xref: /openbmc/linux/drivers/tty/tty_io.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched/signal.h>
73 #include <linux/sched/task.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/fdtable.h>
81 #include <linux/console.h>
82 #include <linux/timer.h>
83 #include <linux/ctype.h>
84 #include <linux/kd.h>
85 #include <linux/mm.h>
86 #include <linux/string.h>
87 #include <linux/slab.h>
88 #include <linux/poll.h>
89 #include <linux/proc_fs.h>
90 #include <linux/init.h>
91 #include <linux/module.h>
92 #include <linux/device.h>
93 #include <linux/wait.h>
94 #include <linux/bitops.h>
95 #include <linux/delay.h>
96 #include <linux/seq_file.h>
97 #include <linux/serial.h>
98 #include <linux/ratelimit.h>
99 
100 #include <linux/uaccess.h>
101 
102 #include <linux/kbd_kern.h>
103 #include <linux/vt_kern.h>
104 #include <linux/selection.h>
105 
106 #include <linux/kmod.h>
107 #include <linux/nsproxy.h>
108 
109 #undef TTY_DEBUG_HANGUP
110 #ifdef TTY_DEBUG_HANGUP
111 # define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
112 #else
113 # define tty_debug_hangup(tty, f, args...)	do { } while (0)
114 #endif
115 
116 #define TTY_PARANOIA_CHECK 1
117 #define CHECK_TTY_COUNT 1
118 
119 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
120 	.c_iflag = ICRNL | IXON,
121 	.c_oflag = OPOST | ONLCR,
122 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
123 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
124 		   ECHOCTL | ECHOKE | IEXTEN,
125 	.c_cc = INIT_C_CC,
126 	.c_ispeed = 38400,
127 	.c_ospeed = 38400,
128 	/* .c_line = N_TTY, */
129 };
130 
131 EXPORT_SYMBOL(tty_std_termios);
132 
133 /* This list gets poked at by procfs and various bits of boot up code. This
134    could do with some rationalisation such as pulling the tty proc function
135    into this file */
136 
137 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
138 
139 /* Mutex to protect creating and releasing a tty */
140 DEFINE_MUTEX(tty_mutex);
141 
142 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
143 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
144 ssize_t redirected_tty_write(struct file *, const char __user *,
145 							size_t, loff_t *);
146 static unsigned int tty_poll(struct file *, poll_table *);
147 static int tty_open(struct inode *, struct file *);
148 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
149 #ifdef CONFIG_COMPAT
150 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
151 				unsigned long arg);
152 #else
153 #define tty_compat_ioctl NULL
154 #endif
155 static int __tty_fasync(int fd, struct file *filp, int on);
156 static int tty_fasync(int fd, struct file *filp, int on);
157 static void release_tty(struct tty_struct *tty, int idx);
158 
159 /**
160  *	free_tty_struct		-	free a disused tty
161  *	@tty: tty struct to free
162  *
163  *	Free the write buffers, tty queue and tty memory itself.
164  *
165  *	Locking: none. Must be called after tty is definitely unused
166  */
167 
168 static void free_tty_struct(struct tty_struct *tty)
169 {
170 	tty_ldisc_deinit(tty);
171 	put_device(tty->dev);
172 	kfree(tty->write_buf);
173 	tty->magic = 0xDEADDEAD;
174 	kfree(tty);
175 }
176 
177 static inline struct tty_struct *file_tty(struct file *file)
178 {
179 	return ((struct tty_file_private *)file->private_data)->tty;
180 }
181 
182 int tty_alloc_file(struct file *file)
183 {
184 	struct tty_file_private *priv;
185 
186 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
187 	if (!priv)
188 		return -ENOMEM;
189 
190 	file->private_data = priv;
191 
192 	return 0;
193 }
194 
195 /* Associate a new file with the tty structure */
196 void tty_add_file(struct tty_struct *tty, struct file *file)
197 {
198 	struct tty_file_private *priv = file->private_data;
199 
200 	priv->tty = tty;
201 	priv->file = file;
202 
203 	spin_lock(&tty->files_lock);
204 	list_add(&priv->list, &tty->tty_files);
205 	spin_unlock(&tty->files_lock);
206 }
207 
208 /**
209  * tty_free_file - free file->private_data
210  *
211  * This shall be used only for fail path handling when tty_add_file was not
212  * called yet.
213  */
214 void tty_free_file(struct file *file)
215 {
216 	struct tty_file_private *priv = file->private_data;
217 
218 	file->private_data = NULL;
219 	kfree(priv);
220 }
221 
222 /* Delete file from its tty */
223 static void tty_del_file(struct file *file)
224 {
225 	struct tty_file_private *priv = file->private_data;
226 	struct tty_struct *tty = priv->tty;
227 
228 	spin_lock(&tty->files_lock);
229 	list_del(&priv->list);
230 	spin_unlock(&tty->files_lock);
231 	tty_free_file(file);
232 }
233 
234 /**
235  *	tty_name	-	return tty naming
236  *	@tty: tty structure
237  *
238  *	Convert a tty structure into a name. The name reflects the kernel
239  *	naming policy and if udev is in use may not reflect user space
240  *
241  *	Locking: none
242  */
243 
244 const char *tty_name(const struct tty_struct *tty)
245 {
246 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
247 		return "NULL tty";
248 	return tty->name;
249 }
250 
251 EXPORT_SYMBOL(tty_name);
252 
253 const char *tty_driver_name(const struct tty_struct *tty)
254 {
255 	if (!tty || !tty->driver)
256 		return "";
257 	return tty->driver->name;
258 }
259 
260 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
261 			      const char *routine)
262 {
263 #ifdef TTY_PARANOIA_CHECK
264 	if (!tty) {
265 		pr_warn("(%d:%d): %s: NULL tty\n",
266 			imajor(inode), iminor(inode), routine);
267 		return 1;
268 	}
269 	if (tty->magic != TTY_MAGIC) {
270 		pr_warn("(%d:%d): %s: bad magic number\n",
271 			imajor(inode), iminor(inode), routine);
272 		return 1;
273 	}
274 #endif
275 	return 0;
276 }
277 
278 /* Caller must hold tty_lock */
279 static int check_tty_count(struct tty_struct *tty, const char *routine)
280 {
281 #ifdef CHECK_TTY_COUNT
282 	struct list_head *p;
283 	int count = 0;
284 
285 	spin_lock(&tty->files_lock);
286 	list_for_each(p, &tty->tty_files) {
287 		count++;
288 	}
289 	spin_unlock(&tty->files_lock);
290 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
291 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
292 	    tty->link && tty->link->count)
293 		count++;
294 	if (tty->count != count) {
295 		tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n",
296 			 routine, tty->count, count);
297 		return count;
298 	}
299 #endif
300 	return 0;
301 }
302 
303 /**
304  *	get_tty_driver		-	find device of a tty
305  *	@dev_t: device identifier
306  *	@index: returns the index of the tty
307  *
308  *	This routine returns a tty driver structure, given a device number
309  *	and also passes back the index number.
