xref: /openbmc/linux/drivers/tty/tty_io.c (revision 5e29a910)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112 
113 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
114 	.c_iflag = ICRNL | IXON,
115 	.c_oflag = OPOST | ONLCR,
116 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 		   ECHOCTL | ECHOKE | IEXTEN,
119 	.c_cc = INIT_C_CC,
120 	.c_ispeed = 38400,
121 	.c_ospeed = 38400
122 };
123 
124 EXPORT_SYMBOL(tty_std_termios);
125 
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129 
130 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
131 
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136 
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139 
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 							size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 				unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 
157 /**
158  *	free_tty_struct		-	free a disused tty
159  *	@tty: tty struct to free
160  *
161  *	Free the write buffers, tty queue and tty memory itself.
162  *
163  *	Locking: none. Must be called after tty is definitely unused
164  */
165 
166 void free_tty_struct(struct tty_struct *tty)
167 {
168 	if (!tty)
169 		return;
170 	put_device(tty->dev);
171 	kfree(tty->write_buf);
172 	tty->magic = 0xDEADDEAD;
173 	kfree(tty);
174 }
175 
176 static inline struct tty_struct *file_tty(struct file *file)
177 {
178 	return ((struct tty_file_private *)file->private_data)->tty;
179 }
180 
181 int tty_alloc_file(struct file *file)
182 {
183 	struct tty_file_private *priv;
184 
185 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
186 	if (!priv)
187 		return -ENOMEM;
188 
189 	file->private_data = priv;
190 
191 	return 0;
192 }
193 
194 /* Associate a new file with the tty structure */
195 void tty_add_file(struct tty_struct *tty, struct file *file)
196 {
197 	struct tty_file_private *priv = file->private_data;
198 
199 	priv->tty = tty;
200 	priv->file = file;
201 
202 	spin_lock(&tty_files_lock);
203 	list_add(&priv->list, &tty->tty_files);
204 	spin_unlock(&tty_files_lock);
205 }
206 
207 /**
208  * tty_free_file - free file->private_data
209  *
210  * This shall be used only for fail path handling when tty_add_file was not
211  * called yet.
212  */
213 void tty_free_file(struct file *file)
214 {
215 	struct tty_file_private *priv = file->private_data;
216 
217 	file->private_data = NULL;
218 	kfree(priv);
219 }
220 
221 /* Delete file from its tty */
222 static void tty_del_file(struct file *file)
223 {
224 	struct tty_file_private *priv = file->private_data;
225 
226 	spin_lock(&tty_files_lock);
227 	list_del(&priv->list);
228 	spin_unlock(&tty_files_lock);
229 	tty_free_file(file);
230 }
231 
232 
233 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
234 
235 /**
236  *	tty_name	-	return tty naming
237  *	@tty: tty structure
238  *	@buf: buffer for output
239  *
240  *	Convert a tty structure into a name. The name reflects the kernel
241  *	naming policy and if udev is in use may not reflect user space
242  *
243  *	Locking: none
244  */
245 
246 char *tty_name(struct tty_struct *tty, char *buf)
247 {
248 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
249 		strcpy(buf, "NULL tty");
250 	else
251 		strcpy(buf, tty->name);
252 	return buf;
253 }
254 
255 EXPORT_SYMBOL(tty_name);
256 
257 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
258 			      const char *routine)
259 {
260 #ifdef TTY_PARANOIA_CHECK
261 	if (!tty) {
262 		printk(KERN_WARNING
263 			"null TTY for (%d:%d) in %s\n",
264 			imajor(inode), iminor(inode), routine);
265 		return 1;
266 	}
267 	if (tty->magic != TTY_MAGIC) {
268 		printk(KERN_WARNING
269 			"bad magic number for tty struct (%d:%d) in %s\n",
270 			imajor(inode), iminor(inode), routine);
271 		return 1;
272 	}
273 #endif
274 	return 0;
275 }
276 
277 /* Caller must hold tty_lock */
278 static int check_tty_count(struct tty_struct *tty, const char *routine)
279 {
280 #ifdef CHECK_TTY_COUNT
281 	struct list_head *p;
282 	int count = 0;
283 
284 	spin_lock(&tty_files_lock);
285 	list_for_each(p, &tty->tty_files) {
286 		count++;
287 	}
288 	spin_unlock(&tty_files_lock);
289 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
290 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
291 	    tty->link && tty->link->count)
292 		count++;
293 	if (tty->count != count) {
294 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
295 				    "!= #fd's(%d) in %s\n",
296 		       tty->name, tty->count, count, routine);
297 		return count;
298 	}
299 #endif
300 	return 0;
301 }
302 
303 /**
304  *	get_tty_driver		-	find device of a tty
305  *	@dev_t: device identifier
306  *	@index: returns the index of the tty
307  *
308  *	This routine returns a tty driver structure, given a device number
309  *	and also passes back the index number.
310  *
311  *	Locking: caller must hold tty_mutex
312  */
313 
314 static struct tty_driver *get_tty_driver(dev_t device, int *index)
315 {
316 	struct tty_driver *p;
317 
318 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
319 		dev_t base = MKDEV(p->major, p->minor_start);
320 		if (device < base || device >= base + p->num)
321 			continue;
322 		*index = device - base;
323 		return tty_driver_kref_get(p);
324 	}
325 	return NULL;
326 }
327 
328 #ifdef CONFIG_CONSOLE_POLL
329 
330 /**
331  *	tty_find_polling_driver	-	find device of a polled tty
332  *	@name: name string to match
333  *	@line: pointer to resulting tty line nr
334  *
335  *	This routine returns a tty driver structure, given a name
336  *	and the condition that the tty driver is capable of polled
337  *	operation.
338  */
339 struct tty_driver *tty_find_polling_driver(char *name, int *line)
340 {
341 	struct tty_driver *p, *res = NULL;
342 	int tty_line = 0;
343 	int len;
344 	char *str, *stp;
345 
346 	for (str = name; *str; str++)
347 		if ((*str >= '0' && *str <= '9') || *str == ',')
348 			break;
349 	if (!*str)
350 		return NULL;
351 
352 	len = str - name;
353 	tty_line = simple_strtoul(str, &str, 10);
354 
355 	mutex_lock(&tty_mutex);
356 	/* Search through the tty devices to look for a match */
357 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
358 		if (strncmp(name, p->name, len) != 0)
359 			continue;
360 		stp = str;
361 		if (*stp == ',')
362 			stp++;
363 		if (*stp == '\0')
364 			stp = NULL;
365 
366 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
367 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
368 			res = tty_driver_kref_get(p);
369 			*line = tty_line;
370 			break;
371 		}
372 	}
373 	mutex_unlock(&tty_mutex);
374 
375 	return res;
376 }
377 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
378 #endif
379 
380 /**
381  *	tty_check_change	-	check for POSIX terminal changes
382  *	@tty: tty to check
383  *
384  *	If we try to write to, or set the state of, a terminal and we're
385  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
386  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
387  *
388  *	Locking: ctrl_lock
389  */
390 
391 int tty_check_change(struct tty_struct *tty)
392 {
393 	unsigned long flags;
394 	int ret = 0;
395 
396 	if (current->signal->tty != tty)
397 		return 0;
398 
399 	spin_lock_irqsave(&tty->ctrl_lock, flags);
400 
401 	if (!tty->pgrp) {
402 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
403 		goto out_unlock;
404 	}
405 	if (task_pgrp(current) == tty->pgrp)
406 		goto out_unlock;
407 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
408 	if (is_ignored(SIGTTOU))
409 		goto out;
410 	if (is_current_pgrp_orphaned()) {
411 		ret = -EIO;
412 		goto out;
413 	}
414 	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
415 	set_thread_flag(TIF_SIGPENDING);
416 	ret = -ERESTARTSYS;
417 out:
418 	return ret;
419 out_unlock:
420 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
421 	return ret;
422 }
423 
424 EXPORT_SYMBOL(tty_check_change);
425 
426 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
427 				size_t count, loff_t *ppos)
428 {
429 	return 0;
430 }
431 
432 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
433 				 size_t count, loff_t *ppos)
434 {
435 	return -EIO;
436 }
437 
438 /* No kernel lock held - none needed ;) */
439 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
440 {
441 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
442 }
443 
444 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
445 		unsigned long arg)
446 {
447 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
448 }
449 
450 static long hung_up_tty_compat_ioctl(struct file *file,
451 				     unsigned int cmd, unsigned long arg)
452 {
453 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
454 }
455 
456 static const struct file_operations tty_fops = {
457 	.llseek		= no_llseek,
458 	.read		= tty_read,
459 	.write		= tty_write,
460 	.poll		= tty_poll,
461 	.unlocked_ioctl	= tty_ioctl,
462 	.compat_ioctl	= tty_compat_ioctl,
463 	.open		= tty_open,
464 	.release	= tty_release,
465 	.fasync		= tty_fasync,
466 };
467 
468 static const struct file_operations console_fops = {
469 	.llseek		= no_llseek,
470 	.read		= tty_read,
471 	.write		= redirected_tty_write,
472 	.poll		= tty_poll,
473 	.unlocked_ioctl	= tty_ioctl,
474 	.compat_ioctl	= tty_compat_ioctl,
475 	.open		= tty_open,
476 	.release	= tty_release,
477 	.fasync		= tty_fasync,
478 };
479 
480 static const struct file_operations hung_up_tty_fops = {
481 	.llseek		= no_llseek,
482 	.read		= hung_up_tty_read,
483 	.write		= hung_up_tty_write,
484 	.poll		= hung_up_tty_poll,
485 	.unlocked_ioctl	= hung_up_tty_ioctl,
486 	.compat_ioctl	= hung_up_tty_compat_ioctl,
487 	.release	= tty_release,
488 };
489 
490 static DEFINE_SPINLOCK(redirect_lock);
491 static struct file *redirect;
492 
493 
494 void proc_clear_tty(struct task_struct *p)
495 {
496 	unsigned long flags;
497 	struct tty_struct *tty;
498 	spin_lock_irqsave(&p->sighand->siglock, flags);
499 	tty = p->signal->tty;
500 	p->signal->tty = NULL;
501 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
502 	tty_kref_put(tty);
503 }
504 
505 /**
506  * proc_set_tty -  set the controlling terminal
507  *
508  * Only callable by the session leader and only if it does not already have
509  * a controlling terminal.
510  *
511  * Caller must hold:  tty_lock()
512  *		      a readlock on tasklist_lock
513  *		      sighand lock
514  */
515 static void __proc_set_tty(struct tty_struct *tty)
516 {
517 	unsigned long flags;
518 
519 	spin_lock_irqsave(&tty->ctrl_lock, flags);
520 	/*
521 	 * The session and fg pgrp references will be non-NULL if
522 	 * tiocsctty() is stealing the controlling tty
523 	 */
524 	put_pid(tty->session);
525 	put_pid(tty->pgrp);
526 	tty->pgrp = get_pid(task_pgrp(current));
527 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
528 	tty->session = get_pid(task_session(current));
529 	if (current->signal->tty) {
530 		printk(KERN_DEBUG "tty not NULL!!\n");
531 		tty_kref_put(current->signal->tty);
532 	}
533 	put_pid(current->signal->tty_old_pgrp);
534 	current->signal->tty = tty_kref_get(tty);
535 	current->signal->tty_old_pgrp = NULL;
536 }
537 
538 static void proc_set_tty(struct tty_struct *tty)
539 {
540 	spin_lock_irq(&current->sighand->siglock);
541 	__proc_set_tty(tty);
542 	spin_unlock_irq(&current->sighand->siglock);
543 }
544 
545 struct tty_struct *get_current_tty(void)
546 {
547 	struct tty_struct *tty;
548 	unsigned long flags;
549 
550 	spin_lock_irqsave(&current->sighand->siglock, flags);
551 	tty = tty_kref_get(current->signal->tty);
552 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
553 	return tty;
554 }
555 EXPORT_SYMBOL_GPL(get_current_tty);
556 
557 static void session_clear_tty(struct pid *session)
558 {
559 	struct task_struct *p;
560 	do_each_pid_task(session, PIDTYPE_SID, p) {
561 		proc_clear_tty(p);
562 	} while_each_pid_task(session, PIDTYPE_SID, p);
563 }
564 
565 /**
566  *	tty_wakeup	-	request more data
567  *	@tty: terminal
568  *
569  *	Internal and external helper for wakeups of tty. This function
570  *	informs the line discipline if present that the driver is ready
571  *	to receive more output data.
572  */
573 
574 void tty_wakeup(struct tty_struct *tty)
575 {
576 	struct tty_ldisc *ld;
577 
578 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
579 		ld = tty_ldisc_ref(tty);
580 		if (ld) {
581 			if (ld->ops->write_wakeup)
582 				ld->ops->write_wakeup(tty);
583 			tty_ldisc_deref(ld);
584 		}
585 	}
586 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
587 }
588 
589 EXPORT_SYMBOL_GPL(tty_wakeup);
590 
591 /**
592  *	tty_signal_session_leader	- sends SIGHUP to session leader
593  *	@tty		controlling tty
594  *	@exit_session	if non-zero, signal all foreground group processes
595  *
596  *	Send SIGHUP and SIGCONT to the session leader and its process group.
597  *	Optionally, signal all processes in the foreground process group.
598  *
599  *	Returns the number of processes in the session with this tty
600  *	as their controlling terminal. This value is used to drop
601  *	tty references for those processes.
