1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 */ 4 5 /* 6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 7 * or rs-channels. It also implements echoing, cooked mode etc. 8 * 9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 10 * 11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 12 * tty_struct and tty_queue structures. Previously there was an array 13 * of 256 tty_struct's which was statically allocated, and the 14 * tty_queue structures were allocated at boot time. Both are now 15 * dynamically allocated only when the tty is open. 16 * 17 * Also restructured routines so that there is more of a separation 18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 19 * the low-level tty routines (serial.c, pty.c, console.c). This 20 * makes for cleaner and more compact code. -TYT, 9/17/92 21 * 22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 23 * which can be dynamically activated and de-activated by the line 24 * discipline handling modules (like SLIP). 25 * 26 * NOTE: pay no attention to the line discipline code (yet); its 27 * interface is still subject to change in this version... 28 * -- TYT, 1/31/92 29 * 30 * Added functionality to the OPOST tty handling. No delays, but all 31 * other bits should be there. 32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 33 * 34 * Rewrote canonical mode and added more termios flags. 35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 36 * 37 * Reorganized FASYNC support so mouse code can share it. 38 * -- ctm@ardi.com, 9Sep95 39 * 40 * New TIOCLINUX variants added. 41 * -- mj@k332.feld.cvut.cz, 19-Nov-95 42 * 43 * Restrict vt switching via ioctl() 44 * -- grif@cs.ucr.edu, 5-Dec-95 45 * 46 * Move console and virtual terminal code to more appropriate files, 47 * implement CONFIG_VT and generalize console device interface. 48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 49 * 50 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 51 * -- Bill Hawes <whawes@star.net>, June 97 52 * 53 * Added devfs support. 54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 55 * 56 * Added support for a Unix98-style ptmx device. 57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 58 * 59 * Reduced memory usage for older ARM systems 60 * -- Russell King <rmk@arm.linux.org.uk> 61 * 62 * Move do_SAK() into process context. Less stack use in devfs functions. 63 * alloc_tty_struct() always uses kmalloc() 64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 65 */ 66 67 #include <linux/types.h> 68 #include <linux/major.h> 69 #include <linux/errno.h> 70 #include <linux/signal.h> 71 #include <linux/fcntl.h> 72 #include <linux/sched.h> 73 #include <linux/interrupt.h> 74 #include <linux/tty.h> 75 #include <linux/tty_driver.h> 76 #include <linux/tty_flip.h> 77 #include <linux/devpts_fs.h> 78 #include <linux/file.h> 79 #include <linux/fdtable.h> 80 #include <linux/console.h> 81 #include <linux/timer.h> 82 #include <linux/ctype.h> 83 #include <linux/kd.h> 84 #include <linux/mm.h> 85 #include <linux/string.h> 86 #include <linux/slab.h> 87 #include <linux/poll.h> 88 #include <linux/proc_fs.h> 89 #include <linux/init.h> 90 #include <linux/module.h> 91 #include <linux/device.h> 92 #include <linux/wait.h> 93 #include <linux/bitops.h> 94 #include <linux/delay.h> 95 #include <linux/seq_file.h> 96 #include <linux/serial.h> 97 #include <linux/ratelimit.h> 98 99 #include <linux/uaccess.h> 100 101 #include <linux/kbd_kern.h> 102 #include <linux/vt_kern.h> 103 #include <linux/selection.h> 104 105 #include <linux/kmod.h> 106 #include <linux/nsproxy.h> 107 108 #undef TTY_DEBUG_HANGUP 109 #ifdef TTY_DEBUG_HANGUP 110 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args) 111 #else 112 # define tty_debug_hangup(tty, f, args...) do { } while (0) 113 #endif 114 115 #define TTY_PARANOIA_CHECK 1 116 #define CHECK_TTY_COUNT 1 117 118 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 119 .c_iflag = ICRNL | IXON, 120 .c_oflag = OPOST | ONLCR, 121 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 122 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 123 ECHOCTL | ECHOKE | IEXTEN, 124 .c_cc = INIT_C_CC, 125 .c_ispeed = 38400, 126 .c_ospeed = 38400 127 }; 128 129 EXPORT_SYMBOL(tty_std_termios); 130 131 /* This list gets poked at by procfs and various bits of boot up code. This 132 could do with some rationalisation such as pulling the tty proc function 133 into this file */ 134 135 LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 136 137 /* Mutex to protect creating and releasing a tty. This is shared with 138 vt.c for deeply disgusting hack reasons */ 139 DEFINE_MUTEX(tty_mutex); 140 EXPORT_SYMBOL(tty_mutex); 141 142 /* Spinlock to protect the tty->tty_files list */ 143 DEFINE_SPINLOCK(tty_files_lock); 144 145 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *); 146 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *); 147 ssize_t redirected_tty_write(struct file *, const char __user *, 148 size_t, loff_t *); 149 static unsigned int tty_poll(struct file *, poll_table *); 150 static int tty_open(struct inode *, struct file *); 151 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 152 #ifdef CONFIG_COMPAT 153 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 154 unsigned long arg); 155 #else 156 #define tty_compat_ioctl NULL 157 #endif 158 static int __tty_fasync(int fd, struct file *filp, int on); 159 static int tty_fasync(int fd, struct file *filp, int on); 160 static void release_tty(struct tty_struct *tty, int idx); 161 162 /** 163 * free_tty_struct - free a disused tty 164 * @tty: tty struct to free 165 * 166 * Free the write buffers, tty queue and tty memory itself. 167 * 168 * Locking: none. Must be called after tty is definitely unused 169 */ 170 171 void free_tty_struct(struct tty_struct *tty) 172 { 173 if (!tty) 174 return; 175 put_device(tty->dev); 176 kfree(tty->write_buf); 177 tty->magic = 0xDEADDEAD; 178 kfree(tty); 179 } 180 181 static inline struct tty_struct *file_tty(struct file *file) 182 { 183 return ((struct tty_file_private *)file->private_data)->tty; 184 } 185 186 int tty_alloc_file(struct file *file) 187 { 188 struct tty_file_private *priv; 189 190 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 191 if (!priv) 192 return -ENOMEM; 193 194 file->private_data = priv; 195 196 return 0; 197 } 198 199 /* Associate a new file with the tty structure */ 200 void tty_add_file(struct tty_struct *tty, struct file *file) 201 { 202 struct tty_file_private *priv = file->private_data; 203 204 priv->tty = tty; 205 priv->file = file; 206 207 spin_lock(&tty_files_lock); 208 list_add(&priv->list, &tty->tty_files); 209 spin_unlock(&tty_files_lock); 210 } 211 212 /** 213 * tty_free_file - free file->private_data 214 * 215 * This shall be used only for fail path handling when tty_add_file was not 216 * called yet. 217 */ 218 void tty_free_file(struct file *file) 219 { 220 struct tty_file_private *priv = file->private_data; 221 222 file->private_data = NULL; 223 kfree(priv); 224 } 225 226 /* Delete file from its tty */ 227 static void tty_del_file(struct file *file) 228 { 229 struct tty_file_private *priv = file->private_data; 230 231 spin_lock(&tty_files_lock); 232 list_del(&priv->list); 233 spin_unlock(&tty_files_lock); 234 tty_free_file(file); 235 } 236 237 238 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base) 239 240 /** 241 * tty_name - return tty naming 242 * @tty: tty structure 243 * 244 * Convert a tty structure into a name. The name reflects the kernel 245 * naming policy and if udev is in use may not reflect user space 246 * 247 * Locking: none 248 */ 249 250 const char *tty_name(const struct tty_struct *tty) 251 { 252 if (!tty) /* Hmm. NULL pointer. That's fun. */ 253 return "NULL tty"; 254 return tty->name; 255 } 256 257 EXPORT_SYMBOL(tty_name); 258 259 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 260 const char *routine) 261 { 262 #ifdef TTY_PARANOIA_CHECK 263 if (!tty) { 264 printk(KERN_WARNING 265 "null TTY for (%d:%d) in %s\n", 266 imajor(inode), iminor(inode), routine); 267 return 1; 268 } 269 if (tty->magic != TTY_MAGIC) { 270 printk(KERN_WARNING 271 "bad magic number for tty struct (%d:%d) in %s\n", 272 imajor(inode), iminor(inode), routine); 273 return 1; 274 } 275 #endif 276 return 0; 277 } 278 279 /* Caller must hold tty_lock */ 280 static int check_tty_count(struct tty_struct *tty, const char *routine) 281 { 282 #ifdef CHECK_TTY_COUNT 283 struct list_head *p; 284 int count = 0; 285 286 spin_lock(&tty_files_lock); 287 list_for_each(p, &tty->tty_files) { 288 count++; 289 } 290 spin_unlock(&tty_files_lock); 291 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 292 tty->driver->subtype == PTY_TYPE_SLAVE && 293 tty->link && tty->link->count) 294 count++; 295 if (tty->count != count) { 296 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) " 297 "!= #fd's(%d) in %s\n", 298 tty->name, tty->count, count, routine); 299 return count; 300 } 301 #endif 302 return 0; 303 } 304 305 /** 306 * get_tty_driver - find device of a tty 307 * @dev_t: device identifier 308 * @index: returns the index of the tty 309 * 310 * This routine returns a tty driver structure, given a device number 311 * and also passes back the index number. 312 * 313 * Locking: caller must hold tty_mutex 314 */ 315 316 static struct tty_driver *get_tty_driver(dev_t device, int *index) 317 { 318 struct tty_driver *p; 319 320 list_for_each_entry(p, &tty_drivers, tty_drivers) { 321 dev_t base = MKDEV(p->major, p->minor_start); 322 if (device < base || device >= base + p->num) 323 continue; 324 *index = device - base; 325 return tty_driver_kref_get(p); 326 } 327 return NULL; 328 } 329 330 #ifdef CONFIG_CONSOLE_POLL 331 332 /** 333 * tty_find_polling_driver - find device of a polled tty 334 * @name: name string to match 335 * @line: pointer to resulting tty line nr 336 * 337 * This routine returns a tty driver structure, given a name 338 * and the condition that the tty driver is capable of polled 339 * operation. 340 */ 341 struct tty_driver *tty_find_polling_driver(char *name, int *line) 342 { 343 struct tty_driver *p, *res = NULL; 344 int tty_line = 0; 345 int len; 346 char *str, *stp; 347 348 for (str = name; *str; str++) 349 if ((*str >= '0' && *str <= '9') || *str == ',') 350 break; 351 if (!*str) 352 return NULL; 353 354 len = str - name; 355 tty_line = simple_strtoul(str, &str, 10); 356 357 mutex_lock(&tty_mutex); 358 /* Search through the tty devices to look for a match */ 359 list_for_each_entry(p, &tty_drivers, tty_drivers) { 360 if (strncmp(name, p->name, len) != 0) 361 continue; 362 stp = str; 363 if (*stp == ',') 364 stp++; 365 if (*stp == '\0') 366 stp = NULL; 367 368 if (tty_line >= 0 && tty_line < p->num && p->ops && 369 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 370 res = tty_driver_kref_get(p); 371 *line = tty_line; 372 break; 373 } 374 } 375 mutex_unlock(&tty_mutex); 376 377 return res; 378 } 379 EXPORT_SYMBOL_GPL(tty_find_polling_driver); 380 #endif 381 382 /** 383 * tty_check_change - check for POSIX terminal changes 384 * @tty: tty to check 385 * 386 * If we try to write to, or set the state of, a terminal and we're 387 * not in the foreground, send a SIGTTOU. If the signal is blocked or 388 * ignored, go ahead and perform the operation. (POSIX 7.2) 389 * 390 * Locking: ctrl_lock 391 */ 392 393 int __tty_check_change(struct tty_struct *tty, int sig) 394 { 395 unsigned long flags; 396 struct pid *pgrp, *tty_pgrp; 397 int ret = 0; 398 399 if (current->signal->tty != tty) 400 return 0; 401 402 rcu_read_lock(); 403 pgrp = task_pgrp(current); 404 405 spin_lock_irqsave(&tty->ctrl_lock, flags); 406 tty_pgrp = tty->pgrp; 407 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 408 409 if (tty_pgrp && pgrp != tty->pgrp) { 410 if (is_ignored(sig)) { 411 if (sig == SIGTTIN) 412 ret = -EIO; 413 } else if (is_current_pgrp_orphaned()) 414 ret = -EIO; 415 else { 416 kill_pgrp(pgrp, sig, 1); 417 set_thread_flag(TIF_SIGPENDING); 418 ret = -ERESTARTSYS; 419 } 420 } 421 rcu_read_unlock(); 422 423 if (!tty_pgrp) { 424 pr_warn("%s: tty_check_change: sig=%d, tty->pgrp == NULL!