1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 */ 5 6 /* 7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 8 * or rs-channels. It also implements echoing, cooked mode etc. 9 * 10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 11 * 12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 13 * tty_struct and tty_queue structures. Previously there was an array 14 * of 256 tty_struct's which was statically allocated, and the 15 * tty_queue structures were allocated at boot time. Both are now 16 * dynamically allocated only when the tty is open. 17 * 18 * Also restructured routines so that there is more of a separation 19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 20 * the low-level tty routines (serial.c, pty.c, console.c). This 21 * makes for cleaner and more compact code. -TYT, 9/17/92 22 * 23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 24 * which can be dynamically activated and de-activated by the line 25 * discipline handling modules (like SLIP). 26 * 27 * NOTE: pay no attention to the line discipline code (yet); its 28 * interface is still subject to change in this version... 29 * -- TYT, 1/31/92 30 * 31 * Added functionality to the OPOST tty handling. No delays, but all 32 * other bits should be there. 33 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 34 * 35 * Rewrote canonical mode and added more termios flags. 36 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 37 * 38 * Reorganized FASYNC support so mouse code can share it. 39 * -- ctm@ardi.com, 9Sep95 40 * 41 * New TIOCLINUX variants added. 42 * -- mj@k332.feld.cvut.cz, 19-Nov-95 43 * 44 * Restrict vt switching via ioctl() 45 * -- grif@cs.ucr.edu, 5-Dec-95 46 * 47 * Move console and virtual terminal code to more appropriate files, 48 * implement CONFIG_VT and generalize console device interface. 49 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 50 * 51 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 52 * -- Bill Hawes <whawes@star.net>, June 97 53 * 54 * Added devfs support. 55 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 56 * 57 * Added support for a Unix98-style ptmx device. 58 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 59 * 60 * Reduced memory usage for older ARM systems 61 * -- Russell King <rmk@arm.linux.org.uk> 62 * 63 * Move do_SAK() into process context. Less stack use in devfs functions. 64 * alloc_tty_struct() always uses kmalloc() 65 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 66 */ 67 68 #include <linux/types.h> 69 #include <linux/major.h> 70 #include <linux/errno.h> 71 #include <linux/signal.h> 72 #include <linux/fcntl.h> 73 #include <linux/sched/signal.h> 74 #include <linux/sched/task.h> 75 #include <linux/interrupt.h> 76 #include <linux/tty.h> 77 #include <linux/tty_driver.h> 78 #include <linux/tty_flip.h> 79 #include <linux/devpts_fs.h> 80 #include <linux/file.h> 81 #include <linux/fdtable.h> 82 #include <linux/console.h> 83 #include <linux/timer.h> 84 #include <linux/ctype.h> 85 #include <linux/kd.h> 86 #include <linux/mm.h> 87 #include <linux/string.h> 88 #include <linux/slab.h> 89 #include <linux/poll.h> 90 #include <linux/proc_fs.h> 91 #include <linux/init.h> 92 #include <linux/module.h> 93 #include <linux/device.h> 94 #include <linux/wait.h> 95 #include <linux/bitops.h> 96 #include <linux/delay.h> 97 #include <linux/seq_file.h> 98 #include <linux/serial.h> 99 #include <linux/ratelimit.h> 100 #include <linux/compat.h> 101 102 #include <linux/uaccess.h> 103 104 #include <linux/kbd_kern.h> 105 #include <linux/vt_kern.h> 106 #include <linux/selection.h> 107 108 #include <linux/kmod.h> 109 #include <linux/nsproxy.h> 110 111 #undef TTY_DEBUG_HANGUP 112 #ifdef TTY_DEBUG_HANGUP 113 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args) 114 #else 115 # define tty_debug_hangup(tty, f, args...) do { } while (0) 116 #endif 117 118 #define TTY_PARANOIA_CHECK 1 119 #define CHECK_TTY_COUNT 1 120 121 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 122 .c_iflag = ICRNL | IXON, 123 .c_oflag = OPOST | ONLCR, 124 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 125 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 126 ECHOCTL | ECHOKE | IEXTEN, 127 .c_cc = INIT_C_CC, 128 .c_ispeed = 38400, 129 .c_ospeed = 38400, 130 /* .c_line = N_TTY, */ 131 }; 132 133 EXPORT_SYMBOL(tty_std_termios); 134 135 /* This list gets poked at by procfs and various bits of boot up code. This 136 could do with some rationalisation such as pulling the tty proc function 137 into this file */ 138 139 LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 140 141 /* Mutex to protect creating and releasing a tty */ 142 DEFINE_MUTEX(tty_mutex); 143 144 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *); 145 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *); 146 ssize_t redirected_tty_write(struct file *, const char __user *, 147 size_t, loff_t *); 148 static __poll_t tty_poll(struct file *, poll_table *); 149 static int tty_open(struct inode *, struct file *); 150 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 151 #ifdef CONFIG_COMPAT 152 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 153 unsigned long arg); 154 #else 155 #define tty_compat_ioctl NULL 156 #endif 157 static int __tty_fasync(int fd, struct file *filp, int on); 158 static int tty_fasync(int fd, struct file *filp, int on); 159 static void release_tty(struct tty_struct *tty, int idx); 160 161 /** 162 * free_tty_struct - free a disused tty 163 * @tty: tty struct to free 164 * 165 * Free the write buffers, tty queue and tty memory itself. 166 * 167 * Locking: none. Must be called after tty is definitely unused 168 */ 169 170 static void free_tty_struct(struct tty_struct *tty) 171 { 172 tty_ldisc_deinit(tty); 173 put_device(tty->dev); 174 kfree(tty->write_buf); 175 tty->magic = 0xDEADDEAD; 176 kfree(tty); 177 } 178 179 static inline struct tty_struct *file_tty(struct file *file) 180 { 181 return ((struct tty_file_private *)file->private_data)->tty; 182 } 183 184 int tty_alloc_file(struct file *file) 185 { 186 struct tty_file_private *priv; 187 188 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 189 if (!priv) 190 return -ENOMEM; 191 192 file->private_data = priv; 193 194 return 0; 195 } 196 197 /* Associate a new file with the tty structure */ 198 void tty_add_file(struct tty_struct *tty, struct file *file) 199 { 200 struct tty_file_private *priv = file->private_data; 201 202 priv->tty = tty; 203 priv->file = file; 204 205 spin_lock(&tty->files_lock); 206 list_add(&priv->list, &tty->tty_files); 207 spin_unlock(&tty->files_lock); 208 } 209 210 /** 211 * tty_free_file - free file->private_data 212 * 213 * This shall be used only for fail path handling when tty_add_file was not 214 * called yet. 215 */ 216 void tty_free_file(struct file *file) 217 { 218 struct tty_file_private *priv = file->private_data; 219 220 file->private_data = NULL; 221 kfree(priv); 222 } 223 224 /* Delete file from its tty */ 225 static void tty_del_file(struct file *file) 226 { 227 struct tty_file_private *priv = file->private_data; 228 struct tty_struct *tty = priv->tty; 229 230 spin_lock(&tty->files_lock); 231 list_del(&priv->list); 232 spin_unlock(&tty->files_lock); 233 tty_free_file(file); 234 } 235 236 /** 237 * tty_name - return tty naming 238 * @tty: tty structure 239 * 240 * Convert a tty structure into a name. The name reflects the kernel 241 * naming policy and if udev is in use may not reflect user space 242 * 243 * Locking: none 244 */ 245 246 const char *tty_name(const struct tty_struct *tty) 247 { 248 if (!tty) /* Hmm. NULL pointer. That's fun. */ 249 return "NULL tty"; 250 return tty->name; 251 } 252 253 EXPORT_SYMBOL(tty_name); 254 255 const char *tty_driver_name(const struct tty_struct *tty) 256 { 257 if (!tty || !tty->driver) 258 return ""; 259 return tty->driver->name; 260 } 261 262 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 263 const char *routine) 264 { 265 #ifdef TTY_PARANOIA_CHECK 266 if (!tty) { 267 pr_warn("(%d:%d): %s: NULL tty\n", 268 imajor(inode), iminor(inode), routine); 269 return 1; 270 } 271 if (tty->magic != TTY_MAGIC) { 272 pr_warn("(%d:%d): %s: bad magic number\n", 273 imajor(inode), iminor(inode), routine); 274 return 1; 275 } 276 #endif 277 return 0; 278 } 279 280 /* Caller must hold tty_lock */ 281 static int check_tty_count(struct tty_struct *tty, const char *routine) 282 { 283 #ifdef CHECK_TTY_COUNT 284 struct list_head *p; 285 int count = 0, kopen_count = 0; 286 287 spin_lock(&tty->files_lock); 288 list_for_each(p, &tty->tty_files) { 289 count++; 290 } 291 spin_unlock(&tty->files_lock); 292 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 293 tty->driver->subtype == PTY_TYPE_SLAVE && 294 tty->link && tty->link->count) 295 count++; 296 if (tty_port_kopened(tty->port)) 297 kopen_count++; 298 if (tty->count != (count + kopen_count)) { 299 tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n", 300 routine, tty->count, count, kopen_count); 301 return (count + kopen_count); 302 } 303 #endif 304 return 0; 305 } 306 307 /** 308 * get_tty_driver - find device of a tty 309 * @dev_t: device identifier 310 * @index: returns the index of the tty 311 * 312 * This routine returns a tty driver structure, given a device number 313 * and also passes back the index number. 314 * 315 * Locking: caller must hold tty_mutex 316 */ 317 318 static struct tty_driver *get_tty_driver(dev_t device, int *index) 319 { 320 struct tty_driver *p; 321 322 list_for_each_entry(p, &tty_drivers, tty_drivers) { 323 dev_t base = MKDEV(p->major, p->minor_start); 324 if (device < base || device >= base + p->num) 325 continue; 326 *index = device - base; 327 return tty_driver_kref_get(p); 328 } 329 return NULL; 330 } 331 332 /** 333 * tty_dev_name_to_number - return dev_t for device name 334 * @name: user space name of device under /dev 335 * @number: pointer to dev_t that this function will populate 336 * 337 * This function converts device names like ttyS0 or ttyUSB1 into dev_t 338 * like (4, 64) or (188, 1). If no corresponding driver is registered then 339 * the function returns -ENODEV. 340 * 341 * Locking: this acquires tty_mutex to protect the tty_drivers list from 342 * being modified while we are traversing it, and makes sure to 343 * release it before exiting. 344 */ 345 int tty_dev_name_to_number(const char *name, dev_t *number) 346 { 347 struct tty_driver *p; 348 int ret; 349 int index, prefix_length = 0; 350 const char *str; 351 352 for (str = name; *str && !isdigit(*str); str++) 353 ; 354 355 if (!*str) 356 return -EINVAL; 357 358 ret = kstrtoint(str, 10, &index); 359 if (ret) 360 return ret; 361 362 prefix_length = str - name; 363 mutex_lock(&tty_mutex); 364 365 list_for_each_entry(p, &tty_drivers, tty_drivers) 366 if (prefix_length == strlen(p->name) && strncmp(name, 367 p->name, prefix_length) == 0) { 368 if (index < p->num) { 369 *number = MKDEV(p->major, p->minor_start + index); 370 goto out; 371 } 372 } 373 374 /* if here then driver wasn't found */ 375 ret = -ENODEV; 376 out: 377 mutex_unlock(&tty_mutex); 378 return ret; 379 } 380 EXPORT_SYMBOL_GPL(tty_dev_name_to_number); 381 382 #ifdef CONFIG_CONSOLE_POLL 383 384 /** 385 * tty_find_polling_driver - find device of a polled tty 386 * @name: name string to match 387 * @line: pointer to resulting tty line nr 388 * 389 * This routine returns a tty driver structure, given a name 390 * and the condition that the tty driver is capable of polled 391 * operation. 392 */ 393 struct tty_driver *tty_find_polling_driver(char *name, int *line) 394 { 395 struct tty_driver *p, *res = NULL; 396 int tty_line = 0; 397 int len; 398 char *str, *stp; 399 400 for (str = name; *str; str++) 401 if ((*str >= '0' && *str <= '9') || *str == ',') 402 break; 403 if (!