xref: /openbmc/linux/drivers/tty/tty_io.c (revision 5df29bca)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 #ifdef TTY_DEBUG_HANGUP
110 # define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
111 #else
112 # define tty_debug_hangup(tty, f, args...)	do { } while (0)
113 #endif
114 
115 #define TTY_PARANOIA_CHECK 1
116 #define CHECK_TTY_COUNT 1
117 
118 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
119 	.c_iflag = ICRNL | IXON,
120 	.c_oflag = OPOST | ONLCR,
121 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
122 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
123 		   ECHOCTL | ECHOKE | IEXTEN,
124 	.c_cc = INIT_C_CC,
125 	.c_ispeed = 38400,
126 	.c_ospeed = 38400
127 };
128 
129 EXPORT_SYMBOL(tty_std_termios);
130 
131 /* This list gets poked at by procfs and various bits of boot up code. This
132    could do with some rationalisation such as pulling the tty proc function
133    into this file */
134 
135 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
136 
137 /* Mutex to protect creating and releasing a tty. This is shared with
138    vt.c for deeply disgusting hack reasons */
139 DEFINE_MUTEX(tty_mutex);
140 EXPORT_SYMBOL(tty_mutex);
141 
142 /* Spinlock to protect the tty->tty_files list */
143 DEFINE_SPINLOCK(tty_files_lock);
144 
145 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
146 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
147 ssize_t redirected_tty_write(struct file *, const char __user *,
148 							size_t, loff_t *);
149 static unsigned int tty_poll(struct file *, poll_table *);
150 static int tty_open(struct inode *, struct file *);
151 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
152 #ifdef CONFIG_COMPAT
153 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
154 				unsigned long arg);
155 #else
156 #define tty_compat_ioctl NULL
157 #endif
158 static int __tty_fasync(int fd, struct file *filp, int on);
159 static int tty_fasync(int fd, struct file *filp, int on);
160 static void release_tty(struct tty_struct *tty, int idx);
161 
162 /**
163  *	free_tty_struct		-	free a disused tty
164  *	@tty: tty struct to free
165  *
166  *	Free the write buffers, tty queue and tty memory itself.
167  *
168  *	Locking: none. Must be called after tty is definitely unused
169  */
170 
171 void free_tty_struct(struct tty_struct *tty)
172 {
173 	if (!tty)
174 		return;
175 	put_device(tty->dev);
176 	kfree(tty->write_buf);
177 	tty->magic = 0xDEADDEAD;
178 	kfree(tty);
179 }
180 
181 static inline struct tty_struct *file_tty(struct file *file)
182 {
183 	return ((struct tty_file_private *)file->private_data)->tty;
184 }
185 
186 int tty_alloc_file(struct file *file)
187 {
188 	struct tty_file_private *priv;
189 
190 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
191 	if (!priv)
192 		return -ENOMEM;
193 
194 	file->private_data = priv;
195 
196 	return 0;
197 }
198 
199 /* Associate a new file with the tty structure */
200 void tty_add_file(struct tty_struct *tty, struct file *file)
201 {
202 	struct tty_file_private *priv = file->private_data;
203 
204 	priv->tty = tty;
205 	priv->file = file;
206 
207 	spin_lock(&tty_files_lock);
208 	list_add(&priv->list, &tty->tty_files);
209 	spin_unlock(&tty_files_lock);
210 }
211 
212 /**
213  * tty_free_file - free file->private_data
214  *
215  * This shall be used only for fail path handling when tty_add_file was not
216  * called yet.
217  */
218 void tty_free_file(struct file *file)
219 {
220 	struct tty_file_private *priv = file->private_data;
221 
222 	file->private_data = NULL;
223 	kfree(priv);
224 }
225 
226 /* Delete file from its tty */
227 static void tty_del_file(struct file *file)
228 {
229 	struct tty_file_private *priv = file->private_data;
230 
231 	spin_lock(&tty_files_lock);
232 	list_del(&priv->list);
233 	spin_unlock(&tty_files_lock);
234 	tty_free_file(file);
235 }
236 
237 
238 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
239 
240 /**
241  *	tty_name	-	return tty naming
242  *	@tty: tty structure
243  *
244  *	Convert a tty structure into a name. The name reflects the kernel
245  *	naming policy and if udev is in use may not reflect user space
246  *
247  *	Locking: none
248  */
249 
250 const char *tty_name(const struct tty_struct *tty)
251 {
252 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
253 		return "NULL tty";
254 	return tty->name;
255 }
256 
257 EXPORT_SYMBOL(tty_name);
258 
259 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
260 			      const char *routine)
261 {
262 #ifdef TTY_PARANOIA_CHECK
263 	if (!tty) {
264 		printk(KERN_WARNING
265 			"null TTY for (%d:%d) in %s\n",
266 			imajor(inode), iminor(inode), routine);
267 		return 1;
268 	}
269 	if (tty->magic != TTY_MAGIC) {
270 		printk(KERN_WARNING
271 			"bad magic number for tty struct (%d:%d) in %s\n",
272 			imajor(inode), iminor(inode), routine);
273 		return 1;
274 	}
275 #endif
276 	return 0;
277 }
278 
279 /* Caller must hold tty_lock */
280 static int check_tty_count(struct tty_struct *tty, const char *routine)
281 {
282 #ifdef CHECK_TTY_COUNT
283 	struct list_head *p;
284 	int count = 0;
285 
286 	spin_lock(&tty_files_lock);
287 	list_for_each(p, &tty->tty_files) {
288 		count++;
289 	}
290 	spin_unlock(&tty_files_lock);
291 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
293 	    tty->link && tty->link->count)
294 		count++;
295 	if (tty->count != count) {
296 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
297 				    "!= #fd's(%d) in %s\n",
298 		       tty->name, tty->count, count, routine);
299 		return count;
300 	}
301 #endif
302 	return 0;
303 }
304 
305 /**
306  *	get_tty_driver		-	find device of a tty
307  *	@dev_t: device identifier
308  *	@index: returns the index of the tty
309  *
310  *	This routine returns a tty driver structure, given a device number
311  *	and also passes back the index number.
312  *
313  *	Locking: caller must hold tty_mutex
314  */
315 
316 static struct tty_driver *get_tty_driver(dev_t device, int *index)
317 {
318 	struct tty_driver *p;
319 
320 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
321 		dev_t base = MKDEV(p->major, p->minor_start);
322 		if (device < base || device >= base + p->num)
323 			continue;
324 		*index = device - base;
325 		return tty_driver_kref_get(p);
326 	}
327 	return NULL;
328 }
329 
330 #ifdef CONFIG_CONSOLE_POLL
331 
332 /**
333  *	tty_find_polling_driver	-	find device of a polled tty
334  *	@name: name string to match
335  *	@line: pointer to resulting tty line nr
336  *
337  *	This routine returns a tty driver structure, given a name
338  *	and the condition that the tty driver is capable of polled
339  *	operation.
340  */
341 struct tty_driver *tty_find_polling_driver(char *name, int *line)
342 {
343 	struct tty_driver *p, *res = NULL;
344 	int tty_line = 0;
345 	int len;
346 	char *str, *stp;
347 
348 	for (str = name; *str; str++)
349 		if ((*str >= '0' && *str <= '9') || *str == ',')
350 			break;
351 	if (!*str)
352 		return NULL;
353 
354 	len = str - name;
355 	tty_line = simple_strtoul(str, &str, 10);
356 
357 	mutex_lock(&tty_mutex);
358 	/* Search through the tty devices to look for a match */
359 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
360 		if (strncmp(name, p->name, len) != 0)
361 			continue;
362 		stp = str;
363 		if (*stp == ',')
364 			stp++;
365 		if (*stp == '\0')
366 			stp = NULL;
367 
368 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
369 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
370 			res = tty_driver_kref_get(p);
371 			*line = tty_line;
372 			break;
373 		}
374 	}
375 	mutex_unlock(&tty_mutex);
376 
377 	return res;
378 }
379 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
380 #endif
381 
382 /**
383  *	tty_check_change	-	check for POSIX terminal changes
384  *	@tty: tty to check
385  *
386  *	If we try to write to, or set the state of, a terminal and we're
387  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
388  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
389  *
390  *	Locking: ctrl_lock
391  */
392 
393 int __tty_check_change(struct tty_struct *tty, int sig)
394 {
395 	unsigned long flags;
396 	struct pid *pgrp, *tty_pgrp;
397 	int ret = 0;
398 
399 	if (current->signal->tty != tty)
400 		return 0;
401 
402 	rcu_read_lock();
403 	pgrp = task_pgrp(current);
404 
405 	spin_lock_irqsave(&tty->ctrl_lock, flags);
406 	tty_pgrp = tty->pgrp;
407 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
408 
409 	if (tty_pgrp && pgrp != tty->pgrp) {
410 		if (is_ignored(sig)) {
411 			if (sig == SIGTTIN)
412 				ret = -EIO;
413 		} else if (is_current_pgrp_orphaned())
414 			ret = -EIO;
415 		else {
416 			kill_pgrp(pgrp, sig, 1);
417 			set_thread_flag(TIF_SIGPENDING);
418 			ret = -ERESTARTSYS;
419 		}
420 	}
421 	rcu_read_unlock();
422 
423 	if (!tty_pgrp) {
424 		pr_warn("%s: tty_check_change: sig=%d, tty->pgrp == NULL!\n",
425 			tty_name(tty), sig);
426 	}
427 
428 	return ret;
429 }
430 
431 int tty_check_change(struct tty_struct *tty)
432 {
433 	return __tty_check_change(tty, SIGTTOU);
434 }
435 EXPORT_SYMBOL(tty_check_change);
436 
437 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
438 				size_t count, loff_t *ppos)
439 {
440 	return 0;
441 }
442 
443 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
444 				 size_t count, loff_t *ppos)
445 {
446 	return -EIO;
447 }
448 
449 /* No kernel lock held - none needed ;) */
450 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
451 {
452 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
453 }
454 
455 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
456 		unsigned long arg)
457 {
458 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
459 }
460 
461 static long hung_up_tty_compat_ioctl(struct file *file,
462 				     unsigned int cmd, unsigned long arg)
463 {
464 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
465 }
466 
467 static const struct file_operations tty_fops = {
468 	.llseek		= no_llseek,
469 	.read		= tty_read,
470 	.write		= tty_write,
471 	.poll		= tty_poll,
472 	.unlocked_ioctl	= tty_ioctl,
473 	.compat_ioctl	= tty_compat_ioctl,
474 	.open		= tty_open,
475 	.release	= tty_release,
476 	.fasync		= tty_fasync,
477 };
478 
479 static const struct file_operations console_fops = {
480 	.llseek		= no_llseek,
481 	.read		= tty_read,
482 	.write		= redirected_tty_write,
483 	.poll		= tty_poll,
484 	.unlocked_ioctl	= tty_ioctl,
485 	.compat_ioctl	= tty_compat_ioctl,
486 	.open		= tty_open,
487 	.release	= tty_release,
488 	.fasync		= tty_fasync,
489 };
490 
491 static const struct file_operations hung_up_tty_fops = {
492 	.llseek		= no_llseek,
493 	.read		= hung_up_tty_read,
494 	.write		= hung_up_tty_write,
495 	.poll		= hung_up_tty_poll,
496 	.unlocked_ioctl	= hung_up_tty_ioctl,
497 	.compat_ioctl	= hung_up_tty_compat_ioctl,
498 	.release	= tty_release,
499 };
500 
501 static DEFINE_SPINLOCK(redirect_lock);
502 static struct file *redirect;
503 
504 
505 void proc_clear_tty(struct task_struct *p)
506 {
507 	unsigned long flags;
508 	struct tty_struct *tty;
509 	spin_lock_irqsave(&p->sighand->siglock, flags);
510 	tty = p->signal->tty;
511 	p->signal->tty = NULL;
512 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
513 	tty_kref_put(tty);
514 }
515 
516 /**
517  * proc_set_tty -  set the controlling terminal
518  *
519  * Only callable by the session leader and only if it does not already have
520  * a controlling terminal.
521  *
522  * Caller must hold:  tty_lock()
523  *		      a readlock on tasklist_lock
524  *		      sighand lock
525  */
526 static void __proc_set_tty(struct tty_struct *tty)
527 {
528 	unsigned long flags;
529 
530 	spin_lock_irqsave(&tty->ctrl_lock, flags);
531 	/*
532 	 * The session and fg pgrp references will be non-NULL if
533 	 * tiocsctty() is stealing the controlling tty
534 	 */
535 	put_pid(tty->session);
536 	put_pid(tty->pgrp);
537 	tty->pgrp = get_pid(task_pgrp(current));
538 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
539 	tty->session = get_pid(task_session(current));
540 	if (current->signal->tty) {
541 		tty_debug(tty, "current tty %s not NULL!!\n",
542 			  current->signal->tty->name);
543 		tty_kref_put(current->signal->tty);
544 	}
545 	put_pid(current->signal->tty_old_pgrp);
546 	current->signal->tty = tty_kref_get(tty);
547 	current->signal->tty_old_pgrp = NULL;
548 }
549 
550 static void proc_set_tty(struct tty_struct *tty)
551 {
552 	spin_lock_irq(&current->sighand->siglock);
553 	__proc_set_tty(tty);
554 	spin_unlock_irq(&current->sighand->siglock);
555 }
556 
557 struct tty_struct *get_current_tty(void)
558 {
559 	struct tty_struct *tty;
560 	unsigned long flags;
561 
562 	spin_lock_irqsave(&current->sighand->siglock, flags);
563 	tty = tty_kref_get(current->signal->tty);
564 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
565 	return tty;
566 }
567 EXPORT_SYMBOL_GPL(get_current_tty);
568 
569 static void session_clear_tty(struct pid *session)
570 {
571 	struct task_struct *p;
572 	do_each_pid_task(session, PIDTYPE_SID, p) {
573 		proc_clear_tty(p);
574 	} while_each_pid_task(session, PIDTYPE_SID, p);
575 }
576 
577 /**
578  *	tty_wakeup	-	request more data
579  *	@tty: terminal
580  *
581  *	Internal and external helper for wakeups of tty. This function
582  *	informs the line discipline if present that the driver is ready
583  *	to receive more output data.