\n", 425 tty_name(tty), sig); 426 } 427 428 return ret; 429 } 430 431 int tty_check_change(struct tty_struct *tty) 432 { 433 return __tty_check_change(tty, SIGTTOU); 434 } 435 EXPORT_SYMBOL(tty_check_change); 436 437 static ssize_t hung_up_tty_read(struct file *file, char __user *buf, 438 size_t count, loff_t *ppos) 439 { 440 return 0; 441 } 442 443 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf, 444 size_t count, loff_t *ppos) 445 { 446 return -EIO; 447 } 448 449 /* No kernel lock held - none needed ;) */ 450 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait) 451 { 452 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM; 453 } 454 455 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 456 unsigned long arg) 457 { 458 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 459 } 460 461 static long hung_up_tty_compat_ioctl(struct file *file, 462 unsigned int cmd, unsigned long arg) 463 { 464 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 465 } 466 467 static const struct file_operations tty_fops = { 468 .llseek = no_llseek, 469 .read = tty_read, 470 .write = tty_write, 471 .poll = tty_poll, 472 .unlocked_ioctl = tty_ioctl, 473 .compat_ioctl = tty_compat_ioctl, 474 .open = tty_open, 475 .release = tty_release, 476 .fasync = tty_fasync, 477 }; 478 479 static const struct file_operations console_fops = { 480 .llseek = no_llseek, 481 .read = tty_read, 482 .write = redirected_tty_write, 483 .poll = tty_poll, 484 .unlocked_ioctl = tty_ioctl, 485 .compat_ioctl = tty_compat_ioctl, 486 .open = tty_open, 487 .release = tty_release, 488 .fasync = tty_fasync, 489 }; 490 491 static const struct file_operations hung_up_tty_fops = { 492 .llseek = no_llseek, 493 .read = hung_up_tty_read, 494 .write = hung_up_tty_write, 495 .poll = hung_up_tty_poll, 496 .unlocked_ioctl = hung_up_tty_ioctl, 497 .compat_ioctl = hung_up_tty_compat_ioctl, 498 .release = tty_release, 499 }; 500 501 static DEFINE_SPINLOCK(redirect_lock); 502 static struct file *redirect; 503 504 505 void proc_clear_tty(struct task_struct *p) 506 { 507 unsigned long flags; 508 struct tty_struct *tty; 509 spin_lock_irqsave(&p->sighand->siglock, flags); 510 tty = p->signal->tty; 511 p->signal->tty = NULL; 512 spin_unlock_irqrestore(&p->sighand->siglock, flags); 513 tty_kref_put(tty); 514 } 515 516 /** 517 * proc_set_tty - set the controlling terminal 518 * 519 * Only callable by the session leader and only if it does not already have 520 * a controlling terminal. 521 * 522 * Caller must hold: tty_lock() 523 * a readlock on tasklist_lock 524 * sighand lock 525 */ 526 static void __proc_set_tty(struct tty_struct *tty) 527 { 528 unsigned long flags; 529 530 spin_lock_irqsave(&tty->ctrl_lock, flags); 531 /* 532 * The session and fg pgrp references will be non-NULL if 533 * tiocsctty() is stealing the controlling tty 534 */ 535 put_pid(tty->session); 536 put_pid(tty->pgrp); 537 tty->pgrp = get_pid(task_pgrp(current)); 538 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 539 tty->session = get_pid(task_session(current)); 540 if (current->signal->tty) { 541 tty_debug(tty, "current tty %s not NULL!!\n", 542 current->signal->tty->name); 543 tty_kref_put(current->signal->tty); 544 } 545 put_pid(current->signal->tty_old_pgrp); 546 current->signal->tty = tty_kref_get(tty); 547 current->signal->tty_old_pgrp = NULL; 548 } 549 550 static void proc_set_tty(struct tty_struct *tty) 551 { 552 spin_lock_irq(¤t->sighand->siglock); 553 __proc_set_tty(tty); 554 spin_unlock_irq(¤t->sighand->siglock); 555 } 556 557 struct tty_struct *get_current_tty(void) 558 { 559 struct tty_struct *tty; 560 unsigned long flags; 561 562 spin_lock_irqsave(¤t->sighand->siglock, flags); 563 tty = tty_kref_get(current->signal->tty); 564 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 565 return tty; 566 } 567 EXPORT_SYMBOL_GPL(get_current_tty); 568 569 static void session_clear_tty(struct pid *session) 570 { 571 struct task_struct *p; 572 do_each_pid_task(session, PIDTYPE_SID, p) { 573 proc_clear_tty(p); 574 } while_each_pid_task(session, PIDTYPE_SID, p); 575 } 576 577 /** 578 * tty_wakeup - request more data 579 * @tty: terminal 580 * 581 * Internal and external helper for wakeups of tty. This function 582 * informs the line discipline if present that the driver is ready 583 * to receive more output data. 584 */ 585 586 void tty_wakeup(struct tty_struct *tty) 587 { 588 struct tty_ldisc *ld; 589 590 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 591 ld = tty_ldisc_ref(tty); 592 if (ld) { 593 if (ld->ops->write_wakeup) 594 ld->ops->write_wakeup(tty); 595 tty_ldisc_deref(ld); 596 } 597 } 598 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 599 } 600 601 EXPORT_SYMBOL_GPL(tty_wakeup); 602 603 /** 604 * tty_signal_session_leader - sends SIGHUP to session leader 605 * @tty controlling tty 606 * @exit_session if non-zero, signal all foreground group processes 607 * 608 * Send SIGHUP and SIGCONT to the session leader and its process group. 609 * Optionally, signal all processes in the foreground process group. 610 * 611 * Returns the number of processes in the session with this tty 612 * as their controlling terminal. This value is used to drop 613 * tty references for those processes. 614 */ 615 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session) 616 { 617 struct task_struct *p; 618 int refs = 0; 619 struct pid *tty_pgrp = NULL; 620 621 read_lock(&tasklist_lock); 622 if (tty->session) { 623 do_each_pid_task(tty->session, PIDTYPE_SID, p) { 624 spin_lock_irq(&p->sighand->siglock); 625 if (p->signal->tty == tty) { 626 p->signal->tty = NULL; 627 /* We defer the dereferences outside fo 628 the tasklist lock */ 629 refs++; 630 } 631 if (!p->signal->leader) { 632 spin_unlock_irq(&p->sighand->siglock); 633 continue; 634 } 635 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p); 636 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p); 637 put_pid(p->signal->tty_old_pgrp); /* A noop */ 638 spin_lock(&tty->ctrl_lock); 639 tty_pgrp = get_pid(tty->pgrp); 640 if (tty->pgrp) 641 p->signal->tty_old_pgrp = get_pid(tty->pgrp); 642 spin_unlock(&tty->ctrl_lock); 643 spin_unlock_irq(&p->sighand->siglock); 644 } while_each_pid_task(tty->session, PIDTYPE_SID, p); 645 } 646 read_unlock(&tasklist_lock); 647 648 if (tty_pgrp) { 649 if (exit_session) 650 kill_pgrp(tty_pgrp, SIGHUP, exit_session); 651 put_pid(tty_pgrp); 652 } 653 654 return refs; 655 } 656 657 /** 658 * __tty_hangup - actual handler for hangup events 659 * @work: tty device 660 * 661 * This can be called by a "kworker" kernel thread. That is process 662 * synchronous but doesn't hold any locks, so we need to make sure we 663 * have the appropriate locks for what we're doing. 664 * 665 * The hangup event clears any pending redirections onto the hung up 666 * device. It ensures future writes will error and it does the needed 667 * line discipline hangup and signal delivery. The tty object itself 668 * remains intact. 669 * 670 * Locking: 671 * BTM 672 * redirect lock for undoing redirection 673 * file list lock for manipulating list of ttys 674 * tty_ldiscs_lock from called functions 675 * termios_rwsem resetting termios data 676 * tasklist_lock to walk task list for hangup event 677 * ->siglock to protect ->signal/->sighand 678 */ 679 static void __tty_hangup(struct tty_struct *tty, int exit_session) 680 { 681 struct file *cons_filp = NULL; 682 struct file *filp, *f = NULL; 683 struct tty_file_private *priv; 684 int closecount = 0, n; 685 int refs; 686 687 if (!tty) 688 return; 689 690 691 spin_lock(&redirect_lock); 692 if (redirect && file_tty(redirect) == tty) { 693 f = redirect; 694 redirect = NULL; 695 } 696 spin_unlock(&redirect_lock); 697 698 tty_lock(tty); 699 700 if (test_bit(TTY_HUPPED, &tty->flags)) { 701 tty_unlock(tty); 702 return; 703 } 704 705 /* inuse_filps is protected by the single tty lock, 706 this really needs to change if we want to flush the 707 workqueue with the lock held */ 708 check_tty_count(tty, "tty_hangup"); 709 710 spin_lock(&tty_files_lock); 711 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 712 list_for_each_entry(priv, &tty->tty_files, list) { 713 filp = priv->file; 714 if (filp->f_op->write == redirected_tty_write) 715 cons_filp = filp; 716 if (filp->f_op->write != tty_write) 717 continue; 718 closecount++; 719 __tty_fasync(-1, filp, 0); /* can't block */ 720 filp->f_op = &hung_up_tty_fops; 721 } 722 spin_unlock(&tty_files_lock); 723 724 refs = tty_signal_session_leader(tty, exit_session); 725 /* Account for the p->signal references we killed */ 726 while (refs--) 727 tty_kref_put(tty); 728 729 tty_ldisc_hangup(tty); 730 731 spin_lock_irq(&tty->ctrl_lock); 732 clear_bit(TTY_THROTTLED, &tty->flags); 733 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 734 put_pid(tty->session); 735 put_pid(tty->pgrp); 736 tty->session = NULL; 737 tty->pgrp = NULL; 738 tty->ctrl_status = 0; 739 spin_unlock_irq(&tty->ctrl_lock); 740 741 /* 742 * If one of the devices matches a console pointer, we 743 * cannot just call hangup() because that will cause 744 * tty->count and state->count to go out of sync. 745 * So we just call close() the right number of times. 746 */ 747 if (cons_filp) { 748 if (tty->ops->close) 749 for (n = 0; n < closecount; n++) 750 tty->ops->close(tty, cons_filp); 751 } else if (tty->ops->hangup) 752 tty->ops->hangup(tty); 753 /* 754 * We don't want to have driver/ldisc interactions beyond 755 * the ones we did here. The driver layer expects no 756 * calls after ->hangup() from the ldisc side. However we 757 * can't yet guarantee all that. 758 */ 759 set_bit(TTY_HUPPED, &tty->flags); 760 tty_unlock(tty); 761 762 if (f) 763 fput(f); 764 } 765 766 static void do_tty_hangup(struct work_struct *work) 767 { 768 struct tty_struct *tty = 769 container_of(work, struct tty_struct, hangup_work); 770 771 __tty_hangup(tty, 0); 772 } 773 774 /** 775 * tty_hangup - trigger a hangup event 776 * @tty: tty to hangup 777 * 778 * A carrier loss (virtual or otherwise) has occurred on this like 779 * schedule a hangup sequence to run after this event. 780 */ 781 782 void tty_hangup(struct tty_struct *tty) 783 { 784 tty_debug_hangup(tty, "\n"); 785 schedule_work(&tty->hangup_work); 786 } 787 788 EXPORT_SYMBOL(tty_hangup); 789 790 /** 791 * tty_vhangup - process vhangup 792 * @tty: tty to hangup 793 * 794 * The user has asked via system call for the terminal to be hung up. 795 * We do this synchronously so that when the syscall returns the process 796 * is complete. That guarantee is necessary for security reasons. 797 */ 798 799 void tty_vhangup(struct tty_struct *tty) 800 { 801 tty_debug_hangup(tty, "\n"); 802 __tty_hangup(tty, 0); 803 } 804 805 EXPORT_SYMBOL(tty_vhangup); 806 807 808 /** 809 * tty_vhangup_self - process vhangup for own ctty 810 * 811 * Perform a vhangup on the current controlling tty 812 */ 813 814 void tty_vhangup_self(void) 815 { 816 struct tty_struct *tty; 817 818 tty = get_current_tty(); 819 if (tty) { 820 tty_vhangup(tty); 821 tty_kref_put(tty); 822 } 823 } 824 825 /** 826 * tty_vhangup_session - hangup session leader exit 827 * @tty: tty to hangup 828 * 829 * The session leader is exiting and hanging up its controlling terminal. 830 * Every process in the foreground process group is signalled SIGHUP. 831 * 832 * We do this synchronously so that when the syscall returns the process 833 * is complete. That guarantee is necessary for security reasons. 834 */ 835 836 static void tty_vhangup_session(struct tty_struct *tty) 837 { 838 tty_debug_hangup(tty, "\n"); 839 __tty_hangup(tty, 1); 840 } 841 842 /** 843 * tty_hung_up_p - was tty hung up 844 * @filp: file pointer of tty 845 * 846 * Return true if the tty has been subject to a vhangup or a carrier 847 * loss 848 */ 849 850 int tty_hung_up_p(struct file *filp) 851 { 852 return (filp->f_op == &hung_up_tty_fops); 853 } 854 855 EXPORT_SYMBOL(tty_hung_up_p); 856 857 /** 858 * disassociate_ctty - disconnect controlling tty 859 * @on_exit: true if exiting so need to "hang up" the session 860 * 861 * This function is typically called only by the session leader, when 862 * it wants to disassociate itself from its controlling tty. 863 * 864 * It performs the following functions: 865 * (1) Sends a SIGHUP and SIGCONT to the foreground process group 866 * (2) Clears the tty from being controlling the session 867 * (3) Clears the controlling tty for all processes in the 868 * session group. 869 * 870 * The argument on_exit is set to 1 if called when a process is 871 * exiting; it is 0 if called by the ioctl TIOCNOTTY. 872 * 873 * Locking: 874 * BTM is taken for hysterical raisins, and held when 875 * called from no_tty(). 