1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 */ 4 5 /* 6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 7 * or rs-channels. It also implements echoing, cooked mode etc. 8 * 9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 10 * 11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 12 * tty_struct and tty_queue structures. Previously there was an array 13 * of 256 tty_struct's which was statically allocated, and the 14 * tty_queue structures were allocated at boot time. Both are now 15 * dynamically allocated only when the tty is open. 16 * 17 * Also restructured routines so that there is more of a separation 18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 19 * the low-level tty routines (serial.c, pty.c, console.c). This 20 * makes for cleaner and more compact code. -TYT, 9/17/92 21 * 22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 23 * which can be dynamically activated and de-activated by the line 24 * discipline handling modules (like SLIP). 25 * 26 * NOTE: pay no attention to the line discipline code (yet); its 27 * interface is still subject to change in this version... 28 * -- TYT, 1/31/92 29 * 30 * Added functionality to the OPOST tty handling. No delays, but all 31 * other bits should be there. 32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 33 * 34 * Rewrote canonical mode and added more termios flags. 35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 36 * 37 * Reorganized FASYNC support so mouse code can share it. 38 * -- ctm@ardi.com, 9Sep95 39 * 40 * New TIOCLINUX variants added. 41 * -- mj@k332.feld.cvut.cz, 19-Nov-95 42 * 43 * Restrict vt switching via ioctl() 44 * -- grif@cs.ucr.edu, 5-Dec-95 45 * 46 * Move console and virtual terminal code to more appropriate files, 47 * implement CONFIG_VT and generalize console device interface. 48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 49 * 50 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 51 * -- Bill Hawes <whawes@star.net>, June 97 52 * 53 * Added devfs support. 54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 55 * 56 * Added support for a Unix98-style ptmx device. 57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 58 * 59 * Reduced memory usage for older ARM systems 60 * -- Russell King <rmk@arm.linux.org.uk> 61 * 62 * Move do_SAK() into process context. Less stack use in devfs functions. 63 * alloc_tty_struct() always uses kmalloc() 64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 65 */ 66 67 #include <linux/types.h> 68 #include <linux/major.h> 69 #include <linux/errno.h> 70 #include <linux/signal.h> 71 #include <linux/fcntl.h> 72 #include <linux/sched.h> 73 #include <linux/interrupt.h> 74 #include <linux/tty.h> 75 #include <linux/tty_driver.h> 76 #include <linux/tty_flip.h> 77 #include <linux/devpts_fs.h> 78 #include <linux/file.h> 79 #include <linux/fdtable.h> 80 #include <linux/console.h> 81 #include <linux/timer.h> 82 #include <linux/ctype.h> 83 #include <linux/kd.h> 84 #include <linux/mm.h> 85 #include <linux/string.h> 86 #include <linux/slab.h> 87 #include <linux/poll.h> 88 #include <linux/proc_fs.h> 89 #include <linux/init.h> 90 #include <linux/module.h> 91 #include <linux/device.h> 92 #include <linux/wait.h> 93 #include <linux/bitops.h> 94 #include <linux/delay.h> 95 #include <linux/seq_file.h> 96 #include <linux/serial.h> 97 #include <linux/ratelimit.h> 98 99 #include <linux/uaccess.h> 100 101 #include <linux/kbd_kern.h> 102 #include <linux/vt_kern.h> 103 #include <linux/selection.h> 104 105 #include <linux/kmod.h> 106 #include <linux/nsproxy.h> 107 108 #undef TTY_DEBUG_HANGUP 109 110 #define TTY_PARANOIA_CHECK 1 111 #define CHECK_TTY_COUNT 1 112 113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 114 .c_iflag = ICRNL | IXON, 115 .c_oflag = OPOST | ONLCR, 116 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 118 ECHOCTL | ECHOKE | IEXTEN, 119 .c_cc = INIT_C_CC, 120 .c_ispeed = 38400, 121 .c_ospeed = 38400 122 }; 123 124 EXPORT_SYMBOL(tty_std_termios); 125 126 /* This list gets poked at by procfs and various bits of boot up code. This 127 could do with some rationalisation such as pulling the tty proc function 128 into this file */ 129 130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 131 132 /* Mutex to protect creating and releasing a tty. This is shared with 133 vt.c for deeply disgusting hack reasons */ 134 DEFINE_MUTEX(tty_mutex); 135 EXPORT_SYMBOL(tty_mutex); 136 137 /* Spinlock to protect the tty->tty_files list */ 138 DEFINE_SPINLOCK(tty_files_lock); 139 140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *); 141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *); 142 ssize_t redirected_tty_write(struct file *, const char __user *, 143 size_t, loff_t *); 144 static unsigned int tty_poll(struct file *, poll_table *); 145 static int tty_open(struct inode *, struct file *); 146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 147 #ifdef CONFIG_COMPAT 148 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 149 unsigned long arg); 150 #else 151 #define tty_compat_ioctl NULL 152 #endif 153 static int __tty_fasync(int fd, struct file *filp, int on); 154 static int tty_fasync(int fd, struct file *filp, int on); 155 static void release_tty(struct tty_struct *tty, int idx); 156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty); 157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty); 158 159 /** 160 * free_tty_struct - free a disused tty 161 * @tty: tty struct to free 162 * 163 * Free the write buffers, tty queue and tty memory itself. 164 * 165 * Locking: none. Must be called after tty is definitely unused 166 */ 167 168 void free_tty_struct(struct tty_struct *tty) 169 { 170 if (!tty) 171 return; 172 if (tty->dev) 173 put_device(tty->dev); 174 kfree(tty->write_buf); 175 tty->magic = 0xDEADDEAD; 176 kfree(tty); 177 } 178 179 static inline struct tty_struct *file_tty(struct file *file) 180 { 181 return ((struct tty_file_private *)file->private_data)->tty; 182 } 183 184 int tty_alloc_file(struct file *file) 185 { 186 struct tty_file_private *priv; 187 188 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 189 if (!priv) 190 return -ENOMEM; 191 192 file->private_data = priv; 193 194 return 0; 195 } 196 197 /* Associate a new file with the tty structure */ 198 void tty_add_file(struct tty_struct *tty, struct file *file) 199 { 200 struct tty_file_private *priv = file->private_data; 201 202 priv->tty = tty; 203 priv->file = file; 204 205 spin_lock(&tty_files_lock); 206 list_add(&priv->list, &tty->tty_files); 207 spin_unlock(&tty_files_lock); 208 } 209 210 /** 211 * tty_free_file - free file->private_data 212 * 213 * This shall be used only for fail path handling when tty_add_file was not 214 * called yet. 215 */ 216 void tty_free_file(struct file *file) 217 { 218 struct tty_file_private *priv = file->private_data; 219 220 file->private_data = NULL; 221 kfree(priv); 222 } 223 224 /* Delete file from its tty */ 225 static void tty_del_file(struct file *file) 226 { 227 struct tty_file_private *priv = file->private_data; 228 229 spin_lock(&tty_files_lock); 230 list_del(&priv->list); 231 spin_unlock(&tty_files_lock); 232 tty_free_file(file); 233 } 234 235 236 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base) 237 238 /** 239 * tty_name - return tty naming 240 * @tty: tty structure 241 * @buf: buffer for output 242 * 243 * Convert a tty structure into a name. The name reflects the kernel 244 * naming policy and if udev is in use may not reflect user space 245 * 246 * Locking: none 247 */ 248 249 char *tty_name(struct tty_struct *tty, char *buf) 250 { 251 if (!tty) /* Hmm. NULL pointer. That's fun. */ 252 strcpy(buf, "NULL tty"); 253 else 254 strcpy(buf, tty->name); 255 return buf; 256 } 257 258 EXPORT_SYMBOL(tty_name); 259 260 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 261 const char *routine) 262 { 263 #ifdef TTY_PARANOIA_CHECK 264 if (!tty) { 265 printk(KERN_WARNING 266 "null TTY for (%d:%d) in %s\n", 267 imajor(inode), iminor(inode), routine); 268 return 1; 269 } 270 if (tty->magic != TTY_MAGIC) { 271 printk(KERN_WARNING 272 "bad magic number for tty struct (%d:%d) in %s\n", 273 imajor(inode), iminor(inode), routine); 274 return 1; 275 } 276 #endif 277 return 0; 278 } 279 280 static int check_tty_count(struct tty_struct *tty, const char *routine) 281 { 282 #ifdef CHECK_TTY_COUNT 283 struct list_head *p; 284 int count = 0; 285 286 spin_lock(&tty_files_lock); 287 list_for_each(p, &tty->tty_files) { 288 count++; 289 } 290 spin_unlock(&tty_files_lock); 291 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 292 tty->driver->subtype == PTY_TYPE_SLAVE && 293 tty->link && tty->link->count) 294 count++; 295 if (tty->count != count) { 296 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) " 297 "!= #fd's(%d) in %s\n", 298 tty->name, tty->count, count, routine); 299 return count; 300 } 301 #endif 302 return 0; 303 } 304 305 /** 306 * get_tty_driver - find device of a tty 307 * @dev_t: device identifier 308 * @index: returns the index of the tty 309 * 310 * This routine returns a tty driver structure, given a device number 311 * and also passes back the index number. 312 * 313 * Locking: caller must hold tty_mutex 314 */ 315 316 static struct tty_driver *get_tty_driver(dev_t device, int *index) 317 { 318 struct tty_driver *p; 319 320 list_for_each_entry(p, &tty_drivers, tty_drivers) { 321 dev_t base = MKDEV(p->major, p->minor_start); 322 if (device < base || device >= base + p->num) 323 continue; 324 *index = device - base; 325 return tty_driver_kref_get(p); 326 } 327 return NULL; 328 } 329 330 #ifdef CONFIG_CONSOLE_POLL 331 332 /** 333 * tty_find_polling_driver - find device of a polled tty 334 * @name: name string to match 335 * @line: pointer to resulting tty line nr 336 * 337 * This routine returns a tty driver structure, given a name 338 * and the condition that the tty driver is capable of polled 339 * operation. 340 */ 341 struct tty_driver *tty_find_polling_driver(char *name, int *line) 342 { 343 struct tty_driver *p, *res = NULL; 344 int tty_line = 0; 345 int len; 346 char *str, *stp; 347 348 for (str = name; *str; str++) 349 if ((*str >= '0' && *str <= '9') || *str == ',') 350 break; 351 if (!*str) 352 return NULL; 353 354 len = str - name; 355 tty_line = simple_strtoul(str, &str, 10); 356 357 mutex_lock(&tty_mutex); 358 /* Search through the tty devices to look for a match */ 359 list_for_each_entry(p, &tty_drivers, tty_drivers) { 360 if (strncmp(name, p->name, len) != 0) 361 continue; 362 stp = str; 363 if (*stp == ',') 364 stp++; 365 if (*stp == '\0') 366 stp = NULL; 367 368 if (tty_line >= 0 && tty_line < p->num && p->ops && 369 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 370 res = tty_driver_kref_get(p); 371 *line = tty_line; 372 break; 373 } 374 } 375 mutex_unlock(&tty_mutex); 376 377 return res; 378 } 379 EXPORT_SYMBOL_GPL(tty_find_polling_driver); 380 #endif 381 382 /** 383 * tty_check_change - check for POSIX terminal changes 384 * @tty: tty to check 385 * 386 * If we try to write to, or set the state of, a terminal and we're 387 * not in the foreground, send a SIGTTOU. If the signal is blocked or 388 * ignored, go ahead and perform the operation. (POSIX 7.2) 389 * 390 * Locking: ctrl_lock 391 */ 392 393 int tty_check_change(struct tty_struct *tty) 394 { 395 unsigned long flags; 396 int ret = 0; 397 398 if (current->signal->tty != tty) 399 return 0; 400 401 spin_lock_irqsave(&tty->ctrl_lock, flags); 402 403 if (!tty->pgrp) { 404 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n"); 405 goto out_unlock; 406 } 407 if (task_pgrp(current) == tty->pgrp) 408 goto out_unlock; 409 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 410 if (is_ignored(SIGTTOU)) 411 goto out; 412 if (is_current_pgrp_orphaned()) { 413 ret = -EIO; 414 goto out; 415 } 416 kill_pgrp(task_pgrp(current), SIGTTOU, 1); 417 set_thread_flag(TIF_SIGPENDING); 418 ret = -ERESTARTSYS; 419 out: 420 return ret; 421 out_unlock: 422 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 423 return ret; 424 } 425 426 EXPORT_SYMBOL(tty_check_change); 427 428 static ssize_t hung_up_tty_read(struct file *file, char __user *buf, 429 size_t count, loff_t *ppos) 430 { 431 return 0; 432 } 433 434 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf, 435 size_t count, loff_t *ppos) 436 { 437 return -EIO; 438 } 439 440 /* No kernel lock held - none needed ;) */ 441 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait) 442 { 443 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM; 444 } 445 446 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 447 unsigned long arg) 448 { 449 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 450 } 451 452 static long hung_up_tty_compat_ioctl(struct file *file, 453 unsigned int cmd, unsigned long arg) 