310  *
311  *	Locking: caller must hold tty_mutex
312  */
313 
314 static struct tty_driver *get_tty_driver(dev_t device, int *index)
315 {
316 	struct tty_driver *p;
317 
318 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
319 		dev_t base = MKDEV(p->major, p->minor_start);
320 		if (device < base || device >= base + p->num)
321 			continue;
322 		*index = device - base;
323 		return tty_driver_kref_get(p);
324 	}
325 	return NULL;
326 }
327 
328 #ifdef CONFIG_CONSOLE_POLL
329 
330 /**
331  *	tty_find_polling_driver	-	find device of a polled tty
332  *	@name: name string to match
333  *	@line: pointer to resulting tty line nr
334  *
335  *	This routine returns a tty driver structure, given a name
336  *	and the condition that the tty driver is capable of polled
337  *	operation.
338  */
339 struct tty_driver *tty_find_polling_driver(char *name, int *line)
340 {
341 	struct tty_driver *p, *res = NULL;
342 	int tty_line = 0;
343 	int len;
344 	char *str, *stp;
345 
346 	for (str = name; *str; str++)
347 		if ((*str >= '0' && *str <= '9') || *str == ',')
348 			break;
349 	if (!*str)
350 		return NULL;
351 
352 	len = str - name;
353 	tty_line = simple_strtoul(str, &str, 10);
354 
355 	mutex_lock(&tty_mutex);
356 	/* Search through the tty devices to look for a match */
357 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
358 		if (strncmp(name, p->name, len) != 0)
359 			continue;
360 		stp = str;
361 		if (*stp == ',')
362 			stp++;
363 		if (*stp == '\0')
364 			stp = NULL;
365 
366 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
367 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
368 			res = tty_driver_kref_get(p);
369 			*line = tty_line;
370 			break;
371 		}
372 	}
373 	mutex_unlock(&tty_mutex);
374 
375 	return res;
376 }
377 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
378 #endif
379 
380 static int is_ignored(int sig)
381 {
382 	return (sigismember(&current->blocked, sig) ||
383 		current->sighand->action[sig-1].sa.sa_handler == SIG_IGN);
384 }
385 
386 /**
387  *	tty_check_change	-	check for POSIX terminal changes
388  *	@tty: tty to check
389  *
390  *	If we try to write to, or set the state of, a terminal and we're
391  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
392  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
393  *
394  *	Locking: ctrl_lock
395  */
396 
397 int __tty_check_change(struct tty_struct *tty, int sig)
398 {
399 	unsigned long flags;
400 	struct pid *pgrp, *tty_pgrp;
401 	int ret = 0;
402 
403 	if (current->signal->tty != tty)
404 		return 0;
405 
406 	rcu_read_lock();
407 	pgrp = task_pgrp(current);
408 
409 	spin_lock_irqsave(&tty->ctrl_lock, flags);
410 	tty_pgrp = tty->pgrp;
411 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
412 
413 	if (tty_pgrp && pgrp != tty->pgrp) {
414 		if (is_ignored(sig)) {
415 			if (sig == SIGTTIN)
416 				ret = -EIO;
417 		} else if (is_current_pgrp_orphaned())
418 			ret = -EIO;
419 		else {
420 			kill_pgrp(pgrp, sig, 1);
421 			set_thread_flag(TIF_SIGPENDING);
422 			ret = -ERESTARTSYS;
423 		}
424 	}
425 	rcu_read_unlock();
426 
427 	if (!tty_pgrp)
428 		tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig);
429 
430 	return ret;
431 }
432 
433 int tty_check_change(struct tty_struct *tty)
434 {
435 	return __tty_check_change(tty, SIGTTOU);
436 }
437 EXPORT_SYMBOL(tty_check_change);
438 
439 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
440 				size_t count, loff_t *ppos)
441 {
442 	return 0;
443 }
444 
445 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
446 				 size_t count, loff_t *ppos)
447 {
448 	return -EIO;
449 }
450 
451 /* No kernel lock held - none needed ;) */
452 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
453 {
454 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
455 }
456 
457 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
458 		unsigned long arg)
459 {
460 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
461 }
462 
463 static long hung_up_tty_compat_ioctl(struct file *file,
464 				     unsigned int cmd, unsigned long arg)
465 {
466 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
467 }
468 
469 static int hung_up_tty_fasync(int fd, struct file *file, int on)
470 {
471 	return -ENOTTY;
472 }
473 
474 static const struct file_operations tty_fops = {
475 	.llseek		= no_llseek,
476 	.read		= tty_read,
477 	.write		= tty_write,
478 	.poll		= tty_poll,
479 	.unlocked_ioctl	= tty_ioctl,
480 	.compat_ioctl	= tty_compat_ioctl,
481 	.open		= tty_open,
482 	.release	= tty_release,
483 	.fasync		= tty_fasync,
484 };
485 
486 static const struct file_operations console_fops = {
487 	.llseek		= no_llseek,
488 	.read		= tty_read,
489 	.write		= redirected_tty_write,
490 	.poll		= tty_poll,
491 	.unlocked_ioctl	= tty_ioctl,
492 	.compat_ioctl	= tty_compat_ioctl,
493 	.open		= tty_open,
494 	.release	= tty_release,
495 	.fasync		= tty_fasync,
496 };
497 
498 static const struct file_operations hung_up_tty_fops = {
499 	.llseek		= no_llseek,
500 	.read		= hung_up_tty_read,
501 	.write		= hung_up_tty_write,
502 	.poll		= hung_up_tty_poll,
503 	.unlocked_ioctl	= hung_up_tty_ioctl,
504 	.compat_ioctl	= hung_up_tty_compat_ioctl,
505 	.release	= tty_release,
506 	.fasync		= hung_up_tty_fasync,
507 };
508 
509 static DEFINE_SPINLOCK(redirect_lock);
510 static struct file *redirect;
511 
512 
513 void proc_clear_tty(struct task_struct *p)
514 {
515 	unsigned long flags;
516 	struct tty_struct *tty;
517 	spin_lock_irqsave(&p->sighand->siglock, flags);
518 	tty = p->signal->tty;
519 	p->signal->tty = NULL;
520 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
521 	tty_kref_put(tty);
522 }
523 
524 /**
525  * proc_set_tty -  set the controlling terminal
526  *
527  * Only callable by the session leader and only if it does not already have
528  * a controlling terminal.