602  */
603 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
604 {
605 	struct task_struct *p;
606 	int refs = 0;
607 	struct pid *tty_pgrp = NULL;
608 
609 	read_lock(&tasklist_lock);
610 	if (tty->session) {
611 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
612 			spin_lock_irq(&p->sighand->siglock);
613 			if (p->signal->tty == tty) {
614 				p->signal->tty = NULL;
615 				/* We defer the dereferences outside fo
616 				   the tasklist lock */
617 				refs++;
618 			}
619 			if (!p->signal->leader) {
620 				spin_unlock_irq(&p->sighand->siglock);
621 				continue;
622 			}
623 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
624 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
625 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
626 			spin_lock(&tty->ctrl_lock);
627 			tty_pgrp = get_pid(tty->pgrp);
628 			if (tty->pgrp)
629 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
630 			spin_unlock(&tty->ctrl_lock);
631 			spin_unlock_irq(&p->sighand->siglock);
632 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
633 	}
634 	read_unlock(&tasklist_lock);
635 
636 	if (tty_pgrp) {
637 		if (exit_session)
638 			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
639 		put_pid(tty_pgrp);
640 	}
641 
642 	return refs;
643 }
644 
645 /**
646  *	__tty_hangup		-	actual handler for hangup events
647  *	@work: tty device
648  *
649  *	This can be called by a "kworker" kernel thread.  That is process
650  *	synchronous but doesn't hold any locks, so we need to make sure we
651  *	have the appropriate locks for what we're doing.
652  *
653  *	The hangup event clears any pending redirections onto the hung up
654  *	device. It ensures future writes will error and it does the needed
655  *	line discipline hangup and signal delivery. The tty object itself
656  *	remains intact.
657  *
658  *	Locking:
659  *		BTM
660  *		  redirect lock for undoing redirection
661  *		  file list lock for manipulating list of ttys
662  *		  tty_ldiscs_lock from called functions
663  *		  termios_rwsem resetting termios data
664  *		  tasklist_lock to walk task list for hangup event
665  *		    ->siglock to protect ->signal/->sighand
666  */
667 static void __tty_hangup(struct tty_struct *tty, int exit_session)
668 {
669 	struct file *cons_filp = NULL;
670 	struct file *filp, *f = NULL;
671 	struct tty_file_private *priv;
672 	int    closecount = 0, n;
673 	int refs;
674 
675 	if (!tty)
676 		return;
677 
678 
679 	spin_lock(&redirect_lock);
680 	if (redirect && file_tty(redirect) == tty) {
681 		f = redirect;
682 		redirect = NULL;
683 	}
684 	spin_unlock(&redirect_lock);
685 
686 	tty_lock(tty);
687 
688 	if (test_bit(TTY_HUPPED, &tty->flags)) {
689 		tty_unlock(tty);
690 		return;
691 	}
692 
693 	/* inuse_filps is protected by the single tty lock,
694 	   this really needs to change if we want to flush the
695 	   workqueue with the lock held */
696 	check_tty_count(tty, "tty_hangup");
697 
698 	spin_lock(&tty_files_lock);
699 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
700 	list_for_each_entry(priv, &tty->tty_files, list) {
701 		filp = priv->file;
702 		if (filp->f_op->write == redirected_tty_write)
703 			cons_filp = filp;
704 		if (filp->f_op->write != tty_write)
705 			continue;
706 		closecount++;
707 		__tty_fasync(-1, filp, 0);	/* can't block */
708 		filp->f_op = &hung_up_tty_fops;
709 	}
710 	spin_unlock(&tty_files_lock);
711 
712 	refs = tty_signal_session_leader(tty, exit_session);
713 	/* Account for the p->signal references we killed */
714 	while (refs--)
715 		tty_kref_put(tty);
716 
717 	tty_ldisc_hangup(tty);
718 
719 	spin_lock_irq(&tty->ctrl_lock);
720 	clear_bit(TTY_THROTTLED, &tty->flags);
721 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
722 	put_pid(tty->session);
723 	put_pid(tty->pgrp);
724 	tty->session = NULL;
725 	tty->pgrp = NULL;
726 	tty->ctrl_status = 0;
727 	spin_unlock_irq(&tty->ctrl_lock);
728 
729 	/*
730 	 * If one of the devices matches a console pointer, we
731 	 * cannot just call hangup() because that will cause
732 	 * tty->count and state->count to go out of sync.
733 	 * So we just call close() the right number of times.
734 	 */
735 	if (cons_filp) {
736 		if (tty->ops->close)
737 			for (n = 0; n < closecount; n++)
738 				tty->ops->close(tty, cons_filp);
739 	} else if (tty->ops->hangup)
740 		tty->ops->hangup(tty);
741 	/*
742 	 * We don't want to have driver/ldisc interactions beyond
743 	 * the ones we did here. The driver layer expects no
744 	 * calls after ->hangup() from the ldisc side. However we
745 	 * can't yet guarantee all that.
746 	 */
747 	set_bit(TTY_HUPPED, &tty->flags);
748 	tty_unlock(tty);
749 
750 	if (f)
751 		fput(f);
752 }
753 
754 static void do_tty_hangup(struct work_struct *work)
755 {
756 	struct tty_struct *tty =
757 		container_of(work, struct tty_struct, hangup_work);
758 
759 	__tty_hangup(tty, 0);
760 }
761 
762 /**
763  *	tty_hangup		-	trigger a hangup event
764  *	@tty: tty to hangup
765  *
766  *	A carrier loss (virtual or otherwise) has occurred on this like
767  *	schedule a hangup sequence to run after this event.
768  */
769 
770 void tty_hangup(struct tty_struct *tty)
771 {
772 #ifdef TTY_DEBUG_HANGUP
773 	char	buf[64];
774 	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
775 #endif
776 	schedule_work(&tty->hangup_work);
777 }
778 
779 EXPORT_SYMBOL(tty_hangup);
780 
781 /**
782  *	tty_vhangup		-	process vhangup
783  *	@tty: tty to hangup
784  *
785  *	The user has asked via system call for the terminal to be hung up.
786  *	We do this synchronously so that when the syscall returns the process
787  *	is complete. That guarantee is necessary for security reasons.
788  */
789 
790 void tty_vhangup(struct tty_struct *tty)
791 {
792 #ifdef TTY_DEBUG_HANGUP
793 	char	buf[64];
794 
795 	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
796 #endif
797 	__tty_hangup(tty, 0);
798 }
799 
800 EXPORT_SYMBOL(tty_vhangup);
801 
802 
803 /**
804  *	tty_vhangup_self	-	process vhangup for own ctty
805  *
806  *	Perform a vhangup on the current controlling tty
807  */
808 
809 void tty_vhangup_self(void)
810 {
811 	struct tty_struct *tty;
812 
813 	tty = get_current_tty();
814 	if (tty) {
815 		tty_vhangup(tty);
816 		tty_kref_put(tty);
817 	}
818 }
819 
820 /**
821  *	tty_vhangup_session		-	hangup session leader exit
822  *	@tty: tty to hangup
823  *
824  *	The session leader is exiting and hanging up its controlling terminal.
825  *	Every process in the foreground process group is signalled SIGHUP.
826  *
827  *	We do this synchronously so that when the syscall returns the process
828  *	is complete. That guarantee is necessary for security reasons.
829  */
830 
831 static void tty_vhangup_session(struct tty_struct *tty)
832 {
833 #ifdef TTY_DEBUG_HANGUP
834 	char	buf[64];
835 
836 	printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
837 #endif
838 	__tty_hangup(tty, 1);
839 }
840 
841 /**
842  *	tty_hung_up_p		-	was tty hung up
843  *	@filp: file pointer of tty
844  *
845  *	Return true if the tty has been subject to a vhangup or a carrier
846  *	loss
847  */
848 
849 int tty_hung_up_p(struct file *filp)
850 {
851 	return (filp->f_op == &hung_up_tty_fops);
852 }
853 
854 EXPORT_SYMBOL(tty_hung_up_p);
855 
856 /**
857  *	disassociate_ctty	-	disconnect controlling tty
858  *	@on_exit: true if exiting so need to "hang up" the session
859  *
860  *	This function is typically called only by the session leader, when
861  *	it wants to disassociate itself from its controlling tty.
862  *
863  *	It performs the following functions:
864  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
865  * 	(2)  Clears the tty from being controlling the session
866  * 	(3)  Clears the controlling tty for all processes in the
867  * 		session group.
868  *
869  *	The argument on_exit is set to 1 if called when a process is
870  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
871  *
872  *	Locking:
873  *		BTM is taken for hysterical raisins, and held when
874  *		  called from no_tty().
875  *		  tty_mutex is taken to protect tty
876  *		  ->siglock is taken to protect ->signal/->sighand
877  *		  tasklist_lock is taken to walk process list for sessions
878  *		    ->siglock is taken to protect ->signal/->sighand
879  */
880 
881 void disassociate_ctty(int on_exit)
882 {
883 	struct tty_struct *tty;
884 
885 	if (!current->signal->leader)
886 		return;
887 
888 	tty = get_current_tty();
889 	if (tty) {
890 		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
891 			tty_vhangup_session(tty);
892 		} else {
893 			struct pid *tty_pgrp = tty_get_pgrp(tty);
894 			if (tty_pgrp) {
895 				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
896 				if (!on_exit)
897 					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
898 				put_pid(tty_pgrp);
899 			}
900 		}
901 		tty_kref_put(tty);
902 
903 	} else if (on_exit) {
904 		struct pid *old_pgrp;
905 		spin_lock_irq(&current->sighand->siglock);
906 		old_pgrp = current->signal->tty_old_pgrp;
907 		current->signal->tty_old_pgrp = NULL;
908 		spin_unlock_irq(&current->sighand->siglock);
909 		if (old_pgrp) {
910 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
911 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
912 			put_pid(old_pgrp);
913 		}
914 		return;
915 	}
916 
917 	spin_lock_irq(&current->sighand->siglock);
918 	put_pid(current->signal->tty_old_pgrp);
919 	current->signal->tty_old_pgrp = NULL;
920 
921 	tty = tty_kref_get(current->signal->tty);
922 	if (tty) {
923 		unsigned long flags;
924 		spin_lock_irqsave(&tty->ctrl_lock, flags);
925 		put_pid(tty->session);
926 		put_pid(tty->pgrp);
927 		tty->session = NULL;
928 		tty->pgrp = NULL;
929 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
930 		tty_kref_put(tty);
931 	} else {
932 #ifdef TTY_DEBUG_HANGUP
933 		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
934 		       " = NULL", tty);
935 #endif
936 	}
937 
938 	spin_unlock_irq(&current->sighand->siglock);
939 	/* Now clear signal->tty under the lock */
940 	read_lock(&tasklist_lock);
941 	session_clear_tty(task_session(current));
942 	read_unlock(&tasklist_lock);
943 }
944 
945 /**
946  *
947  *	no_tty	- Ensure the current process does not have a controlling tty
948  */
949 void no_tty(void)
950 {
951 	/* FIXME: Review locking here. The tty_lock never covered any race
952 	   between a new association and proc_clear_tty but possible we need
953 	   to protect against this anyway */
954 	struct task_struct *tsk = current;
955 	disassociate_ctty(0);
956 	proc_clear_tty(tsk);
957 }
958 
959 
960 /**
961  *	stop_tty	-	propagate flow control
962  *	@tty: tty to stop
963  *
964  *	Perform flow control to the driver. May be called
965  *	on an already stopped device and will not re-call the driver
966  *	method.
967  *
968  *	This functionality is used by both the line disciplines for
969  *	halting incoming flow and by the driver. It may therefore be
970  *	called from any context, may be under the tty atomic_write_lock
971  *	but not always.
972  *
973  *	Locking:
974  *		flow_lock
975  */
976 
977 void __stop_tty(struct tty_struct *tty)
978 {
979 	if (tty->stopped)
980 		return;
981 	tty->stopped = 1;
982 	if (tty->ops->stop)
983 		tty->ops->stop(tty);
984 }
985 
986 void stop_tty(struct tty_struct *tty)
987 {
988 	unsigned long flags;
989 
990 	spin_lock_irqsave(&tty->flow_lock, flags);
991 	__stop_tty(tty);
992 	spin_unlock_irqrestore(&tty->flow_lock, flags);
993 }
994 EXPORT_SYMBOL(stop_tty);
995 
996 /**
997  *	start_tty	-	propagate flow control
998  *	@tty: tty to start
999  *
1000  *	Start a tty that has been stopped if at all possible. If this
1001  *	tty was previous stopped and is now being started, the driver
1002  *	start method is invoked and the line discipline woken.
1003  *
1004  *	Locking:
1005  *		flow_lock
1006  */
1007 
1008 void __start_tty(struct tty_struct *tty)
1009 {
1010 	if (!tty->stopped || tty->flow_stopped)
1011 		return;
1012 	tty->stopped = 0;
1013 	if (tty->ops->start)
1014 		tty->ops->start(tty);
1015 	tty_wakeup(tty);
1016 }
1017 
1018 void start_tty(struct tty_struct *tty)
1019 {
1020 	unsigned long flags;
1021 
1022 	spin_lock_irqsave(&tty->flow_lock, flags);
1023 	__start_tty(tty);
1024 	spin_unlock_irqrestore(&tty->flow_lock, flags);
1025 }
1026 EXPORT_SYMBOL(start_tty);
1027 
1028 /* We limit tty time update visibility to every 8 seconds or so. */
1029 static void tty_update_time(struct timespec *time)
1030 {
1031 	unsigned long sec = get_seconds();
1032 	if (abs(sec - time->tv_sec) & ~7)
1033 		time->tv_sec = sec;
1034 }
1035 
1036 /**
1037  *	tty_read	-	read method for tty device files
1038  *	@file: pointer to tty file
1039  *	@buf: user buffer
1040  *	@count: size of user buffer
1041  *	@ppos: unused
1042  *
1043  *	Perform the read system call function on this terminal device. Checks
1044  *	for hung up devices before calling the line discipline method.