*str) 404 return NULL; 405 406 len = str - name; 407 tty_line = simple_strtoul(str, &str, 10); 408 409 mutex_lock(&tty_mutex); 410 /* Search through the tty devices to look for a match */ 411 list_for_each_entry(p, &tty_drivers, tty_drivers) { 412 if (!len || strncmp(name, p->name, len) != 0) 413 continue; 414 stp = str; 415 if (*stp == ',') 416 stp++; 417 if (*stp == '\0') 418 stp = NULL; 419 420 if (tty_line >= 0 && tty_line < p->num && p->ops && 421 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 422 res = tty_driver_kref_get(p); 423 *line = tty_line; 424 break; 425 } 426 } 427 mutex_unlock(&tty_mutex); 428 429 return res; 430 } 431 EXPORT_SYMBOL_GPL(tty_find_polling_driver); 432 #endif 433 434 static ssize_t hung_up_tty_read(struct file *file, char __user *buf, 435 size_t count, loff_t *ppos) 436 { 437 return 0; 438 } 439 440 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf, 441 size_t count, loff_t *ppos) 442 { 443 return -EIO; 444 } 445 446 /* No kernel lock held - none needed ;) */ 447 static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait) 448 { 449 return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM; 450 } 451 452 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 453 unsigned long arg) 454 { 455 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 456 } 457 458 static long hung_up_tty_compat_ioctl(struct file *file, 459 unsigned int cmd, unsigned long arg) 460 { 461 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 462 } 463 464 static int hung_up_tty_fasync(int fd, struct file *file, int on) 465 { 466 return -ENOTTY; 467 } 468 469 static void tty_show_fdinfo(struct seq_file *m, struct file *file) 470 { 471 struct tty_struct *tty = file_tty(file); 472 473 if (tty && tty->ops && tty->ops->show_fdinfo) 474 tty->ops->show_fdinfo(tty, m); 475 } 476 477 static const struct file_operations tty_fops = { 478 .llseek = no_llseek, 479 .read = tty_read, 480 .write = tty_write, 481 .poll = tty_poll, 482 .unlocked_ioctl = tty_ioctl, 483 .compat_ioctl = tty_compat_ioctl, 484 .open = tty_open, 485 .release = tty_release, 486 .fasync = tty_fasync, 487 .show_fdinfo = tty_show_fdinfo, 488 }; 489 490 static const struct file_operations console_fops = { 491 .llseek = no_llseek, 492 .read = tty_read, 493 .write = redirected_tty_write, 494 .poll = tty_poll, 495 .unlocked_ioctl = tty_ioctl, 496 .compat_ioctl = tty_compat_ioctl, 497 .open = tty_open, 498 .release = tty_release, 499 .fasync = tty_fasync, 500 }; 501 502 static const struct file_operations hung_up_tty_fops = { 503 .llseek = no_llseek, 504 .read = hung_up_tty_read, 505 .write = hung_up_tty_write, 506 .poll = hung_up_tty_poll, 507 .unlocked_ioctl = hung_up_tty_ioctl, 508 .compat_ioctl = hung_up_tty_compat_ioctl, 509 .release = tty_release, 510 .fasync = hung_up_tty_fasync, 511 }; 512 513 static DEFINE_SPINLOCK(redirect_lock); 514 static struct file *redirect; 515 516 extern void tty_sysctl_init(void); 517 518 /** 519 * tty_wakeup - request more data 520 * @tty: terminal 521 * 522 * Internal and external helper for wakeups of tty. This function 523 * informs the line discipline if present that the driver is ready 524 * to receive more output data. 525 */ 526 527 void tty_wakeup(struct tty_struct *tty) 528 { 529 struct tty_ldisc *ld; 530 531 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 532 ld = tty_ldisc_ref(tty); 533 if (ld) { 534 if (ld->ops->write_wakeup) 535 ld->ops->write_wakeup(tty); 536 tty_ldisc_deref(ld); 537 } 538 } 539 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT); 540 } 541 542 EXPORT_SYMBOL_GPL(tty_wakeup); 543 544 /** 545 * __tty_hangup - actual handler for hangup events 546 * @work: tty device 547 * 548 * This can be called by a "kworker" kernel thread. That is process 549 * synchronous but doesn't hold any locks, so we need to make sure we 550 * have the appropriate locks for what we're doing. 551 * 552 * The hangup event clears any pending redirections onto the hung up 553 * device. It ensures future writes will error and it does the needed 554 * line discipline hangup and signal delivery. The tty object itself 555 * remains intact. 556 * 557 * Locking: 558 * BTM 559 * redirect lock for undoing redirection 560 * file list lock for manipulating list of ttys 561 * tty_ldiscs_lock from called functions 562 * termios_rwsem resetting termios data 563 * tasklist_lock to walk task list for hangup event 564 * ->siglock to protect ->signal/->sighand 565 */ 566 static void __tty_hangup(struct tty_struct *tty, int exit_session) 567 { 568 struct file *cons_filp = NULL; 569 struct file *filp, *f = NULL; 570 struct tty_file_private *priv; 571 int closecount = 0, n; 572 int refs; 573 574 if (!tty) 575 return; 576 577 578 spin_lock(&redirect_lock); 579 if (redirect && file_tty(redirect) == tty) { 580 f = redirect; 581 redirect = NULL; 582 } 583 spin_unlock(&redirect_lock); 584 585 tty_lock(tty); 586 587 if (test_bit(TTY_HUPPED, &tty->flags)) { 588 tty_unlock(tty); 589 return; 590 } 591 592 /* 593 * Some console devices aren't actually hung up for technical and 594 * historical reasons, which can lead to indefinite interruptible 595 * sleep in n_tty_read(). The following explicitly tells 596 * n_tty_read() to abort readers. 597 */ 598 set_bit(TTY_HUPPING, &tty->flags); 599 600 /* inuse_filps is protected by the single tty lock, 601 this really needs to change if we want to flush the 602 workqueue with the lock held */ 603 check_tty_count(tty, "tty_hangup"); 604 605 spin_lock(&tty->files_lock); 606 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 607 list_for_each_entry(priv, &tty->tty_files, list) { 608 filp = priv->file; 609 if (filp->f_op->write == redirected_tty_write) 610 cons_filp = filp; 611 if (filp->f_op->write != tty_write) 612 continue; 613 closecount++; 614 __tty_fasync(-1, filp, 0); /* can't block */ 615 filp->f_op = &hung_up_tty_fops; 616 } 617 spin_unlock(&tty->files_lock); 618 619 refs = tty_signal_session_leader(tty, exit_session); 620 /* Account for the p->signal references we killed */ 621 while (refs--) 622 tty_kref_put(tty); 623 624 tty_ldisc_hangup(tty, cons_filp != NULL); 625 626 spin_lock_irq(&tty->ctrl_lock); 627 clear_bit(TTY_THROTTLED, &tty->flags); 628 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 629 put_pid(tty->session); 630 put_pid(tty->pgrp); 631 tty->session = NULL; 632 tty->pgrp = NULL; 633 tty->ctrl_status = 0; 634 spin_unlock_irq(&tty->ctrl_lock); 635 636 /* 637 * If one of the devices matches a console pointer, we 638 * cannot just call hangup() because that will cause 639 * tty->count and state->count to go out of sync. 640 * So we just call close() the right number of times. 641 */ 642 if (cons_filp) { 643 if (tty->ops->close) 644 for (n = 0; n < closecount; n++) 645 tty->ops->close(tty, cons_filp); 646 } else if (tty->ops->hangup) 647 tty->ops->hangup(tty); 648 /* 649 * We don't want to have driver/ldisc interactions beyond the ones 650 * we did here. The driver layer expects no calls after ->hangup() 651 * from the ldisc side, which is now guaranteed. 652 */ 653 set_bit(TTY_HUPPED, &tty->flags); 654 clear_bit(TTY_HUPPING, &tty->flags); 655 tty_unlock(tty); 656 657 if (f) 658 fput(f); 659 } 660 661 static void do_tty_hangup(struct work_struct *work) 662 { 663 struct tty_struct *tty = 664 container_of(work, struct tty_struct, hangup_work); 665 666 __tty_hangup(tty, 0); 667 } 668 669 /** 670 * tty_hangup - trigger a hangup event 671 * @tty: tty to hangup 672 * 673 * A carrier loss (virtual or otherwise) has occurred on this like 674 * schedule a hangup sequence to run after this event. 675 */ 676 677 void tty_hangup(struct tty_struct *tty) 678 { 679 tty_debug_hangup(tty, "hangup\n"); 680 schedule_work(&tty->hangup_work); 681 } 682 683 EXPORT_SYMBOL(tty_hangup); 684 685 /** 686 * tty_vhangup - process vhangup 687 * @tty: tty to hangup 688 * 689 * The user has asked via system call for the terminal to be hung up. 690 * We do this synchronously so that when the syscall returns the process 691 * is complete. That guarantee is necessary for security reasons. 692 */ 693 694 void tty_vhangup(struct tty_struct *tty) 695 { 696 tty_debug_hangup(tty, "vhangup\n"); 697 __tty_hangup(tty, 0); 698 } 699 700 EXPORT_SYMBOL(tty_vhangup); 701 702 703 /** 704 * tty_vhangup_self - process vhangup for own ctty 705 * 706 * Perform a vhangup on the current controlling tty 707 */ 708 709 void tty_vhangup_self(void) 710 { 711 struct tty_struct *tty; 712 713 tty = get_current_tty(); 714 if (tty) { 715 tty_vhangup(tty); 716 tty_kref_put(tty); 717 } 718 } 719 720 /** 721 * tty_vhangup_session - hangup session leader exit 722 * @tty: tty to hangup 723 * 724 * The session leader is exiting and hanging up its controlling terminal. 725 * Every process in the foreground process group is signalled SIGHUP. 726 * 727 * We do this synchronously so that when the syscall returns the process 728 * is complete. That guarantee is necessary for security reasons. 729 */ 730 731 void tty_vhangup_session(struct tty_struct *tty) 732 { 733 tty_debug_hangup(tty, "session hangup\n"); 734 __tty_hangup(tty, 1); 735 } 736 737 /** 738 * tty_hung_up_p - was tty hung up 739 * @filp: file pointer of tty 740 * 741 * Return true if the tty has been subject to a vhangup or a carrier 742 * loss 743 */ 744 745 int tty_hung_up_p(struct file *filp) 746 { 747 return (filp && filp->f_op == &hung_up_tty_fops); 748 } 749 750 EXPORT_SYMBOL(tty_hung_up_p); 751 752 /** 753 * stop_tty - propagate flow control 754 * @tty: tty to stop 755 * 756 * Perform flow control to the driver. May be called 757 * on an already stopped device and will not re-call the driver 758 * method. 759 * 760 * This functionality is used by both the line disciplines for 761 * halting incoming flow and by the driver. It may therefore be 762 * called from any context, may be under the tty atomic_write_lock 763 * but not always. 764 * 765 * Locking: 766 * flow_lock 767 */ 768 769 void __stop_tty(struct tty_struct *tty) 770 { 771 if (tty->stopped) 772 return; 773 tty->stopped = 1; 774 if (tty->ops->stop) 775 tty->ops->stop(tty); 776 } 777 778 void stop_tty(struct tty_struct *tty) 779 { 780 unsigned long flags; 781 782 spin_lock_irqsave(&tty->flow_lock, flags); 783 __stop_tty(tty); 784 spin_unlock_irqrestore(&tty->flow_lock, flags); 785 } 786 EXPORT_SYMBOL(stop_tty); 787 788 /** 789 * start_tty - propagate flow control 790 * @tty: tty to start 791 * 792 * Start a tty that has been stopped if at all possible. If this 793 * tty was previous stopped and is now being started, the driver 794 * start method is invoked and the line discipline woken. 795 * 796 * Locking: 797 * flow_lock 798 */ 799 800 void __start_tty(struct tty_struct *tty) 801 { 802 if (!tty->stopped || tty->flow_stopped) 803 return; 804 tty->stopped = 0; 805 if (tty->ops->start) 806 tty->ops->start(tty); 807 tty_wakeup(tty); 808 } 809 810 void start_tty(struct tty_struct *tty) 811 { 812 unsigned long flags; 813 814 spin_lock_irqsave(&tty->flow_lock, flags); 815 __start_tty(tty); 816 spin_unlock_irqrestore(&tty->flow_lock, flags); 817 } 818 EXPORT_SYMBOL(start_tty); 819 820 static void tty_update_time(struct timespec64 *time) 821 { 822 time64_t sec = ktime_get_real_seconds(); 823 824 /* 825 * We only care if the two values differ in anything other than the 826 * lower three bits (i.e every 8 seconds). If so, then we can update 827 * the time of the tty device, otherwise it could be construded as a 828 * security leak to let userspace know the exact timing of the tty. 829 */ 830 if ((sec ^ time->tv_sec) & ~7) 831 time->tv_sec = sec; 832 } 833 834 /** 835 * tty_read - read method for tty device files 836 * @file: pointer to tty file 837 * @buf: user buffer 838 * @count: size of user buffer 839 * @ppos: unused 840 * 841 * Perform the read system call function on this terminal device. Checks 842 * for hung up devices before calling the line discipline method. 843 * 844 * Locking: 845 * Locks the line discipline internally while needed. Multiple 846 * read calls may be outstanding in parallel. 