454 { 455 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 456 } 457 458 static const struct file_operations tty_fops = { 459 .llseek = no_llseek, 460 .read = tty_read, 461 .write = tty_write, 462 .poll = tty_poll, 463 .unlocked_ioctl = tty_ioctl, 464 .compat_ioctl = tty_compat_ioctl, 465 .open = tty_open, 466 .release = tty_release, 467 .fasync = tty_fasync, 468 }; 469 470 static const struct file_operations console_fops = { 471 .llseek = no_llseek, 472 .read = tty_read, 473 .write = redirected_tty_write, 474 .poll = tty_poll, 475 .unlocked_ioctl = tty_ioctl, 476 .compat_ioctl = tty_compat_ioctl, 477 .open = tty_open, 478 .release = tty_release, 479 .fasync = tty_fasync, 480 }; 481 482 static const struct file_operations hung_up_tty_fops = { 483 .llseek = no_llseek, 484 .read = hung_up_tty_read, 485 .write = hung_up_tty_write, 486 .poll = hung_up_tty_poll, 487 .unlocked_ioctl = hung_up_tty_ioctl, 488 .compat_ioctl = hung_up_tty_compat_ioctl, 489 .release = tty_release, 490 }; 491 492 static DEFINE_SPINLOCK(redirect_lock); 493 static struct file *redirect; 494 495 /** 496 * tty_wakeup - request more data 497 * @tty: terminal 498 * 499 * Internal and external helper for wakeups of tty. This function 500 * informs the line discipline if present that the driver is ready 501 * to receive more output data. 502 */ 503 504 void tty_wakeup(struct tty_struct *tty) 505 { 506 struct tty_ldisc *ld; 507 508 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 509 ld = tty_ldisc_ref(tty); 510 if (ld) { 511 if (ld->ops->write_wakeup) 512 ld->ops->write_wakeup(tty); 513 tty_ldisc_deref(ld); 514 } 515 } 516 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 517 } 518 519 EXPORT_SYMBOL_GPL(tty_wakeup); 520 521 /** 522 * tty_signal_session_leader - sends SIGHUP to session leader 523 * @tty controlling tty 524 * @exit_session if non-zero, signal all foreground group processes 525 * 526 * Send SIGHUP and SIGCONT to the session leader and its process group. 527 * Optionally, signal all processes in the foreground process group. 528 * 529 * Returns the number of processes in the session with this tty 530 * as their controlling terminal. This value is used to drop 531 * tty references for those processes. 532 */ 533 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session) 534 { 535 struct task_struct *p; 536 int refs = 0; 537 struct pid *tty_pgrp = NULL; 538 539 read_lock(&tasklist_lock); 540 if (tty->session) { 541 do_each_pid_task(tty->session, PIDTYPE_SID, p) { 542 spin_lock_irq(&p->sighand->siglock); 543 if (p->signal->tty == tty) { 544 p->signal->tty = NULL; 545 /* We defer the dereferences outside fo 546 the tasklist lock */ 547 refs++; 548 } 549 if (!p->signal->leader) { 550 spin_unlock_irq(&p->sighand->siglock); 551 continue; 552 } 553 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p); 554 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p); 555 put_pid(p->signal->tty_old_pgrp); /* A noop */ 556 spin_lock(&tty->ctrl_lock); 557 tty_pgrp = get_pid(tty->pgrp); 558 if (tty->pgrp) 559 p->signal->tty_old_pgrp = get_pid(tty->pgrp); 560 spin_unlock(&tty->ctrl_lock); 561 spin_unlock_irq(&p->sighand->siglock); 562 } while_each_pid_task(tty->session, PIDTYPE_SID, p); 563 } 564 read_unlock(&tasklist_lock); 565 566 if (tty_pgrp) { 567 if (exit_session) 568 kill_pgrp(tty_pgrp, SIGHUP, exit_session); 569 put_pid(tty_pgrp); 570 } 571 572 return refs; 573 } 574 575 /** 576 * __tty_hangup - actual handler for hangup events 577 * @work: tty device 578 * 579 * This can be called by a "kworker" kernel thread. That is process 580 * synchronous but doesn't hold any locks, so we need to make sure we 581 * have the appropriate locks for what we're doing. 582 * 583 * The hangup event clears any pending redirections onto the hung up 584 * device. It ensures future writes will error and it does the needed 585 * line discipline hangup and signal delivery. The tty object itself 586 * remains intact. 587 * 588 * Locking: 589 * BTM 590 * redirect lock for undoing redirection 591 * file list lock for manipulating list of ttys 592 * tty_ldiscs_lock from called functions 593 * termios_rwsem resetting termios data 594 * tasklist_lock to walk task list for hangup event 595 * ->siglock to protect ->signal/->sighand 596 */ 597 static void __tty_hangup(struct tty_struct *tty, int exit_session) 598 { 599 struct file *cons_filp = NULL; 600 struct file *filp, *f = NULL; 601 struct tty_file_private *priv; 602 int closecount = 0, n; 603 int refs; 604 605 if (!tty) 606 return; 607 608 609 spin_lock(&redirect_lock); 610 if (redirect && file_tty(redirect) == tty) { 611 f = redirect; 612 redirect = NULL; 613 } 614 spin_unlock(&redirect_lock); 615 616 tty_lock(tty); 617 618 if (test_bit(TTY_HUPPED, &tty->flags)) { 619 tty_unlock(tty); 620 return; 621 } 622 623 /* some functions below drop BTM, so we need this bit */ 624 set_bit(TTY_HUPPING, &tty->flags); 625 626 /* inuse_filps is protected by the single tty lock, 627 this really needs to change if we want to flush the 628 workqueue with the lock held */ 629 check_tty_count(tty, "tty_hangup"); 630 631 spin_lock(&tty_files_lock); 632 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 633 list_for_each_entry(priv, &tty->tty_files, list) { 634 filp = priv->file; 635 if (filp->f_op->write == redirected_tty_write) 636 cons_filp = filp; 637 if (filp->f_op->write != tty_write) 638 continue; 639 closecount++; 640 __tty_fasync(-1, filp, 0); /* can't block */ 641 filp->f_op = &hung_up_tty_fops; 642 } 643 spin_unlock(&tty_files_lock); 644 645 refs = tty_signal_session_leader(tty, exit_session); 646 /* Account for the p->signal references we killed */ 647 while (refs--) 648 tty_kref_put(tty); 649 650 /* 651 * it drops BTM and thus races with reopen 652 * we protect the race by TTY_HUPPING 653 */ 654 tty_ldisc_hangup(tty); 655 656 spin_lock_irq(&tty->ctrl_lock); 657 clear_bit(TTY_THROTTLED, &tty->flags); 658 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 659 put_pid(tty->session); 660 put_pid(tty->pgrp); 661 tty->session = NULL; 662 tty->pgrp = NULL; 663 tty->ctrl_status = 0; 664 spin_unlock_irq(&tty->ctrl_lock); 665 666 /* 667 * If one of the devices matches a console pointer, we 668 * cannot just call hangup() because that will cause 669 * tty->count and state->count to go out of sync. 670 * So we just call close() the right number of times. 671 */ 672 if (cons_filp) { 673 if (tty->ops->close) 674 for (n = 0; n < closecount; n++) 675 tty->ops->close(tty, cons_filp); 676 } else if (tty->ops->hangup) 677 tty->ops->hangup(tty); 678 /* 679 * We don't want to have driver/ldisc interactions beyond 680 * the ones we did here. The driver layer expects no 681 * calls after ->hangup() from the ldisc side. However we 682 * can't yet guarantee all that. 683 */ 684 set_bit(TTY_HUPPED, &tty->flags); 685 clear_bit(TTY_HUPPING, &tty->flags); 686 687 tty_unlock(tty); 688 689 if (f) 690 fput(f); 691 } 692 693 static void do_tty_hangup(struct work_struct *work) 694 { 695 struct tty_struct *tty = 696 container_of(work, struct tty_struct, hangup_work); 697 698 __tty_hangup(tty, 0); 699 } 700 701 /** 702 * tty_hangup - trigger a hangup event 703 * @tty: tty to hangup 704 * 705 * A carrier loss (virtual or otherwise) has occurred on this like 706 * schedule a hangup sequence to run after this event. 707 */ 708 709 void tty_hangup(struct tty_struct *tty) 710 { 711 #ifdef TTY_DEBUG_HANGUP 712 char buf[64]; 713 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf)); 714 #endif 715 schedule_work(&tty->hangup_work); 716 } 717 718 EXPORT_SYMBOL(tty_hangup); 719 720 /** 721 * tty_vhangup - process vhangup 722 * @tty: tty to hangup 723 * 724 * The user has asked via system call for the terminal to be hung up. 725 * We do this synchronously so that when the syscall returns the process 726 * is complete. That guarantee is necessary for security reasons. 727 */ 728 729 void tty_vhangup(struct tty_struct *tty) 730 { 731 #ifdef TTY_DEBUG_HANGUP 732 char buf[64]; 733 734 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf)); 735 #endif 736 __tty_hangup(tty, 0); 737 } 738 739 EXPORT_SYMBOL(tty_vhangup); 740 741 742 /** 743 * tty_vhangup_self - process vhangup for own ctty 744 * 745 * Perform a vhangup on the current controlling tty 746 */ 747 748 void tty_vhangup_self(void) 749 { 750 struct tty_struct *tty; 751 752 tty = get_current_tty(); 753 if (tty) { 754 tty_vhangup(tty); 755 tty_kref_put(tty); 756 } 757 } 758 759 /** 760 * tty_vhangup_session - hangup session leader exit 761 * @tty: tty to hangup 762 * 763 * The session leader is exiting and hanging up its controlling terminal. 764 * Every process in the foreground process group is signalled SIGHUP. 765 * 766 * We do this synchronously so that when the syscall returns the process 767 * is complete. That guarantee is necessary for security reasons. 768 */ 769 770 static void tty_vhangup_session(struct tty_struct *tty) 771 { 772 #ifdef TTY_DEBUG_HANGUP 773 char buf[64]; 774 775 printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf)); 776 #endif 777 __tty_hangup(tty, 1); 778 } 779 780 /** 781 * tty_hung_up_p - was tty hung up 782 * @filp: file pointer of tty 783 * 784 * Return true if the tty has been subject to a vhangup or a carrier 785 * loss 786 */ 787 788 int tty_hung_up_p(struct file *filp) 789 { 790 return (filp->f_op == &hung_up_tty_fops); 791 } 792 793 EXPORT_SYMBOL(tty_hung_up_p); 794 795 static void session_clear_tty(struct pid *session) 796 { 797 struct task_struct *p; 798 do_each_pid_task(session, PIDTYPE_SID, p) { 799 proc_clear_tty(p); 800 } while_each_pid_task(session, PIDTYPE_SID, p); 801 } 802 803 /** 804 * disassociate_ctty - disconnect controlling tty 805 * @on_exit: true if exiting so need to "hang up" the session 806 * 807 * This function is typically called only by the session leader, when 808 * it wants to disassociate itself from its controlling tty. 809 * 810 * It performs the following functions: 811 * (1) Sends a SIGHUP and SIGCONT to the foreground process group 812 * (2) Clears the tty from being controlling the session 813 * (3) Clears the controlling tty for all processes in the 814 * session group. 815 * 816 * The argument on_exit is set to 1 if called when a process is 817 * exiting; it is 0 if called by the ioctl TIOCNOTTY. 818 * 819 * Locking: 820 * BTM is taken for hysterical raisins, and held when 821 * called from no_tty(). 822 * tty_mutex is taken to protect tty 823 * ->siglock is taken to protect ->signal/->sighand 824 * tasklist_lock is taken to walk process list for sessions 825 * ->siglock is taken to protect ->signal/->sighand 826 */ 827 828 void disassociate_ctty(int on_exit) 829 { 830 struct tty_struct *tty; 831 832 if (!current->signal->leader) 833 return; 834 835 tty = get_current_tty(); 836 if (tty) { 837 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) { 838 tty_vhangup_session(tty); 839 } else { 840 struct pid *tty_pgrp = tty_get_pgrp(tty); 841 if (tty_pgrp) { 842 kill_pgrp(tty_pgrp, SIGHUP, on_exit); 843 if (!on_exit) 844 kill_pgrp(tty_pgrp, SIGCONT, on_exit); 845 put_pid(tty_pgrp); 846 } 847 } 848 tty_kref_put(tty); 849 850 } else if (on_exit) { 851 struct pid *old_pgrp; 852 spin_lock_irq(¤t->sighand->siglock); 853 old_pgrp = current->signal->tty_old_pgrp; 854 current->signal->tty_old_pgrp = NULL; 855 spin_unlock_irq(¤t->sighand->siglock); 856 if (old_pgrp) { 857 kill_pgrp(old_pgrp, SIGHUP, on_exit); 858 kill_pgrp(old_pgrp, SIGCONT, on_exit); 859 put_pid(old_pgrp); 860 } 861 return; 862 } 863 864 spin_lock_irq(¤t->sighand->siglock); 865 put_pid(current->signal->tty_old_pgrp); 866 current->signal->tty_old_pgrp = NULL; 867 868 tty = tty_kref_get(current->signal->tty); 869 if (tty) { 870 unsigned long flags; 871 spin_lock_irqsave(&tty->ctrl_lock, flags); 872 put_pid(tty->session); 873 put_pid(tty->pgrp); 874 tty->session = NULL; 875 tty->pgrp = NULL; 876 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 877 tty_kref_put(tty); 878 } else { 879 #ifdef TTY_DEBUG_HANGUP 880 printk(KERN_DEBUG "error attempted to write to tty [0x%p]" 881 " = NULL", tty); 882 #endif 883 } 884 885 spin_unlock_irq(¤t->sighand->siglock); 886 /* Now clear signal->tty under the lock */ 887 read_lock(&tasklist_lock); 888 session_clear_tty(task_session(current)); 889 read_unlock(&tasklist_lock); 890 } 891 892 /** 893 * 894 * no_tty - Ensure the current process does not have a controlling tty 895 */ 896 void no_tty(void) 897 { 898 /* FIXME: Review locking here. The tty_lock never covered any race 899 between a new association and proc_clear_tty but possible we need 900 to protect against this anyway */ 901 struct task_struct *tsk = current; 902 disassociate_ctty(0); 903 proc_clear_tty(tsk); 904 } 905 906 907 /** 908 * stop_tty - propagate flow control 909 * @tty: tty to stop 910 * 911 * Perform flow control to the driver. May be called 912 * on an already stopped device and will not re-call the driver 913 * method. 