876 * tty_mutex is taken to protect tty 877 * ->siglock is taken to protect ->signal/->sighand 878 * tasklist_lock is taken to walk process list for sessions 879 * ->siglock is taken to protect ->signal/->sighand 880 */ 881 882 void disassociate_ctty(int on_exit) 883 { 884 struct tty_struct *tty; 885 886 if (!current->signal->leader) 887 return; 888 889 tty = get_current_tty(); 890 if (tty) { 891 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) { 892 tty_vhangup_session(tty); 893 } else { 894 struct pid *tty_pgrp = tty_get_pgrp(tty); 895 if (tty_pgrp) { 896 kill_pgrp(tty_pgrp, SIGHUP, on_exit); 897 if (!on_exit) 898 kill_pgrp(tty_pgrp, SIGCONT, on_exit); 899 put_pid(tty_pgrp); 900 } 901 } 902 tty_kref_put(tty); 903 904 } else if (on_exit) { 905 struct pid *old_pgrp; 906 spin_lock_irq(¤t->sighand->siglock); 907 old_pgrp = current->signal->tty_old_pgrp; 908 current->signal->tty_old_pgrp = NULL; 909 spin_unlock_irq(¤t->sighand->siglock); 910 if (old_pgrp) { 911 kill_pgrp(old_pgrp, SIGHUP, on_exit); 912 kill_pgrp(old_pgrp, SIGCONT, on_exit); 913 put_pid(old_pgrp); 914 } 915 return; 916 } 917 918 spin_lock_irq(¤t->sighand->siglock); 919 put_pid(current->signal->tty_old_pgrp); 920 current->signal->tty_old_pgrp = NULL; 921 922 tty = tty_kref_get(current->signal->tty); 923 if (tty) { 924 unsigned long flags; 925 spin_lock_irqsave(&tty->ctrl_lock, flags); 926 put_pid(tty->session); 927 put_pid(tty->pgrp); 928 tty->session = NULL; 929 tty->pgrp = NULL; 930 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 931 tty_kref_put(tty); 932 } else 933 tty_debug_hangup(tty, "no current tty\n"); 934 935 spin_unlock_irq(¤t->sighand->siglock); 936 /* Now clear signal->tty under the lock */ 937 read_lock(&tasklist_lock); 938 session_clear_tty(task_session(current)); 939 read_unlock(&tasklist_lock); 940 } 941 942 /** 943 * 944 * no_tty - Ensure the current process does not have a controlling tty 945 */ 946 void no_tty(void) 947 { 948 /* FIXME: Review locking here. The tty_lock never covered any race 949 between a new association and proc_clear_tty but possible we need 950 to protect against this anyway */ 951 struct task_struct *tsk = current; 952 disassociate_ctty(0); 953 proc_clear_tty(tsk); 954 } 955 956 957 /** 958 * stop_tty - propagate flow control 959 * @tty: tty to stop 960 * 961 * Perform flow control to the driver. May be called 962 * on an already stopped device and will not re-call the driver 963 * method. 964 * 965 * This functionality is used by both the line disciplines for 966 * halting incoming flow and by the driver. It may therefore be 967 * called from any context, may be under the tty atomic_write_lock 968 * but not always. 969 * 970 * Locking: 971 * flow_lock 972 */ 973 974 void __stop_tty(struct tty_struct *tty) 975 { 976 if (tty->stopped) 977 return; 978 tty->stopped = 1; 979 if (tty->ops->stop) 980 tty->ops->stop(tty); 981 } 982 983 void stop_tty(struct tty_struct *tty) 984 { 985 unsigned long flags; 986 987 spin_lock_irqsave(&tty->flow_lock, flags); 988 __stop_tty(tty); 989 spin_unlock_irqrestore(&tty->flow_lock, flags); 990 } 991 EXPORT_SYMBOL(stop_tty); 992 993 /** 994 * start_tty - propagate flow control 995 * @tty: tty to start 996 * 997 * Start a tty that has been stopped if at all possible. If this 998 * tty was previous stopped and is now being started, the driver 999 * start method is invoked and the line discipline woken. 1000 * 1001 * Locking: 1002 * flow_lock 1003 */ 1004 1005 void __start_tty(struct tty_struct *tty) 1006 { 1007 if (!tty->stopped || tty->flow_stopped) 1008 return; 1009 tty->stopped = 0; 1010 if (tty->ops->start) 1011 tty->ops->start(tty); 1012 tty_wakeup(tty); 1013 } 1014 1015 void start_tty(struct tty_struct *tty) 1016 { 1017 unsigned long flags; 1018 1019 spin_lock_irqsave(&tty->flow_lock, flags); 1020 __start_tty(tty); 1021 spin_unlock_irqrestore(&tty->flow_lock, flags); 1022 } 1023 EXPORT_SYMBOL(start_tty); 1024 1025 static void tty_update_time(struct timespec *time) 1026 { 1027 unsigned long sec = get_seconds(); 1028 1029 /* 1030 * We only care if the two values differ in anything other than the 1031 * lower three bits (i.e every 8 seconds). If so, then we can update 1032 * the time of the tty device, otherwise it could be construded as a 1033 * security leak to let userspace know the exact timing of the tty. 1034 */ 1035 if ((sec ^ time->tv_sec) & ~7) 1036 time->tv_sec = sec; 1037 } 1038 1039 /** 1040 * tty_read - read method for tty device files 1041 * @file: pointer to tty file 1042 * @buf: user buffer 1043 * @count: size of user buffer 1044 * @ppos: unused 1045 * 1046 * Perform the read system call function on this terminal device. Checks 1047 * for hung up devices before calling the line discipline method. 1048 * 1049 * Locking: 1050 * Locks the line discipline internally while needed. Multiple 1051 * read calls may be outstanding in parallel. 1052 */ 1053 1054 static ssize_t tty_read(struct file *file, char __user *buf, size_t count, 1055 loff_t *ppos) 1056 { 1057 int i; 1058 struct inode *inode = file_inode(file); 1059 struct tty_struct *tty = file_tty(file); 1060 struct tty_ldisc *ld; 1061 1062 if (tty_paranoia_check(tty, inode, "tty_read")) 1063 return -EIO; 1064 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags))) 1065 return -EIO; 1066 1067 /* We want to wait for the line discipline to sort out in this 1068 situation */ 1069 ld = tty_ldisc_ref_wait(tty); 1070 if (ld->ops->read) 1071 i = ld->ops->read(tty, file, buf, count); 1072 else 1073 i = -EIO; 1074 tty_ldisc_deref(ld); 1075 1076 if (i > 0) 1077 tty_update_time(&inode->i_atime); 1078 1079 return i; 1080 } 1081 1082 static void tty_write_unlock(struct tty_struct *tty) 1083 { 1084 mutex_unlock(&tty->atomic_write_lock); 1085 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 1086 } 1087 1088 static int tty_write_lock(struct tty_struct *tty, int ndelay) 1089 { 1090 if (!mutex_trylock(&tty->atomic_write_lock)) { 1091 if (ndelay) 1092 return -EAGAIN; 1093 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 1094 return -ERESTARTSYS; 1095 } 1096 return 0; 1097 } 1098 1099 /* 1100 * Split writes up in sane blocksizes to avoid 1101 * denial-of-service type attacks 1102 */ 1103 static inline ssize_t do_tty_write( 1104 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 1105 struct tty_struct *tty, 1106 struct file *file, 1107 const char __user *buf, 1108 size_t count) 1109 { 1110 ssize_t ret, written = 0; 1111 unsigned int chunk; 1112 1113 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 1114 if (ret < 0) 1115 return ret; 1116 1117 /* 1118 * We chunk up writes into a temporary buffer. This 1119 * simplifies low-level drivers immensely, since they 1120 * don't have locking issues and user mode accesses. 1121 * 1122 * But if TTY_NO_WRITE_SPLIT is set, we should use a 1123 * big chunk-size.. 1124 * 1125 * The default chunk-size is 2kB, because the NTTY 1126 * layer has problems with bigger chunks. It will 1127 * claim to be able to handle more characters than 1128 * it actually does. 1129 * 1130 * FIXME: This can probably go away now except that 64K chunks 1131 * are too likely to fail unless switched to vmalloc... 1132 */ 1133 chunk = 2048; 1134 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 1135 chunk = 65536; 1136 if (count < chunk) 1137 chunk = count; 1138 1139 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 1140 if (tty->write_cnt < chunk) { 1141 unsigned char *buf_chunk; 1142 1143 if (chunk < 1024) 1144 chunk = 1024; 1145 1146 buf_chunk = kmalloc(chunk, GFP_KERNEL); 1147 if (!buf_chunk) { 1148 ret = -ENOMEM; 1149 goto out; 1150 } 1151 kfree(tty->write_buf); 1152 tty->write_cnt = chunk; 1153 tty->write_buf = buf_chunk; 1154 } 1155 1156 /* Do the write .. */ 1157 for (;;) { 1158 size_t size = count; 1159 if (size > chunk) 1160 size = chunk; 1161 ret = -EFAULT; 1162 if (copy_from_user(tty->write_buf, buf, size)) 1163 break; 1164 ret = write(tty, file, tty->write_buf, size); 1165 if (ret <= 0) 1166 break; 1167 written += ret; 1168 buf += ret; 1169 count -= ret; 1170 if (!count) 1171 break; 1172 ret = -ERESTARTSYS; 1173 if (signal_pending(current)) 1174 break; 1175 cond_resched(); 1176 } 1177 if (written) { 1178 tty_update_time(&file_inode(file)->i_mtime); 1179 ret = written; 1180 } 1181 out: 1182 tty_write_unlock(tty); 1183 return ret; 1184 } 1185 1186 /** 1187 * tty_write_message - write a message to a certain tty, not just the console. 1188 * @tty: the destination tty_struct 1189 * @msg: the message to write 1190 * 1191 * This is used for messages that need to be redirected to a specific tty. 1192 * We don't put it into the syslog queue right now maybe in the future if 1193 * really needed. 1194 * 1195 * We must still hold the BTM and test the CLOSING flag for the moment. 1196 */ 1197 1198 void tty_write_message(struct tty_struct *tty, char *msg) 1199 { 1200 if (tty) { 1201 mutex_lock(&tty->atomic_write_lock); 1202 tty_lock(tty); 1203 if (tty->ops->write && tty->count > 0) 1204 tty->ops->write(tty, msg, strlen(msg)); 1205 tty_unlock(tty); 1206 tty_write_unlock(tty); 1207 } 1208 return; 1209 } 1210 1211 1212 /** 1213 * tty_write - write method for tty device file 1214 * @file: tty file pointer 1215 * @buf: user data to write 1216 * @count: bytes to write 1217 * @ppos: unused 1218 * 1219 * Write data to a tty device via the line discipline. 1220 * 1221 * Locking: 1222 * Locks the line discipline as required 1223 * Writes to the tty driver are serialized by the atomic_write_lock 1224 * and are then processed in chunks to the device. The line discipline 1225 * write method will not be invoked in parallel for each device. 1226 */ 1227 1228 static ssize_t tty_write(struct file *file, const char __user *buf, 1229 size_t count, loff_t *ppos) 1230 { 1231 struct tty_struct *tty = file_tty(file); 1232 struct tty_ldisc *ld; 1233 ssize_t ret; 1234 1235 if (tty_paranoia_check(tty, file_inode(file), "tty_write")) 1236 return -EIO; 1237 if (!tty || !tty->ops->write || 1238 (test_bit(TTY_IO_ERROR, &tty->flags))) 1239 return -EIO; 1240 /* Short term debug to catch buggy drivers */ 1241 if (tty->ops->write_room == NULL) 1242 printk(KERN_ERR "tty driver %s lacks a write_room method.\n", 1243 tty->driver->name); 1244 ld = tty_ldisc_ref_wait(tty); 1245 if (!ld->ops->write) 1246 ret = -EIO; 1247 else 1248 ret = do_tty_write(ld->ops->write, tty, file, buf, count); 1249 tty_ldisc_deref(ld); 1250 return ret; 1251 } 1252 1253 ssize_t redirected_tty_write(struct file *file, const char __user *buf, 1254 size_t count, loff_t *ppos) 1255 { 1256 struct file *p = NULL; 1257 1258 spin_lock(&redirect_lock); 1259 if (redirect) 1260 p = get_file(redirect); 1261 spin_unlock(&redirect_lock); 1262 1263 if (p) { 1264 ssize_t res; 1265 res = vfs_write(p, buf, count, &p->f_pos); 1266 fput(p); 1267 return res; 1268 } 1269 return tty_write(file, buf, count, ppos); 1270 } 1271 1272 /** 1273 * tty_send_xchar - send priority character 1274 * 1275 * Send a high priority character to the tty even if stopped 1276 * 1277 * Locking: none for xchar method, write ordering for write method. 1278 */ 1279 1280 int tty_send_xchar(struct tty_struct *tty, char ch) 1281 { 1282 int was_stopped = tty->stopped; 1283 1284 if (tty->ops->send_xchar) { 1285 down_read(&tty->termios_rwsem); 1286 tty->ops->send_xchar(tty, ch); 1287 up_read(&tty->termios_rwsem); 1288 return 0; 1289 } 1290 1291 if (tty_write_lock(tty, 0) < 0) 1292 return -ERESTARTSYS; 1293 1294 down_read(&tty->termios_rwsem); 1295 if (was_stopped) 1296 start_tty(tty); 1297 tty->ops->write(tty, &ch, 1); 1298 if (was_stopped) 1299 stop_tty(tty); 1300 up_read(&tty->termios_rwsem); 1301 tty_write_unlock(tty); 1302 return 0; 1303 } 1304 1305 static char ptychar[] = "pqrstuvwxyzabcde"; 1306 1307 /** 1308 * pty_line_name - generate name for a pty 1309 * @driver: the tty driver in use 1310 * @index: the minor number 1311 * @p: output buffer of at least 6 bytes 1312 * 1313 * Generate a name from a driver reference and write it to the output 1314 * buffer. 1315 * 1316 * Locking: None 1317 */ 1318 static void pty_line_name(struct tty_driver *driver, int index, char *p) 1319 { 1320 int i = index + driver->name_base; 1321 /* ->name is initialized to "ttyp", but "tty" is expected */ 1322 sprintf(p, "%s%c%x", 1323 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1324 ptychar[i >> 4 & 0xf], i & 0xf); 1325 } 1326 1327 /** 1328 * tty_line_name - generate name for a tty 1329 * @driver: the tty driver in use 1330 * @index: the minor number 1331 * @p: output buffer of at least 7 bytes 1332 * 1333 * Generate a name from a driver reference and write it to the output 1334 * buffer. 1335 * 1336 * Locking: None 1337 */ 1338 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p) 1339 { 1340 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE) 1341 return sprintf(p, "%s", driver->name); 1342 else 1343 return sprintf(p, "%s%d", driver->name, 1344 index + driver->name_base); 1345 } 1346 1347 /** 1348 * tty_driver_lookup_tty() - find an existing tty, if any 1349 * @driver: the driver for the tty 1350 * @idx: the minor number 1351 * 1352 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the 1353 * driver lookup() method returns an error. 1354 * 1355 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref. 1356 */ 1357 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1358 struct inode *inode, int idx) 1359 { 1360 struct tty_struct *tty; 1361 1362 if (driver->ops->lookup) 1363 tty = driver->ops->lookup(driver, inode, idx); 1364 else 1365 tty = driver->ttys[idx]; 1366 1367 if (!IS_ERR(tty)) 1368 tty_kref_get(tty); 1369 return tty; 1370 } 1371 1372 /** 1373 * tty_init_termios - helper for termios setup 1374 * @tty: the tty to set up 1375 * 1376 * Initialise the termios structures for this tty. Thus runs under 1377 * the tty_mutex currently so we can be relaxed about ordering. 