529  *
530  * Caller must hold:  tty_lock()
531  *		      a readlock on tasklist_lock
532  *		      sighand lock
533  */
534 static void __proc_set_tty(struct tty_struct *tty)
535 {
536 	unsigned long flags;
537 
538 	spin_lock_irqsave(&tty->ctrl_lock, flags);
539 	/*
540 	 * The session and fg pgrp references will be non-NULL if
541 	 * tiocsctty() is stealing the controlling tty
542 	 */
543 	put_pid(tty->session);
544 	put_pid(tty->pgrp);
545 	tty->pgrp = get_pid(task_pgrp(current));
546 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
547 	tty->session = get_pid(task_session(current));
548 	if (current->signal->tty) {
549 		tty_debug(tty, "current tty %s not NULL!!\n",
550 			  current->signal->tty->name);
551 		tty_kref_put(current->signal->tty);
552 	}
553 	put_pid(current->signal->tty_old_pgrp);
554 	current->signal->tty = tty_kref_get(tty);
555 	current->signal->tty_old_pgrp = NULL;
556 }
557 
558 static void proc_set_tty(struct tty_struct *tty)
559 {
560 	spin_lock_irq(&current->sighand->siglock);
561 	__proc_set_tty(tty);
562 	spin_unlock_irq(&current->sighand->siglock);
563 }
564 
565 struct tty_struct *get_current_tty(void)
566 {
567 	struct tty_struct *tty;
568 	unsigned long flags;
569 
570 	spin_lock_irqsave(&current->sighand->siglock, flags);
571 	tty = tty_kref_get(current->signal->tty);
572 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
573 	return tty;
574 }
575 EXPORT_SYMBOL_GPL(get_current_tty);
576 
577 static void session_clear_tty(struct pid *session)
578 {
579 	struct task_struct *p;
580 	do_each_pid_task(session, PIDTYPE_SID, p) {
581 		proc_clear_tty(p);
582 	} while_each_pid_task(session, PIDTYPE_SID, p);
583 }
584 
585 /**
586  *	tty_wakeup	-	request more data
587  *	@tty: terminal
588  *
589  *	Internal and external helper for wakeups of tty. This function
590  *	informs the line discipline if present that the driver is ready
591  *	to receive more output data.
592  */
593 
594 void tty_wakeup(struct tty_struct *tty)
595 {
596 	struct tty_ldisc *ld;
597 
598 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
599 		ld = tty_ldisc_ref(tty);
600 		if (ld) {
601 			if (ld->ops->write_wakeup)
602 				ld->ops->write_wakeup(tty);
603 			tty_ldisc_deref(ld);
604 		}
605 	}
606 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
607 }
608 
609 EXPORT_SYMBOL_GPL(tty_wakeup);
610 
611 /**
612  *	tty_signal_session_leader	- sends SIGHUP to session leader
613  *	@tty		controlling tty
614  *	@exit_session	if non-zero, signal all foreground group processes
615  *
616  *	Send SIGHUP and SIGCONT to the session leader and its process group.
617  *	Optionally, signal all processes in the foreground process group.
618  *
619  *	Returns the number of processes in the session with this tty
620  *	as their controlling terminal. This value is used to drop
621  *	tty references for those processes.
622  */
623 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
624 {
625 	struct task_struct *p;
626 	int refs = 0;
627 	struct pid *tty_pgrp = NULL;
628 
629 	read_lock(&tasklist_lock);
630 	if (tty->session) {
631 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
632 			spin_lock_irq(&p->sighand->siglock);
633 			if (p->signal->tty == tty) {
634 				p->signal->tty = NULL;
635 				/* We defer the dereferences outside fo
636 				   the tasklist lock */
637 				refs++;
638 			}
639 			if (!p->signal->leader) {
640 				spin_unlock_irq(&p->sighand->siglock);
641 				continue;
642 			}
643 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
644 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
645 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
646 			spin_lock(&tty->ctrl_lock);
647 			tty_pgrp = get_pid(tty->pgrp);
648 			if (tty->pgrp)
649 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
650 			spin_unlock(&tty->ctrl_lock);
651 			spin_unlock_irq(&p->sighand->siglock);
652 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
653 	}
654 	read_unlock(&tasklist_lock);
655 
656 	if (tty_pgrp) {
657 		if (exit_session)
658 			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
659 		put_pid(tty_pgrp);
660 	}
661 
662 	return refs;
663 }
664 
665 /**
666  *	__tty_hangup		-	actual handler for hangup events
667  *	@work: tty device
668  *
669  *	This can be called by a "kworker" kernel thread.  That is process
670  *	synchronous but doesn't hold any locks, so we need to make sure we
671  *	have the appropriate locks for what we're doing.
672  *
673  *	The hangup event clears any pending redirections onto the hung up
674  *	device. It ensures future writes will error and it does the needed
675  *	line discipline hangup and signal delivery. The tty object itself
676  *	remains intact.
677  *
678  *	Locking:
679  *		BTM
680  *		  redirect lock for undoing redirection
681  *		  file list lock for manipulating list of ttys
682  *		  tty_ldiscs_lock from called functions
683  *		  termios_rwsem resetting termios data
684  *		  tasklist_lock to walk task list for hangup event
685  *		    ->siglock to protect ->signal/->sighand
686  */
687 static void __tty_hangup(struct tty_struct *tty, int exit_session)
688 {
689 	struct file *cons_filp = NULL;
690 	struct file *filp, *f = NULL;
691 	struct tty_file_private *priv;
692 	int    closecount = 0, n;
693 	int refs;
694 
695 	if (!tty)
696 		return;
697 
698 
699 	spin_lock(&redirect_lock);
700 	if (redirect && file_tty(redirect) == tty) {
701 		f = redirect;
702 		redirect = NULL;
703 	}
704 	spin_unlock(&redirect_lock);
705 
706 	tty_lock(tty);
707 
708 	if (test_bit(TTY_HUPPED, &tty->flags)) {
709 		tty_unlock(tty);
710 		return;
711 	}
712 
713 	/* inuse_filps is protected by the single tty lock,
714 	   this really needs to change if we want to flush the
715 	   workqueue with the lock held */
716 	check_tty_count(tty, "tty_hangup");
717 
718 	spin_lock(&tty->files_lock);
719 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
720 	list_for_each_entry(priv, &tty->tty_files, list) {
721 		filp = priv->file;
722 		if (filp->f_op->write == redirected_tty_write)
723 			cons_filp = filp;
724 		if (filp->f_op->write != tty_write)
725 			continue;
726 		closecount++;
727 		__tty_fasync(-1, filp, 0);	/* can't block */
728 		filp->f_op = &hung_up_tty_fops;
729 	}
730 	spin_unlock(&tty->files_lock);
731 
732 	refs = tty_signal_session_leader(tty, exit_session);
733 	/* Account for the p->signal references we killed */
734 	while (refs--)
735 		tty_kref_put(tty);
736 
737 	tty_ldisc_hangup(tty, cons_filp != NULL);
738 
739 	spin_lock_irq(&tty->ctrl_lock);
740 	clear_bit(TTY_THROTTLED, &tty->flags);
741 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
742 	put_pid(tty->session);
743 	put_pid(tty->pgrp);
744 	tty->session = NULL;
745 	tty->pgrp = NULL;
746 	tty->ctrl_status = 0;
747 	spin_unlock_irq(&tty->ctrl_lock);
748 
749 	/*
750 	 * If one of the devices matches a console pointer, we
751 	 * cannot just call hangup() because that will cause
752 	 * tty->count and state->count to go out of sync.
753 	 * So we just call close() the right number of times.
754 	 */
755 	if (cons_filp) {
756 		if (tty->ops->close)
757 			for (n = 0; n < closecount; n++)
758 				tty->ops->close(tty, cons_filp);
759 	} else if (tty->ops->hangup)
760 		tty->ops->hangup(tty);
761 	/*
762 	 * We don't want to have driver/ldisc interactions beyond the ones
763 	 * we did here. The driver layer expects no calls after ->hangup()
764 	 * from the ldisc side, which is now guaranteed.