847 */ 848 849 static ssize_t tty_read(struct file *file, char __user *buf, size_t count, 850 loff_t *ppos) 851 { 852 int i; 853 struct inode *inode = file_inode(file); 854 struct tty_struct *tty = file_tty(file); 855 struct tty_ldisc *ld; 856 857 if (tty_paranoia_check(tty, inode, "tty_read")) 858 return -EIO; 859 if (!tty || tty_io_error(tty)) 860 return -EIO; 861 862 /* We want to wait for the line discipline to sort out in this 863 situation */ 864 ld = tty_ldisc_ref_wait(tty); 865 if (!ld) 866 return hung_up_tty_read(file, buf, count, ppos); 867 if (ld->ops->read) 868 i = ld->ops->read(tty, file, buf, count); 869 else 870 i = -EIO; 871 tty_ldisc_deref(ld); 872 873 if (i > 0) 874 tty_update_time(&inode->i_atime); 875 876 return i; 877 } 878 879 static void tty_write_unlock(struct tty_struct *tty) 880 { 881 mutex_unlock(&tty->atomic_write_lock); 882 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT); 883 } 884 885 static int tty_write_lock(struct tty_struct *tty, int ndelay) 886 { 887 if (!mutex_trylock(&tty->atomic_write_lock)) { 888 if (ndelay) 889 return -EAGAIN; 890 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 891 return -ERESTARTSYS; 892 } 893 return 0; 894 } 895 896 /* 897 * Split writes up in sane blocksizes to avoid 898 * denial-of-service type attacks 899 */ 900 static inline ssize_t do_tty_write( 901 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 902 struct tty_struct *tty, 903 struct file *file, 904 const char __user *buf, 905 size_t count) 906 { 907 ssize_t ret, written = 0; 908 unsigned int chunk; 909 910 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 911 if (ret < 0) 912 return ret; 913 914 /* 915 * We chunk up writes into a temporary buffer. This 916 * simplifies low-level drivers immensely, since they 917 * don't have locking issues and user mode accesses. 918 * 919 * But if TTY_NO_WRITE_SPLIT is set, we should use a 920 * big chunk-size.. 921 * 922 * The default chunk-size is 2kB, because the NTTY 923 * layer has problems with bigger chunks. It will 924 * claim to be able to handle more characters than 925 * it actually does. 926 * 927 * FIXME: This can probably go away now except that 64K chunks 928 * are too likely to fail unless switched to vmalloc... 929 */ 930 chunk = 2048; 931 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 932 chunk = 65536; 933 if (count < chunk) 934 chunk = count; 935 936 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 937 if (tty->write_cnt < chunk) { 938 unsigned char *buf_chunk; 939 940 if (chunk < 1024) 941 chunk = 1024; 942 943 buf_chunk = kmalloc(chunk, GFP_KERNEL); 944 if (!buf_chunk) { 945 ret = -ENOMEM; 946 goto out; 947 } 948 kfree(tty->write_buf); 949 tty->write_cnt = chunk; 950 tty->write_buf = buf_chunk; 951 } 952 953 /* Do the write .. */ 954 for (;;) { 955 size_t size = count; 956 if (size > chunk) 957 size = chunk; 958 ret = -EFAULT; 959 if (copy_from_user(tty->write_buf, buf, size)) 960 break; 961 ret = write(tty, file, tty->write_buf, size); 962 if (ret <= 0) 963 break; 964 written += ret; 965 buf += ret; 966 count -= ret; 967 if (!count) 968 break; 969 ret = -ERESTARTSYS; 970 if (signal_pending(current)) 971 break; 972 cond_resched(); 973 } 974 if (written) { 975 tty_update_time(&file_inode(file)->i_mtime); 976 ret = written; 977 } 978 out: 979 tty_write_unlock(tty); 980 return ret; 981 } 982 983 /** 984 * tty_write_message - write a message to a certain tty, not just the console. 985 * @tty: the destination tty_struct 986 * @msg: the message to write 987 * 988 * This is used for messages that need to be redirected to a specific tty. 989 * We don't put it into the syslog queue right now maybe in the future if 990 * really needed. 991 * 992 * We must still hold the BTM and test the CLOSING flag for the moment. 993 */ 994 995 void tty_write_message(struct tty_struct *tty, char *msg) 996 { 997 if (tty) { 998 mutex_lock(&tty->atomic_write_lock); 999 tty_lock(tty); 1000 if (tty->ops->write && tty->count > 0) 1001 tty->ops->write(tty, msg, strlen(msg)); 1002 tty_unlock(tty); 1003 tty_write_unlock(tty); 1004 } 1005 return; 1006 } 1007 1008 1009 /** 1010 * tty_write - write method for tty device file 1011 * @file: tty file pointer 1012 * @buf: user data to write 1013 * @count: bytes to write 1014 * @ppos: unused 1015 * 1016 * Write data to a tty device via the line discipline. 1017 * 1018 * Locking: 1019 * Locks the line discipline as required 1020 * Writes to the tty driver are serialized by the atomic_write_lock 1021 * and are then processed in chunks to the device. The line discipline 1022 * write method will not be invoked in parallel for each device. 1023 */ 1024 1025 static ssize_t tty_write(struct file *file, const char __user *buf, 1026 size_t count, loff_t *ppos) 1027 { 1028 struct tty_struct *tty = file_tty(file); 1029 struct tty_ldisc *ld; 1030 ssize_t ret; 1031 1032 if (tty_paranoia_check(tty, file_inode(file), "tty_write")) 1033 return -EIO; 1034 if (!tty || !tty->ops->write || tty_io_error(tty)) 1035 return -EIO; 1036 /* Short term debug to catch buggy drivers */ 1037 if (tty->ops->write_room == NULL) 1038 tty_err(tty, "missing write_room method\n"); 1039 ld = tty_ldisc_ref_wait(tty); 1040 if (!ld) 1041 return hung_up_tty_write(file, buf, count, ppos); 1042 if (!ld->ops->write) 1043 ret = -EIO; 1044 else 1045 ret = do_tty_write(ld->ops->write, tty, file, buf, count); 1046 tty_ldisc_deref(ld); 1047 return ret; 1048 } 1049 1050 ssize_t redirected_tty_write(struct file *file, const char __user *buf, 1051 size_t count, loff_t *ppos) 1052 { 1053 struct file *p = NULL; 1054 1055 spin_lock(&redirect_lock); 1056 if (redirect) 1057 p = get_file(redirect); 1058 spin_unlock(&redirect_lock); 1059 1060 if (p) { 1061 ssize_t res; 1062 res = vfs_write(p, buf, count, &p->f_pos); 1063 fput(p); 1064 return res; 1065 } 1066 return tty_write(file, buf, count, ppos); 1067 } 1068 1069 /** 1070 * tty_send_xchar - send priority character 1071 * 1072 * Send a high priority character to the tty even if stopped 1073 * 1074 * Locking: none for xchar method, write ordering for write method. 1075 */ 1076 1077 int tty_send_xchar(struct tty_struct *tty, char ch) 1078 { 1079 int was_stopped = tty->stopped; 1080 1081 if (tty->ops->send_xchar) { 1082 down_read(&tty->termios_rwsem); 1083 tty->ops->send_xchar(tty, ch); 1084 up_read(&tty->termios_rwsem); 1085 return 0; 1086 } 1087 1088 if (tty_write_lock(tty, 0) < 0) 1089 return -ERESTARTSYS; 1090 1091 down_read(&tty->termios_rwsem); 1092 if (was_stopped) 1093 start_tty(tty); 1094 tty->ops->write(tty, &ch, 1); 1095 if (was_stopped) 1096 stop_tty(tty); 1097 up_read(&tty->termios_rwsem); 1098 tty_write_unlock(tty); 1099 return 0; 1100 } 1101 1102 static char ptychar[] = "pqrstuvwxyzabcde"; 1103 1104 /** 1105 * pty_line_name - generate name for a pty 1106 * @driver: the tty driver in use 1107 * @index: the minor number 1108 * @p: output buffer of at least 6 bytes 1109 * 1110 * Generate a name from a driver reference and write it to the output 1111 * buffer. 1112 * 1113 * Locking: None 1114 */ 1115 static void pty_line_name(struct tty_driver *driver, int index, char *p) 1116 { 1117 int i = index + driver->name_base; 1118 /* ->name is initialized to "ttyp", but "tty" is expected */ 1119 sprintf(p, "%s%c%x", 1120 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1121 ptychar[i >> 4 & 0xf], i & 0xf); 1122 } 1123 1124 /** 1125 * tty_line_name - generate name for a tty 1126 * @driver: the tty driver in use 1127 * @index: the minor number 1128 * @p: output buffer of at least 7 bytes 1129 * 1130 * Generate a name from a driver reference and write it to the output 1131 * buffer. 1132 * 1133 * Locking: None 1134 */ 1135 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p) 1136 { 1137 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE) 1138 return sprintf(p, "%s", driver->name); 1139 else 1140 return sprintf(p, "%s%d", driver->name, 1141 index + driver->name_base); 1142 } 1143 1144 /** 1145 * tty_driver_lookup_tty() - find an existing tty, if any 1146 * @driver: the driver for the tty 1147 * @idx: the minor number 1148 * 1149 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the 1150 * driver lookup() method returns an error. 1151 * 1152 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref. 1153 */ 1154 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1155 struct file *file, int idx) 1156 { 1157 struct tty_struct *tty; 1158 1159 if (driver->ops->lookup) 1160 if (!file) 1161 tty = ERR_PTR(-EIO); 1162 else 1163 tty = driver->ops->lookup(driver, file, idx); 1164 else 1165 tty = driver->ttys[idx]; 1166 1167 if (!IS_ERR(tty)) 1168 tty_kref_get(tty); 1169 return tty; 1170 } 1171 1172 /** 1173 * tty_init_termios - helper for termios setup 1174 * @tty: the tty to set up 1175 * 1176 * Initialise the termios structure for this tty. This runs under 1177 * the tty_mutex currently so we can be relaxed about ordering. 1178 */ 1179 1180 void tty_init_termios(struct tty_struct *tty) 1181 { 1182 struct ktermios *tp; 1183 int idx = tty->index; 1184 1185 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1186 tty->termios = tty->driver->init_termios; 1187 else { 1188 /* Check for lazy saved data */ 1189 tp = tty->driver->termios[idx]; 1190 if (tp != NULL) { 1191 tty->termios = *tp; 1192 tty->termios.c_line = tty->driver->init_termios.c_line; 1193 } else 1194 tty->termios = tty->driver->init_termios; 1195 } 1196 /* Compatibility until drivers always set this */ 1197 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios); 1198 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios); 1199 } 1200 EXPORT_SYMBOL_GPL(tty_init_termios); 1201 1202 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1203 { 1204 tty_init_termios(tty); 1205 tty_driver_kref_get(driver); 1206 tty->count++; 1207 driver->ttys[tty->index] = tty; 1208 return 0; 1209 } 1210 EXPORT_SYMBOL_GPL(tty_standard_install); 1211 1212 /** 1213 * tty_driver_install_tty() - install a tty entry in the driver 1214 * @driver: the driver for the tty 1215 * @tty: the tty 1216 * 1217 * Install a tty object into the driver tables. The tty->index field 1218 * will be set by the time this is called. This method is responsible 1219 * for ensuring any need additional structures are allocated and 1220 * configured. 1221 * 1222 * Locking: tty_mutex for now 1223 */ 1224 static int tty_driver_install_tty(struct tty_driver *driver, 1225 struct tty_struct *tty) 1226 { 1227 return driver->ops->install ? driver->ops->install(driver, tty) : 1228 tty_standard_install(driver, tty); 1229 } 1230 1231 /** 1232 * tty_driver_remove_tty() - remove a tty from the driver tables 1233 * @driver: the driver for the tty 1234 * @idx: the minor number 1235 * 1236 * Remvoe a tty object from the driver tables. The tty->index field 1237 * will be set by the time this is called. 1238 * 1239 * Locking: tty_mutex for now 1240 */ 1241 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1242 { 1243 if (driver->ops->remove) 1244 driver->ops->remove(driver, tty); 1245 else 1246 driver->ttys[tty->index] = NULL; 1247 } 1248 1249 /* 1250 * tty_reopen() - fast re-open of an open tty 1251 * @tty - the tty to open 1252 * 1253 * Return 0 on success, -errno on error. 1254 * Re-opens on master ptys are not allowed and return -EIO. 1255 * 1256 * Locking: Caller must hold tty_lock 1257 */ 1258 static int tty_reopen(struct tty_struct *tty) 1259 { 1260 struct tty_driver *driver = tty->driver; 1261 struct tty_ldisc *ld; 1262 int retval = 0; 1263 1264 if (driver->type == TTY_DRIVER_TYPE_PTY && 1265 driver->subtype == PTY_TYPE_MASTER) 1266 return -EIO; 1267 1268 if (!tty->count) 1269 return -EAGAIN; 1270 1271 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN)) 1272 return -EBUSY; 1273 1274 ld = tty_ldisc_ref_wait(tty); 1275 if (ld) { 1276 tty_ldisc_deref(ld); 1277 } else { 1278 retval = tty_ldisc_lock(tty, 5 * HZ); 1279 if (retval) 1280 return retval; 1281 1282 if (!tty->ldisc) 1283 retval = tty_ldisc_reinit(tty, tty->termios.c_line); 1284 tty_ldisc_unlock(tty); 1285 } 1286 1287 if (retval == 0) 1288 tty->count++; 1289 1290 return retval; 1291 } 1292 1293 /** 1294 * tty_init_dev - initialise a tty device 1295 * @driver: tty driver we are opening a device on 1296 * @idx: device index 1297 * @ret_tty: returned tty structure 1298 * 1299 * Prepare a tty device. This may not be a "new" clean device but 1300 * could also be an active device. The pty drivers require special 1301 * handling because of this. 1302 * 1303 * Locking: 1304 * The function is called under the tty_mutex, which 1305 * protects us from the tty struct or driver itself going away. 1306 * 1307 * On exit the tty device has the line discipline attached and 1308 * a reference count of 1. If a pair was created for pty/tty use 1309 * and the other was a pty master then it too has a reference count of 1. 1310 * 1311 * WSH 06/09/97: Rewritten to remove races and properly clean up after a 1312 * failed open. The new code protects the open with a mutex, so it's 1313 * really quite straightforward. The mutex locking can probably be 1314 * relaxed for the (most common) case of reopening a tty. 1315 */ 1316 1317 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1318 { 1319 struct tty_struct *tty; 1320 int retval; 1321 1322 /* 1323 * First time open is complex, especially for PTY devices. 