1045  *
1046  *	Locking:
1047  *		Locks the line discipline internally while needed. Multiple
1048  *	read calls may be outstanding in parallel.
1049  */
1050 
1051 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1052 			loff_t *ppos)
1053 {
1054 	int i;
1055 	struct inode *inode = file_inode(file);
1056 	struct tty_struct *tty = file_tty(file);
1057 	struct tty_ldisc *ld;
1058 
1059 	if (tty_paranoia_check(tty, inode, "tty_read"))
1060 		return -EIO;
1061 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1062 		return -EIO;
1063 
1064 	/* We want to wait for the line discipline to sort out in this
1065 	   situation */
1066 	ld = tty_ldisc_ref_wait(tty);
1067 	if (ld->ops->read)
1068 		i = ld->ops->read(tty, file, buf, count);
1069 	else
1070 		i = -EIO;
1071 	tty_ldisc_deref(ld);
1072 
1073 	if (i > 0)
1074 		tty_update_time(&inode->i_atime);
1075 
1076 	return i;
1077 }
1078 
1079 static void tty_write_unlock(struct tty_struct *tty)
1080 {
1081 	mutex_unlock(&tty->atomic_write_lock);
1082 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1083 }
1084 
1085 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1086 {
1087 	if (!mutex_trylock(&tty->atomic_write_lock)) {
1088 		if (ndelay)
1089 			return -EAGAIN;
1090 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1091 			return -ERESTARTSYS;
1092 	}
1093 	return 0;
1094 }
1095 
1096 /*
1097  * Split writes up in sane blocksizes to avoid
1098  * denial-of-service type attacks
1099  */
1100 static inline ssize_t do_tty_write(
1101 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1102 	struct tty_struct *tty,
1103 	struct file *file,
1104 	const char __user *buf,
1105 	size_t count)
1106 {
1107 	ssize_t ret, written = 0;
1108 	unsigned int chunk;
1109 
1110 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1111 	if (ret < 0)
1112 		return ret;
1113 
1114 	/*
1115 	 * We chunk up writes into a temporary buffer. This
1116 	 * simplifies low-level drivers immensely, since they
1117 	 * don't have locking issues and user mode accesses.
1118 	 *
1119 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1120 	 * big chunk-size..
1121 	 *
1122 	 * The default chunk-size is 2kB, because the NTTY
1123 	 * layer has problems with bigger chunks. It will
1124 	 * claim to be able to handle more characters than
1125 	 * it actually does.
1126 	 *
1127 	 * FIXME: This can probably go away now except that 64K chunks
1128 	 * are too likely to fail unless switched to vmalloc...
1129 	 */
1130 	chunk = 2048;
1131 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1132 		chunk = 65536;
1133 	if (count < chunk)
1134 		chunk = count;
1135 
1136 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1137 	if (tty->write_cnt < chunk) {
1138 		unsigned char *buf_chunk;
1139 
1140 		if (chunk < 1024)
1141 			chunk = 1024;
1142 
1143 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1144 		if (!buf_chunk) {
1145 			ret = -ENOMEM;
1146 			goto out;
1147 		}
1148 		kfree(tty->write_buf);
1149 		tty->write_cnt = chunk;
1150 		tty->write_buf = buf_chunk;
1151 	}
1152 
1153 	/* Do the write .. */
1154 	for (;;) {
1155 		size_t size = count;
1156 		if (size > chunk)
1157 			size = chunk;
1158 		ret = -EFAULT;
1159 		if (copy_from_user(tty->write_buf, buf, size))
1160 			break;
1161 		ret = write(tty, file, tty->write_buf, size);
1162 		if (ret <= 0)
1163 			break;
1164 		written += ret;
1165 		buf += ret;
1166 		count -= ret;
1167 		if (!count)
1168 			break;
1169 		ret = -ERESTARTSYS;
1170 		if (signal_pending(current))
1171 			break;
1172 		cond_resched();
1173 	}
1174 	if (written) {
1175 		tty_update_time(&file_inode(file)->i_mtime);
1176 		ret = written;
1177 	}
1178 out:
1179 	tty_write_unlock(tty);
1180 	return ret;
1181 }
1182 
1183 /**
1184  * tty_write_message - write a message to a certain tty, not just the console.
1185  * @tty: the destination tty_struct
1186  * @msg: the message to write
1187  *
1188  * This is used for messages that need to be redirected to a specific tty.
1189  * We don't put it into the syslog queue right now maybe in the future if
1190  * really needed.
1191  *
1192  * We must still hold the BTM and test the CLOSING flag for the moment.
1193  */
1194 
1195 void tty_write_message(struct tty_struct *tty, char *msg)
1196 {
1197 	if (tty) {
1198 		mutex_lock(&tty->atomic_write_lock);
1199 		tty_lock(tty);
1200 		if (tty->ops->write && tty->count > 0) {
1201 			tty_unlock(tty);
1202 			tty->ops->write(tty, msg, strlen(msg));
1203 		} else
1204 			tty_unlock(tty);
1205 		tty_write_unlock(tty);
1206 	}
1207 	return;
1208 }
1209 
1210 
1211 /**
1212  *	tty_write		-	write method for tty device file
1213  *	@file: tty file pointer
1214  *	@buf: user data to write
1215  *	@count: bytes to write
1216  *	@ppos: unused
1217  *
1218  *	Write data to a tty device via the line discipline.
1219  *
1220  *	Locking:
1221  *		Locks the line discipline as required
1222  *		Writes to the tty driver are serialized by the atomic_write_lock
1223  *	and are then processed in chunks to the device. The line discipline
1224  *	write method will not be invoked in parallel for each device.
1225  */
1226 
1227 static ssize_t tty_write(struct file *file, const char __user *buf,
1228 						size_t count, loff_t *ppos)
1229 {
1230 	struct tty_struct *tty = file_tty(file);
1231  	struct tty_ldisc *ld;
1232 	ssize_t ret;
1233 
1234 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1235 		return -EIO;
1236 	if (!tty || !tty->ops->write ||
1237 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1238 			return -EIO;
1239 	/* Short term debug to catch buggy drivers */
1240 	if (tty->ops->write_room == NULL)
1241 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1242 			tty->driver->name);
1243 	ld = tty_ldisc_ref_wait(tty);
1244 	if (!ld->ops->write)
1245 		ret = -EIO;
1246 	else
1247 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1248 	tty_ldisc_deref(ld);
1249 	return ret;
1250 }
1251 
1252 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1253 						size_t count, loff_t *ppos)
1254 {
1255 	struct file *p = NULL;
1256 
1257 	spin_lock(&redirect_lock);
1258 	if (redirect)
1259 		p = get_file(redirect);
1260 	spin_unlock(&redirect_lock);
1261 
1262 	if (p) {
1263 		ssize_t res;
1264 		res = vfs_write(p, buf, count, &p->f_pos);
1265 		fput(p);
1266 		return res;
1267 	}
1268 	return tty_write(file, buf, count, ppos);
1269 }
1270 
1271 /**
1272  *	tty_send_xchar	-	send priority character
1273  *
1274  *	Send a high priority character to the tty even if stopped
1275  *
1276  *	Locking: none for xchar method, write ordering for write method.
1277  */
1278 
1279 int tty_send_xchar(struct tty_struct *tty, char ch)
1280 {
1281 	int	was_stopped = tty->stopped;
1282 
1283 	if (tty->ops->send_xchar) {
1284 		tty->ops->send_xchar(tty, ch);
1285 		return 0;
1286 	}
1287 
1288 	if (tty_write_lock(tty, 0) < 0)
1289 		return -ERESTARTSYS;
1290 
1291 	if (was_stopped)
1292 		start_tty(tty);
1293 	tty->ops->write(tty, &ch, 1);
1294 	if (was_stopped)
1295 		stop_tty(tty);
1296 	tty_write_unlock(tty);
1297 	return 0;
1298 }
1299 
1300 static char ptychar[] = "pqrstuvwxyzabcde";
1301 
1302 /**
1303  *	pty_line_name	-	generate name for a pty
1304  *	@driver: the tty driver in use
1305  *	@index: the minor number
1306  *	@p: output buffer of at least 6 bytes
1307  *
1308  *	Generate a name from a driver reference and write it to the output
1309  *	buffer.
1310  *
1311  *	Locking: None
1312  */
1313 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1314 {
1315 	int i = index + driver->name_base;
1316 	/* ->name is initialized to "ttyp", but "tty" is expected */
1317 	sprintf(p, "%s%c%x",
1318 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1319 		ptychar[i >> 4 & 0xf], i & 0xf);
1320 }
1321 
1322 /**
1323  *	tty_line_name	-	generate name for a tty
1324  *	@driver: the tty driver in use
1325  *	@index: the minor number
1326  *	@p: output buffer of at least 7 bytes
1327  *
1328  *	Generate a name from a driver reference and write it to the output
1329  *	buffer.
1330  *
1331  *	Locking: None
1332  */
1333 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1334 {
1335 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1336 		return sprintf(p, "%s", driver->name);
1337 	else
1338 		return sprintf(p, "%s%d", driver->name,
1339 			       index + driver->name_base);
1340 }
1341 
1342 /**
1343  *	tty_driver_lookup_tty() - find an existing tty, if any
1344  *	@driver: the driver for the tty
1345  *	@idx:	 the minor number
1346  *
1347  *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1348  *	driver lookup() method returns an error.
1349  *
1350  *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1351  */
1352 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1353 		struct inode *inode, int idx)
1354 {
1355 	struct tty_struct *tty;
1356 
1357 	if (driver->ops->lookup)
1358 		tty = driver->ops->lookup(driver, inode, idx);
1359 	else
1360 		tty = driver->ttys[idx];
1361 
1362 	if (!IS_ERR(tty))
1363 		tty_kref_get(tty);
1364 	return tty;
1365 }
1366 
1367 /**
1368  *	tty_init_termios	-  helper for termios setup
1369  *	@tty: the tty to set up
1370  *
1371  *	Initialise the termios structures for this tty. Thus runs under
1372  *	the tty_mutex currently so we can be relaxed about ordering.
1373  */
1374 
1375 int tty_init_termios(struct tty_struct *tty)
1376 {
1377 	struct ktermios *tp;
1378 	int idx = tty->index;
1379 
1380 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1381 		tty->termios = tty->driver->init_termios;
1382 	else {
1383 		/* Check for lazy saved data */
1384 		tp = tty->driver->termios[idx];
1385 		if (tp != NULL)
1386 			tty->termios = *tp;
1387 		else
1388 			tty->termios = tty->driver->init_termios;
1389 	}
1390 	/* Compatibility until drivers always set this */
1391 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1392 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1393 	return 0;
1394 }
1395 EXPORT_SYMBOL_GPL(tty_init_termios);
1396 
1397 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1398 {
1399 	int ret = tty_init_termios(tty);
1400 	if (ret)
1401 		return ret;
1402 
1403 	tty_driver_kref_get(driver);
1404 	tty->count++;
1405 	driver->ttys[tty->index] = tty;
1406 	return 0;
1407 }
1408 EXPORT_SYMBOL_GPL(tty_standard_install);
1409 
1410 /**
1411  *	tty_driver_install_tty() - install a tty entry in the driver
1412  *	@driver: the driver for the tty
1413  *	@tty: the tty
1414  *
1415  *	Install a tty object into the driver tables. The tty->index field
1416  *	will be set by the time this is called. This method is responsible
1417  *	for ensuring any need additional structures are allocated and
1418  *	configured.
1419  *
1420  *	Locking: tty_mutex for now
1421  */
1422 static int tty_driver_install_tty(struct tty_driver *driver,
1423 						struct tty_struct *tty)
1424 {
1425 	return driver->ops->install ? driver->ops->install(driver, tty) :
1426 		tty_standard_install(driver, tty);
1427 }
1428 
1429 /**
1430  *	tty_driver_remove_tty() - remove a tty from the driver tables
1431  *	@driver: the driver for the tty
1432  *	@idx:	 the minor number
1433  *
1434  *	Remvoe a tty object from the driver tables. The tty->index field
1435  *	will be set by the time this is called.
1436  *
1437  *	Locking: tty_mutex for now
1438  */
1439 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1440 {
1441 	if (driver->ops->remove)
1442 		driver->ops->remove(driver, tty);
1443 	else
1444 		driver->ttys[tty->index] = NULL;
1445 }
1446 
1447 /*
1448  * 	tty_reopen()	- fast re-open of an open tty
1449  * 	@tty	- the tty to open
1450  *
1451  *	Return 0 on success, -errno on error.
1452  *	Re-opens on master ptys are not allowed and return -EIO.
1453  *
1454  *	Locking: Caller must hold tty_lock
1455  */
1456 static int tty_reopen(struct tty_struct *tty)
1457 {
1458 	struct tty_driver *driver = tty->driver;
1459 
1460 	if (!tty->count)
1461 		return -EIO;
1462 
1463 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1464 	    driver->subtype == PTY_TYPE_MASTER)
1465 		return -EIO;
1466 
1467 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1468 		return -EBUSY;
1469 
1470 	tty->count++;
1471 
1472 	WARN_ON(!tty->ldisc);
1473 
1474 	return 0;
1475 }
1476 
1477 /**
1478  *	tty_init_dev		-	initialise a tty device
1479  *	@driver: tty driver we are opening a device on
1480  *	@idx: device index
1481  *	@ret_tty: returned tty structure
1482  *
1483  *	Prepare a tty device. This may not be a "new" clean device but
1484  *	could also be an active device. The pty drivers require special
1485  *	handling because of this.
1486  *
1487  *	Locking:
1488  *		The function is called under the tty_mutex, which
1489  *	protects us from the tty struct or driver itself going away.
1490  *
1491  *	On exit the tty device has the line discipline attached and
1492  *	a reference count of 1. If a pair was created for pty/tty use
1493  *	and the other was a pty master then it too has a reference count of 1.