584  */
585 
586 void tty_wakeup(struct tty_struct *tty)
587 {
588 	struct tty_ldisc *ld;
589 
590 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
591 		ld = tty_ldisc_ref(tty);
592 		if (ld) {
593 			if (ld->ops->write_wakeup)
594 				ld->ops->write_wakeup(tty);
595 			tty_ldisc_deref(ld);
596 		}
597 	}
598 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
599 }
600 
601 EXPORT_SYMBOL_GPL(tty_wakeup);
602 
603 /**
604  *	tty_signal_session_leader	- sends SIGHUP to session leader
605  *	@tty		controlling tty
606  *	@exit_session	if non-zero, signal all foreground group processes
607  *
608  *	Send SIGHUP and SIGCONT to the session leader and its process group.
609  *	Optionally, signal all processes in the foreground process group.
610  *
611  *	Returns the number of processes in the session with this tty
612  *	as their controlling terminal. This value is used to drop
613  *	tty references for those processes.
614  */
615 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
616 {
617 	struct task_struct *p;
618 	int refs = 0;
619 	struct pid *tty_pgrp = NULL;
620 
621 	read_lock(&tasklist_lock);
622 	if (tty->session) {
623 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
624 			spin_lock_irq(&p->sighand->siglock);
625 			if (p->signal->tty == tty) {
626 				p->signal->tty = NULL;
627 				/* We defer the dereferences outside fo
628 				   the tasklist lock */
629 				refs++;
630 			}
631 			if (!p->signal->leader) {
632 				spin_unlock_irq(&p->sighand->siglock);
633 				continue;
634 			}
635 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
636 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
637 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
638 			spin_lock(&tty->ctrl_lock);
639 			tty_pgrp = get_pid(tty->pgrp);
640 			if (tty->pgrp)
641 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
642 			spin_unlock(&tty->ctrl_lock);
643 			spin_unlock_irq(&p->sighand->siglock);
644 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
645 	}
646 	read_unlock(&tasklist_lock);
647 
648 	if (tty_pgrp) {
649 		if (exit_session)
650 			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
651 		put_pid(tty_pgrp);
652 	}
653 
654 	return refs;
655 }
656 
657 /**
658  *	__tty_hangup		-	actual handler for hangup events
659  *	@work: tty device
660  *
661  *	This can be called by a "kworker" kernel thread.  That is process
662  *	synchronous but doesn't hold any locks, so we need to make sure we
663  *	have the appropriate locks for what we're doing.
664  *
665  *	The hangup event clears any pending redirections onto the hung up
666  *	device. It ensures future writes will error and it does the needed
667  *	line discipline hangup and signal delivery. The tty object itself
668  *	remains intact.
669  *
670  *	Locking:
671  *		BTM
672  *		  redirect lock for undoing redirection
673  *		  file list lock for manipulating list of ttys
674  *		  tty_ldiscs_lock from called functions
675  *		  termios_rwsem resetting termios data
676  *		  tasklist_lock to walk task list for hangup event
677  *		    ->siglock to protect ->signal/->sighand
678  */
679 static void __tty_hangup(struct tty_struct *tty, int exit_session)
680 {
681 	struct file *cons_filp = NULL;
682 	struct file *filp, *f = NULL;
683 	struct tty_file_private *priv;
684 	int    closecount = 0, n;
685 	int refs;
686 
687 	if (!tty)
688 		return;
689 
690 
691 	spin_lock(&redirect_lock);
692 	if (redirect && file_tty(redirect) == tty) {
693 		f = redirect;
694 		redirect = NULL;
695 	}
696 	spin_unlock(&redirect_lock);
697 
698 	tty_lock(tty);
699 
700 	if (test_bit(TTY_HUPPED, &tty->flags)) {
701 		tty_unlock(tty);
702 		return;
703 	}
704 
705 	/* inuse_filps is protected by the single tty lock,
706 	   this really needs to change if we want to flush the
707 	   workqueue with the lock held */
708 	check_tty_count(tty, "tty_hangup");
709 
710 	spin_lock(&tty_files_lock);
711 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
712 	list_for_each_entry(priv, &tty->tty_files, list) {
713 		filp = priv->file;
714 		if (filp->f_op->write == redirected_tty_write)
715 			cons_filp = filp;
716 		if (filp->f_op->write != tty_write)
717 			continue;
718 		closecount++;
719 		__tty_fasync(-1, filp, 0);	/* can't block */
720 		filp->f_op = &hung_up_tty_fops;
721 	}
722 	spin_unlock(&tty_files_lock);
723 
724 	refs = tty_signal_session_leader(tty, exit_session);
725 	/* Account for the p->signal references we killed */
726 	while (refs--)
727 		tty_kref_put(tty);
728 
729 	tty_ldisc_hangup(tty);
730 
731 	spin_lock_irq(&tty->ctrl_lock);
732 	clear_bit(TTY_THROTTLED, &tty->flags);
733 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
734 	put_pid(tty->session);
735 	put_pid(tty->pgrp);
736 	tty->session = NULL;
737 	tty->pgrp = NULL;
738 	tty->ctrl_status = 0;
739 	spin_unlock_irq(&tty->ctrl_lock);
740 
741 	/*
742 	 * If one of the devices matches a console pointer, we
743 	 * cannot just call hangup() because that will cause
744 	 * tty->count and state->count to go out of sync.
745 	 * So we just call close() the right number of times.
746 	 */
747 	if (cons_filp) {
748 		if (tty->ops->close)
749 			for (n = 0; n < closecount; n++)
750 				tty->ops->close(tty, cons_filp);
751 	} else if (tty->ops->hangup)
752 		tty->ops->hangup(tty);
753 	/*
754 	 * We don't want to have driver/ldisc interactions beyond
755 	 * the ones we did here. The driver layer expects no
756 	 * calls after ->hangup() from the ldisc side. However we
757 	 * can't yet guarantee all that.
758 	 */
759 	set_bit(TTY_HUPPED, &tty->flags);
760 	tty_unlock(tty);
761 
762 	if (f)
763 		fput(f);
764 }
765 
766 static void do_tty_hangup(struct work_struct *work)
767 {
768 	struct tty_struct *tty =
769 		container_of(work, struct tty_struct, hangup_work);
770 
771 	__tty_hangup(tty, 0);
772 }
773 
774 /**
775  *	tty_hangup		-	trigger a hangup event
776  *	@tty: tty to hangup
777  *
778  *	A carrier loss (virtual or otherwise) has occurred on this like
779  *	schedule a hangup sequence to run after this event.
780  */
781 
782 void tty_hangup(struct tty_struct *tty)
783 {
784 	tty_debug_hangup(tty, "\n");
785 	schedule_work(&tty->hangup_work);
786 }
787 
788 EXPORT_SYMBOL(tty_hangup);
789 
790 /**
791  *	tty_vhangup		-	process vhangup
792  *	@tty: tty to hangup
793  *
794  *	The user has asked via system call for the terminal to be hung up.
795  *	We do this synchronously so that when the syscall returns the process
796  *	is complete. That guarantee is necessary for security reasons.
797  */
798 
799 void tty_vhangup(struct tty_struct *tty)
800 {
801 	tty_debug_hangup(tty, "\n");
802 	__tty_hangup(tty, 0);
803 }
804 
805 EXPORT_SYMBOL(tty_vhangup);
806 
807 
808 /**
809  *	tty_vhangup_self	-	process vhangup for own ctty
810  *
811  *	Perform a vhangup on the current controlling tty
812  */
813 
814 void tty_vhangup_self(void)
815 {
816 	struct tty_struct *tty;
817 
818 	tty = get_current_tty();
819 	if (tty) {
820 		tty_vhangup(tty);
821 		tty_kref_put(tty);
822 	}
823 }
824 
825 /**
826  *	tty_vhangup_session		-	hangup session leader exit
827  *	@tty: tty to hangup
828  *
829  *	The session leader is exiting and hanging up its controlling terminal.
830  *	Every process in the foreground process group is signalled SIGHUP.
831  *
832  *	We do this synchronously so that when the syscall returns the process
833  *	is complete. That guarantee is necessary for security reasons.
834  */
835 
836 static void tty_vhangup_session(struct tty_struct *tty)
837 {
838 	tty_debug_hangup(tty, "\n");
839 	__tty_hangup(tty, 1);
840 }
841 
842 /**
843  *	tty_hung_up_p		-	was tty hung up
844  *	@filp: file pointer of tty
845  *
846  *	Return true if the tty has been subject to a vhangup or a carrier
847  *	loss
848  */
849 
850 int tty_hung_up_p(struct file *filp)
851 {
852 	return (filp->f_op == &hung_up_tty_fops);
853 }
854 
855 EXPORT_SYMBOL(tty_hung_up_p);
856 
857 /**
858  *	disassociate_ctty	-	disconnect controlling tty
859  *	@on_exit: true if exiting so need to "hang up" the session
860  *
861  *	This function is typically called only by the session leader, when
862  *	it wants to disassociate itself from its controlling tty.
863  *
864  *	It performs the following functions:
865  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
866  * 	(2)  Clears the tty from being controlling the session
867  * 	(3)  Clears the controlling tty for all processes in the
868  * 		session group.
869  *
870  *	The argument on_exit is set to 1 if called when a process is
871  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
872  *
873  *	Locking:
874  *		BTM is taken for hysterical raisins, and held when
875  *		  called from no_tty().
876  *		  tty_mutex is taken to protect tty
877  *		  ->siglock is taken to protect ->signal/->sighand
878  *		  tasklist_lock is taken to walk process list for sessions
879  *		    ->siglock is taken to protect ->signal/->sighand
880  */
881 
882 void disassociate_ctty(int on_exit)
883 {
884 	struct tty_struct *tty;
885 
886 	if (!current->signal->leader)
887 		return;
888 
889 	tty = get_current_tty();
890 	if (tty) {
891 		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
892 			tty_vhangup_session(tty);
893 		} else {
894 			struct pid *tty_pgrp = tty_get_pgrp(tty);
895 			if (tty_pgrp) {
896 				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
897 				if (!on_exit)
898 					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
899 				put_pid(tty_pgrp);
900 			}
901 		}
902 		tty_kref_put(tty);
903 
904 	} else if (on_exit) {
905 		struct pid *old_pgrp;
906 		spin_lock_irq(&current->sighand->siglock);
907 		old_pgrp = current->signal->tty_old_pgrp;
908 		current->signal->tty_old_pgrp = NULL;
909 		spin_unlock_irq(&current->sighand->siglock);
910 		if (old_pgrp) {
911 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
912 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
913 			put_pid(old_pgrp);
914 		}
915 		return;
916 	}
917 
918 	spin_lock_irq(&current->sighand->siglock);
919 	put_pid(current->signal->tty_old_pgrp);
920 	current->signal->tty_old_pgrp = NULL;
921 
922 	tty = tty_kref_get(current->signal->tty);
923 	if (tty) {
924 		unsigned long flags;
925 		spin_lock_irqsave(&tty->ctrl_lock, flags);
926 		put_pid(tty->session);
927 		put_pid(tty->pgrp);
928 		tty->session = NULL;
929 		tty->pgrp = NULL;
930 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
931 		tty_kref_put(tty);
932 	} else
933 		tty_debug_hangup(tty, "no current tty\n");
934 
935 	spin_unlock_irq(&current->sighand->siglock);
936 	/* Now clear signal->tty under the lock */
937 	read_lock(&tasklist_lock);
938 	session_clear_tty(task_session(current));
939 	read_unlock(&tasklist_lock);
940 }
941 
942 /**
943  *
944  *	no_tty	- Ensure the current process does not have a controlling tty
945  */
946 void no_tty(void)
947 {
948 	/* FIXME: Review locking here. The tty_lock never covered any race
949 	   between a new association and proc_clear_tty but possible we need
950 	   to protect against this anyway */
951 	struct task_struct *tsk = current;
952 	disassociate_ctty(0);
953 	proc_clear_tty(tsk);
954 }
955 
956 
957 /**
958  *	stop_tty	-	propagate flow control
959  *	@tty: tty to stop
960  *
961  *	Perform flow control to the driver. May be called
962  *	on an already stopped device and will not re-call the driver
963  *	method.
964  *
965  *	This functionality is used by both the line disciplines for
966  *	halting incoming flow and by the driver. It may therefore be
967  *	called from any context, may be under the tty atomic_write_lock
968  *	but not always.
969  *
970  *	Locking:
971  *		flow_lock
972  */
973 
974 void __stop_tty(struct tty_struct *tty)
975 {
976 	if (tty->stopped)
977 		return;
978 	tty->stopped = 1;
979 	if (tty->ops->stop)
980 		tty->ops->stop(tty);
981 }
982 
983 void stop_tty(struct tty_struct *tty)
984 {
985 	unsigned long flags;
986 
987 	spin_lock_irqsave(&tty->flow_lock, flags);
988 	__stop_tty(tty);
989 	spin_unlock_irqrestore(&tty->flow_lock, flags);
990 }
991 EXPORT_SYMBOL(stop_tty);
992 
993 /**
994  *	start_tty	-	propagate flow control
995  *	@tty: tty to start
996  *
997  *	Start a tty that has been stopped if at all possible. If this
998  *	tty was previous stopped and is now being started, the driver
999  *	start method is invoked and the line discipline woken.
1000  *
1001  *	Locking:
1002  *		flow_lock
1003  */
1004 
1005 void __start_tty(struct tty_struct *tty)
1006 {
1007 	if (!tty->stopped || tty->flow_stopped)
1008 		return;
1009 	tty->stopped = 0;
1010 	if (tty->ops->start)
1011 		tty->ops->start(tty);
1012 	tty_wakeup(tty);
1013 }
1014 
1015 void start_tty(struct tty_struct *tty)
1016 {
1017 	unsigned long flags;
1018 
1019 	spin_lock_irqsave(&tty->flow_lock, flags);
1020 	__start_tty(tty);
1021 	spin_unlock_irqrestore(&tty->flow_lock, flags);
1022 }
1023 EXPORT_SYMBOL(start_tty);
1024 
1025 static void tty_update_time(struct timespec *time)
1026 {
1027 	unsigned long sec = get_seconds();
1028 
1029 	/*
1030 	 * We only care if the two values differ in anything other than the
1031 	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1032 	 * the time of the tty device, otherwise it could be construded as a
1033 	 * security leak to let userspace know the exact timing of the tty.