1378 */ 1379 1380 int tty_init_termios(struct tty_struct *tty) 1381 { 1382 struct ktermios *tp; 1383 int idx = tty->index; 1384 1385 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1386 tty->termios = tty->driver->init_termios; 1387 else { 1388 /* Check for lazy saved data */ 1389 tp = tty->driver->termios[idx]; 1390 if (tp != NULL) 1391 tty->termios = *tp; 1392 else 1393 tty->termios = tty->driver->init_termios; 1394 } 1395 /* Compatibility until drivers always set this */ 1396 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios); 1397 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios); 1398 return 0; 1399 } 1400 EXPORT_SYMBOL_GPL(tty_init_termios); 1401 1402 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1403 { 1404 int ret = tty_init_termios(tty); 1405 if (ret) 1406 return ret; 1407 1408 tty_driver_kref_get(driver); 1409 tty->count++; 1410 driver->ttys[tty->index] = tty; 1411 return 0; 1412 } 1413 EXPORT_SYMBOL_GPL(tty_standard_install); 1414 1415 /** 1416 * tty_driver_install_tty() - install a tty entry in the driver 1417 * @driver: the driver for the tty 1418 * @tty: the tty 1419 * 1420 * Install a tty object into the driver tables. The tty->index field 1421 * will be set by the time this is called. This method is responsible 1422 * for ensuring any need additional structures are allocated and 1423 * configured. 1424 * 1425 * Locking: tty_mutex for now 1426 */ 1427 static int tty_driver_install_tty(struct tty_driver *driver, 1428 struct tty_struct *tty) 1429 { 1430 return driver->ops->install ? driver->ops->install(driver, tty) : 1431 tty_standard_install(driver, tty); 1432 } 1433 1434 /** 1435 * tty_driver_remove_tty() - remove a tty from the driver tables 1436 * @driver: the driver for the tty 1437 * @idx: the minor number 1438 * 1439 * Remvoe a tty object from the driver tables. The tty->index field 1440 * will be set by the time this is called. 1441 * 1442 * Locking: tty_mutex for now 1443 */ 1444 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1445 { 1446 if (driver->ops->remove) 1447 driver->ops->remove(driver, tty); 1448 else 1449 driver->ttys[tty->index] = NULL; 1450 } 1451 1452 /* 1453 * tty_reopen() - fast re-open of an open tty 1454 * @tty - the tty to open 1455 * 1456 * Return 0 on success, -errno on error. 1457 * Re-opens on master ptys are not allowed and return -EIO. 1458 * 1459 * Locking: Caller must hold tty_lock 1460 */ 1461 static int tty_reopen(struct tty_struct *tty) 1462 { 1463 struct tty_driver *driver = tty->driver; 1464 1465 if (!tty->count) 1466 return -EIO; 1467 1468 if (driver->type == TTY_DRIVER_TYPE_PTY && 1469 driver->subtype == PTY_TYPE_MASTER) 1470 return -EIO; 1471 1472 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN)) 1473 return -EBUSY; 1474 1475 tty->count++; 1476 1477 WARN_ON(!tty->ldisc); 1478 1479 return 0; 1480 } 1481 1482 /** 1483 * tty_init_dev - initialise a tty device 1484 * @driver: tty driver we are opening a device on 1485 * @idx: device index 1486 * @ret_tty: returned tty structure 1487 * 1488 * Prepare a tty device. This may not be a "new" clean device but 1489 * could also be an active device. The pty drivers require special 1490 * handling because of this. 1491 * 1492 * Locking: 1493 * The function is called under the tty_mutex, which 1494 * protects us from the tty struct or driver itself going away. 1495 * 1496 * On exit the tty device has the line discipline attached and 1497 * a reference count of 1. If a pair was created for pty/tty use 1498 * and the other was a pty master then it too has a reference count of 1. 1499 * 1500 * WSH 06/09/97: Rewritten to remove races and properly clean up after a 1501 * failed open. The new code protects the open with a mutex, so it's 1502 * really quite straightforward. The mutex locking can probably be 1503 * relaxed for the (most common) case of reopening a tty. 1504 */ 1505 1506 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1507 { 1508 struct tty_struct *tty; 1509 int retval; 1510 1511 /* 1512 * First time open is complex, especially for PTY devices. 1513 * This code guarantees that either everything succeeds and the 1514 * TTY is ready for operation, or else the table slots are vacated 1515 * and the allocated memory released. (Except that the termios 1516 * and locked termios may be retained.) 1517 */ 1518 1519 if (!try_module_get(driver->owner)) 1520 return ERR_PTR(-ENODEV); 1521 1522 tty = alloc_tty_struct(driver, idx); 1523 if (!tty) { 1524 retval = -ENOMEM; 1525 goto err_module_put; 1526 } 1527 1528 tty_lock(tty); 1529 retval = tty_driver_install_tty(driver, tty); 1530 if (retval < 0) 1531 goto err_deinit_tty; 1532 1533 if (!tty->port) 1534 tty->port = driver->ports[idx]; 1535 1536 WARN_RATELIMIT(!tty->port, 1537 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n", 1538 __func__, tty->driver->name); 1539 1540 tty->port->itty = tty; 1541 1542 /* 1543 * Structures all installed ... call the ldisc open routines. 1544 * If we fail here just call release_tty to clean up. No need 1545 * to decrement the use counts, as release_tty doesn't care. 1546 */ 1547 retval = tty_ldisc_setup(tty, tty->link); 1548 if (retval) 1549 goto err_release_tty; 1550 /* Return the tty locked so that it cannot vanish under the caller */ 1551 return tty; 1552 1553 err_deinit_tty: 1554 tty_unlock(tty); 1555 deinitialize_tty_struct(tty); 1556 free_tty_struct(tty); 1557 err_module_put: 1558 module_put(driver->owner); 1559 return ERR_PTR(retval); 1560 1561 /* call the tty release_tty routine to clean out this slot */ 1562 err_release_tty: 1563 tty_unlock(tty); 1564 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, " 1565 "clearing slot %d\n", idx); 1566 release_tty(tty, idx); 1567 return ERR_PTR(retval); 1568 } 1569 1570 void tty_free_termios(struct tty_struct *tty) 1571 { 1572 struct ktermios *tp; 1573 int idx = tty->index; 1574 1575 /* If the port is going to reset then it has no termios to save */ 1576 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1577 return; 1578 1579 /* Stash the termios data */ 1580 tp = tty->driver->termios[idx]; 1581 if (tp == NULL) { 1582 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL); 1583 if (tp == NULL) { 1584 pr_warn("tty: no memory to save termios state.\n"); 1585 return; 1586 } 1587 tty->driver->termios[idx] = tp; 1588 } 1589 *tp = tty->termios; 1590 } 1591 EXPORT_SYMBOL(tty_free_termios); 1592 1593 /** 1594 * tty_flush_works - flush all works of a tty/pty pair 1595 * @tty: tty device to flush works for (or either end of a pty pair) 1596 * 1597 * Sync flush all works belonging to @tty (and the 'other' tty). 1598 */ 1599 static void tty_flush_works(struct tty_struct *tty) 1600 { 1601 flush_work(&tty->SAK_work); 1602 flush_work(&tty->hangup_work); 1603 if (tty->link) { 1604 flush_work(&tty->link->SAK_work); 1605 flush_work(&tty->link->hangup_work); 1606 } 1607 } 1608 1609 /** 1610 * release_one_tty - release tty structure memory 1611 * @kref: kref of tty we are obliterating 1612 * 1613 * Releases memory associated with a tty structure, and clears out the 1614 * driver table slots. This function is called when a device is no longer 1615 * in use. It also gets called when setup of a device fails. 1616 * 1617 * Locking: 1618 * takes the file list lock internally when working on the list 1619 * of ttys that the driver keeps. 1620 * 1621 * This method gets called from a work queue so that the driver private 1622 * cleanup ops can sleep (needed for USB at least) 1623 */ 1624 static void release_one_tty(struct work_struct *work) 1625 { 1626 struct tty_struct *tty = 1627 container_of(work, struct tty_struct, hangup_work); 1628 struct tty_driver *driver = tty->driver; 1629 struct module *owner = driver->owner; 1630 1631 if (tty->ops->cleanup) 1632 tty->ops->cleanup(tty); 1633 1634 tty->magic = 0; 1635 tty_driver_kref_put(driver); 1636 module_put(owner); 1637 1638 spin_lock(&tty_files_lock); 1639 list_del_init(&tty->tty_files); 1640 spin_unlock(&tty_files_lock); 1641 1642 put_pid(tty->pgrp); 1643 put_pid(tty->session); 1644 free_tty_struct(tty); 1645 } 1646 1647 static void queue_release_one_tty(struct kref *kref) 1648 { 1649 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1650 1651 /* The hangup queue is now free so we can reuse it rather than 1652 waste a chunk of memory for each port */ 1653 INIT_WORK(&tty->hangup_work, release_one_tty); 1654 schedule_work(&tty->hangup_work); 1655 } 1656 1657 /** 1658 * tty_kref_put - release a tty kref 1659 * @tty: tty device 1660 * 1661 * Release a reference to a tty device and if need be let the kref 1662 * layer destruct the object for us 1663 */ 1664 1665 void tty_kref_put(struct tty_struct *tty) 1666 { 1667 if (tty) 1668 kref_put(&tty->kref, queue_release_one_tty); 1669 } 1670 EXPORT_SYMBOL(tty_kref_put); 1671 1672 /** 1673 * release_tty - release tty structure memory 1674 * 1675 * Release both @tty and a possible linked partner (think pty pair), 1676 * and decrement the refcount of the backing module. 1677 * 1678 * Locking: 1679 * tty_mutex 1680 * takes the file list lock internally when working on the list 1681 * of ttys that the driver keeps. 1682 * 1683 */ 1684 static void release_tty(struct tty_struct *tty, int idx) 1685 { 1686 /* This should always be true but check for the moment */ 1687 WARN_ON(tty->index != idx); 1688 WARN_ON(!mutex_is_locked(&tty_mutex)); 1689 if (tty->ops->shutdown) 1690 tty->ops->shutdown(tty); 1691 tty_free_termios(tty); 1692 tty_driver_remove_tty(tty->driver, tty); 1693 tty->port->itty = NULL; 1694 if (tty->link) 1695 tty->link->port->itty = NULL; 1696 tty_buffer_cancel_work(tty->port); 1697 1698 tty_kref_put(tty->link); 1699 tty_kref_put(tty); 1700 } 1701 1702 /** 1703 * tty_release_checks - check a tty before real release 1704 * @tty: tty to check 1705 * @o_tty: link of @tty (if any) 1706 * @idx: index of the tty 1707 * 1708 * Performs some paranoid checking before true release of the @tty. 1709 * This is a no-op unless TTY_PARANOIA_CHECK is defined. 1710 */ 1711 static int tty_release_checks(struct tty_struct *tty, int idx) 1712 { 1713 #ifdef TTY_PARANOIA_CHECK 1714 if (idx < 0 || idx >= tty->driver->num) { 1715 tty_debug(tty, "bad idx %d\n", idx); 1716 return -1; 1717 } 1718 1719 /* not much to check for devpts */ 1720 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1721 return 0; 1722 1723 if (tty != tty->driver->ttys[idx]) { 1724 tty_debug(tty, "bad driver table[%d] = %p\n", 1725 idx, tty->driver->ttys[idx]); 1726 return -1; 1727 } 1728 if (tty->driver->other) { 1729 struct tty_struct *o_tty = tty->link; 1730 1731 if (o_tty != tty->driver->other->ttys[idx]) { 1732 tty_debug(tty, "bad other table[%d] = %p\n", 1733 idx, tty->driver->other->ttys[idx]); 1734 return -1; 1735 } 1736 if (o_tty->link != tty) { 1737 tty_debug(tty, "bad link = %p\n", o_tty->link); 1738 return -1; 1739 } 1740 } 1741 #endif 1742 return 0; 1743 } 1744 1745 /** 1746 * tty_release - vfs callback for close 1747 * @inode: inode of tty 1748 * @filp: file pointer for handle to tty 1749 * 1750 * Called the last time each file handle is closed that references 1751 * this tty. There may however be several such references. 1752 * 1753 * Locking: 1754 * Takes bkl. See tty_release_dev 1755 * 1756 * Even releasing the tty structures is a tricky business.. We have 1757 * to be very careful that the structures are all released at the 1758 * same time, as interrupts might otherwise get the wrong pointers. 1759 * 1760 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1761 * lead to double frees or releasing memory still in use. 1762 */ 1763 1764 int tty_release(struct inode *inode, struct file *filp) 1765 { 1766 struct tty_struct *tty = file_tty(filp); 1767 struct tty_struct *o_tty = NULL; 1768 int do_sleep, final; 1769 int idx; 1770 long timeout = 0; 1771 int once = 1; 1772 1773 if (tty_paranoia_check(tty, inode, __func__)) 1774 return 0; 1775 1776 tty_lock(tty); 1777 check_tty_count(tty, __func__); 1778 1779 __tty_fasync(-1, filp, 0); 1780 1781 idx = tty->index; 1782 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1783 tty->driver->subtype == PTY_TYPE_MASTER) 1784 o_tty = tty->link; 1785 1786 if (tty_release_checks(tty, idx)) { 1787 tty_unlock(tty); 1788 return 0; 1789 } 1790 1791 tty_debug_hangup(tty, "(tty count=%d)...\n", tty->count); 1792 1793 if (tty->ops->close) 1794 tty->ops->close(tty, filp); 1795 1796 /* If tty is pty master, lock the slave pty (stable lock order) */ 1797 tty_lock_slave(o_tty); 1798 1799 /* 1800 * Sanity check: if tty->count is going to zero, there shouldn't be 1801 * any waiters on tty->read_wait or tty->write_wait. We test the 1802 * wait queues and kick everyone out _before_ actually starting to 1803 * close. This ensures that we won't block while releasing the tty 1804 * structure. 