1494  *
1495  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1496  * failed open.  The new code protects the open with a mutex, so it's
1497  * really quite straightforward.  The mutex locking can probably be
1498  * relaxed for the (most common) case of reopening a tty.
1499  */
1500 
1501 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1502 {
1503 	struct tty_struct *tty;
1504 	int retval;
1505 
1506 	/*
1507 	 * First time open is complex, especially for PTY devices.
1508 	 * This code guarantees that either everything succeeds and the
1509 	 * TTY is ready for operation, or else the table slots are vacated
1510 	 * and the allocated memory released.  (Except that the termios
1511 	 * and locked termios may be retained.)
1512 	 */
1513 
1514 	if (!try_module_get(driver->owner))
1515 		return ERR_PTR(-ENODEV);
1516 
1517 	tty = alloc_tty_struct(driver, idx);
1518 	if (!tty) {
1519 		retval = -ENOMEM;
1520 		goto err_module_put;
1521 	}
1522 
1523 	tty_lock(tty);
1524 	retval = tty_driver_install_tty(driver, tty);
1525 	if (retval < 0)
1526 		goto err_deinit_tty;
1527 
1528 	if (!tty->port)
1529 		tty->port = driver->ports[idx];
1530 
1531 	WARN_RATELIMIT(!tty->port,
1532 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1533 			__func__, tty->driver->name);
1534 
1535 	tty->port->itty = tty;
1536 
1537 	/*
1538 	 * Structures all installed ... call the ldisc open routines.
1539 	 * If we fail here just call release_tty to clean up.  No need
1540 	 * to decrement the use counts, as release_tty doesn't care.
1541 	 */
1542 	retval = tty_ldisc_setup(tty, tty->link);
1543 	if (retval)
1544 		goto err_release_tty;
1545 	/* Return the tty locked so that it cannot vanish under the caller */
1546 	return tty;
1547 
1548 err_deinit_tty:
1549 	tty_unlock(tty);
1550 	deinitialize_tty_struct(tty);
1551 	free_tty_struct(tty);
1552 err_module_put:
1553 	module_put(driver->owner);
1554 	return ERR_PTR(retval);
1555 
1556 	/* call the tty release_tty routine to clean out this slot */
1557 err_release_tty:
1558 	tty_unlock(tty);
1559 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1560 				 "clearing slot %d\n", idx);
1561 	release_tty(tty, idx);
1562 	return ERR_PTR(retval);
1563 }
1564 
1565 void tty_free_termios(struct tty_struct *tty)
1566 {
1567 	struct ktermios *tp;
1568 	int idx = tty->index;
1569 
1570 	/* If the port is going to reset then it has no termios to save */
1571 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1572 		return;
1573 
1574 	/* Stash the termios data */
1575 	tp = tty->driver->termios[idx];
1576 	if (tp == NULL) {
1577 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1578 		if (tp == NULL) {
1579 			pr_warn("tty: no memory to save termios state.\n");
1580 			return;
1581 		}
1582 		tty->driver->termios[idx] = tp;
1583 	}
1584 	*tp = tty->termios;
1585 }
1586 EXPORT_SYMBOL(tty_free_termios);
1587 
1588 /**
1589  *	tty_flush_works		-	flush all works of a tty/pty pair
1590  *	@tty: tty device to flush works for (or either end of a pty pair)
1591  *
1592  *	Sync flush all works belonging to @tty (and the 'other' tty).
1593  */
1594 static void tty_flush_works(struct tty_struct *tty)
1595 {
1596 	flush_work(&tty->SAK_work);
1597 	flush_work(&tty->hangup_work);
1598 	if (tty->link) {
1599 		flush_work(&tty->link->SAK_work);
1600 		flush_work(&tty->link->hangup_work);
1601 	}
1602 }
1603 
1604 /**
1605  *	release_one_tty		-	release tty structure memory
1606  *	@kref: kref of tty we are obliterating
1607  *
1608  *	Releases memory associated with a tty structure, and clears out the
1609  *	driver table slots. This function is called when a device is no longer
1610  *	in use. It also gets called when setup of a device fails.
1611  *
1612  *	Locking:
1613  *		takes the file list lock internally when working on the list
1614  *	of ttys that the driver keeps.
1615  *
1616  *	This method gets called from a work queue so that the driver private
1617  *	cleanup ops can sleep (needed for USB at least)
1618  */
1619 static void release_one_tty(struct work_struct *work)
1620 {
1621 	struct tty_struct *tty =
1622 		container_of(work, struct tty_struct, hangup_work);
1623 	struct tty_driver *driver = tty->driver;
1624 	struct module *owner = driver->owner;
1625 
1626 	if (tty->ops->cleanup)
1627 		tty->ops->cleanup(tty);
1628 
1629 	tty->magic = 0;
1630 	tty_driver_kref_put(driver);
1631 	module_put(owner);
1632 
1633 	spin_lock(&tty_files_lock);
1634 	list_del_init(&tty->tty_files);
1635 	spin_unlock(&tty_files_lock);
1636 
1637 	put_pid(tty->pgrp);
1638 	put_pid(tty->session);
1639 	free_tty_struct(tty);
1640 }
1641 
1642 static void queue_release_one_tty(struct kref *kref)
1643 {
1644 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1645 
1646 	/* The hangup queue is now free so we can reuse it rather than
1647 	   waste a chunk of memory for each port */
1648 	INIT_WORK(&tty->hangup_work, release_one_tty);
1649 	schedule_work(&tty->hangup_work);
1650 }
1651 
1652 /**
1653  *	tty_kref_put		-	release a tty kref
1654  *	@tty: tty device
1655  *
1656  *	Release a reference to a tty device and if need be let the kref
1657  *	layer destruct the object for us
1658  */
1659 
1660 void tty_kref_put(struct tty_struct *tty)
1661 {
1662 	if (tty)
1663 		kref_put(&tty->kref, queue_release_one_tty);
1664 }
1665 EXPORT_SYMBOL(tty_kref_put);
1666 
1667 /**
1668  *	release_tty		-	release tty structure memory
1669  *
1670  *	Release both @tty and a possible linked partner (think pty pair),
1671  *	and decrement the refcount of the backing module.
1672  *
1673  *	Locking:
1674  *		tty_mutex
1675  *		takes the file list lock internally when working on the list
1676  *	of ttys that the driver keeps.
1677  *
1678  */
1679 static void release_tty(struct tty_struct *tty, int idx)
1680 {
1681 	/* This should always be true but check for the moment */
1682 	WARN_ON(tty->index != idx);
1683 	WARN_ON(!mutex_is_locked(&tty_mutex));
1684 	if (tty->ops->shutdown)
1685 		tty->ops->shutdown(tty);
1686 	tty_free_termios(tty);
1687 	tty_driver_remove_tty(tty->driver, tty);
1688 	tty->port->itty = NULL;
1689 	if (tty->link)
1690 		tty->link->port->itty = NULL;
1691 	cancel_work_sync(&tty->port->buf.work);
1692 
1693 	tty_kref_put(tty->link);
1694 	tty_kref_put(tty);
1695 }
1696 
1697 /**
1698  *	tty_release_checks - check a tty before real release
1699  *	@tty: tty to check
1700  *	@o_tty: link of @tty (if any)
1701  *	@idx: index of the tty
1702  *
1703  *	Performs some paranoid checking before true release of the @tty.
1704  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1705  */
1706 static int tty_release_checks(struct tty_struct *tty, int idx)
1707 {
1708 #ifdef TTY_PARANOIA_CHECK
1709 	if (idx < 0 || idx >= tty->driver->num) {
1710 		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1711 				__func__, tty->name);
1712 		return -1;
1713 	}
1714 
1715 	/* not much to check for devpts */
1716 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1717 		return 0;
1718 
1719 	if (tty != tty->driver->ttys[idx]) {
1720 		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1721 				__func__, idx, tty->name);
1722 		return -1;
1723 	}
1724 	if (tty->driver->other) {
1725 		struct tty_struct *o_tty = tty->link;
1726 
1727 		if (o_tty != tty->driver->other->ttys[idx]) {
1728 			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1729 					__func__, idx, tty->name);
1730 			return -1;
1731 		}
1732 		if (o_tty->link != tty) {
1733 			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1734 			return -1;
1735 		}
1736 	}
1737 #endif
1738 	return 0;
1739 }
1740 
1741 /**
1742  *	tty_release		-	vfs callback for close
1743  *	@inode: inode of tty
1744  *	@filp: file pointer for handle to tty
1745  *
1746  *	Called the last time each file handle is closed that references
1747  *	this tty. There may however be several such references.
1748  *
1749  *	Locking:
1750  *		Takes bkl. See tty_release_dev
1751  *
1752  * Even releasing the tty structures is a tricky business.. We have
1753  * to be very careful that the structures are all released at the
1754  * same time, as interrupts might otherwise get the wrong pointers.
1755  *
1756  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1757  * lead to double frees or releasing memory still in use.
1758  */
1759 
1760 int tty_release(struct inode *inode, struct file *filp)
1761 {
1762 	struct tty_struct *tty = file_tty(filp);
1763 	struct tty_struct *o_tty = NULL;
1764 	int	do_sleep, final;
1765 	int	idx;
1766 	char	buf[64];
1767 	long	timeout = 0;
1768 	int	once = 1;
1769 
1770 	if (tty_paranoia_check(tty, inode, __func__))
1771 		return 0;
1772 
1773 	tty_lock(tty);
1774 	check_tty_count(tty, __func__);
1775 
1776 	__tty_fasync(-1, filp, 0);
1777 
1778 	idx = tty->index;
1779 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1780 	    tty->driver->subtype == PTY_TYPE_MASTER)
1781 		o_tty = tty->link;
1782 
1783 	if (tty_release_checks(tty, idx)) {
1784 		tty_unlock(tty);
1785 		return 0;
1786 	}
1787 
1788 #ifdef TTY_DEBUG_HANGUP
1789 	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1790 			tty_name(tty, buf), tty->count);
1791 #endif
1792 
1793 	if (tty->ops->close)
1794 		tty->ops->close(tty, filp);
1795 
1796 	/* If tty is pty master, lock the slave pty (stable lock order) */
1797 	tty_lock_slave(o_tty);
1798 
1799 	/*
1800 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1801 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1802 	 * wait queues and kick everyone out _before_ actually starting to
1803 	 * close.  This ensures that we won't block while releasing the tty
1804 	 * structure.
1805 	 *
1806 	 * The test for the o_tty closing is necessary, since the master and
1807 	 * slave sides may close in any order.  If the slave side closes out
1808 	 * first, its count will be one, since the master side holds an open.
1809 	 * Thus this test wouldn't be triggered at the time the slave closed,
1810 	 * so we do it now.
1811 	 */
1812 	while (1) {
1813 		do_sleep = 0;
1814 
1815 		if (tty->count <= 1) {
1816 			if (waitqueue_active(&tty->read_wait)) {
1817 				wake_up_poll(&tty->read_wait, POLLIN);
1818 				do_sleep++;
1819 			}
1820 			if (waitqueue_active(&tty->write_wait)) {
1821 				wake_up_poll(&tty->write_wait, POLLOUT);
1822 				do_sleep++;
1823 			}
1824 		}
1825 		if (o_tty && o_tty->count <= 1) {
1826 			if (waitqueue_active(&o_tty->read_wait)) {
1827 				wake_up_poll(&o_tty->read_wait, POLLIN);
1828 				do_sleep++;
1829 			}
1830 			if (waitqueue_active(&o_tty->write_wait)) {
1831 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1832 				do_sleep++;
1833 			}
1834 		}
1835 		if (!do_sleep)
1836 			break;
1837 
1838 		if (once) {
1839 			once = 0;
1840 			printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1841 			       __func__, tty_name(tty, buf));
1842 		}
1843 		schedule_timeout_killable(timeout);
1844 		if (timeout < 120 * HZ)
1845 			timeout = 2 * timeout + 1;
1846 		else
1847 			timeout = MAX_SCHEDULE_TIMEOUT;
1848 	}
1849 
1850 	if (o_tty) {
1851 		if (--o_tty->count < 0) {
1852 			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1853 				__func__, o_tty->count, tty_name(o_tty, buf));
1854 			o_tty->count = 0;
1855 		}
1856 	}
1857 	if (--tty->count < 0) {
1858 		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1859 				__func__, tty->count, tty_name(tty, buf));
1860 		tty->count = 0;
1861 	}
1862 
1863 	/*
1864 	 * We've decremented tty->count, so we need to remove this file
1865 	 * descriptor off the tty->tty_files list; this serves two
1866 	 * purposes:
1867 	 *  - check_tty_count sees the correct number of file descriptors
1868 	 *    associated with this tty.
1869 	 *  - do_tty_hangup no longer sees this file descriptor as
1870 	 *    something that needs to be handled for hangups.
1871 	 */
1872 	tty_del_file(filp);
1873 
1874 	/*
1875 	 * Perform some housekeeping before deciding whether to return.
1876 	 *
1877 	 * If _either_ side is closing, make sure there aren't any
1878 	 * processes that still think tty or o_tty is their controlling
1879 	 * tty.