765 	 */
766 	set_bit(TTY_HUPPED, &tty->flags);
767 	tty_unlock(tty);
768 
769 	if (f)
770 		fput(f);
771 }
772 
773 static void do_tty_hangup(struct work_struct *work)
774 {
775 	struct tty_struct *tty =
776 		container_of(work, struct tty_struct, hangup_work);
777 
778 	__tty_hangup(tty, 0);
779 }
780 
781 /**
782  *	tty_hangup		-	trigger a hangup event
783  *	@tty: tty to hangup
784  *
785  *	A carrier loss (virtual or otherwise) has occurred on this like
786  *	schedule a hangup sequence to run after this event.
787  */
788 
789 void tty_hangup(struct tty_struct *tty)
790 {
791 	tty_debug_hangup(tty, "hangup\n");
792 	schedule_work(&tty->hangup_work);
793 }
794 
795 EXPORT_SYMBOL(tty_hangup);
796 
797 /**
798  *	tty_vhangup		-	process vhangup
799  *	@tty: tty to hangup
800  *
801  *	The user has asked via system call for the terminal to be hung up.
802  *	We do this synchronously so that when the syscall returns the process
803  *	is complete. That guarantee is necessary for security reasons.
804  */
805 
806 void tty_vhangup(struct tty_struct *tty)
807 {
808 	tty_debug_hangup(tty, "vhangup\n");
809 	__tty_hangup(tty, 0);
810 }
811 
812 EXPORT_SYMBOL(tty_vhangup);
813 
814 
815 /**
816  *	tty_vhangup_self	-	process vhangup for own ctty
817  *
818  *	Perform a vhangup on the current controlling tty
819  */
820 
821 void tty_vhangup_self(void)
822 {
823 	struct tty_struct *tty;
824 
825 	tty = get_current_tty();
826 	if (tty) {
827 		tty_vhangup(tty);
828 		tty_kref_put(tty);
829 	}
830 }
831 
832 /**
833  *	tty_vhangup_session		-	hangup session leader exit
834  *	@tty: tty to hangup
835  *
836  *	The session leader is exiting and hanging up its controlling terminal.
837  *	Every process in the foreground process group is signalled SIGHUP.
838  *
839  *	We do this synchronously so that when the syscall returns the process
840  *	is complete. That guarantee is necessary for security reasons.
841  */
842 
843 static void tty_vhangup_session(struct tty_struct *tty)
844 {
845 	tty_debug_hangup(tty, "session hangup\n");
846 	__tty_hangup(tty, 1);
847 }
848 
849 /**
850  *	tty_hung_up_p		-	was tty hung up
851  *	@filp: file pointer of tty
852  *
853  *	Return true if the tty has been subject to a vhangup or a carrier
854  *	loss
855  */
856 
857 int tty_hung_up_p(struct file *filp)
858 {
859 	return (filp && filp->f_op == &hung_up_tty_fops);
860 }
861 
862 EXPORT_SYMBOL(tty_hung_up_p);
863 
864 /**
865  *	disassociate_ctty	-	disconnect controlling tty
866  *	@on_exit: true if exiting so need to "hang up" the session
867  *
868  *	This function is typically called only by the session leader, when
869  *	it wants to disassociate itself from its controlling tty.
870  *
871  *	It performs the following functions:
872  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
873  * 	(2)  Clears the tty from being controlling the session
874  * 	(3)  Clears the controlling tty for all processes in the
875  * 		session group.
876  *
877  *	The argument on_exit is set to 1 if called when a process is
878  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
879  *
880  *	Locking:
881  *		BTM is taken for hysterical raisins, and held when
882  *		  called from no_tty().
883  *		  tty_mutex is taken to protect tty
884  *		  ->siglock is taken to protect ->signal/->sighand
885  *		  tasklist_lock is taken to walk process list for sessions
886  *		    ->siglock is taken to protect ->signal/->sighand
887  */
888 
889 void disassociate_ctty(int on_exit)
890 {
891 	struct tty_struct *tty;
892 
893 	if (!current->signal->leader)
894 		return;
895 
896 	tty = get_current_tty();
897 	if (tty) {
898 		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
899 			tty_vhangup_session(tty);
900 		} else {
901 			struct pid *tty_pgrp = tty_get_pgrp(tty);
902 			if (tty_pgrp) {
903 				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
904 				if (!on_exit)
905 					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
906 				put_pid(tty_pgrp);
907 			}
908 		}
909 		tty_kref_put(tty);
910 
911 	} else if (on_exit) {
912 		struct pid *old_pgrp;
913 		spin_lock_irq(&current->sighand->siglock);
914 		old_pgrp = current->signal->tty_old_pgrp;
915 		current->signal->tty_old_pgrp = NULL;
916 		spin_unlock_irq(&current->sighand->siglock);
917 		if (old_pgrp) {
918 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
919 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
920 			put_pid(old_pgrp);
921 		}
922 		return;
923 	}
924 
925 	spin_lock_irq(&current->sighand->siglock);
926 	put_pid(current->signal->tty_old_pgrp);
927 	current->signal->tty_old_pgrp = NULL;
928 
929 	tty = tty_kref_get(current->signal->tty);
930 	if (tty) {
931 		unsigned long flags;
932 		spin_lock_irqsave(&tty->ctrl_lock, flags);
933 		put_pid(tty->session);
934 		put_pid(tty->pgrp);
935 		tty->session = NULL;
936 		tty->pgrp = NULL;
937 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
938 		tty_kref_put(tty);
939 	} else
940 		tty_debug_hangup(tty, "no current tty\n");
941 
942 	spin_unlock_irq(&current->sighand->siglock);
943 	/* Now clear signal->tty under the lock */
944 	read_lock(&tasklist_lock);
945 	session_clear_tty(task_session(current));
946 	read_unlock(&tasklist_lock);
947 }
948 
949 /**
950  *
951  *	no_tty	- Ensure the current process does not have a controlling tty
952  */
953 void no_tty(void)
954 {
955 	/* FIXME: Review locking here. The tty_lock never covered any race
956 	   between a new association and proc_clear_tty but possible we need
957 	   to protect against this anyway */
958 	struct task_struct *tsk = current;
959 	disassociate_ctty(0);
960 	proc_clear_tty(tsk);
961 }
962 
963 
964 /**
965  *	stop_tty	-	propagate flow control
966  *	@tty: tty to stop
967  *
968  *	Perform flow control to the driver. May be called
969  *	on an already stopped device and will not re-call the driver
970  *	method.
971  *
972  *	This functionality is used by both the line disciplines for
973  *	halting incoming flow and by the driver. It may therefore be
974  *	called from any context, may be under the tty atomic_write_lock
975  *	but not always.
976  *
977  *	Locking:
978  *		flow_lock
979  */
980 
981 void __stop_tty(struct tty_struct *tty)
982 {
983 	if (tty->stopped)
984 		return;
985 	tty->stopped = 1;
986 	if (tty->ops->stop)
987 		tty->ops->stop(tty);
988 }
989 
990 void stop_tty(struct tty_struct *tty)
991 {
992 	unsigned long flags;
993 
994 	spin_lock_irqsave(&tty->flow_lock, flags);
995 	__stop_tty(tty);
996 	spin_unlock_irqrestore(&tty->flow_lock, flags);
997 }
998 EXPORT_SYMBOL(stop_tty);
999 
1000 /**
1001  *	start_tty	-	propagate flow control
1002  *	@tty: tty to start
1003  *
1004  *	Start a tty that has been stopped if at all possible. If this
1005  *	tty was previous stopped and is now being started, the driver
1006  *	start method is invoked and the line discipline woken.