1805 * 1806 * The test for the o_tty closing is necessary, since the master and 1807 * slave sides may close in any order. If the slave side closes out 1808 * first, its count will be one, since the master side holds an open. 1809 * Thus this test wouldn't be triggered at the time the slave closed, 1810 * so we do it now. 1811 */ 1812 while (1) { 1813 do_sleep = 0; 1814 1815 if (tty->count <= 1) { 1816 if (waitqueue_active(&tty->read_wait)) { 1817 wake_up_poll(&tty->read_wait, POLLIN); 1818 do_sleep++; 1819 } 1820 if (waitqueue_active(&tty->write_wait)) { 1821 wake_up_poll(&tty->write_wait, POLLOUT); 1822 do_sleep++; 1823 } 1824 } 1825 if (o_tty && o_tty->count <= 1) { 1826 if (waitqueue_active(&o_tty->read_wait)) { 1827 wake_up_poll(&o_tty->read_wait, POLLIN); 1828 do_sleep++; 1829 } 1830 if (waitqueue_active(&o_tty->write_wait)) { 1831 wake_up_poll(&o_tty->write_wait, POLLOUT); 1832 do_sleep++; 1833 } 1834 } 1835 if (!do_sleep) 1836 break; 1837 1838 if (once) { 1839 once = 0; 1840 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n", 1841 __func__, tty_name(tty)); 1842 } 1843 schedule_timeout_killable(timeout); 1844 if (timeout < 120 * HZ) 1845 timeout = 2 * timeout + 1; 1846 else 1847 timeout = MAX_SCHEDULE_TIMEOUT; 1848 } 1849 1850 if (o_tty) { 1851 if (--o_tty->count < 0) { 1852 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n", 1853 __func__, o_tty->count, tty_name(o_tty)); 1854 o_tty->count = 0; 1855 } 1856 } 1857 if (--tty->count < 0) { 1858 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n", 1859 __func__, tty->count, tty_name(tty)); 1860 tty->count = 0; 1861 } 1862 1863 /* 1864 * We've decremented tty->count, so we need to remove this file 1865 * descriptor off the tty->tty_files list; this serves two 1866 * purposes: 1867 * - check_tty_count sees the correct number of file descriptors 1868 * associated with this tty. 1869 * - do_tty_hangup no longer sees this file descriptor as 1870 * something that needs to be handled for hangups. 1871 */ 1872 tty_del_file(filp); 1873 1874 /* 1875 * Perform some housekeeping before deciding whether to return. 1876 * 1877 * If _either_ side is closing, make sure there aren't any 1878 * processes that still think tty or o_tty is their controlling 1879 * tty. 1880 */ 1881 if (!tty->count) { 1882 read_lock(&tasklist_lock); 1883 session_clear_tty(tty->session); 1884 if (o_tty) 1885 session_clear_tty(o_tty->session); 1886 read_unlock(&tasklist_lock); 1887 } 1888 1889 /* check whether both sides are closing ... */ 1890 final = !tty->count && !(o_tty && o_tty->count); 1891 1892 tty_unlock_slave(o_tty); 1893 tty_unlock(tty); 1894 1895 /* At this point, the tty->count == 0 should ensure a dead tty 1896 cannot be re-opened by a racing opener */ 1897 1898 if (!final) 1899 return 0; 1900 1901 tty_debug_hangup(tty, "final close\n"); 1902 /* 1903 * Ask the line discipline code to release its structures 1904 */ 1905 tty_ldisc_release(tty); 1906 1907 /* Wait for pending work before tty destruction commmences */ 1908 tty_flush_works(tty); 1909 1910 tty_debug_hangup(tty, "freeing structure...\n"); 1911 /* 1912 * The release_tty function takes care of the details of clearing 1913 * the slots and preserving the termios structure. The tty_unlock_pair 1914 * should be safe as we keep a kref while the tty is locked (so the 1915 * unlock never unlocks a freed tty). 1916 */ 1917 mutex_lock(&tty_mutex); 1918 release_tty(tty, idx); 1919 mutex_unlock(&tty_mutex); 1920 1921 return 0; 1922 } 1923 1924 /** 1925 * tty_open_current_tty - get locked tty of current task 1926 * @device: device number 1927 * @filp: file pointer to tty 1928 * @return: locked tty of the current task iff @device is /dev/tty 1929 * 1930 * Performs a re-open of the current task's controlling tty. 1931 * 1932 * We cannot return driver and index like for the other nodes because 1933 * devpts will not work then. It expects inodes to be from devpts FS. 1934 */ 1935 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1936 { 1937 struct tty_struct *tty; 1938 int retval; 1939 1940 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1941 return NULL; 1942 1943 tty = get_current_tty(); 1944 if (!tty) 1945 return ERR_PTR(-ENXIO); 1946 1947 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1948 /* noctty = 1; */ 1949 tty_lock(tty); 1950 tty_kref_put(tty); /* safe to drop the kref now */ 1951 1952 retval = tty_reopen(tty); 1953 if (retval < 0) { 1954 tty_unlock(tty); 1955 tty = ERR_PTR(retval); 1956 } 1957 return tty; 1958 } 1959 1960 /** 1961 * tty_lookup_driver - lookup a tty driver for a given device file 1962 * @device: device number 1963 * @filp: file pointer to tty 1964 * @noctty: set if the device should not become a controlling tty 1965 * @index: index for the device in the @return driver 1966 * @return: driver for this inode (with increased refcount) 1967 * 1968 * If @return is not erroneous, the caller is responsible to decrement the 1969 * refcount by tty_driver_kref_put. 1970 * 1971 * Locking: tty_mutex protects get_tty_driver 1972 */ 1973 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1974 int *noctty, int *index) 1975 { 1976 struct tty_driver *driver; 1977 1978 switch (device) { 1979 #ifdef CONFIG_VT 1980 case MKDEV(TTY_MAJOR, 0): { 1981 extern struct tty_driver *console_driver; 1982 driver = tty_driver_kref_get(console_driver); 1983 *index = fg_console; 1984 *noctty = 1; 1985 break; 1986 } 1987 #endif 1988 case MKDEV(TTYAUX_MAJOR, 1): { 1989 struct tty_driver *console_driver = console_device(index); 1990 if (console_driver) { 1991 driver = tty_driver_kref_get(console_driver); 1992 if (driver) { 1993 /* Don't let /dev/console block */ 1994 filp->f_flags |= O_NONBLOCK; 1995 *noctty = 1; 1996 break; 1997 } 1998 } 1999 return ERR_PTR(-ENODEV); 2000 } 2001 default: 2002 driver = get_tty_driver(device, index); 2003 if (!driver) 2004 return ERR_PTR(-ENODEV); 2005 break; 2006 } 2007 return driver; 2008 } 2009 2010 /** 2011 * tty_open - open a tty device 2012 * @inode: inode of device file 2013 * @filp: file pointer to tty 2014 * 2015 * tty_open and tty_release keep up the tty count that contains the 2016 * number of opens done on a tty. We cannot use the inode-count, as 2017 * different inodes might point to the same tty. 2018 * 2019 * Open-counting is needed for pty masters, as well as for keeping 2020 * track of serial lines: DTR is dropped when the last close happens. 2021 * (This is not done solely through tty->count, now. - Ted 1/27/92) 2022 * 2023 * The termios state of a pty is reset on first open so that 2024 * settings don't persist across reuse. 2025 * 2026 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev. 2027 * tty->count should protect the rest. 2028 * ->siglock protects ->signal/->sighand 2029 * 2030 * Note: the tty_unlock/lock cases without a ref are only safe due to 2031 * tty_mutex 2032 */ 2033 2034 static int tty_open(struct inode *inode, struct file *filp) 2035 { 2036 struct tty_struct *tty; 2037 int noctty, retval; 2038 struct tty_driver *driver = NULL; 2039 int index; 2040 dev_t device = inode->i_rdev; 2041 unsigned saved_flags = filp->f_flags; 2042 2043 nonseekable_open(inode, filp); 2044 2045 retry_open: 2046 retval = tty_alloc_file(filp); 2047 if (retval) 2048 return -ENOMEM; 2049 2050 noctty = filp->f_flags & O_NOCTTY; 2051 index = -1; 2052 retval = 0; 2053 2054 tty = tty_open_current_tty(device, filp); 2055 if (!tty) { 2056 mutex_lock(&tty_mutex); 2057 driver = tty_lookup_driver(device, filp, &noctty, &index); 2058 if (IS_ERR(driver)) { 2059 retval = PTR_ERR(driver); 2060 goto err_unlock; 2061 } 2062 2063 /* check whether we're reopening an existing tty */ 2064 tty = tty_driver_lookup_tty(driver, inode, index); 2065 if (IS_ERR(tty)) { 2066 retval = PTR_ERR(tty); 2067 goto err_unlock; 2068 } 2069 2070 if (tty) { 2071 mutex_unlock(&tty_mutex); 2072 tty_lock(tty); 2073 /* safe to drop the kref from tty_driver_lookup_tty() */ 2074 tty_kref_put(tty); 2075 retval = tty_reopen(tty); 2076 if (retval < 0) { 2077 tty_unlock(tty); 2078 tty = ERR_PTR(retval); 2079 } 2080 } else { /* Returns with the tty_lock held for now */ 2081 tty = tty_init_dev(driver, index); 2082 mutex_unlock(&tty_mutex); 2083 } 2084 2085 tty_driver_kref_put(driver); 2086 } 2087 2088 if (IS_ERR(tty)) { 2089 retval = PTR_ERR(tty); 2090 goto err_file; 2091 } 2092 2093 tty_add_file(tty, filp); 2094 2095 check_tty_count(tty, __func__); 2096 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2097 tty->driver->subtype == PTY_TYPE_MASTER) 2098 noctty = 1; 2099 2100 tty_debug_hangup(tty, "(tty count=%d)\n", tty->count); 2101 2102 if (tty->ops->open) 2103 retval = tty->ops->open(tty, filp); 2104 else 2105 retval = -ENODEV; 2106 filp->f_flags = saved_flags; 2107 2108 if (retval) { 2109 tty_debug_hangup(tty, "error %d, releasing...\n", retval); 2110 2111 tty_unlock(tty); /* need to call tty_release without BTM */ 2112 tty_release(inode, filp); 2113 if (retval != -ERESTARTSYS) 2114 return retval; 2115 2116 if (signal_pending(current)) 2117 return retval; 2118 2119 schedule(); 2120 /* 2121 * Need to reset f_op in case a hangup happened. 2122 */ 2123 if (tty_hung_up_p(filp)) 2124 filp->f_op = &tty_fops; 2125 goto retry_open; 2126 } 2127 clear_bit(TTY_HUPPED, &tty->flags); 2128 2129 2130 read_lock(&tasklist_lock); 2131 spin_lock_irq(¤t->sighand->siglock); 2132 if (!noctty && 2133 current->signal->leader && 2134 !current->signal->tty && 2135 tty->session == NULL) { 2136 /* 2137 * Don't let a process that only has write access to the tty 2138 * obtain the privileges associated with having a tty as 2139 * controlling terminal (being able to reopen it with full 2140 * access through /dev/tty, being able to perform pushback). 2141 * Many distributions set the group of all ttys to "tty" and 2142 * grant write-only access to all terminals for setgid tty 2143 * binaries, which should not imply full privileges on all ttys. 2144 * 2145 * This could theoretically break old code that performs open() 2146 * on a write-only file descriptor. In that case, it might be 2147 * necessary to also permit this if 2148 * inode_permission(inode, MAY_READ) == 0. 2149 */ 2150 if (filp->f_mode & FMODE_READ) 2151 __proc_set_tty(tty); 2152 } 2153 spin_unlock_irq(¤t->sighand->siglock); 2154 read_unlock(&tasklist_lock); 2155 tty_unlock(tty); 2156 return 0; 2157 err_unlock: 2158 mutex_unlock(&tty_mutex); 2159 /* after locks to avoid deadlock */ 2160 if (!IS_ERR_OR_NULL(driver)) 2161 tty_driver_kref_put(driver); 2162 err_file: 2163 tty_free_file(filp); 2164 return retval; 2165 } 2166 2167 2168 2169 /** 2170 * tty_poll - check tty status 2171 * @filp: file being polled 2172 * @wait: poll wait structures to update 2173 * 2174 * Call the line discipline polling method to obtain the poll 2175 * status of the device. 2176 * 2177 * Locking: locks called line discipline but ldisc poll method 2178 * may be re-entered freely by other callers. 2179 */ 2180 2181 static unsigned int tty_poll(struct file *filp, poll_table *wait) 2182 { 2183 struct tty_struct *tty = file_tty(filp); 2184 struct tty_ldisc *ld; 2185 int ret = 0; 2186 2187 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll")) 2188 return 0; 2189 2190 ld = tty_ldisc_ref_wait(tty); 2191 if (ld->ops->poll) 2192 ret = ld->ops->poll(tty, filp, wait); 2193 tty_ldisc_deref(ld); 2194 return ret; 2195 } 2196 2197 static int __tty_fasync(int fd, struct file *filp, int on) 2198 { 2199 struct tty_struct *tty = file_tty(filp); 2200 struct tty_ldisc *ldisc; 2201 unsigned long flags; 2202 int retval = 0; 2203 2204 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync")) 2205 goto out; 2206 2207 retval = fasync_helper(fd, filp, on, &tty->fasync); 2208 if (retval <= 0) 2209 goto out; 2210 2211 ldisc = tty_ldisc_ref(tty); 2212 if (ldisc) { 2213 if (ldisc->ops->fasync) 2214 ldisc->ops->fasync(tty, on); 2215 tty_ldisc_deref(ldisc); 2216 } 2217 2218 if (on) { 2219 enum pid_type type; 2220 struct pid *pid; 2221 2222 spin_lock_irqsave(&tty->ctrl_lock, flags); 2223 if (tty->pgrp) { 2224 pid = tty->pgrp; 2225 type = PIDTYPE_PGID; 2226 } else { 2227 pid = task_pid(current); 2228 type = PIDTYPE_PID; 2229 } 2230 get_pid(pid); 2231 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2232 __f_setown(filp, pid, type, 0); 2233 put_pid(pid); 2234 retval = 0; 2235 } 2236 out: 2237 return retval; 2238 } 2239 2240 static int tty_fasync(int fd, struct file *filp, int on) 2241 { 2242 struct tty_struct *tty = file_tty(filp); 2243 int retval; 2244 2245 tty_lock(tty); 2246 retval = __tty_fasync(fd, filp, on); 2247 tty_unlock(tty); 2248 2249 return retval; 2250 } 2251 2252 /** 2253 * tiocsti - fake input character 2254 * @tty: tty to fake input into 2255 * @p: pointer to character 2256 * 2257 * Fake input to a tty device. Does the necessary locking and 2258 * input management. 2259 * 2260 * FIXME: does not honour flow control ?? 