1880 	 */
1881 	if (!tty->count) {
1882 		read_lock(&tasklist_lock);
1883 		session_clear_tty(tty->session);
1884 		if (o_tty)
1885 			session_clear_tty(o_tty->session);
1886 		read_unlock(&tasklist_lock);
1887 	}
1888 
1889 	/* check whether both sides are closing ... */
1890 	final = !tty->count && !(o_tty && o_tty->count);
1891 
1892 	tty_unlock_slave(o_tty);
1893 	tty_unlock(tty);
1894 
1895 	/* At this point, the tty->count == 0 should ensure a dead tty
1896 	   cannot be re-opened by a racing opener */
1897 
1898 	if (!final)
1899 		return 0;
1900 
1901 #ifdef TTY_DEBUG_HANGUP
1902 	printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1903 #endif
1904 	/*
1905 	 * Ask the line discipline code to release its structures
1906 	 */
1907 	tty_ldisc_release(tty);
1908 
1909 	/* Wait for pending work before tty destruction commmences */
1910 	tty_flush_works(tty);
1911 
1912 #ifdef TTY_DEBUG_HANGUP
1913 	printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1914 #endif
1915 	/*
1916 	 * The release_tty function takes care of the details of clearing
1917 	 * the slots and preserving the termios structure. The tty_unlock_pair
1918 	 * should be safe as we keep a kref while the tty is locked (so the
1919 	 * unlock never unlocks a freed tty).
1920 	 */
1921 	mutex_lock(&tty_mutex);
1922 	release_tty(tty, idx);
1923 	mutex_unlock(&tty_mutex);
1924 
1925 	return 0;
1926 }
1927 
1928 /**
1929  *	tty_open_current_tty - get locked tty of current task
1930  *	@device: device number
1931  *	@filp: file pointer to tty
1932  *	@return: locked tty of the current task iff @device is /dev/tty
1933  *
1934  *	Performs a re-open of the current task's controlling tty.
1935  *
1936  *	We cannot return driver and index like for the other nodes because
1937  *	devpts will not work then. It expects inodes to be from devpts FS.
1938  */
1939 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1940 {
1941 	struct tty_struct *tty;
1942 	int retval;
1943 
1944 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1945 		return NULL;
1946 
1947 	tty = get_current_tty();
1948 	if (!tty)
1949 		return ERR_PTR(-ENXIO);
1950 
1951 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1952 	/* noctty = 1; */
1953 	tty_lock(tty);
1954 	tty_kref_put(tty);	/* safe to drop the kref now */
1955 
1956 	retval = tty_reopen(tty);
1957 	if (retval < 0) {
1958 		tty_unlock(tty);
1959 		tty = ERR_PTR(retval);
1960 	}
1961 	return tty;
1962 }
1963 
1964 /**
1965  *	tty_lookup_driver - lookup a tty driver for a given device file
1966  *	@device: device number
1967  *	@filp: file pointer to tty
1968  *	@noctty: set if the device should not become a controlling tty
1969  *	@index: index for the device in the @return driver
1970  *	@return: driver for this inode (with increased refcount)
1971  *
1972  * 	If @return is not erroneous, the caller is responsible to decrement the
1973  * 	refcount by tty_driver_kref_put.
1974  *
1975  *	Locking: tty_mutex protects get_tty_driver
1976  */
1977 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1978 		int *noctty, int *index)
1979 {
1980 	struct tty_driver *driver;
1981 
1982 	switch (device) {
1983 #ifdef CONFIG_VT
1984 	case MKDEV(TTY_MAJOR, 0): {
1985 		extern struct tty_driver *console_driver;
1986 		driver = tty_driver_kref_get(console_driver);
1987 		*index = fg_console;
1988 		*noctty = 1;
1989 		break;
1990 	}
1991 #endif
1992 	case MKDEV(TTYAUX_MAJOR, 1): {
1993 		struct tty_driver *console_driver = console_device(index);
1994 		if (console_driver) {
1995 			driver = tty_driver_kref_get(console_driver);
1996 			if (driver) {
1997 				/* Don't let /dev/console block */
1998 				filp->f_flags |= O_NONBLOCK;
1999 				*noctty = 1;
2000 				break;
2001 			}
2002 		}
2003 		return ERR_PTR(-ENODEV);
2004 	}
2005 	default:
2006 		driver = get_tty_driver(device, index);
2007 		if (!driver)
2008 			return ERR_PTR(-ENODEV);
2009 		break;
2010 	}
2011 	return driver;
2012 }
2013 
2014 /**
2015  *	tty_open		-	open a tty device
2016  *	@inode: inode of device file
2017  *	@filp: file pointer to tty
2018  *
2019  *	tty_open and tty_release keep up the tty count that contains the
2020  *	number of opens done on a tty. We cannot use the inode-count, as
2021  *	different inodes might point to the same tty.
2022  *
2023  *	Open-counting is needed for pty masters, as well as for keeping
2024  *	track of serial lines: DTR is dropped when the last close happens.
2025  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2026  *
2027  *	The termios state of a pty is reset on first open so that
2028  *	settings don't persist across reuse.
2029  *
2030  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2031  *		 tty->count should protect the rest.
2032  *		 ->siglock protects ->signal/->sighand
2033  *
2034  *	Note: the tty_unlock/lock cases without a ref are only safe due to
2035  *	tty_mutex
2036  */
2037 
2038 static int tty_open(struct inode *inode, struct file *filp)
2039 {
2040 	struct tty_struct *tty;
2041 	int noctty, retval;
2042 	struct tty_driver *driver = NULL;
2043 	int index;
2044 	dev_t device = inode->i_rdev;
2045 	unsigned saved_flags = filp->f_flags;
2046 
2047 	nonseekable_open(inode, filp);
2048 
2049 retry_open:
2050 	retval = tty_alloc_file(filp);
2051 	if (retval)
2052 		return -ENOMEM;
2053 
2054 	noctty = filp->f_flags & O_NOCTTY;
2055 	index  = -1;
2056 	retval = 0;
2057 
2058 	tty = tty_open_current_tty(device, filp);
2059 	if (!tty) {
2060 		mutex_lock(&tty_mutex);
2061 		driver = tty_lookup_driver(device, filp, &noctty, &index);
2062 		if (IS_ERR(driver)) {
2063 			retval = PTR_ERR(driver);
2064 			goto err_unlock;
2065 		}
2066 
2067 		/* check whether we're reopening an existing tty */
2068 		tty = tty_driver_lookup_tty(driver, inode, index);
2069 		if (IS_ERR(tty)) {
2070 			retval = PTR_ERR(tty);
2071 			goto err_unlock;
2072 		}
2073 
2074 		if (tty) {
2075 			mutex_unlock(&tty_mutex);
2076 			tty_lock(tty);
2077 			/* safe to drop the kref from tty_driver_lookup_tty() */
2078 			tty_kref_put(tty);
2079 			retval = tty_reopen(tty);
2080 			if (retval < 0) {
2081 				tty_unlock(tty);
2082 				tty = ERR_PTR(retval);
2083 			}
2084 		} else { /* Returns with the tty_lock held for now */
2085 			tty = tty_init_dev(driver, index);
2086 			mutex_unlock(&tty_mutex);
2087 		}
2088 
2089 		tty_driver_kref_put(driver);
2090 	}
2091 
2092 	if (IS_ERR(tty)) {
2093 		retval = PTR_ERR(tty);
2094 		goto err_file;
2095 	}
2096 
2097 	tty_add_file(tty, filp);
2098 
2099 	check_tty_count(tty, __func__);
2100 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2101 	    tty->driver->subtype == PTY_TYPE_MASTER)
2102 		noctty = 1;
2103 #ifdef TTY_DEBUG_HANGUP
2104 	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2105 #endif
2106 	if (tty->ops->open)
2107 		retval = tty->ops->open(tty, filp);
2108 	else
2109 		retval = -ENODEV;
2110 	filp->f_flags = saved_flags;
2111 
2112 	if (retval) {
2113 #ifdef TTY_DEBUG_HANGUP
2114 		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2115 				retval, tty->name);
2116 #endif
2117 		tty_unlock(tty); /* need to call tty_release without BTM */
2118 		tty_release(inode, filp);
2119 		if (retval != -ERESTARTSYS)
2120 			return retval;
2121 
2122 		if (signal_pending(current))
2123 			return retval;
2124 
2125 		schedule();
2126 		/*
2127 		 * Need to reset f_op in case a hangup happened.
2128 		 */
2129 		if (tty_hung_up_p(filp))
2130 			filp->f_op = &tty_fops;
2131 		goto retry_open;
2132 	}
2133 	clear_bit(TTY_HUPPED, &tty->flags);
2134 
2135 
2136 	read_lock(&tasklist_lock);
2137 	spin_lock_irq(&current->sighand->siglock);
2138 	if (!noctty &&
2139 	    current->signal->leader &&
2140 	    !current->signal->tty &&
2141 	    tty->session == NULL)
2142 		__proc_set_tty(tty);
2143 	spin_unlock_irq(&current->sighand->siglock);
2144 	read_unlock(&tasklist_lock);
2145 	tty_unlock(tty);
2146 	return 0;
2147 err_unlock:
2148 	mutex_unlock(&tty_mutex);
2149 	/* after locks to avoid deadlock */
2150 	if (!IS_ERR_OR_NULL(driver))
2151 		tty_driver_kref_put(driver);
2152 err_file:
2153 	tty_free_file(filp);
2154 	return retval;
2155 }
2156 
2157 
2158 
2159 /**
2160  *	tty_poll	-	check tty status
2161  *	@filp: file being polled
2162  *	@wait: poll wait structures to update
2163  *
2164  *	Call the line discipline polling method to obtain the poll
2165  *	status of the device.
2166  *
2167  *	Locking: locks called line discipline but ldisc poll method
2168  *	may be re-entered freely by other callers.
2169  */
2170 
2171 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2172 {
2173 	struct tty_struct *tty = file_tty(filp);
2174 	struct tty_ldisc *ld;
2175 	int ret = 0;
2176 
2177 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2178 		return 0;
2179 
2180 	ld = tty_ldisc_ref_wait(tty);
2181 	if (ld->ops->poll)
2182 		ret = ld->ops->poll(tty, filp, wait);
2183 	tty_ldisc_deref(ld);
2184 	return ret;
2185 }
2186 
2187 static int __tty_fasync(int fd, struct file *filp, int on)
2188 {
2189 	struct tty_struct *tty = file_tty(filp);
2190 	struct tty_ldisc *ldisc;
2191 	unsigned long flags;
2192 	int retval = 0;
2193 
2194 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2195 		goto out;
2196 
2197 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2198 	if (retval <= 0)
2199 		goto out;
2200 
2201 	ldisc = tty_ldisc_ref(tty);
2202 	if (ldisc) {
2203 		if (ldisc->ops->fasync)
2204 			ldisc->ops->fasync(tty, on);
2205 		tty_ldisc_deref(ldisc);
2206 	}
2207 
2208 	if (on) {
2209 		enum pid_type type;
2210 		struct pid *pid;
2211 
2212 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2213 		if (tty->pgrp) {
2214 			pid = tty->pgrp;
2215 			type = PIDTYPE_PGID;
2216 		} else {
2217 			pid = task_pid(current);
2218 			type = PIDTYPE_PID;
2219 		}
2220 		get_pid(pid);
2221 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2222 		__f_setown(filp, pid, type, 0);
2223 		put_pid(pid);
2224 		retval = 0;
2225 	}
2226 out:
2227 	return retval;
2228 }
2229 
2230 static int tty_fasync(int fd, struct file *filp, int on)
2231 {
2232 	struct tty_struct *tty = file_tty(filp);
2233 	int retval;
2234 
2235 	tty_lock(tty);
2236 	retval = __tty_fasync(fd, filp, on);
2237 	tty_unlock(tty);
2238 
2239 	return retval;
2240 }
2241 
2242 /**
2243  *	tiocsti			-	fake input character
2244  *	@tty: tty to fake input into
2245  *	@p: pointer to character
2246  *
2247  *	Fake input to a tty device. Does the necessary locking and
2248  *	input management.
2249  *
2250  *	FIXME: does not honour flow control ??
2251  *
2252  *	Locking:
2253  *		Called functions take tty_ldiscs_lock
2254  *		current->signal->tty check is safe without locks
2255  *
2256  *	FIXME: may race normal receive processing
2257  */
2258 
2259 static int tiocsti(struct tty_struct *tty, char __user *p)
2260 {
2261 	char ch, mbz = 0;
2262 	struct tty_ldisc *ld;
2263 
2264 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2265 		return -EPERM;
2266 	if (get_user(ch, p))
2267 		return -EFAULT;
2268 	tty_audit_tiocsti(tty, ch);
2269 	ld = tty_ldisc_ref_wait(tty);
2270 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2271 	tty_ldisc_deref(ld);
2272 	return 0;
2273 }
2274 
2275 /**
2276  *	tiocgwinsz		-	implement window query ioctl
2277  *	@tty; tty
2278  *	@arg: user buffer for result
2279  *
2280  *	Copies the kernel idea of the window size into the user buffer.
2281  *
2282  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2283  *		is consistent.
2284  */
2285 
2286 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2287 {
2288 	int err;
2289 
2290 	mutex_lock(&tty->winsize_mutex);
2291 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2292 	mutex_unlock(&tty->winsize_mutex);
2293 
2294 	return err ? -EFAULT: 0;
2295 }
2296 
2297 /**
2298  *	tty_do_resize		-	resize event
2299  *	@tty: tty being resized
2300  *	@rows: rows (character)
2301  *	@cols: cols (character)
2302  *
2303  *	Update the termios variables and send the necessary signals to
2304  *	peform a terminal resize correctly
2305  */
2306 
2307 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2308 {
2309 	struct pid *pgrp;
2310 
2311 	/* Lock the tty */
2312 	mutex_lock(&tty->winsize_mutex);
2313 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2314 		goto done;
2315 
2316 	/* Signal the foreground process group */
2317 	pgrp = tty_get_pgrp(tty);
2318 	if (pgrp)
2319 		kill_pgrp(pgrp, SIGWINCH, 1);
2320 	put_pid(pgrp);
2321 
2322 	tty->winsize = *ws;
2323 done:
2324 	mutex_unlock(&tty->winsize_mutex);
2325 	return 0;
2326 }
2327 EXPORT_SYMBOL(tty_do_resize);
2328 
2329 /**
2330  *	tiocswinsz		-	implement window size set ioctl
2331  *	@tty; tty side of tty
2332  *	@arg: user buffer for result
2333  *
2334  *	Copies the user idea of the window size to the kernel. Traditionally
2335  *	this is just advisory information but for the Linux console it
2336  *	actually has driver level meaning and triggers a VC resize.