1034 	 */
1035 	if ((sec ^ time->tv_sec) & ~7)
1036 		time->tv_sec = sec;
1037 }
1038 
1039 /**
1040  *	tty_read	-	read method for tty device files
1041  *	@file: pointer to tty file
1042  *	@buf: user buffer
1043  *	@count: size of user buffer
1044  *	@ppos: unused
1045  *
1046  *	Perform the read system call function on this terminal device. Checks
1047  *	for hung up devices before calling the line discipline method.
1048  *
1049  *	Locking:
1050  *		Locks the line discipline internally while needed. Multiple
1051  *	read calls may be outstanding in parallel.
1052  */
1053 
1054 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1055 			loff_t *ppos)
1056 {
1057 	int i;
1058 	struct inode *inode = file_inode(file);
1059 	struct tty_struct *tty = file_tty(file);
1060 	struct tty_ldisc *ld;
1061 
1062 	if (tty_paranoia_check(tty, inode, "tty_read"))
1063 		return -EIO;
1064 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1065 		return -EIO;
1066 
1067 	/* We want to wait for the line discipline to sort out in this
1068 	   situation */
1069 	ld = tty_ldisc_ref_wait(tty);
1070 	if (ld->ops->read)
1071 		i = ld->ops->read(tty, file, buf, count);
1072 	else
1073 		i = -EIO;
1074 	tty_ldisc_deref(ld);
1075 
1076 	if (i > 0)
1077 		tty_update_time(&inode->i_atime);
1078 
1079 	return i;
1080 }
1081 
1082 static void tty_write_unlock(struct tty_struct *tty)
1083 {
1084 	mutex_unlock(&tty->atomic_write_lock);
1085 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1086 }
1087 
1088 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1089 {
1090 	if (!mutex_trylock(&tty->atomic_write_lock)) {
1091 		if (ndelay)
1092 			return -EAGAIN;
1093 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1094 			return -ERESTARTSYS;
1095 	}
1096 	return 0;
1097 }
1098 
1099 /*
1100  * Split writes up in sane blocksizes to avoid
1101  * denial-of-service type attacks
1102  */
1103 static inline ssize_t do_tty_write(
1104 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1105 	struct tty_struct *tty,
1106 	struct file *file,
1107 	const char __user *buf,
1108 	size_t count)
1109 {
1110 	ssize_t ret, written = 0;
1111 	unsigned int chunk;
1112 
1113 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1114 	if (ret < 0)
1115 		return ret;
1116 
1117 	/*
1118 	 * We chunk up writes into a temporary buffer. This
1119 	 * simplifies low-level drivers immensely, since they
1120 	 * don't have locking issues and user mode accesses.
1121 	 *
1122 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1123 	 * big chunk-size..
1124 	 *
1125 	 * The default chunk-size is 2kB, because the NTTY
1126 	 * layer has problems with bigger chunks. It will
1127 	 * claim to be able to handle more characters than
1128 	 * it actually does.
1129 	 *
1130 	 * FIXME: This can probably go away now except that 64K chunks
1131 	 * are too likely to fail unless switched to vmalloc...
1132 	 */
1133 	chunk = 2048;
1134 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1135 		chunk = 65536;
1136 	if (count < chunk)
1137 		chunk = count;
1138 
1139 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1140 	if (tty->write_cnt < chunk) {
1141 		unsigned char *buf_chunk;
1142 
1143 		if (chunk < 1024)
1144 			chunk = 1024;
1145 
1146 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1147 		if (!buf_chunk) {
1148 			ret = -ENOMEM;
1149 			goto out;
1150 		}
1151 		kfree(tty->write_buf);
1152 		tty->write_cnt = chunk;
1153 		tty->write_buf = buf_chunk;
1154 	}
1155 
1156 	/* Do the write .. */
1157 	for (;;) {
1158 		size_t size = count;
1159 		if (size > chunk)
1160 			size = chunk;
1161 		ret = -EFAULT;
1162 		if (copy_from_user(tty->write_buf, buf, size))
1163 			break;
1164 		ret = write(tty, file, tty->write_buf, size);
1165 		if (ret <= 0)
1166 			break;
1167 		written += ret;
1168 		buf += ret;
1169 		count -= ret;
1170 		if (!count)
1171 			break;
1172 		ret = -ERESTARTSYS;
1173 		if (signal_pending(current))
1174 			break;
1175 		cond_resched();
1176 	}
1177 	if (written) {
1178 		tty_update_time(&file_inode(file)->i_mtime);
1179 		ret = written;
1180 	}
1181 out:
1182 	tty_write_unlock(tty);
1183 	return ret;
1184 }
1185 
1186 /**
1187  * tty_write_message - write a message to a certain tty, not just the console.
1188  * @tty: the destination tty_struct
1189  * @msg: the message to write
1190  *
1191  * This is used for messages that need to be redirected to a specific tty.
1192  * We don't put it into the syslog queue right now maybe in the future if
1193  * really needed.
1194  *
1195  * We must still hold the BTM and test the CLOSING flag for the moment.
1196  */
1197 
1198 void tty_write_message(struct tty_struct *tty, char *msg)
1199 {
1200 	if (tty) {
1201 		mutex_lock(&tty->atomic_write_lock);
1202 		tty_lock(tty);
1203 		if (tty->ops->write && tty->count > 0)
1204 			tty->ops->write(tty, msg, strlen(msg));
1205 		tty_unlock(tty);
1206 		tty_write_unlock(tty);
1207 	}
1208 	return;
1209 }
1210 
1211 
1212 /**
1213  *	tty_write		-	write method for tty device file
1214  *	@file: tty file pointer
1215  *	@buf: user data to write
1216  *	@count: bytes to write
1217  *	@ppos: unused
1218  *
1219  *	Write data to a tty device via the line discipline.
1220  *
1221  *	Locking:
1222  *		Locks the line discipline as required
1223  *		Writes to the tty driver are serialized by the atomic_write_lock
1224  *	and are then processed in chunks to the device. The line discipline
1225  *	write method will not be invoked in parallel for each device.
1226  */
1227 
1228 static ssize_t tty_write(struct file *file, const char __user *buf,
1229 						size_t count, loff_t *ppos)
1230 {
1231 	struct tty_struct *tty = file_tty(file);
1232  	struct tty_ldisc *ld;
1233 	ssize_t ret;
1234 
1235 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1236 		return -EIO;
1237 	if (!tty || !tty->ops->write ||
1238 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1239 			return -EIO;
1240 	/* Short term debug to catch buggy drivers */
1241 	if (tty->ops->write_room == NULL)
1242 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1243 			tty->driver->name);
1244 	ld = tty_ldisc_ref_wait(tty);
1245 	if (!ld->ops->write)
1246 		ret = -EIO;
1247 	else
1248 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1249 	tty_ldisc_deref(ld);
1250 	return ret;
1251 }
1252 
1253 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1254 						size_t count, loff_t *ppos)
1255 {
1256 	struct file *p = NULL;
1257 
1258 	spin_lock(&redirect_lock);
1259 	if (redirect)
1260 		p = get_file(redirect);
1261 	spin_unlock(&redirect_lock);
1262 
1263 	if (p) {
1264 		ssize_t res;
1265 		res = vfs_write(p, buf, count, &p->f_pos);
1266 		fput(p);
1267 		return res;
1268 	}
1269 	return tty_write(file, buf, count, ppos);
1270 }
1271 
1272 /**
1273  *	tty_send_xchar	-	send priority character
1274  *
1275  *	Send a high priority character to the tty even if stopped
1276  *
1277  *	Locking: none for xchar method, write ordering for write method.
1278  */
1279 
1280 int tty_send_xchar(struct tty_struct *tty, char ch)
1281 {
1282 	int	was_stopped = tty->stopped;
1283 
1284 	if (tty->ops->send_xchar) {
1285 		down_read(&tty->termios_rwsem);
1286 		tty->ops->send_xchar(tty, ch);
1287 		up_read(&tty->termios_rwsem);
1288 		return 0;
1289 	}
1290 
1291 	if (tty_write_lock(tty, 0) < 0)
1292 		return -ERESTARTSYS;
1293 
1294 	down_read(&tty->termios_rwsem);
1295 	if (was_stopped)
1296 		start_tty(tty);
1297 	tty->ops->write(tty, &ch, 1);
1298 	if (was_stopped)
1299 		stop_tty(tty);
1300 	up_read(&tty->termios_rwsem);
1301 	tty_write_unlock(tty);
1302 	return 0;
1303 }
1304 
1305 static char ptychar[] = "pqrstuvwxyzabcde";
1306 
1307 /**
1308  *	pty_line_name	-	generate name for a pty
1309  *	@driver: the tty driver in use
1310  *	@index: the minor number
1311  *	@p: output buffer of at least 6 bytes
1312  *
1313  *	Generate a name from a driver reference and write it to the output
1314  *	buffer.
1315  *
1316  *	Locking: None
1317  */
1318 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1319 {
1320 	int i = index + driver->name_base;
1321 	/* ->name is initialized to "ttyp", but "tty" is expected */
1322 	sprintf(p, "%s%c%x",
1323 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1324 		ptychar[i >> 4 & 0xf], i & 0xf);
1325 }
1326 
1327 /**
1328  *	tty_line_name	-	generate name for a tty
1329  *	@driver: the tty driver in use
1330  *	@index: the minor number
1331  *	@p: output buffer of at least 7 bytes
1332  *
1333  *	Generate a name from a driver reference and write it to the output
1334  *	buffer.
1335  *
1336  *	Locking: None
1337  */
1338 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1339 {
1340 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1341 		return sprintf(p, "%s", driver->name);
1342 	else
1343 		return sprintf(p, "%s%d", driver->name,
1344 			       index + driver->name_base);
1345 }
1346 
1347 /**
1348  *	tty_driver_lookup_tty() - find an existing tty, if any
1349  *	@driver: the driver for the tty
1350  *	@idx:	 the minor number
1351  *
1352  *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1353  *	driver lookup() method returns an error.
1354  *
1355  *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1356  */
1357 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1358 		struct inode *inode, int idx)
1359 {
1360 	struct tty_struct *tty;
1361 
1362 	if (driver->ops->lookup)
1363 		tty = driver->ops->lookup(driver, inode, idx);
1364 	else
1365 		tty = driver->ttys[idx];
1366 
1367 	if (!IS_ERR(tty))
1368 		tty_kref_get(tty);
1369 	return tty;
1370 }
1371 
1372 /**
1373  *	tty_init_termios	-  helper for termios setup
1374  *	@tty: the tty to set up
1375  *
1376  *	Initialise the termios structures for this tty. Thus runs under
1377  *	the tty_mutex currently so we can be relaxed about ordering.
1378  */
1379 
1380 int tty_init_termios(struct tty_struct *tty)
1381 {
1382 	struct ktermios *tp;
1383 	int idx = tty->index;
1384 
1385 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1386 		tty->termios = tty->driver->init_termios;
1387 	else {
1388 		/* Check for lazy saved data */
1389 		tp = tty->driver->termios[idx];
1390 		if (tp != NULL)
1391 			tty->termios = *tp;
1392 		else
1393 			tty->termios = tty->driver->init_termios;
1394 	}
1395 	/* Compatibility until drivers always set this */
1396 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1397 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1398 	return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(tty_init_termios);
1401 
1402 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1403 {
1404 	int ret = tty_init_termios(tty);
1405 	if (ret)
1406 		return ret;
1407 
1408 	tty_driver_kref_get(driver);
1409 	tty->count++;
1410 	driver->ttys[tty->index] = tty;
1411 	return 0;
1412 }
1413 EXPORT_SYMBOL_GPL(tty_standard_install);
1414 
1415 /**
1416  *	tty_driver_install_tty() - install a tty entry in the driver
1417  *	@driver: the driver for the tty
1418  *	@tty: the tty
1419  *
1420  *	Install a tty object into the driver tables. The tty->index field
1421  *	will be set by the time this is called. This method is responsible
1422  *	for ensuring any need additional structures are allocated and
1423  *	configured.
1424  *
1425  *	Locking: tty_mutex for now
1426  */
1427 static int tty_driver_install_tty(struct tty_driver *driver,
1428 						struct tty_struct *tty)
1429 {
1430 	return driver->ops->install ? driver->ops->install(driver, tty) :
1431 		tty_standard_install(driver, tty);
1432 }
1433 
1434 /**
1435  *	tty_driver_remove_tty() - remove a tty from the driver tables
1436  *	@driver: the driver for the tty
1437  *	@idx:	 the minor number
1438  *
1439  *	Remvoe a tty object from the driver tables. The tty->index field
1440  *	will be set by the time this is called.
1441  *
1442  *	Locking: tty_mutex for now
1443  */
1444 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1445 {
1446 	if (driver->ops->remove)
1447 		driver->ops->remove(driver, tty);
1448 	else
1449 		driver->ttys[tty->index] = NULL;
1450 }
1451 
1452 /*
1453  * 	tty_reopen()	- fast re-open of an open tty
1454  * 	@tty	- the tty to open
1455  *
1456  *	Return 0 on success, -errno on error.
1457  *	Re-opens on master ptys are not allowed and return -EIO.
1458  *
1459  *	Locking: Caller must hold tty_lock
1460  */
1461 static int tty_reopen(struct tty_struct *tty)
1462 {
1463 	struct tty_driver *driver = tty->driver;
1464 
1465 	if (!tty->count)
1466 		return -EIO;
1467 
1468 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1469 	    driver->subtype == PTY_TYPE_MASTER)
1470 		return -EIO;
1471 
1472 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1473 		return -EBUSY;
1474 
1475 	tty->count++;
1476 
1477 	WARN_ON(!tty->ldisc);
1478 
1479 	return 0;
1480 }
1481 
1482 /**
1483  *	tty_init_dev		-	initialise a tty device
1484  *	@driver: tty driver we are opening a device on
1485  *	@idx: device index
1486  *	@ret_tty: returned tty structure
1487  *
1488  *	Prepare a tty device. This may not be a "new" clean device but
1489  *	could also be an active device. The pty drivers require special
1490  *	handling because of this.
