
525 				ld->ops->write_wakeup(tty);
526 			tty_ldisc_deref(ld);
527 		}
528 	}
529 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
530 }
531 
532 EXPORT_SYMBOL_GPL(tty_wakeup);
533 
534 /**
535  *	__tty_hangup		-	actual handler for hangup events
536  *	@work: tty device
537  *
538  *	This can be called by the "eventd" kernel thread.  That is process
539  *	synchronous but doesn't hold any locks, so we need to make sure we
540  *	have the appropriate locks for what we're doing.
541  *
542  *	The hangup event clears any pending redirections onto the hung up
543  *	device. It ensures future writes will error and it does the needed
544  *	line discipline hangup and signal delivery. The tty object itself
545  *	remains intact.
546  *
547  *	Locking:
548  *		BTM
549  *		  redirect lock for undoing redirection
550  *		  file list lock for manipulating list of ttys
551  *		  tty_ldisc_lock from called functions
552  *		  termios_mutex resetting termios data
553  *		  tasklist_lock to walk task list for hangup event
554  *		    ->siglock to protect ->signal/->sighand
555  */
556 void __tty_hangup(struct tty_struct *tty)
557 {
558 	struct file *cons_filp = NULL;
559 	struct file *filp, *f = NULL;
560 	struct task_struct *p;
561 	struct tty_file_private *priv;
562 	int    closecount = 0, n;
563 	unsigned long flags;
564 	int refs = 0;
565 
566 	if (!tty)
567 		return;
568 
569 
570 	spin_lock(&redirect_lock);
571 	if (redirect && file_tty(redirect) == tty) {
572 		f = redirect;
573 		redirect = NULL;
574 	}
575 	spin_unlock(&redirect_lock);
576 
577 	tty_lock();
578 
579 	/* some functions below drop BTM, so we need this bit */
580 	set_bit(TTY_HUPPING, &tty->flags);
581 
582 	/* inuse_filps is protected by the single tty lock,
583 	   this really needs to change if we want to flush the
584 	   workqueue with the lock held */
585 	check_tty_count(tty, "tty_hangup");
586 
587 	spin_lock(&tty_files_lock);
588 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
589 	list_for_each_entry(priv, &tty->tty_files, list) {
590 		filp = priv->file;
591 		if (filp->f_op->write == redirected_tty_write)
592 			cons_filp = filp;
593 		if (filp->f_op->write != tty_write)
594 			continue;
595 		closecount++;
596 		__tty_fasync(-1, filp, 0);	/* can't block */
597 		filp->f_op = &hung_up_tty_fops;
598 	}
599 	spin_unlock(&tty_files_lock);
600 
601 	/*
602 	 * it drops BTM and thus races with reopen
603 	 * we protect the race by TTY_HUPPING
604 	 */
605 	tty_ldisc_hangup(tty);
606 
607 	read_lock(&tasklist_lock);
608 	if (tty->session) {
609 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
610 			spin_lock_irq(&p->sighand->siglock);
611 			if (p->signal->tty == tty) {
612 				p->signal->tty = NULL;
613 				/* We defer the dereferences outside fo
614 				   the tasklist lock */
615 				refs++;
616 			}
617 			if (!p->signal->leader) {
618 				spin_unlock_irq(&p->sighand->siglock);
619 				continue;
620 			}
621 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
622 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
623 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
624 			spin_lock_irqsave(&tty->ctrl_lock, flags);
625 			if (tty->pgrp)
626 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
627 			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
628 			spin_unlock_irq(&p->sighand->siglock);
629 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
630 	}
631 	read_unlock(&tasklist_lock);
632 
633 	spin_lock_irqsave(&tty->ctrl_lock, flags);
634 	clear_bit(TTY_THROTTLED, &tty->flags);
635 	clear_bit(TTY_PUSH, &tty->flags);
636 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
637 	put_pid(tty->session);
638 	put_pid(tty->pgrp);
639 	tty->session = NULL;
640 	tty->pgrp = NULL;
641 	tty->ctrl_status = 0;
642 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
643 
644 	/* Account for the p->signal references we killed */
645 	while (refs--)
646 		tty_kref_put(tty);
647 
648 	/*
649 	 * If one of the devices matches a console pointer, we
650 	 * cannot just call hangup() because that will cause
651 	 * tty->count and state->count to go out of sync.
652 	 * So we just call close() the right number of times.
653 	 */
654 	if (cons_filp) {
655 		if (tty->ops->close)
656 			for (n = 0; n < closecount; n++)
657 				tty->ops->close(tty, cons_filp);
658 	} else if (tty->ops->hangup)
659 		(tty->ops->hangup)(tty);
660 	/*
661 	 * We don't want to have driver/ldisc interactions beyond
662 	 * the ones we did here. The driver layer expects no
663 	 * calls after ->hangup() from the ldisc side. However we
664 	 * can't yet guarantee all that.
665 	 */
666 	set_bit(TTY_HUPPED, &tty->flags);
667 	clear_bit(TTY_HUPPING, &tty->flags);
668 	tty_ldisc_enable(tty);
669 
670 	tty_unlock();
671 
672 	if (f)
673 		fput(f);
674 }
675 
676 static void do_tty_hangup(struct work_struct *work)
677 {
678 	struct tty_struct *tty =
679 		container_of(work, struct tty_struct, hangup_work);
680 
681 	__tty_hangup(tty);
682 }
683 
684 /**
685  *	tty_hangup		-	trigger a hangup event
686  *	@tty: tty to hangup
687  *
688  *	A carrier loss (virtual or otherwise) has occurred on this like
689  *	schedule a hangup sequence to run after this event.
690  */
691 
692 void tty_hangup(struct tty_struct *tty)
693 {
694 #ifdef TTY_DEBUG_HANGUP
695 	char	buf[64];
696 	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
697 #endif
698 	schedule_work(&tty->hangup_work);
699 }
700 
701 EXPORT_SYMBOL(tty_hangup);
702 
703 /**
704  *	tty_vhangup		-	process vhangup
705  *	@tty: tty to hangup
706  *
707  *	The user has asked via system call for the terminal to be hung up.
708  *	We do this synchronously so that when the syscall returns the process
709  *	is complete. That guarantee is necessary for security reasons.
710  */
711 
712 void tty_vhangup(struct tty_struct *tty)
713 {
714 #ifdef TTY_DEBUG_HANGUP
715 	char	buf[64];
716 
717 	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
718 #endif
719 	__tty_hangup(tty);
720 }
721 
722 EXPORT_SYMBOL(tty_vhangup);
723 
724 
725 /**
726  *	tty_vhangup_self	-	process vhangup for own ctty
727  *
728  *	Perform a vhangup on the current controlling tty
729  */
730 
731 void tty_vhangup_self(void)
732 {
733 	struct tty_struct *tty;
734 
735 	tty = get_current_tty();
736 	if (tty) {
737 		tty_vhangup(tty);
738 		tty_kref_put(tty);
739 	}
740 }
741 
742 /**
743  *	tty_hung_up_p		-	was tty hung up
744  *	@filp: file pointer of tty
745  *
746  *	Return true if the tty has been subject to a vhangup or a carrier
747  *	loss
748  */
749 
750 int tty_hung_up_p(struct file *filp)
751 {
752 	return (filp->f_op == &hung_up_tty_fops);
753 }
754 
755 EXPORT_SYMBOL(tty_hung_up_p);
756 
757 static void session_clear_tty(struct pid *session)
758 {
759 	struct task_struct *p;
760 	do_each_pid_task(session, PIDTYPE_SID, p) {
761 		proc_clear_tty(p);
762 	} while_each_pid_task(session, PIDTYPE_SID, p);
763 }
764 
765 /**
766  *	disassociate_ctty	-	disconnect controlling tty
767  *	@on_exit: true if exiting so need to "hang up" the session
768  *
769  *	This function is typically called only by the session leader, when
770  *	it wants to disassociate itself from its controlling tty.
771  *
772  *	It performs the following functions:
773  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
774  * 	(2)  Clears the tty from being controlling the session
775  * 	(3)  Clears the controlling tty for all processes in the
776  * 		session group.
777  *
778  *	The argument on_exit is set to 1 if called when a process is
779  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
780  *
781  *	Locking:
782  *		BTM is taken for hysterical raisins, and held when
783  *		  called from no_tty().
784  *		  tty_mutex is taken to protect tty
785  *		  ->siglock is taken to protect ->signal/->sighand
786  *		  tasklist_lock is taken to walk process list for sessions
787  *		    ->siglock is taken to protect ->signal/->sighand
788  */
789 
790 void disassociate_ctty(int on_exit)
791 {
792 	struct tty_struct *tty;
793 
794 	if (!current->signal->leader)
795 		return;
796 
797 	tty = get_current_tty();
798 	if (tty) {
799 		struct pid *tty_pgrp = get_pid(tty->pgrp);
800 		if (on_exit) {
801 			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
802 				tty_vhangup(tty);
803 		}
804 		tty_kref_put(tty);
805 		if (tty_pgrp) {
806 			kill_pgrp(tty_pgrp, SIGHUP, on_exit);
807 			if (!on_exit)
808 				kill_pgrp(tty_pgrp, SIGCONT, on_exit);
809 			put_pid(tty_pgrp);
810 		}
811 	} else if (on_exit) {
812 		struct pid *old_pgrp;
813 		spin_lock_irq(&current->sighand->siglock);
814 		old_pgrp = current->signal->tty_old_pgrp;
815 		current->signal->tty_old_pgrp = NULL;
816 		spin_unlock_irq(&current->sighand->siglock);
817 		if (old_pgrp) {
818 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
819 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
820 			put_pid(old_pgrp);
821 		}
822 		return;
823 	}
824 
825 	spin_lock_irq(&current->sighand->siglock);
826 	put_pid(current->signal->tty_old_pgrp);
827 	current->signal->tty_old_pgrp = NULL;
828 	spin_unlock_irq(&current->sighand->siglock);
829 
830 	tty = get_current_tty();
831 	if (tty) {
832 		unsigned long flags;
833 		spin_lock_irqsave(&tty->ctrl_lock, flags);
834 		put_pid(tty->session);
835 		put_pid(tty->pgrp);
836 		tty->session = NULL;
837 		tty->pgrp = NULL;
838 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
839 		tty_kref_put(tty);
840 	} else {
841 #ifdef TTY_DEBUG_HANGUP
842 		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
843 		       " = NULL", tty);
844 #endif
845 	}
846 
847 	/* Now clear signal->tty under the lock */
848 	read_lock(&tasklist_lock);
849 	session_clear_tty(task_session(current));
850 	read_unlock(&tasklist_lock);
851 }
852 
853 /**
854  *
855  *	no_tty	- Ensure the current process does not have a controlling tty
856  */
857 void no_tty(void)
858 {
859 	struct task_struct *tsk = current;
860 	tty_lock();
861 	disassociate_ctty(0);
862 	tty_unlock();
863 	proc_clear_tty(tsk);
864 }
865 
866 
867 /**
868  *	stop_tty	-	propagate flow control
869  *	@tty: tty to stop
870  *
871  *	Perform flow control to the driver. For PTY/TTY pairs we
872  *	must also propagate the TIOCKPKT status. May be called
873  *	on an already stopped device and will not re-call the driver
874  *	method.
875  *
876  *	This functionality is used by both the line disciplines for
877  *	halting incoming flow and by the driver. It may therefore be
878  *	called from any context, may be under the tty atomic_write_lock
879  *	but not always.