2337  *
2338  *	Locking:
2339  *		Driver dependent. The default do_resize method takes the
2340  *	tty termios mutex and ctrl_lock. The console takes its own lock
2341  *	then calls into the default method.
2342  */
2343 
2344 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2345 {
2346 	struct winsize tmp_ws;
2347 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2348 		return -EFAULT;
2349 
2350 	if (tty->ops->resize)
2351 		return tty->ops->resize(tty, &tmp_ws);
2352 	else
2353 		return tty_do_resize(tty, &tmp_ws);
2354 }
2355 
2356 /**
2357  *	tioccons	-	allow admin to move logical console
2358  *	@file: the file to become console
2359  *
2360  *	Allow the administrator to move the redirected console device
2361  *
2362  *	Locking: uses redirect_lock to guard the redirect information
2363  */
2364 
2365 static int tioccons(struct file *file)
2366 {
2367 	if (!capable(CAP_SYS_ADMIN))
2368 		return -EPERM;
2369 	if (file->f_op->write == redirected_tty_write) {
2370 		struct file *f;
2371 		spin_lock(&redirect_lock);
2372 		f = redirect;
2373 		redirect = NULL;
2374 		spin_unlock(&redirect_lock);
2375 		if (f)
2376 			fput(f);
2377 		return 0;
2378 	}
2379 	spin_lock(&redirect_lock);
2380 	if (redirect) {
2381 		spin_unlock(&redirect_lock);
2382 		return -EBUSY;
2383 	}
2384 	redirect = get_file(file);
2385 	spin_unlock(&redirect_lock);
2386 	return 0;
2387 }
2388 
2389 /**
2390  *	fionbio		-	non blocking ioctl
2391  *	@file: file to set blocking value
2392  *	@p: user parameter
2393  *
2394  *	Historical tty interfaces had a blocking control ioctl before
2395  *	the generic functionality existed. This piece of history is preserved
2396  *	in the expected tty API of posix OS's.
2397  *
2398  *	Locking: none, the open file handle ensures it won't go away.
2399  */
2400 
2401 static int fionbio(struct file *file, int __user *p)
2402 {
2403 	int nonblock;
2404 
2405 	if (get_user(nonblock, p))
2406 		return -EFAULT;
2407 
2408 	spin_lock(&file->f_lock);
2409 	if (nonblock)
2410 		file->f_flags |= O_NONBLOCK;
2411 	else
2412 		file->f_flags &= ~O_NONBLOCK;
2413 	spin_unlock(&file->f_lock);
2414 	return 0;
2415 }
2416 
2417 /**
2418  *	tiocsctty	-	set controlling tty
2419  *	@tty: tty structure
2420  *	@arg: user argument
2421  *
2422  *	This ioctl is used to manage job control. It permits a session
2423  *	leader to set this tty as the controlling tty for the session.
2424  *
2425  *	Locking:
2426  *		Takes tty_lock() to serialize proc_set_tty() for this tty
2427  *		Takes tasklist_lock internally to walk sessions
2428  *		Takes ->siglock() when updating signal->tty
2429  */
2430 
2431 static int tiocsctty(struct tty_struct *tty, int arg)
2432 {
2433 	int ret = 0;
2434 
2435 	tty_lock(tty);
2436 	read_lock(&tasklist_lock);
2437 
2438 	if (current->signal->leader && (task_session(current) == tty->session))
2439 		goto unlock;
2440 
2441 	/*
2442 	 * The process must be a session leader and
2443 	 * not have a controlling tty already.
2444 	 */
2445 	if (!current->signal->leader || current->signal->tty) {
2446 		ret = -EPERM;
2447 		goto unlock;
2448 	}
2449 
2450 	if (tty->session) {
2451 		/*
2452 		 * This tty is already the controlling
2453 		 * tty for another session group!
2454 		 */
2455 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2456 			/*
2457 			 * Steal it away
2458 			 */
2459 			session_clear_tty(tty->session);
2460 		} else {
2461 			ret = -EPERM;
2462 			goto unlock;
2463 		}
2464 	}
2465 	proc_set_tty(tty);
2466 unlock:
2467 	read_unlock(&tasklist_lock);
2468 	tty_unlock(tty);
2469 	return ret;
2470 }
2471 
2472 /**
2473  *	tty_get_pgrp	-	return a ref counted pgrp pid
2474  *	@tty: tty to read
2475  *
2476  *	Returns a refcounted instance of the pid struct for the process
2477  *	group controlling the tty.
2478  */
2479 
2480 struct pid *tty_get_pgrp(struct tty_struct *tty)
2481 {
2482 	unsigned long flags;
2483 	struct pid *pgrp;
2484 
2485 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2486 	pgrp = get_pid(tty->pgrp);
2487 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2488 
2489 	return pgrp;
2490 }
2491 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2492 
2493 /*
2494  * This checks not only the pgrp, but falls back on the pid if no
2495  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2496  * without this...
2497  *
2498  * The caller must hold rcu lock or the tasklist lock.
2499  */
2500 static struct pid *session_of_pgrp(struct pid *pgrp)
2501 {
2502 	struct task_struct *p;
2503 	struct pid *sid = NULL;
2504 
2505 	p = pid_task(pgrp, PIDTYPE_PGID);
2506 	if (p == NULL)
2507 		p = pid_task(pgrp, PIDTYPE_PID);
2508 	if (p != NULL)
2509 		sid = task_session(p);
2510 
2511 	return sid;
2512 }
2513 
2514 /**
2515  *	tiocgpgrp		-	get process group
2516  *	@tty: tty passed by user
2517  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2518  *	@p: returned pid
2519  *
2520  *	Obtain the process group of the tty. If there is no process group
2521  *	return an error.
2522  *
2523  *	Locking: none. Reference to current->signal->tty is safe.
2524  */
2525 
2526 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2527 {
2528 	struct pid *pid;
2529 	int ret;
2530 	/*
2531 	 * (tty == real_tty) is a cheap way of
2532 	 * testing if the tty is NOT a master pty.
2533 	 */
2534 	if (tty == real_tty && current->signal->tty != real_tty)
2535 		return -ENOTTY;
2536 	pid = tty_get_pgrp(real_tty);
2537 	ret =  put_user(pid_vnr(pid), p);
2538 	put_pid(pid);
2539 	return ret;
2540 }
2541 
2542 /**
2543  *	tiocspgrp		-	attempt to set process group
2544  *	@tty: tty passed by user
2545  *	@real_tty: tty side device matching tty passed by user
2546  *	@p: pid pointer
2547  *
2548  *	Set the process group of the tty to the session passed. Only
2549  *	permitted where the tty session is our session.
2550  *
2551  *	Locking: RCU, ctrl lock
2552  */
2553 
2554 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2555 {
2556 	struct pid *pgrp;
2557 	pid_t pgrp_nr;
2558 	int retval = tty_check_change(real_tty);
2559 	unsigned long flags;
2560 
2561 	if (retval == -EIO)
2562 		return -ENOTTY;
2563 	if (retval)
2564 		return retval;
2565 	if (!current->signal->tty ||
2566 	    (current->signal->tty != real_tty) ||
2567 	    (real_tty->session != task_session(current)))
2568 		return -ENOTTY;
2569 	if (get_user(pgrp_nr, p))
2570 		return -EFAULT;
2571 	if (pgrp_nr < 0)
2572 		return -EINVAL;
2573 	rcu_read_lock();
2574 	pgrp = find_vpid(pgrp_nr);
2575 	retval = -ESRCH;
2576 	if (!pgrp)
2577 		goto out_unlock;
2578 	retval = -EPERM;
2579 	if (session_of_pgrp(pgrp) != task_session(current))
2580 		goto out_unlock;
2581 	retval = 0;
2582 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2583 	put_pid(real_tty->pgrp);
2584 	real_tty->pgrp = get_pid(pgrp);
2585 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2586 out_unlock:
2587 	rcu_read_unlock();
2588 	return retval;
2589 }
2590 
2591 /**
2592  *	tiocgsid		-	get session id
2593  *	@tty: tty passed by user
2594  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2595  *	@p: pointer to returned session id
2596  *
2597  *	Obtain the session id of the tty. If there is no session
2598  *	return an error.
2599  *
2600  *	Locking: none. Reference to current->signal->tty is safe.
2601  */
2602 
2603 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2604 {
2605 	/*
2606 	 * (tty == real_tty) is a cheap way of
2607 	 * testing if the tty is NOT a master pty.
2608 	*/
2609 	if (tty == real_tty && current->signal->tty != real_tty)
2610 		return -ENOTTY;
2611 	if (!real_tty->session)
2612 		return -ENOTTY;
2613 	return put_user(pid_vnr(real_tty->session), p);
2614 }
2615 
2616 /**
2617  *	tiocsetd	-	set line discipline
2618  *	@tty: tty device
2619  *	@p: pointer to user data
2620  *
2621  *	Set the line discipline according to user request.
2622  *
2623  *	Locking: see tty_set_ldisc, this function is just a helper
2624  */
2625 
2626 static int tiocsetd(struct tty_struct *tty, int __user *p)
2627 {
2628 	int ldisc;
2629 	int ret;
2630 
2631 	if (get_user(ldisc, p))
2632 		return -EFAULT;
2633 
2634 	ret = tty_set_ldisc(tty, ldisc);
2635 
2636 	return ret;
2637 }
2638 
2639 /**
2640  *	send_break	-	performed time break
2641  *	@tty: device to break on
2642  *	@duration: timeout in mS
2643  *
2644  *	Perform a timed break on hardware that lacks its own driver level
2645  *	timed break functionality.
2646  *
2647  *	Locking:
2648  *		atomic_write_lock serializes
2649  *
2650  */
2651 
2652 static int send_break(struct tty_struct *tty, unsigned int duration)
2653 {
2654 	int retval;
2655 
2656 	if (tty->ops->break_ctl == NULL)
2657 		return 0;
2658 
2659 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2660 		retval = tty->ops->break_ctl(tty, duration);
2661 	else {
2662 		/* Do the work ourselves */
2663 		if (tty_write_lock(tty, 0) < 0)
2664 			return -EINTR;
2665 		retval = tty->ops->break_ctl(tty, -1);
2666 		if (retval)
2667 			goto out;
2668 		if (!signal_pending(current))
2669 			msleep_interruptible(duration);
2670 		retval = tty->ops->break_ctl(tty, 0);
2671 out:
2672 		tty_write_unlock(tty);
2673 		if (signal_pending(current))
2674 			retval = -EINTR;
2675 	}
2676 	return retval;
2677 }
2678 
2679 /**
2680  *	tty_tiocmget		-	get modem status
2681  *	@tty: tty device
2682  *	@file: user file pointer
2683  *	@p: pointer to result
2684  *
2685  *	Obtain the modem status bits from the tty driver if the feature
2686  *	is supported. Return -EINVAL if it is not available.
2687  *
2688  *	Locking: none (up to the driver)
2689  */
2690 
2691 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2692 {
2693 	int retval = -EINVAL;
2694 
2695 	if (tty->ops->tiocmget) {
2696 		retval = tty->ops->tiocmget(tty);
2697 
2698 		if (retval >= 0)
2699 			retval = put_user(retval, p);
2700 	}
2701 	return retval;
2702 }
2703 
2704 /**
2705  *	tty_tiocmset		-	set modem status
2706  *	@tty: tty device
2707  *	@cmd: command - clear bits, set bits or set all
2708  *	@p: pointer to desired bits
2709  *
2710  *	Set the modem status bits from the tty driver if the feature
2711  *	is supported. Return -EINVAL if it is not available.
2712  *
2713  *	Locking: none (up to the driver)
2714  */
2715 
2716 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2717 	     unsigned __user *p)
2718 {
2719 	int retval;
2720 	unsigned int set, clear, val;
2721 
2722 	if (tty->ops->tiocmset == NULL)
2723 		return -EINVAL;
2724 
2725 	retval = get_user(val, p);
2726 	if (retval)
2727 		return retval;
2728 	set = clear = 0;
2729 	switch (cmd) {
2730 	case TIOCMBIS:
2731 		set = val;
2732 		break;
2733 	case TIOCMBIC:
2734 		clear = val;
2735 		break;
2736 	case TIOCMSET:
2737 		set = val;
2738 		clear = ~val;
2739 		break;
2740 	}
2741 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2742 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2743 	return tty->ops->tiocmset(tty, set, clear);
2744 }
2745 
2746 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2747 {
2748 	int retval = -EINVAL;
2749 	struct serial_icounter_struct icount;
2750 	memset(&icount, 0, sizeof(icount));
2751 	if (tty->ops->get_icount)
2752 		retval = tty->ops->get_icount(tty, &icount);
2753 	if (retval != 0)
2754 		return retval;
2755 	if (copy_to_user(arg, &icount, sizeof(icount)))
2756 		return -EFAULT;
2757 	return 0;
2758 }
2759 
2760 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2761 {
2762 	static DEFINE_RATELIMIT_STATE(depr_flags,
2763 			DEFAULT_RATELIMIT_INTERVAL,
2764 			DEFAULT_RATELIMIT_BURST);
2765 	char comm[TASK_COMM_LEN];
2766 	int flags;
2767 
2768 	if (get_user(flags, &ss->flags))
2769 		return;
2770 
2771 	flags &= ASYNC_DEPRECATED;
2772 
2773 	if (flags && __ratelimit(&depr_flags))
2774 		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2775 				__func__, get_task_comm(comm, current), flags);
2776 }
2777 
2778 /*
2779  * if pty, return the slave side (real_tty)
2780  * otherwise, return self
2781  */
2782 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2783 {
2784 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2785 	    tty->driver->subtype == PTY_TYPE_MASTER)
2786 		tty = tty->link;
2787 	return tty;
2788 }
2789 
2790 /*
2791  * Split this up, as gcc can choke on it otherwise..