1007  *
1008  *	Locking:
1009  *		flow_lock
1010  */
1011 
1012 void __start_tty(struct tty_struct *tty)
1013 {
1014 	if (!tty->stopped || tty->flow_stopped)
1015 		return;
1016 	tty->stopped = 0;
1017 	if (tty->ops->start)
1018 		tty->ops->start(tty);
1019 	tty_wakeup(tty);
1020 }
1021 
1022 void start_tty(struct tty_struct *tty)
1023 {
1024 	unsigned long flags;
1025 
1026 	spin_lock_irqsave(&tty->flow_lock, flags);
1027 	__start_tty(tty);
1028 	spin_unlock_irqrestore(&tty->flow_lock, flags);
1029 }
1030 EXPORT_SYMBOL(start_tty);
1031 
1032 static void tty_update_time(struct timespec *time)
1033 {
1034 	unsigned long sec = get_seconds();
1035 
1036 	/*
1037 	 * We only care if the two values differ in anything other than the
1038 	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1039 	 * the time of the tty device, otherwise it could be construded as a
1040 	 * security leak to let userspace know the exact timing of the tty.
1041 	 */
1042 	if ((sec ^ time->tv_sec) & ~7)
1043 		time->tv_sec = sec;
1044 }
1045 
1046 /**
1047  *	tty_read	-	read method for tty device files
1048  *	@file: pointer to tty file
1049  *	@buf: user buffer
1050  *	@count: size of user buffer
1051  *	@ppos: unused
1052  *
1053  *	Perform the read system call function on this terminal device. Checks
1054  *	for hung up devices before calling the line discipline method.
1055  *
1056  *	Locking:
1057  *		Locks the line discipline internally while needed. Multiple
1058  *	read calls may be outstanding in parallel.
1059  */
1060 
1061 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1062 			loff_t *ppos)
1063 {
1064 	int i;
1065 	struct inode *inode = file_inode(file);
1066 	struct tty_struct *tty = file_tty(file);
1067 	struct tty_ldisc *ld;
1068 
1069 	if (tty_paranoia_check(tty, inode, "tty_read"))
1070 		return -EIO;
1071 	if (!tty || tty_io_error(tty))
1072 		return -EIO;
1073 
1074 	/* We want to wait for the line discipline to sort out in this
1075 	   situation */
1076 	ld = tty_ldisc_ref_wait(tty);
1077 	if (!ld)
1078 		return hung_up_tty_read(file, buf, count, ppos);
1079 	if (ld->ops->read)
1080 		i = ld->ops->read(tty, file, buf, count);
1081 	else
1082 		i = -EIO;
1083 	tty_ldisc_deref(ld);
1084 
1085 	if (i > 0)
1086 		tty_update_time(&inode->i_atime);
1087 
1088 	return i;
1089 }
1090 
1091 static void tty_write_unlock(struct tty_struct *tty)
1092 {
1093 	mutex_unlock(&tty->atomic_write_lock);
1094 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1095 }
1096 
1097 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1098 {
1099 	if (!mutex_trylock(&tty->atomic_write_lock)) {
1100 		if (ndelay)
1101 			return -EAGAIN;
1102 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1103 			return -ERESTARTSYS;
1104 	}
1105 	return 0;
1106 }
1107 
1108 /*
1109  * Split writes up in sane blocksizes to avoid
1110  * denial-of-service type attacks
1111  */
1112 static inline ssize_t do_tty_write(
1113 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1114 	struct tty_struct *tty,
1115 	struct file *file,
1116 	const char __user *buf,
1117 	size_t count)
1118 {
1119 	ssize_t ret, written = 0;
1120 	unsigned int chunk;
1121 
1122 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1123 	if (ret < 0)
1124 		return ret;
1125 
1126 	/*
1127 	 * We chunk up writes into a temporary buffer. This
1128 	 * simplifies low-level drivers immensely, since they
1129 	 * don't have locking issues and user mode accesses.
1130 	 *
1131 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1132 	 * big chunk-size..
1133 	 *
1134 	 * The default chunk-size is 2kB, because the NTTY
1135 	 * layer has problems with bigger chunks. It will
1136 	 * claim to be able to handle more characters than
1137 	 * it actually does.
1138 	 *
1139 	 * FIXME: This can probably go away now except that 64K chunks
1140 	 * are too likely to fail unless switched to vmalloc...
1141 	 */
1142 	chunk = 2048;
1143 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1144 		chunk = 65536;
1145 	if (count < chunk)
1146 		chunk = count;
1147 
1148 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1149 	if (tty->write_cnt < chunk) {
1150 		unsigned char *buf_chunk;
1151 
1152 		if (chunk < 1024)
1153 			chunk = 1024;
1154 
1155 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1156 		if (!buf_chunk) {
1157 			ret = -ENOMEM;
1158 			goto out;
1159 		}
1160 		kfree(tty->write_buf);
1161 		tty->write_cnt = chunk;
1162 		tty->write_buf = buf_chunk;
1163 	}
1164 
1165 	/* Do the write .. */
1166 	for (;;) {
1167 		size_t size = count;
1168 		if (size > chunk)
1169 			size = chunk;
1170 		ret = -EFAULT;
1171 		if (copy_from_user(tty->write_buf, buf, size))
1172 			break;
1173 		ret = write(tty, file, tty->write_buf, size);
1174 		if (ret <= 0)
1175 			break;
1176 		written += ret;
1177 		buf += ret;
1178 		count -= ret;
1179 		if (!count)
1180 			break;
1181 		ret = -ERESTARTSYS;
1182 		if (signal_pending(current))
1183 			break;
1184 		cond_resched();
1185 	}
1186 	if (written) {
1187 		tty_update_time(&file_inode(file)->i_mtime);
1188 		ret = written;
1189 	}
1190 out:
1191 	tty_write_unlock(tty);
1192 	return ret;
1193 }
1194 
1195 /**
1196  * tty_write_message - write a message to a certain tty, not just the console.
1197  * @tty: the destination tty_struct
1198  * @msg: the message to write
1199  *
1200  * This is used for messages that need to be redirected to a specific tty.
1201  * We don't put it into the syslog queue right now maybe in the future if
1202  * really needed.
1203  *
1204  * We must still hold the BTM and test the CLOSING flag for the moment.
1205  */
1206 
1207 void tty_write_message(struct tty_struct *tty, char *msg)
1208 {
1209 	if (tty) {
1210 		mutex_lock(&tty->atomic_write_lock);
1211 		tty_lock(tty);
1212 		if (tty->ops->write && tty->count > 0)
1213 			tty->ops->write(tty, msg, strlen(msg));
1214 		tty_unlock(tty);
1215 		tty_write_unlock(tty);
1216 	}
1217 	return;
1218 }
1219 
1220 
1221 /**
1222  *	tty_write		-	write method for tty device file
1223  *	@file: tty file pointer
1224  *	@buf: user data to write
1225  *	@count: bytes to write
1226  *	@ppos: unused
1227  *
1228  *	Write data to a tty device via the line discipline.