2261 * 2262 * Locking: 2263 * Called functions take tty_ldiscs_lock 2264 * current->signal->tty check is safe without locks 2265 * 2266 * FIXME: may race normal receive processing 2267 */ 2268 2269 static int tiocsti(struct tty_struct *tty, char __user *p) 2270 { 2271 char ch, mbz = 0; 2272 struct tty_ldisc *ld; 2273 2274 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2275 return -EPERM; 2276 if (get_user(ch, p)) 2277 return -EFAULT; 2278 tty_audit_tiocsti(tty, ch); 2279 ld = tty_ldisc_ref_wait(tty); 2280 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2281 tty_ldisc_deref(ld); 2282 return 0; 2283 } 2284 2285 /** 2286 * tiocgwinsz - implement window query ioctl 2287 * @tty; tty 2288 * @arg: user buffer for result 2289 * 2290 * Copies the kernel idea of the window size into the user buffer. 2291 * 2292 * Locking: tty->winsize_mutex is taken to ensure the winsize data 2293 * is consistent. 2294 */ 2295 2296 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2297 { 2298 int err; 2299 2300 mutex_lock(&tty->winsize_mutex); 2301 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2302 mutex_unlock(&tty->winsize_mutex); 2303 2304 return err ? -EFAULT: 0; 2305 } 2306 2307 /** 2308 * tty_do_resize - resize event 2309 * @tty: tty being resized 2310 * @rows: rows (character) 2311 * @cols: cols (character) 2312 * 2313 * Update the termios variables and send the necessary signals to 2314 * peform a terminal resize correctly 2315 */ 2316 2317 int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2318 { 2319 struct pid *pgrp; 2320 2321 /* Lock the tty */ 2322 mutex_lock(&tty->winsize_mutex); 2323 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2324 goto done; 2325 2326 /* Signal the foreground process group */ 2327 pgrp = tty_get_pgrp(tty); 2328 if (pgrp) 2329 kill_pgrp(pgrp, SIGWINCH, 1); 2330 put_pid(pgrp); 2331 2332 tty->winsize = *ws; 2333 done: 2334 mutex_unlock(&tty->winsize_mutex); 2335 return 0; 2336 } 2337 EXPORT_SYMBOL(tty_do_resize); 2338 2339 /** 2340 * tiocswinsz - implement window size set ioctl 2341 * @tty; tty side of tty 2342 * @arg: user buffer for result 2343 * 2344 * Copies the user idea of the window size to the kernel. Traditionally 2345 * this is just advisory information but for the Linux console it 2346 * actually has driver level meaning and triggers a VC resize. 2347 * 2348 * Locking: 2349 * Driver dependent. The default do_resize method takes the 2350 * tty termios mutex and ctrl_lock. The console takes its own lock 2351 * then calls into the default method. 2352 */ 2353 2354 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2355 { 2356 struct winsize tmp_ws; 2357 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2358 return -EFAULT; 2359 2360 if (tty->ops->resize) 2361 return tty->ops->resize(tty, &tmp_ws); 2362 else 2363 return tty_do_resize(tty, &tmp_ws); 2364 } 2365 2366 /** 2367 * tioccons - allow admin to move logical console 2368 * @file: the file to become console 2369 * 2370 * Allow the administrator to move the redirected console device 2371 * 2372 * Locking: uses redirect_lock to guard the redirect information 2373 */ 2374 2375 static int tioccons(struct file *file) 2376 { 2377 if (!capable(CAP_SYS_ADMIN)) 2378 return -EPERM; 2379 if (file->f_op->write == redirected_tty_write) { 2380 struct file *f; 2381 spin_lock(&redirect_lock); 2382 f = redirect; 2383 redirect = NULL; 2384 spin_unlock(&redirect_lock); 2385 if (f) 2386 fput(f); 2387 return 0; 2388 } 2389 spin_lock(&redirect_lock); 2390 if (redirect) { 2391 spin_unlock(&redirect_lock); 2392 return -EBUSY; 2393 } 2394 redirect = get_file(file); 2395 spin_unlock(&redirect_lock); 2396 return 0; 2397 } 2398 2399 /** 2400 * fionbio - non blocking ioctl 2401 * @file: file to set blocking value 2402 * @p: user parameter 2403 * 2404 * Historical tty interfaces had a blocking control ioctl before 2405 * the generic functionality existed. This piece of history is preserved 2406 * in the expected tty API of posix OS's. 2407 * 2408 * Locking: none, the open file handle ensures it won't go away. 2409 */ 2410 2411 static int fionbio(struct file *file, int __user *p) 2412 { 2413 int nonblock; 2414 2415 if (get_user(nonblock, p)) 2416 return -EFAULT; 2417 2418 spin_lock(&file->f_lock); 2419 if (nonblock) 2420 file->f_flags |= O_NONBLOCK; 2421 else 2422 file->f_flags &= ~O_NONBLOCK; 2423 spin_unlock(&file->f_lock); 2424 return 0; 2425 } 2426 2427 /** 2428 * tiocsctty - set controlling tty 2429 * @tty: tty structure 2430 * @arg: user argument 2431 * 2432 * This ioctl is used to manage job control. It permits a session 2433 * leader to set this tty as the controlling tty for the session. 2434 * 2435 * Locking: 2436 * Takes tty_lock() to serialize proc_set_tty() for this tty 2437 * Takes tasklist_lock internally to walk sessions 2438 * Takes ->siglock() when updating signal->tty 2439 */ 2440 2441 static int tiocsctty(struct tty_struct *tty, struct file *file, int arg) 2442 { 2443 int ret = 0; 2444 2445 tty_lock(tty); 2446 read_lock(&tasklist_lock); 2447 2448 if (current->signal->leader && (task_session(current) == tty->session)) 2449 goto unlock; 2450 2451 /* 2452 * The process must be a session leader and 2453 * not have a controlling tty already. 2454 */ 2455 if (!current->signal->leader || current->signal->tty) { 2456 ret = -EPERM; 2457 goto unlock; 2458 } 2459 2460 if (tty->session) { 2461 /* 2462 * This tty is already the controlling 2463 * tty for another session group! 2464 */ 2465 if (arg == 1 && capable(CAP_SYS_ADMIN)) { 2466 /* 2467 * Steal it away 2468 */ 2469 session_clear_tty(tty->session); 2470 } else { 2471 ret = -EPERM; 2472 goto unlock; 2473 } 2474 } 2475 2476 /* See the comment in tty_open(). */ 2477 if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) { 2478 ret = -EPERM; 2479 goto unlock; 2480 } 2481 2482 proc_set_tty(tty); 2483 unlock: 2484 read_unlock(&tasklist_lock); 2485 tty_unlock(tty); 2486 return ret; 2487 } 2488 2489 /** 2490 * tty_get_pgrp - return a ref counted pgrp pid 2491 * @tty: tty to read 2492 * 2493 * Returns a refcounted instance of the pid struct for the process 2494 * group controlling the tty. 2495 */ 2496 2497 struct pid *tty_get_pgrp(struct tty_struct *tty) 2498 { 2499 unsigned long flags; 2500 struct pid *pgrp; 2501 2502 spin_lock_irqsave(&tty->ctrl_lock, flags); 2503 pgrp = get_pid(tty->pgrp); 2504 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2505 2506 return pgrp; 2507 } 2508 EXPORT_SYMBOL_GPL(tty_get_pgrp); 2509 2510 /* 2511 * This checks not only the pgrp, but falls back on the pid if no 2512 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 2513 * without this... 2514 * 2515 * The caller must hold rcu lock or the tasklist lock. 2516 */ 2517 static struct pid *session_of_pgrp(struct pid *pgrp) 2518 { 2519 struct task_struct *p; 2520 struct pid *sid = NULL; 2521 2522 p = pid_task(pgrp, PIDTYPE_PGID); 2523 if (p == NULL) 2524 p = pid_task(pgrp, PIDTYPE_PID); 2525 if (p != NULL) 2526 sid = task_session(p); 2527 2528 return sid; 2529 } 2530 2531 /** 2532 * tiocgpgrp - get process group 2533 * @tty: tty passed by user 2534 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2535 * @p: returned pid 2536 * 2537 * Obtain the process group of the tty. If there is no process group 2538 * return an error. 2539 * 2540 * Locking: none. Reference to current->signal->tty is safe. 2541 */ 2542 2543 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2544 { 2545 struct pid *pid; 2546 int ret; 2547 /* 2548 * (tty == real_tty) is a cheap way of 2549 * testing if the tty is NOT a master pty. 2550 */ 2551 if (tty == real_tty && current->signal->tty != real_tty) 2552 return -ENOTTY; 2553 pid = tty_get_pgrp(real_tty); 2554 ret = put_user(pid_vnr(pid), p); 2555 put_pid(pid); 2556 return ret; 2557 } 2558 2559 /** 2560 * tiocspgrp - attempt to set process group 2561 * @tty: tty passed by user 2562 * @real_tty: tty side device matching tty passed by user 2563 * @p: pid pointer 2564 * 2565 * Set the process group of the tty to the session passed. Only 2566 * permitted where the tty session is our session. 2567 * 2568 * Locking: RCU, ctrl lock 2569 */ 2570 2571 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2572 { 2573 struct pid *pgrp; 2574 pid_t pgrp_nr; 2575 int retval = tty_check_change(real_tty); 2576 2577 if (retval == -EIO) 2578 return -ENOTTY; 2579 if (retval) 2580 return retval; 2581 if (!current->signal->tty || 2582 (current->signal->tty != real_tty) || 2583 (real_tty->session != task_session(current))) 2584 return -ENOTTY; 2585 if (get_user(pgrp_nr, p)) 2586 return -EFAULT; 2587 if (pgrp_nr < 0) 2588 return -EINVAL; 2589 rcu_read_lock(); 2590 pgrp = find_vpid(pgrp_nr); 2591 retval = -ESRCH; 2592 if (!pgrp) 2593 goto out_unlock; 2594 retval = -EPERM; 2595 if (session_of_pgrp(pgrp) != task_session(current)) 2596 goto out_unlock; 2597 retval = 0; 2598 spin_lock_irq(&tty->ctrl_lock); 2599 put_pid(real_tty->pgrp); 2600 real_tty->pgrp = get_pid(pgrp); 2601 spin_unlock_irq(&tty->ctrl_lock); 2602 out_unlock: 2603 rcu_read_unlock(); 2604 return retval; 2605 } 2606 2607 /** 2608 * tiocgsid - get session id 2609 * @tty: tty passed by user 2610 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2611 * @p: pointer to returned session id 2612 * 2613 * Obtain the session id of the tty. If there is no session 2614 * return an error. 2615 * 2616 * Locking: none. Reference to current->signal->tty is safe. 2617 */ 2618 2619 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2620 { 2621 /* 2622 * (tty == real_tty) is a cheap way of 2623 * testing if the tty is NOT a master pty. 2624 */ 2625 if (tty == real_tty && current->signal->tty != real_tty) 2626 return -ENOTTY; 2627 if (!real_tty->session) 2628 return -ENOTTY; 2629 return put_user(pid_vnr(real_tty->session), p); 2630 } 2631 2632 /** 2633 * tiocsetd - set line discipline 2634 * @tty: tty device 2635 * @p: pointer to user data 2636 * 2637 * Set the line discipline according to user request. 2638 * 2639 * Locking: see tty_set_ldisc, this function is just a helper 2640 */ 2641 2642 static int tiocsetd(struct tty_struct *tty, int __user *p) 2643 { 2644 int ldisc; 2645 int ret; 2646 2647 if (get_user(ldisc, p)) 2648 return -EFAULT; 2649 2650 ret = tty_set_ldisc(tty, ldisc); 2651 2652 return ret; 2653 } 2654 2655 /** 2656 * send_break - performed time break 2657 * @tty: device to break on 2658 * @duration: timeout in mS 2659 * 2660 * Perform a timed break on hardware that lacks its own driver level 2661 * timed break functionality. 2662 * 2663 * Locking: 2664 * atomic_write_lock serializes 2665 * 2666 */ 2667 2668 static int send_break(struct tty_struct *tty, unsigned int duration) 2669 { 2670 int retval; 2671 2672 if (tty->ops->break_ctl == NULL) 2673 return 0; 2674 2675 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2676 retval = tty->ops->break_ctl(tty, duration); 2677 else { 2678 /* Do the work ourselves */ 2679 if (tty_write_lock(tty, 0) < 0) 2680 return -EINTR; 2681 retval = tty->ops->break_ctl(tty, -1); 2682 if (retval) 2683 goto out; 2684 if (!signal_pending(current)) 2685 msleep_interruptible(duration); 2686 retval = tty->ops->break_ctl(tty, 0); 2687 out: 2688 tty_write_unlock(tty); 2689 if (signal_pending(current)) 2690 retval = -EINTR; 2691 } 2692 return retval; 2693 } 2694 2695 /** 2696 * tty_tiocmget - get modem status 2697 * @tty: tty device 2698 * @file: user file pointer 2699 * @p: pointer to result 2700 * 2701 * Obtain the modem status bits from the tty driver if the feature 2702 * is supported. Return -EINVAL if it is not available. 2703 * 2704 * Locking: none (up to the driver) 2705 */ 2706 2707 static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2708 { 2709 int retval = -EINVAL; 2710 2711 if (tty->ops->tiocmget) { 2712 retval = tty->ops->tiocmget(tty); 2713 2714 if (retval >= 0) 2715 retval = put_user(retval, p); 2716 } 2717 return retval; 2718 } 2719 2720 /** 2721 * tty_tiocmset - set modem status 2722 * @tty: tty device 2723 * @cmd: command - clear bits, set bits or set all 2724 * @p: pointer to desired bits 2725 * 2726 * Set the modem status bits from the tty driver if the feature 2727 * is supported. Return -EINVAL if it is not available. 