880  *
881  *	Locking:
882  *		Uses the tty control lock internally
883  */
884 
885 void stop_tty(struct tty_struct *tty)
886 {
887 	unsigned long flags;
888 	spin_lock_irqsave(&tty->ctrl_lock, flags);
889 	if (tty->stopped) {
890 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
891 		return;
892 	}
893 	tty->stopped = 1;
894 	if (tty->link && tty->link->packet) {
895 		tty->ctrl_status &= ~TIOCPKT_START;
896 		tty->ctrl_status |= TIOCPKT_STOP;
897 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
898 	}
899 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
900 	if (tty->ops->stop)
901 		(tty->ops->stop)(tty);
902 }
903 
904 EXPORT_SYMBOL(stop_tty);
905 
906 /**
907  *	start_tty	-	propagate flow control
908  *	@tty: tty to start
909  *
910  *	Start a tty that has been stopped if at all possible. Perform
911  *	any necessary wakeups and propagate the TIOCPKT status. If this
912  *	is the tty was previous stopped and is being started then the
913  *	driver start method is invoked and the line discipline woken.
914  *
915  *	Locking:
916  *		ctrl_lock
917  */
918 
919 void start_tty(struct tty_struct *tty)
920 {
921 	unsigned long flags;
922 	spin_lock_irqsave(&tty->ctrl_lock, flags);
923 	if (!tty->stopped || tty->flow_stopped) {
924 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
925 		return;
926 	}
927 	tty->stopped = 0;
928 	if (tty->link && tty->link->packet) {
929 		tty->ctrl_status &= ~TIOCPKT_STOP;
930 		tty->ctrl_status |= TIOCPKT_START;
931 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
932 	}
933 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
934 	if (tty->ops->start)
935 		(tty->ops->start)(tty);
936 	/* If we have a running line discipline it may need kicking */
937 	tty_wakeup(tty);
938 }
939 
940 EXPORT_SYMBOL(start_tty);
941 
942 /**
943  *	tty_read	-	read method for tty device files
944  *	@file: pointer to tty file
945  *	@buf: user buffer
946  *	@count: size of user buffer
947  *	@ppos: unused
948  *
949  *	Perform the read system call function on this terminal device. Checks
950  *	for hung up devices before calling the line discipline method.
951  *
952  *	Locking:
953  *		Locks the line discipline internally while needed. Multiple
954  *	read calls may be outstanding in parallel.
955  */
956 
957 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
958 			loff_t *ppos)
959 {
960 	int i;
961 	struct inode *inode = file->f_path.dentry->d_inode;
962 	struct tty_struct *tty = file_tty(file);
963 	struct tty_ldisc *ld;
964 
965 	if (tty_paranoia_check(tty, inode, "tty_read"))
966 		return -EIO;
967 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
968 		return -EIO;
969 
970 	/* We want to wait for the line discipline to sort out in this
971 	   situation */
972 	ld = tty_ldisc_ref_wait(tty);
973 	if (ld->ops->read)
974 		i = (ld->ops->read)(tty, file, buf, count);
975 	else
976 		i = -EIO;
977 	tty_ldisc_deref(ld);
978 	if (i > 0)
979 		inode->i_atime = current_fs_time(inode->i_sb);
980 	return i;
981 }
982 
983 void tty_write_unlock(struct tty_struct *tty)
984 	__releases(&tty->atomic_write_lock)
985 {
986 	mutex_unlock(&tty->atomic_write_lock);
987 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
988 }
989 
990 int tty_write_lock(struct tty_struct *tty, int ndelay)
991 	__acquires(&tty->atomic_write_lock)
992 {
993 	if (!mutex_trylock(&tty->atomic_write_lock)) {
994 		if (ndelay)
995 			return -EAGAIN;
996 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
997 			return -ERESTARTSYS;
998 	}
999 	return 0;
1000 }
1001 
1002 /*
1003  * Split writes up in sane blocksizes to avoid
1004  * denial-of-service type attacks
1005  */
1006 static inline ssize_t do_tty_write(
1007 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1008 	struct tty_struct *tty,
1009 	struct file *file,
1010 	const char __user *buf,
1011 	size_t count)
1012 {
1013 	ssize_t ret, written = 0;
1014 	unsigned int chunk;
1015 
1016 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1017 	if (ret < 0)
1018 		return ret;
1019 
1020 	/*
1021 	 * We chunk up writes into a temporary buffer. This
1022 	 * simplifies low-level drivers immensely, since they
1023 	 * don't have locking issues and user mode accesses.
1024 	 *
1025 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1026 	 * big chunk-size..
1027 	 *
1028 	 * The default chunk-size is 2kB, because the NTTY
1029 	 * layer has problems with bigger chunks. It will
1030 	 * claim to be able to handle more characters than
1031 	 * it actually does.
1032 	 *
1033 	 * FIXME: This can probably go away now except that 64K chunks
1034 	 * are too likely to fail unless switched to vmalloc...
1035 	 */
1036 	chunk = 2048;
1037 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1038 		chunk = 65536;
1039 	if (count < chunk)
1040 		chunk = count;
1041 
1042 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1043 	if (tty->write_cnt < chunk) {
1044 		unsigned char *buf_chunk;
1045 
1046 		if (chunk < 1024)
1047 			chunk = 1024;
1048 
1049 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1050 		if (!buf_chunk) {
1051 			ret = -ENOMEM;
1052 			goto out;
1053 		}
1054 		kfree(tty->write_buf);
1055 		tty->write_cnt = chunk;
1056 		tty->write_buf = buf_chunk;
1057 	}
1058 
1059 	/* Do the write .. */
1060 	for (;;) {
1061 		size_t size = count;
1062 		if (size > chunk)
1063 			size = chunk;
1064 		ret = -EFAULT;
1065 		if (copy_from_user(tty->write_buf, buf, size))
1066 			break;
1067 		ret = write(tty, file, tty->write_buf, size);
1068 		if (ret <= 0)
1069 			break;
1070 		written += ret;
1071 		buf += ret;
1072 		count -= ret;
1073 		if (!count)
1074 			break;
1075 		ret = -ERESTARTSYS;
1076 		if (signal_pending(current))
1077 			break;
1078 		cond_resched();
1079 	}
1080 	if (written) {
1081 		struct inode *inode = file->f_path.dentry->d_inode;
1082 		inode->i_mtime = current_fs_time(inode->i_sb);
1083 		ret = written;
1084 	}
1085 out:
1086 	tty_write_unlock(tty);
1087 	return ret;
1088 }
1089 
1090 /**
1091  * tty_write_message - write a message to a certain tty, not just the console.
1092  * @tty: the destination tty_struct
1093  * @msg: the message to write
1094  *
1095  * This is used for messages that need to be redirected to a specific tty.
1096  * We don't put it into the syslog queue right now maybe in the future if
1097  * really needed.
1098  *
1099  * We must still hold the BTM and test the CLOSING flag for the moment.
1100  */
1101 
1102 void tty_write_message(struct tty_struct *tty, char *msg)
1103 {
1104 	if (tty) {
1105 		mutex_lock(&tty->atomic_write_lock);
1106 		tty_lock();
1107 		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1108 			tty_unlock();
1109 			tty->ops->write(tty, msg, strlen(msg));
1110 		} else
1111 			tty_unlock();
1112 		tty_write_unlock(tty);
1113 	}
1114 	return;
1115 }
1116 
1117 
1118 /**
1119  *	tty_write		-	write method for tty device file
1120  *	@file: tty file pointer
1121  *	@buf: user data to write
1122  *	@count: bytes to write
1123  *	@ppos: unused
1124  *
1125  *	Write data to a tty device via the line discipline.
1126  *
1127  *	Locking:
1128  *		Locks the line discipline as required
1129  *		Writes to the tty driver are serialized by the atomic_write_lock
1130  *	and are then processed in chunks to the device. The line discipline
1131  *	write method will not be invoked in parallel for each device.
1132  */
1133 
1134 static ssize_t tty_write(struct file *file, const char __user *buf,
1135 						size_t count, loff_t *ppos)
1136 {
1137 	struct inode *inode = file->f_path.dentry->d_inode;
1138 	struct tty_struct *tty = file_tty(file);
1139  	struct tty_ldisc *ld;
1140 	ssize_t ret;
1141 
1142 	if (tty_paranoia_check(tty, inode, "tty_write"))
1143 		return -EIO;
1144 	if (!tty || !tty->ops->write ||
1145 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1146 			return -EIO;
1147 	/* Short term debug to catch buggy drivers */
1148 	if (tty->ops->write_room == NULL)
1149 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1150 			tty->driver->name);
1151 	ld = tty_ldisc_ref_wait(tty);
1152 	if (!ld->ops->write)
1153 		ret = -EIO;
1154 	else
1155 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1156 	tty_ldisc_deref(ld);
1157 	return ret;
1158 }
1159 
1160 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1161 						size_t count, loff_t *ppos)
1162 {
1163 	struct file *p = NULL;
1164 
1165 	spin_lock(&redirect_lock);
1166 	if (redirect) {
1167 		get_file(redirect);
1168 		p = redirect;
1169 	}
1170 	spin_unlock(&redirect_lock);
1171 
1172 	if (p) {
1173 		ssize_t res;
1174 		res = vfs_write(p, buf, count, &p->f_pos);
1175 		fput(p);
1176 		return res;
1177 	}
1178 	return tty_write(file, buf, count, ppos);
1179 }
1180 
1181 static char ptychar[] = "pqrstuvwxyzabcde";
1182 
1183 /**
1184  *	pty_line_name	-	generate name for a pty
1185  *	@driver: the tty driver in use
1186  *	@index: the minor number
1187  *	@p: output buffer of at least 6 bytes
1188  *
1189  *	Generate a name from a driver reference and write it to the output
1190  *	buffer.
1191  *
1192  *	Locking: None
1193  */
1194 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1195 {
1196 	int i = index + driver->name_base;
1197 	/* ->name is initialized to "ttyp", but "tty" is expected */
1198 	sprintf(p, "%s%c%x",
1199 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1200 		ptychar[i >> 4 & 0xf], i & 0xf);
1201 }
1202 
1203 /**
1204  *	tty_line_name	-	generate name for a tty
1205  *	@driver: the tty driver in use
1206  *	@index: the minor number
1207  *	@p: output buffer of at least 7 bytes
1208  *
1209  *	Generate a name from a driver reference and write it to the output
1210  *	buffer.
1211  *
1212  *	Locking: None
1213  */
1214 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1215 {
1216 	sprintf(p, "%s%d", driver->name, index + driver->name_base);
1217 }
1218 
1219 /**
1220  *	tty_driver_lookup_tty() - find an existing tty, if any
1221  *	@driver: the driver for the tty
1222  *	@idx:	 the minor number
1223  *
1224  *	Return the tty, if found or ERR_PTR() otherwise.
1225  *
1226  *	Locking: tty_mutex must be held. If tty is found, the mutex must
1227  *	be held until the 'fast-open' is also done. Will change once we
1228  *	have refcounting in the driver and per driver locking
1229  */
1230 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1231 		struct inode *inode, int idx)
1232 {
1233 	struct tty_struct *tty;
1234 
1235 	if (driver->ops->lookup)
1236 		return driver->ops->lookup(driver, inode, idx);
1237 
1238 	tty = driver->ttys[idx];
1239 	return tty;
1240 }
1241 
1242 /**
1243  *	tty_init_termios	-  helper for termios setup
1244  *	@tty: the tty to set up
1245  *
1246  *	Initialise the termios structures for this tty. Thus runs under
1247  *	the tty_mutex currently so we can be relaxed about ordering.