914 * 915 * This functionality is used by both the line disciplines for 916 * halting incoming flow and by the driver. It may therefore be 917 * called from any context, may be under the tty atomic_write_lock 918 * but not always. 919 * 920 * Locking: 921 * flow_lock 922 */ 923 924 void __stop_tty(struct tty_struct *tty) 925 { 926 if (tty->stopped) 927 return; 928 tty->stopped = 1; 929 if (tty->ops->stop) 930 (tty->ops->stop)(tty); 931 } 932 933 void stop_tty(struct tty_struct *tty) 934 { 935 unsigned long flags; 936 937 spin_lock_irqsave(&tty->flow_lock, flags); 938 __stop_tty(tty); 939 spin_unlock_irqrestore(&tty->flow_lock, flags); 940 } 941 EXPORT_SYMBOL(stop_tty); 942 943 /** 944 * start_tty - propagate flow control 945 * @tty: tty to start 946 * 947 * Start a tty that has been stopped if at all possible. If this 948 * tty was previous stopped and is now being started, the driver 949 * start method is invoked and the line discipline woken. 950 * 951 * Locking: 952 * flow_lock 953 */ 954 955 void __start_tty(struct tty_struct *tty) 956 { 957 if (!tty->stopped || tty->flow_stopped) 958 return; 959 tty->stopped = 0; 960 if (tty->ops->start) 961 (tty->ops->start)(tty); 962 tty_wakeup(tty); 963 } 964 965 void start_tty(struct tty_struct *tty) 966 { 967 unsigned long flags; 968 969 spin_lock_irqsave(&tty->flow_lock, flags); 970 __start_tty(tty); 971 spin_unlock_irqrestore(&tty->flow_lock, flags); 972 } 973 EXPORT_SYMBOL(start_tty); 974 975 /* We limit tty time update visibility to every 8 seconds or so. */ 976 static void tty_update_time(struct timespec *time) 977 { 978 unsigned long sec = get_seconds() & ~7; 979 if ((long)(sec - time->tv_sec) > 0) 980 time->tv_sec = sec; 981 } 982 983 /** 984 * tty_read - read method for tty device files 985 * @file: pointer to tty file 986 * @buf: user buffer 987 * @count: size of user buffer 988 * @ppos: unused 989 * 990 * Perform the read system call function on this terminal device. Checks 991 * for hung up devices before calling the line discipline method. 992 * 993 * Locking: 994 * Locks the line discipline internally while needed. Multiple 995 * read calls may be outstanding in parallel. 996 */ 997 998 static ssize_t tty_read(struct file *file, char __user *buf, size_t count, 999 loff_t *ppos) 1000 { 1001 int i; 1002 struct inode *inode = file_inode(file); 1003 struct tty_struct *tty = file_tty(file); 1004 struct tty_ldisc *ld; 1005 1006 if (tty_paranoia_check(tty, inode, "tty_read")) 1007 return -EIO; 1008 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags))) 1009 return -EIO; 1010 1011 /* We want to wait for the line discipline to sort out in this 1012 situation */ 1013 ld = tty_ldisc_ref_wait(tty); 1014 if (ld->ops->read) 1015 i = (ld->ops->read)(tty, file, buf, count); 1016 else 1017 i = -EIO; 1018 tty_ldisc_deref(ld); 1019 1020 if (i > 0) 1021 tty_update_time(&inode->i_atime); 1022 1023 return i; 1024 } 1025 1026 static void tty_write_unlock(struct tty_struct *tty) 1027 __releases(&tty->atomic_write_lock) 1028 { 1029 mutex_unlock(&tty->atomic_write_lock); 1030 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 1031 } 1032 1033 static int tty_write_lock(struct tty_struct *tty, int ndelay) 1034 __acquires(&tty->atomic_write_lock) 1035 { 1036 if (!mutex_trylock(&tty->atomic_write_lock)) { 1037 if (ndelay) 1038 return -EAGAIN; 1039 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 1040 return -ERESTARTSYS; 1041 } 1042 return 0; 1043 } 1044 1045 /* 1046 * Split writes up in sane blocksizes to avoid 1047 * denial-of-service type attacks 1048 */ 1049 static inline ssize_t do_tty_write( 1050 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 1051 struct tty_struct *tty, 1052 struct file *file, 1053 const char __user *buf, 1054 size_t count) 1055 { 1056 ssize_t ret, written = 0; 1057 unsigned int chunk; 1058 1059 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 1060 if (ret < 0) 1061 return ret; 1062 1063 /* 1064 * We chunk up writes into a temporary buffer. This 1065 * simplifies low-level drivers immensely, since they 1066 * don't have locking issues and user mode accesses. 1067 * 1068 * But if TTY_NO_WRITE_SPLIT is set, we should use a 1069 * big chunk-size.. 1070 * 1071 * The default chunk-size is 2kB, because the NTTY 1072 * layer has problems with bigger chunks. It will 1073 * claim to be able to handle more characters than 1074 * it actually does. 1075 * 1076 * FIXME: This can probably go away now except that 64K chunks 1077 * are too likely to fail unless switched to vmalloc... 1078 */ 1079 chunk = 2048; 1080 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 1081 chunk = 65536; 1082 if (count < chunk) 1083 chunk = count; 1084 1085 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 1086 if (tty->write_cnt < chunk) { 1087 unsigned char *buf_chunk; 1088 1089 if (chunk < 1024) 1090 chunk = 1024; 1091 1092 buf_chunk = kmalloc(chunk, GFP_KERNEL); 1093 if (!buf_chunk) { 1094 ret = -ENOMEM; 1095 goto out; 1096 } 1097 kfree(tty->write_buf); 1098 tty->write_cnt = chunk; 1099 tty->write_buf = buf_chunk; 1100 } 1101 1102 /* Do the write .. */ 1103 for (;;) { 1104 size_t size = count; 1105 if (size > chunk) 1106 size = chunk; 1107 ret = -EFAULT; 1108 if (copy_from_user(tty->write_buf, buf, size)) 1109 break; 1110 ret = write(tty, file, tty->write_buf, size); 1111 if (ret <= 0) 1112 break; 1113 written += ret; 1114 buf += ret; 1115 count -= ret; 1116 if (!count) 1117 break; 1118 ret = -ERESTARTSYS; 1119 if (signal_pending(current)) 1120 break; 1121 cond_resched(); 1122 } 1123 if (written) { 1124 tty_update_time(&file_inode(file)->i_mtime); 1125 ret = written; 1126 } 1127 out: 1128 tty_write_unlock(tty); 1129 return ret; 1130 } 1131 1132 /** 1133 * tty_write_message - write a message to a certain tty, not just the console. 1134 * @tty: the destination tty_struct 1135 * @msg: the message to write 1136 * 1137 * This is used for messages that need to be redirected to a specific tty. 1138 * We don't put it into the syslog queue right now maybe in the future if 1139 * really needed. 1140 * 1141 * We must still hold the BTM and test the CLOSING flag for the moment. 1142 */ 1143 1144 void tty_write_message(struct tty_struct *tty, char *msg) 1145 { 1146 if (tty) { 1147 mutex_lock(&tty->atomic_write_lock); 1148 tty_lock(tty); 1149 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) { 1150 tty_unlock(tty); 1151 tty->ops->write(tty, msg, strlen(msg)); 1152 } else 1153 tty_unlock(tty); 1154 tty_write_unlock(tty); 1155 } 1156 return; 1157 } 1158 1159 1160 /** 1161 * tty_write - write method for tty device file 1162 * @file: tty file pointer 1163 * @buf: user data to write 1164 * @count: bytes to write 1165 * @ppos: unused 1166 * 1167 * Write data to a tty device via the line discipline. 1168 * 1169 * Locking: 1170 * Locks the line discipline as required 1171 * Writes to the tty driver are serialized by the atomic_write_lock 1172 * and are then processed in chunks to the device. The line discipline 1173 * write method will not be invoked in parallel for each device. 1174 */ 1175 1176 static ssize_t tty_write(struct file *file, const char __user *buf, 1177 size_t count, loff_t *ppos) 1178 { 1179 struct tty_struct *tty = file_tty(file); 1180 struct tty_ldisc *ld; 1181 ssize_t ret; 1182 1183 if (tty_paranoia_check(tty, file_inode(file), "tty_write")) 1184 return -EIO; 1185 if (!tty || !tty->ops->write || 1186 (test_bit(TTY_IO_ERROR, &tty->flags))) 1187 return -EIO; 1188 /* Short term debug to catch buggy drivers */ 1189 if (tty->ops->write_room == NULL) 1190 printk(KERN_ERR "tty driver %s lacks a write_room method.\n", 1191 tty->driver->name); 1192 ld = tty_ldisc_ref_wait(tty); 1193 if (!ld->ops->write) 1194 ret = -EIO; 1195 else 1196 ret = do_tty_write(ld->ops->write, tty, file, buf, count); 1197 tty_ldisc_deref(ld); 1198 return ret; 1199 } 1200 1201 ssize_t redirected_tty_write(struct file *file, const char __user *buf, 1202 size_t count, loff_t *ppos) 1203 { 1204 struct file *p = NULL; 1205 1206 spin_lock(&redirect_lock); 1207 if (redirect) 1208 p = get_file(redirect); 1209 spin_unlock(&redirect_lock); 1210 1211 if (p) { 1212 ssize_t res; 1213 res = vfs_write(p, buf, count, &p->f_pos); 1214 fput(p); 1215 return res; 1216 } 1217 return tty_write(file, buf, count, ppos); 1218 } 1219 1220 /** 1221 * tty_send_xchar - send priority character 1222 * 1223 * Send a high priority character to the tty even if stopped 1224 * 1225 * Locking: none for xchar method, write ordering for write method. 1226 */ 1227 1228 int tty_send_xchar(struct tty_struct *tty, char ch) 1229 { 1230 int was_stopped = tty->stopped; 1231 1232 if (tty->ops->send_xchar) { 1233 tty->ops->send_xchar(tty, ch); 1234 return 0; 1235 } 1236 1237 if (tty_write_lock(tty, 0) < 0) 1238 return -ERESTARTSYS; 1239 1240 if (was_stopped) 1241 start_tty(tty); 1242 tty->ops->write(tty, &ch, 1); 1243 if (was_stopped) 1244 stop_tty(tty); 1245 tty_write_unlock(tty); 1246 return 0; 1247 } 1248 1249 static char ptychar[] = "pqrstuvwxyzabcde"; 1250 1251 /** 1252 * pty_line_name - generate name for a pty 1253 * @driver: the tty driver in use 1254 * @index: the minor number 1255 * @p: output buffer of at least 6 bytes 1256 * 1257 * Generate a name from a driver reference and write it to the output 1258 * buffer. 1259 * 1260 * Locking: None 1261 */ 1262 static void pty_line_name(struct tty_driver *driver, int index, char *p) 1263 { 1264 int i = index + driver->name_base; 1265 /* ->name is initialized to "ttyp", but "tty" is expected */ 1266 sprintf(p, "%s%c%x", 1267 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1268 ptychar[i >> 4 & 0xf], i & 0xf); 1269 } 1270 1271 /** 1272 * tty_line_name - generate name for a tty 1273 * @driver: the tty driver in use 1274 * @index: the minor number 1275 * @p: output buffer of at least 7 bytes 1276 * 1277 * Generate a name from a driver reference and write it to the output 1278 * buffer. 1279 * 1280 * Locking: None 1281 */ 1282 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p) 1283 { 1284 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE) 1285 return sprintf(p, "%s", driver->name); 1286 else 1287 return sprintf(p, "%s%d", driver->name, 1288 index + driver->name_base); 1289 } 1290 1291 /** 1292 * tty_driver_lookup_tty() - find an existing tty, if any 1293 * @driver: the driver for the tty 1294 * @idx: the minor number 1295 * 1296 * Return the tty, if found or ERR_PTR() otherwise. 1297 * 1298 * Locking: tty_mutex must be held. If tty is found, the mutex must 1299 * be held until the 'fast-open' is also done. Will change once we 1300 * have refcounting in the driver and per driver locking 1301 */ 1302 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1303 struct inode *inode, int idx) 1304 { 1305 if (driver->ops->lookup) 1306 return driver->ops->lookup(driver, inode, idx); 1307 1308 return driver->ttys[idx]; 1309 } 1310 1311 /** 1312 * tty_init_termios - helper for termios setup 1313 * @tty: the tty to set up 1314 * 1315 * Initialise the termios structures for this tty. Thus runs under 1316 * the tty_mutex currently so we can be relaxed about ordering. 1317 */ 1318 1319 int tty_init_termios(struct tty_struct *tty) 1320 { 1321 struct ktermios *tp; 1322 int idx = tty->index; 1323 1324 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1325 tty->termios = tty->driver->init_termios; 1326 else { 1327 /* Check for lazy saved data */ 1328 tp = tty->driver->termios[idx]; 1329 if (tp != NULL) 1330 tty->termios = *tp; 1331 else 1332 tty->termios = tty->driver->init_termios; 1333 } 1334 /* Compatibility until drivers always set this */ 1335 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios); 1336 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios); 1337 return 0; 1338 } 1339 EXPORT_SYMBOL_GPL(tty_init_termios); 1340 1341 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1342 { 1343 int ret = tty_init_termios(tty); 1344 if (ret) 1345 return ret; 1346 1347 tty_driver_kref_get(driver); 1348 tty->count++; 1349 driver->ttys[tty->index] = tty; 1350 return 0; 1351 } 1352 EXPORT_SYMBOL_GPL(tty_standard_install); 1353 1354 /** 1355 * tty_driver_install_tty() - install a tty entry in the driver 1356 * @driver: the driver for the tty 1357 * @tty: the tty 1358 * 1359 * Install a tty object into the driver tables. The tty->index field 1360 * will be set by the time this is called. This method is responsible 1361 * for ensuring any need additional structures are allocated and 1362 * configured. 