1229  *
1230  *	Locking:
1231  *		Locks the line discipline as required
1232  *		Writes to the tty driver are serialized by the atomic_write_lock
1233  *	and are then processed in chunks to the device. The line discipline
1234  *	write method will not be invoked in parallel for each device.
1235  */
1236 
1237 static ssize_t tty_write(struct file *file, const char __user *buf,
1238 						size_t count, loff_t *ppos)
1239 {
1240 	struct tty_struct *tty = file_tty(file);
1241  	struct tty_ldisc *ld;
1242 	ssize_t ret;
1243 
1244 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1245 		return -EIO;
1246 	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1247 			return -EIO;
1248 	/* Short term debug to catch buggy drivers */
1249 	if (tty->ops->write_room == NULL)
1250 		tty_err(tty, "missing write_room method\n");
1251 	ld = tty_ldisc_ref_wait(tty);
1252 	if (!ld)
1253 		return hung_up_tty_write(file, buf, count, ppos);
1254 	if (!ld->ops->write)
1255 		ret = -EIO;
1256 	else
1257 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1258 	tty_ldisc_deref(ld);
1259 	return ret;
1260 }
1261 
1262 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1263 						size_t count, loff_t *ppos)
1264 {
1265 	struct file *p = NULL;
1266 
1267 	spin_lock(&redirect_lock);
1268 	if (redirect)
1269 		p = get_file(redirect);
1270 	spin_unlock(&redirect_lock);
1271 
1272 	if (p) {
1273 		ssize_t res;
1274 		res = vfs_write(p, buf, count, &p->f_pos);
1275 		fput(p);
1276 		return res;
1277 	}
1278 	return tty_write(file, buf, count, ppos);
1279 }
1280 
1281 /**
1282  *	tty_send_xchar	-	send priority character
1283  *
1284  *	Send a high priority character to the tty even if stopped
1285  *
1286  *	Locking: none for xchar method, write ordering for write method.
1287  */
1288 
1289 int tty_send_xchar(struct tty_struct *tty, char ch)
1290 {
1291 	int	was_stopped = tty->stopped;
1292 
1293 	if (tty->ops->send_xchar) {
1294 		down_read(&tty->termios_rwsem);
1295 		tty->ops->send_xchar(tty, ch);
1296 		up_read(&tty->termios_rwsem);
1297 		return 0;
1298 	}
1299 
1300 	if (tty_write_lock(tty, 0) < 0)
1301 		return -ERESTARTSYS;
1302 
1303 	down_read(&tty->termios_rwsem);
1304 	if (was_stopped)
1305 		start_tty(tty);
1306 	tty->ops->write(tty, &ch, 1);
1307 	if (was_stopped)
1308 		stop_tty(tty);
1309 	up_read(&tty->termios_rwsem);
1310 	tty_write_unlock(tty);
1311 	return 0;
1312 }
1313 
1314 static char ptychar[] = "pqrstuvwxyzabcde";
1315 
1316 /**
1317  *	pty_line_name	-	generate name for a pty
1318  *	@driver: the tty driver in use
1319  *	@index: the minor number
1320  *	@p: output buffer of at least 6 bytes
1321  *
1322  *	Generate a name from a driver reference and write it to the output
1323  *	buffer.
1324  *
1325  *	Locking: None
1326  */
1327 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1328 {
1329 	int i = index + driver->name_base;
1330 	/* ->name is initialized to "ttyp", but "tty" is expected */
1331 	sprintf(p, "%s%c%x",
1332 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1333 		ptychar[i >> 4 & 0xf], i & 0xf);
1334 }
1335 
1336 /**
1337  *	tty_line_name	-	generate name for a tty
1338  *	@driver: the tty driver in use
1339  *	@index: the minor number
1340  *	@p: output buffer of at least 7 bytes
1341  *
1342  *	Generate a name from a driver reference and write it to the output
1343  *	buffer.
1344  *
1345  *	Locking: None
1346  */
1347 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1348 {
1349 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1350 		return sprintf(p, "%s", driver->name);
1351 	else
1352 		return sprintf(p, "%s%d", driver->name,
1353 			       index + driver->name_base);
1354 }
1355 
1356 /**
1357  *	tty_driver_lookup_tty() - find an existing tty, if any
1358  *	@driver: the driver for the tty
1359  *	@idx:	 the minor number
1360  *
1361  *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1362  *	driver lookup() method returns an error.
1363  *
1364  *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1365  */
1366 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1367 		struct file *file, int idx)
1368 {
1369 	struct tty_struct *tty;
1370 
1371 	if (driver->ops->lookup)
1372 		tty = driver->ops->lookup(driver, file, idx);
1373 	else
1374 		tty = driver->ttys[idx];
1375 
1376 	if (!IS_ERR(tty))
1377 		tty_kref_get(tty);
1378 	return tty;
1379 }
1380 
1381 /**
1382  *	tty_init_termios	-  helper for termios setup
1383  *	@tty: the tty to set up
1384  *
1385  *	Initialise the termios structures for this tty. Thus runs under
1386  *	the tty_mutex currently so we can be relaxed about ordering.
1387  */
1388 
1389 void tty_init_termios(struct tty_struct *tty)
1390 {
1391 	struct ktermios *tp;
1392 	int idx = tty->index;
1393 
1394 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1395 		tty->termios = tty->driver->init_termios;
1396 	else {
1397 		/* Check for lazy saved data */
1398 		tp = tty->driver->termios[idx];
1399 		if (tp != NULL) {
1400 			tty->termios = *tp;
1401 			tty->termios.c_line  = tty->driver->init_termios.c_line;
1402 		} else
1403 			tty->termios = tty->driver->init_termios;
1404 	}
1405 	/* Compatibility until drivers always set this */
1406 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1407 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1408 }
1409 EXPORT_SYMBOL_GPL(tty_init_termios);
1410 
1411 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1412 {
1413 	tty_init_termios(tty);
1414 	tty_driver_kref_get(driver);
1415 	tty->count++;
1416 	driver->ttys[tty->index] = tty;
1417 	return 0;
1418 }
1419 EXPORT_SYMBOL_GPL(tty_standard_install);
1420 
1421 /**
1422  *	tty_driver_install_tty() - install a tty entry in the driver
1423  *	@driver: the driver for the tty
1424  *	@tty: the tty
1425  *
1426  *	Install a tty object into the driver tables. The tty->index field
1427  *	will be set by the time this is called. This method is responsible
1428  *	for ensuring any need additional structures are allocated and
1429  *	configured.
1430  *
1431  *	Locking: tty_mutex for now
1432  */
1433 static int tty_driver_install_tty(struct tty_driver *driver,
1434 						struct tty_struct *tty)
1435 {
1436 	return driver->ops->install ? driver->ops->install(driver, tty) :
1437 		tty_standard_install(driver, tty);
1438 }
1439 
1440 /**
1441  *	tty_driver_remove_tty() - remove a tty from the driver tables
1442  *	@driver: the driver for the tty
1443  *	@idx:	 the minor number
1444  *
1445  *	Remvoe a tty object from the driver tables. The tty->index field
1446  *	will be set by the time this is called.