1248  */
1249 
1250 int tty_init_termios(struct tty_struct *tty)
1251 {
1252 	struct ktermios *tp;
1253 	int idx = tty->index;
1254 
1255 	tp = tty->driver->termios[idx];
1256 	if (tp == NULL) {
1257 		tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1258 		if (tp == NULL)
1259 			return -ENOMEM;
1260 		memcpy(tp, &tty->driver->init_termios,
1261 						sizeof(struct ktermios));
1262 		tty->driver->termios[idx] = tp;
1263 	}
1264 	tty->termios = tp;
1265 	tty->termios_locked = tp + 1;
1266 
1267 	/* Compatibility until drivers always set this */
1268 	tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1269 	tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1270 	return 0;
1271 }
1272 EXPORT_SYMBOL_GPL(tty_init_termios);
1273 
1274 /**
1275  *	tty_driver_install_tty() - install a tty entry in the driver
1276  *	@driver: the driver for the tty
1277  *	@tty: the tty
1278  *
1279  *	Install a tty object into the driver tables. The tty->index field
1280  *	will be set by the time this is called. This method is responsible
1281  *	for ensuring any need additional structures are allocated and
1282  *	configured.
1283  *
1284  *	Locking: tty_mutex for now
1285  */
1286 static int tty_driver_install_tty(struct tty_driver *driver,
1287 						struct tty_struct *tty)
1288 {
1289 	int idx = tty->index;
1290 	int ret;
1291 
1292 	if (driver->ops->install) {
1293 		ret = driver->ops->install(driver, tty);
1294 		return ret;
1295 	}
1296 
1297 	if (tty_init_termios(tty) == 0) {
1298 		tty_driver_kref_get(driver);
1299 		tty->count++;
1300 		driver->ttys[idx] = tty;
1301 		return 0;
1302 	}
1303 	return -ENOMEM;
1304 }
1305 
1306 /**
1307  *	tty_driver_remove_tty() - remove a tty from the driver tables
1308  *	@driver: the driver for the tty
1309  *	@idx:	 the minor number
1310  *
1311  *	Remvoe a tty object from the driver tables. The tty->index field
1312  *	will be set by the time this is called.
1313  *
1314  *	Locking: tty_mutex for now
1315  */
1316 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1317 {
1318 	if (driver->ops->remove)
1319 		driver->ops->remove(driver, tty);
1320 	else
1321 		driver->ttys[tty->index] = NULL;
1322 }
1323 
1324 /*
1325  * 	tty_reopen()	- fast re-open of an open tty
1326  * 	@tty	- the tty to open
1327  *
1328  *	Return 0 on success, -errno on error.
1329  *
1330  *	Locking: tty_mutex must be held from the time the tty was found
1331  *		 till this open completes.
1332  */
1333 static int tty_reopen(struct tty_struct *tty)
1334 {
1335 	struct tty_driver *driver = tty->driver;
1336 
1337 	if (test_bit(TTY_CLOSING, &tty->flags) ||
1338 			test_bit(TTY_HUPPING, &tty->flags) ||
1339 			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1340 		return -EIO;
1341 
1342 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1343 	    driver->subtype == PTY_TYPE_MASTER) {
1344 		/*
1345 		 * special case for PTY masters: only one open permitted,
1346 		 * and the slave side open count is incremented as well.
1347 		 */
1348 		if (tty->count)
1349 			return -EIO;
1350 
1351 		tty->link->count++;
1352 	}
1353 	tty->count++;
1354 	tty->driver = driver; /* N.B. why do this every time?? */
1355 
1356 	mutex_lock(&tty->ldisc_mutex);
1357 	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1358 	mutex_unlock(&tty->ldisc_mutex);
1359 
1360 	return 0;
1361 }
1362 
1363 /**
1364  *	tty_init_dev		-	initialise a tty device
1365  *	@driver: tty driver we are opening a device on
1366  *	@idx: device index
1367  *	@ret_tty: returned tty structure
1368  *	@first_ok: ok to open a new device (used by ptmx)
1369  *
1370  *	Prepare a tty device. This may not be a "new" clean device but
1371  *	could also be an active device. The pty drivers require special
1372  *	handling because of this.
1373  *
1374  *	Locking:
1375  *		The function is called under the tty_mutex, which
1376  *	protects us from the tty struct or driver itself going away.
1377  *
1378  *	On exit the tty device has the line discipline attached and
1379  *	a reference count of 1. If a pair was created for pty/tty use
1380  *	and the other was a pty master then it too has a reference count of 1.
1381  *
1382  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1383  * failed open.  The new code protects the open with a mutex, so it's
1384  * really quite straightforward.  The mutex locking can probably be
1385  * relaxed for the (most common) case of reopening a tty.
1386  */
1387 
1388 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1389 								int first_ok)
1390 {
1391 	struct tty_struct *tty;
1392 	int retval;
1393 
1394 	/* Check if pty master is being opened multiple times */
1395 	if (driver->subtype == PTY_TYPE_MASTER &&
1396 		(driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1397 		return ERR_PTR(-EIO);
1398 	}
1399 
1400 	/*
1401 	 * First time open is complex, especially for PTY devices.
1402 	 * This code guarantees that either everything succeeds and the
1403 	 * TTY is ready for operation, or else the table slots are vacated
1404 	 * and the allocated memory released.  (Except that the termios
1405 	 * and locked termios may be retained.)
1406 	 */
1407 
1408 	if (!try_module_get(driver->owner))
1409 		return ERR_PTR(-ENODEV);
1410 
1411 	tty = alloc_tty_struct();
1412 	if (!tty) {
1413 		retval = -ENOMEM;
1414 		goto err_module_put;
1415 	}
1416 	initialize_tty_struct(tty, driver, idx);
1417 
1418 	retval = tty_driver_install_tty(driver, tty);
1419 	if (retval < 0)
1420 		goto err_deinit_tty;
1421 
1422 	/*
1423 	 * Structures all installed ... call the ldisc open routines.
1424 	 * If we fail here just call release_tty to clean up.  No need
1425 	 * to decrement the use counts, as release_tty doesn't care.
1426 	 */
1427 	retval = tty_ldisc_setup(tty, tty->link);
1428 	if (retval)
1429 		goto err_release_tty;
1430 	return tty;
1431 
1432 err_deinit_tty:
1433 	deinitialize_tty_struct(tty);
1434 	free_tty_struct(tty);
1435 err_module_put:
1436 	module_put(driver->owner);
1437 	return ERR_PTR(retval);
1438 
1439 	/* call the tty release_tty routine to clean out this slot */
1440 err_release_tty:
1441 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1442 				 "clearing slot %d\n", idx);
1443 	release_tty(tty, idx);
1444 	return ERR_PTR(retval);
1445 }
1446 
1447 void tty_free_termios(struct tty_struct *tty)
1448 {
1449 	struct ktermios *tp;
1450 	int idx = tty->index;
1451 	/* Kill this flag and push into drivers for locking etc */
1452 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1453 		/* FIXME: Locking on ->termios array */
1454 		tp = tty->termios;
1455 		tty->driver->termios[idx] = NULL;
1456 		kfree(tp);
1457 	}
1458 }
1459 EXPORT_SYMBOL(tty_free_termios);
1460 
1461 void tty_shutdown(struct tty_struct *tty)
1462 {
1463 	tty_driver_remove_tty(tty->driver, tty);
1464 	tty_free_termios(tty);
1465 }
1466 EXPORT_SYMBOL(tty_shutdown);
1467 
1468 /**
1469  *	release_one_tty		-	release tty structure memory
1470  *	@kref: kref of tty we are obliterating
1471  *
1472  *	Releases memory associated with a tty structure, and clears out the
1473  *	driver table slots. This function is called when a device is no longer
1474  *	in use. It also gets called when setup of a device fails.
1475  *
1476  *	Locking:
1477  *		tty_mutex - sometimes only
1478  *		takes the file list lock internally when working on the list
1479  *	of ttys that the driver keeps.
1480  *
1481  *	This method gets called from a work queue so that the driver private
1482  *	cleanup ops can sleep (needed for USB at least)
1483  */
1484 static void release_one_tty(struct work_struct *work)
1485 {
1486 	struct tty_struct *tty =
1487 		container_of(work, struct tty_struct, hangup_work);
1488 	struct tty_driver *driver = tty->driver;
1489 
1490 	if (tty->ops->cleanup)
1491 		tty->ops->cleanup(tty);
1492 
1493 	tty->magic = 0;
1494 	tty_driver_kref_put(driver);
1495 	module_put(driver->owner);
1496 
1497 	spin_lock(&tty_files_lock);
1498 	list_del_init(&tty->tty_files);
1499 	spin_unlock(&tty_files_lock);
1500 
1501 	put_pid(tty->pgrp);
1502 	put_pid(tty->session);
1503 	free_tty_struct(tty);
1504 }
1505 
1506 static void queue_release_one_tty(struct kref *kref)
1507 {
1508 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1509 
1510 	if (tty->ops->shutdown)
1511 		tty->ops->shutdown(tty);
1512 	else
1513 		tty_shutdown(tty);
1514 
1515 	/* The hangup queue is now free so we can reuse it rather than
1516 	   waste a chunk of memory for each port */
1517 	INIT_WORK(&tty->hangup_work, release_one_tty);
1518 	schedule_work(&tty->hangup_work);
1519 }
1520 
1521 /**
1522  *	tty_kref_put		-	release a tty kref
1523  *	@tty: tty device
1524  *
1525  *	Release a reference to a tty device and if need be let the kref
1526  *	layer destruct the object for us
1527  */
1528 
1529 void tty_kref_put(struct tty_struct *tty)
1530 {
1531 	if (tty)
1532 		kref_put(&tty->kref, queue_release_one_tty);
1533 }
1534 EXPORT_SYMBOL(tty_kref_put);
1535 
1536 /**
1537  *	release_tty		-	release tty structure memory
1538  *
1539  *	Release both @tty and a possible linked partner (think pty pair),
1540  *	and decrement the refcount of the backing module.
1541  *
1542  *	Locking:
1543  *		tty_mutex - sometimes only
1544  *		takes the file list lock internally when working on the list
1545  *	of ttys that the driver keeps.
1546  *		FIXME: should we require tty_mutex is held here ??
1547  *
1548  */
1549 static void release_tty(struct tty_struct *tty, int idx)
1550 {
1551 	/* This should always be true but check for the moment */
1552 	WARN_ON(tty->index != idx);
1553 
1554 	if (tty->link)
1555 		tty_kref_put(tty->link);
1556 	tty_kref_put(tty);
1557 }
1558 
1559 /**
1560  *	tty_release_checks - check a tty before real release
1561  *	@tty: tty to check
1562  *	@o_tty: link of @tty (if any)
1563  *	@idx: index of the tty
1564  *
1565  *	Performs some paranoid checking before true release of the @tty.
1566  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1567  */
1568 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1569 		int idx)
1570 {
1571 #ifdef TTY_PARANOIA_CHECK
1572 	if (idx < 0 || idx >= tty->driver->num) {
1573 		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1574 				__func__, tty->name);
1575 		return -1;
1576 	}
1577 
1578 	/* not much to check for devpts */
1579 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1580 		return 0;
1581 
1582 	if (tty != tty->driver->ttys[idx]) {
1583 		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1584 				__func__, idx, tty->name);
1585 		return -1;
1586 	}
1587 	if (tty->termios != tty->driver->termios[idx]) {
1588 		printk(KERN_DEBUG "%s: driver.termios[%d] not termios for (%s)\n",
1589 				__func__, idx, tty->name);
1590 		return -1;
1591 	}
1592 	if (tty->driver->other) {
1593 		if (o_tty != tty->driver->other->ttys[idx]) {
1594 			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1595 					__func__, idx, tty->name);
1596 			return -1;
1597 		}
1598 		if (o_tty->termios != tty->driver->other->termios[idx]) {
1599 			printk(KERN_DEBUG "%s: other->termios[%d] not o_termios for (%s)\n",
1600 					__func__, idx, tty->name);
1601 			return -1;
1602 		}
1603 		if (o_tty->link != tty) {
1604 			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1605 			return -1;
1606 		}
1607 	}
1608 #endif
1609 	return 0;
1610 }
1611 
1612 /**
1613  *	tty_release		-	vfs callback for close
1614  *	@inode: inode of tty
1615  *	@filp: file pointer for handle to tty
1616  *
1617  *	Called the last time each file handle is closed that references
1618  *	this tty. There may however be several such references.