1363 * 1364 * Locking: tty_mutex for now 1365 */ 1366 static int tty_driver_install_tty(struct tty_driver *driver, 1367 struct tty_struct *tty) 1368 { 1369 return driver->ops->install ? driver->ops->install(driver, tty) : 1370 tty_standard_install(driver, tty); 1371 } 1372 1373 /** 1374 * tty_driver_remove_tty() - remove a tty from the driver tables 1375 * @driver: the driver for the tty 1376 * @idx: the minor number 1377 * 1378 * Remvoe a tty object from the driver tables. The tty->index field 1379 * will be set by the time this is called. 1380 * 1381 * Locking: tty_mutex for now 1382 */ 1383 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1384 { 1385 if (driver->ops->remove) 1386 driver->ops->remove(driver, tty); 1387 else 1388 driver->ttys[tty->index] = NULL; 1389 } 1390 1391 /* 1392 * tty_reopen() - fast re-open of an open tty 1393 * @tty - the tty to open 1394 * 1395 * Return 0 on success, -errno on error. 1396 * 1397 * Locking: tty_mutex must be held from the time the tty was found 1398 * till this open completes. 1399 */ 1400 static int tty_reopen(struct tty_struct *tty) 1401 { 1402 struct tty_driver *driver = tty->driver; 1403 1404 if (test_bit(TTY_CLOSING, &tty->flags) || 1405 test_bit(TTY_HUPPING, &tty->flags)) 1406 return -EIO; 1407 1408 if (driver->type == TTY_DRIVER_TYPE_PTY && 1409 driver->subtype == PTY_TYPE_MASTER) { 1410 /* 1411 * special case for PTY masters: only one open permitted, 1412 * and the slave side open count is incremented as well. 1413 */ 1414 if (tty->count) 1415 return -EIO; 1416 1417 tty->link->count++; 1418 } 1419 tty->count++; 1420 1421 WARN_ON(!tty->ldisc); 1422 1423 return 0; 1424 } 1425 1426 /** 1427 * tty_init_dev - initialise a tty device 1428 * @driver: tty driver we are opening a device on 1429 * @idx: device index 1430 * @ret_tty: returned tty structure 1431 * 1432 * Prepare a tty device. This may not be a "new" clean device but 1433 * could also be an active device. The pty drivers require special 1434 * handling because of this. 1435 * 1436 * Locking: 1437 * The function is called under the tty_mutex, which 1438 * protects us from the tty struct or driver itself going away. 1439 * 1440 * On exit the tty device has the line discipline attached and 1441 * a reference count of 1. If a pair was created for pty/tty use 1442 * and the other was a pty master then it too has a reference count of 1. 1443 * 1444 * WSH 06/09/97: Rewritten to remove races and properly clean up after a 1445 * failed open. The new code protects the open with a mutex, so it's 1446 * really quite straightforward. The mutex locking can probably be 1447 * relaxed for the (most common) case of reopening a tty. 1448 */ 1449 1450 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1451 { 1452 struct tty_struct *tty; 1453 int retval; 1454 1455 /* 1456 * First time open is complex, especially for PTY devices. 1457 * This code guarantees that either everything succeeds and the 1458 * TTY is ready for operation, or else the table slots are vacated 1459 * and the allocated memory released. (Except that the termios 1460 * and locked termios may be retained.) 1461 */ 1462 1463 if (!try_module_get(driver->owner)) 1464 return ERR_PTR(-ENODEV); 1465 1466 tty = alloc_tty_struct(driver, idx); 1467 if (!tty) { 1468 retval = -ENOMEM; 1469 goto err_module_put; 1470 } 1471 1472 tty_lock(tty); 1473 retval = tty_driver_install_tty(driver, tty); 1474 if (retval < 0) 1475 goto err_deinit_tty; 1476 1477 if (!tty->port) 1478 tty->port = driver->ports[idx]; 1479 1480 WARN_RATELIMIT(!tty->port, 1481 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n", 1482 __func__, tty->driver->name); 1483 1484 tty->port->itty = tty; 1485 1486 /* 1487 * Structures all installed ... call the ldisc open routines. 1488 * If we fail here just call release_tty to clean up. No need 1489 * to decrement the use counts, as release_tty doesn't care. 1490 */ 1491 retval = tty_ldisc_setup(tty, tty->link); 1492 if (retval) 1493 goto err_release_tty; 1494 /* Return the tty locked so that it cannot vanish under the caller */ 1495 return tty; 1496 1497 err_deinit_tty: 1498 tty_unlock(tty); 1499 deinitialize_tty_struct(tty); 1500 free_tty_struct(tty); 1501 err_module_put: 1502 module_put(driver->owner); 1503 return ERR_PTR(retval); 1504 1505 /* call the tty release_tty routine to clean out this slot */ 1506 err_release_tty: 1507 tty_unlock(tty); 1508 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, " 1509 "clearing slot %d\n", idx); 1510 release_tty(tty, idx); 1511 return ERR_PTR(retval); 1512 } 1513 1514 void tty_free_termios(struct tty_struct *tty) 1515 { 1516 struct ktermios *tp; 1517 int idx = tty->index; 1518 1519 /* If the port is going to reset then it has no termios to save */ 1520 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1521 return; 1522 1523 /* Stash the termios data */ 1524 tp = tty->driver->termios[idx]; 1525 if (tp == NULL) { 1526 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL); 1527 if (tp == NULL) { 1528 pr_warn("tty: no memory to save termios state.\n"); 1529 return; 1530 } 1531 tty->driver->termios[idx] = tp; 1532 } 1533 *tp = tty->termios; 1534 } 1535 EXPORT_SYMBOL(tty_free_termios); 1536 1537 /** 1538 * tty_flush_works - flush all works of a tty 1539 * @tty: tty device to flush works for 1540 * 1541 * Sync flush all works belonging to @tty. 1542 */ 1543 static void tty_flush_works(struct tty_struct *tty) 1544 { 1545 flush_work(&tty->SAK_work); 1546 flush_work(&tty->hangup_work); 1547 } 1548 1549 /** 1550 * release_one_tty - release tty structure memory 1551 * @kref: kref of tty we are obliterating 1552 * 1553 * Releases memory associated with a tty structure, and clears out the 1554 * driver table slots. This function is called when a device is no longer 1555 * in use. It also gets called when setup of a device fails. 1556 * 1557 * Locking: 1558 * takes the file list lock internally when working on the list 1559 * of ttys that the driver keeps. 1560 * 1561 * This method gets called from a work queue so that the driver private 1562 * cleanup ops can sleep (needed for USB at least) 1563 */ 1564 static void release_one_tty(struct work_struct *work) 1565 { 1566 struct tty_struct *tty = 1567 container_of(work, struct tty_struct, hangup_work); 1568 struct tty_driver *driver = tty->driver; 1569 struct module *owner = driver->owner; 1570 1571 if (tty->ops->cleanup) 1572 tty->ops->cleanup(tty); 1573 1574 tty->magic = 0; 1575 tty_driver_kref_put(driver); 1576 module_put(owner); 1577 1578 spin_lock(&tty_files_lock); 1579 list_del_init(&tty->tty_files); 1580 spin_unlock(&tty_files_lock); 1581 1582 put_pid(tty->pgrp); 1583 put_pid(tty->session); 1584 free_tty_struct(tty); 1585 } 1586 1587 static void queue_release_one_tty(struct kref *kref) 1588 { 1589 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1590 1591 /* The hangup queue is now free so we can reuse it rather than 1592 waste a chunk of memory for each port */ 1593 INIT_WORK(&tty->hangup_work, release_one_tty); 1594 schedule_work(&tty->hangup_work); 1595 } 1596 1597 /** 1598 * tty_kref_put - release a tty kref 1599 * @tty: tty device 1600 * 1601 * Release a reference to a tty device and if need be let the kref 1602 * layer destruct the object for us 1603 */ 1604 1605 void tty_kref_put(struct tty_struct *tty) 1606 { 1607 if (tty) 1608 kref_put(&tty->kref, queue_release_one_tty); 1609 } 1610 EXPORT_SYMBOL(tty_kref_put); 1611 1612 /** 1613 * release_tty - release tty structure memory 1614 * 1615 * Release both @tty and a possible linked partner (think pty pair), 1616 * and decrement the refcount of the backing module. 1617 * 1618 * Locking: 1619 * tty_mutex 1620 * takes the file list lock internally when working on the list 1621 * of ttys that the driver keeps. 1622 * 1623 */ 1624 static void release_tty(struct tty_struct *tty, int idx) 1625 { 1626 /* This should always be true but check for the moment */ 1627 WARN_ON(tty->index != idx); 1628 WARN_ON(!mutex_is_locked(&tty_mutex)); 1629 if (tty->ops->shutdown) 1630 tty->ops->shutdown(tty); 1631 tty_free_termios(tty); 1632 tty_driver_remove_tty(tty->driver, tty); 1633 tty->port->itty = NULL; 1634 if (tty->link) 1635 tty->link->port->itty = NULL; 1636 cancel_work_sync(&tty->port->buf.work); 1637 1638 if (tty->link) 1639 tty_kref_put(tty->link); 1640 tty_kref_put(tty); 1641 } 1642 1643 /** 1644 * tty_release_checks - check a tty before real release 1645 * @tty: tty to check 1646 * @o_tty: link of @tty (if any) 1647 * @idx: index of the tty 1648 * 1649 * Performs some paranoid checking before true release of the @tty. 1650 * This is a no-op unless TTY_PARANOIA_CHECK is defined. 1651 */ 1652 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty, 1653 int idx) 1654 { 1655 #ifdef TTY_PARANOIA_CHECK 1656 if (idx < 0 || idx >= tty->driver->num) { 1657 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n", 1658 __func__, tty->name); 1659 return -1; 1660 } 1661 1662 /* not much to check for devpts */ 1663 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1664 return 0; 1665 1666 if (tty != tty->driver->ttys[idx]) { 1667 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n", 1668 __func__, idx, tty->name); 1669 return -1; 1670 } 1671 if (tty->driver->other) { 1672 if (o_tty != tty->driver->other->ttys[idx]) { 1673 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n", 1674 __func__, idx, tty->name); 1675 return -1; 1676 } 1677 if (o_tty->link != tty) { 1678 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__); 1679 return -1; 1680 } 1681 } 1682 #endif 1683 return 0; 1684 } 1685 1686 /** 1687 * tty_release - vfs callback for close 1688 * @inode: inode of tty 1689 * @filp: file pointer for handle to tty 1690 * 1691 * Called the last time each file handle is closed that references 1692 * this tty. There may however be several such references. 1693 * 1694 * Locking: 1695 * Takes bkl. See tty_release_dev 1696 * 1697 * Even releasing the tty structures is a tricky business.. We have 1698 * to be very careful that the structures are all released at the 1699 * same time, as interrupts might otherwise get the wrong pointers. 1700 * 1701 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1702 * lead to double frees or releasing memory still in use. 1703 */ 1704 1705 int tty_release(struct inode *inode, struct file *filp) 1706 { 1707 struct tty_struct *tty = file_tty(filp); 1708 struct tty_struct *o_tty; 1709 int pty_master, tty_closing, o_tty_closing, do_sleep; 1710 int idx; 1711 char buf[64]; 1712 1713 if (tty_paranoia_check(tty, inode, __func__)) 1714 return 0; 1715 1716 tty_lock(tty); 1717 check_tty_count(tty, __func__); 1718 1719 __tty_fasync(-1, filp, 0); 1720 1721 idx = tty->index; 1722 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1723 tty->driver->subtype == PTY_TYPE_MASTER); 1724 /* Review: parallel close */ 1725 o_tty = tty->link; 1726 1727 if (tty_release_checks(tty, o_tty, idx)) { 1728 tty_unlock(tty); 1729 return 0; 1730 } 1731 1732 #ifdef TTY_DEBUG_HANGUP 1733 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__, 1734 tty_name(tty, buf), tty->count); 1735 #endif 1736 1737 if (tty->ops->close) 1738 tty->ops->close(tty, filp); 1739 1740 tty_unlock(tty); 1741 /* 1742 * Sanity check: if tty->count is going to zero, there shouldn't be 1743 * any waiters on tty->read_wait or tty->write_wait. We test the 1744 * wait queues and kick everyone out _before_ actually starting to 1745 * close. This ensures that we won't block while releasing the tty 1746 * structure. 1747 * 1748 * The test for the o_tty closing is necessary, since the master and 1749 * slave sides may close in any order. If the slave side closes out 1750 * first, its count will be one, since the master side holds an open. 1751 * Thus this test wouldn't be triggered at the time the slave closes, 1752 * so we do it now. 1753 * 1754 * Note that it's possible for the tty to be opened again while we're 1755 * flushing out waiters. By recalculating the closing flags before 1756 * each iteration we avoid any problems. 1757 */ 1758 while (1) { 1759 /* Guard against races with tty->count changes elsewhere and 1760 opens on /dev/tty */ 1761 1762 mutex_lock(&tty_mutex); 1763 tty_lock_pair(tty, o_tty); 1764 tty_closing = tty->count <= 1; 1765 o_tty_closing = o_tty && 1766 (o_tty->count <= (pty_master ? 1 : 0)); 1767 do_sleep = 0; 1768 1769 if (tty_closing) { 1770 if (waitqueue_active(&tty->read_wait)) { 1771 wake_up_poll(&tty->read_wait, POLLIN); 1772 do_sleep++; 1773 } 1774 if (waitqueue_active(&tty->write_wait)) { 1775 wake_up_poll(&tty->write_wait, POLLOUT); 1776 do_sleep++; 1777 } 1778 } 1779 if (o_tty_closing) { 1780 if (waitqueue_active(&o_tty->read_wait)) { 1781 wake_up_poll(&o_tty->read_wait, POLLIN); 1782 do_sleep++; 1783 } 1784 if (waitqueue_active(&o_tty->write_wait)) { 1785 wake_up_poll(&o_tty->write_wait, POLLOUT); 1786 do_sleep++; 1787 } 1788 } 1789 if (!do_sleep) 1790 break; 1791 1792 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n", 1793 __func__, tty_name(tty, buf)); 1794 tty_unlock_pair(tty, o_tty); 1795 mutex_unlock(&tty_mutex); 1796 schedule(); 1797 } 1798 1799 /* 1800 * The closing flags are now consistent with the open counts on 1801 * both sides, and we've completed the last operation that could 1802 * block, so it's safe to proceed with closing. 