2728 * 2729 * Locking: none (up to the driver) 2730 */ 2731 2732 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2733 unsigned __user *p) 2734 { 2735 int retval; 2736 unsigned int set, clear, val; 2737 2738 if (tty->ops->tiocmset == NULL) 2739 return -EINVAL; 2740 2741 retval = get_user(val, p); 2742 if (retval) 2743 return retval; 2744 set = clear = 0; 2745 switch (cmd) { 2746 case TIOCMBIS: 2747 set = val; 2748 break; 2749 case TIOCMBIC: 2750 clear = val; 2751 break; 2752 case TIOCMSET: 2753 set = val; 2754 clear = ~val; 2755 break; 2756 } 2757 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2758 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2759 return tty->ops->tiocmset(tty, set, clear); 2760 } 2761 2762 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2763 { 2764 int retval = -EINVAL; 2765 struct serial_icounter_struct icount; 2766 memset(&icount, 0, sizeof(icount)); 2767 if (tty->ops->get_icount) 2768 retval = tty->ops->get_icount(tty, &icount); 2769 if (retval != 0) 2770 return retval; 2771 if (copy_to_user(arg, &icount, sizeof(icount))) 2772 return -EFAULT; 2773 return 0; 2774 } 2775 2776 static void tty_warn_deprecated_flags(struct serial_struct __user *ss) 2777 { 2778 static DEFINE_RATELIMIT_STATE(depr_flags, 2779 DEFAULT_RATELIMIT_INTERVAL, 2780 DEFAULT_RATELIMIT_BURST); 2781 char comm[TASK_COMM_LEN]; 2782 int flags; 2783 2784 if (get_user(flags, &ss->flags)) 2785 return; 2786 2787 flags &= ASYNC_DEPRECATED; 2788 2789 if (flags && __ratelimit(&depr_flags)) 2790 pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n", 2791 __func__, get_task_comm(comm, current), flags); 2792 } 2793 2794 /* 2795 * if pty, return the slave side (real_tty) 2796 * otherwise, return self 2797 */ 2798 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2799 { 2800 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2801 tty->driver->subtype == PTY_TYPE_MASTER) 2802 tty = tty->link; 2803 return tty; 2804 } 2805 2806 /* 2807 * Split this up, as gcc can choke on it otherwise.. 2808 */ 2809 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2810 { 2811 struct tty_struct *tty = file_tty(file); 2812 struct tty_struct *real_tty; 2813 void __user *p = (void __user *)arg; 2814 int retval; 2815 struct tty_ldisc *ld; 2816 2817 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2818 return -EINVAL; 2819 2820 real_tty = tty_pair_get_tty(tty); 2821 2822 /* 2823 * Factor out some common prep work 2824 */ 2825 switch (cmd) { 2826 case TIOCSETD: 2827 case TIOCSBRK: 2828 case TIOCCBRK: 2829 case TCSBRK: 2830 case TCSBRKP: 2831 retval = tty_check_change(tty); 2832 if (retval) 2833 return retval; 2834 if (cmd != TIOCCBRK) { 2835 tty_wait_until_sent(tty, 0); 2836 if (signal_pending(current)) 2837 return -EINTR; 2838 } 2839 break; 2840 } 2841 2842 /* 2843 * Now do the stuff. 2844 */ 2845 switch (cmd) { 2846 case TIOCSTI: 2847 return tiocsti(tty, p); 2848 case TIOCGWINSZ: 2849 return tiocgwinsz(real_tty, p); 2850 case TIOCSWINSZ: 2851 return tiocswinsz(real_tty, p); 2852 case TIOCCONS: 2853 return real_tty != tty ? -EINVAL : tioccons(file); 2854 case FIONBIO: 2855 return fionbio(file, p); 2856 case TIOCEXCL: 2857 set_bit(TTY_EXCLUSIVE, &tty->flags); 2858 return 0; 2859 case TIOCNXCL: 2860 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2861 return 0; 2862 case TIOCGEXCL: 2863 { 2864 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags); 2865 return put_user(excl, (int __user *)p); 2866 } 2867 case TIOCNOTTY: 2868 if (current->signal->tty != tty) 2869 return -ENOTTY; 2870 no_tty(); 2871 return 0; 2872 case TIOCSCTTY: 2873 return tiocsctty(tty, file, arg); 2874 case TIOCGPGRP: 2875 return tiocgpgrp(tty, real_tty, p); 2876 case TIOCSPGRP: 2877 return tiocspgrp(tty, real_tty, p); 2878 case TIOCGSID: 2879 return tiocgsid(tty, real_tty, p); 2880 case TIOCGETD: 2881 return put_user(tty->ldisc->ops->num, (int __user *)p); 2882 case TIOCSETD: 2883 return tiocsetd(tty, p); 2884 case TIOCVHANGUP: 2885 if (!capable(CAP_SYS_ADMIN)) 2886 return -EPERM; 2887 tty_vhangup(tty); 2888 return 0; 2889 case TIOCGDEV: 2890 { 2891 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2892 return put_user(ret, (unsigned int __user *)p); 2893 } 2894 /* 2895 * Break handling 2896 */ 2897 case TIOCSBRK: /* Turn break on, unconditionally */ 2898 if (tty->ops->break_ctl) 2899 return tty->ops->break_ctl(tty, -1); 2900 return 0; 2901 case TIOCCBRK: /* Turn break off, unconditionally */ 2902 if (tty->ops->break_ctl) 2903 return tty->ops->break_ctl(tty, 0); 2904 return 0; 2905 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2906 /* non-zero arg means wait for all output data 2907 * to be sent (performed above) but don't send break. 2908 * This is used by the tcdrain() termios function. 2909 */ 2910 if (!arg) 2911 return send_break(tty, 250); 2912 return 0; 2913 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2914 return send_break(tty, arg ? arg*100 : 250); 2915 2916 case TIOCMGET: 2917 return tty_tiocmget(tty, p); 2918 case TIOCMSET: 2919 case TIOCMBIC: 2920 case TIOCMBIS: 2921 return tty_tiocmset(tty, cmd, p); 2922 case TIOCGICOUNT: 2923 retval = tty_tiocgicount(tty, p); 2924 /* For the moment allow fall through to the old method */ 2925 if (retval != -EINVAL) 2926 return retval; 2927 break; 2928 case TCFLSH: 2929 switch (arg) { 2930 case TCIFLUSH: 2931 case TCIOFLUSH: 2932 /* flush tty buffer and allow ldisc to process ioctl */ 2933 tty_buffer_flush(tty, NULL); 2934 break; 2935 } 2936 break; 2937 case TIOCSSERIAL: 2938 tty_warn_deprecated_flags(p); 2939 break; 2940 } 2941 if (tty->ops->ioctl) { 2942 retval = tty->ops->ioctl(tty, cmd, arg); 2943 if (retval != -ENOIOCTLCMD) 2944 return retval; 2945 } 2946 ld = tty_ldisc_ref_wait(tty); 2947 retval = -EINVAL; 2948 if (ld->ops->ioctl) { 2949 retval = ld->ops->ioctl(tty, file, cmd, arg); 2950 if (retval == -ENOIOCTLCMD) 2951 retval = -ENOTTY; 2952 } 2953 tty_ldisc_deref(ld); 2954 return retval; 2955 } 2956 2957 #ifdef CONFIG_COMPAT 2958 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 2959 unsigned long arg) 2960 { 2961 struct tty_struct *tty = file_tty(file); 2962 struct tty_ldisc *ld; 2963 int retval = -ENOIOCTLCMD; 2964 2965 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2966 return -EINVAL; 2967 2968 if (tty->ops->compat_ioctl) { 2969 retval = tty->ops->compat_ioctl(tty, cmd, arg); 2970 if (retval != -ENOIOCTLCMD) 2971 return retval; 2972 } 2973 2974 ld = tty_ldisc_ref_wait(tty); 2975 if (ld->ops->compat_ioctl) 2976 retval = ld->ops->compat_ioctl(tty, file, cmd, arg); 2977 else 2978 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg); 2979 tty_ldisc_deref(ld); 2980 2981 return retval; 2982 } 2983 #endif 2984 2985 static int this_tty(const void *t, struct file *file, unsigned fd) 2986 { 2987 if (likely(file->f_op->read != tty_read)) 2988 return 0; 2989 return file_tty(file) != t ? 0 : fd + 1; 2990 } 2991 2992 /* 2993 * This implements the "Secure Attention Key" --- the idea is to 2994 * prevent trojan horses by killing all processes associated with this 2995 * tty when the user hits the "Secure Attention Key". Required for 2996 * super-paranoid applications --- see the Orange Book for more details. 2997 * 2998 * This code could be nicer; ideally it should send a HUP, wait a few 2999 * seconds, then send a INT, and then a KILL signal. But you then 3000 * have to coordinate with the init process, since all processes associated 3001 * with the current tty must be dead before the new getty is allowed 3002 * to spawn. 3003 * 3004 * Now, if it would be correct ;-/ The current code has a nasty hole - 3005 * it doesn't catch files in flight. We may send the descriptor to ourselves 3006 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 3007 * 3008 * Nasty bug: do_SAK is being called in interrupt context. This can 3009 * deadlock. We punt it up to process context. AKPM - 16Mar2001 3010 */ 3011 void __do_SAK(struct tty_struct *tty) 3012 { 3013 #ifdef TTY_SOFT_SAK 3014 tty_hangup(tty); 3015 #else 3016 struct task_struct *g, *p; 3017 struct pid *session; 3018 int i; 3019 3020 if (!tty) 3021 return; 3022 session = tty->session; 3023 3024 tty_ldisc_flush(tty); 3025 3026 tty_driver_flush_buffer(tty); 3027 3028 read_lock(&tasklist_lock); 3029 /* Kill the entire session */ 3030 do_each_pid_task(session, PIDTYPE_SID, p) { 3031 printk(KERN_NOTICE "SAK: killed process %d" 3032 " (%s): task_session(p)==tty->session\n", 3033 task_pid_nr(p), p->comm); 3034 send_sig(SIGKILL, p, 1); 3035 } while_each_pid_task(session, PIDTYPE_SID, p); 3036 /* Now kill any processes that happen to have the 3037 * tty open. 3038 */ 3039 do_each_thread(g, p) { 3040 if (p->signal->tty == tty) { 3041 printk(KERN_NOTICE "SAK: killed process %d" 3042 " (%s): task_session(p)==tty->session\n", 3043 task_pid_nr(p), p->comm); 3044 send_sig(SIGKILL, p, 1); 3045 continue; 3046 } 3047 task_lock(p); 3048 i = iterate_fd(p->files, 0, this_tty, tty); 3049 if (i != 0) { 3050 printk(KERN_NOTICE "SAK: killed process %d" 3051 " (%s): fd#%d opened to the tty\n", 3052 task_pid_nr(p), p->comm, i - 1); 3053 force_sig(SIGKILL, p); 3054 } 3055 task_unlock(p); 3056 } while_each_thread(g, p); 3057 read_unlock(&tasklist_lock); 3058 #endif 3059 } 3060 3061 static void do_SAK_work(struct work_struct *work) 3062 { 3063 struct tty_struct *tty = 3064 container_of(work, struct tty_struct, SAK_work); 3065 __do_SAK(tty); 3066 } 3067 3068 /* 3069 * The tq handling here is a little racy - tty->SAK_work may already be queued. 3070 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 3071 * the values which we write to it will be identical to the values which it 3072 * already has. --akpm 3073 */ 3074 void do_SAK(struct tty_struct *tty) 3075 { 3076 if (!tty) 3077 return; 3078 schedule_work(&tty->SAK_work); 3079 } 3080 3081 EXPORT_SYMBOL(do_SAK); 3082 3083 static int dev_match_devt(struct device *dev, const void *data) 3084 { 3085 const dev_t *devt = data; 3086 return dev->devt == *devt; 3087 } 3088 3089 /* Must put_device() after it's unused! */ 3090 static struct device *tty_get_device(struct tty_struct *tty) 3091 { 3092 dev_t devt = tty_devnum(tty); 3093 return class_find_device(tty_class, NULL, &devt, dev_match_devt); 3094 } 3095 3096 3097 /** 3098 * alloc_tty_struct 3099 * 3100 * This subroutine allocates and initializes a tty structure. 3101 * 3102 * Locking: none - tty in question is not exposed at this point 3103 */ 3104 3105 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx) 3106 { 3107 struct tty_struct *tty; 3108 3109 tty = kzalloc(sizeof(*tty), GFP_KERNEL); 3110 if (!tty) 3111 return NULL; 3112 3113 kref_init(&tty->kref); 3114 tty->magic = TTY_MAGIC; 3115 tty_ldisc_init(tty); 3116 tty->session = NULL; 3117 tty->pgrp = NULL; 3118 mutex_init(&tty->legacy_mutex); 3119 mutex_init(&tty->throttle_mutex); 3120 init_rwsem(&tty->termios_rwsem); 3121 mutex_init(&tty->winsize_mutex); 3122 init_ldsem(&tty->ldisc_sem); 3123 init_waitqueue_head(&tty->write_wait); 3124 init_waitqueue_head(&tty->read_wait); 3125 INIT_WORK(&tty->hangup_work, do_tty_hangup); 3126 mutex_init(&tty->atomic_write_lock); 3127 spin_lock_init(&tty->ctrl_lock); 3128 spin_lock_init(&tty->flow_lock); 3129 INIT_LIST_HEAD(&tty->tty_files); 3130 INIT_WORK(&tty->SAK_work, do_SAK_work); 3131 3132 tty->driver = driver; 3133 tty->ops = driver->ops; 3134 tty->index = idx; 3135 tty_line_name(driver, idx, tty->name); 3136 tty->dev = tty_get_device(tty); 3137 3138 return tty; 3139 } 3140 3141 /** 3142 * deinitialize_tty_struct 3143 * @tty: tty to deinitialize 3144 * 3145 * This subroutine deinitializes a tty structure that has been newly 3146 * allocated but tty_release cannot be called on that yet. 3147 * 3148 * Locking: none - tty in question must not be exposed at this point 3149 */ 3150 void deinitialize_tty_struct(struct tty_struct *tty) 3151 { 3152 tty_ldisc_deinit(tty); 3153 } 3154 3155 /** 3156 * tty_put_char - write one character to a tty 3157 * @tty: tty 3158 * @ch: character 3159 * 3160 * Write one byte to the tty using the provided put_char method 3161 * if present. Returns the number of characters successfully output. 3162 * 3163 * Note: the specific put_char operation in the driver layer may go 3164 * away soon. Don't call it directly, use this method 3165 */ 3166 3167 int tty_put_char(struct tty_struct *tty, unsigned char ch) 3168 { 3169 if (tty->ops->put_char) 3170 return tty->ops->put_char(tty, ch); 3171 return tty->ops->write(tty, &ch, 1); 3172 } 3173 EXPORT_SYMBOL_GPL(tty_put_char); 3174 3175 struct class *tty_class; 3176 3177 static int tty_cdev_add(struct tty_driver *driver, dev_t dev, 3178 unsigned int index, unsigned int count) 3179 { 3180 int err; 3181 3182 /* init here, since reused cdevs cause crashes */ 3183 driver->cdevs[index] = cdev_alloc(); 3184 if (!driver->cdevs[index]) 3185 return -ENOMEM; 3186 driver->cdevs[index]->ops = &tty_fops; 3187 driver->cdevs[index]->owner = driver->owner; 3188 err = cdev_add(driver->cdevs[index], dev, count); 3189 if (err) 3190 kobject_put(&driver->cdevs[index]->kobj); 3191 return err; 3192 } 3193 3194 /** 3195 * tty_register_device - register a tty device 3196 * @driver: the tty driver that describes the tty device 3197 * @index: the index in the tty driver for this tty device 3198 * @device: a struct device that is associated with this tty device. 3199 * This field is optional, if there is no known struct device 3200 * for this tty device it can be set to NULL safely. 3201 * 3202 * Returns a pointer to the struct device for this tty device 3203 * (or ERR_PTR(-EFOO) on error). 