1619  *
1620  *	Locking:
1621  *		Takes bkl. See tty_release_dev
1622  *
1623  * Even releasing the tty structures is a tricky business.. We have
1624  * to be very careful that the structures are all released at the
1625  * same time, as interrupts might otherwise get the wrong pointers.
1626  *
1627  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1628  * lead to double frees or releasing memory still in use.
1629  */
1630 
1631 int tty_release(struct inode *inode, struct file *filp)
1632 {
1633 	struct tty_struct *tty = file_tty(filp);
1634 	struct tty_struct *o_tty;
1635 	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1636 	int	devpts;
1637 	int	idx;
1638 	char	buf[64];
1639 
1640 	if (tty_paranoia_check(tty, inode, __func__))
1641 		return 0;
1642 
1643 	tty_lock();
1644 	check_tty_count(tty, __func__);
1645 
1646 	__tty_fasync(-1, filp, 0);
1647 
1648 	idx = tty->index;
1649 	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1650 		      tty->driver->subtype == PTY_TYPE_MASTER);
1651 	devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1652 	o_tty = tty->link;
1653 
1654 	if (tty_release_checks(tty, o_tty, idx)) {
1655 		tty_unlock();
1656 		return 0;
1657 	}
1658 
1659 #ifdef TTY_DEBUG_HANGUP
1660 	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1661 			tty_name(tty, buf), tty->count);
1662 #endif
1663 
1664 	if (tty->ops->close)
1665 		tty->ops->close(tty, filp);
1666 
1667 	tty_unlock();
1668 	/*
1669 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1670 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1671 	 * wait queues and kick everyone out _before_ actually starting to
1672 	 * close.  This ensures that we won't block while releasing the tty
1673 	 * structure.
1674 	 *
1675 	 * The test for the o_tty closing is necessary, since the master and
1676 	 * slave sides may close in any order.  If the slave side closes out
1677 	 * first, its count will be one, since the master side holds an open.
1678 	 * Thus this test wouldn't be triggered at the time the slave closes,
1679 	 * so we do it now.
1680 	 *
1681 	 * Note that it's possible for the tty to be opened again while we're
1682 	 * flushing out waiters.  By recalculating the closing flags before
1683 	 * each iteration we avoid any problems.
1684 	 */
1685 	while (1) {
1686 		/* Guard against races with tty->count changes elsewhere and
1687 		   opens on /dev/tty */
1688 
1689 		mutex_lock(&tty_mutex);
1690 		tty_lock();
1691 		tty_closing = tty->count <= 1;
1692 		o_tty_closing = o_tty &&
1693 			(o_tty->count <= (pty_master ? 1 : 0));
1694 		do_sleep = 0;
1695 
1696 		if (tty_closing) {
1697 			if (waitqueue_active(&tty->read_wait)) {
1698 				wake_up_poll(&tty->read_wait, POLLIN);
1699 				do_sleep++;
1700 			}
1701 			if (waitqueue_active(&tty->write_wait)) {
1702 				wake_up_poll(&tty->write_wait, POLLOUT);
1703 				do_sleep++;
1704 			}
1705 		}
1706 		if (o_tty_closing) {
1707 			if (waitqueue_active(&o_tty->read_wait)) {
1708 				wake_up_poll(&o_tty->read_wait, POLLIN);
1709 				do_sleep++;
1710 			}
1711 			if (waitqueue_active(&o_tty->write_wait)) {
1712 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1713 				do_sleep++;
1714 			}
1715 		}
1716 		if (!do_sleep)
1717 			break;
1718 
1719 		printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1720 				__func__, tty_name(tty, buf));
1721 		tty_unlock();
1722 		mutex_unlock(&tty_mutex);
1723 		schedule();
1724 	}
1725 
1726 	/*
1727 	 * The closing flags are now consistent with the open counts on
1728 	 * both sides, and we've completed the last operation that could
1729 	 * block, so it's safe to proceed with closing.
1730 	 */
1731 	if (pty_master) {
1732 		if (--o_tty->count < 0) {
1733 			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1734 				__func__, o_tty->count, tty_name(o_tty, buf));
1735 			o_tty->count = 0;
1736 		}
1737 	}
1738 	if (--tty->count < 0) {
1739 		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1740 				__func__, tty->count, tty_name(tty, buf));
1741 		tty->count = 0;
1742 	}
1743 
1744 	/*
1745 	 * We've decremented tty->count, so we need to remove this file
1746 	 * descriptor off the tty->tty_files list; this serves two
1747 	 * purposes:
1748 	 *  - check_tty_count sees the correct number of file descriptors
1749 	 *    associated with this tty.
1750 	 *  - do_tty_hangup no longer sees this file descriptor as
1751 	 *    something that needs to be handled for hangups.
1752 	 */
1753 	tty_del_file(filp);
1754 
1755 	/*
1756 	 * Perform some housekeeping before deciding whether to return.
1757 	 *
1758 	 * Set the TTY_CLOSING flag if this was the last open.  In the
1759 	 * case of a pty we may have to wait around for the other side
1760 	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1761 	 */
1762 	if (tty_closing)
1763 		set_bit(TTY_CLOSING, &tty->flags);
1764 	if (o_tty_closing)
1765 		set_bit(TTY_CLOSING, &o_tty->flags);
1766 
1767 	/*
1768 	 * If _either_ side is closing, make sure there aren't any
1769 	 * processes that still think tty or o_tty is their controlling
1770 	 * tty.
1771 	 */
1772 	if (tty_closing || o_tty_closing) {
1773 		read_lock(&tasklist_lock);
1774 		session_clear_tty(tty->session);
1775 		if (o_tty)
1776 			session_clear_tty(o_tty->session);
1777 		read_unlock(&tasklist_lock);
1778 	}
1779 
1780 	mutex_unlock(&tty_mutex);
1781 
1782 	/* check whether both sides are closing ... */
1783 	if (!tty_closing || (o_tty && !o_tty_closing)) {
1784 		tty_unlock();
1785 		return 0;
1786 	}
1787 
1788 #ifdef TTY_DEBUG_HANGUP
1789 	printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1790 #endif
1791 	/*
1792 	 * Ask the line discipline code to release its structures
1793 	 */
1794 	tty_ldisc_release(tty, o_tty);
1795 	/*
1796 	 * The release_tty function takes care of the details of clearing
1797 	 * the slots and preserving the termios structure.
1798 	 */
1799 	release_tty(tty, idx);
1800 
1801 	/* Make this pty number available for reallocation */
1802 	if (devpts)
1803 		devpts_kill_index(inode, idx);
1804 	tty_unlock();
1805 	return 0;
1806 }
1807 
1808 /**
1809  *	tty_open_current_tty - get tty of current task for open
1810  *	@device: device number
1811  *	@filp: file pointer to tty
1812  *	@return: tty of the current task iff @device is /dev/tty
1813  *
1814  *	We cannot return driver and index like for the other nodes because
1815  *	devpts will not work then. It expects inodes to be from devpts FS.
1816  */
1817 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1818 {
1819 	struct tty_struct *tty;
1820 
1821 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1822 		return NULL;
1823 
1824 	tty = get_current_tty();
1825 	if (!tty)
1826 		return ERR_PTR(-ENXIO);
1827 
1828 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1829 	/* noctty = 1; */
1830 	tty_kref_put(tty);
1831 	/* FIXME: we put a reference and return a TTY! */
1832 	return tty;
1833 }
1834 
1835 /**
1836  *	tty_lookup_driver - lookup a tty driver for a given device file
1837  *	@device: device number
1838  *	@filp: file pointer to tty
1839  *	@noctty: set if the device should not become a controlling tty
1840  *	@index: index for the device in the @return driver
1841  *	@return: driver for this inode (with increased refcount)
1842  *
1843  * 	If @return is not erroneous, the caller is responsible to decrement the
1844  * 	refcount by tty_driver_kref_put.
1845  *
1846  *	Locking: tty_mutex protects get_tty_driver
1847  */
1848 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1849 		int *noctty, int *index)
1850 {
1851 	struct tty_driver *driver;
1852 
1853 	switch (device) {
1854 #ifdef CONFIG_VT
1855 	case MKDEV(TTY_MAJOR, 0): {
1856 		extern struct tty_driver *console_driver;
1857 		driver = tty_driver_kref_get(console_driver);
1858 		*index = fg_console;
1859 		*noctty = 1;
1860 		break;
1861 	}
1862 #endif
1863 	case MKDEV(TTYAUX_MAJOR, 1): {
1864 		struct tty_driver *console_driver = console_device(index);
1865 		if (console_driver) {
1866 			driver = tty_driver_kref_get(console_driver);
1867 			if (driver) {
1868 				/* Don't let /dev/console block */
1869 				filp->f_flags |= O_NONBLOCK;
1870 				*noctty = 1;
1871 				break;
1872 			}
1873 		}
1874 		return ERR_PTR(-ENODEV);
1875 	}
1876 	default:
1877 		driver = get_tty_driver(device, index);
1878 		if (!driver)
1879 			return ERR_PTR(-ENODEV);
1880 		break;
1881 	}
1882 	return driver;
1883 }
1884 
1885 /**
1886  *	tty_open		-	open a tty device
1887  *	@inode: inode of device file
1888  *	@filp: file pointer to tty
1889  *
1890  *	tty_open and tty_release keep up the tty count that contains the
1891  *	number of opens done on a tty. We cannot use the inode-count, as
1892  *	different inodes might point to the same tty.
1893  *
1894  *	Open-counting is needed for pty masters, as well as for keeping
1895  *	track of serial lines: DTR is dropped when the last close happens.
1896  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1897  *
1898  *	The termios state of a pty is reset on first open so that
1899  *	settings don't persist across reuse.
1900  *
1901  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1902  *		 tty->count should protect the rest.