2792  */
2793 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2794 {
2795 	struct tty_struct *tty = file_tty(file);
2796 	struct tty_struct *real_tty;
2797 	void __user *p = (void __user *)arg;
2798 	int retval;
2799 	struct tty_ldisc *ld;
2800 
2801 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2802 		return -EINVAL;
2803 
2804 	real_tty = tty_pair_get_tty(tty);
2805 
2806 	/*
2807 	 * Factor out some common prep work
2808 	 */
2809 	switch (cmd) {
2810 	case TIOCSETD:
2811 	case TIOCSBRK:
2812 	case TIOCCBRK:
2813 	case TCSBRK:
2814 	case TCSBRKP:
2815 		retval = tty_check_change(tty);
2816 		if (retval)
2817 			return retval;
2818 		if (cmd != TIOCCBRK) {
2819 			tty_wait_until_sent(tty, 0);
2820 			if (signal_pending(current))
2821 				return -EINTR;
2822 		}
2823 		break;
2824 	}
2825 
2826 	/*
2827 	 *	Now do the stuff.
2828 	 */
2829 	switch (cmd) {
2830 	case TIOCSTI:
2831 		return tiocsti(tty, p);
2832 	case TIOCGWINSZ:
2833 		return tiocgwinsz(real_tty, p);
2834 	case TIOCSWINSZ:
2835 		return tiocswinsz(real_tty, p);
2836 	case TIOCCONS:
2837 		return real_tty != tty ? -EINVAL : tioccons(file);
2838 	case FIONBIO:
2839 		return fionbio(file, p);
2840 	case TIOCEXCL:
2841 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2842 		return 0;
2843 	case TIOCNXCL:
2844 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2845 		return 0;
2846 	case TIOCGEXCL:
2847 	{
2848 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2849 		return put_user(excl, (int __user *)p);
2850 	}
2851 	case TIOCNOTTY:
2852 		if (current->signal->tty != tty)
2853 			return -ENOTTY;
2854 		no_tty();
2855 		return 0;
2856 	case TIOCSCTTY:
2857 		return tiocsctty(tty, arg);
2858 	case TIOCGPGRP:
2859 		return tiocgpgrp(tty, real_tty, p);
2860 	case TIOCSPGRP:
2861 		return tiocspgrp(tty, real_tty, p);
2862 	case TIOCGSID:
2863 		return tiocgsid(tty, real_tty, p);
2864 	case TIOCGETD:
2865 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2866 	case TIOCSETD:
2867 		return tiocsetd(tty, p);
2868 	case TIOCVHANGUP:
2869 		if (!capable(CAP_SYS_ADMIN))
2870 			return -EPERM;
2871 		tty_vhangup(tty);
2872 		return 0;
2873 	case TIOCGDEV:
2874 	{
2875 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2876 		return put_user(ret, (unsigned int __user *)p);
2877 	}
2878 	/*
2879 	 * Break handling
2880 	 */
2881 	case TIOCSBRK:	/* Turn break on, unconditionally */
2882 		if (tty->ops->break_ctl)
2883 			return tty->ops->break_ctl(tty, -1);
2884 		return 0;
2885 	case TIOCCBRK:	/* Turn break off, unconditionally */
2886 		if (tty->ops->break_ctl)
2887 			return tty->ops->break_ctl(tty, 0);
2888 		return 0;
2889 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2890 		/* non-zero arg means wait for all output data
2891 		 * to be sent (performed above) but don't send break.
2892 		 * This is used by the tcdrain() termios function.
2893 		 */
2894 		if (!arg)
2895 			return send_break(tty, 250);
2896 		return 0;
2897 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2898 		return send_break(tty, arg ? arg*100 : 250);
2899 
2900 	case TIOCMGET:
2901 		return tty_tiocmget(tty, p);
2902 	case TIOCMSET:
2903 	case TIOCMBIC:
2904 	case TIOCMBIS:
2905 		return tty_tiocmset(tty, cmd, p);
2906 	case TIOCGICOUNT:
2907 		retval = tty_tiocgicount(tty, p);
2908 		/* For the moment allow fall through to the old method */
2909         	if (retval != -EINVAL)
2910 			return retval;
2911 		break;
2912 	case TCFLSH:
2913 		switch (arg) {
2914 		case TCIFLUSH:
2915 		case TCIOFLUSH:
2916 		/* flush tty buffer and allow ldisc to process ioctl */
2917 			tty_buffer_flush(tty, NULL);
2918 			break;
2919 		}
2920 		break;
2921 	case TIOCSSERIAL:
2922 		tty_warn_deprecated_flags(p);
2923 		break;
2924 	}
2925 	if (tty->ops->ioctl) {
2926 		retval = tty->ops->ioctl(tty, cmd, arg);
2927 		if (retval != -ENOIOCTLCMD)
2928 			return retval;
2929 	}
2930 	ld = tty_ldisc_ref_wait(tty);
2931 	retval = -EINVAL;
2932 	if (ld->ops->ioctl) {
2933 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2934 		if (retval == -ENOIOCTLCMD)
2935 			retval = -ENOTTY;
2936 	}
2937 	tty_ldisc_deref(ld);
2938 	return retval;
2939 }
2940 
2941 #ifdef CONFIG_COMPAT
2942 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2943 				unsigned long arg)
2944 {
2945 	struct tty_struct *tty = file_tty(file);
2946 	struct tty_ldisc *ld;
2947 	int retval = -ENOIOCTLCMD;
2948 
2949 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2950 		return -EINVAL;
2951 
2952 	if (tty->ops->compat_ioctl) {
2953 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2954 		if (retval != -ENOIOCTLCMD)
2955 			return retval;
2956 	}
2957 
2958 	ld = tty_ldisc_ref_wait(tty);
2959 	if (ld->ops->compat_ioctl)
2960 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2961 	else
2962 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2963 	tty_ldisc_deref(ld);
2964 
2965 	return retval;
2966 }
2967 #endif
2968 
2969 static int this_tty(const void *t, struct file *file, unsigned fd)
2970 {
2971 	if (likely(file->f_op->read != tty_read))
2972 		return 0;
2973 	return file_tty(file) != t ? 0 : fd + 1;
2974 }
2975 
2976 /*
2977  * This implements the "Secure Attention Key" ---  the idea is to
2978  * prevent trojan horses by killing all processes associated with this
2979  * tty when the user hits the "Secure Attention Key".  Required for
2980  * super-paranoid applications --- see the Orange Book for more details.
2981  *
2982  * This code could be nicer; ideally it should send a HUP, wait a few
2983  * seconds, then send a INT, and then a KILL signal.  But you then
2984  * have to coordinate with the init process, since all processes associated
2985  * with the current tty must be dead before the new getty is allowed
2986  * to spawn.
2987  *
2988  * Now, if it would be correct ;-/ The current code has a nasty hole -
2989  * it doesn't catch files in flight. We may send the descriptor to ourselves
2990  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2991  *
2992  * Nasty bug: do_SAK is being called in interrupt context.  This can
2993  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2994  */
2995 void __do_SAK(struct tty_struct *tty)
2996 {
2997 #ifdef TTY_SOFT_SAK
2998 	tty_hangup(tty);
2999 #else
3000 	struct task_struct *g, *p;
3001 	struct pid *session;
3002 	int		i;
3003 
3004 	if (!tty)
3005 		return;
3006 	session = tty->session;
3007 
3008 	tty_ldisc_flush(tty);
3009 
3010 	tty_driver_flush_buffer(tty);
3011 
3012 	read_lock(&tasklist_lock);
3013 	/* Kill the entire session */
3014 	do_each_pid_task(session, PIDTYPE_SID, p) {
3015 		printk(KERN_NOTICE "SAK: killed process %d"
3016 			" (%s): task_session(p)==tty->session\n",
3017 			task_pid_nr(p), p->comm);
3018 		send_sig(SIGKILL, p, 1);
3019 	} while_each_pid_task(session, PIDTYPE_SID, p);
3020 	/* Now kill any processes that happen to have the
3021 	 * tty open.
3022 	 */
3023 	do_each_thread(g, p) {
3024 		if (p->signal->tty == tty) {
3025 			printk(KERN_NOTICE "SAK: killed process %d"
3026 			    " (%s): task_session(p)==tty->session\n",
3027 			    task_pid_nr(p), p->comm);
3028 			send_sig(SIGKILL, p, 1);
3029 			continue;
3030 		}
3031 		task_lock(p);
3032 		i = iterate_fd(p->files, 0, this_tty, tty);
3033 		if (i != 0) {
3034 			printk(KERN_NOTICE "SAK: killed process %d"
3035 			    " (%s): fd#%d opened to the tty\n",
3036 				    task_pid_nr(p), p->comm, i - 1);
3037 			force_sig(SIGKILL, p);
3038 		}
3039 		task_unlock(p);
3040 	} while_each_thread(g, p);
3041 	read_unlock(&tasklist_lock);
3042 #endif
3043 }
3044 
3045 static void do_SAK_work(struct work_struct *work)
3046 {
3047 	struct tty_struct *tty =
3048 		container_of(work, struct tty_struct, SAK_work);
3049 	__do_SAK(tty);
3050 }
3051 
3052 /*
3053  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3054  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3055  * the values which we write to it will be identical to the values which it
3056  * already has. --akpm
3057  */
3058 void do_SAK(struct tty_struct *tty)
3059 {
3060 	if (!tty)
3061 		return;
3062 	schedule_work(&tty->SAK_work);
3063 }
3064 
3065 EXPORT_SYMBOL(do_SAK);
3066 
3067 static int dev_match_devt(struct device *dev, const void *data)
3068 {
3069 	const dev_t *devt = data;
3070 	return dev->devt == *devt;
3071 }
3072 
3073 /* Must put_device() after it's unused! */
3074 static struct device *tty_get_device(struct tty_struct *tty)
3075 {
3076 	dev_t devt = tty_devnum(tty);
3077 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3078 }
3079 
3080 
3081 /**
3082  *	alloc_tty_struct
3083  *
3084  *	This subroutine allocates and initializes a tty structure.
3085  *
3086  *	Locking: none - tty in question is not exposed at this point
3087  */
3088 
3089 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3090 {
3091 	struct tty_struct *tty;
3092 
3093 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3094 	if (!tty)
3095 		return NULL;
3096 
3097 	kref_init(&tty->kref);
3098 	tty->magic = TTY_MAGIC;
3099 	tty_ldisc_init(tty);
3100 	tty->session = NULL;
3101 	tty->pgrp = NULL;
3102 	mutex_init(&tty->legacy_mutex);
3103 	mutex_init(&tty->throttle_mutex);
3104 	init_rwsem(&tty->termios_rwsem);
3105 	mutex_init(&tty->winsize_mutex);
3106 	init_ldsem(&tty->ldisc_sem);
3107 	init_waitqueue_head(&tty->write_wait);
3108 	init_waitqueue_head(&tty->read_wait);
3109 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3110 	mutex_init(&tty->atomic_write_lock);
3111 	spin_lock_init(&tty->ctrl_lock);
3112 	spin_lock_init(&tty->flow_lock);
3113 	INIT_LIST_HEAD(&tty->tty_files);
3114 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3115 
3116 	tty->driver = driver;
3117 	tty->ops = driver->ops;
3118 	tty->index = idx;
3119 	tty_line_name(driver, idx, tty->name);
3120 	tty->dev = tty_get_device(tty);
3121 
3122 	return tty;
3123 }
3124 
3125 /**
3126  *	deinitialize_tty_struct
3127  *	@tty: tty to deinitialize
3128  *
3129  *	This subroutine deinitializes a tty structure that has been newly
3130  *	allocated but tty_release cannot be called on that yet.
3131  *
3132  *	Locking: none - tty in question must not be exposed at this point
3133  */
3134 void deinitialize_tty_struct(struct tty_struct *tty)
3135 {
3136 	tty_ldisc_deinit(tty);
3137 }
3138 
3139 /**
3140  *	tty_put_char	-	write one character to a tty
3141  *	@tty: tty
3142  *	@ch: character
3143  *
3144  *	Write one byte to the tty using the provided put_char method
3145  *	if present. Returns the number of characters successfully output.
3146  *
3147  *	Note: the specific put_char operation in the driver layer may go
3148  *	away soon. Don't call it directly, use this method
3149  */
3150 
3151 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3152 {
3153 	if (tty->ops->put_char)
3154 		return tty->ops->put_char(tty, ch);
3155 	return tty->ops->write(tty, &ch, 1);
3156 }
3157 EXPORT_SYMBOL_GPL(tty_put_char);
3158 
3159 struct class *tty_class;
3160 
3161 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3162 		unsigned int index, unsigned int count)
3163 {
3164 	/* init here, since reused cdevs cause crashes */
3165 	cdev_init(&driver->cdevs[index], &tty_fops);
3166 	driver->cdevs[index].owner = driver->owner;
3167 	return cdev_add(&driver->cdevs[index], dev, count);
3168 }
3169 
3170 /**
3171  *	tty_register_device - register a tty device
3172  *	@driver: the tty driver that describes the tty device
3173  *	@index: the index in the tty driver for this tty device
3174  *	@device: a struct device that is associated with this tty device.