1803 * 1804 * We must *not* drop the tty_mutex until we ensure that a further 1805 * entry into tty_open can not pick up this tty. 1806 */ 1807 if (pty_master) { 1808 if (--o_tty->count < 0) { 1809 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n", 1810 __func__, o_tty->count, tty_name(o_tty, buf)); 1811 o_tty->count = 0; 1812 } 1813 } 1814 if (--tty->count < 0) { 1815 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n", 1816 __func__, tty->count, tty_name(tty, buf)); 1817 tty->count = 0; 1818 } 1819 1820 /* 1821 * We've decremented tty->count, so we need to remove this file 1822 * descriptor off the tty->tty_files list; this serves two 1823 * purposes: 1824 * - check_tty_count sees the correct number of file descriptors 1825 * associated with this tty. 1826 * - do_tty_hangup no longer sees this file descriptor as 1827 * something that needs to be handled for hangups. 1828 */ 1829 tty_del_file(filp); 1830 1831 /* 1832 * Perform some housekeeping before deciding whether to return. 1833 * 1834 * Set the TTY_CLOSING flag if this was the last open. In the 1835 * case of a pty we may have to wait around for the other side 1836 * to close, and TTY_CLOSING makes sure we can't be reopened. 1837 */ 1838 if (tty_closing) 1839 set_bit(TTY_CLOSING, &tty->flags); 1840 if (o_tty_closing) 1841 set_bit(TTY_CLOSING, &o_tty->flags); 1842 1843 /* 1844 * If _either_ side is closing, make sure there aren't any 1845 * processes that still think tty or o_tty is their controlling 1846 * tty. 1847 */ 1848 if (tty_closing || o_tty_closing) { 1849 read_lock(&tasklist_lock); 1850 session_clear_tty(tty->session); 1851 if (o_tty) 1852 session_clear_tty(o_tty->session); 1853 read_unlock(&tasklist_lock); 1854 } 1855 1856 mutex_unlock(&tty_mutex); 1857 tty_unlock_pair(tty, o_tty); 1858 /* At this point the TTY_CLOSING flag should ensure a dead tty 1859 cannot be re-opened by a racing opener */ 1860 1861 /* check whether both sides are closing ... */ 1862 if (!tty_closing || (o_tty && !o_tty_closing)) 1863 return 0; 1864 1865 #ifdef TTY_DEBUG_HANGUP 1866 printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf)); 1867 #endif 1868 /* 1869 * Ask the line discipline code to release its structures 1870 */ 1871 tty_ldisc_release(tty, o_tty); 1872 1873 /* Wait for pending work before tty destruction commmences */ 1874 tty_flush_works(tty); 1875 if (o_tty) 1876 tty_flush_works(o_tty); 1877 1878 #ifdef TTY_DEBUG_HANGUP 1879 printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf)); 1880 #endif 1881 /* 1882 * The release_tty function takes care of the details of clearing 1883 * the slots and preserving the termios structure. The tty_unlock_pair 1884 * should be safe as we keep a kref while the tty is locked (so the 1885 * unlock never unlocks a freed tty). 1886 */ 1887 mutex_lock(&tty_mutex); 1888 release_tty(tty, idx); 1889 mutex_unlock(&tty_mutex); 1890 1891 return 0; 1892 } 1893 1894 /** 1895 * tty_open_current_tty - get tty of current task for open 1896 * @device: device number 1897 * @filp: file pointer to tty 1898 * @return: tty of the current task iff @device is /dev/tty 1899 * 1900 * We cannot return driver and index like for the other nodes because 1901 * devpts will not work then. It expects inodes to be from devpts FS. 1902 * 1903 * We need to move to returning a refcounted object from all the lookup 1904 * paths including this one. 1905 */ 1906 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1907 { 1908 struct tty_struct *tty; 1909 1910 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1911 return NULL; 1912 1913 tty = get_current_tty(); 1914 if (!tty) 1915 return ERR_PTR(-ENXIO); 1916 1917 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1918 /* noctty = 1; */ 1919 tty_kref_put(tty); 1920 /* FIXME: we put a reference and return a TTY! */ 1921 /* This is only safe because the caller holds tty_mutex */ 1922 return tty; 1923 } 1924 1925 /** 1926 * tty_lookup_driver - lookup a tty driver for a given device file 1927 * @device: device number 1928 * @filp: file pointer to tty 1929 * @noctty: set if the device should not become a controlling tty 1930 * @index: index for the device in the @return driver 1931 * @return: driver for this inode (with increased refcount) 1932 * 1933 * If @return is not erroneous, the caller is responsible to decrement the 1934 * refcount by tty_driver_kref_put. 1935 * 1936 * Locking: tty_mutex protects get_tty_driver 1937 */ 1938 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1939 int *noctty, int *index) 1940 { 1941 struct tty_driver *driver; 1942 1943 switch (device) { 1944 #ifdef CONFIG_VT 1945 case MKDEV(TTY_MAJOR, 0): { 1946 extern struct tty_driver *console_driver; 1947 driver = tty_driver_kref_get(console_driver); 1948 *index = fg_console; 1949 *noctty = 1; 1950 break; 1951 } 1952 #endif 1953 case MKDEV(TTYAUX_MAJOR, 1): { 1954 struct tty_driver *console_driver = console_device(index); 1955 if (console_driver) { 1956 driver = tty_driver_kref_get(console_driver); 1957 if (driver) { 1958 /* Don't let /dev/console block */ 1959 filp->f_flags |= O_NONBLOCK; 1960 *noctty = 1; 1961 break; 1962 } 1963 } 1964 return ERR_PTR(-ENODEV); 1965 } 1966 default: 1967 driver = get_tty_driver(device, index); 1968 if (!driver) 1969 return ERR_PTR(-ENODEV); 1970 break; 1971 } 1972 return driver; 1973 } 1974 1975 /** 1976 * tty_open - open a tty device 1977 * @inode: inode of device file 1978 * @filp: file pointer to tty 1979 * 1980 * tty_open and tty_release keep up the tty count that contains the 1981 * number of opens done on a tty. We cannot use the inode-count, as 1982 * different inodes might point to the same tty. 1983 * 1984 * Open-counting is needed for pty masters, as well as for keeping 1985 * track of serial lines: DTR is dropped when the last close happens. 1986 * (This is not done solely through tty->count, now. - Ted 1/27/92) 1987 * 1988 * The termios state of a pty is reset on first open so that 1989 * settings don't persist across reuse. 1990 * 1991 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev. 1992 * tty->count should protect the rest. 1993 * ->siglock protects ->signal/->sighand 1994 * 1995 * Note: the tty_unlock/lock cases without a ref are only safe due to 1996 * tty_mutex 1997 */ 1998 1999 static int tty_open(struct inode *inode, struct file *filp) 2000 { 2001 struct tty_struct *tty; 2002 int noctty, retval; 2003 struct tty_driver *driver = NULL; 2004 int index; 2005 dev_t device = inode->i_rdev; 2006 unsigned saved_flags = filp->f_flags; 2007 2008 nonseekable_open(inode, filp); 2009 2010 retry_open: 2011 retval = tty_alloc_file(filp); 2012 if (retval) 2013 return -ENOMEM; 2014 2015 noctty = filp->f_flags & O_NOCTTY; 2016 index = -1; 2017 retval = 0; 2018 2019 mutex_lock(&tty_mutex); 2020 /* This is protected by the tty_mutex */ 2021 tty = tty_open_current_tty(device, filp); 2022 if (IS_ERR(tty)) { 2023 retval = PTR_ERR(tty); 2024 goto err_unlock; 2025 } else if (!tty) { 2026 driver = tty_lookup_driver(device, filp, &noctty, &index); 2027 if (IS_ERR(driver)) { 2028 retval = PTR_ERR(driver); 2029 goto err_unlock; 2030 } 2031 2032 /* check whether we're reopening an existing tty */ 2033 tty = tty_driver_lookup_tty(driver, inode, index); 2034 if (IS_ERR(tty)) { 2035 retval = PTR_ERR(tty); 2036 goto err_unlock; 2037 } 2038 } 2039 2040 if (tty) { 2041 tty_lock(tty); 2042 retval = tty_reopen(tty); 2043 if (retval < 0) { 2044 tty_unlock(tty); 2045 tty = ERR_PTR(retval); 2046 } 2047 } else /* Returns with the tty_lock held for now */ 2048 tty = tty_init_dev(driver, index); 2049 2050 mutex_unlock(&tty_mutex); 2051 if (driver) 2052 tty_driver_kref_put(driver); 2053 if (IS_ERR(tty)) { 2054 retval = PTR_ERR(tty); 2055 goto err_file; 2056 } 2057 2058 tty_add_file(tty, filp); 2059 2060 check_tty_count(tty, __func__); 2061 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2062 tty->driver->subtype == PTY_TYPE_MASTER) 2063 noctty = 1; 2064 #ifdef TTY_DEBUG_HANGUP 2065 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name); 2066 #endif 2067 if (tty->ops->open) 2068 retval = tty->ops->open(tty, filp); 2069 else 2070 retval = -ENODEV; 2071 filp->f_flags = saved_flags; 2072 2073 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && 2074 !capable(CAP_SYS_ADMIN)) 2075 retval = -EBUSY; 2076 2077 if (retval) { 2078 #ifdef TTY_DEBUG_HANGUP 2079 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__, 2080 retval, tty->name); 2081 #endif 2082 tty_unlock(tty); /* need to call tty_release without BTM */ 2083 tty_release(inode, filp); 2084 if (retval != -ERESTARTSYS) 2085 return retval; 2086 2087 if (signal_pending(current)) 2088 return retval; 2089 2090 schedule(); 2091 /* 2092 * Need to reset f_op in case a hangup happened. 2093 */ 2094 if (filp->f_op == &hung_up_tty_fops) 2095 filp->f_op = &tty_fops; 2096 goto retry_open; 2097 } 2098 clear_bit(TTY_HUPPED, &tty->flags); 2099 tty_unlock(tty); 2100 2101 2102 mutex_lock(&tty_mutex); 2103 tty_lock(tty); 2104 spin_lock_irq(¤t->sighand->siglock); 2105 if (!noctty && 2106 current->signal->leader && 2107 !current->signal->tty && 2108 tty->session == NULL) 2109 __proc_set_tty(current, tty); 2110 spin_unlock_irq(¤t->sighand->siglock); 2111 tty_unlock(tty); 2112 mutex_unlock(&tty_mutex); 2113 return 0; 2114 err_unlock: 2115 mutex_unlock(&tty_mutex); 2116 /* after locks to avoid deadlock */ 2117 if (!IS_ERR_OR_NULL(driver)) 2118 tty_driver_kref_put(driver); 2119 err_file: 2120 tty_free_file(filp); 2121 return retval; 2122 } 2123 2124 2125 2126 /** 2127 * tty_poll - check tty status 2128 * @filp: file being polled 2129 * @wait: poll wait structures to update 2130 * 2131 * Call the line discipline polling method to obtain the poll 2132 * status of the device. 2133 * 2134 * Locking: locks called line discipline but ldisc poll method 2135 * may be re-entered freely by other callers. 2136 */ 2137 2138 static unsigned int tty_poll(struct file *filp, poll_table *wait) 2139 { 2140 struct tty_struct *tty = file_tty(filp); 2141 struct tty_ldisc *ld; 2142 int ret = 0; 2143 2144 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll")) 2145 return 0; 2146 2147 ld = tty_ldisc_ref_wait(tty); 2148 if (ld->ops->poll) 2149 ret = (ld->ops->poll)(tty, filp, wait); 2150 tty_ldisc_deref(ld); 2151 return ret; 2152 } 2153 2154 static int __tty_fasync(int fd, struct file *filp, int on) 2155 { 2156 struct tty_struct *tty = file_tty(filp); 2157 struct tty_ldisc *ldisc; 2158 unsigned long flags; 2159 int retval = 0; 2160 2161 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync")) 2162 goto out; 2163 2164 retval = fasync_helper(fd, filp, on, &tty->fasync); 2165 if (retval <= 0) 2166 goto out; 2167 2168 ldisc = tty_ldisc_ref(tty); 2169 if (ldisc) { 2170 if (ldisc->ops->fasync) 2171 ldisc->ops->fasync(tty, on); 2172 tty_ldisc_deref(ldisc); 2173 } 2174 2175 if (on) { 2176 enum pid_type type; 2177 struct pid *pid; 2178 2179 spin_lock_irqsave(&tty->ctrl_lock, flags); 2180 if (tty->pgrp) { 2181 pid = tty->pgrp; 2182 type = PIDTYPE_PGID; 2183 } else { 2184 pid = task_pid(current); 2185 type = PIDTYPE_PID; 2186 } 2187 get_pid(pid); 2188 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2189 __f_setown(filp, pid, type, 0); 2190 put_pid(pid); 2191 retval = 0; 2192 } 2193 out: 2194 return retval; 2195 } 2196 2197 static int tty_fasync(int fd, struct file *filp, int on) 2198 { 2199 struct tty_struct *tty = file_tty(filp); 2200 int retval; 2201 2202 tty_lock(tty); 2203 retval = __tty_fasync(fd, filp, on); 2204 tty_unlock(tty); 2205 2206 return retval; 2207 } 2208 2209 /** 2210 * tiocsti - fake input character 2211 * @tty: tty to fake input into 2212 * @p: pointer to character 2213 * 2214 * Fake input to a tty device. Does the necessary locking and 2215 * input management. 2216 * 2217 * FIXME: does not honour flow control ?? 2218 * 2219 * Locking: 2220 * Called functions take tty_ldiscs_lock 2221 * current->signal->tty check is safe without locks 2222 * 2223 * FIXME: may race normal receive processing 2224 */ 2225 2226 static int tiocsti(struct tty_struct *tty, char __user *p) 2227 { 2228 char ch, mbz = 0; 2229 struct tty_ldisc *ld; 2230 2231 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2232 return -EPERM; 2233 if (get_user(ch, p)) 2234 return -EFAULT; 2235 tty_audit_tiocsti(tty, ch); 2236 ld = tty_ldisc_ref_wait(tty); 2237 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2238 tty_ldisc_deref(ld); 2239 return 0; 2240 } 2241 2242 /** 2243 * tiocgwinsz - implement window query ioctl 2244 * @tty; tty 2245 * @arg: user buffer for result 2246 * 2247 * Copies the kernel idea of the window size into the user buffer. 