1447  *
1448  *	Locking: tty_mutex for now
1449  */
1450 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1451 {
1452 	if (driver->ops->remove)
1453 		driver->ops->remove(driver, tty);
1454 	else
1455 		driver->ttys[tty->index] = NULL;
1456 }
1457 
1458 /*
1459  * 	tty_reopen()	- fast re-open of an open tty
1460  * 	@tty	- the tty to open
1461  *
1462  *	Return 0 on success, -errno on error.
1463  *	Re-opens on master ptys are not allowed and return -EIO.
1464  *
1465  *	Locking: Caller must hold tty_lock
1466  */
1467 static int tty_reopen(struct tty_struct *tty)
1468 {
1469 	struct tty_driver *driver = tty->driver;
1470 
1471 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1472 	    driver->subtype == PTY_TYPE_MASTER)
1473 		return -EIO;
1474 
1475 	if (!tty->count)
1476 		return -EAGAIN;
1477 
1478 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1479 		return -EBUSY;
1480 
1481 	tty->count++;
1482 
1483 	if (!tty->ldisc)
1484 		return tty_ldisc_reinit(tty, tty->termios.c_line);
1485 
1486 	return 0;
1487 }
1488 
1489 /**
1490  *	tty_init_dev		-	initialise a tty device
1491  *	@driver: tty driver we are opening a device on
1492  *	@idx: device index
1493  *	@ret_tty: returned tty structure
1494  *
1495  *	Prepare a tty device. This may not be a "new" clean device but
1496  *	could also be an active device. The pty drivers require special
1497  *	handling because of this.
1498  *
1499  *	Locking:
1500  *		The function is called under the tty_mutex, which
1501  *	protects us from the tty struct or driver itself going away.
1502  *
1503  *	On exit the tty device has the line discipline attached and
1504  *	a reference count of 1. If a pair was created for pty/tty use
1505  *	and the other was a pty master then it too has a reference count of 1.
1506  *
1507  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1508  * failed open.  The new code protects the open with a mutex, so it's
1509  * really quite straightforward.  The mutex locking can probably be
1510  * relaxed for the (most common) case of reopening a tty.
1511  */
1512 
1513 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1514 {
1515 	struct tty_struct *tty;
1516 	int retval;
1517 
1518 	/*
1519 	 * First time open is complex, especially for PTY devices.
1520 	 * This code guarantees that either everything succeeds and the
1521 	 * TTY is ready for operation, or else the table slots are vacated
1522 	 * and the allocated memory released.  (Except that the termios
1523 	 * and locked termios may be retained.)
1524 	 */
1525 
1526 	if (!try_module_get(driver->owner))
1527 		return ERR_PTR(-ENODEV);
1528 
1529 	tty = alloc_tty_struct(driver, idx);
1530 	if (!tty) {
1531 		retval = -ENOMEM;
1532 		goto err_module_put;
1533 	}
1534 
1535 	tty_lock(tty);
1536 	retval = tty_driver_install_tty(driver, tty);
1537 	if (retval < 0)
1538 		goto err_free_tty;
1539 
1540 	if (!tty->port)
1541 		tty->port = driver->ports[idx];
1542 
1543 	WARN_RATELIMIT(!tty->port,
1544 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1545 			__func__, tty->driver->name);
1546 
1547 	tty->port->itty = tty;
1548 
1549 	/*
1550 	 * Structures all installed ... call the ldisc open routines.
1551 	 * If we fail here just call release_tty to clean up.  No need
1552 	 * to decrement the use counts, as release_tty doesn't care.
1553 	 */
1554 	retval = tty_ldisc_setup(tty, tty->link);
1555 	if (retval)
1556 		goto err_release_tty;
1557 	/* Return the tty locked so that it cannot vanish under the caller */
1558 	return tty;
1559 
1560 err_free_tty:
1561 	tty_unlock(tty);
1562 	free_tty_struct(tty);
1563 err_module_put:
1564 	module_put(driver->owner);
1565 	return ERR_PTR(retval);
1566 
1567 	/* call the tty release_tty routine to clean out this slot */
1568 err_release_tty:
1569 	tty_unlock(tty);
1570 	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1571 			     retval, idx);
1572 	release_tty(tty, idx);
1573 	return ERR_PTR(retval);
1574 }
1575 
1576 static void tty_free_termios(struct tty_struct *tty)
1577 {
1578 	struct ktermios *tp;
1579 	int idx = tty->index;
1580 
1581 	/* If the port is going to reset then it has no termios to save */
1582 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1583 		return;
1584 
1585 	/* Stash the termios data */
1586 	tp = tty->driver->termios[idx];
1587 	if (tp == NULL) {
1588 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1589 		if (tp == NULL)
1590 			return;
1591 		tty->driver->termios[idx] = tp;
1592 	}
1593 	*tp = tty->termios;
1594 }
1595 
1596 /**
1597  *	tty_flush_works		-	flush all works of a tty/pty pair
1598  *	@tty: tty device to flush works for (or either end of a pty pair)
1599  *
1600  *	Sync flush all works belonging to @tty (and the 'other' tty).
1601  */
1602 static void tty_flush_works(struct tty_struct *tty)
1603 {
1604 	flush_work(&tty->SAK_work);
1605 	flush_work(&tty->hangup_work);
1606 	if (tty->link) {
1607 		flush_work(&tty->link->SAK_work);
1608 		flush_work(&tty->link->hangup_work);
1609 	}
1610 }
1611 
1612 /**
1613  *	release_one_tty		-	release tty structure memory
1614  *	@kref: kref of tty we are obliterating
1615  *
1616  *	Releases memory associated with a tty structure, and clears out the
1617  *	driver table slots. This function is called when a device is no longer
1618  *	in use. It also gets called when setup of a device fails.
1619  *
1620  *	Locking:
1621  *		takes the file list lock internally when working on the list
1622  *	of ttys that the driver keeps.
1623  *
1624  *	This method gets called from a work queue so that the driver private
1625  *	cleanup ops can sleep (needed for USB at least)
1626  */
1627 static void release_one_tty(struct work_struct *work)
1628 {
1629 	struct tty_struct *tty =
1630 		container_of(work, struct tty_struct, hangup_work);
1631 	struct tty_driver *driver = tty->driver;
1632 	struct module *owner = driver->owner;
1633 
1634 	if (tty->ops->cleanup)
1635 		tty->ops->cleanup(tty);
1636 
1637 	tty->magic = 0;
1638 	tty_driver_kref_put(driver);
1639 	module_put(owner);
1640 
1641 	spin_lock(&tty->files_lock);
1642 	list_del_init(&tty->tty_files);
1643 	spin_unlock(&tty->files_lock);
1644 
1645 	put_pid(tty->pgrp);
1646 	put_pid(tty->session);
1647 	free_tty_struct(tty);
1648 }
1649 
1650 static void queue_release_one_tty(struct kref *kref)
1651 {
1652 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1653 
1654 	/* The hangup queue is now free so we can reuse it rather than
1655 	   waste a chunk of memory for each port */
1656 	INIT_WORK(&tty->hangup_work, release_one_tty);
1657 	schedule_work(&tty->hangup_work);
1658 }
1659 
1660 /**
1661  *	tty_kref_put		-	release a tty kref
1662  *	@tty: tty device
1663  *
1664  *	Release a reference to a tty device and if need be let the kref
1665  *	layer destruct the object for us
1666  */
1667 
1668 void tty_kref_put(struct tty_struct *tty)
1669 {
1670 	if (tty)
1671 		kref_put(&tty->kref, queue_release_one_tty);
1672 }
1673 EXPORT_SYMBOL(tty_kref_put);
1674 
1675 /**
1676  *	release_tty		-	release tty structure memory
1677  *
1678  *	Release both @tty and a possible linked partner (think pty pair),
1679  *	and decrement the refcount of the backing module.