1903  *		 ->siglock protects ->signal/->sighand
1904  */
1905 
1906 static int tty_open(struct inode *inode, struct file *filp)
1907 {
1908 	struct tty_struct *tty;
1909 	int noctty, retval;
1910 	struct tty_driver *driver = NULL;
1911 	int index;
1912 	dev_t device = inode->i_rdev;
1913 	unsigned saved_flags = filp->f_flags;
1914 
1915 	nonseekable_open(inode, filp);
1916 
1917 retry_open:
1918 	retval = tty_alloc_file(filp);
1919 	if (retval)
1920 		return -ENOMEM;
1921 
1922 	noctty = filp->f_flags & O_NOCTTY;
1923 	index  = -1;
1924 	retval = 0;
1925 
1926 	mutex_lock(&tty_mutex);
1927 	tty_lock();
1928 
1929 	tty = tty_open_current_tty(device, filp);
1930 	if (IS_ERR(tty)) {
1931 		retval = PTR_ERR(tty);
1932 		goto err_unlock;
1933 	} else if (!tty) {
1934 		driver = tty_lookup_driver(device, filp, &noctty, &index);
1935 		if (IS_ERR(driver)) {
1936 			retval = PTR_ERR(driver);
1937 			goto err_unlock;
1938 		}
1939 
1940 		/* check whether we're reopening an existing tty */
1941 		tty = tty_driver_lookup_tty(driver, inode, index);
1942 		if (IS_ERR(tty)) {
1943 			retval = PTR_ERR(tty);
1944 			goto err_unlock;
1945 		}
1946 	}
1947 
1948 	if (tty) {
1949 		retval = tty_reopen(tty);
1950 		if (retval)
1951 			tty = ERR_PTR(retval);
1952 	} else
1953 		tty = tty_init_dev(driver, index, 0);
1954 
1955 	mutex_unlock(&tty_mutex);
1956 	if (driver)
1957 		tty_driver_kref_put(driver);
1958 	if (IS_ERR(tty)) {
1959 		tty_unlock();
1960 		retval = PTR_ERR(tty);
1961 		goto err_file;
1962 	}
1963 
1964 	tty_add_file(tty, filp);
1965 
1966 	check_tty_count(tty, __func__);
1967 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1968 	    tty->driver->subtype == PTY_TYPE_MASTER)
1969 		noctty = 1;
1970 #ifdef TTY_DEBUG_HANGUP
1971 	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1972 #endif
1973 	if (tty->ops->open)
1974 		retval = tty->ops->open(tty, filp);
1975 	else
1976 		retval = -ENODEV;
1977 	filp->f_flags = saved_flags;
1978 
1979 	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1980 						!capable(CAP_SYS_ADMIN))
1981 		retval = -EBUSY;
1982 
1983 	if (retval) {
1984 #ifdef TTY_DEBUG_HANGUP
1985 		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1986 				retval, tty->name);
1987 #endif
1988 		tty_unlock(); /* need to call tty_release without BTM */
1989 		tty_release(inode, filp);
1990 		if (retval != -ERESTARTSYS)
1991 			return retval;
1992 
1993 		if (signal_pending(current))
1994 			return retval;
1995 
1996 		schedule();
1997 		/*
1998 		 * Need to reset f_op in case a hangup happened.
1999 		 */
2000 		tty_lock();
2001 		if (filp->f_op == &hung_up_tty_fops)
2002 			filp->f_op = &tty_fops;
2003 		tty_unlock();
2004 		goto retry_open;
2005 	}
2006 	tty_unlock();
2007 
2008 
2009 	mutex_lock(&tty_mutex);
2010 	tty_lock();
2011 	spin_lock_irq(&current->sighand->siglock);
2012 	if (!noctty &&
2013 	    current->signal->leader &&
2014 	    !current->signal->tty &&
2015 	    tty->session == NULL)
2016 		__proc_set_tty(current, tty);
2017 	spin_unlock_irq(&current->sighand->siglock);
2018 	tty_unlock();
2019 	mutex_unlock(&tty_mutex);
2020 	return 0;
2021 err_unlock:
2022 	tty_unlock();
2023 	mutex_unlock(&tty_mutex);
2024 	/* after locks to avoid deadlock */
2025 	if (!IS_ERR_OR_NULL(driver))
2026 		tty_driver_kref_put(driver);
2027 err_file:
2028 	tty_free_file(filp);
2029 	return retval;
2030 }
2031 
2032 
2033 
2034 /**
2035  *	tty_poll	-	check tty status
2036  *	@filp: file being polled
2037  *	@wait: poll wait structures to update
2038  *
2039  *	Call the line discipline polling method to obtain the poll
2040  *	status of the device.
2041  *
2042  *	Locking: locks called line discipline but ldisc poll method
2043  *	may be re-entered freely by other callers.
2044  */
2045 
2046 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2047 {
2048 	struct tty_struct *tty = file_tty(filp);
2049 	struct tty_ldisc *ld;
2050 	int ret = 0;
2051 
2052 	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2053 		return 0;
2054 
2055 	ld = tty_ldisc_ref_wait(tty);
2056 	if (ld->ops->poll)
2057 		ret = (ld->ops->poll)(tty, filp, wait);
2058 	tty_ldisc_deref(ld);
2059 	return ret;
2060 }
2061 
2062 static int __tty_fasync(int fd, struct file *filp, int on)
2063 {
2064 	struct tty_struct *tty = file_tty(filp);
2065 	unsigned long flags;
2066 	int retval = 0;
2067 
2068 	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2069 		goto out;
2070 
2071 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2072 	if (retval <= 0)
2073 		goto out;
2074 
2075 	if (on) {
2076 		enum pid_type type;
2077 		struct pid *pid;
2078 		if (!waitqueue_active(&tty->read_wait))
2079 			tty->minimum_to_wake = 1;
2080 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2081 		if (tty->pgrp) {
2082 			pid = tty->pgrp;
2083 			type = PIDTYPE_PGID;
2084 		} else {
2085 			pid = task_pid(current);
2086 			type = PIDTYPE_PID;
2087 		}
2088 		get_pid(pid);
2089 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2090 		retval = __f_setown(filp, pid, type, 0);
2091 		put_pid(pid);
2092 		if (retval)
2093 			goto out;
2094 	} else {
2095 		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2096 			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2097 	}
2098 	retval = 0;
2099 out:
2100 	return retval;
2101 }
2102 
2103 static int tty_fasync(int fd, struct file *filp, int on)
2104 {
2105 	int retval;
2106 	tty_lock();
2107 	retval = __tty_fasync(fd, filp, on);
2108 	tty_unlock();
2109 	return retval;
2110 }
2111 
2112 /**
2113  *	tiocsti			-	fake input character
2114  *	@tty: tty to fake input into
2115  *	@p: pointer to character
2116  *
2117  *	Fake input to a tty device. Does the necessary locking and
2118  *	input management.
2119  *
2120  *	FIXME: does not honour flow control ??
2121  *
2122  *	Locking:
2123  *		Called functions take tty_ldisc_lock
2124  *		current->signal->tty check is safe without locks
2125  *
2126  *	FIXME: may race normal receive processing
2127  */
2128 
2129 static int tiocsti(struct tty_struct *tty, char __user *p)
2130 {
2131 	char ch, mbz = 0;
2132 	struct tty_ldisc *ld;
2133 
2134 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2135 		return -EPERM;
2136 	if (get_user(ch, p))
2137 		return -EFAULT;
2138 	tty_audit_tiocsti(tty, ch);
2139 	ld = tty_ldisc_ref_wait(tty);
2140 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2141 	tty_ldisc_deref(ld);
2142 	return 0;
2143 }
2144 
2145 /**
2146  *	tiocgwinsz		-	implement window query ioctl
2147  *	@tty; tty
2148  *	@arg: user buffer for result
2149  *
2150  *	Copies the kernel idea of the window size into the user buffer.
2151  *
2152  *	Locking: tty->termios_mutex is taken to ensure the winsize data
2153  *		is consistent.
2154  */
2155 
2156 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2157 {
2158 	int err;
2159 
2160 	mutex_lock(&tty->termios_mutex);
2161 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2162 	mutex_unlock(&tty->termios_mutex);
2163 
2164 	return err ? -EFAULT: 0;
2165 }
2166 
2167 /**
2168  *	tty_do_resize		-	resize event
2169  *	@tty: tty being resized
2170  *	@rows: rows (character)
2171  *	@cols: cols (character)
2172  *
2173  *	Update the termios variables and send the necessary signals to
2174  *	peform a terminal resize correctly
2175  */
2176 
2177 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2178 {
2179 	struct pid *pgrp;
2180 	unsigned long flags;
2181 
2182 	/* Lock the tty */
2183 	mutex_lock(&tty->termios_mutex);
2184 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2185 		goto done;
2186 	/* Get the PID values and reference them so we can
2187 	   avoid holding the tty ctrl lock while sending signals */
2188 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2189 	pgrp = get_pid(tty->pgrp);
2190 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2191 
2192 	if (pgrp)
2193 		kill_pgrp(pgrp, SIGWINCH, 1);
2194 	put_pid(pgrp);
2195 
2196 	tty->winsize = *ws;
2197 done:
2198 	mutex_unlock(&tty->termios_mutex);
2199 	return 0;
2200 }
2201 
2202 /**
2203  *	tiocswinsz		-	implement window size set ioctl
2204  *	@tty; tty side of tty
2205  *	@arg: user buffer for result
2206  *
2207  *	Copies the user idea of the window size to the kernel. Traditionally
2208  *	this is just advisory information but for the Linux console it
2209  *	actually has driver level meaning and triggers a VC resize.
2210  *
2211  *	Locking:
2212  *		Driver dependent. The default do_resize method takes the
2213  *	tty termios mutex and ctrl_lock. The console takes its own lock
2214  *	then calls into the default method.
2215  */
2216 
2217 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2218 {
2219 	struct winsize tmp_ws;
2220 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2221 		return -EFAULT;
2222 
2223 	if (tty->ops->resize)
2224 		return tty->ops->resize(tty, &tmp_ws);
2225 	else
2226 		return tty_do_resize(tty, &tmp_ws);
2227 }
2228 
2229 /**
2230  *	tioccons	-	allow admin to move logical console
2231  *	@file: the file to become console
2232  *
2233  *	Allow the administrator to move the redirected console device
2234  *
2235  *	Locking: uses redirect_lock to guard the redirect information
2236  */
2237 
2238 static int tioccons(struct file *file)
2239 {
2240 	if (!capable(CAP_SYS_ADMIN))
2241 		return -EPERM;
2242 	if (file->f_op->write == redirected_tty_write) {
2243 		struct file *f;
2244 		spin_lock(&redirect_lock);
2245 		f = redirect;
2246 		redirect = NULL;
2247 		spin_unlock(&redirect_lock);
2248 		if (f)
2249 			fput(f);
2250 		return 0;
2251 	}
2252 	spin_lock(&redirect_lock);
2253 	if (redirect) {
2254 		spin_unlock(&redirect_lock);
2255 		return -EBUSY;
2256 	}
2257 	get_file(file);
2258 	redirect = file;
2259 	spin_unlock(&redirect_lock);
2260 	return 0;
2261 }
2262 
2263 /**
2264  *	fionbio		-	non blocking ioctl
2265  *	@file: file to set blocking value
2266  *	@p: user parameter
2267  *
2268  *	Historical tty interfaces had a blocking control ioctl before
2269  *	the generic functionality existed. This piece of history is preserved
2270  *	in the expected tty API of posix OS's.
2271  *
2272  *	Locking: none, the open file handle ensures it won't go away.
2273  */
2274 
2275 static int fionbio(struct file *file, int __user *p)
2276 {
2277 	int nonblock;
2278 
2279 	if (get_user(nonblock, p))
2280 		return -EFAULT;
2281 
2282 	spin_lock(&file->f_lock);
2283 	if (nonblock)
2284 		file->f_flags |= O_NONBLOCK;
2285 	else
2286 		file->f_flags &= ~O_NONBLOCK;
2287 	spin_unlock(&file->f_lock);
2288 	return 0;
2289 }
2290 
2291 /**
2292  *	tiocsctty	-	set controlling tty
2293  *	@tty: tty structure
2294  *	@arg: user argument
2295  *
2296  *	This ioctl is used to manage job control. It permits a session
2297  *	leader to set this tty as the controlling tty for the session.
2298  *
2299  *	Locking:
2300  *		Takes tty_mutex() to protect tty instance
2301  *		Takes tasklist_lock internally to walk sessions
2302  *		Takes ->siglock() when updating signal->tty
2303  */
2304 
2305 static int tiocsctty(struct tty_struct *tty, int arg)
2306 {
2307 	int ret = 0;
2308 	if (current->signal->leader && (task_session(current) == tty->session))
2309 		return ret;
2310 
2311 	mutex_lock(&tty_mutex);
2312 	/*
2313 	 * The process must be a session leader and
2314 	 * not have a controlling tty already.
2315 	 */
2316 	if (!current->signal->leader || current->signal->tty) {
2317 		ret = -EPERM;
2318 		goto unlock;
2319 	}
2320 
2321 	if (tty->session) {
2322 		/*
2323 		 * This tty is already the controlling
2324 		 * tty for another session group!