2248 * 2249 * Locking: tty->winsize_mutex is taken to ensure the winsize data 2250 * is consistent. 2251 */ 2252 2253 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2254 { 2255 int err; 2256 2257 mutex_lock(&tty->winsize_mutex); 2258 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2259 mutex_unlock(&tty->winsize_mutex); 2260 2261 return err ? -EFAULT: 0; 2262 } 2263 2264 /** 2265 * tty_do_resize - resize event 2266 * @tty: tty being resized 2267 * @rows: rows (character) 2268 * @cols: cols (character) 2269 * 2270 * Update the termios variables and send the necessary signals to 2271 * peform a terminal resize correctly 2272 */ 2273 2274 int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2275 { 2276 struct pid *pgrp; 2277 unsigned long flags; 2278 2279 /* Lock the tty */ 2280 mutex_lock(&tty->winsize_mutex); 2281 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2282 goto done; 2283 /* Get the PID values and reference them so we can 2284 avoid holding the tty ctrl lock while sending signals */ 2285 spin_lock_irqsave(&tty->ctrl_lock, flags); 2286 pgrp = get_pid(tty->pgrp); 2287 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2288 2289 if (pgrp) 2290 kill_pgrp(pgrp, SIGWINCH, 1); 2291 put_pid(pgrp); 2292 2293 tty->winsize = *ws; 2294 done: 2295 mutex_unlock(&tty->winsize_mutex); 2296 return 0; 2297 } 2298 EXPORT_SYMBOL(tty_do_resize); 2299 2300 /** 2301 * tiocswinsz - implement window size set ioctl 2302 * @tty; tty side of tty 2303 * @arg: user buffer for result 2304 * 2305 * Copies the user idea of the window size to the kernel. Traditionally 2306 * this is just advisory information but for the Linux console it 2307 * actually has driver level meaning and triggers a VC resize. 2308 * 2309 * Locking: 2310 * Driver dependent. The default do_resize method takes the 2311 * tty termios mutex and ctrl_lock. The console takes its own lock 2312 * then calls into the default method. 2313 */ 2314 2315 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2316 { 2317 struct winsize tmp_ws; 2318 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2319 return -EFAULT; 2320 2321 if (tty->ops->resize) 2322 return tty->ops->resize(tty, &tmp_ws); 2323 else 2324 return tty_do_resize(tty, &tmp_ws); 2325 } 2326 2327 /** 2328 * tioccons - allow admin to move logical console 2329 * @file: the file to become console 2330 * 2331 * Allow the administrator to move the redirected console device 2332 * 2333 * Locking: uses redirect_lock to guard the redirect information 2334 */ 2335 2336 static int tioccons(struct file *file) 2337 { 2338 if (!capable(CAP_SYS_ADMIN)) 2339 return -EPERM; 2340 if (file->f_op->write == redirected_tty_write) { 2341 struct file *f; 2342 spin_lock(&redirect_lock); 2343 f = redirect; 2344 redirect = NULL; 2345 spin_unlock(&redirect_lock); 2346 if (f) 2347 fput(f); 2348 return 0; 2349 } 2350 spin_lock(&redirect_lock); 2351 if (redirect) { 2352 spin_unlock(&redirect_lock); 2353 return -EBUSY; 2354 } 2355 redirect = get_file(file); 2356 spin_unlock(&redirect_lock); 2357 return 0; 2358 } 2359 2360 /** 2361 * fionbio - non blocking ioctl 2362 * @file: file to set blocking value 2363 * @p: user parameter 2364 * 2365 * Historical tty interfaces had a blocking control ioctl before 2366 * the generic functionality existed. This piece of history is preserved 2367 * in the expected tty API of posix OS's. 2368 * 2369 * Locking: none, the open file handle ensures it won't go away. 2370 */ 2371 2372 static int fionbio(struct file *file, int __user *p) 2373 { 2374 int nonblock; 2375 2376 if (get_user(nonblock, p)) 2377 return -EFAULT; 2378 2379 spin_lock(&file->f_lock); 2380 if (nonblock) 2381 file->f_flags |= O_NONBLOCK; 2382 else 2383 file->f_flags &= ~O_NONBLOCK; 2384 spin_unlock(&file->f_lock); 2385 return 0; 2386 } 2387 2388 /** 2389 * tiocsctty - set controlling tty 2390 * @tty: tty structure 2391 * @arg: user argument 2392 * 2393 * This ioctl is used to manage job control. It permits a session 2394 * leader to set this tty as the controlling tty for the session. 2395 * 2396 * Locking: 2397 * Takes tty_mutex() to protect tty instance 2398 * Takes tasklist_lock internally to walk sessions 2399 * Takes ->siglock() when updating signal->tty 2400 */ 2401 2402 static int tiocsctty(struct tty_struct *tty, int arg) 2403 { 2404 int ret = 0; 2405 if (current->signal->leader && (task_session(current) == tty->session)) 2406 return ret; 2407 2408 mutex_lock(&tty_mutex); 2409 /* 2410 * The process must be a session leader and 2411 * not have a controlling tty already. 2412 */ 2413 if (!current->signal->leader || current->signal->tty) { 2414 ret = -EPERM; 2415 goto unlock; 2416 } 2417 2418 if (tty->session) { 2419 /* 2420 * This tty is already the controlling 2421 * tty for another session group! 2422 */ 2423 if (arg == 1 && capable(CAP_SYS_ADMIN)) { 2424 /* 2425 * Steal it away 2426 */ 2427 read_lock(&tasklist_lock); 2428 session_clear_tty(tty->session); 2429 read_unlock(&tasklist_lock); 2430 } else { 2431 ret = -EPERM; 2432 goto unlock; 2433 } 2434 } 2435 proc_set_tty(current, tty); 2436 unlock: 2437 mutex_unlock(&tty_mutex); 2438 return ret; 2439 } 2440 2441 /** 2442 * tty_get_pgrp - return a ref counted pgrp pid 2443 * @tty: tty to read 2444 * 2445 * Returns a refcounted instance of the pid struct for the process 2446 * group controlling the tty. 2447 */ 2448 2449 struct pid *tty_get_pgrp(struct tty_struct *tty) 2450 { 2451 unsigned long flags; 2452 struct pid *pgrp; 2453 2454 spin_lock_irqsave(&tty->ctrl_lock, flags); 2455 pgrp = get_pid(tty->pgrp); 2456 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2457 2458 return pgrp; 2459 } 2460 EXPORT_SYMBOL_GPL(tty_get_pgrp); 2461 2462 /** 2463 * tiocgpgrp - get process group 2464 * @tty: tty passed by user 2465 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2466 * @p: returned pid 2467 * 2468 * Obtain the process group of the tty. If there is no process group 2469 * return an error. 2470 * 2471 * Locking: none. Reference to current->signal->tty is safe. 2472 */ 2473 2474 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2475 { 2476 struct pid *pid; 2477 int ret; 2478 /* 2479 * (tty == real_tty) is a cheap way of 2480 * testing if the tty is NOT a master pty. 2481 */ 2482 if (tty == real_tty && current->signal->tty != real_tty) 2483 return -ENOTTY; 2484 pid = tty_get_pgrp(real_tty); 2485 ret = put_user(pid_vnr(pid), p); 2486 put_pid(pid); 2487 return ret; 2488 } 2489 2490 /** 2491 * tiocspgrp - attempt to set process group 2492 * @tty: tty passed by user 2493 * @real_tty: tty side device matching tty passed by user 2494 * @p: pid pointer 2495 * 2496 * Set the process group of the tty to the session passed. Only 2497 * permitted where the tty session is our session. 2498 * 2499 * Locking: RCU, ctrl lock 2500 */ 2501 2502 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2503 { 2504 struct pid *pgrp; 2505 pid_t pgrp_nr; 2506 int retval = tty_check_change(real_tty); 2507 unsigned long flags; 2508 2509 if (retval == -EIO) 2510 return -ENOTTY; 2511 if (retval) 2512 return retval; 2513 if (!current->signal->tty || 2514 (current->signal->tty != real_tty) || 2515 (real_tty->session != task_session(current))) 2516 return -ENOTTY; 2517 if (get_user(pgrp_nr, p)) 2518 return -EFAULT; 2519 if (pgrp_nr < 0) 2520 return -EINVAL; 2521 rcu_read_lock(); 2522 pgrp = find_vpid(pgrp_nr); 2523 retval = -ESRCH; 2524 if (!pgrp) 2525 goto out_unlock; 2526 retval = -EPERM; 2527 if (session_of_pgrp(pgrp) != task_session(current)) 2528 goto out_unlock; 2529 retval = 0; 2530 spin_lock_irqsave(&tty->ctrl_lock, flags); 2531 put_pid(real_tty->pgrp); 2532 real_tty->pgrp = get_pid(pgrp); 2533 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2534 out_unlock: 2535 rcu_read_unlock(); 2536 return retval; 2537 } 2538 2539 /** 2540 * tiocgsid - get session id 2541 * @tty: tty passed by user 2542 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2543 * @p: pointer to returned session id 2544 * 2545 * Obtain the session id of the tty. If there is no session 2546 * return an error. 2547 * 2548 * Locking: none. Reference to current->signal->tty is safe. 2549 */ 2550 2551 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2552 { 2553 /* 2554 * (tty == real_tty) is a cheap way of 2555 * testing if the tty is NOT a master pty. 2556 */ 2557 if (tty == real_tty && current->signal->tty != real_tty) 2558 return -ENOTTY; 2559 if (!real_tty->session) 2560 return -ENOTTY; 2561 return put_user(pid_vnr(real_tty->session), p); 2562 } 2563 2564 /** 2565 * tiocsetd - set line discipline 2566 * @tty: tty device 2567 * @p: pointer to user data 2568 * 2569 * Set the line discipline according to user request. 2570 * 2571 * Locking: see tty_set_ldisc, this function is just a helper 2572 */ 2573 2574 static int tiocsetd(struct tty_struct *tty, int __user *p) 2575 { 2576 int ldisc; 2577 int ret; 2578 2579 if (get_user(ldisc, p)) 2580 return -EFAULT; 2581 2582 ret = tty_set_ldisc(tty, ldisc); 2583 2584 return ret; 2585 } 2586 2587 /** 2588 * send_break - performed time break 2589 * @tty: device to break on 2590 * @duration: timeout in mS 2591 * 2592 * Perform a timed break on hardware that lacks its own driver level 2593 * timed break functionality. 2594 * 2595 * Locking: 2596 * atomic_write_lock serializes 2597 * 2598 */ 2599 2600 static int send_break(struct tty_struct *tty, unsigned int duration) 2601 { 2602 int retval; 2603 2604 if (tty->ops->break_ctl == NULL) 2605 return 0; 2606 2607 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2608 retval = tty->ops->break_ctl(tty, duration); 2609 else { 2610 /* Do the work ourselves */ 2611 if (tty_write_lock(tty, 0) < 0) 2612 return -EINTR; 2613 retval = tty->ops->break_ctl(tty, -1); 2614 if (retval) 2615 goto out; 2616 if (!signal_pending(current)) 2617 msleep_interruptible(duration); 2618 retval = tty->ops->break_ctl(tty, 0); 2619 out: 2620 tty_write_unlock(tty); 2621 if (signal_pending(current)) 2622 retval = -EINTR; 2623 } 2624 return retval; 2625 } 2626 2627 /** 2628 * tty_tiocmget - get modem status 2629 * @tty: tty device 2630 * @file: user file pointer 2631 * @p: pointer to result 2632 * 2633 * Obtain the modem status bits from the tty driver if the feature 2634 * is supported. Return -EINVAL if it is not available. 2635 * 2636 * Locking: none (up to the driver) 2637 */ 2638 2639 static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2640 { 2641 int retval = -EINVAL; 2642 2643 if (tty->ops->tiocmget) { 2644 retval = tty->ops->tiocmget(tty); 2645 2646 if (retval >= 0) 2647 retval = put_user(retval, p); 2648 } 2649 return retval; 2650 } 2651 2652 /** 2653 * tty_tiocmset - set modem status 2654 * @tty: tty device 2655 * @cmd: command - clear bits, set bits or set all 2656 * @p: pointer to desired bits 2657 * 2658 * Set the modem status bits from the tty driver if the feature 2659 * is supported. Return -EINVAL if it is not available. 2660 * 2661 * Locking: none (up to the driver) 2662 */ 2663 2664 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2665 unsigned __user *p) 2666 { 2667 int retval; 2668 unsigned int set, clear, val; 2669 2670 if (tty->ops->tiocmset == NULL) 2671 return -EINVAL; 2672 2673 retval = get_user(val, p); 2674 if (retval) 2675 return retval; 2676 set = clear = 0; 2677 switch (cmd) { 2678 case TIOCMBIS: 2679 set = val; 2680 break; 2681 case TIOCMBIC: 2682 clear = val; 2683 break; 2684 case TIOCMSET: 2685 set = val; 2686 clear = ~val; 2687 break; 2688 } 2689 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2690 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2691 return tty->ops->tiocmset(tty, set, clear); 2692 } 2693 2694 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2695 { 2696 int retval = -EINVAL; 2697 struct serial_icounter_struct icount; 2698 memset(&icount, 0, sizeof(icount)); 2699 if (tty->ops->get_icount) 2700 retval = tty->ops->get_icount(tty, &icount); 2701 if (retval != 0) 2702 return retval; 2703 if (copy_to_user(arg, &icount, sizeof(icount))) 2704 return -EFAULT; 2705 return 0; 2706 } 2707 2708 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2709 { 2710 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2711 tty->driver->subtype == PTY_TYPE_MASTER) 2712 tty = tty->link; 2713 return tty; 2714 } 2715 EXPORT_SYMBOL(tty_pair_get_tty); 2716 2717 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty) 2718 { 2719 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2720 tty->driver->subtype == PTY_TYPE_MASTER) 2721 return tty; 2722 return tty->link; 2723 } 2724 EXPORT_SYMBOL(tty_pair_get_pty); 2725 2726 /* 2727 * Split this up, as gcc can choke on it otherwise.. 