3204 * 3205 * This call is required to be made to register an individual tty device 3206 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3207 * that bit is not set, this function should not be called by a tty 3208 * driver. 3209 * 3210 * Locking: ?? 3211 */ 3212 3213 struct device *tty_register_device(struct tty_driver *driver, unsigned index, 3214 struct device *device) 3215 { 3216 return tty_register_device_attr(driver, index, device, NULL, NULL); 3217 } 3218 EXPORT_SYMBOL(tty_register_device); 3219 3220 static void tty_device_create_release(struct device *dev) 3221 { 3222 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3223 kfree(dev); 3224 } 3225 3226 /** 3227 * tty_register_device_attr - register a tty device 3228 * @driver: the tty driver that describes the tty device 3229 * @index: the index in the tty driver for this tty device 3230 * @device: a struct device that is associated with this tty device. 3231 * This field is optional, if there is no known struct device 3232 * for this tty device it can be set to NULL safely. 3233 * @drvdata: Driver data to be set to device. 3234 * @attr_grp: Attribute group to be set on device. 3235 * 3236 * Returns a pointer to the struct device for this tty device 3237 * (or ERR_PTR(-EFOO) on error). 3238 * 3239 * This call is required to be made to register an individual tty device 3240 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3241 * that bit is not set, this function should not be called by a tty 3242 * driver. 3243 * 3244 * Locking: ?? 3245 */ 3246 struct device *tty_register_device_attr(struct tty_driver *driver, 3247 unsigned index, struct device *device, 3248 void *drvdata, 3249 const struct attribute_group **attr_grp) 3250 { 3251 char name[64]; 3252 dev_t devt = MKDEV(driver->major, driver->minor_start) + index; 3253 struct device *dev = NULL; 3254 int retval = -ENODEV; 3255 bool cdev = false; 3256 3257 if (index >= driver->num) { 3258 printk(KERN_ERR "Attempt to register invalid tty line number " 3259 " (%d).\n", index); 3260 return ERR_PTR(-EINVAL); 3261 } 3262 3263 if (driver->type == TTY_DRIVER_TYPE_PTY) 3264 pty_line_name(driver, index, name); 3265 else 3266 tty_line_name(driver, index, name); 3267 3268 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3269 retval = tty_cdev_add(driver, devt, index, 1); 3270 if (retval) 3271 goto error; 3272 cdev = true; 3273 } 3274 3275 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3276 if (!dev) { 3277 retval = -ENOMEM; 3278 goto error; 3279 } 3280 3281 dev->devt = devt; 3282 dev->class = tty_class; 3283 dev->parent = device; 3284 dev->release = tty_device_create_release; 3285 dev_set_name(dev, "%s", name); 3286 dev->groups = attr_grp; 3287 dev_set_drvdata(dev, drvdata); 3288 3289 retval = device_register(dev); 3290 if (retval) 3291 goto error; 3292 3293 return dev; 3294 3295 error: 3296 put_device(dev); 3297 if (cdev) { 3298 cdev_del(driver->cdevs[index]); 3299 driver->cdevs[index] = NULL; 3300 } 3301 return ERR_PTR(retval); 3302 } 3303 EXPORT_SYMBOL_GPL(tty_register_device_attr); 3304 3305 /** 3306 * tty_unregister_device - unregister a tty device 3307 * @driver: the tty driver that describes the tty device 3308 * @index: the index in the tty driver for this tty device 3309 * 3310 * If a tty device is registered with a call to tty_register_device() then 3311 * this function must be called when the tty device is gone. 3312 * 3313 * Locking: ?? 3314 */ 3315 3316 void tty_unregister_device(struct tty_driver *driver, unsigned index) 3317 { 3318 device_destroy(tty_class, 3319 MKDEV(driver->major, driver->minor_start) + index); 3320 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3321 cdev_del(driver->cdevs[index]); 3322 driver->cdevs[index] = NULL; 3323 } 3324 } 3325 EXPORT_SYMBOL(tty_unregister_device); 3326 3327 /** 3328 * __tty_alloc_driver -- allocate tty driver 3329 * @lines: count of lines this driver can handle at most 3330 * @owner: module which is repsonsible for this driver 3331 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags 3332 * 3333 * This should not be called directly, some of the provided macros should be 3334 * used instead. Use IS_ERR and friends on @retval. 3335 */ 3336 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner, 3337 unsigned long flags) 3338 { 3339 struct tty_driver *driver; 3340 unsigned int cdevs = 1; 3341 int err; 3342 3343 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1)) 3344 return ERR_PTR(-EINVAL); 3345 3346 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL); 3347 if (!driver) 3348 return ERR_PTR(-ENOMEM); 3349 3350 kref_init(&driver->kref); 3351 driver->magic = TTY_DRIVER_MAGIC; 3352 driver->num = lines; 3353 driver->owner = owner; 3354 driver->flags = flags; 3355 3356 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) { 3357 driver->ttys = kcalloc(lines, sizeof(*driver->ttys), 3358 GFP_KERNEL); 3359 driver->termios = kcalloc(lines, sizeof(*driver->termios), 3360 GFP_KERNEL); 3361 if (!driver->ttys || !driver->termios) { 3362 err = -ENOMEM; 3363 goto err_free_all; 3364 } 3365 } 3366 3367 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3368 driver->ports = kcalloc(lines, sizeof(*driver->ports), 3369 GFP_KERNEL); 3370 if (!driver->ports) { 3371 err = -ENOMEM; 3372 goto err_free_all; 3373 } 3374 cdevs = lines; 3375 } 3376 3377 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL); 3378 if (!driver->cdevs) { 3379 err = -ENOMEM; 3380 goto err_free_all; 3381 } 3382 3383 return driver; 3384 err_free_all: 3385 kfree(driver->ports); 3386 kfree(driver->ttys); 3387 kfree(driver->termios); 3388 kfree(driver->cdevs); 3389 kfree(driver); 3390 return ERR_PTR(err); 3391 } 3392 EXPORT_SYMBOL(__tty_alloc_driver); 3393 3394 static void destruct_tty_driver(struct kref *kref) 3395 { 3396 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3397 int i; 3398 struct ktermios *tp; 3399 3400 if (driver->flags & TTY_DRIVER_INSTALLED) { 3401 /* 3402 * Free the termios and termios_locked structures because 3403 * we don't want to get memory leaks when modular tty 3404 * drivers are removed from the kernel. 3405 */ 3406 for (i = 0; i < driver->num; i++) { 3407 tp = driver->termios[i]; 3408 if (tp) { 3409 driver->termios[i] = NULL; 3410 kfree(tp); 3411 } 3412 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3413 tty_unregister_device(driver, i); 3414 } 3415 proc_tty_unregister_driver(driver); 3416 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) 3417 cdev_del(driver->cdevs[0]); 3418 } 3419 kfree(driver->cdevs); 3420 kfree(driver->ports); 3421 kfree(driver->termios); 3422 kfree(driver->ttys); 3423 kfree(driver); 3424 } 3425 3426 void tty_driver_kref_put(struct tty_driver *driver) 3427 { 3428 kref_put(&driver->kref, destruct_tty_driver); 3429 } 3430 EXPORT_SYMBOL(tty_driver_kref_put); 3431 3432 void tty_set_operations(struct tty_driver *driver, 3433 const struct tty_operations *op) 3434 { 3435 driver->ops = op; 3436 }; 3437 EXPORT_SYMBOL(tty_set_operations); 3438 3439 void put_tty_driver(struct tty_driver *d) 3440 { 3441 tty_driver_kref_put(d); 3442 } 3443 EXPORT_SYMBOL(put_tty_driver); 3444 3445 /* 3446 * Called by a tty driver to register itself. 3447 */ 3448 int tty_register_driver(struct tty_driver *driver) 3449 { 3450 int error; 3451 int i; 3452 dev_t dev; 3453 struct device *d; 3454 3455 if (!driver->major) { 3456 error = alloc_chrdev_region(&dev, driver->minor_start, 3457 driver->num, driver->name); 3458 if (!error) { 3459 driver->major = MAJOR(dev); 3460 driver->minor_start = MINOR(dev); 3461 } 3462 } else { 3463 dev = MKDEV(driver->major, driver->minor_start); 3464 error = register_chrdev_region(dev, driver->num, driver->name); 3465 } 3466 if (error < 0) 3467 goto err; 3468 3469 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) { 3470 error = tty_cdev_add(driver, dev, 0, driver->num); 3471 if (error) 3472 goto err_unreg_char; 3473 } 3474 3475 mutex_lock(&tty_mutex); 3476 list_add(&driver->tty_drivers, &tty_drivers); 3477 mutex_unlock(&tty_mutex); 3478 3479 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3480 for (i = 0; i < driver->num; i++) { 3481 d = tty_register_device(driver, i, NULL); 3482 if (IS_ERR(d)) { 3483 error = PTR_ERR(d); 3484 goto err_unreg_devs; 3485 } 3486 } 3487 } 3488 proc_tty_register_driver(driver); 3489 driver->flags |= TTY_DRIVER_INSTALLED; 3490 return 0; 3491 3492 err_unreg_devs: 3493 for (i--; i >= 0; i--) 3494 tty_unregister_device(driver, i); 3495 3496 mutex_lock(&tty_mutex); 3497 list_del(&driver->tty_drivers); 3498 mutex_unlock(&tty_mutex); 3499 3500 err_unreg_char: 3501 unregister_chrdev_region(dev, driver->num); 3502 err: 3503 return error; 3504 } 3505 EXPORT_SYMBOL(tty_register_driver); 3506 3507 /* 3508 * Called by a tty driver to unregister itself. 3509 */ 3510 int tty_unregister_driver(struct tty_driver *driver) 3511 { 3512 #if 0 3513 /* FIXME */ 3514 if (driver->refcount) 3515 return -EBUSY; 3516 #endif 3517 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3518 driver->num); 3519 mutex_lock(&tty_mutex); 3520 list_del(&driver->tty_drivers); 3521 mutex_unlock(&tty_mutex); 3522 return 0; 3523 } 3524 3525 EXPORT_SYMBOL(tty_unregister_driver); 3526 3527 dev_t tty_devnum(struct tty_struct *tty) 3528 { 3529 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3530 } 3531 EXPORT_SYMBOL(tty_devnum); 3532 3533 void tty_default_fops(struct file_operations *fops) 3534 { 3535 *fops = tty_fops; 3536 } 3537 3538 /* 3539 * Initialize the console device. This is called *early*, so 3540 * we can't necessarily depend on lots of kernel help here. 3541 * Just do some early initializations, and do the complex setup 3542 * later. 3543 */ 3544 void __init console_init(void) 3545 { 3546 initcall_t *call; 3547 3548 /* Setup the default TTY line discipline. */ 3549 tty_ldisc_begin(); 3550 3551 /* 3552 * set up the console device so that later boot sequences can 3553 * inform about problems etc.. 3554 */ 3555 call = __con_initcall_start; 3556 while (call < __con_initcall_end) { 3557 (*call)(); 3558 call++; 3559 } 3560 } 3561 3562 static char *tty_devnode(struct device *dev, umode_t *mode) 3563 { 3564 if (!mode) 3565 return NULL; 3566 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3567 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3568 *mode = 0666; 3569 return NULL; 3570 } 3571 3572 static int __init tty_class_init(void) 3573 { 3574 tty_class = class_create(THIS_MODULE, "tty"); 3575 if (IS_ERR(tty_class)) 3576 return PTR_ERR(tty_class); 3577 tty_class->devnode = tty_devnode; 3578 return 0; 3579 } 3580 3581 postcore_initcall(tty_class_init); 3582 3583 /* 3/2004 jmc: why do these devices exist? */ 3584 static struct cdev tty_cdev, console_cdev; 3585 3586 static ssize_t show_cons_active(struct device *dev, 3587 struct device_attribute *attr, char *buf) 3588 { 3589 struct console *cs[16]; 3590 int i = 0; 3591 struct console *c; 3592 ssize_t count = 0; 3593 3594 console_lock(); 3595 for_each_console(c) { 3596 if (!c->device) 3597 continue; 3598 if (!c->write) 3599 continue; 3600 if ((c->flags & CON_ENABLED) == 0) 3601 continue; 3602 cs[i++] = c; 3603 if (i >= ARRAY_SIZE(cs)) 3604 break; 3605 } 3606 while (i--) { 3607 int index = cs[i]->index; 3608 struct tty_driver *drv = cs[i]->device(cs[i], &index); 3609 3610 /* don't resolve tty0 as some programs depend on it */ 3611 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR)) 3612 count += tty_line_name(drv, index, buf + count); 3613 else 3614 count += sprintf(buf + count, "%s%d", 3615 cs[i]->name, cs[i]->index); 3616 3617 count += sprintf(buf + count, "%c", i ? ' ':'\n'); 3618 } 3619 console_unlock(); 3620 3621 return count; 3622 } 3623 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3624 3625 static struct attribute *cons_dev_attrs[] = { 3626 &dev_attr_active.attr, 3627 NULL 3628 }; 3629 3630 ATTRIBUTE_GROUPS(cons_dev); 3631 3632 static struct device *consdev; 3633 3634 void console_sysfs_notify(void) 3635 { 3636 if (consdev) 3637 sysfs_notify(&consdev->kobj, NULL, "active"); 3638 } 3639 3640 /* 3641 * Ok, now we can initialize the rest of the tty devices and can count 3642 * on memory allocations, interrupts etc.. 3643 */ 3644 int __init tty_init(void) 3645 { 3646 cdev_init(&tty_cdev, &tty_fops); 3647 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3648 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3649 panic("Couldn't register /dev/tty driver\n"); 3650 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3651 3652 cdev_init(&console_cdev, &console_fops); 3653 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3654 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3655 panic("Couldn't register /dev/console driver\n"); 3656 consdev = device_create_with_groups(tty_class, NULL, 3657 MKDEV(TTYAUX_MAJOR, 1), NULL, 3658 cons_dev_groups, "console"); 3659 if (IS_ERR(consdev)) 3660 consdev = NULL; 3661 3662 #ifdef CONFIG_VT 3663 vty_init(&console_fops); 3664 #endif 3665 return 0; 3666 } 3667 3668