1324 * This code guarantees that either everything succeeds and the 1325 * TTY is ready for operation, or else the table slots are vacated 1326 * and the allocated memory released. (Except that the termios 1327 * may be retained.) 1328 */ 1329 1330 if (!try_module_get(driver->owner)) 1331 return ERR_PTR(-ENODEV); 1332 1333 tty = alloc_tty_struct(driver, idx); 1334 if (!tty) { 1335 retval = -ENOMEM; 1336 goto err_module_put; 1337 } 1338 1339 tty_lock(tty); 1340 retval = tty_driver_install_tty(driver, tty); 1341 if (retval < 0) 1342 goto err_free_tty; 1343 1344 if (!tty->port) 1345 tty->port = driver->ports[idx]; 1346 1347 WARN_RATELIMIT(!tty->port, 1348 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n", 1349 __func__, tty->driver->name); 1350 1351 retval = tty_ldisc_lock(tty, 5 * HZ); 1352 if (retval) 1353 goto err_release_lock; 1354 tty->port->itty = tty; 1355 1356 /* 1357 * Structures all installed ... call the ldisc open routines. 1358 * If we fail here just call release_tty to clean up. No need 1359 * to decrement the use counts, as release_tty doesn't care. 1360 */ 1361 retval = tty_ldisc_setup(tty, tty->link); 1362 if (retval) 1363 goto err_release_tty; 1364 tty_ldisc_unlock(tty); 1365 /* Return the tty locked so that it cannot vanish under the caller */ 1366 return tty; 1367 1368 err_free_tty: 1369 tty_unlock(tty); 1370 free_tty_struct(tty); 1371 err_module_put: 1372 module_put(driver->owner); 1373 return ERR_PTR(retval); 1374 1375 /* call the tty release_tty routine to clean out this slot */ 1376 err_release_tty: 1377 tty_ldisc_unlock(tty); 1378 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n", 1379 retval, idx); 1380 err_release_lock: 1381 tty_unlock(tty); 1382 release_tty(tty, idx); 1383 return ERR_PTR(retval); 1384 } 1385 1386 /** 1387 * tty_save_termios() - save tty termios data in driver table 1388 * @tty: tty whose termios data to save 1389 * 1390 * Locking: Caller guarantees serialisation with tty_init_termios(). 1391 */ 1392 void tty_save_termios(struct tty_struct *tty) 1393 { 1394 struct ktermios *tp; 1395 int idx = tty->index; 1396 1397 /* If the port is going to reset then it has no termios to save */ 1398 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1399 return; 1400 1401 /* Stash the termios data */ 1402 tp = tty->driver->termios[idx]; 1403 if (tp == NULL) { 1404 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL); 1405 if (tp == NULL) 1406 return; 1407 tty->driver->termios[idx] = tp; 1408 } 1409 *tp = tty->termios; 1410 } 1411 EXPORT_SYMBOL_GPL(tty_save_termios); 1412 1413 /** 1414 * tty_flush_works - flush all works of a tty/pty pair 1415 * @tty: tty device to flush works for (or either end of a pty pair) 1416 * 1417 * Sync flush all works belonging to @tty (and the 'other' tty). 1418 */ 1419 static void tty_flush_works(struct tty_struct *tty) 1420 { 1421 flush_work(&tty->SAK_work); 1422 flush_work(&tty->hangup_work); 1423 if (tty->link) { 1424 flush_work(&tty->link->SAK_work); 1425 flush_work(&tty->link->hangup_work); 1426 } 1427 } 1428 1429 /** 1430 * release_one_tty - release tty structure memory 1431 * @kref: kref of tty we are obliterating 1432 * 1433 * Releases memory associated with a tty structure, and clears out the 1434 * driver table slots. This function is called when a device is no longer 1435 * in use. It also gets called when setup of a device fails. 1436 * 1437 * Locking: 1438 * takes the file list lock internally when working on the list 1439 * of ttys that the driver keeps. 1440 * 1441 * This method gets called from a work queue so that the driver private 1442 * cleanup ops can sleep (needed for USB at least) 1443 */ 1444 static void release_one_tty(struct work_struct *work) 1445 { 1446 struct tty_struct *tty = 1447 container_of(work, struct tty_struct, hangup_work); 1448 struct tty_driver *driver = tty->driver; 1449 struct module *owner = driver->owner; 1450 1451 if (tty->ops->cleanup) 1452 tty->ops->cleanup(tty); 1453 1454 tty->magic = 0; 1455 tty_driver_kref_put(driver); 1456 module_put(owner); 1457 1458 spin_lock(&tty->files_lock); 1459 list_del_init(&tty->tty_files); 1460 spin_unlock(&tty->files_lock); 1461 1462 put_pid(tty->pgrp); 1463 put_pid(tty->session); 1464 free_tty_struct(tty); 1465 } 1466 1467 static void queue_release_one_tty(struct kref *kref) 1468 { 1469 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1470 1471 /* The hangup queue is now free so we can reuse it rather than 1472 waste a chunk of memory for each port */ 1473 INIT_WORK(&tty->hangup_work, release_one_tty); 1474 schedule_work(&tty->hangup_work); 1475 } 1476 1477 /** 1478 * tty_kref_put - release a tty kref 1479 * @tty: tty device 1480 * 1481 * Release a reference to a tty device and if need be let the kref 1482 * layer destruct the object for us 1483 */ 1484 1485 void tty_kref_put(struct tty_struct *tty) 1486 { 1487 if (tty) 1488 kref_put(&tty->kref, queue_release_one_tty); 1489 } 1490 EXPORT_SYMBOL(tty_kref_put); 1491 1492 /** 1493 * release_tty - release tty structure memory 1494 * 1495 * Release both @tty and a possible linked partner (think pty pair), 1496 * and decrement the refcount of the backing module. 1497 * 1498 * Locking: 1499 * tty_mutex 1500 * takes the file list lock internally when working on the list 1501 * of ttys that the driver keeps. 1502 * 1503 */ 1504 static void release_tty(struct tty_struct *tty, int idx) 1505 { 1506 /* This should always be true but check for the moment */ 1507 WARN_ON(tty->index != idx); 1508 WARN_ON(!mutex_is_locked(&tty_mutex)); 1509 if (tty->ops->shutdown) 1510 tty->ops->shutdown(tty); 1511 tty_save_termios(tty); 1512 tty_driver_remove_tty(tty->driver, tty); 1513 tty->port->itty = NULL; 1514 if (tty->link) 1515 tty->link->port->itty = NULL; 1516 tty_buffer_cancel_work(tty->port); 1517 if (tty->link) 1518 tty_buffer_cancel_work(tty->link->port); 1519 1520 tty_kref_put(tty->link); 1521 tty_kref_put(tty); 1522 } 1523 1524 /** 1525 * tty_release_checks - check a tty before real release 1526 * @tty: tty to check 1527 * @o_tty: link of @tty (if any) 1528 * @idx: index of the tty 1529 * 1530 * Performs some paranoid checking before true release of the @tty. 1531 * This is a no-op unless TTY_PARANOIA_CHECK is defined. 1532 */ 1533 static int tty_release_checks(struct tty_struct *tty, int idx) 1534 { 1535 #ifdef TTY_PARANOIA_CHECK 1536 if (idx < 0 || idx >= tty->driver->num) { 1537 tty_debug(tty, "bad idx %d\n", idx); 1538 return -1; 1539 } 1540 1541 /* not much to check for devpts */ 1542 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1543 return 0; 1544 1545 if (tty != tty->driver->ttys[idx]) { 1546 tty_debug(tty, "bad driver table[%d] = %p\n", 1547 idx, tty->driver->ttys[idx]); 1548 return -1; 1549 } 1550 if (tty->driver->other) { 1551 struct tty_struct *o_tty = tty->link; 1552 1553 if (o_tty != tty->driver->other->ttys[idx]) { 1554 tty_debug(tty, "bad other table[%d] = %p\n", 1555 idx, tty->driver->other->ttys[idx]); 1556 return -1; 1557 } 1558 if (o_tty->link != tty) { 1559 tty_debug(tty, "bad link = %p\n", o_tty->link); 1560 return -1; 1561 } 1562 } 1563 #endif 1564 return 0; 1565 } 1566 1567 /** 1568 * tty_kclose - closes tty opened by tty_kopen 1569 * @tty: tty device 1570 * 1571 * Performs the final steps to release and free a tty device. It is the 1572 * same as tty_release_struct except that it also resets TTY_PORT_KOPENED 1573 * flag on tty->port. 1574 */ 1575 void tty_kclose(struct tty_struct *tty) 1576 { 1577 /* 1578 * Ask the line discipline code to release its structures 1579 */ 1580 tty_ldisc_release(tty); 1581 1582 /* Wait for pending work before tty destruction commmences */ 1583 tty_flush_works(tty); 1584 1585 tty_debug_hangup(tty, "freeing structure\n"); 1586 /* 1587 * The release_tty function takes care of the details of clearing 1588 * the slots and preserving the termios structure. The tty_unlock_pair 1589 * should be safe as we keep a kref while the tty is locked (so the 1590 * unlock never unlocks a freed tty). 1591 */ 1592 mutex_lock(&tty_mutex); 1593 tty_port_set_kopened(tty->port, 0); 1594 release_tty(tty, tty->index); 1595 mutex_unlock(&tty_mutex); 1596 } 1597 EXPORT_SYMBOL_GPL(tty_kclose); 1598 1599 /** 1600 * tty_release_struct - release a tty struct 1601 * @tty: tty device 1602 * @idx: index of the tty 1603 * 1604 * Performs the final steps to release and free a tty device. It is 1605 * roughly the reverse of tty_init_dev. 1606 */ 1607 void tty_release_struct(struct tty_struct *tty, int idx) 1608 { 1609 /* 1610 * Ask the line discipline code to release its structures 1611 */ 1612 tty_ldisc_release(tty); 1613 1614 /* Wait for pending work before tty destruction commmences */ 1615 tty_flush_works(tty); 1616 1617 tty_debug_hangup(tty, "freeing structure\n"); 1618 /* 1619 * The release_tty function takes care of the details of clearing 1620 * the slots and preserving the termios structure. The tty_unlock_pair 1621 * should be safe as we keep a kref while the tty is locked (so the 1622 * unlock never unlocks a freed tty). 1623 */ 1624 mutex_lock(&tty_mutex); 1625 release_tty(tty, idx); 1626 mutex_unlock(&tty_mutex); 1627 } 1628 EXPORT_SYMBOL_GPL(tty_release_struct); 1629 1630 /** 1631 * tty_release - vfs callback for close 1632 * @inode: inode of tty 1633 * @filp: file pointer for handle to tty 1634 * 1635 * Called the last time each file handle is closed that references 1636 * this tty. There may however be several such references. 1637 * 1638 * Locking: 1639 * Takes bkl. See tty_release_dev 1640 * 1641 * Even releasing the tty structures is a tricky business.. We have 1642 * to be very careful that the structures are all released at the 1643 * same time, as interrupts might otherwise get the wrong pointers. 1644 * 1645 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1646 * lead to double frees or releasing memory still in use. 1647 */ 1648 1649 int tty_release(struct inode *inode, struct file *filp) 1650 { 1651 struct tty_struct *tty = file_tty(filp); 1652 struct tty_struct *o_tty = NULL; 1653 int do_sleep, final; 1654 int idx; 1655 long timeout = 0; 1656 int once = 1; 1657 1658 if (tty_paranoia_check(tty, inode, __func__)) 1659 return 0; 1660 1661 tty_lock(tty); 1662 check_tty_count(tty, __func__); 1663 1664 __tty_fasync(-1, filp, 0); 1665 1666 idx = tty->index; 1667 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1668 tty->driver->subtype == PTY_TYPE_MASTER) 1669 o_tty = tty->link; 1670 1671 if (tty_release_checks(tty, idx)) { 1672 tty_unlock(tty); 1673 return 0; 1674 } 1675 1676 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count); 1677 1678 if (tty->ops->close) 1679 tty->ops->close(tty, filp); 1680 1681 /* If tty is pty master, lock the slave pty (stable lock order) */ 1682 tty_lock_slave(o_tty); 1683 1684 /* 1685 * Sanity check: if tty->count is going to zero, there shouldn't be 1686 * any waiters on tty->read_wait or tty->write_wait. We test the 1687 * wait queues and kick everyone out _before_ actually starting to 1688 * close. This ensures that we won't block while releasing the tty 1689 * structure. 1690 * 1691 * The test for the o_tty closing is necessary, since the master and 1692 * slave sides may close in any order. If the slave side closes out 1693 * first, its count will be one, since the master side holds an open. 1694 * Thus this test wouldn't be triggered at the time the slave closed, 1695 * so we do it now. 1696 */ 1697 while (1) { 1698 do_sleep = 0; 1699 1700 if (tty->count <= 1) { 1701 if (waitqueue_active(&tty->read_wait)) { 1702 wake_up_poll(&tty->read_wait, EPOLLIN); 1703 do_sleep++; 1704 } 1705 if (waitqueue_active(&tty->write_wait)) { 1706 wake_up_poll(&tty->write_wait, EPOLLOUT); 1707 do_sleep++; 1708 } 1709 } 1710 if (o_tty && o_tty->count <= 1) { 1711 if (waitqueue_active(&o_tty->read_wait)) { 1712 wake_up_poll(&o_tty->read_wait, EPOLLIN); 1713 do_sleep++; 1714 } 1715 if (waitqueue_active(&o_tty->write_wait)) { 1716 wake_up_poll(&o_tty->write_wait, EPOLLOUT); 1717 do_sleep++; 1718 } 1719 } 1720 if (!do_sleep) 1721 break; 1722 1723 if (once) { 1724 once = 0; 1725 tty_warn(tty, "read/write wait queue active!