1491  *
1492  *	Locking:
1493  *		The function is called under the tty_mutex, which
1494  *	protects us from the tty struct or driver itself going away.
1495  *
1496  *	On exit the tty device has the line discipline attached and
1497  *	a reference count of 1. If a pair was created for pty/tty use
1498  *	and the other was a pty master then it too has a reference count of 1.
1499  *
1500  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1501  * failed open.  The new code protects the open with a mutex, so it's
1502  * really quite straightforward.  The mutex locking can probably be
1503  * relaxed for the (most common) case of reopening a tty.
1504  */
1505 
1506 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1507 {
1508 	struct tty_struct *tty;
1509 	int retval;
1510 
1511 	/*
1512 	 * First time open is complex, especially for PTY devices.
1513 	 * This code guarantees that either everything succeeds and the
1514 	 * TTY is ready for operation, or else the table slots are vacated
1515 	 * and the allocated memory released.  (Except that the termios
1516 	 * and locked termios may be retained.)
1517 	 */
1518 
1519 	if (!try_module_get(driver->owner))
1520 		return ERR_PTR(-ENODEV);
1521 
1522 	tty = alloc_tty_struct(driver, idx);
1523 	if (!tty) {
1524 		retval = -ENOMEM;
1525 		goto err_module_put;
1526 	}
1527 
1528 	tty_lock(tty);
1529 	retval = tty_driver_install_tty(driver, tty);
1530 	if (retval < 0)
1531 		goto err_deinit_tty;
1532 
1533 	if (!tty->port)
1534 		tty->port = driver->ports[idx];
1535 
1536 	WARN_RATELIMIT(!tty->port,
1537 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1538 			__func__, tty->driver->name);
1539 
1540 	tty->port->itty = tty;
1541 
1542 	/*
1543 	 * Structures all installed ... call the ldisc open routines.
1544 	 * If we fail here just call release_tty to clean up.  No need
1545 	 * to decrement the use counts, as release_tty doesn't care.
1546 	 */
1547 	retval = tty_ldisc_setup(tty, tty->link);
1548 	if (retval)
1549 		goto err_release_tty;
1550 	/* Return the tty locked so that it cannot vanish under the caller */
1551 	return tty;
1552 
1553 err_deinit_tty:
1554 	tty_unlock(tty);
1555 	deinitialize_tty_struct(tty);
1556 	free_tty_struct(tty);
1557 err_module_put:
1558 	module_put(driver->owner);
1559 	return ERR_PTR(retval);
1560 
1561 	/* call the tty release_tty routine to clean out this slot */
1562 err_release_tty:
1563 	tty_unlock(tty);
1564 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1565 				 "clearing slot %d\n", idx);
1566 	release_tty(tty, idx);
1567 	return ERR_PTR(retval);
1568 }
1569 
1570 void tty_free_termios(struct tty_struct *tty)
1571 {
1572 	struct ktermios *tp;
1573 	int idx = tty->index;
1574 
1575 	/* If the port is going to reset then it has no termios to save */
1576 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1577 		return;
1578 
1579 	/* Stash the termios data */
1580 	tp = tty->driver->termios[idx];
1581 	if (tp == NULL) {
1582 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1583 		if (tp == NULL) {
1584 			pr_warn("tty: no memory to save termios state.\n");
1585 			return;
1586 		}
1587 		tty->driver->termios[idx] = tp;
1588 	}
1589 	*tp = tty->termios;
1590 }
1591 EXPORT_SYMBOL(tty_free_termios);
1592 
1593 /**
1594  *	tty_flush_works		-	flush all works of a tty/pty pair
1595  *	@tty: tty device to flush works for (or either end of a pty pair)
1596  *
1597  *	Sync flush all works belonging to @tty (and the 'other' tty).
1598  */
1599 static void tty_flush_works(struct tty_struct *tty)
1600 {
1601 	flush_work(&tty->SAK_work);
1602 	flush_work(&tty->hangup_work);
1603 	if (tty->link) {
1604 		flush_work(&tty->link->SAK_work);
1605 		flush_work(&tty->link->hangup_work);
1606 	}
1607 }
1608 
1609 /**
1610  *	release_one_tty		-	release tty structure memory
1611  *	@kref: kref of tty we are obliterating
1612  *
1613  *	Releases memory associated with a tty structure, and clears out the
1614  *	driver table slots. This function is called when a device is no longer
1615  *	in use. It also gets called when setup of a device fails.
1616  *
1617  *	Locking:
1618  *		takes the file list lock internally when working on the list
1619  *	of ttys that the driver keeps.
1620  *
1621  *	This method gets called from a work queue so that the driver private
1622  *	cleanup ops can sleep (needed for USB at least)
1623  */
1624 static void release_one_tty(struct work_struct *work)
1625 {
1626 	struct tty_struct *tty =
1627 		container_of(work, struct tty_struct, hangup_work);
1628 	struct tty_driver *driver = tty->driver;
1629 	struct module *owner = driver->owner;
1630 
1631 	if (tty->ops->cleanup)
1632 		tty->ops->cleanup(tty);
1633 
1634 	tty->magic = 0;
1635 	tty_driver_kref_put(driver);
1636 	module_put(owner);
1637 
1638 	spin_lock(&tty_files_lock);
1639 	list_del_init(&tty->tty_files);
1640 	spin_unlock(&tty_files_lock);
1641 
1642 	put_pid(tty->pgrp);
1643 	put_pid(tty->session);
1644 	free_tty_struct(tty);
1645 }
1646 
1647 static void queue_release_one_tty(struct kref *kref)
1648 {
1649 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1650 
1651 	/* The hangup queue is now free so we can reuse it rather than
1652 	   waste a chunk of memory for each port */
1653 	INIT_WORK(&tty->hangup_work, release_one_tty);
1654 	schedule_work(&tty->hangup_work);
1655 }
1656 
1657 /**
1658  *	tty_kref_put		-	release a tty kref
1659  *	@tty: tty device
1660  *
1661  *	Release a reference to a tty device and if need be let the kref
1662  *	layer destruct the object for us
1663  */
1664 
1665 void tty_kref_put(struct tty_struct *tty)
1666 {
1667 	if (tty)
1668 		kref_put(&tty->kref, queue_release_one_tty);
1669 }
1670 EXPORT_SYMBOL(tty_kref_put);
1671 
1672 /**
1673  *	release_tty		-	release tty structure memory
1674  *
1675  *	Release both @tty and a possible linked partner (think pty pair),
1676  *	and decrement the refcount of the backing module.
1677  *
1678  *	Locking:
1679  *		tty_mutex
1680  *		takes the file list lock internally when working on the list
1681  *	of ttys that the driver keeps.
1682  *
1683  */
1684 static void release_tty(struct tty_struct *tty, int idx)
1685 {
1686 	/* This should always be true but check for the moment */
1687 	WARN_ON(tty->index != idx);
1688 	WARN_ON(!mutex_is_locked(&tty_mutex));
1689 	if (tty->ops->shutdown)
1690 		tty->ops->shutdown(tty);
1691 	tty_free_termios(tty);
1692 	tty_driver_remove_tty(tty->driver, tty);
1693 	tty->port->itty = NULL;
1694 	if (tty->link)
1695 		tty->link->port->itty = NULL;
1696 	tty_buffer_cancel_work(tty->port);
1697 
1698 	tty_kref_put(tty->link);
1699 	tty_kref_put(tty);
1700 }
1701 
1702 /**
1703  *	tty_release_checks - check a tty before real release
1704  *	@tty: tty to check
1705  *	@o_tty: link of @tty (if any)
1706  *	@idx: index of the tty
1707  *
1708  *	Performs some paranoid checking before true release of the @tty.
1709  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1710  */
1711 static int tty_release_checks(struct tty_struct *tty, int idx)
1712 {
1713 #ifdef TTY_PARANOIA_CHECK
1714 	if (idx < 0 || idx >= tty->driver->num) {
1715 		tty_debug(tty, "bad idx %d\n", idx);
1716 		return -1;
1717 	}
1718 
1719 	/* not much to check for devpts */
1720 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1721 		return 0;
1722 
1723 	if (tty != tty->driver->ttys[idx]) {
1724 		tty_debug(tty, "bad driver table[%d] = %p\n",
1725 			  idx, tty->driver->ttys[idx]);
1726 		return -1;
1727 	}
1728 	if (tty->driver->other) {
1729 		struct tty_struct *o_tty = tty->link;
1730 
1731 		if (o_tty != tty->driver->other->ttys[idx]) {
1732 			tty_debug(tty, "bad other table[%d] = %p\n",
1733 				  idx, tty->driver->other->ttys[idx]);
1734 			return -1;
1735 		}
1736 		if (o_tty->link != tty) {
1737 			tty_debug(tty, "bad link = %p\n", o_tty->link);
1738 			return -1;
1739 		}
1740 	}
1741 #endif
1742 	return 0;
1743 }
1744 
1745 /**
1746  *	tty_release		-	vfs callback for close
1747  *	@inode: inode of tty
1748  *	@filp: file pointer for handle to tty
1749  *
1750  *	Called the last time each file handle is closed that references
1751  *	this tty. There may however be several such references.
1752  *
1753  *	Locking:
1754  *		Takes bkl. See tty_release_dev
1755  *
1756  * Even releasing the tty structures is a tricky business.. We have
1757  * to be very careful that the structures are all released at the
1758  * same time, as interrupts might otherwise get the wrong pointers.
1759  *
1760  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1761  * lead to double frees or releasing memory still in use.
1762  */
1763 
1764 int tty_release(struct inode *inode, struct file *filp)
1765 {
1766 	struct tty_struct *tty = file_tty(filp);
1767 	struct tty_struct *o_tty = NULL;
1768 	int	do_sleep, final;
1769 	int	idx;
1770 	long	timeout = 0;
1771 	int	once = 1;
1772 
1773 	if (tty_paranoia_check(tty, inode, __func__))
1774 		return 0;
1775 
1776 	tty_lock(tty);
1777 	check_tty_count(tty, __func__);
1778 
1779 	__tty_fasync(-1, filp, 0);
1780 
1781 	idx = tty->index;
1782 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1783 	    tty->driver->subtype == PTY_TYPE_MASTER)
1784 		o_tty = tty->link;
1785 
1786 	if (tty_release_checks(tty, idx)) {
1787 		tty_unlock(tty);
1788 		return 0;
1789 	}
1790 
1791 	tty_debug_hangup(tty, "(tty count=%d)...\n", tty->count);
1792 
1793 	if (tty->ops->close)
1794 		tty->ops->close(tty, filp);
1795 
1796 	/* If tty is pty master, lock the slave pty (stable lock order) */
1797 	tty_lock_slave(o_tty);
1798 
1799 	/*
1800 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1801 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1802 	 * wait queues and kick everyone out _before_ actually starting to
1803 	 * close.  This ensures that we won't block while releasing the tty
1804 	 * structure.
1805 	 *
1806 	 * The test for the o_tty closing is necessary, since the master and
1807 	 * slave sides may close in any order.  If the slave side closes out
1808 	 * first, its count will be one, since the master side holds an open.
1809 	 * Thus this test wouldn't be triggered at the time the slave closed,
1810 	 * so we do it now.
1811 	 */
1812 	while (1) {
1813 		do_sleep = 0;
1814 
1815 		if (tty->count <= 1) {
1816 			if (waitqueue_active(&tty->read_wait)) {
1817 				wake_up_poll(&tty->read_wait, POLLIN);
1818 				do_sleep++;
1819 			}
1820 			if (waitqueue_active(&tty->write_wait)) {
1821 				wake_up_poll(&tty->write_wait, POLLOUT);
1822 				do_sleep++;
1823 			}
1824 		}
1825 		if (o_tty && o_tty->count <= 1) {
1826 			if (waitqueue_active(&o_tty->read_wait)) {
1827 				wake_up_poll(&o_tty->read_wait, POLLIN);
1828 				do_sleep++;
1829 			}
1830 			if (waitqueue_active(&o_tty->write_wait)) {
1831 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1832 				do_sleep++;
1833 			}
1834 		}
1835 		if (!do_sleep)
1836 			break;
1837 
1838 		if (once) {
1839 			once = 0;
1840 			printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1841 			       __func__, tty_name(tty));
1842 		}
1843 		schedule_timeout_killable(timeout);
1844 		if (timeout < 120 * HZ)
1845 			timeout = 2 * timeout + 1;
1846 		else
1847 			timeout = MAX_SCHEDULE_TIMEOUT;
1848 	}
1849 
1850 	if (o_tty) {
1851 		if (--o_tty->count < 0) {
1852 			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1853 				__func__, o_tty->count, tty_name(o_tty));
1854 			o_tty->count = 0;
1855 		}
1856 	}
1857 	if (--tty->count < 0) {
1858 		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1859 				__func__, tty->count, tty_name(tty));
1860 		tty->count = 0;
1861 	}
1862 
1863 	/*
1864 	 * We've decremented tty->count, so we need to remove this file
1865 	 * descriptor off the tty->tty_files list; this serves two
1866 	 * purposes:
1867 	 *  - check_tty_count sees the correct number of file descriptors
1868 	 *    associated with this tty.
1869 	 *  - do_tty_hangup no longer sees this file descriptor as
1870 	 *    something that needs to be handled for hangups.
1871 	 */
1872 	tty_del_file(filp);
1873 
1874 	/*
1875 	 * Perform some housekeeping before deciding whether to return.
1876 	 *
1877 	 * If _either_ side is closing, make sure there aren't any
1878 	 * processes that still think tty or o_tty is their controlling
1879 	 * tty.