2728 */ 2729 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2730 { 2731 struct tty_struct *tty = file_tty(file); 2732 struct tty_struct *real_tty; 2733 void __user *p = (void __user *)arg; 2734 int retval; 2735 struct tty_ldisc *ld; 2736 2737 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2738 return -EINVAL; 2739 2740 real_tty = tty_pair_get_tty(tty); 2741 2742 /* 2743 * Factor out some common prep work 2744 */ 2745 switch (cmd) { 2746 case TIOCSETD: 2747 case TIOCSBRK: 2748 case TIOCCBRK: 2749 case TCSBRK: 2750 case TCSBRKP: 2751 retval = tty_check_change(tty); 2752 if (retval) 2753 return retval; 2754 if (cmd != TIOCCBRK) { 2755 tty_wait_until_sent(tty, 0); 2756 if (signal_pending(current)) 2757 return -EINTR; 2758 } 2759 break; 2760 } 2761 2762 /* 2763 * Now do the stuff. 2764 */ 2765 switch (cmd) { 2766 case TIOCSTI: 2767 return tiocsti(tty, p); 2768 case TIOCGWINSZ: 2769 return tiocgwinsz(real_tty, p); 2770 case TIOCSWINSZ: 2771 return tiocswinsz(real_tty, p); 2772 case TIOCCONS: 2773 return real_tty != tty ? -EINVAL : tioccons(file); 2774 case FIONBIO: 2775 return fionbio(file, p); 2776 case TIOCEXCL: 2777 set_bit(TTY_EXCLUSIVE, &tty->flags); 2778 return 0; 2779 case TIOCNXCL: 2780 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2781 return 0; 2782 case TIOCGEXCL: 2783 { 2784 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags); 2785 return put_user(excl, (int __user *)p); 2786 } 2787 case TIOCNOTTY: 2788 if (current->signal->tty != tty) 2789 return -ENOTTY; 2790 no_tty(); 2791 return 0; 2792 case TIOCSCTTY: 2793 return tiocsctty(tty, arg); 2794 case TIOCGPGRP: 2795 return tiocgpgrp(tty, real_tty, p); 2796 case TIOCSPGRP: 2797 return tiocspgrp(tty, real_tty, p); 2798 case TIOCGSID: 2799 return tiocgsid(tty, real_tty, p); 2800 case TIOCGETD: 2801 return put_user(tty->ldisc->ops->num, (int __user *)p); 2802 case TIOCSETD: 2803 return tiocsetd(tty, p); 2804 case TIOCVHANGUP: 2805 if (!capable(CAP_SYS_ADMIN)) 2806 return -EPERM; 2807 tty_vhangup(tty); 2808 return 0; 2809 case TIOCGDEV: 2810 { 2811 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2812 return put_user(ret, (unsigned int __user *)p); 2813 } 2814 /* 2815 * Break handling 2816 */ 2817 case TIOCSBRK: /* Turn break on, unconditionally */ 2818 if (tty->ops->break_ctl) 2819 return tty->ops->break_ctl(tty, -1); 2820 return 0; 2821 case TIOCCBRK: /* Turn break off, unconditionally */ 2822 if (tty->ops->break_ctl) 2823 return tty->ops->break_ctl(tty, 0); 2824 return 0; 2825 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2826 /* non-zero arg means wait for all output data 2827 * to be sent (performed above) but don't send break. 2828 * This is used by the tcdrain() termios function. 2829 */ 2830 if (!arg) 2831 return send_break(tty, 250); 2832 return 0; 2833 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2834 return send_break(tty, arg ? arg*100 : 250); 2835 2836 case TIOCMGET: 2837 return tty_tiocmget(tty, p); 2838 case TIOCMSET: 2839 case TIOCMBIC: 2840 case TIOCMBIS: 2841 return tty_tiocmset(tty, cmd, p); 2842 case TIOCGICOUNT: 2843 retval = tty_tiocgicount(tty, p); 2844 /* For the moment allow fall through to the old method */ 2845 if (retval != -EINVAL) 2846 return retval; 2847 break; 2848 case TCFLSH: 2849 switch (arg) { 2850 case TCIFLUSH: 2851 case TCIOFLUSH: 2852 /* flush tty buffer and allow ldisc to process ioctl */ 2853 tty_buffer_flush(tty); 2854 break; 2855 } 2856 break; 2857 } 2858 if (tty->ops->ioctl) { 2859 retval = (tty->ops->ioctl)(tty, cmd, arg); 2860 if (retval != -ENOIOCTLCMD) 2861 return retval; 2862 } 2863 ld = tty_ldisc_ref_wait(tty); 2864 retval = -EINVAL; 2865 if (ld->ops->ioctl) { 2866 retval = ld->ops->ioctl(tty, file, cmd, arg); 2867 if (retval == -ENOIOCTLCMD) 2868 retval = -ENOTTY; 2869 } 2870 tty_ldisc_deref(ld); 2871 return retval; 2872 } 2873 2874 #ifdef CONFIG_COMPAT 2875 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 2876 unsigned long arg) 2877 { 2878 struct tty_struct *tty = file_tty(file); 2879 struct tty_ldisc *ld; 2880 int retval = -ENOIOCTLCMD; 2881 2882 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2883 return -EINVAL; 2884 2885 if (tty->ops->compat_ioctl) { 2886 retval = (tty->ops->compat_ioctl)(tty, cmd, arg); 2887 if (retval != -ENOIOCTLCMD) 2888 return retval; 2889 } 2890 2891 ld = tty_ldisc_ref_wait(tty); 2892 if (ld->ops->compat_ioctl) 2893 retval = ld->ops->compat_ioctl(tty, file, cmd, arg); 2894 else 2895 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg); 2896 tty_ldisc_deref(ld); 2897 2898 return retval; 2899 } 2900 #endif 2901 2902 static int this_tty(const void *t, struct file *file, unsigned fd) 2903 { 2904 if (likely(file->f_op->read != tty_read)) 2905 return 0; 2906 return file_tty(file) != t ? 0 : fd + 1; 2907 } 2908 2909 /* 2910 * This implements the "Secure Attention Key" --- the idea is to 2911 * prevent trojan horses by killing all processes associated with this 2912 * tty when the user hits the "Secure Attention Key". Required for 2913 * super-paranoid applications --- see the Orange Book for more details. 2914 * 2915 * This code could be nicer; ideally it should send a HUP, wait a few 2916 * seconds, then send a INT, and then a KILL signal. But you then 2917 * have to coordinate with the init process, since all processes associated 2918 * with the current tty must be dead before the new getty is allowed 2919 * to spawn. 2920 * 2921 * Now, if it would be correct ;-/ The current code has a nasty hole - 2922 * it doesn't catch files in flight. We may send the descriptor to ourselves 2923 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 2924 * 2925 * Nasty bug: do_SAK is being called in interrupt context. This can 2926 * deadlock. We punt it up to process context. AKPM - 16Mar2001 2927 */ 2928 void __do_SAK(struct tty_struct *tty) 2929 { 2930 #ifdef TTY_SOFT_SAK 2931 tty_hangup(tty); 2932 #else 2933 struct task_struct *g, *p; 2934 struct pid *session; 2935 int i; 2936 2937 if (!tty) 2938 return; 2939 session = tty->session; 2940 2941 tty_ldisc_flush(tty); 2942 2943 tty_driver_flush_buffer(tty); 2944 2945 read_lock(&tasklist_lock); 2946 /* Kill the entire session */ 2947 do_each_pid_task(session, PIDTYPE_SID, p) { 2948 printk(KERN_NOTICE "SAK: killed process %d" 2949 " (%s): task_session(p)==tty->session\n", 2950 task_pid_nr(p), p->comm); 2951 send_sig(SIGKILL, p, 1); 2952 } while_each_pid_task(session, PIDTYPE_SID, p); 2953 /* Now kill any processes that happen to have the 2954 * tty open. 2955 */ 2956 do_each_thread(g, p) { 2957 if (p->signal->tty == tty) { 2958 printk(KERN_NOTICE "SAK: killed process %d" 2959 " (%s): task_session(p)==tty->session\n", 2960 task_pid_nr(p), p->comm); 2961 send_sig(SIGKILL, p, 1); 2962 continue; 2963 } 2964 task_lock(p); 2965 i = iterate_fd(p->files, 0, this_tty, tty); 2966 if (i != 0) { 2967 printk(KERN_NOTICE "SAK: killed process %d" 2968 " (%s): fd#%d opened to the tty\n", 2969 task_pid_nr(p), p->comm, i - 1); 2970 force_sig(SIGKILL, p); 2971 } 2972 task_unlock(p); 2973 } while_each_thread(g, p); 2974 read_unlock(&tasklist_lock); 2975 #endif 2976 } 2977 2978 static void do_SAK_work(struct work_struct *work) 2979 { 2980 struct tty_struct *tty = 2981 container_of(work, struct tty_struct, SAK_work); 2982 __do_SAK(tty); 2983 } 2984 2985 /* 2986 * The tq handling here is a little racy - tty->SAK_work may already be queued. 2987 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 2988 * the values which we write to it will be identical to the values which it 2989 * already has. --akpm 2990 */ 2991 void do_SAK(struct tty_struct *tty) 2992 { 2993 if (!tty) 2994 return; 2995 schedule_work(&tty->SAK_work); 2996 } 2997 2998 EXPORT_SYMBOL(do_SAK); 2999 3000 static int dev_match_devt(struct device *dev, const void *data) 3001 { 3002 const dev_t *devt = data; 3003 return dev->devt == *devt; 3004 } 3005 3006 /* Must put_device() after it's unused! */ 3007 static struct device *tty_get_device(struct tty_struct *tty) 3008 { 3009 dev_t devt = tty_devnum(tty); 3010 return class_find_device(tty_class, NULL, &devt, dev_match_devt); 3011 } 3012 3013 3014 /** 3015 * alloc_tty_struct 3016 * 3017 * This subroutine allocates and initializes a tty structure. 3018 * 3019 * Locking: none - tty in question is not exposed at this point 3020 */ 3021 3022 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx) 3023 { 3024 struct tty_struct *tty; 3025 3026 tty = kzalloc(sizeof(*tty), GFP_KERNEL); 3027 if (!tty) 3028 return NULL; 3029 3030 kref_init(&tty->kref); 3031 tty->magic = TTY_MAGIC; 3032 tty_ldisc_init(tty); 3033 tty->session = NULL; 3034 tty->pgrp = NULL; 3035 mutex_init(&tty->legacy_mutex); 3036 mutex_init(&tty->throttle_mutex); 3037 init_rwsem(&tty->termios_rwsem); 3038 mutex_init(&tty->winsize_mutex); 3039 init_ldsem(&tty->ldisc_sem); 3040 init_waitqueue_head(&tty->write_wait); 3041 init_waitqueue_head(&tty->read_wait); 3042 INIT_WORK(&tty->hangup_work, do_tty_hangup); 3043 mutex_init(&tty->atomic_write_lock); 3044 spin_lock_init(&tty->ctrl_lock); 3045 spin_lock_init(&tty->flow_lock); 3046 INIT_LIST_HEAD(&tty->tty_files); 3047 INIT_WORK(&tty->SAK_work, do_SAK_work); 3048 3049 tty->driver = driver; 3050 tty->ops = driver->ops; 3051 tty->index = idx; 3052 tty_line_name(driver, idx, tty->name); 3053 tty->dev = tty_get_device(tty); 3054 3055 return tty; 3056 } 3057 3058 /** 3059 * deinitialize_tty_struct 3060 * @tty: tty to deinitialize 3061 * 3062 * This subroutine deinitializes a tty structure that has been newly 3063 * allocated but tty_release cannot be called on that yet. 3064 * 3065 * Locking: none - tty in question must not be exposed at this point 3066 */ 3067 void deinitialize_tty_struct(struct tty_struct *tty) 3068 { 3069 tty_ldisc_deinit(tty); 3070 } 3071 3072 /** 3073 * tty_put_char - write one character to a tty 3074 * @tty: tty 3075 * @ch: character 3076 * 3077 * Write one byte to the tty using the provided put_char method 3078 * if present. Returns the number of characters successfully output. 3079 * 3080 * Note: the specific put_char operation in the driver layer may go 3081 * away soon. Don't call it directly, use this method 3082 */ 3083 3084 int tty_put_char(struct tty_struct *tty, unsigned char ch) 3085 { 3086 if (tty->ops->put_char) 3087 return tty->ops->put_char(tty, ch); 3088 return tty->ops->write(tty, &ch, 1); 3089 } 3090 EXPORT_SYMBOL_GPL(tty_put_char); 3091 3092 struct class *tty_class; 3093 3094 static int tty_cdev_add(struct tty_driver *driver, dev_t dev, 3095 unsigned int index, unsigned int count) 3096 { 3097 /* init here, since reused cdevs cause crashes */ 3098 cdev_init(&driver->cdevs[index], &tty_fops); 3099 driver->cdevs[index].owner = driver->owner; 3100 return cdev_add(&driver->cdevs[index], dev, count); 3101 } 3102 3103 /** 3104 * tty_register_device - register a tty device 3105 * @driver: the tty driver that describes the tty device 3106 * @index: the index in the tty driver for this tty device 3107 * @device: a struct device that is associated with this tty device. 3108 * This field is optional, if there is no known struct device 3109 * for this tty device it can be set to NULL safely. 3110 * 3111 * Returns a pointer to the struct device for this tty device 3112 * (or ERR_PTR(-EFOO) on error). 3113 * 3114 * This call is required to be made to register an individual tty device 3115 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3116 * that bit is not set, this function should not be called by a tty 3117 * driver. 3118 * 3119 * Locking: ?? 3120 */ 3121 3122 struct device *tty_register_device(struct tty_driver *driver, unsigned index, 3123 struct device *device) 3124 { 3125 return tty_register_device_attr(driver, index, device, NULL, NULL); 3126 } 3127 EXPORT_SYMBOL(tty_register_device); 3128 3129 static void tty_device_create_release(struct device *dev) 3130 { 3131 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3132 kfree(dev); 3133 } 3134 3135 /** 3136 * tty_register_device_attr - register a tty device 3137 * @driver: the tty driver that describes the tty device 3138 * @index: the index in the tty driver for this tty device 3139 * @device: a struct device that is associated with this tty device. 3140 * This field is optional, if there is no known struct device 3141 * for this tty device it can be set to NULL safely. 3142 * @drvdata: Driver data to be set to device. 3143 * @attr_grp: Attribute group to be set on device. 3144 * 3145 * Returns a pointer to the struct device for this tty device 3146 * (or ERR_PTR(-EFOO) on error). 3147 * 3148 * This call is required to be made to register an individual tty device 3149 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3150 * that bit is not set, this function should not be called by a tty 3151 * driver. 3152 * 3153 * Locking: ?? 