\n"); 1726 } 1727 schedule_timeout_killable(timeout); 1728 if (timeout < 120 * HZ) 1729 timeout = 2 * timeout + 1; 1730 else 1731 timeout = MAX_SCHEDULE_TIMEOUT; 1732 } 1733 1734 if (o_tty) { 1735 if (--o_tty->count < 0) { 1736 tty_warn(tty, "bad slave count (%d)\n", o_tty->count); 1737 o_tty->count = 0; 1738 } 1739 } 1740 if (--tty->count < 0) { 1741 tty_warn(tty, "bad tty->count (%d)\n", tty->count); 1742 tty->count = 0; 1743 } 1744 1745 /* 1746 * We've decremented tty->count, so we need to remove this file 1747 * descriptor off the tty->tty_files list; this serves two 1748 * purposes: 1749 * - check_tty_count sees the correct number of file descriptors 1750 * associated with this tty. 1751 * - do_tty_hangup no longer sees this file descriptor as 1752 * something that needs to be handled for hangups. 1753 */ 1754 tty_del_file(filp); 1755 1756 /* 1757 * Perform some housekeeping before deciding whether to return. 1758 * 1759 * If _either_ side is closing, make sure there aren't any 1760 * processes that still think tty or o_tty is their controlling 1761 * tty. 1762 */ 1763 if (!tty->count) { 1764 read_lock(&tasklist_lock); 1765 session_clear_tty(tty->session); 1766 if (o_tty) 1767 session_clear_tty(o_tty->session); 1768 read_unlock(&tasklist_lock); 1769 } 1770 1771 /* check whether both sides are closing ... */ 1772 final = !tty->count && !(o_tty && o_tty->count); 1773 1774 tty_unlock_slave(o_tty); 1775 tty_unlock(tty); 1776 1777 /* At this point, the tty->count == 0 should ensure a dead tty 1778 cannot be re-opened by a racing opener */ 1779 1780 if (!final) 1781 return 0; 1782 1783 tty_debug_hangup(tty, "final close\n"); 1784 1785 tty_release_struct(tty, idx); 1786 return 0; 1787 } 1788 1789 /** 1790 * tty_open_current_tty - get locked tty of current task 1791 * @device: device number 1792 * @filp: file pointer to tty 1793 * @return: locked tty of the current task iff @device is /dev/tty 1794 * 1795 * Performs a re-open of the current task's controlling tty. 1796 * 1797 * We cannot return driver and index like for the other nodes because 1798 * devpts will not work then. It expects inodes to be from devpts FS. 1799 */ 1800 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1801 { 1802 struct tty_struct *tty; 1803 int retval; 1804 1805 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1806 return NULL; 1807 1808 tty = get_current_tty(); 1809 if (!tty) 1810 return ERR_PTR(-ENXIO); 1811 1812 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1813 /* noctty = 1; */ 1814 tty_lock(tty); 1815 tty_kref_put(tty); /* safe to drop the kref now */ 1816 1817 retval = tty_reopen(tty); 1818 if (retval < 0) { 1819 tty_unlock(tty); 1820 tty = ERR_PTR(retval); 1821 } 1822 return tty; 1823 } 1824 1825 /** 1826 * tty_lookup_driver - lookup a tty driver for a given device file 1827 * @device: device number 1828 * @filp: file pointer to tty 1829 * @index: index for the device in the @return driver 1830 * @return: driver for this inode (with increased refcount) 1831 * 1832 * If @return is not erroneous, the caller is responsible to decrement the 1833 * refcount by tty_driver_kref_put. 1834 * 1835 * Locking: tty_mutex protects get_tty_driver 1836 */ 1837 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1838 int *index) 1839 { 1840 struct tty_driver *driver = NULL; 1841 1842 switch (device) { 1843 #ifdef CONFIG_VT 1844 case MKDEV(TTY_MAJOR, 0): { 1845 extern struct tty_driver *console_driver; 1846 driver = tty_driver_kref_get(console_driver); 1847 *index = fg_console; 1848 break; 1849 } 1850 #endif 1851 case MKDEV(TTYAUX_MAJOR, 1): { 1852 struct tty_driver *console_driver = console_device(index); 1853 if (console_driver) { 1854 driver = tty_driver_kref_get(console_driver); 1855 if (driver && filp) { 1856 /* Don't let /dev/console block */ 1857 filp->f_flags |= O_NONBLOCK; 1858 break; 1859 } 1860 } 1861 if (driver) 1862 tty_driver_kref_put(driver); 1863 return ERR_PTR(-ENODEV); 1864 } 1865 default: 1866 driver = get_tty_driver(device, index); 1867 if (!driver) 1868 return ERR_PTR(-ENODEV); 1869 break; 1870 } 1871 return driver; 1872 } 1873 1874 /** 1875 * tty_kopen - open a tty device for kernel 1876 * @device: dev_t of device to open 1877 * 1878 * Opens tty exclusively for kernel. Performs the driver lookup, 1879 * makes sure it's not already opened and performs the first-time 1880 * tty initialization. 1881 * 1882 * Returns the locked initialized &tty_struct 1883 * 1884 * Claims the global tty_mutex to serialize: 1885 * - concurrent first-time tty initialization 1886 * - concurrent tty driver removal w/ lookup 1887 * - concurrent tty removal from driver table 1888 */ 1889 struct tty_struct *tty_kopen(dev_t device) 1890 { 1891 struct tty_struct *tty; 1892 struct tty_driver *driver = NULL; 1893 int index = -1; 1894 1895 mutex_lock(&tty_mutex); 1896 driver = tty_lookup_driver(device, NULL, &index); 1897 if (IS_ERR(driver)) { 1898 mutex_unlock(&tty_mutex); 1899 return ERR_CAST(driver); 1900 } 1901 1902 /* check whether we're reopening an existing tty */ 1903 tty = tty_driver_lookup_tty(driver, NULL, index); 1904 if (IS_ERR(tty)) 1905 goto out; 1906 1907 if (tty) { 1908 /* drop kref from tty_driver_lookup_tty() */ 1909 tty_kref_put(tty); 1910 tty = ERR_PTR(-EBUSY); 1911 } else { /* tty_init_dev returns tty with the tty_lock held */ 1912 tty = tty_init_dev(driver, index); 1913 if (IS_ERR(tty)) 1914 goto out; 1915 tty_port_set_kopened(tty->port, 1); 1916 } 1917 out: 1918 mutex_unlock(&tty_mutex); 1919 tty_driver_kref_put(driver); 1920 return tty; 1921 } 1922 EXPORT_SYMBOL_GPL(tty_kopen); 1923 1924 /** 1925 * tty_open_by_driver - open a tty device 1926 * @device: dev_t of device to open 1927 * @inode: inode of device file 1928 * @filp: file pointer to tty 1929 * 1930 * Performs the driver lookup, checks for a reopen, or otherwise 1931 * performs the first-time tty initialization. 1932 * 1933 * Returns the locked initialized or re-opened &tty_struct 1934 * 1935 * Claims the global tty_mutex to serialize: 1936 * - concurrent first-time tty initialization 1937 * - concurrent tty driver removal w/ lookup 1938 * - concurrent tty removal from driver table 1939 */ 1940 static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode, 1941 struct file *filp) 1942 { 1943 struct tty_struct *tty; 1944 struct tty_driver *driver = NULL; 1945 int index = -1; 1946 int retval; 1947 1948 mutex_lock(&tty_mutex); 1949 driver = tty_lookup_driver(device, filp, &index); 1950 if (IS_ERR(driver)) { 1951 mutex_unlock(&tty_mutex); 1952 return ERR_CAST(driver); 1953 } 1954 1955 /* check whether we're reopening an existing tty */ 1956 tty = tty_driver_lookup_tty(driver, filp, index); 1957 if (IS_ERR(tty)) { 1958 mutex_unlock(&tty_mutex); 1959 goto out; 1960 } 1961 1962 if (tty) { 1963 if (tty_port_kopened(tty->port)) { 1964 tty_kref_put(tty); 1965 mutex_unlock(&tty_mutex); 1966 tty = ERR_PTR(-EBUSY); 1967 goto out; 1968 } 1969 mutex_unlock(&tty_mutex); 1970 retval = tty_lock_interruptible(tty); 1971 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */ 1972 if (retval) { 1973 if (retval == -EINTR) 1974 retval = -ERESTARTSYS; 1975 tty = ERR_PTR(retval); 1976 goto out; 1977 } 1978 retval = tty_reopen(tty); 1979 if (retval < 0) { 1980 tty_unlock(tty); 1981 tty = ERR_PTR(retval); 1982 } 1983 } else { /* Returns with the tty_lock held for now */ 1984 tty = tty_init_dev(driver, index); 1985 mutex_unlock(&tty_mutex); 1986 } 1987 out: 1988 tty_driver_kref_put(driver); 1989 return tty; 1990 } 1991 1992 /** 1993 * tty_open - open a tty device 1994 * @inode: inode of device file 1995 * @filp: file pointer to tty 1996 * 1997 * tty_open and tty_release keep up the tty count that contains the 1998 * number of opens done on a tty. We cannot use the inode-count, as 1999 * different inodes might point to the same tty. 2000 * 2001 * Open-counting is needed for pty masters, as well as for keeping 2002 * track of serial lines: DTR is dropped when the last close happens. 2003 * (This is not done solely through tty->count, now. - Ted 1/27/92) 2004 * 2005 * The termios state of a pty is reset on first open so that 2006 * settings don't persist across reuse. 2007 * 2008 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev. 2009 * tty->count should protect the rest. 2010 * ->siglock protects ->signal/->sighand 2011 * 2012 * Note: the tty_unlock/lock cases without a ref are only safe due to 2013 * tty_mutex 2014 */ 2015 2016 static int tty_open(struct inode *inode, struct file *filp) 2017 { 2018 struct tty_struct *tty; 2019 int noctty, retval; 2020 dev_t device = inode->i_rdev; 2021 unsigned saved_flags = filp->f_flags; 2022 2023 nonseekable_open(inode, filp); 2024 2025 retry_open: 2026 retval = tty_alloc_file(filp); 2027 if (retval) 2028 return -ENOMEM; 2029 2030 tty = tty_open_current_tty(device, filp); 2031 if (!tty) 2032 tty = tty_open_by_driver(device, inode, filp); 2033 2034 if (IS_ERR(tty)) { 2035 tty_free_file(filp); 2036 retval = PTR_ERR(tty); 2037 if (retval != -EAGAIN || signal_pending(current)) 2038 return retval; 2039 schedule(); 2040 goto retry_open; 2041 } 2042 2043 tty_add_file(tty, filp); 2044 2045 check_tty_count(tty, __func__); 2046 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count); 2047 2048 if (tty->ops->open) 2049 retval = tty->ops->open(tty, filp); 2050 else 2051 retval = -ENODEV; 2052 filp->f_flags = saved_flags; 2053 2054 if (retval) { 2055 tty_debug_hangup(tty, "open error %d, releasing\n", retval); 2056 2057 tty_unlock(tty); /* need to call tty_release without BTM */ 2058 tty_release(inode, filp); 2059 if (retval != -ERESTARTSYS) 2060 return retval; 2061 2062 if (signal_pending(current)) 2063 return retval; 2064 2065 schedule(); 2066 /* 2067 * Need to reset f_op in case a hangup happened. 2068 */ 2069 if (tty_hung_up_p(filp)) 2070 filp->f_op = &tty_fops; 2071 goto retry_open; 2072 } 2073 clear_bit(TTY_HUPPED, &tty->flags); 2074 2075 noctty = (filp->f_flags & O_NOCTTY) || 2076 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) || 2077 device == MKDEV(TTYAUX_MAJOR, 1) || 2078 (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2079 tty->driver->subtype == PTY_TYPE_MASTER); 2080 if (!noctty) 2081 tty_open_proc_set_tty(filp, tty); 2082 tty_unlock(tty); 2083 return 0; 2084 } 2085 2086 2087 2088 /** 2089 * tty_poll - check tty status 2090 * @filp: file being polled 2091 * @wait: poll wait structures to update 2092 * 2093 * Call the line discipline polling method to obtain the poll 2094 * status of the device. 2095 * 2096 * Locking: locks called line discipline but ldisc poll method 2097 * may be re-entered freely by other callers. 2098 */ 2099 2100 static __poll_t tty_poll(struct file *filp, poll_table *wait) 2101 { 2102 struct tty_struct *tty = file_tty(filp); 2103 struct tty_ldisc *ld; 2104 __poll_t ret = 0; 2105 2106 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll")) 2107 return 0; 2108 2109 ld = tty_ldisc_ref_wait(tty); 2110 if (!ld) 2111 return hung_up_tty_poll(filp, wait); 2112 if (ld->ops->poll) 2113 ret = ld->ops->poll(tty, filp, wait); 2114 tty_ldisc_deref(ld); 2115 return ret; 2116 } 2117 2118 static int __tty_fasync(int fd, struct file *filp, int on) 2119 { 2120 struct tty_struct *tty = file_tty(filp); 2121 unsigned long flags; 2122 int retval = 0; 2123 2124 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync")) 2125 goto out; 2126 2127 retval = fasync_helper(fd, filp, on, &tty->fasync); 2128 if (retval <= 0) 2129 goto out; 2130 2131 if (on) { 2132 enum pid_type type; 2133 struct pid *pid; 2134 2135 spin_lock_irqsave(&tty->ctrl_lock, flags); 2136 if (tty->pgrp) { 2137 pid = tty->pgrp; 2138 type = PIDTYPE_PGID; 2139 } else { 2140 pid = task_pid(current); 2141 type = PIDTYPE_TGID; 2142 } 2143 get_pid(pid); 2144 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2145 __f_setown(filp, pid, type, 0); 2146 put_pid(pid); 2147 retval = 0; 2148 } 2149 out: 2150 return retval; 2151 } 2152 2153 static int tty_fasync(int fd, struct file *filp, int on) 2154 { 2155 struct tty_struct *tty = file_tty(filp); 2156 int retval = -ENOTTY; 2157 2158 tty_lock(tty); 2159 if (!tty_hung_up_p(filp)) 2160 retval = __tty_fasync(fd, filp, on); 2161 tty_unlock(tty); 2162 2163 return retval; 2164 } 2165 2166 /** 2167 * tiocsti - fake input character 2168 * @tty: tty to fake input into 2169 * @p: pointer to character 2170 * 2171 * Fake input to a tty device. Does the necessary locking and 2172 * input management. 