3175  *		This field is optional, if there is no known struct device
3176  *		for this tty device it can be set to NULL safely.
3177  *
3178  *	Returns a pointer to the struct device for this tty device
3179  *	(or ERR_PTR(-EFOO) on error).
3180  *
3181  *	This call is required to be made to register an individual tty device
3182  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3183  *	that bit is not set, this function should not be called by a tty
3184  *	driver.
3185  *
3186  *	Locking: ??
3187  */
3188 
3189 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3190 				   struct device *device)
3191 {
3192 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3193 }
3194 EXPORT_SYMBOL(tty_register_device);
3195 
3196 static void tty_device_create_release(struct device *dev)
3197 {
3198 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3199 	kfree(dev);
3200 }
3201 
3202 /**
3203  *	tty_register_device_attr - register a tty device
3204  *	@driver: the tty driver that describes the tty device
3205  *	@index: the index in the tty driver for this tty device
3206  *	@device: a struct device that is associated with this tty device.
3207  *		This field is optional, if there is no known struct device
3208  *		for this tty device it can be set to NULL safely.
3209  *	@drvdata: Driver data to be set to device.
3210  *	@attr_grp: Attribute group to be set on device.
3211  *
3212  *	Returns a pointer to the struct device for this tty device
3213  *	(or ERR_PTR(-EFOO) on error).
3214  *
3215  *	This call is required to be made to register an individual tty device
3216  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3217  *	that bit is not set, this function should not be called by a tty
3218  *	driver.
3219  *
3220  *	Locking: ??
3221  */
3222 struct device *tty_register_device_attr(struct tty_driver *driver,
3223 				   unsigned index, struct device *device,
3224 				   void *drvdata,
3225 				   const struct attribute_group **attr_grp)
3226 {
3227 	char name[64];
3228 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3229 	struct device *dev = NULL;
3230 	int retval = -ENODEV;
3231 	bool cdev = false;
3232 
3233 	if (index >= driver->num) {
3234 		printk(KERN_ERR "Attempt to register invalid tty line number "
3235 		       " (%d).\n", index);
3236 		return ERR_PTR(-EINVAL);
3237 	}
3238 
3239 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3240 		pty_line_name(driver, index, name);
3241 	else
3242 		tty_line_name(driver, index, name);
3243 
3244 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3245 		retval = tty_cdev_add(driver, devt, index, 1);
3246 		if (retval)
3247 			goto error;
3248 		cdev = true;
3249 	}
3250 
3251 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3252 	if (!dev) {
3253 		retval = -ENOMEM;
3254 		goto error;
3255 	}
3256 
3257 	dev->devt = devt;
3258 	dev->class = tty_class;
3259 	dev->parent = device;
3260 	dev->release = tty_device_create_release;
3261 	dev_set_name(dev, "%s", name);
3262 	dev->groups = attr_grp;
3263 	dev_set_drvdata(dev, drvdata);
3264 
3265 	retval = device_register(dev);
3266 	if (retval)
3267 		goto error;
3268 
3269 	return dev;
3270 
3271 error:
3272 	put_device(dev);
3273 	if (cdev)
3274 		cdev_del(&driver->cdevs[index]);
3275 	return ERR_PTR(retval);
3276 }
3277 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3278 
3279 /**
3280  * 	tty_unregister_device - unregister a tty device
3281  * 	@driver: the tty driver that describes the tty device
3282  * 	@index: the index in the tty driver for this tty device
3283  *
3284  * 	If a tty device is registered with a call to tty_register_device() then
3285  *	this function must be called when the tty device is gone.
3286  *
3287  *	Locking: ??
3288  */
3289 
3290 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3291 {
3292 	device_destroy(tty_class,
3293 		MKDEV(driver->major, driver->minor_start) + index);
3294 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3295 		cdev_del(&driver->cdevs[index]);
3296 }
3297 EXPORT_SYMBOL(tty_unregister_device);
3298 
3299 /**
3300  * __tty_alloc_driver -- allocate tty driver
3301  * @lines: count of lines this driver can handle at most
3302  * @owner: module which is repsonsible for this driver
3303  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3304  *
3305  * This should not be called directly, some of the provided macros should be
3306  * used instead. Use IS_ERR and friends on @retval.
3307  */
3308 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3309 		unsigned long flags)
3310 {
3311 	struct tty_driver *driver;
3312 	unsigned int cdevs = 1;
3313 	int err;
3314 
3315 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3316 		return ERR_PTR(-EINVAL);
3317 
3318 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3319 	if (!driver)
3320 		return ERR_PTR(-ENOMEM);
3321 
3322 	kref_init(&driver->kref);
3323 	driver->magic = TTY_DRIVER_MAGIC;
3324 	driver->num = lines;
3325 	driver->owner = owner;
3326 	driver->flags = flags;
3327 
3328 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3329 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3330 				GFP_KERNEL);
3331 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3332 				GFP_KERNEL);
3333 		if (!driver->ttys || !driver->termios) {
3334 			err = -ENOMEM;
3335 			goto err_free_all;
3336 		}
3337 	}
3338 
3339 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3340 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3341 				GFP_KERNEL);
3342 		if (!driver->ports) {
3343 			err = -ENOMEM;
3344 			goto err_free_all;
3345 		}
3346 		cdevs = lines;
3347 	}
3348 
3349 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3350 	if (!driver->cdevs) {
3351 		err = -ENOMEM;
3352 		goto err_free_all;
3353 	}
3354 
3355 	return driver;
3356 err_free_all:
3357 	kfree(driver->ports);
3358 	kfree(driver->ttys);
3359 	kfree(driver->termios);
3360 	kfree(driver);
3361 	return ERR_PTR(err);
3362 }
3363 EXPORT_SYMBOL(__tty_alloc_driver);
3364 
3365 static void destruct_tty_driver(struct kref *kref)
3366 {
3367 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3368 	int i;
3369 	struct ktermios *tp;
3370 
3371 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3372 		/*
3373 		 * Free the termios and termios_locked structures because
3374 		 * we don't want to get memory leaks when modular tty
3375 		 * drivers are removed from the kernel.
3376 		 */
3377 		for (i = 0; i < driver->num; i++) {
3378 			tp = driver->termios[i];
3379 			if (tp) {
3380 				driver->termios[i] = NULL;
3381 				kfree(tp);
3382 			}
3383 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3384 				tty_unregister_device(driver, i);
3385 		}
3386 		proc_tty_unregister_driver(driver);
3387 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3388 			cdev_del(&driver->cdevs[0]);
3389 	}
3390 	kfree(driver->cdevs);
3391 	kfree(driver->ports);
3392 	kfree(driver->termios);
3393 	kfree(driver->ttys);
3394 	kfree(driver);
3395 }
3396 
3397 void tty_driver_kref_put(struct tty_driver *driver)
3398 {
3399 	kref_put(&driver->kref, destruct_tty_driver);
3400 }
3401 EXPORT_SYMBOL(tty_driver_kref_put);
3402 
3403 void tty_set_operations(struct tty_driver *driver,
3404 			const struct tty_operations *op)
3405 {
3406 	driver->ops = op;
3407 };
3408 EXPORT_SYMBOL(tty_set_operations);
3409 
3410 void put_tty_driver(struct tty_driver *d)
3411 {
3412 	tty_driver_kref_put(d);
3413 }
3414 EXPORT_SYMBOL(put_tty_driver);
3415 
3416 /*
3417  * Called by a tty driver to register itself.
3418  */
3419 int tty_register_driver(struct tty_driver *driver)
3420 {
3421 	int error;
3422 	int i;
3423 	dev_t dev;
3424 	struct device *d;
3425 
3426 	if (!driver->major) {
3427 		error = alloc_chrdev_region(&dev, driver->minor_start,
3428 						driver->num, driver->name);
3429 		if (!error) {
3430 			driver->major = MAJOR(dev);
3431 			driver->minor_start = MINOR(dev);
3432 		}
3433 	} else {
3434 		dev = MKDEV(driver->major, driver->minor_start);
3435 		error = register_chrdev_region(dev, driver->num, driver->name);
3436 	}
3437 	if (error < 0)
3438 		goto err;
3439 
3440 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3441 		error = tty_cdev_add(driver, dev, 0, driver->num);
3442 		if (error)
3443 			goto err_unreg_char;
3444 	}
3445 
3446 	mutex_lock(&tty_mutex);
3447 	list_add(&driver->tty_drivers, &tty_drivers);
3448 	mutex_unlock(&tty_mutex);
3449 
3450 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3451 		for (i = 0; i < driver->num; i++) {
3452 			d = tty_register_device(driver, i, NULL);
3453 			if (IS_ERR(d)) {
3454 				error = PTR_ERR(d);
3455 				goto err_unreg_devs;
3456 			}
3457 		}
3458 	}
3459 	proc_tty_register_driver(driver);
3460 	driver->flags |= TTY_DRIVER_INSTALLED;
3461 	return 0;
3462 
3463 err_unreg_devs:
3464 	for (i--; i >= 0; i--)
3465 		tty_unregister_device(driver, i);
3466 
3467 	mutex_lock(&tty_mutex);
3468 	list_del(&driver->tty_drivers);
3469 	mutex_unlock(&tty_mutex);
3470 
3471 err_unreg_char:
3472 	unregister_chrdev_region(dev, driver->num);
3473 err:
3474 	return error;
3475 }
3476 EXPORT_SYMBOL(tty_register_driver);
3477 
3478 /*
3479  * Called by a tty driver to unregister itself.
3480  */
3481 int tty_unregister_driver(struct tty_driver *driver)
3482 {
3483 #if 0
3484 	/* FIXME */
3485 	if (driver->refcount)
3486 		return -EBUSY;
3487 #endif
3488 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3489 				driver->num);
3490 	mutex_lock(&tty_mutex);
3491 	list_del(&driver->tty_drivers);
3492 	mutex_unlock(&tty_mutex);
3493 	return 0;
3494 }
3495 
3496 EXPORT_SYMBOL(tty_unregister_driver);
3497 
3498 dev_t tty_devnum(struct tty_struct *tty)
3499 {
3500 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3501 }
3502 EXPORT_SYMBOL(tty_devnum);
3503 
3504 void tty_default_fops(struct file_operations *fops)
3505 {
3506 	*fops = tty_fops;
3507 }
3508 
3509 /*
3510  * Initialize the console device. This is called *early*, so
3511  * we can't necessarily depend on lots of kernel help here.
3512  * Just do some early initializations, and do the complex setup
3513  * later.
3514  */
3515 void __init console_init(void)
3516 {
3517 	initcall_t *call;
3518 
3519 	/* Setup the default TTY line discipline. */
3520 	tty_ldisc_begin();
3521 
3522 	/*
3523 	 * set up the console device so that later boot sequences can
3524 	 * inform about problems etc..
3525 	 */
3526 	call = __con_initcall_start;
3527 	while (call < __con_initcall_end) {
3528 		(*call)();
3529 		call++;
3530 	}
3531 }
3532 
3533 static char *tty_devnode(struct device *dev, umode_t *mode)
3534 {
3535 	if (!mode)
3536 		return NULL;
3537 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3538 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3539 		*mode = 0666;
3540 	return NULL;
3541 }
3542 
3543 static int __init tty_class_init(void)
3544 {
3545 	tty_class = class_create(THIS_MODULE, "tty");
3546 	if (IS_ERR(tty_class))
3547 		return PTR_ERR(tty_class);
3548 	tty_class->devnode = tty_devnode;
3549 	return 0;
3550 }
3551 
3552 postcore_initcall(tty_class_init);
3553 
3554 /* 3/2004 jmc: why do these devices exist? */
3555 static struct cdev tty_cdev, console_cdev;
3556 
3557 static ssize_t show_cons_active(struct device *dev,
3558 				struct device_attribute *attr, char *buf)
3559 {
3560 	struct console *cs[16];
3561 	int i = 0;
3562 	struct console *c;
3563 	ssize_t count = 0;
3564 
3565 	console_lock();
3566 	for_each_console(c) {
3567 		if (!c->device)
3568 			continue;
3569 		if (!c->write)
3570 			continue;
3571 		if ((c->flags & CON_ENABLED) == 0)
3572 			continue;
3573 		cs[i++] = c;
3574 		if (i >= ARRAY_SIZE(cs))
3575 			break;
3576 	}
3577 	while (i--) {
3578 		int index = cs[i]->index;
3579 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3580 
3581 		/* don't resolve tty0 as some programs depend on it */
3582 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3583 			count += tty_line_name(drv, index, buf + count);
3584 		else
3585 			count += sprintf(buf + count, "%s%d",
3586 					 cs[i]->name, cs[i]->index);
3587 
3588 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3589 	}
3590 	console_unlock();
3591 
3592 	return count;
3593 }
3594 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3595 
3596 static struct device *consdev;
3597 
3598 void console_sysfs_notify(void)
3599 {
3600 	if (consdev)
3601 		sysfs_notify(&consdev->kobj, NULL, "active");
3602 }
3603 
3604 /*
3605  * Ok, now we can initialize the rest of the tty devices and can count
3606  * on memory allocations, interrupts etc..
3607  */
3608 int __init tty_init(void)
3609 {
3610 	cdev_init(&tty_cdev, &tty_fops);
3611 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3612 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3613 		panic("Couldn't register /dev/tty driver\n");
3614 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3615 
3616 	cdev_init(&console_cdev, &console_fops);
3617 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3618 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3619 		panic("Couldn't register /dev/console driver\n");
3620 	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3621 			      "console");
3622 	if (IS_ERR(consdev))
3623 		consdev = NULL;
3624 	else
3625 		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3626 
3627 #ifdef CONFIG_VT
3628 	vty_init(&console_fops);
3629 #endif
3630 	return 0;
3631 }
3632 
3633