2325 		 */
2326 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2327 			/*
2328 			 * Steal it away
2329 			 */
2330 			read_lock(&tasklist_lock);
2331 			session_clear_tty(tty->session);
2332 			read_unlock(&tasklist_lock);
2333 		} else {
2334 			ret = -EPERM;
2335 			goto unlock;
2336 		}
2337 	}
2338 	proc_set_tty(current, tty);
2339 unlock:
2340 	mutex_unlock(&tty_mutex);
2341 	return ret;
2342 }
2343 
2344 /**
2345  *	tty_get_pgrp	-	return a ref counted pgrp pid
2346  *	@tty: tty to read
2347  *
2348  *	Returns a refcounted instance of the pid struct for the process
2349  *	group controlling the tty.
2350  */
2351 
2352 struct pid *tty_get_pgrp(struct tty_struct *tty)
2353 {
2354 	unsigned long flags;
2355 	struct pid *pgrp;
2356 
2357 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2358 	pgrp = get_pid(tty->pgrp);
2359 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2360 
2361 	return pgrp;
2362 }
2363 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2364 
2365 /**
2366  *	tiocgpgrp		-	get process group
2367  *	@tty: tty passed by user
2368  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2369  *	@p: returned pid
2370  *
2371  *	Obtain the process group of the tty. If there is no process group
2372  *	return an error.
2373  *
2374  *	Locking: none. Reference to current->signal->tty is safe.
2375  */
2376 
2377 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2378 {
2379 	struct pid *pid;
2380 	int ret;
2381 	/*
2382 	 * (tty == real_tty) is a cheap way of
2383 	 * testing if the tty is NOT a master pty.
2384 	 */
2385 	if (tty == real_tty && current->signal->tty != real_tty)
2386 		return -ENOTTY;
2387 	pid = tty_get_pgrp(real_tty);
2388 	ret =  put_user(pid_vnr(pid), p);
2389 	put_pid(pid);
2390 	return ret;
2391 }
2392 
2393 /**
2394  *	tiocspgrp		-	attempt to set process group
2395  *	@tty: tty passed by user
2396  *	@real_tty: tty side device matching tty passed by user
2397  *	@p: pid pointer
2398  *
2399  *	Set the process group of the tty to the session passed. Only
2400  *	permitted where the tty session is our session.
2401  *
2402  *	Locking: RCU, ctrl lock
2403  */
2404 
2405 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2406 {
2407 	struct pid *pgrp;
2408 	pid_t pgrp_nr;
2409 	int retval = tty_check_change(real_tty);
2410 	unsigned long flags;
2411 
2412 	if (retval == -EIO)
2413 		return -ENOTTY;
2414 	if (retval)
2415 		return retval;
2416 	if (!current->signal->tty ||
2417 	    (current->signal->tty != real_tty) ||
2418 	    (real_tty->session != task_session(current)))
2419 		return -ENOTTY;
2420 	if (get_user(pgrp_nr, p))
2421 		return -EFAULT;
2422 	if (pgrp_nr < 0)
2423 		return -EINVAL;
2424 	rcu_read_lock();
2425 	pgrp = find_vpid(pgrp_nr);
2426 	retval = -ESRCH;
2427 	if (!pgrp)
2428 		goto out_unlock;
2429 	retval = -EPERM;
2430 	if (session_of_pgrp(pgrp) != task_session(current))
2431 		goto out_unlock;
2432 	retval = 0;
2433 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2434 	put_pid(real_tty->pgrp);
2435 	real_tty->pgrp = get_pid(pgrp);
2436 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2437 out_unlock:
2438 	rcu_read_unlock();
2439 	return retval;
2440 }
2441 
2442 /**
2443  *	tiocgsid		-	get session id
2444  *	@tty: tty passed by user
2445  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2446  *	@p: pointer to returned session id
2447  *
2448  *	Obtain the session id of the tty. If there is no session
2449  *	return an error.
2450  *
2451  *	Locking: none. Reference to current->signal->tty is safe.
2452  */
2453 
2454 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2455 {
2456 	/*
2457 	 * (tty == real_tty) is a cheap way of
2458 	 * testing if the tty is NOT a master pty.
2459 	*/
2460 	if (tty == real_tty && current->signal->tty != real_tty)
2461 		return -ENOTTY;
2462 	if (!real_tty->session)
2463 		return -ENOTTY;
2464 	return put_user(pid_vnr(real_tty->session), p);
2465 }
2466 
2467 /**
2468  *	tiocsetd	-	set line discipline
2469  *	@tty: tty device
2470  *	@p: pointer to user data
2471  *
2472  *	Set the line discipline according to user request.
2473  *
2474  *	Locking: see tty_set_ldisc, this function is just a helper
2475  */
2476 
2477 static int tiocsetd(struct tty_struct *tty, int __user *p)
2478 {
2479 	int ldisc;
2480 	int ret;
2481 
2482 	if (get_user(ldisc, p))
2483 		return -EFAULT;
2484 
2485 	ret = tty_set_ldisc(tty, ldisc);
2486 
2487 	return ret;
2488 }
2489 
2490 /**
2491  *	send_break	-	performed time break
2492  *	@tty: device to break on
2493  *	@duration: timeout in mS
2494  *
2495  *	Perform a timed break on hardware that lacks its own driver level
2496  *	timed break functionality.
2497  *
2498  *	Locking:
2499  *		atomic_write_lock serializes
2500  *
2501  */
2502 
2503 static int send_break(struct tty_struct *tty, unsigned int duration)
2504 {
2505 	int retval;
2506 
2507 	if (tty->ops->break_ctl == NULL)
2508 		return 0;
2509 
2510 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2511 		retval = tty->ops->break_ctl(tty, duration);
2512 	else {
2513 		/* Do the work ourselves */
2514 		if (tty_write_lock(tty, 0) < 0)
2515 			return -EINTR;
2516 		retval = tty->ops->break_ctl(tty, -1);
2517 		if (retval)
2518 			goto out;
2519 		if (!signal_pending(current))
2520 			msleep_interruptible(duration);
2521 		retval = tty->ops->break_ctl(tty, 0);
2522 out:
2523 		tty_write_unlock(tty);
2524 		if (signal_pending(current))
2525 			retval = -EINTR;
2526 	}
2527 	return retval;
2528 }
2529 
2530 /**
2531  *	tty_tiocmget		-	get modem status
2532  *	@tty: tty device
2533  *	@file: user file pointer
2534  *	@p: pointer to result
2535  *
2536  *	Obtain the modem status bits from the tty driver if the feature
2537  *	is supported. Return -EINVAL if it is not available.
2538  *
2539  *	Locking: none (up to the driver)
2540  */
2541 
2542 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2543 {
2544 	int retval = -EINVAL;
2545 
2546 	if (tty->ops->tiocmget) {
2547 		retval = tty->ops->tiocmget(tty);
2548 
2549 		if (retval >= 0)
2550 			retval = put_user(retval, p);
2551 	}
2552 	return retval;
2553 }
2554 
2555 /**
2556  *	tty_tiocmset		-	set modem status
2557  *	@tty: tty device
2558  *	@cmd: command - clear bits, set bits or set all
2559  *	@p: pointer to desired bits
2560  *
2561  *	Set the modem status bits from the tty driver if the feature
2562  *	is supported. Return -EINVAL if it is not available.
2563  *
2564  *	Locking: none (up to the driver)
2565  */
2566 
2567 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2568 	     unsigned __user *p)
2569 {
2570 	int retval;
2571 	unsigned int set, clear, val;
2572 
2573 	if (tty->ops->tiocmset == NULL)
2574 		return -EINVAL;
2575 
2576 	retval = get_user(val, p);
2577 	if (retval)
2578 		return retval;
2579 	set = clear = 0;
2580 	switch (cmd) {
2581 	case TIOCMBIS:
2582 		set = val;
2583 		break;
2584 	case TIOCMBIC:
2585 		clear = val;
2586 		break;
2587 	case TIOCMSET:
2588 		set = val;
2589 		clear = ~val;
2590 		break;
2591 	}
2592 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2593 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2594 	return tty->ops->tiocmset(tty, set, clear);
2595 }
2596 
2597 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2598 {
2599 	int retval = -EINVAL;
2600 	struct serial_icounter_struct icount;
2601 	memset(&icount, 0, sizeof(icount));
2602 	if (tty->ops->get_icount)
2603 		retval = tty->ops->get_icount(tty, &icount);
2604 	if (retval != 0)
2605 		return retval;
2606 	if (copy_to_user(arg, &icount, sizeof(icount)))
2607 		return -EFAULT;
2608 	return 0;
2609 }
2610 
2611 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2612 {
2613 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2614 	    tty->driver->subtype == PTY_TYPE_MASTER)
2615 		tty = tty->link;
2616 	return tty;
2617 }
2618 EXPORT_SYMBOL(tty_pair_get_tty);
2619 
2620 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2621 {
2622 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2623 	    tty->driver->subtype == PTY_TYPE_MASTER)
2624 	    return tty;
2625 	return tty->link;
2626 }
2627 EXPORT_SYMBOL(tty_pair_get_pty);
2628 
2629 /*
2630  * Split this up, as gcc can choke on it otherwise..
2631  */
2632 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2633 {
2634 	struct tty_struct *tty = file_tty(file);
2635 	struct tty_struct *real_tty;
2636 	void __user *p = (void __user *)arg;
2637 	int retval;
2638 	struct tty_ldisc *ld;
2639 	struct inode *inode = file->f_dentry->d_inode;
2640 
2641 	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2642 		return -EINVAL;
2643 
2644 	real_tty = tty_pair_get_tty(tty);
2645 
2646 	/*
2647 	 * Factor out some common prep work
2648 	 */
2649 	switch (cmd) {
2650 	case TIOCSETD:
2651 	case TIOCSBRK:
2652 	case TIOCCBRK:
2653 	case TCSBRK:
2654 	case TCSBRKP:
2655 		retval = tty_check_change(tty);
2656 		if (retval)
2657 			return retval;
2658 		if (cmd != TIOCCBRK) {
2659 			tty_wait_until_sent(tty, 0);
2660 			if (signal_pending(current))
2661 				return -EINTR;
2662 		}
2663 		break;
2664 	}
2665 
2666 	/*
2667 	 *	Now do the stuff.
2668 	 */
2669 	switch (cmd) {
2670 	case TIOCSTI:
2671 		return tiocsti(tty, p);
2672 	case TIOCGWINSZ:
2673 		return tiocgwinsz(real_tty, p);
2674 	case TIOCSWINSZ:
2675 		return tiocswinsz(real_tty, p);
2676 	case TIOCCONS:
2677 		return real_tty != tty ? -EINVAL : tioccons(file);
2678 	case FIONBIO:
2679 		return fionbio(file, p);
2680 	case TIOCEXCL:
2681 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2682 		return 0;
2683 	case TIOCNXCL:
2684 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2685 		return 0;
2686 	case TIOCNOTTY:
2687 		if (current->signal->tty != tty)
2688 			return -ENOTTY;
2689 		no_tty();
2690 		return 0;
2691 	case TIOCSCTTY:
2692 		return tiocsctty(tty, arg);
2693 	case TIOCGPGRP:
2694 		return tiocgpgrp(tty, real_tty, p);
2695 	case TIOCSPGRP:
2696 		return tiocspgrp(tty, real_tty, p);
2697 	case TIOCGSID:
2698 		return tiocgsid(tty, real_tty, p);
2699 	case TIOCGETD:
2700 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2701 	case TIOCSETD:
2702 		return tiocsetd(tty, p);
2703 	case TIOCVHANGUP:
2704 		if (!capable(CAP_SYS_ADMIN))
2705 			return -EPERM;
2706 		tty_vhangup(tty);
2707 		return 0;
2708 	case TIOCGDEV:
2709 	{
2710 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2711 		return put_user(ret, (unsigned int __user *)p);
2712 	}
2713 	/*
2714 	 * Break handling
2715 	 */
2716 	case TIOCSBRK:	/* Turn break on, unconditionally */
2717 		if (tty->ops->break_ctl)
2718 			return tty->ops->break_ctl(tty, -1);
2719 		return 0;
2720 	case TIOCCBRK:	/* Turn break off, unconditionally */
2721 		if (tty->ops->break_ctl)
2722 			return tty->ops->break_ctl(tty, 0);
2723 		return 0;
2724 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2725 		/* non-zero arg means wait for all output data
2726 		 * to be sent (performed above) but don't send break.