2173 * 2174 * FIXME: does not honour flow control ?? 2175 * 2176 * Locking: 2177 * Called functions take tty_ldiscs_lock 2178 * current->signal->tty check is safe without locks 2179 * 2180 * FIXME: may race normal receive processing 2181 */ 2182 2183 static int tiocsti(struct tty_struct *tty, char __user *p) 2184 { 2185 char ch, mbz = 0; 2186 struct tty_ldisc *ld; 2187 2188 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2189 return -EPERM; 2190 if (get_user(ch, p)) 2191 return -EFAULT; 2192 tty_audit_tiocsti(tty, ch); 2193 ld = tty_ldisc_ref_wait(tty); 2194 if (!ld) 2195 return -EIO; 2196 if (ld->ops->receive_buf) 2197 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2198 tty_ldisc_deref(ld); 2199 return 0; 2200 } 2201 2202 /** 2203 * tiocgwinsz - implement window query ioctl 2204 * @tty; tty 2205 * @arg: user buffer for result 2206 * 2207 * Copies the kernel idea of the window size into the user buffer. 2208 * 2209 * Locking: tty->winsize_mutex is taken to ensure the winsize data 2210 * is consistent. 2211 */ 2212 2213 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2214 { 2215 int err; 2216 2217 mutex_lock(&tty->winsize_mutex); 2218 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2219 mutex_unlock(&tty->winsize_mutex); 2220 2221 return err ? -EFAULT: 0; 2222 } 2223 2224 /** 2225 * tty_do_resize - resize event 2226 * @tty: tty being resized 2227 * @rows: rows (character) 2228 * @cols: cols (character) 2229 * 2230 * Update the termios variables and send the necessary signals to 2231 * peform a terminal resize correctly 2232 */ 2233 2234 int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2235 { 2236 struct pid *pgrp; 2237 2238 /* Lock the tty */ 2239 mutex_lock(&tty->winsize_mutex); 2240 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2241 goto done; 2242 2243 /* Signal the foreground process group */ 2244 pgrp = tty_get_pgrp(tty); 2245 if (pgrp) 2246 kill_pgrp(pgrp, SIGWINCH, 1); 2247 put_pid(pgrp); 2248 2249 tty->winsize = *ws; 2250 done: 2251 mutex_unlock(&tty->winsize_mutex); 2252 return 0; 2253 } 2254 EXPORT_SYMBOL(tty_do_resize); 2255 2256 /** 2257 * tiocswinsz - implement window size set ioctl 2258 * @tty; tty side of tty 2259 * @arg: user buffer for result 2260 * 2261 * Copies the user idea of the window size to the kernel. Traditionally 2262 * this is just advisory information but for the Linux console it 2263 * actually has driver level meaning and triggers a VC resize. 2264 * 2265 * Locking: 2266 * Driver dependent. The default do_resize method takes the 2267 * tty termios mutex and ctrl_lock. The console takes its own lock 2268 * then calls into the default method. 2269 */ 2270 2271 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2272 { 2273 struct winsize tmp_ws; 2274 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2275 return -EFAULT; 2276 2277 if (tty->ops->resize) 2278 return tty->ops->resize(tty, &tmp_ws); 2279 else 2280 return tty_do_resize(tty, &tmp_ws); 2281 } 2282 2283 /** 2284 * tioccons - allow admin to move logical console 2285 * @file: the file to become console 2286 * 2287 * Allow the administrator to move the redirected console device 2288 * 2289 * Locking: uses redirect_lock to guard the redirect information 2290 */ 2291 2292 static int tioccons(struct file *file) 2293 { 2294 if (!capable(CAP_SYS_ADMIN)) 2295 return -EPERM; 2296 if (file->f_op->write == redirected_tty_write) { 2297 struct file *f; 2298 spin_lock(&redirect_lock); 2299 f = redirect; 2300 redirect = NULL; 2301 spin_unlock(&redirect_lock); 2302 if (f) 2303 fput(f); 2304 return 0; 2305 } 2306 spin_lock(&redirect_lock); 2307 if (redirect) { 2308 spin_unlock(&redirect_lock); 2309 return -EBUSY; 2310 } 2311 redirect = get_file(file); 2312 spin_unlock(&redirect_lock); 2313 return 0; 2314 } 2315 2316 /** 2317 * tiocsetd - set line discipline 2318 * @tty: tty device 2319 * @p: pointer to user data 2320 * 2321 * Set the line discipline according to user request. 2322 * 2323 * Locking: see tty_set_ldisc, this function is just a helper 2324 */ 2325 2326 static int tiocsetd(struct tty_struct *tty, int __user *p) 2327 { 2328 int disc; 2329 int ret; 2330 2331 if (get_user(disc, p)) 2332 return -EFAULT; 2333 2334 ret = tty_set_ldisc(tty, disc); 2335 2336 return ret; 2337 } 2338 2339 /** 2340 * tiocgetd - get line discipline 2341 * @tty: tty device 2342 * @p: pointer to user data 2343 * 2344 * Retrieves the line discipline id directly from the ldisc. 2345 * 2346 * Locking: waits for ldisc reference (in case the line discipline 2347 * is changing or the tty is being hungup) 2348 */ 2349 2350 static int tiocgetd(struct tty_struct *tty, int __user *p) 2351 { 2352 struct tty_ldisc *ld; 2353 int ret; 2354 2355 ld = tty_ldisc_ref_wait(tty); 2356 if (!ld) 2357 return -EIO; 2358 ret = put_user(ld->ops->num, p); 2359 tty_ldisc_deref(ld); 2360 return ret; 2361 } 2362 2363 /** 2364 * send_break - performed time break 2365 * @tty: device to break on 2366 * @duration: timeout in mS 2367 * 2368 * Perform a timed break on hardware that lacks its own driver level 2369 * timed break functionality. 2370 * 2371 * Locking: 2372 * atomic_write_lock serializes 2373 * 2374 */ 2375 2376 static int send_break(struct tty_struct *tty, unsigned int duration) 2377 { 2378 int retval; 2379 2380 if (tty->ops->break_ctl == NULL) 2381 return 0; 2382 2383 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2384 retval = tty->ops->break_ctl(tty, duration); 2385 else { 2386 /* Do the work ourselves */ 2387 if (tty_write_lock(tty, 0) < 0) 2388 return -EINTR; 2389 retval = tty->ops->break_ctl(tty, -1); 2390 if (retval) 2391 goto out; 2392 if (!signal_pending(current)) 2393 msleep_interruptible(duration); 2394 retval = tty->ops->break_ctl(tty, 0); 2395 out: 2396 tty_write_unlock(tty); 2397 if (signal_pending(current)) 2398 retval = -EINTR; 2399 } 2400 return retval; 2401 } 2402 2403 /** 2404 * tty_tiocmget - get modem status 2405 * @tty: tty device 2406 * @file: user file pointer 2407 * @p: pointer to result 2408 * 2409 * Obtain the modem status bits from the tty driver if the feature 2410 * is supported. Return -EINVAL if it is not available. 2411 * 2412 * Locking: none (up to the driver) 2413 */ 2414 2415 static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2416 { 2417 int retval = -EINVAL; 2418 2419 if (tty->ops->tiocmget) { 2420 retval = tty->ops->tiocmget(tty); 2421 2422 if (retval >= 0) 2423 retval = put_user(retval, p); 2424 } 2425 return retval; 2426 } 2427 2428 /** 2429 * tty_tiocmset - set modem status 2430 * @tty: tty device 2431 * @cmd: command - clear bits, set bits or set all 2432 * @p: pointer to desired bits 2433 * 2434 * Set the modem status bits from the tty driver if the feature 2435 * is supported. Return -EINVAL if it is not available. 2436 * 2437 * Locking: none (up to the driver) 2438 */ 2439 2440 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2441 unsigned __user *p) 2442 { 2443 int retval; 2444 unsigned int set, clear, val; 2445 2446 if (tty->ops->tiocmset == NULL) 2447 return -EINVAL; 2448 2449 retval = get_user(val, p); 2450 if (retval) 2451 return retval; 2452 set = clear = 0; 2453 switch (cmd) { 2454 case TIOCMBIS: 2455 set = val; 2456 break; 2457 case TIOCMBIC: 2458 clear = val; 2459 break; 2460 case TIOCMSET: 2461 set = val; 2462 clear = ~val; 2463 break; 2464 } 2465 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2466 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2467 return tty->ops->tiocmset(tty, set, clear); 2468 } 2469 2470 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2471 { 2472 int retval = -EINVAL; 2473 struct serial_icounter_struct icount; 2474 memset(&icount, 0, sizeof(icount)); 2475 if (tty->ops->get_icount) 2476 retval = tty->ops->get_icount(tty, &icount); 2477 if (retval != 0) 2478 return retval; 2479 if (copy_to_user(arg, &icount, sizeof(icount))) 2480 return -EFAULT; 2481 return 0; 2482 } 2483 2484 static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss) 2485 { 2486 static DEFINE_RATELIMIT_STATE(depr_flags, 2487 DEFAULT_RATELIMIT_INTERVAL, 2488 DEFAULT_RATELIMIT_BURST); 2489 char comm[TASK_COMM_LEN]; 2490 struct serial_struct v; 2491 int flags; 2492 2493 if (copy_from_user(&v, ss, sizeof(struct serial_struct))) 2494 return -EFAULT; 2495 2496 flags = v.flags & ASYNC_DEPRECATED; 2497 2498 if (flags && __ratelimit(&depr_flags)) 2499 pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n", 2500 __func__, get_task_comm(comm, current), flags); 2501 if (!tty->ops->set_serial) 2502 return -ENOTTY; 2503 return tty->ops->set_serial(tty, &v); 2504 } 2505 2506 static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss) 2507 { 2508 struct serial_struct v; 2509 int err; 2510 2511 memset(&v, 0, sizeof(struct serial_struct)); 2512 if (!tty->ops->get_serial) 2513 return -ENOTTY; 2514 err = tty->ops->get_serial(tty, &v); 2515 if (!err && copy_to_user(ss, &v, sizeof(struct serial_struct))) 2516 err = -EFAULT; 2517 return err; 2518 } 2519 2520 /* 2521 * if pty, return the slave side (real_tty) 2522 * otherwise, return self 2523 */ 2524 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2525 { 2526 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2527 tty->driver->subtype == PTY_TYPE_MASTER) 2528 tty = tty->link; 2529 return tty; 2530 } 2531 2532 /* 2533 * Split this up, as gcc can choke on it otherwise.. 2534 */ 2535 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2536 { 2537 struct tty_struct *tty = file_tty(file); 2538 struct tty_struct *real_tty; 2539 void __user *p = (void __user *)arg; 2540 int retval; 2541 struct tty_ldisc *ld; 2542 2543 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2544 return -EINVAL; 2545 2546 real_tty = tty_pair_get_tty(tty); 2547 2548 /* 2549 * Factor out some common prep work 2550 */ 2551 switch (cmd) { 2552 case TIOCSETD: 2553 case TIOCSBRK: 2554 case TIOCCBRK: 2555 case TCSBRK: 2556 case TCSBRKP: 2557 retval = tty_check_change(tty); 2558 if (retval) 2559 return retval; 2560 if (cmd != TIOCCBRK) { 2561 tty_wait_until_sent(tty, 0); 2562 if (signal_pending(current)) 2563 return -EINTR; 2564 } 2565 break; 2566 } 2567 2568 /* 2569 * Now do the stuff. 2570 */ 2571 switch (cmd) { 2572 case TIOCSTI: 2573 return tiocsti(tty, p); 2574 case TIOCGWINSZ: 2575 return tiocgwinsz(real_tty, p); 2576 case TIOCSWINSZ: 2577 return tiocswinsz(real_tty, p); 2578 case TIOCCONS: 2579 return real_tty != tty ? -EINVAL : tioccons(file); 2580 case TIOCEXCL: 2581 set_bit(TTY_EXCLUSIVE, &tty->flags); 2582 return 0; 2583 case TIOCNXCL: 2584 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2585 return 0; 2586 case TIOCGEXCL: 2587 { 2588 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags); 2589 return put_user(excl, (int __user *)p); 2590 } 2591 case TIOCGETD: 2592 return tiocgetd(tty, p); 2593 case TIOCSETD: 2594 return tiocsetd(tty, p); 2595 case TIOCVHANGUP: 2596 if (!capable(CAP_SYS_ADMIN)) 2597 return -EPERM; 2598 tty_vhangup(tty); 2599 return 0; 2600 case TIOCGDEV: 2601 { 2602 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2603 return put_user(ret, (unsigned int __user *)p); 2604 } 2605 /* 2606 * Break handling 2607 */ 2608 case TIOCSBRK: /* Turn break on, unconditionally */ 2609 if (tty->ops->break_ctl) 2610 return tty->ops->break_ctl(tty, -1); 2611 return 0; 2612 case TIOCCBRK: /* Turn break off, unconditionally */ 2613 if (tty->ops->break_ctl) 2614 return tty->ops->break_ctl(tty, 0); 2615 return 0; 2616 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2617 /* non-zero arg means wait for all output data 2618 * to be sent (performed above) but don't send break. 2619 * This is used by the tcdrain() termios function. 