1880 	 */
1881 	if (!tty->count) {
1882 		read_lock(&tasklist_lock);
1883 		session_clear_tty(tty->session);
1884 		if (o_tty)
1885 			session_clear_tty(o_tty->session);
1886 		read_unlock(&tasklist_lock);
1887 	}
1888 
1889 	/* check whether both sides are closing ... */
1890 	final = !tty->count && !(o_tty && o_tty->count);
1891 
1892 	tty_unlock_slave(o_tty);
1893 	tty_unlock(tty);
1894 
1895 	/* At this point, the tty->count == 0 should ensure a dead tty
1896 	   cannot be re-opened by a racing opener */
1897 
1898 	if (!final)
1899 		return 0;
1900 
1901 	tty_debug_hangup(tty, "final close\n");
1902 	/*
1903 	 * Ask the line discipline code to release its structures
1904 	 */
1905 	tty_ldisc_release(tty);
1906 
1907 	/* Wait for pending work before tty destruction commmences */
1908 	tty_flush_works(tty);
1909 
1910 	tty_debug_hangup(tty, "freeing structure...\n");
1911 	/*
1912 	 * The release_tty function takes care of the details of clearing
1913 	 * the slots and preserving the termios structure. The tty_unlock_pair
1914 	 * should be safe as we keep a kref while the tty is locked (so the
1915 	 * unlock never unlocks a freed tty).
1916 	 */
1917 	mutex_lock(&tty_mutex);
1918 	release_tty(tty, idx);
1919 	mutex_unlock(&tty_mutex);
1920 
1921 	return 0;
1922 }
1923 
1924 /**
1925  *	tty_open_current_tty - get locked tty of current task
1926  *	@device: device number
1927  *	@filp: file pointer to tty
1928  *	@return: locked tty of the current task iff @device is /dev/tty
1929  *
1930  *	Performs a re-open of the current task's controlling tty.
1931  *
1932  *	We cannot return driver and index like for the other nodes because
1933  *	devpts will not work then. It expects inodes to be from devpts FS.
1934  */
1935 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1936 {
1937 	struct tty_struct *tty;
1938 	int retval;
1939 
1940 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1941 		return NULL;
1942 
1943 	tty = get_current_tty();
1944 	if (!tty)
1945 		return ERR_PTR(-ENXIO);
1946 
1947 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1948 	/* noctty = 1; */
1949 	tty_lock(tty);
1950 	tty_kref_put(tty);	/* safe to drop the kref now */
1951 
1952 	retval = tty_reopen(tty);
1953 	if (retval < 0) {
1954 		tty_unlock(tty);
1955 		tty = ERR_PTR(retval);
1956 	}
1957 	return tty;
1958 }
1959 
1960 /**
1961  *	tty_lookup_driver - lookup a tty driver for a given device file
1962  *	@device: device number
1963  *	@filp: file pointer to tty
1964  *	@noctty: set if the device should not become a controlling tty
1965  *	@index: index for the device in the @return driver
1966  *	@return: driver for this inode (with increased refcount)
1967  *
1968  * 	If @return is not erroneous, the caller is responsible to decrement the
1969  * 	refcount by tty_driver_kref_put.
1970  *
1971  *	Locking: tty_mutex protects get_tty_driver
1972  */
1973 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1974 		int *noctty, int *index)
1975 {
1976 	struct tty_driver *driver;
1977 
1978 	switch (device) {
1979 #ifdef CONFIG_VT
1980 	case MKDEV(TTY_MAJOR, 0): {
1981 		extern struct tty_driver *console_driver;
1982 		driver = tty_driver_kref_get(console_driver);
1983 		*index = fg_console;
1984 		*noctty = 1;
1985 		break;
1986 	}
1987 #endif
1988 	case MKDEV(TTYAUX_MAJOR, 1): {
1989 		struct tty_driver *console_driver = console_device(index);
1990 		if (console_driver) {
1991 			driver = tty_driver_kref_get(console_driver);
1992 			if (driver) {
1993 				/* Don't let /dev/console block */
1994 				filp->f_flags |= O_NONBLOCK;
1995 				*noctty = 1;
1996 				break;
1997 			}
1998 		}
1999 		return ERR_PTR(-ENODEV);
2000 	}
2001 	default:
2002 		driver = get_tty_driver(device, index);
2003 		if (!driver)
2004 			return ERR_PTR(-ENODEV);
2005 		break;
2006 	}
2007 	return driver;
2008 }
2009 
2010 /**
2011  *	tty_open		-	open a tty device
2012  *	@inode: inode of device file
2013  *	@filp: file pointer to tty
2014  *
2015  *	tty_open and tty_release keep up the tty count that contains the
2016  *	number of opens done on a tty. We cannot use the inode-count, as
2017  *	different inodes might point to the same tty.
2018  *
2019  *	Open-counting is needed for pty masters, as well as for keeping
2020  *	track of serial lines: DTR is dropped when the last close happens.
2021  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2022  *
2023  *	The termios state of a pty is reset on first open so that
2024  *	settings don't persist across reuse.
2025  *
2026  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2027  *		 tty->count should protect the rest.
2028  *		 ->siglock protects ->signal/->sighand
2029  *
2030  *	Note: the tty_unlock/lock cases without a ref are only safe due to
2031  *	tty_mutex
2032  */
2033 
2034 static int tty_open(struct inode *inode, struct file *filp)
2035 {
2036 	struct tty_struct *tty;
2037 	int noctty, retval;
2038 	struct tty_driver *driver = NULL;
2039 	int index;
2040 	dev_t device = inode->i_rdev;
2041 	unsigned saved_flags = filp->f_flags;
2042 
2043 	nonseekable_open(inode, filp);
2044 
2045 retry_open:
2046 	retval = tty_alloc_file(filp);
2047 	if (retval)
2048 		return -ENOMEM;
2049 
2050 	noctty = filp->f_flags & O_NOCTTY;
2051 	index  = -1;
2052 	retval = 0;
2053 
2054 	tty = tty_open_current_tty(device, filp);
2055 	if (!tty) {
2056 		mutex_lock(&tty_mutex);
2057 		driver = tty_lookup_driver(device, filp, &noctty, &index);
2058 		if (IS_ERR(driver)) {
2059 			retval = PTR_ERR(driver);
2060 			goto err_unlock;
2061 		}
2062 
2063 		/* check whether we're reopening an existing tty */
2064 		tty = tty_driver_lookup_tty(driver, inode, index);
2065 		if (IS_ERR(tty)) {
2066 			retval = PTR_ERR(tty);
2067 			goto err_unlock;
2068 		}
2069 
2070 		if (tty) {
2071 			mutex_unlock(&tty_mutex);
2072 			tty_lock(tty);
2073 			/* safe to drop the kref from tty_driver_lookup_tty() */
2074 			tty_kref_put(tty);
2075 			retval = tty_reopen(tty);
2076 			if (retval < 0) {
2077 				tty_unlock(tty);
2078 				tty = ERR_PTR(retval);
2079 			}
2080 		} else { /* Returns with the tty_lock held for now */
2081 			tty = tty_init_dev(driver, index);
2082 			mutex_unlock(&tty_mutex);
2083 		}
2084 
2085 		tty_driver_kref_put(driver);
2086 	}
2087 
2088 	if (IS_ERR(tty)) {
2089 		retval = PTR_ERR(tty);
2090 		goto err_file;
2091 	}
2092 
2093 	tty_add_file(tty, filp);
2094 
2095 	check_tty_count(tty, __func__);
2096 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2097 	    tty->driver->subtype == PTY_TYPE_MASTER)
2098 		noctty = 1;
2099 
2100 	tty_debug_hangup(tty, "(tty count=%d)\n", tty->count);
2101 
2102 	if (tty->ops->open)
2103 		retval = tty->ops->open(tty, filp);
2104 	else
2105 		retval = -ENODEV;
2106 	filp->f_flags = saved_flags;
2107 
2108 	if (retval) {
2109 		tty_debug_hangup(tty, "error %d, releasing...\n", retval);
2110 
2111 		tty_unlock(tty); /* need to call tty_release without BTM */
2112 		tty_release(inode, filp);
2113 		if (retval != -ERESTARTSYS)
2114 			return retval;
2115 
2116 		if (signal_pending(current))
2117 			return retval;
2118 
2119 		schedule();
2120 		/*
2121 		 * Need to reset f_op in case a hangup happened.
2122 		 */
2123 		if (tty_hung_up_p(filp))
2124 			filp->f_op = &tty_fops;
2125 		goto retry_open;
2126 	}
2127 	clear_bit(TTY_HUPPED, &tty->flags);
2128 
2129 
2130 	read_lock(&tasklist_lock);
2131 	spin_lock_irq(&current->sighand->siglock);
2132 	if (!noctty &&
2133 	    current->signal->leader &&
2134 	    !current->signal->tty &&
2135 	    tty->session == NULL) {
2136 		/*
2137 		 * Don't let a process that only has write access to the tty
2138 		 * obtain the privileges associated with having a tty as
2139 		 * controlling terminal (being able to reopen it with full
2140 		 * access through /dev/tty, being able to perform pushback).
2141 		 * Many distributions set the group of all ttys to "tty" and
2142 		 * grant write-only access to all terminals for setgid tty
2143 		 * binaries, which should not imply full privileges on all ttys.
2144 		 *
2145 		 * This could theoretically break old code that performs open()
2146 		 * on a write-only file descriptor. In that case, it might be
2147 		 * necessary to also permit this if
2148 		 * inode_permission(inode, MAY_READ) == 0.
2149 		 */
2150 		if (filp->f_mode & FMODE_READ)
2151 			__proc_set_tty(tty);
2152 	}
2153 	spin_unlock_irq(&current->sighand->siglock);
2154 	read_unlock(&tasklist_lock);
2155 	tty_unlock(tty);
2156 	return 0;
2157 err_unlock:
2158 	mutex_unlock(&tty_mutex);
2159 	/* after locks to avoid deadlock */
2160 	if (!IS_ERR_OR_NULL(driver))
2161 		tty_driver_kref_put(driver);
2162 err_file:
2163 	tty_free_file(filp);
2164 	return retval;
2165 }
2166 
2167 
2168 
2169 /**
2170  *	tty_poll	-	check tty status
2171  *	@filp: file being polled
2172  *	@wait: poll wait structures to update
2173  *
2174  *	Call the line discipline polling method to obtain the poll
2175  *	status of the device.
2176  *
2177  *	Locking: locks called line discipline but ldisc poll method
2178  *	may be re-entered freely by other callers.
2179  */
2180 
2181 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2182 {
2183 	struct tty_struct *tty = file_tty(filp);
2184 	struct tty_ldisc *ld;
2185 	int ret = 0;
2186 
2187 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2188 		return 0;
2189 
2190 	ld = tty_ldisc_ref_wait(tty);
2191 	if (ld->ops->poll)
2192 		ret = ld->ops->poll(tty, filp, wait);
2193 	tty_ldisc_deref(ld);
2194 	return ret;
2195 }
2196 
2197 static int __tty_fasync(int fd, struct file *filp, int on)
2198 {
2199 	struct tty_struct *tty = file_tty(filp);
2200 	struct tty_ldisc *ldisc;
2201 	unsigned long flags;
2202 	int retval = 0;
2203 
2204 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2205 		goto out;
2206 
2207 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2208 	if (retval <= 0)
2209 		goto out;
2210 
2211 	ldisc = tty_ldisc_ref(tty);
2212 	if (ldisc) {
2213 		if (ldisc->ops->fasync)
2214 			ldisc->ops->fasync(tty, on);
2215 		tty_ldisc_deref(ldisc);
2216 	}
2217 
2218 	if (on) {
2219 		enum pid_type type;
2220 		struct pid *pid;
2221 
2222 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2223 		if (tty->pgrp) {
2224 			pid = tty->pgrp;
2225 			type = PIDTYPE_PGID;
2226 		} else {
2227 			pid = task_pid(current);
2228 			type = PIDTYPE_PID;
2229 		}
2230 		get_pid(pid);
2231 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2232 		__f_setown(filp, pid, type, 0);
2233 		put_pid(pid);
2234 		retval = 0;
2235 	}
2236 out:
2237 	return retval;
2238 }
2239 
2240 static int tty_fasync(int fd, struct file *filp, int on)
2241 {
2242 	struct tty_struct *tty = file_tty(filp);
2243 	int retval;
2244 
2245 	tty_lock(tty);
2246 	retval = __tty_fasync(fd, filp, on);
2247 	tty_unlock(tty);
2248 
2249 	return retval;
2250 }
2251 
2252 /**
2253  *	tiocsti			-	fake input character
2254  *	@tty: tty to fake input into
2255  *	@p: pointer to character
2256  *
2257  *	Fake input to a tty device. Does the necessary locking and
2258  *	input management.
2259  *
2260  *	FIXME: does not honour flow control ??
2261  *
2262  *	Locking:
2263  *		Called functions take tty_ldiscs_lock
2264  *		current->signal->tty check is safe without locks
2265  *
2266  *	FIXME: may race normal receive processing
2267  */
2268 
2269 static int tiocsti(struct tty_struct *tty, char __user *p)
2270 {
2271 	char ch, mbz = 0;
2272 	struct tty_ldisc *ld;
2273 
2274 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2275 		return -EPERM;
2276 	if (get_user(ch, p))
2277 		return -EFAULT;
2278 	tty_audit_tiocsti(tty, ch);
2279 	ld = tty_ldisc_ref_wait(tty);
2280 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2281 	tty_ldisc_deref(ld);
2282 	return 0;
2283 }
2284 
2285 /**
2286  *	tiocgwinsz		-	implement window query ioctl
2287  *	@tty; tty
2288  *	@arg: user buffer for result
2289  *
2290  *	Copies the kernel idea of the window size into the user buffer.
2291  *
2292  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2293  *		is consistent.