2727 		 * This is used by the tcdrain() termios function.
2728 		 */
2729 		if (!arg)
2730 			return send_break(tty, 250);
2731 		return 0;
2732 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2733 		return send_break(tty, arg ? arg*100 : 250);
2734 
2735 	case TIOCMGET:
2736 		return tty_tiocmget(tty, p);
2737 	case TIOCMSET:
2738 	case TIOCMBIC:
2739 	case TIOCMBIS:
2740 		return tty_tiocmset(tty, cmd, p);
2741 	case TIOCGICOUNT:
2742 		retval = tty_tiocgicount(tty, p);
2743 		/* For the moment allow fall through to the old method */
2744         	if (retval != -EINVAL)
2745 			return retval;
2746 		break;
2747 	case TCFLSH:
2748 		switch (arg) {
2749 		case TCIFLUSH:
2750 		case TCIOFLUSH:
2751 		/* flush tty buffer and allow ldisc to process ioctl */
2752 			tty_buffer_flush(tty);
2753 			break;
2754 		}
2755 		break;
2756 	}
2757 	if (tty->ops->ioctl) {
2758 		retval = (tty->ops->ioctl)(tty, cmd, arg);
2759 		if (retval != -ENOIOCTLCMD)
2760 			return retval;
2761 	}
2762 	ld = tty_ldisc_ref_wait(tty);
2763 	retval = -EINVAL;
2764 	if (ld->ops->ioctl) {
2765 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2766 		if (retval == -ENOIOCTLCMD)
2767 			retval = -EINVAL;
2768 	}
2769 	tty_ldisc_deref(ld);
2770 	return retval;
2771 }
2772 
2773 #ifdef CONFIG_COMPAT
2774 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2775 				unsigned long arg)
2776 {
2777 	struct inode *inode = file->f_dentry->d_inode;
2778 	struct tty_struct *tty = file_tty(file);
2779 	struct tty_ldisc *ld;
2780 	int retval = -ENOIOCTLCMD;
2781 
2782 	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2783 		return -EINVAL;
2784 
2785 	if (tty->ops->compat_ioctl) {
2786 		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2787 		if (retval != -ENOIOCTLCMD)
2788 			return retval;
2789 	}
2790 
2791 	ld = tty_ldisc_ref_wait(tty);
2792 	if (ld->ops->compat_ioctl)
2793 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2794 	else
2795 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2796 	tty_ldisc_deref(ld);
2797 
2798 	return retval;
2799 }
2800 #endif
2801 
2802 /*
2803  * This implements the "Secure Attention Key" ---  the idea is to
2804  * prevent trojan horses by killing all processes associated with this
2805  * tty when the user hits the "Secure Attention Key".  Required for
2806  * super-paranoid applications --- see the Orange Book for more details.
2807  *
2808  * This code could be nicer; ideally it should send a HUP, wait a few
2809  * seconds, then send a INT, and then a KILL signal.  But you then
2810  * have to coordinate with the init process, since all processes associated
2811  * with the current tty must be dead before the new getty is allowed
2812  * to spawn.
2813  *
2814  * Now, if it would be correct ;-/ The current code has a nasty hole -
2815  * it doesn't catch files in flight. We may send the descriptor to ourselves
2816  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2817  *
2818  * Nasty bug: do_SAK is being called in interrupt context.  This can
2819  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2820  */
2821 void __do_SAK(struct tty_struct *tty)
2822 {
2823 #ifdef TTY_SOFT_SAK
2824 	tty_hangup(tty);
2825 #else
2826 	struct task_struct *g, *p;
2827 	struct pid *session;
2828 	int		i;
2829 	struct file	*filp;
2830 	struct fdtable *fdt;
2831 
2832 	if (!tty)
2833 		return;
2834 	session = tty->session;
2835 
2836 	tty_ldisc_flush(tty);
2837 
2838 	tty_driver_flush_buffer(tty);
2839 
2840 	read_lock(&tasklist_lock);
2841 	/* Kill the entire session */
2842 	do_each_pid_task(session, PIDTYPE_SID, p) {
2843 		printk(KERN_NOTICE "SAK: killed process %d"
2844 			" (%s): task_session(p)==tty->session\n",
2845 			task_pid_nr(p), p->comm);
2846 		send_sig(SIGKILL, p, 1);
2847 	} while_each_pid_task(session, PIDTYPE_SID, p);
2848 	/* Now kill any processes that happen to have the
2849 	 * tty open.
2850 	 */
2851 	do_each_thread(g, p) {
2852 		if (p->signal->tty == tty) {
2853 			printk(KERN_NOTICE "SAK: killed process %d"
2854 			    " (%s): task_session(p)==tty->session\n",
2855 			    task_pid_nr(p), p->comm);
2856 			send_sig(SIGKILL, p, 1);
2857 			continue;
2858 		}
2859 		task_lock(p);
2860 		if (p->files) {
2861 			/*
2862 			 * We don't take a ref to the file, so we must
2863 			 * hold ->file_lock instead.
2864 			 */
2865 			spin_lock(&p->files->file_lock);
2866 			fdt = files_fdtable(p->files);
2867 			for (i = 0; i < fdt->max_fds; i++) {
2868 				filp = fcheck_files(p->files, i);
2869 				if (!filp)
2870 					continue;
2871 				if (filp->f_op->read == tty_read &&
2872 				    file_tty(filp) == tty) {
2873 					printk(KERN_NOTICE "SAK: killed process %d"
2874 					    " (%s): fd#%d opened to the tty\n",
2875 					    task_pid_nr(p), p->comm, i);
2876 					force_sig(SIGKILL, p);
2877 					break;
2878 				}
2879 			}
2880 			spin_unlock(&p->files->file_lock);
2881 		}
2882 		task_unlock(p);
2883 	} while_each_thread(g, p);
2884 	read_unlock(&tasklist_lock);
2885 #endif
2886 }
2887 
2888 static void do_SAK_work(struct work_struct *work)
2889 {
2890 	struct tty_struct *tty =
2891 		container_of(work, struct tty_struct, SAK_work);
2892 	__do_SAK(tty);
2893 }
2894 
2895 /*
2896  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2897  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2898  * the values which we write to it will be identical to the values which it
2899  * already has. --akpm
2900  */
2901 void do_SAK(struct tty_struct *tty)
2902 {
2903 	if (!tty)
2904 		return;
2905 	schedule_work(&tty->SAK_work);
2906 }
2907 
2908 EXPORT_SYMBOL(do_SAK);
2909 
2910 static int dev_match_devt(struct device *dev, void *data)
2911 {
2912 	dev_t *devt = data;
2913 	return dev->devt == *devt;
2914 }
2915 
2916 /* Must put_device() after it's unused! */
2917 static struct device *tty_get_device(struct tty_struct *tty)
2918 {
2919 	dev_t devt = tty_devnum(tty);
2920 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2921 }
2922 
2923 
2924 /**
2925  *	initialize_tty_struct
2926  *	@tty: tty to initialize
2927  *
2928  *	This subroutine initializes a tty structure that has been newly
2929  *	allocated.
2930  *
2931  *	Locking: none - tty in question must not be exposed at this point
2932  */
2933 
2934 void initialize_tty_struct(struct tty_struct *tty,
2935 		struct tty_driver *driver, int idx)
2936 {
2937 	memset(tty, 0, sizeof(struct tty_struct));
2938 	kref_init(&tty->kref);
2939 	tty->magic = TTY_MAGIC;
2940 	tty_ldisc_init(tty);
2941 	tty->session = NULL;
2942 	tty->pgrp = NULL;
2943 	tty->overrun_time = jiffies;
2944 	tty->buf.head = tty->buf.tail = NULL;
2945 	tty_buffer_init(tty);
2946 	mutex_init(&tty->termios_mutex);
2947 	mutex_init(&tty->ldisc_mutex);
2948 	init_waitqueue_head(&tty->write_wait);
2949 	init_waitqueue_head(&tty->read_wait);
2950 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2951 	mutex_init(&tty->atomic_read_lock);
2952 	mutex_init(&tty->atomic_write_lock);
2953 	mutex_init(&tty->output_lock);
2954 	mutex_init(&tty->echo_lock);
2955 	spin_lock_init(&tty->read_lock);
2956 	spin_lock_init(&tty->ctrl_lock);
2957 	INIT_LIST_HEAD(&tty->tty_files);
2958 	INIT_WORK(&tty->SAK_work, do_SAK_work);
2959 
2960 	tty->driver = driver;
2961 	tty->ops = driver->ops;
2962 	tty->index = idx;
2963 	tty_line_name(driver, idx, tty->name);
2964 	tty->dev = tty_get_device(tty);
2965 }
2966 
2967 /**
2968  *	deinitialize_tty_struct
2969  *	@tty: tty to deinitialize
2970  *
2971  *	This subroutine deinitializes a tty structure that has been newly
2972  *	allocated but tty_release cannot be called on that yet.
2973  *
2974  *	Locking: none - tty in question must not be exposed at this point
2975  */
2976 void deinitialize_tty_struct(struct tty_struct *tty)
2977 {
2978 	tty_ldisc_deinit(tty);
2979 }
2980 
2981 /**
2982  *	tty_put_char	-	write one character to a tty
2983  *	@tty: tty
2984  *	@ch: character
2985  *
2986  *	Write one byte to the tty using the provided put_char method
2987  *	if present. Returns the number of characters successfully output.
2988  *
2989  *	Note: the specific put_char operation in the driver layer may go
2990  *	away soon. Don't call it directly, use this method
2991  */
2992 
2993 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2994 {
2995 	if (tty->ops->put_char)
2996 		return tty->ops->put_char(tty, ch);
2997 	return tty->ops->write(tty, &ch, 1);
2998 }
2999 EXPORT_SYMBOL_GPL(tty_put_char);
3000 
3001 struct class *tty_class;
3002 
3003 /**
3004  *	tty_register_device - register a tty device
3005  *	@driver: the tty driver that describes the tty device
3006  *	@index: the index in the tty driver for this tty device
3007  *	@device: a struct device that is associated with this tty device.
3008  *		This field is optional, if there is no known struct device
3009  *		for this tty device it can be set to NULL safely.
3010  *
3011  *	Returns a pointer to the struct device for this tty device
3012  *	(or ERR_PTR(-EFOO) on error).
3013  *
3014  *	This call is required to be made to register an individual tty device
3015  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3016  *	that bit is not set, this function should not be called by a tty
3017  *	driver.
3018  *
3019  *	Locking: ??