2620 */ 2621 if (!arg) 2622 return send_break(tty, 250); 2623 return 0; 2624 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2625 return send_break(tty, arg ? arg*100 : 250); 2626 2627 case TIOCMGET: 2628 return tty_tiocmget(tty, p); 2629 case TIOCMSET: 2630 case TIOCMBIC: 2631 case TIOCMBIS: 2632 return tty_tiocmset(tty, cmd, p); 2633 case TIOCGICOUNT: 2634 return tty_tiocgicount(tty, p); 2635 case TCFLSH: 2636 switch (arg) { 2637 case TCIFLUSH: 2638 case TCIOFLUSH: 2639 /* flush tty buffer and allow ldisc to process ioctl */ 2640 tty_buffer_flush(tty, NULL); 2641 break; 2642 } 2643 break; 2644 case TIOCSSERIAL: 2645 return tty_tiocsserial(tty, p); 2646 case TIOCGSERIAL: 2647 return tty_tiocgserial(tty, p); 2648 case TIOCGPTPEER: 2649 /* Special because the struct file is needed */ 2650 return ptm_open_peer(file, tty, (int)arg); 2651 default: 2652 retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg); 2653 if (retval != -ENOIOCTLCMD) 2654 return retval; 2655 } 2656 if (tty->ops->ioctl) { 2657 retval = tty->ops->ioctl(tty, cmd, arg); 2658 if (retval != -ENOIOCTLCMD) 2659 return retval; 2660 } 2661 ld = tty_ldisc_ref_wait(tty); 2662 if (!ld) 2663 return hung_up_tty_ioctl(file, cmd, arg); 2664 retval = -EINVAL; 2665 if (ld->ops->ioctl) { 2666 retval = ld->ops->ioctl(tty, file, cmd, arg); 2667 if (retval == -ENOIOCTLCMD) 2668 retval = -ENOTTY; 2669 } 2670 tty_ldisc_deref(ld); 2671 return retval; 2672 } 2673 2674 #ifdef CONFIG_COMPAT 2675 2676 struct serial_struct32 { 2677 compat_int_t type; 2678 compat_int_t line; 2679 compat_uint_t port; 2680 compat_int_t irq; 2681 compat_int_t flags; 2682 compat_int_t xmit_fifo_size; 2683 compat_int_t custom_divisor; 2684 compat_int_t baud_base; 2685 unsigned short close_delay; 2686 char io_type; 2687 char reserved_char[1]; 2688 compat_int_t hub6; 2689 unsigned short closing_wait; /* time to wait before closing */ 2690 unsigned short closing_wait2; /* no longer used... */ 2691 compat_uint_t iomem_base; 2692 unsigned short iomem_reg_shift; 2693 unsigned int port_high; 2694 /* compat_ulong_t iomap_base FIXME */ 2695 compat_int_t reserved[1]; 2696 }; 2697 2698 static int compat_tty_tiocsserial(struct tty_struct *tty, 2699 struct serial_struct32 __user *ss) 2700 { 2701 static DEFINE_RATELIMIT_STATE(depr_flags, 2702 DEFAULT_RATELIMIT_INTERVAL, 2703 DEFAULT_RATELIMIT_BURST); 2704 char comm[TASK_COMM_LEN]; 2705 struct serial_struct32 v32; 2706 struct serial_struct v; 2707 int flags; 2708 2709 if (copy_from_user(&v32, ss, sizeof(struct serial_struct32))) 2710 return -EFAULT; 2711 2712 memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base)); 2713 v.iomem_base = compat_ptr(v32.iomem_base); 2714 v.iomem_reg_shift = v32.iomem_reg_shift; 2715 v.port_high = v32.port_high; 2716 v.iomap_base = 0; 2717 2718 flags = v.flags & ASYNC_DEPRECATED; 2719 2720 if (flags && __ratelimit(&depr_flags)) 2721 pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n", 2722 __func__, get_task_comm(comm, current), flags); 2723 if (!tty->ops->set_serial) 2724 return -ENOTTY; 2725 return tty->ops->set_serial(tty, &v); 2726 } 2727 2728 static int compat_tty_tiocgserial(struct tty_struct *tty, 2729 struct serial_struct32 __user *ss) 2730 { 2731 struct serial_struct32 v32; 2732 struct serial_struct v; 2733 int err; 2734 memset(&v, 0, sizeof(struct serial_struct)); 2735 2736 if (!tty->ops->set_serial) 2737 return -ENOTTY; 2738 err = tty->ops->get_serial(tty, &v); 2739 if (!err) { 2740 memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base)); 2741 v32.iomem_base = (unsigned long)v.iomem_base >> 32 ? 2742 0xfffffff : ptr_to_compat(v.iomem_base); 2743 v32.iomem_reg_shift = v.iomem_reg_shift; 2744 v32.port_high = v.port_high; 2745 if (copy_to_user(ss, &v32, sizeof(struct serial_struct32))) 2746 err = -EFAULT; 2747 } 2748 return err; 2749 } 2750 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 2751 unsigned long arg) 2752 { 2753 struct tty_struct *tty = file_tty(file); 2754 struct tty_ldisc *ld; 2755 int retval = -ENOIOCTLCMD; 2756 2757 switch (cmd) { 2758 case TIOCSTI: 2759 case TIOCGWINSZ: 2760 case TIOCSWINSZ: 2761 case TIOCGEXCL: 2762 case TIOCGETD: 2763 case TIOCSETD: 2764 case TIOCGDEV: 2765 case TIOCMGET: 2766 case TIOCMSET: 2767 case TIOCMBIC: 2768 case TIOCMBIS: 2769 case TIOCGICOUNT: 2770 case TIOCGPGRP: 2771 case TIOCSPGRP: 2772 case TIOCGSID: 2773 case TIOCSERGETLSR: 2774 case TIOCGRS485: 2775 case TIOCSRS485: 2776 #ifdef TIOCGETP 2777 case TIOCGETP: 2778 case TIOCSETP: 2779 case TIOCSETN: 2780 #endif 2781 #ifdef TIOCGETC 2782 case TIOCGETC: 2783 case TIOCSETC: 2784 #endif 2785 #ifdef TIOCGLTC 2786 case TIOCGLTC: 2787 case TIOCSLTC: 2788 #endif 2789 case TCSETSF: 2790 case TCSETSW: 2791 case TCSETS: 2792 case TCGETS: 2793 #ifdef TCGETS2 2794 case TCGETS2: 2795 case TCSETSF2: 2796 case TCSETSW2: 2797 case TCSETS2: 2798 #endif 2799 case TCGETA: 2800 case TCSETAF: 2801 case TCSETAW: 2802 case TCSETA: 2803 case TIOCGLCKTRMIOS: 2804 case TIOCSLCKTRMIOS: 2805 #ifdef TCGETX 2806 case TCGETX: 2807 case TCSETX: 2808 case TCSETXW: 2809 case TCSETXF: 2810 #endif 2811 case TIOCGSOFTCAR: 2812 case TIOCSSOFTCAR: 2813 return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg)); 2814 case TIOCCONS: 2815 case TIOCEXCL: 2816 case TIOCNXCL: 2817 case TIOCVHANGUP: 2818 case TIOCSBRK: 2819 case TIOCCBRK: 2820 case TCSBRK: 2821 case TCSBRKP: 2822 case TCFLSH: 2823 case TIOCGPTPEER: 2824 case TIOCNOTTY: 2825 case TIOCSCTTY: 2826 case TCXONC: 2827 case TIOCMIWAIT: 2828 case TIOCSERCONFIG: 2829 return tty_ioctl(file, cmd, arg); 2830 } 2831 2832 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2833 return -EINVAL; 2834 2835 switch (cmd) { 2836 case TIOCSSERIAL: 2837 return compat_tty_tiocsserial(tty, compat_ptr(arg)); 2838 case TIOCGSERIAL: 2839 return compat_tty_tiocgserial(tty, compat_ptr(arg)); 2840 } 2841 if (tty->ops->compat_ioctl) { 2842 retval = tty->ops->compat_ioctl(tty, cmd, arg); 2843 if (retval != -ENOIOCTLCMD) 2844 return retval; 2845 } 2846 2847 ld = tty_ldisc_ref_wait(tty); 2848 if (!ld) 2849 return hung_up_tty_compat_ioctl(file, cmd, arg); 2850 if (ld->ops->compat_ioctl) 2851 retval = ld->ops->compat_ioctl(tty, file, cmd, arg); 2852 if (retval == -ENOIOCTLCMD && ld->ops->ioctl) 2853 retval = ld->ops->ioctl(tty, file, 2854 (unsigned long)compat_ptr(cmd), arg); 2855 tty_ldisc_deref(ld); 2856 2857 return retval; 2858 } 2859 #endif 2860 2861 static int this_tty(const void *t, struct file *file, unsigned fd) 2862 { 2863 if (likely(file->f_op->read != tty_read)) 2864 return 0; 2865 return file_tty(file) != t ? 0 : fd + 1; 2866 } 2867 2868 /* 2869 * This implements the "Secure Attention Key" --- the idea is to 2870 * prevent trojan horses by killing all processes associated with this 2871 * tty when the user hits the "Secure Attention Key". Required for 2872 * super-paranoid applications --- see the Orange Book for more details. 2873 * 2874 * This code could be nicer; ideally it should send a HUP, wait a few 2875 * seconds, then send a INT, and then a KILL signal. But you then 2876 * have to coordinate with the init process, since all processes associated 2877 * with the current tty must be dead before the new getty is allowed 2878 * to spawn. 2879 * 2880 * Now, if it would be correct ;-/ The current code has a nasty hole - 2881 * it doesn't catch files in flight. We may send the descriptor to ourselves 2882 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 2883 * 2884 * Nasty bug: do_SAK is being called in interrupt context. This can 2885 * deadlock. We punt it up to process context. AKPM - 16Mar2001 2886 */ 2887 void __do_SAK(struct tty_struct *tty) 2888 { 2889 #ifdef TTY_SOFT_SAK 2890 tty_hangup(tty); 2891 #else 2892 struct task_struct *g, *p; 2893 struct pid *session; 2894 int i; 2895 2896 if (!tty) 2897 return; 2898 session = tty->session; 2899 2900 tty_ldisc_flush(tty); 2901 2902 tty_driver_flush_buffer(tty); 2903 2904 read_lock(&tasklist_lock); 2905 /* Kill the entire session */ 2906 do_each_pid_task(session, PIDTYPE_SID, p) { 2907 tty_notice(tty, "SAK: killed process %d (%s): by session\n", 2908 task_pid_nr(p), p->comm); 2909 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID); 2910 } while_each_pid_task(session, PIDTYPE_SID, p); 2911 2912 /* Now kill any processes that happen to have the tty open */ 2913 do_each_thread(g, p) { 2914 if (p->signal->tty == tty) { 2915 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n", 2916 task_pid_nr(p), p->comm); 2917 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID); 2918 continue; 2919 } 2920 task_lock(p); 2921 i = iterate_fd(p->files, 0, this_tty, tty); 2922 if (i != 0) { 2923 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n", 2924 task_pid_nr(p), p->comm, i - 1); 2925 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID); 2926 } 2927 task_unlock(p); 2928 } while_each_thread(g, p); 2929 read_unlock(&tasklist_lock); 2930 #endif 2931 } 2932 2933 static void do_SAK_work(struct work_struct *work) 2934 { 2935 struct tty_struct *tty = 2936 container_of(work, struct tty_struct, SAK_work); 2937 __do_SAK(tty); 2938 } 2939 2940 /* 2941 * The tq handling here is a little racy - tty->SAK_work may already be queued. 2942 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 2943 * the values which we write to it will be identical to the values which it 2944 * already has. --akpm 2945 */ 2946 void do_SAK(struct tty_struct *tty) 2947 { 2948 if (!tty) 2949 return; 2950 schedule_work(&tty->SAK_work); 2951 } 2952 2953 EXPORT_SYMBOL(do_SAK); 2954 2955 static int dev_match_devt(struct device *dev, const void *data) 2956 { 2957 const dev_t *devt = data; 2958 return dev->devt == *devt; 2959 } 2960 2961 /* Must put_device() after it's unused! */ 2962 static struct device *tty_get_device(struct tty_struct *tty) 2963 { 2964 dev_t devt = tty_devnum(tty); 2965 return class_find_device(tty_class, NULL, &devt, dev_match_devt); 2966 } 2967 2968 2969 /** 2970 * alloc_tty_struct 2971 * 2972 * This subroutine allocates and initializes a tty structure. 2973 * 2974 * Locking: none - tty in question is not exposed at this point 2975 */ 2976 2977 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx) 2978 { 2979 struct tty_struct *tty; 2980 2981 tty = kzalloc(sizeof(*tty), GFP_KERNEL); 2982 if (!tty) 2983 return NULL; 2984 2985 kref_init(&tty->kref); 2986 tty->magic = TTY_MAGIC; 2987 if (tty_ldisc_init(tty)) { 2988 kfree(tty); 2989 return NULL; 2990 } 2991 tty->session = NULL; 2992 tty->pgrp = NULL; 2993 mutex_init(&tty->legacy_mutex); 2994 mutex_init(&tty->throttle_mutex); 2995 init_rwsem(&tty->termios_rwsem); 2996 mutex_init(&tty->winsize_mutex); 2997 init_ldsem(&tty->ldisc_sem); 2998 init_waitqueue_head(&tty->write_wait); 2999 init_waitqueue_head(&tty->read_wait); 3000 INIT_WORK(&tty->hangup_work, do_tty_hangup); 3001 mutex_init(&tty->atomic_write_lock); 3002 spin_lock_init(&tty->ctrl_lock); 3003 spin_lock_init(&tty->flow_lock); 3004 spin_lock_init(&tty->files_lock); 3005 INIT_LIST_HEAD(&tty->tty_files); 3006 INIT_WORK(&tty->SAK_work, do_SAK_work); 3007 3008 tty->driver = driver; 3009 tty->ops = driver->ops; 3010 tty->index = idx; 3011 tty_line_name(driver, idx, tty->name); 3012 tty->dev = tty_get_device(tty); 3013 3014 return tty; 3015 } 3016 3017 /** 3018 * tty_put_char - write one character to a tty 3019 * @tty: tty 3020 * @ch: character 3021 * 3022 * Write one byte to the tty using the provided put_char method 3023 * if present. Returns the number of characters successfully output. 3024 * 3025 * Note: the specific put_char operation in the driver layer may go 3026 * away soon. Don't call it directly, use this method 3027 */ 3028 3029 int tty_put_char(struct tty_struct *tty, unsigned char ch) 3030 { 3031 if (tty->ops->put_char) 3032 return tty->ops->put_char(tty, ch); 3033 return tty->ops->write(tty, &ch, 1); 3034 } 3035 EXPORT_SYMBOL_GPL(tty_put_char); 3036 3037 struct class *tty_class; 3038 3039 static int tty_cdev_add(struct tty_driver *driver, dev_t dev, 3040 unsigned int index, unsigned int count) 3041 { 3042 int err; 3043 3044 /* init here, since reused cdevs cause crashes */ 3045 driver->cdevs[index] = cdev_alloc(); 3046 if (!driver->cdevs[index]) 3047 return -ENOMEM; 3048 driver->cdevs[index]->ops = &tty_fops; 3049 driver->cdevs[index]->owner = driver->owner; 3050 err = cdev_add(driver->cdevs[index], dev, count); 3051 if (err) 3052 kobject_put(&driver->cdevs[index]->kobj); 3053 return err; 3054 } 3055 3056 /** 3057 * tty_register_device - register a tty device 3058 * @driver: the tty driver that describes the tty device 3059 * @index: the index in the tty driver for this tty device 3060 * @device: a struct device that is associated with this tty device. 3061 * This field is optional, if there is no known struct device 3062 * for this tty device it can be set to NULL safely. 3063 * 3064 * Returns a pointer to the struct device for this tty device 3065 * (or ERR_PTR(-EFOO) on error). 