2294  */
2295 
2296 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2297 {
2298 	int err;
2299 
2300 	mutex_lock(&tty->winsize_mutex);
2301 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2302 	mutex_unlock(&tty->winsize_mutex);
2303 
2304 	return err ? -EFAULT: 0;
2305 }
2306 
2307 /**
2308  *	tty_do_resize		-	resize event
2309  *	@tty: tty being resized
2310  *	@rows: rows (character)
2311  *	@cols: cols (character)
2312  *
2313  *	Update the termios variables and send the necessary signals to
2314  *	peform a terminal resize correctly
2315  */
2316 
2317 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2318 {
2319 	struct pid *pgrp;
2320 
2321 	/* Lock the tty */
2322 	mutex_lock(&tty->winsize_mutex);
2323 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2324 		goto done;
2325 
2326 	/* Signal the foreground process group */
2327 	pgrp = tty_get_pgrp(tty);
2328 	if (pgrp)
2329 		kill_pgrp(pgrp, SIGWINCH, 1);
2330 	put_pid(pgrp);
2331 
2332 	tty->winsize = *ws;
2333 done:
2334 	mutex_unlock(&tty->winsize_mutex);
2335 	return 0;
2336 }
2337 EXPORT_SYMBOL(tty_do_resize);
2338 
2339 /**
2340  *	tiocswinsz		-	implement window size set ioctl
2341  *	@tty; tty side of tty
2342  *	@arg: user buffer for result
2343  *
2344  *	Copies the user idea of the window size to the kernel. Traditionally
2345  *	this is just advisory information but for the Linux console it
2346  *	actually has driver level meaning and triggers a VC resize.
2347  *
2348  *	Locking:
2349  *		Driver dependent. The default do_resize method takes the
2350  *	tty termios mutex and ctrl_lock. The console takes its own lock
2351  *	then calls into the default method.
2352  */
2353 
2354 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2355 {
2356 	struct winsize tmp_ws;
2357 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2358 		return -EFAULT;
2359 
2360 	if (tty->ops->resize)
2361 		return tty->ops->resize(tty, &tmp_ws);
2362 	else
2363 		return tty_do_resize(tty, &tmp_ws);
2364 }
2365 
2366 /**
2367  *	tioccons	-	allow admin to move logical console
2368  *	@file: the file to become console
2369  *
2370  *	Allow the administrator to move the redirected console device
2371  *
2372  *	Locking: uses redirect_lock to guard the redirect information
2373  */
2374 
2375 static int tioccons(struct file *file)
2376 {
2377 	if (!capable(CAP_SYS_ADMIN))
2378 		return -EPERM;
2379 	if (file->f_op->write == redirected_tty_write) {
2380 		struct file *f;
2381 		spin_lock(&redirect_lock);
2382 		f = redirect;
2383 		redirect = NULL;
2384 		spin_unlock(&redirect_lock);
2385 		if (f)
2386 			fput(f);
2387 		return 0;
2388 	}
2389 	spin_lock(&redirect_lock);
2390 	if (redirect) {
2391 		spin_unlock(&redirect_lock);
2392 		return -EBUSY;
2393 	}
2394 	redirect = get_file(file);
2395 	spin_unlock(&redirect_lock);
2396 	return 0;
2397 }
2398 
2399 /**
2400  *	fionbio		-	non blocking ioctl
2401  *	@file: file to set blocking value
2402  *	@p: user parameter
2403  *
2404  *	Historical tty interfaces had a blocking control ioctl before
2405  *	the generic functionality existed. This piece of history is preserved
2406  *	in the expected tty API of posix OS's.
2407  *
2408  *	Locking: none, the open file handle ensures it won't go away.
2409  */
2410 
2411 static int fionbio(struct file *file, int __user *p)
2412 {
2413 	int nonblock;
2414 
2415 	if (get_user(nonblock, p))
2416 		return -EFAULT;
2417 
2418 	spin_lock(&file->f_lock);
2419 	if (nonblock)
2420 		file->f_flags |= O_NONBLOCK;
2421 	else
2422 		file->f_flags &= ~O_NONBLOCK;
2423 	spin_unlock(&file->f_lock);
2424 	return 0;
2425 }
2426 
2427 /**
2428  *	tiocsctty	-	set controlling tty
2429  *	@tty: tty structure
2430  *	@arg: user argument
2431  *
2432  *	This ioctl is used to manage job control. It permits a session
2433  *	leader to set this tty as the controlling tty for the session.
2434  *
2435  *	Locking:
2436  *		Takes tty_lock() to serialize proc_set_tty() for this tty
2437  *		Takes tasklist_lock internally to walk sessions
2438  *		Takes ->siglock() when updating signal->tty
2439  */
2440 
2441 static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2442 {
2443 	int ret = 0;
2444 
2445 	tty_lock(tty);
2446 	read_lock(&tasklist_lock);
2447 
2448 	if (current->signal->leader && (task_session(current) == tty->session))
2449 		goto unlock;
2450 
2451 	/*
2452 	 * The process must be a session leader and
2453 	 * not have a controlling tty already.
2454 	 */
2455 	if (!current->signal->leader || current->signal->tty) {
2456 		ret = -EPERM;
2457 		goto unlock;
2458 	}
2459 
2460 	if (tty->session) {
2461 		/*
2462 		 * This tty is already the controlling
2463 		 * tty for another session group!
2464 		 */
2465 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2466 			/*
2467 			 * Steal it away
2468 			 */
2469 			session_clear_tty(tty->session);
2470 		} else {
2471 			ret = -EPERM;
2472 			goto unlock;
2473 		}
2474 	}
2475 
2476 	/* See the comment in tty_open(). */
2477 	if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2478 		ret = -EPERM;
2479 		goto unlock;
2480 	}
2481 
2482 	proc_set_tty(tty);
2483 unlock:
2484 	read_unlock(&tasklist_lock);
2485 	tty_unlock(tty);
2486 	return ret;
2487 }
2488 
2489 /**
2490  *	tty_get_pgrp	-	return a ref counted pgrp pid
2491  *	@tty: tty to read
2492  *
2493  *	Returns a refcounted instance of the pid struct for the process
2494  *	group controlling the tty.
2495  */
2496 
2497 struct pid *tty_get_pgrp(struct tty_struct *tty)
2498 {
2499 	unsigned long flags;
2500 	struct pid *pgrp;
2501 
2502 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2503 	pgrp = get_pid(tty->pgrp);
2504 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2505 
2506 	return pgrp;
2507 }
2508 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2509 
2510 /*
2511  * This checks not only the pgrp, but falls back on the pid if no
2512  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2513  * without this...
2514  *
2515  * The caller must hold rcu lock or the tasklist lock.
2516  */
2517 static struct pid *session_of_pgrp(struct pid *pgrp)
2518 {
2519 	struct task_struct *p;
2520 	struct pid *sid = NULL;
2521 
2522 	p = pid_task(pgrp, PIDTYPE_PGID);
2523 	if (p == NULL)
2524 		p = pid_task(pgrp, PIDTYPE_PID);
2525 	if (p != NULL)
2526 		sid = task_session(p);
2527 
2528 	return sid;
2529 }
2530 
2531 /**
2532  *	tiocgpgrp		-	get process group
2533  *	@tty: tty passed by user
2534  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2535  *	@p: returned pid
2536  *
2537  *	Obtain the process group of the tty. If there is no process group
2538  *	return an error.
2539  *
2540  *	Locking: none. Reference to current->signal->tty is safe.
2541  */
2542 
2543 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2544 {
2545 	struct pid *pid;
2546 	int ret;
2547 	/*
2548 	 * (tty == real_tty) is a cheap way of
2549 	 * testing if the tty is NOT a master pty.
2550 	 */
2551 	if (tty == real_tty && current->signal->tty != real_tty)
2552 		return -ENOTTY;
2553 	pid = tty_get_pgrp(real_tty);
2554 	ret =  put_user(pid_vnr(pid), p);
2555 	put_pid(pid);
2556 	return ret;
2557 }
2558 
2559 /**
2560  *	tiocspgrp		-	attempt to set process group
2561  *	@tty: tty passed by user
2562  *	@real_tty: tty side device matching tty passed by user
2563  *	@p: pid pointer
2564  *
2565  *	Set the process group of the tty to the session passed. Only
2566  *	permitted where the tty session is our session.
2567  *
2568  *	Locking: RCU, ctrl lock
2569  */
2570 
2571 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2572 {
2573 	struct pid *pgrp;
2574 	pid_t pgrp_nr;
2575 	int retval = tty_check_change(real_tty);
2576 
2577 	if (retval == -EIO)
2578 		return -ENOTTY;
2579 	if (retval)
2580 		return retval;
2581 	if (!current->signal->tty ||
2582 	    (current->signal->tty != real_tty) ||
2583 	    (real_tty->session != task_session(current)))
2584 		return -ENOTTY;
2585 	if (get_user(pgrp_nr, p))
2586 		return -EFAULT;
2587 	if (pgrp_nr < 0)
2588 		return -EINVAL;
2589 	rcu_read_lock();
2590 	pgrp = find_vpid(pgrp_nr);
2591 	retval = -ESRCH;
2592 	if (!pgrp)
2593 		goto out_unlock;
2594 	retval = -EPERM;
2595 	if (session_of_pgrp(pgrp) != task_session(current))
2596 		goto out_unlock;
2597 	retval = 0;
2598 	spin_lock_irq(&tty->ctrl_lock);
2599 	put_pid(real_tty->pgrp);
2600 	real_tty->pgrp = get_pid(pgrp);
2601 	spin_unlock_irq(&tty->ctrl_lock);
2602 out_unlock:
2603 	rcu_read_unlock();
2604 	return retval;
2605 }
2606 
2607 /**
2608  *	tiocgsid		-	get session id
2609  *	@tty: tty passed by user
2610  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2611  *	@p: pointer to returned session id
2612  *
2613  *	Obtain the session id of the tty. If there is no session
2614  *	return an error.
2615  *
2616  *	Locking: none. Reference to current->signal->tty is safe.
2617  */
2618 
2619 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2620 {
2621 	/*
2622 	 * (tty == real_tty) is a cheap way of
2623 	 * testing if the tty is NOT a master pty.
2624 	*/
2625 	if (tty == real_tty && current->signal->tty != real_tty)
2626 		return -ENOTTY;
2627 	if (!real_tty->session)
2628 		return -ENOTTY;
2629 	return put_user(pid_vnr(real_tty->session), p);
2630 }
2631 
2632 /**
2633  *	tiocsetd	-	set line discipline
2634  *	@tty: tty device
2635  *	@p: pointer to user data
2636  *
2637  *	Set the line discipline according to user request.
2638  *
2639  *	Locking: see tty_set_ldisc, this function is just a helper
2640  */
2641 
2642 static int tiocsetd(struct tty_struct *tty, int __user *p)
2643 {
2644 	int ldisc;
2645 	int ret;
2646 
2647 	if (get_user(ldisc, p))
2648 		return -EFAULT;
2649 
2650 	ret = tty_set_ldisc(tty, ldisc);
2651 
2652 	return ret;
2653 }
2654 
2655 /**
2656  *	send_break	-	performed time break
2657  *	@tty: device to break on
2658  *	@duration: timeout in mS
2659  *
2660  *	Perform a timed break on hardware that lacks its own driver level
2661  *	timed break functionality.
2662  *
2663  *	Locking:
2664  *		atomic_write_lock serializes
2665  *
2666  */
2667 
2668 static int send_break(struct tty_struct *tty, unsigned int duration)
2669 {
2670 	int retval;
2671 
2672 	if (tty->ops->break_ctl == NULL)
2673 		return 0;
2674 
2675 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2676 		retval = tty->ops->break_ctl(tty, duration);
2677 	else {
2678 		/* Do the work ourselves */
2679 		if (tty_write_lock(tty, 0) < 0)
2680 			return -EINTR;
2681 		retval = tty->ops->break_ctl(tty, -1);
2682 		if (retval)
2683 			goto out;
2684 		if (!signal_pending(current))
2685 			msleep_interruptible(duration);
2686 		retval = tty->ops->break_ctl(tty, 0);
2687 out:
2688 		tty_write_unlock(tty);
2689 		if (signal_pending(current))
2690 			retval = -EINTR;
2691 	}
2692 	return retval;
2693 }
2694 
2695 /**
2696  *	tty_tiocmget		-	get modem status
2697  *	@tty: tty device
2698  *	@file: user file pointer
2699  *	@p: pointer to result
2700  *
2701  *	Obtain the modem status bits from the tty driver if the feature
2702  *	is supported. Return -EINVAL if it is not available.
2703  *
2704  *	Locking: none (up to the driver)
2705  */
2706 
2707 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2708 {
2709 	int retval = -EINVAL;
2710 
2711 	if (tty->ops->tiocmget) {
2712 		retval = tty->ops->tiocmget(tty);
2713 
2714 		if (retval >= 0)
2715 			retval = put_user(retval, p);
2716 	}
2717 	return retval;
2718 }
2719 
2720 /**
2721  *	tty_tiocmset		-	set modem status
2722  *	@tty: tty device
2723  *	@cmd: command - clear bits, set bits or set all
2724  *	@p: pointer to desired bits
2725  *
2726  *	Set the modem status bits from the tty driver if the feature
2727  *	is supported. Return -EINVAL if it is not available.
2728  *
2729  *	Locking: none (up to the driver)
2730  */
2731 
2732 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2733 	     unsigned __user *p)
2734 {
2735 	int retval;
2736 	unsigned int set, clear, val;
2737 
2738 	if (tty->ops->tiocmset == NULL)
2739 		return -EINVAL;
2740 
2741 	retval = get_user(val, p);
2742 	if (retval)
2743 		return retval;
2744 	set = clear = 0;
2745 	switch (cmd) {
2746 	case TIOCMBIS:
2747 		set = val;
2748 		break;
2749 	case TIOCMBIC:
2750 		clear = val;
2751 		break;
2752 	case TIOCMSET:
2753 		set = val;
2754 		clear = ~val;
2755 		break;
2756 	}
2757 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2758 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2759 	return tty->ops->tiocmset(tty, set, clear);
2760 }
2761 
2762 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2763 {
2764 	int retval = -EINVAL;
2765 	struct serial_icounter_struct icount;
2766 	memset(&icount, 0, sizeof(icount));
2767 	if (tty->ops->get_icount)
2768 		retval = tty->ops->get_icount(tty, &icount);
2769 	if (retval != 0)
2770 		return retval;
2771 	if (copy_to_user(arg, &icount, sizeof(icount)))
2772 		return -EFAULT;
2773 	return 0;
2774 }
2775 
2776 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2777 {
2778 	static DEFINE_RATELIMIT_STATE(depr_flags,
2779 			DEFAULT_RATELIMIT_INTERVAL,
2780 			DEFAULT_RATELIMIT_BURST);
2781 	char comm[TASK_COMM_LEN];
2782 	int flags;
2783 
2784 	if (get_user(flags, &ss->flags))
2785 		return;
2786 
2787 	flags &= ASYNC_DEPRECATED;
2788 
2789 	if (flags && __ratelimit(&depr_flags))
2790 		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2791 				__func__, get_task_comm(comm, current), flags);
2792 }
2793 
2794 /*
2795  * if pty, return the slave side (real_tty)
2796  * otherwise, return self
2797  */
2798 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2799 {
2800 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2801 	    tty->driver->subtype == PTY_TYPE_MASTER)
2802 		tty = tty->link;
2803 	return tty;
2804 }
2805 
2806 /*
2807  * Split this up, as gcc can choke on it otherwise..