3154 */ 3155 struct device *tty_register_device_attr(struct tty_driver *driver, 3156 unsigned index, struct device *device, 3157 void *drvdata, 3158 const struct attribute_group **attr_grp) 3159 { 3160 char name[64]; 3161 dev_t devt = MKDEV(driver->major, driver->minor_start) + index; 3162 struct device *dev = NULL; 3163 int retval = -ENODEV; 3164 bool cdev = false; 3165 3166 if (index >= driver->num) { 3167 printk(KERN_ERR "Attempt to register invalid tty line number " 3168 " (%d).\n", index); 3169 return ERR_PTR(-EINVAL); 3170 } 3171 3172 if (driver->type == TTY_DRIVER_TYPE_PTY) 3173 pty_line_name(driver, index, name); 3174 else 3175 tty_line_name(driver, index, name); 3176 3177 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3178 retval = tty_cdev_add(driver, devt, index, 1); 3179 if (retval) 3180 goto error; 3181 cdev = true; 3182 } 3183 3184 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3185 if (!dev) { 3186 retval = -ENOMEM; 3187 goto error; 3188 } 3189 3190 dev->devt = devt; 3191 dev->class = tty_class; 3192 dev->parent = device; 3193 dev->release = tty_device_create_release; 3194 dev_set_name(dev, "%s", name); 3195 dev->groups = attr_grp; 3196 dev_set_drvdata(dev, drvdata); 3197 3198 retval = device_register(dev); 3199 if (retval) 3200 goto error; 3201 3202 return dev; 3203 3204 error: 3205 put_device(dev); 3206 if (cdev) 3207 cdev_del(&driver->cdevs[index]); 3208 return ERR_PTR(retval); 3209 } 3210 EXPORT_SYMBOL_GPL(tty_register_device_attr); 3211 3212 /** 3213 * tty_unregister_device - unregister a tty device 3214 * @driver: the tty driver that describes the tty device 3215 * @index: the index in the tty driver for this tty device 3216 * 3217 * If a tty device is registered with a call to tty_register_device() then 3218 * this function must be called when the tty device is gone. 3219 * 3220 * Locking: ?? 3221 */ 3222 3223 void tty_unregister_device(struct tty_driver *driver, unsigned index) 3224 { 3225 device_destroy(tty_class, 3226 MKDEV(driver->major, driver->minor_start) + index); 3227 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) 3228 cdev_del(&driver->cdevs[index]); 3229 } 3230 EXPORT_SYMBOL(tty_unregister_device); 3231 3232 /** 3233 * __tty_alloc_driver -- allocate tty driver 3234 * @lines: count of lines this driver can handle at most 3235 * @owner: module which is repsonsible for this driver 3236 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags 3237 * 3238 * This should not be called directly, some of the provided macros should be 3239 * used instead. Use IS_ERR and friends on @retval. 3240 */ 3241 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner, 3242 unsigned long flags) 3243 { 3244 struct tty_driver *driver; 3245 unsigned int cdevs = 1; 3246 int err; 3247 3248 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1)) 3249 return ERR_PTR(-EINVAL); 3250 3251 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL); 3252 if (!driver) 3253 return ERR_PTR(-ENOMEM); 3254 3255 kref_init(&driver->kref); 3256 driver->magic = TTY_DRIVER_MAGIC; 3257 driver->num = lines; 3258 driver->owner = owner; 3259 driver->flags = flags; 3260 3261 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) { 3262 driver->ttys = kcalloc(lines, sizeof(*driver->ttys), 3263 GFP_KERNEL); 3264 driver->termios = kcalloc(lines, sizeof(*driver->termios), 3265 GFP_KERNEL); 3266 if (!driver->ttys || !driver->termios) { 3267 err = -ENOMEM; 3268 goto err_free_all; 3269 } 3270 } 3271 3272 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3273 driver->ports = kcalloc(lines, sizeof(*driver->ports), 3274 GFP_KERNEL); 3275 if (!driver->ports) { 3276 err = -ENOMEM; 3277 goto err_free_all; 3278 } 3279 cdevs = lines; 3280 } 3281 3282 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL); 3283 if (!driver->cdevs) { 3284 err = -ENOMEM; 3285 goto err_free_all; 3286 } 3287 3288 return driver; 3289 err_free_all: 3290 kfree(driver->ports); 3291 kfree(driver->ttys); 3292 kfree(driver->termios); 3293 kfree(driver); 3294 return ERR_PTR(err); 3295 } 3296 EXPORT_SYMBOL(__tty_alloc_driver); 3297 3298 static void destruct_tty_driver(struct kref *kref) 3299 { 3300 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3301 int i; 3302 struct ktermios *tp; 3303 3304 if (driver->flags & TTY_DRIVER_INSTALLED) { 3305 /* 3306 * Free the termios and termios_locked structures because 3307 * we don't want to get memory leaks when modular tty 3308 * drivers are removed from the kernel. 3309 */ 3310 for (i = 0; i < driver->num; i++) { 3311 tp = driver->termios[i]; 3312 if (tp) { 3313 driver->termios[i] = NULL; 3314 kfree(tp); 3315 } 3316 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3317 tty_unregister_device(driver, i); 3318 } 3319 proc_tty_unregister_driver(driver); 3320 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) 3321 cdev_del(&driver->cdevs[0]); 3322 } 3323 kfree(driver->cdevs); 3324 kfree(driver->ports); 3325 kfree(driver->termios); 3326 kfree(driver->ttys); 3327 kfree(driver); 3328 } 3329 3330 void tty_driver_kref_put(struct tty_driver *driver) 3331 { 3332 kref_put(&driver->kref, destruct_tty_driver); 3333 } 3334 EXPORT_SYMBOL(tty_driver_kref_put); 3335 3336 void tty_set_operations(struct tty_driver *driver, 3337 const struct tty_operations *op) 3338 { 3339 driver->ops = op; 3340 }; 3341 EXPORT_SYMBOL(tty_set_operations); 3342 3343 void put_tty_driver(struct tty_driver *d) 3344 { 3345 tty_driver_kref_put(d); 3346 } 3347 EXPORT_SYMBOL(put_tty_driver); 3348 3349 /* 3350 * Called by a tty driver to register itself. 3351 */ 3352 int tty_register_driver(struct tty_driver *driver) 3353 { 3354 int error; 3355 int i; 3356 dev_t dev; 3357 struct device *d; 3358 3359 if (!driver->major) { 3360 error = alloc_chrdev_region(&dev, driver->minor_start, 3361 driver->num, driver->name); 3362 if (!error) { 3363 driver->major = MAJOR(dev); 3364 driver->minor_start = MINOR(dev); 3365 } 3366 } else { 3367 dev = MKDEV(driver->major, driver->minor_start); 3368 error = register_chrdev_region(dev, driver->num, driver->name); 3369 } 3370 if (error < 0) 3371 goto err; 3372 3373 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) { 3374 error = tty_cdev_add(driver, dev, 0, driver->num); 3375 if (error) 3376 goto err_unreg_char; 3377 } 3378 3379 mutex_lock(&tty_mutex); 3380 list_add(&driver->tty_drivers, &tty_drivers); 3381 mutex_unlock(&tty_mutex); 3382 3383 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3384 for (i = 0; i < driver->num; i++) { 3385 d = tty_register_device(driver, i, NULL); 3386 if (IS_ERR(d)) { 3387 error = PTR_ERR(d); 3388 goto err_unreg_devs; 3389 } 3390 } 3391 } 3392 proc_tty_register_driver(driver); 3393 driver->flags |= TTY_DRIVER_INSTALLED; 3394 return 0; 3395 3396 err_unreg_devs: 3397 for (i--; i >= 0; i--) 3398 tty_unregister_device(driver, i); 3399 3400 mutex_lock(&tty_mutex); 3401 list_del(&driver->tty_drivers); 3402 mutex_unlock(&tty_mutex); 3403 3404 err_unreg_char: 3405 unregister_chrdev_region(dev, driver->num); 3406 err: 3407 return error; 3408 } 3409 EXPORT_SYMBOL(tty_register_driver); 3410 3411 /* 3412 * Called by a tty driver to unregister itself. 3413 */ 3414 int tty_unregister_driver(struct tty_driver *driver) 3415 { 3416 #if 0 3417 /* FIXME */ 3418 if (driver->refcount) 3419 return -EBUSY; 3420 #endif 3421 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3422 driver->num); 3423 mutex_lock(&tty_mutex); 3424 list_del(&driver->tty_drivers); 3425 mutex_unlock(&tty_mutex); 3426 return 0; 3427 } 3428 3429 EXPORT_SYMBOL(tty_unregister_driver); 3430 3431 dev_t tty_devnum(struct tty_struct *tty) 3432 { 3433 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3434 } 3435 EXPORT_SYMBOL(tty_devnum); 3436 3437 void proc_clear_tty(struct task_struct *p) 3438 { 3439 unsigned long flags; 3440 struct tty_struct *tty; 3441 spin_lock_irqsave(&p->sighand->siglock, flags); 3442 tty = p->signal->tty; 3443 p->signal->tty = NULL; 3444 spin_unlock_irqrestore(&p->sighand->siglock, flags); 3445 tty_kref_put(tty); 3446 } 3447 3448 /* Called under the sighand lock */ 3449 3450 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty) 3451 { 3452 if (tty) { 3453 unsigned long flags; 3454 /* We should not have a session or pgrp to put here but.... */ 3455 spin_lock_irqsave(&tty->ctrl_lock, flags); 3456 put_pid(tty->session); 3457 put_pid(tty->pgrp); 3458 tty->pgrp = get_pid(task_pgrp(tsk)); 3459 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 3460 tty->session = get_pid(task_session(tsk)); 3461 if (tsk->signal->tty) { 3462 printk(KERN_DEBUG "tty not NULL!!\n"); 3463 tty_kref_put(tsk->signal->tty); 3464 } 3465 } 3466 put_pid(tsk->signal->tty_old_pgrp); 3467 tsk->signal->tty = tty_kref_get(tty); 3468 tsk->signal->tty_old_pgrp = NULL; 3469 } 3470 3471 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty) 3472 { 3473 spin_lock_irq(&tsk->sighand->siglock); 3474 __proc_set_tty(tsk, tty); 3475 spin_unlock_irq(&tsk->sighand->siglock); 3476 } 3477 3478 struct tty_struct *get_current_tty(void) 3479 { 3480 struct tty_struct *tty; 3481 unsigned long flags; 3482 3483 spin_lock_irqsave(¤t->sighand->siglock, flags); 3484 tty = tty_kref_get(current->signal->tty); 3485 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 3486 return tty; 3487 } 3488 EXPORT_SYMBOL_GPL(get_current_tty); 3489 3490 void tty_default_fops(struct file_operations *fops) 3491 { 3492 *fops = tty_fops; 3493 } 3494 3495 /* 3496 * Initialize the console device. This is called *early*, so 3497 * we can't necessarily depend on lots of kernel help here. 3498 * Just do some early initializations, and do the complex setup 3499 * later. 3500 */ 3501 void __init console_init(void) 3502 { 3503 initcall_t *call; 3504 3505 /* Setup the default TTY line discipline. */ 3506 tty_ldisc_begin(); 3507 3508 /* 3509 * set up the console device so that later boot sequences can 3510 * inform about problems etc.. 3511 */ 3512 call = __con_initcall_start; 3513 while (call < __con_initcall_end) { 3514 (*call)(); 3515 call++; 3516 } 3517 } 3518 3519 static char *tty_devnode(struct device *dev, umode_t *mode) 3520 { 3521 if (!mode) 3522 return NULL; 3523 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3524 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3525 *mode = 0666; 3526 return NULL; 3527 } 3528 3529 static int __init tty_class_init(void) 3530 { 3531 tty_class = class_create(THIS_MODULE, "tty"); 3532 if (IS_ERR(tty_class)) 3533 return PTR_ERR(tty_class); 3534 tty_class->devnode = tty_devnode; 3535 return 0; 3536 } 3537 3538 postcore_initcall(tty_class_init); 3539 3540 /* 3/2004 jmc: why do these devices exist? */ 3541 static struct cdev tty_cdev, console_cdev; 3542 3543 static ssize_t show_cons_active(struct device *dev, 3544 struct device_attribute *attr, char *buf) 3545 { 3546 struct console *cs[16]; 3547 int i = 0; 3548 struct console *c; 3549 ssize_t count = 0; 3550 3551 console_lock(); 3552 for_each_console(c) { 3553 if (!c->device) 3554 continue; 3555 if (!c->write) 3556 continue; 3557 if ((c->flags & CON_ENABLED) == 0) 3558 continue; 3559 cs[i++] = c; 3560 if (i >= ARRAY_SIZE(cs)) 3561 break; 3562 } 3563 while (i--) { 3564 int index = cs[i]->index; 3565 struct tty_driver *drv = cs[i]->device(cs[i], &index); 3566 3567 /* don't resolve tty0 as some programs depend on it */ 3568 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR)) 3569 count += tty_line_name(drv, index, buf + count); 3570 else 3571 count += sprintf(buf + count, "%s%d", 3572 cs[i]->name, cs[i]->index); 3573 3574 count += sprintf(buf + count, "%c", i ? ' ':'\n'); 3575 } 3576 console_unlock(); 3577 3578 return count; 3579 } 3580 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3581 3582 static struct device *consdev; 3583 3584 void console_sysfs_notify(void) 3585 { 3586 if (consdev) 3587 sysfs_notify(&consdev->kobj, NULL, "active"); 3588 } 3589 3590 /* 3591 * Ok, now we can initialize the rest of the tty devices and can count 3592 * on memory allocations, interrupts etc.. 3593 */ 3594 int __init tty_init(void) 3595 { 3596 cdev_init(&tty_cdev, &tty_fops); 3597 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3598 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3599 panic("Couldn't register /dev/tty driver\n"); 3600 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3601 3602 cdev_init(&console_cdev, &console_fops); 3603 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3604 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3605 panic("Couldn't register /dev/console driver\n"); 3606 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL, 3607 "console"); 3608 if (IS_ERR(consdev)) 3609 consdev = NULL; 3610 else 3611 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0); 3612 3613 #ifdef CONFIG_VT 3614 vty_init(&console_fops); 3615 #endif 3616 return 0; 3617 } 3618 3619