3066 * 3067 * This call is required to be made to register an individual tty device 3068 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3069 * that bit is not set, this function should not be called by a tty 3070 * driver. 3071 * 3072 * Locking: ?? 3073 */ 3074 3075 struct device *tty_register_device(struct tty_driver *driver, unsigned index, 3076 struct device *device) 3077 { 3078 return tty_register_device_attr(driver, index, device, NULL, NULL); 3079 } 3080 EXPORT_SYMBOL(tty_register_device); 3081 3082 static void tty_device_create_release(struct device *dev) 3083 { 3084 dev_dbg(dev, "releasing...\n"); 3085 kfree(dev); 3086 } 3087 3088 /** 3089 * tty_register_device_attr - register a tty device 3090 * @driver: the tty driver that describes the tty device 3091 * @index: the index in the tty driver for this tty device 3092 * @device: a struct device that is associated with this tty device. 3093 * This field is optional, if there is no known struct device 3094 * for this tty device it can be set to NULL safely. 3095 * @drvdata: Driver data to be set to device. 3096 * @attr_grp: Attribute group to be set on device. 3097 * 3098 * Returns a pointer to the struct device for this tty device 3099 * (or ERR_PTR(-EFOO) on error). 3100 * 3101 * This call is required to be made to register an individual tty device 3102 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3103 * that bit is not set, this function should not be called by a tty 3104 * driver. 3105 * 3106 * Locking: ?? 3107 */ 3108 struct device *tty_register_device_attr(struct tty_driver *driver, 3109 unsigned index, struct device *device, 3110 void *drvdata, 3111 const struct attribute_group **attr_grp) 3112 { 3113 char name[64]; 3114 dev_t devt = MKDEV(driver->major, driver->minor_start) + index; 3115 struct ktermios *tp; 3116 struct device *dev; 3117 int retval; 3118 3119 if (index >= driver->num) { 3120 pr_err("%s: Attempt to register invalid tty line number (%d)\n", 3121 driver->name, index); 3122 return ERR_PTR(-EINVAL); 3123 } 3124 3125 if (driver->type == TTY_DRIVER_TYPE_PTY) 3126 pty_line_name(driver, index, name); 3127 else 3128 tty_line_name(driver, index, name); 3129 3130 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3131 if (!dev) 3132 return ERR_PTR(-ENOMEM); 3133 3134 dev->devt = devt; 3135 dev->class = tty_class; 3136 dev->parent = device; 3137 dev->release = tty_device_create_release; 3138 dev_set_name(dev, "%s", name); 3139 dev->groups = attr_grp; 3140 dev_set_drvdata(dev, drvdata); 3141 3142 dev_set_uevent_suppress(dev, 1); 3143 3144 retval = device_register(dev); 3145 if (retval) 3146 goto err_put; 3147 3148 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3149 /* 3150 * Free any saved termios data so that the termios state is 3151 * reset when reusing a minor number. 3152 */ 3153 tp = driver->termios[index]; 3154 if (tp) { 3155 driver->termios[index] = NULL; 3156 kfree(tp); 3157 } 3158 3159 retval = tty_cdev_add(driver, devt, index, 1); 3160 if (retval) 3161 goto err_del; 3162 } 3163 3164 dev_set_uevent_suppress(dev, 0); 3165 kobject_uevent(&dev->kobj, KOBJ_ADD); 3166 3167 return dev; 3168 3169 err_del: 3170 device_del(dev); 3171 err_put: 3172 put_device(dev); 3173 3174 return ERR_PTR(retval); 3175 } 3176 EXPORT_SYMBOL_GPL(tty_register_device_attr); 3177 3178 /** 3179 * tty_unregister_device - unregister a tty device 3180 * @driver: the tty driver that describes the tty device 3181 * @index: the index in the tty driver for this tty device 3182 * 3183 * If a tty device is registered with a call to tty_register_device() then 3184 * this function must be called when the tty device is gone. 3185 * 3186 * Locking: ?? 3187 */ 3188 3189 void tty_unregister_device(struct tty_driver *driver, unsigned index) 3190 { 3191 device_destroy(tty_class, 3192 MKDEV(driver->major, driver->minor_start) + index); 3193 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3194 cdev_del(driver->cdevs[index]); 3195 driver->cdevs[index] = NULL; 3196 } 3197 } 3198 EXPORT_SYMBOL(tty_unregister_device); 3199 3200 /** 3201 * __tty_alloc_driver -- allocate tty driver 3202 * @lines: count of lines this driver can handle at most 3203 * @owner: module which is responsible for this driver 3204 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags 3205 * 3206 * This should not be called directly, some of the provided macros should be 3207 * used instead. Use IS_ERR and friends on @retval. 3208 */ 3209 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner, 3210 unsigned long flags) 3211 { 3212 struct tty_driver *driver; 3213 unsigned int cdevs = 1; 3214 int err; 3215 3216 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1)) 3217 return ERR_PTR(-EINVAL); 3218 3219 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL); 3220 if (!driver) 3221 return ERR_PTR(-ENOMEM); 3222 3223 kref_init(&driver->kref); 3224 driver->magic = TTY_DRIVER_MAGIC; 3225 driver->num = lines; 3226 driver->owner = owner; 3227 driver->flags = flags; 3228 3229 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) { 3230 driver->ttys = kcalloc(lines, sizeof(*driver->ttys), 3231 GFP_KERNEL); 3232 driver->termios = kcalloc(lines, sizeof(*driver->termios), 3233 GFP_KERNEL); 3234 if (!driver->ttys || !driver->termios) { 3235 err = -ENOMEM; 3236 goto err_free_all; 3237 } 3238 } 3239 3240 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3241 driver->ports = kcalloc(lines, sizeof(*driver->ports), 3242 GFP_KERNEL); 3243 if (!driver->ports) { 3244 err = -ENOMEM; 3245 goto err_free_all; 3246 } 3247 cdevs = lines; 3248 } 3249 3250 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL); 3251 if (!driver->cdevs) { 3252 err = -ENOMEM; 3253 goto err_free_all; 3254 } 3255 3256 return driver; 3257 err_free_all: 3258 kfree(driver->ports); 3259 kfree(driver->ttys); 3260 kfree(driver->termios); 3261 kfree(driver->cdevs); 3262 kfree(driver); 3263 return ERR_PTR(err); 3264 } 3265 EXPORT_SYMBOL(__tty_alloc_driver); 3266 3267 static void destruct_tty_driver(struct kref *kref) 3268 { 3269 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3270 int i; 3271 struct ktermios *tp; 3272 3273 if (driver->flags & TTY_DRIVER_INSTALLED) { 3274 for (i = 0; i < driver->num; i++) { 3275 tp = driver->termios[i]; 3276 if (tp) { 3277 driver->termios[i] = NULL; 3278 kfree(tp); 3279 } 3280 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3281 tty_unregister_device(driver, i); 3282 } 3283 proc_tty_unregister_driver(driver); 3284 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) 3285 cdev_del(driver->cdevs[0]); 3286 } 3287 kfree(driver->cdevs); 3288 kfree(driver->ports); 3289 kfree(driver->termios); 3290 kfree(driver->ttys); 3291 kfree(driver); 3292 } 3293 3294 void tty_driver_kref_put(struct tty_driver *driver) 3295 { 3296 kref_put(&driver->kref, destruct_tty_driver); 3297 } 3298 EXPORT_SYMBOL(tty_driver_kref_put); 3299 3300 void tty_set_operations(struct tty_driver *driver, 3301 const struct tty_operations *op) 3302 { 3303 driver->ops = op; 3304 }; 3305 EXPORT_SYMBOL(tty_set_operations); 3306 3307 void put_tty_driver(struct tty_driver *d) 3308 { 3309 tty_driver_kref_put(d); 3310 } 3311 EXPORT_SYMBOL(put_tty_driver); 3312 3313 /* 3314 * Called by a tty driver to register itself. 3315 */ 3316 int tty_register_driver(struct tty_driver *driver) 3317 { 3318 int error; 3319 int i; 3320 dev_t dev; 3321 struct device *d; 3322 3323 if (!driver->major) { 3324 error = alloc_chrdev_region(&dev, driver->minor_start, 3325 driver->num, driver->name); 3326 if (!error) { 3327 driver->major = MAJOR(dev); 3328 driver->minor_start = MINOR(dev); 3329 } 3330 } else { 3331 dev = MKDEV(driver->major, driver->minor_start); 3332 error = register_chrdev_region(dev, driver->num, driver->name); 3333 } 3334 if (error < 0) 3335 goto err; 3336 3337 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) { 3338 error = tty_cdev_add(driver, dev, 0, driver->num); 3339 if (error) 3340 goto err_unreg_char; 3341 } 3342 3343 mutex_lock(&tty_mutex); 3344 list_add(&driver->tty_drivers, &tty_drivers); 3345 mutex_unlock(&tty_mutex); 3346 3347 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3348 for (i = 0; i < driver->num; i++) { 3349 d = tty_register_device(driver, i, NULL); 3350 if (IS_ERR(d)) { 3351 error = PTR_ERR(d); 3352 goto err_unreg_devs; 3353 } 3354 } 3355 } 3356 proc_tty_register_driver(driver); 3357 driver->flags |= TTY_DRIVER_INSTALLED; 3358 return 0; 3359 3360 err_unreg_devs: 3361 for (i--; i >= 0; i--) 3362 tty_unregister_device(driver, i); 3363 3364 mutex_lock(&tty_mutex); 3365 list_del(&driver->tty_drivers); 3366 mutex_unlock(&tty_mutex); 3367 3368 err_unreg_char: 3369 unregister_chrdev_region(dev, driver->num); 3370 err: 3371 return error; 3372 } 3373 EXPORT_SYMBOL(tty_register_driver); 3374 3375 /* 3376 * Called by a tty driver to unregister itself. 3377 */ 3378 int tty_unregister_driver(struct tty_driver *driver) 3379 { 3380 #if 0 3381 /* FIXME */ 3382 if (driver->refcount) 3383 return -EBUSY; 3384 #endif 3385 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3386 driver->num); 3387 mutex_lock(&tty_mutex); 3388 list_del(&driver->tty_drivers); 3389 mutex_unlock(&tty_mutex); 3390 return 0; 3391 } 3392 3393 EXPORT_SYMBOL(tty_unregister_driver); 3394 3395 dev_t tty_devnum(struct tty_struct *tty) 3396 { 3397 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3398 } 3399 EXPORT_SYMBOL(tty_devnum); 3400 3401 void tty_default_fops(struct file_operations *fops) 3402 { 3403 *fops = tty_fops; 3404 } 3405 3406 static char *tty_devnode(struct device *dev, umode_t *mode) 3407 { 3408 if (!mode) 3409 return NULL; 3410 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3411 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3412 *mode = 0666; 3413 return NULL; 3414 } 3415 3416 static int __init tty_class_init(void) 3417 { 3418 tty_class = class_create(THIS_MODULE, "tty"); 3419 if (IS_ERR(tty_class)) 3420 return PTR_ERR(tty_class); 3421 tty_class->devnode = tty_devnode; 3422 return 0; 3423 } 3424 3425 postcore_initcall(tty_class_init); 3426 3427 /* 3/2004 jmc: why do these devices exist? */ 3428 static struct cdev tty_cdev, console_cdev; 3429 3430 static ssize_t show_cons_active(struct device *dev, 3431 struct device_attribute *attr, char *buf) 3432 { 3433 struct console *cs[16]; 3434 int i = 0; 3435 struct console *c; 3436 ssize_t count = 0; 3437 3438 console_lock(); 3439 for_each_console(c) { 3440 if (!c->device) 3441 continue; 3442 if (!c->write) 3443 continue; 3444 if ((c->flags & CON_ENABLED) == 0) 3445 continue; 3446 cs[i++] = c; 3447 if (i >= ARRAY_SIZE(cs)) 3448 break; 3449 } 3450 while (i--) { 3451 int index = cs[i]->index; 3452 struct tty_driver *drv = cs[i]->device(cs[i], &index); 3453 3454 /* don't resolve tty0 as some programs depend on it */ 3455 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR)) 3456 count += tty_line_name(drv, index, buf + count); 3457 else 3458 count += sprintf(buf + count, "%s%d", 3459 cs[i]->name, cs[i]->index); 3460 3461 count += sprintf(buf + count, "%c", i ? ' ':'\n'); 3462 } 3463 console_unlock(); 3464 3465 return count; 3466 } 3467 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3468 3469 static struct attribute *cons_dev_attrs[] = { 3470 &dev_attr_active.attr, 3471 NULL 3472 }; 3473 3474 ATTRIBUTE_GROUPS(cons_dev); 3475 3476 static struct device *consdev; 3477 3478 void console_sysfs_notify(void) 3479 { 3480 if (consdev) 3481 sysfs_notify(&consdev->kobj, NULL, "active"); 3482 } 3483 3484 /* 3485 * Ok, now we can initialize the rest of the tty devices and can count 3486 * on memory allocations, interrupts etc.. 3487 */ 3488 int __init tty_init(void) 3489 { 3490 tty_sysctl_init(); 3491 cdev_init(&tty_cdev, &tty_fops); 3492 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3493 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3494 panic("Couldn't register /dev/tty driver\n"); 3495 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3496 3497 cdev_init(&console_cdev, &console_fops); 3498 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3499 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3500 panic("Couldn't register /dev/console driver\n"); 3501 consdev = device_create_with_groups(tty_class, NULL, 3502 MKDEV(TTYAUX_MAJOR, 1), NULL, 3503 cons_dev_groups, "console"); 3504 if (IS_ERR(consdev)) 3505 consdev = NULL; 3506 3507 #ifdef CONFIG_VT 3508 vty_init(&console_fops); 3509 #endif 3510 return 0; 3511 } 3512 3513