2808  */
2809 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2810 {
2811 	struct tty_struct *tty = file_tty(file);
2812 	struct tty_struct *real_tty;
2813 	void __user *p = (void __user *)arg;
2814 	int retval;
2815 	struct tty_ldisc *ld;
2816 
2817 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2818 		return -EINVAL;
2819 
2820 	real_tty = tty_pair_get_tty(tty);
2821 
2822 	/*
2823 	 * Factor out some common prep work
2824 	 */
2825 	switch (cmd) {
2826 	case TIOCSETD:
2827 	case TIOCSBRK:
2828 	case TIOCCBRK:
2829 	case TCSBRK:
2830 	case TCSBRKP:
2831 		retval = tty_check_change(tty);
2832 		if (retval)
2833 			return retval;
2834 		if (cmd != TIOCCBRK) {
2835 			tty_wait_until_sent(tty, 0);
2836 			if (signal_pending(current))
2837 				return -EINTR;
2838 		}
2839 		break;
2840 	}
2841 
2842 	/*
2843 	 *	Now do the stuff.
2844 	 */
2845 	switch (cmd) {
2846 	case TIOCSTI:
2847 		return tiocsti(tty, p);
2848 	case TIOCGWINSZ:
2849 		return tiocgwinsz(real_tty, p);
2850 	case TIOCSWINSZ:
2851 		return tiocswinsz(real_tty, p);
2852 	case TIOCCONS:
2853 		return real_tty != tty ? -EINVAL : tioccons(file);
2854 	case FIONBIO:
2855 		return fionbio(file, p);
2856 	case TIOCEXCL:
2857 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2858 		return 0;
2859 	case TIOCNXCL:
2860 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2861 		return 0;
2862 	case TIOCGEXCL:
2863 	{
2864 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2865 		return put_user(excl, (int __user *)p);
2866 	}
2867 	case TIOCNOTTY:
2868 		if (current->signal->tty != tty)
2869 			return -ENOTTY;
2870 		no_tty();
2871 		return 0;
2872 	case TIOCSCTTY:
2873 		return tiocsctty(tty, file, arg);
2874 	case TIOCGPGRP:
2875 		return tiocgpgrp(tty, real_tty, p);
2876 	case TIOCSPGRP:
2877 		return tiocspgrp(tty, real_tty, p);
2878 	case TIOCGSID:
2879 		return tiocgsid(tty, real_tty, p);
2880 	case TIOCGETD:
2881 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2882 	case TIOCSETD:
2883 		return tiocsetd(tty, p);
2884 	case TIOCVHANGUP:
2885 		if (!capable(CAP_SYS_ADMIN))
2886 			return -EPERM;
2887 		tty_vhangup(tty);
2888 		return 0;
2889 	case TIOCGDEV:
2890 	{
2891 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2892 		return put_user(ret, (unsigned int __user *)p);
2893 	}
2894 	/*
2895 	 * Break handling
2896 	 */
2897 	case TIOCSBRK:	/* Turn break on, unconditionally */
2898 		if (tty->ops->break_ctl)
2899 			return tty->ops->break_ctl(tty, -1);
2900 		return 0;
2901 	case TIOCCBRK:	/* Turn break off, unconditionally */
2902 		if (tty->ops->break_ctl)
2903 			return tty->ops->break_ctl(tty, 0);
2904 		return 0;
2905 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2906 		/* non-zero arg means wait for all output data
2907 		 * to be sent (performed above) but don't send break.
2908 		 * This is used by the tcdrain() termios function.
2909 		 */
2910 		if (!arg)
2911 			return send_break(tty, 250);
2912 		return 0;
2913 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2914 		return send_break(tty, arg ? arg*100 : 250);
2915 
2916 	case TIOCMGET:
2917 		return tty_tiocmget(tty, p);
2918 	case TIOCMSET:
2919 	case TIOCMBIC:
2920 	case TIOCMBIS:
2921 		return tty_tiocmset(tty, cmd, p);
2922 	case TIOCGICOUNT:
2923 		retval = tty_tiocgicount(tty, p);
2924 		/* For the moment allow fall through to the old method */
2925         	if (retval != -EINVAL)
2926 			return retval;
2927 		break;
2928 	case TCFLSH:
2929 		switch (arg) {
2930 		case TCIFLUSH:
2931 		case TCIOFLUSH:
2932 		/* flush tty buffer and allow ldisc to process ioctl */
2933 			tty_buffer_flush(tty, NULL);
2934 			break;
2935 		}
2936 		break;
2937 	case TIOCSSERIAL:
2938 		tty_warn_deprecated_flags(p);
2939 		break;
2940 	}
2941 	if (tty->ops->ioctl) {
2942 		retval = tty->ops->ioctl(tty, cmd, arg);
2943 		if (retval != -ENOIOCTLCMD)
2944 			return retval;
2945 	}
2946 	ld = tty_ldisc_ref_wait(tty);
2947 	retval = -EINVAL;
2948 	if (ld->ops->ioctl) {
2949 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2950 		if (retval == -ENOIOCTLCMD)
2951 			retval = -ENOTTY;
2952 	}
2953 	tty_ldisc_deref(ld);
2954 	return retval;
2955 }
2956 
2957 #ifdef CONFIG_COMPAT
2958 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2959 				unsigned long arg)
2960 {
2961 	struct tty_struct *tty = file_tty(file);
2962 	struct tty_ldisc *ld;
2963 	int retval = -ENOIOCTLCMD;
2964 
2965 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2966 		return -EINVAL;
2967 
2968 	if (tty->ops->compat_ioctl) {
2969 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2970 		if (retval != -ENOIOCTLCMD)
2971 			return retval;
2972 	}
2973 
2974 	ld = tty_ldisc_ref_wait(tty);
2975 	if (ld->ops->compat_ioctl)
2976 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2977 	else
2978 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2979 	tty_ldisc_deref(ld);
2980 
2981 	return retval;
2982 }
2983 #endif
2984 
2985 static int this_tty(const void *t, struct file *file, unsigned fd)
2986 {
2987 	if (likely(file->f_op->read != tty_read))
2988 		return 0;
2989 	return file_tty(file) != t ? 0 : fd + 1;
2990 }
2991 
2992 /*
2993  * This implements the "Secure Attention Key" ---  the idea is to
2994  * prevent trojan horses by killing all processes associated with this
2995  * tty when the user hits the "Secure Attention Key".  Required for
2996  * super-paranoid applications --- see the Orange Book for more details.
2997  *
2998  * This code could be nicer; ideally it should send a HUP, wait a few
2999  * seconds, then send a INT, and then a KILL signal.  But you then
3000  * have to coordinate with the init process, since all processes associated
3001  * with the current tty must be dead before the new getty is allowed
3002  * to spawn.
3003  *
3004  * Now, if it would be correct ;-/ The current code has a nasty hole -
3005  * it doesn't catch files in flight. We may send the descriptor to ourselves
3006  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3007  *
3008  * Nasty bug: do_SAK is being called in interrupt context.  This can
3009  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3010  */
3011 void __do_SAK(struct tty_struct *tty)
3012 {
3013 #ifdef TTY_SOFT_SAK
3014 	tty_hangup(tty);
3015 #else
3016 	struct task_struct *g, *p;
3017 	struct pid *session;
3018 	int		i;
3019 
3020 	if (!tty)
3021 		return;
3022 	session = tty->session;
3023 
3024 	tty_ldisc_flush(tty);
3025 
3026 	tty_driver_flush_buffer(tty);
3027 
3028 	read_lock(&tasklist_lock);
3029 	/* Kill the entire session */
3030 	do_each_pid_task(session, PIDTYPE_SID, p) {
3031 		printk(KERN_NOTICE "SAK: killed process %d"
3032 			" (%s): task_session(p)==tty->session\n",
3033 			task_pid_nr(p), p->comm);
3034 		send_sig(SIGKILL, p, 1);
3035 	} while_each_pid_task(session, PIDTYPE_SID, p);
3036 	/* Now kill any processes that happen to have the
3037 	 * tty open.
3038 	 */
3039 	do_each_thread(g, p) {
3040 		if (p->signal->tty == tty) {
3041 			printk(KERN_NOTICE "SAK: killed process %d"
3042 			    " (%s): task_session(p)==tty->session\n",
3043 			    task_pid_nr(p), p->comm);
3044 			send_sig(SIGKILL, p, 1);
3045 			continue;
3046 		}
3047 		task_lock(p);
3048 		i = iterate_fd(p->files, 0, this_tty, tty);
3049 		if (i != 0) {
3050 			printk(KERN_NOTICE "SAK: killed process %d"
3051 			    " (%s): fd#%d opened to the tty\n",
3052 				    task_pid_nr(p), p->comm, i - 1);
3053 			force_sig(SIGKILL, p);
3054 		}
3055 		task_unlock(p);
3056 	} while_each_thread(g, p);
3057 	read_unlock(&tasklist_lock);
3058 #endif
3059 }
3060 
3061 static void do_SAK_work(struct work_struct *work)
3062 {
3063 	struct tty_struct *tty =
3064 		container_of(work, struct tty_struct, SAK_work);
3065 	__do_SAK(tty);
3066 }
3067 
3068 /*
3069  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3070  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3071  * the values which we write to it will be identical to the values which it
3072  * already has. --akpm
3073  */
3074 void do_SAK(struct tty_struct *tty)
3075 {
3076 	if (!tty)
3077 		return;
3078 	schedule_work(&tty->SAK_work);
3079 }
3080 
3081 EXPORT_SYMBOL(do_SAK);
3082 
3083 static int dev_match_devt(struct device *dev, const void *data)
3084 {
3085 	const dev_t *devt = data;
3086 	return dev->devt == *devt;
3087 }
3088 
3089 /* Must put_device() after it's unused! */
3090 static struct device *tty_get_device(struct tty_struct *tty)
3091 {
3092 	dev_t devt = tty_devnum(tty);
3093 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3094 }
3095 
3096 
3097 /**
3098  *	alloc_tty_struct
3099  *
3100  *	This subroutine allocates and initializes a tty structure.
3101  *
3102  *	Locking: none - tty in question is not exposed at this point
3103  */
3104 
3105 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3106 {
3107 	struct tty_struct *tty;
3108 
3109 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3110 	if (!tty)
3111 		return NULL;
3112 
3113 	kref_init(&tty->kref);
3114 	tty->magic = TTY_MAGIC;
3115 	tty_ldisc_init(tty);
3116 	tty->session = NULL;
3117 	tty->pgrp = NULL;
3118 	mutex_init(&tty->legacy_mutex);
3119 	mutex_init(&tty->throttle_mutex);
3120 	init_rwsem(&tty->termios_rwsem);
3121 	mutex_init(&tty->winsize_mutex);
3122 	init_ldsem(&tty->ldisc_sem);
3123 	init_waitqueue_head(&tty->write_wait);
3124 	init_waitqueue_head(&tty->read_wait);
3125 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3126 	mutex_init(&tty->atomic_write_lock);
3127 	spin_lock_init(&tty->ctrl_lock);
3128 	spin_lock_init(&tty->flow_lock);
3129 	INIT_LIST_HEAD(&tty->tty_files);
3130 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3131 
3132 	tty->driver = driver;
3133 	tty->ops = driver->ops;
3134 	tty->index = idx;
3135 	tty_line_name(driver, idx, tty->name);
3136 	tty->dev = tty_get_device(tty);
3137 
3138 	return tty;
3139 }
3140 
3141 /**
3142  *	deinitialize_tty_struct
3143  *	@tty: tty to deinitialize
3144  *
3145  *	This subroutine deinitializes a tty structure that has been newly
3146  *	allocated but tty_release cannot be called on that yet.
3147  *
3148  *	Locking: none - tty in question must not be exposed at this point
3149  */
3150 void deinitialize_tty_struct(struct tty_struct *tty)
3151 {
3152 	tty_ldisc_deinit(tty);
3153 }
3154 
3155 /**
3156  *	tty_put_char	-	write one character to a tty
3157  *	@tty: tty
3158  *	@ch: character
3159  *
3160  *	Write one byte to the tty using the provided put_char method
3161  *	if present. Returns the number of characters successfully output.
3162  *
3163  *	Note: the specific put_char operation in the driver layer may go
3164  *	away soon. Don't call it directly, use this method
3165  */
3166 
3167 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3168 {
3169 	if (tty->ops->put_char)
3170 		return tty->ops->put_char(tty, ch);
3171 	return tty->ops->write(tty, &ch, 1);
3172 }
3173 EXPORT_SYMBOL_GPL(tty_put_char);
3174 
3175 struct class *tty_class;
3176 
3177 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3178 		unsigned int index, unsigned int count)
3179 {
3180 	int err;
3181 
3182 	/* init here, since reused cdevs cause crashes */
3183 	driver->cdevs[index] = cdev_alloc();
3184 	if (!driver->cdevs[index])
3185 		return -ENOMEM;
3186 	driver->cdevs[index]->ops = &tty_fops;
3187 	driver->cdevs[index]->owner = driver->owner;
3188 	err = cdev_add(driver->cdevs[index], dev, count);
3189 	if (err)
3190 		kobject_put(&driver->cdevs[index]->kobj);
3191 	return err;
3192 }
3193 
3194 /**
3195  *	tty_register_device - register a tty device
3196  *	@driver: the tty driver that describes the tty device
3197  *	@index: the index in the tty driver for this tty device
3198  *	@device: a struct device that is associated with this tty device.