3020  */
3021 
3022 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3023 				   struct device *device)
3024 {
3025 	char name[64];
3026 	dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3027 
3028 	if (index >= driver->num) {
3029 		printk(KERN_ERR "Attempt to register invalid tty line number "
3030 		       " (%d).\n", index);
3031 		return ERR_PTR(-EINVAL);
3032 	}
3033 
3034 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3035 		pty_line_name(driver, index, name);
3036 	else
3037 		tty_line_name(driver, index, name);
3038 
3039 	return device_create(tty_class, device, dev, NULL, name);
3040 }
3041 EXPORT_SYMBOL(tty_register_device);
3042 
3043 /**
3044  * 	tty_unregister_device - unregister a tty device
3045  * 	@driver: the tty driver that describes the tty device
3046  * 	@index: the index in the tty driver for this tty device
3047  *
3048  * 	If a tty device is registered with a call to tty_register_device() then
3049  *	this function must be called when the tty device is gone.
3050  *
3051  *	Locking: ??
3052  */
3053 
3054 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3055 {
3056 	device_destroy(tty_class,
3057 		MKDEV(driver->major, driver->minor_start) + index);
3058 }
3059 EXPORT_SYMBOL(tty_unregister_device);
3060 
3061 struct tty_driver *alloc_tty_driver(int lines)
3062 {
3063 	struct tty_driver *driver;
3064 
3065 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3066 	if (driver) {
3067 		kref_init(&driver->kref);
3068 		driver->magic = TTY_DRIVER_MAGIC;
3069 		driver->num = lines;
3070 		/* later we'll move allocation of tables here */
3071 	}
3072 	return driver;
3073 }
3074 EXPORT_SYMBOL(alloc_tty_driver);
3075 
3076 static void destruct_tty_driver(struct kref *kref)
3077 {
3078 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3079 	int i;
3080 	struct ktermios *tp;
3081 	void *p;
3082 
3083 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3084 		/*
3085 		 * Free the termios and termios_locked structures because
3086 		 * we don't want to get memory leaks when modular tty
3087 		 * drivers are removed from the kernel.
3088 		 */
3089 		for (i = 0; i < driver->num; i++) {
3090 			tp = driver->termios[i];
3091 			if (tp) {
3092 				driver->termios[i] = NULL;
3093 				kfree(tp);
3094 			}
3095 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3096 				tty_unregister_device(driver, i);
3097 		}
3098 		p = driver->ttys;
3099 		proc_tty_unregister_driver(driver);
3100 		driver->ttys = NULL;
3101 		driver->termios = NULL;
3102 		kfree(p);
3103 		cdev_del(&driver->cdev);
3104 	}
3105 	kfree(driver);
3106 }
3107 
3108 void tty_driver_kref_put(struct tty_driver *driver)
3109 {
3110 	kref_put(&driver->kref, destruct_tty_driver);
3111 }
3112 EXPORT_SYMBOL(tty_driver_kref_put);
3113 
3114 void tty_set_operations(struct tty_driver *driver,
3115 			const struct tty_operations *op)
3116 {
3117 	driver->ops = op;
3118 };
3119 EXPORT_SYMBOL(tty_set_operations);
3120 
3121 void put_tty_driver(struct tty_driver *d)
3122 {
3123 	tty_driver_kref_put(d);
3124 }
3125 EXPORT_SYMBOL(put_tty_driver);
3126 
3127 /*
3128  * Called by a tty driver to register itself.
3129  */
3130 int tty_register_driver(struct tty_driver *driver)
3131 {
3132 	int error;
3133 	int i;
3134 	dev_t dev;
3135 	void **p = NULL;
3136 	struct device *d;
3137 
3138 	if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3139 		p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3140 		if (!p)
3141 			return -ENOMEM;
3142 	}
3143 
3144 	if (!driver->major) {
3145 		error = alloc_chrdev_region(&dev, driver->minor_start,
3146 						driver->num, driver->name);
3147 		if (!error) {
3148 			driver->major = MAJOR(dev);
3149 			driver->minor_start = MINOR(dev);
3150 		}
3151 	} else {
3152 		dev = MKDEV(driver->major, driver->minor_start);
3153 		error = register_chrdev_region(dev, driver->num, driver->name);
3154 	}
3155 	if (error < 0) {
3156 		kfree(p);
3157 		return error;
3158 	}
3159 
3160 	if (p) {
3161 		driver->ttys = (struct tty_struct **)p;
3162 		driver->termios = (struct ktermios **)(p + driver->num);
3163 	} else {
3164 		driver->ttys = NULL;
3165 		driver->termios = NULL;
3166 	}
3167 
3168 	cdev_init(&driver->cdev, &tty_fops);
3169 	driver->cdev.owner = driver->owner;
3170 	error = cdev_add(&driver->cdev, dev, driver->num);
3171 	if (error) {
3172 		unregister_chrdev_region(dev, driver->num);
3173 		driver->ttys = NULL;
3174 		driver->termios = NULL;
3175 		kfree(p);
3176 		return error;
3177 	}
3178 
3179 	mutex_lock(&tty_mutex);
3180 	list_add(&driver->tty_drivers, &tty_drivers);
3181 	mutex_unlock(&tty_mutex);
3182 
3183 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3184 		for (i = 0; i < driver->num; i++) {
3185 			d = tty_register_device(driver, i, NULL);
3186 			if (IS_ERR(d)) {
3187 				error = PTR_ERR(d);
3188 				goto err;
3189 			}
3190 		}
3191 	}
3192 	proc_tty_register_driver(driver);
3193 	driver->flags |= TTY_DRIVER_INSTALLED;
3194 	return 0;
3195 
3196 err:
3197 	for (i--; i >= 0; i--)
3198 		tty_unregister_device(driver, i);
3199 
3200 	mutex_lock(&tty_mutex);
3201 	list_del(&driver->tty_drivers);
3202 	mutex_unlock(&tty_mutex);
3203 
3204 	unregister_chrdev_region(dev, driver->num);
3205 	driver->ttys = NULL;
3206 	driver->termios = NULL;
3207 	kfree(p);
3208 	return error;
3209 }
3210 
3211 EXPORT_SYMBOL(tty_register_driver);
3212 
3213 /*
3214  * Called by a tty driver to unregister itself.
3215  */
3216 int tty_unregister_driver(struct tty_driver *driver)
3217 {
3218 #if 0
3219 	/* FIXME */
3220 	if (driver->refcount)
3221 		return -EBUSY;
3222 #endif
3223 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3224 				driver->num);
3225 	mutex_lock(&tty_mutex);
3226 	list_del(&driver->tty_drivers);
3227 	mutex_unlock(&tty_mutex);
3228 	return 0;
3229 }
3230 
3231 EXPORT_SYMBOL(tty_unregister_driver);
3232 
3233 dev_t tty_devnum(struct tty_struct *tty)
3234 {
3235 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3236 }
3237 EXPORT_SYMBOL(tty_devnum);
3238 
3239 void proc_clear_tty(struct task_struct *p)
3240 {
3241 	unsigned long flags;
3242 	struct tty_struct *tty;
3243 	spin_lock_irqsave(&p->sighand->siglock, flags);
3244 	tty = p->signal->tty;
3245 	p->signal->tty = NULL;
3246 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3247 	tty_kref_put(tty);
3248 }
3249 
3250 /* Called under the sighand lock */
3251 
3252 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3253 {
3254 	if (tty) {
3255 		unsigned long flags;
3256 		/* We should not have a session or pgrp to put here but.... */
3257 		spin_lock_irqsave(&tty->ctrl_lock, flags);
3258 		put_pid(tty->session);
3259 		put_pid(tty->pgrp);
3260 		tty->pgrp = get_pid(task_pgrp(tsk));
3261 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3262 		tty->session = get_pid(task_session(tsk));
3263 		if (tsk->signal->tty) {
3264 			printk(KERN_DEBUG "tty not NULL!!\n");
3265 			tty_kref_put(tsk->signal->tty);
3266 		}
3267 	}
3268 	put_pid(tsk->signal->tty_old_pgrp);
3269 	tsk->signal->tty = tty_kref_get(tty);
3270 	tsk->signal->tty_old_pgrp = NULL;
3271 }
3272 
3273 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3274 {
3275 	spin_lock_irq(&tsk->sighand->siglock);
3276 	__proc_set_tty(tsk, tty);
3277 	spin_unlock_irq(&tsk->sighand->siglock);
3278 }
3279 
3280 struct tty_struct *get_current_tty(void)
3281 {
3282 	struct tty_struct *tty;
3283 	unsigned long flags;
3284 
3285 	spin_lock_irqsave(&current->sighand->siglock, flags);
3286 	tty = tty_kref_get(current->signal->tty);
3287 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3288 	return tty;
3289 }
3290 EXPORT_SYMBOL_GPL(get_current_tty);
3291 
3292 void tty_default_fops(struct file_operations *fops)
3293 {
3294 	*fops = tty_fops;
3295 }
3296 
3297 /*
3298  * Initialize the console device. This is called *early*, so
3299  * we can't necessarily depend on lots of kernel help here.
3300  * Just do some early initializations, and do the complex setup
3301  * later.
3302  */
3303 void __init console_init(void)
3304 {
3305 	initcall_t *call;
3306 
3307 	/* Setup the default TTY line discipline. */
3308 	tty_ldisc_begin();
3309 
3310 	/*
3311 	 * set up the console device so that later boot sequences can
3312 	 * inform about problems etc..
3313 	 */
3314 	call = __con_initcall_start;
3315 	while (call < __con_initcall_end) {
3316 		(*call)();
3317 		call++;
3318 	}
3319 }
3320 
3321 static char *tty_devnode(struct device *dev, umode_t *mode)
3322 {
3323 	if (!mode)
3324 		return NULL;
3325 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3326 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3327 		*mode = 0666;
3328 	return NULL;
3329 }
3330 
3331 static int __init tty_class_init(void)
3332 {
3333 	tty_class = class_create(THIS_MODULE, "tty");
3334 	if (IS_ERR(tty_class))
3335 		return PTR_ERR(tty_class);
3336 	tty_class->devnode = tty_devnode;
3337 	return 0;
3338 }
3339 
3340 postcore_initcall(tty_class_init);
3341 
3342 /* 3/2004 jmc: why do these devices exist? */
3343 static struct cdev tty_cdev, console_cdev;
3344 
3345 static ssize_t show_cons_active(struct device *dev,
3346 				struct device_attribute *attr, char *buf)
3347 {
3348 	struct console *cs[16];
3349 	int i = 0;
3350 	struct console *c;
3351 	ssize_t count = 0;
3352 
3353 	console_lock();
3354 	for_each_console(c) {
3355 		if (!c->device)
3356 			continue;
3357 		if (!c->write)
3358 			continue;
3359 		if ((c->flags & CON_ENABLED) == 0)
3360 			continue;
3361 		cs[i++] = c;
3362 		if (i >= ARRAY_SIZE(cs))
3363 			break;
3364 	}
3365 	while (i--)
3366 		count += sprintf(buf + count, "%s%d%c",
3367 				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3368 	console_unlock();
3369 
3370 	return count;
3371 }
3372 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3373 
3374 static struct device *consdev;
3375 
3376 void console_sysfs_notify(void)
3377 {
3378 	if (consdev)
3379 		sysfs_notify(&consdev->kobj, NULL, "active");
3380 }
3381 
3382 /*
3383  * Ok, now we can initialize the rest of the tty devices and can count
3384  * on memory allocations, interrupts etc..
3385  */
3386 int __init tty_init(void)
3387 {
3388 	cdev_init(&tty_cdev, &tty_fops);
3389 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3390 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3391 		panic("Couldn't register /dev/tty driver\n");
3392 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3393 
3394 	cdev_init(&console_cdev, &console_fops);
3395 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3396 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3397 		panic("Couldn't register /dev/console driver\n");
3398 	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3399 			      "console");
3400 	if (IS_ERR(consdev))
3401 		consdev = NULL;
3402 	else
3403 		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3404 
3405 #ifdef CONFIG_VT
3406 	vty_init(&console_fops);
3407 #endif
3408 	return 0;
3409 }
3410 
3411