3199  *		This field is optional, if there is no known struct device
3200  *		for this tty device it can be set to NULL safely.
3201  *
3202  *	Returns a pointer to the struct device for this tty device
3203  *	(or ERR_PTR(-EFOO) on error).
3204  *
3205  *	This call is required to be made to register an individual tty device
3206  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3207  *	that bit is not set, this function should not be called by a tty
3208  *	driver.
3209  *
3210  *	Locking: ??
3211  */
3212 
3213 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3214 				   struct device *device)
3215 {
3216 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3217 }
3218 EXPORT_SYMBOL(tty_register_device);
3219 
3220 static void tty_device_create_release(struct device *dev)
3221 {
3222 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3223 	kfree(dev);
3224 }
3225 
3226 /**
3227  *	tty_register_device_attr - register a tty device
3228  *	@driver: the tty driver that describes the tty device
3229  *	@index: the index in the tty driver for this tty device
3230  *	@device: a struct device that is associated with this tty device.
3231  *		This field is optional, if there is no known struct device
3232  *		for this tty device it can be set to NULL safely.
3233  *	@drvdata: Driver data to be set to device.
3234  *	@attr_grp: Attribute group to be set on device.
3235  *
3236  *	Returns a pointer to the struct device for this tty device
3237  *	(or ERR_PTR(-EFOO) on error).
3238  *
3239  *	This call is required to be made to register an individual tty device
3240  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3241  *	that bit is not set, this function should not be called by a tty
3242  *	driver.
3243  *
3244  *	Locking: ??
3245  */
3246 struct device *tty_register_device_attr(struct tty_driver *driver,
3247 				   unsigned index, struct device *device,
3248 				   void *drvdata,
3249 				   const struct attribute_group **attr_grp)
3250 {
3251 	char name[64];
3252 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3253 	struct device *dev = NULL;
3254 	int retval = -ENODEV;
3255 	bool cdev = false;
3256 
3257 	if (index >= driver->num) {
3258 		printk(KERN_ERR "Attempt to register invalid tty line number "
3259 		       " (%d).\n", index);
3260 		return ERR_PTR(-EINVAL);
3261 	}
3262 
3263 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3264 		pty_line_name(driver, index, name);
3265 	else
3266 		tty_line_name(driver, index, name);
3267 
3268 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3269 		retval = tty_cdev_add(driver, devt, index, 1);
3270 		if (retval)
3271 			goto error;
3272 		cdev = true;
3273 	}
3274 
3275 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3276 	if (!dev) {
3277 		retval = -ENOMEM;
3278 		goto error;
3279 	}
3280 
3281 	dev->devt = devt;
3282 	dev->class = tty_class;
3283 	dev->parent = device;
3284 	dev->release = tty_device_create_release;
3285 	dev_set_name(dev, "%s", name);
3286 	dev->groups = attr_grp;
3287 	dev_set_drvdata(dev, drvdata);
3288 
3289 	retval = device_register(dev);
3290 	if (retval)
3291 		goto error;
3292 
3293 	return dev;
3294 
3295 error:
3296 	put_device(dev);
3297 	if (cdev) {
3298 		cdev_del(driver->cdevs[index]);
3299 		driver->cdevs[index] = NULL;
3300 	}
3301 	return ERR_PTR(retval);
3302 }
3303 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3304 
3305 /**
3306  * 	tty_unregister_device - unregister a tty device
3307  * 	@driver: the tty driver that describes the tty device
3308  * 	@index: the index in the tty driver for this tty device
3309  *
3310  * 	If a tty device is registered with a call to tty_register_device() then
3311  *	this function must be called when the tty device is gone.
3312  *
3313  *	Locking: ??
3314  */
3315 
3316 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3317 {
3318 	device_destroy(tty_class,
3319 		MKDEV(driver->major, driver->minor_start) + index);
3320 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3321 		cdev_del(driver->cdevs[index]);
3322 		driver->cdevs[index] = NULL;
3323 	}
3324 }
3325 EXPORT_SYMBOL(tty_unregister_device);
3326 
3327 /**
3328  * __tty_alloc_driver -- allocate tty driver
3329  * @lines: count of lines this driver can handle at most
3330  * @owner: module which is repsonsible for this driver
3331  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3332  *
3333  * This should not be called directly, some of the provided macros should be
3334  * used instead. Use IS_ERR and friends on @retval.
3335  */
3336 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3337 		unsigned long flags)
3338 {
3339 	struct tty_driver *driver;
3340 	unsigned int cdevs = 1;
3341 	int err;
3342 
3343 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3344 		return ERR_PTR(-EINVAL);
3345 
3346 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3347 	if (!driver)
3348 		return ERR_PTR(-ENOMEM);
3349 
3350 	kref_init(&driver->kref);
3351 	driver->magic = TTY_DRIVER_MAGIC;
3352 	driver->num = lines;
3353 	driver->owner = owner;
3354 	driver->flags = flags;
3355 
3356 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3357 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3358 				GFP_KERNEL);
3359 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3360 				GFP_KERNEL);
3361 		if (!driver->ttys || !driver->termios) {
3362 			err = -ENOMEM;
3363 			goto err_free_all;
3364 		}
3365 	}
3366 
3367 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3368 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3369 				GFP_KERNEL);
3370 		if (!driver->ports) {
3371 			err = -ENOMEM;
3372 			goto err_free_all;
3373 		}
3374 		cdevs = lines;
3375 	}
3376 
3377 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3378 	if (!driver->cdevs) {
3379 		err = -ENOMEM;
3380 		goto err_free_all;
3381 	}
3382 
3383 	return driver;
3384 err_free_all:
3385 	kfree(driver->ports);
3386 	kfree(driver->ttys);
3387 	kfree(driver->termios);
3388 	kfree(driver->cdevs);
3389 	kfree(driver);
3390 	return ERR_PTR(err);
3391 }
3392 EXPORT_SYMBOL(__tty_alloc_driver);
3393 
3394 static void destruct_tty_driver(struct kref *kref)
3395 {
3396 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3397 	int i;
3398 	struct ktermios *tp;
3399 
3400 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3401 		/*
3402 		 * Free the termios and termios_locked structures because
3403 		 * we don't want to get memory leaks when modular tty
3404 		 * drivers are removed from the kernel.
3405 		 */
3406 		for (i = 0; i < driver->num; i++) {
3407 			tp = driver->termios[i];
3408 			if (tp) {
3409 				driver->termios[i] = NULL;
3410 				kfree(tp);
3411 			}
3412 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3413 				tty_unregister_device(driver, i);
3414 		}
3415 		proc_tty_unregister_driver(driver);
3416 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3417 			cdev_del(driver->cdevs[0]);
3418 	}
3419 	kfree(driver->cdevs);
3420 	kfree(driver->ports);
3421 	kfree(driver->termios);
3422 	kfree(driver->ttys);
3423 	kfree(driver);
3424 }
3425 
3426 void tty_driver_kref_put(struct tty_driver *driver)
3427 {
3428 	kref_put(&driver->kref, destruct_tty_driver);
3429 }
3430 EXPORT_SYMBOL(tty_driver_kref_put);
3431 
3432 void tty_set_operations(struct tty_driver *driver,
3433 			const struct tty_operations *op)
3434 {
3435 	driver->ops = op;
3436 };
3437 EXPORT_SYMBOL(tty_set_operations);
3438 
3439 void put_tty_driver(struct tty_driver *d)
3440 {
3441 	tty_driver_kref_put(d);
3442 }
3443 EXPORT_SYMBOL(put_tty_driver);
3444 
3445 /*
3446  * Called by a tty driver to register itself.
3447  */
3448 int tty_register_driver(struct tty_driver *driver)
3449 {
3450 	int error;
3451 	int i;
3452 	dev_t dev;
3453 	struct device *d;
3454 
3455 	if (!driver->major) {
3456 		error = alloc_chrdev_region(&dev, driver->minor_start,
3457 						driver->num, driver->name);
3458 		if (!error) {
3459 			driver->major = MAJOR(dev);
3460 			driver->minor_start = MINOR(dev);
3461 		}
3462 	} else {
3463 		dev = MKDEV(driver->major, driver->minor_start);
3464 		error = register_chrdev_region(dev, driver->num, driver->name);
3465 	}
3466 	if (error < 0)
3467 		goto err;
3468 
3469 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3470 		error = tty_cdev_add(driver, dev, 0, driver->num);
3471 		if (error)
3472 			goto err_unreg_char;
3473 	}
3474 
3475 	mutex_lock(&tty_mutex);
3476 	list_add(&driver->tty_drivers, &tty_drivers);
3477 	mutex_unlock(&tty_mutex);
3478 
3479 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3480 		for (i = 0; i < driver->num; i++) {
3481 			d = tty_register_device(driver, i, NULL);
3482 			if (IS_ERR(d)) {
3483 				error = PTR_ERR(d);
3484 				goto err_unreg_devs;
3485 			}
3486 		}
3487 	}
3488 	proc_tty_register_driver(driver);
3489 	driver->flags |= TTY_DRIVER_INSTALLED;
3490 	return 0;
3491 
3492 err_unreg_devs:
3493 	for (i--; i >= 0; i--)
3494 		tty_unregister_device(driver, i);
3495 
3496 	mutex_lock(&tty_mutex);
3497 	list_del(&driver->tty_drivers);
3498 	mutex_unlock(&tty_mutex);
3499 
3500 err_unreg_char:
3501 	unregister_chrdev_region(dev, driver->num);
3502 err:
3503 	return error;
3504 }
3505 EXPORT_SYMBOL(tty_register_driver);
3506 
3507 /*
3508  * Called by a tty driver to unregister itself.
3509  */
3510 int tty_unregister_driver(struct tty_driver *driver)
3511 {
3512 #if 0
3513 	/* FIXME */
3514 	if (driver->refcount)
3515 		return -EBUSY;
3516 #endif
3517 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3518 				driver->num);
3519 	mutex_lock(&tty_mutex);
3520 	list_del(&driver->tty_drivers);
3521 	mutex_unlock(&tty_mutex);
3522 	return 0;
3523 }
3524 
3525 EXPORT_SYMBOL(tty_unregister_driver);
3526 
3527 dev_t tty_devnum(struct tty_struct *tty)
3528 {
3529 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3530 }
3531 EXPORT_SYMBOL(tty_devnum);
3532 
3533 void tty_default_fops(struct file_operations *fops)
3534 {
3535 	*fops = tty_fops;
3536 }
3537 
3538 /*
3539  * Initialize the console device. This is called *early*, so
3540  * we can't necessarily depend on lots of kernel help here.
3541  * Just do some early initializations, and do the complex setup
3542  * later.
3543  */
3544 void __init console_init(void)
3545 {
3546 	initcall_t *call;
3547 
3548 	/* Setup the default TTY line discipline. */
3549 	tty_ldisc_begin();
3550 
3551 	/*
3552 	 * set up the console device so that later boot sequences can
3553 	 * inform about problems etc..
3554 	 */
3555 	call = __con_initcall_start;
3556 	while (call < __con_initcall_end) {
3557 		(*call)();
3558 		call++;
3559 	}
3560 }
3561 
3562 static char *tty_devnode(struct device *dev, umode_t *mode)
3563 {
3564 	if (!mode)
3565 		return NULL;
3566 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3567 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3568 		*mode = 0666;
3569 	return NULL;
3570 }
3571 
3572 static int __init tty_class_init(void)
3573 {
3574 	tty_class = class_create(THIS_MODULE, "tty");
3575 	if (IS_ERR(tty_class))
3576 		return PTR_ERR(tty_class);
3577 	tty_class->devnode = tty_devnode;
3578 	return 0;
3579 }
3580 
3581 postcore_initcall(tty_class_init);
3582 
3583 /* 3/2004 jmc: why do these devices exist? */
3584 static struct cdev tty_cdev, console_cdev;
3585 
3586 static ssize_t show_cons_active(struct device *dev,
3587 				struct device_attribute *attr, char *buf)
3588 {
3589 	struct console *cs[16];
3590 	int i = 0;
3591 	struct console *c;
3592 	ssize_t count = 0;
3593 
3594 	console_lock();
3595 	for_each_console(c) {
3596 		if (!c->device)
3597 			continue;
3598 		if (!c->write)
3599 			continue;
3600 		if ((c->flags & CON_ENABLED) == 0)
3601 			continue;
3602 		cs[i++] = c;
3603 		if (i >= ARRAY_SIZE(cs))
3604 			break;
3605 	}
3606 	while (i--) {
3607 		int index = cs[i]->index;
3608 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3609 
3610 		/* don't resolve tty0 as some programs depend on it */
3611 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3612 			count += tty_line_name(drv, index, buf + count);
3613 		else
3614 			count += sprintf(buf + count, "%s%d",
3615 					 cs[i]->name, cs[i]->index);
3616 
3617 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3618 	}
3619 	console_unlock();
3620 
3621 	return count;
3622 }
3623 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3624 
3625 static struct attribute *cons_dev_attrs[] = {
3626 	&dev_attr_active.attr,
3627 	NULL
3628 };
3629 
3630 ATTRIBUTE_GROUPS(cons_dev);
3631 
3632 static struct device *consdev;
3633 
3634 void console_sysfs_notify(void)
3635 {
3636 	if (consdev)
3637 		sysfs_notify(&consdev->kobj, NULL, "active");
3638 }
3639 
3640 /*
3641  * Ok, now we can initialize the rest of the tty devices and can count
3642  * on memory allocations, interrupts etc..
3643  */
3644 int __init tty_init(void)
3645 {
3646 	cdev_init(&tty_cdev, &tty_fops);
3647 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3648 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3649 		panic("Couldn't register /dev/tty driver\n");
3650 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3651 
3652 	cdev_init(&console_cdev, &console_fops);
3653 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3654 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3655 		panic("Couldn't register /dev/console driver\n");
3656 	consdev = device_create_with_groups(tty_class, NULL,
3657 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3658 					    cons_dev_groups, "console");
3659 	if (IS_ERR(consdev))
3660 		consdev = NULL;
3661 
3662 #ifdef CONFIG_VT
3663 	vty_init(&console_fops);
3664 #endif
3665 	return 0;
3666 }
3667 
3668