1680  *
1681  *	Locking:
1682  *		tty_mutex
1683  *		takes the file list lock internally when working on the list
1684  *	of ttys that the driver keeps.
1685  *
1686  */
1687 static void release_tty(struct tty_struct *tty, int idx)
1688 {
1689 	/* This should always be true but check for the moment */
1690 	WARN_ON(tty->index != idx);
1691 	WARN_ON(!mutex_is_locked(&tty_mutex));
1692 	if (tty->ops->shutdown)
1693 		tty->ops->shutdown(tty);
1694 	tty_free_termios(tty);
1695 	tty_driver_remove_tty(tty->driver, tty);
1696 	tty->port->itty = NULL;
1697 	if (tty->link)
1698 		tty->link->port->itty = NULL;
1699 	tty_buffer_cancel_work(tty->port);
1700 
1701 	tty_kref_put(tty->link);
1702 	tty_kref_put(tty);
1703 }
1704 
1705 /**
1706  *	tty_release_checks - check a tty before real release
1707  *	@tty: tty to check
1708  *	@o_tty: link of @tty (if any)
1709  *	@idx: index of the tty
1710  *
1711  *	Performs some paranoid checking before true release of the @tty.
1712  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1713  */
1714 static int tty_release_checks(struct tty_struct *tty, int idx)
1715 {
1716 #ifdef TTY_PARANOIA_CHECK
1717 	if (idx < 0 || idx >= tty->driver->num) {
1718 		tty_debug(tty, "bad idx %d\n", idx);
1719 		return -1;
1720 	}
1721 
1722 	/* not much to check for devpts */
1723 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1724 		return 0;
1725 
1726 	if (tty != tty->driver->ttys[idx]) {
1727 		tty_debug(tty, "bad driver table[%d] = %p\n",
1728 			  idx, tty->driver->ttys[idx]);
1729 		return -1;
1730 	}
1731 	if (tty->driver->other) {
1732 		struct tty_struct *o_tty = tty->link;
1733 
1734 		if (o_tty != tty->driver->other->ttys[idx]) {
1735 			tty_debug(tty, "bad other table[%d] = %p\n",
1736 				  idx, tty->driver->other->ttys[idx]);
1737 			return -1;
1738 		}
1739 		if (o_tty->link != tty) {
1740 			tty_debug(tty, "bad link = %p\n", o_tty->link);
1741 			return -1;
1742 		}
1743 	}
1744 #endif
1745 	return 0;
1746 }
1747 
1748 /**
1749  *	tty_release_struct	-	release a tty struct
1750  *	@tty: tty device
1751  *	@idx: index of the tty
1752  *
1753  *	Performs the final steps to release and free a tty device. It is
1754  *	roughly the reverse of tty_init_dev.
1755  */
1756 void tty_release_struct(struct tty_struct *tty, int idx)
1757 {
1758 	/*
1759 	 * Ask the line discipline code to release its structures
1760 	 */
1761 	tty_ldisc_release(tty);
1762 
1763 	/* Wait for pending work before tty destruction commmences */
1764 	tty_flush_works(tty);
1765 
1766 	tty_debug_hangup(tty, "freeing structure\n");
1767 	/*
1768 	 * The release_tty function takes care of the details of clearing
1769 	 * the slots and preserving the termios structure. The tty_unlock_pair
1770 	 * should be safe as we keep a kref while the tty is locked (so the
1771 	 * unlock never unlocks a freed tty).
1772 	 */
1773 	mutex_lock(&tty_mutex);
1774 	release_tty(tty, idx);
1775 	mutex_unlock(&tty_mutex);
1776 }
1777 EXPORT_SYMBOL_GPL(tty_release_struct);
1778 
1779 /**
1780  *	tty_release		-	vfs callback for close
1781  *	@inode: inode of tty
1782  *	@filp: file pointer for handle to tty
1783  *
1784  *	Called the last time each file handle is closed that references
1785  *	this tty. There may however be several such references.
1786  *
1787  *	Locking:
1788  *		Takes bkl. See tty_release_dev
1789  *
1790  * Even releasing the tty structures is a tricky business.. We have
1791  * to be very careful that the structures are all released at the
1792  * same time, as interrupts might otherwise get the wrong pointers.
1793  *
1794  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1795  * lead to double frees or releasing memory still in use.
1796  */
1797 
1798 int tty_release(struct inode *inode, struct file *filp)
1799 {
1800 	struct tty_struct *tty = file_tty(filp);
1801 	struct tty_struct *o_tty = NULL;
1802 	int	do_sleep, final;
1803 	int	idx;
1804 	long	timeout = 0;
1805 	int	once = 1;
1806 
1807 	if (tty_paranoia_check(tty, inode, __func__))
1808 		return 0;
1809 
1810 	tty_lock(tty);
1811 	check_tty_count(tty, __func__);
1812 
1813 	__tty_fasync(-1, filp, 0);
1814 
1815 	idx = tty->index;
1816 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1817 	    tty->driver->subtype == PTY_TYPE_MASTER)
1818 		o_tty = tty->link;
1819 
1820 	if (tty_release_checks(tty, idx)) {
1821 		tty_unlock(tty);
1822 		return 0;
1823 	}
1824 
1825 	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1826 
1827 	if (tty->ops->close)
1828 		tty->ops->close(tty, filp);
1829 
1830 	/* If tty is pty master, lock the slave pty (stable lock order) */
1831 	tty_lock_slave(o_tty);
1832 
1833 	/*
1834 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1835 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1836 	 * wait queues and kick everyone out _before_ actually starting to
1837 	 * close.  This ensures that we won't block while releasing the tty
1838 	 * structure.
1839 	 *
1840 	 * The test for the o_tty closing is necessary, since the master and
1841 	 * slave sides may close in any order.  If the slave side closes out
1842 	 * first, its count will be one, since the master side holds an open.
1843 	 * Thus this test wouldn't be triggered at the time the slave closed,
1844 	 * so we do it now.
1845 	 */
1846 	while (1) {
1847 		do_sleep = 0;
1848 
1849 		if (tty->count <= 1) {
1850 			if (waitqueue_active(&tty->read_wait)) {
1851 				wake_up_poll(&tty->read_wait, POLLIN);
1852 				do_sleep++;
1853 			}
1854 			if (waitqueue_active(&tty->write_wait)) {
1855 				wake_up_poll(&tty->write_wait, POLLOUT);
1856 				do_sleep++;
1857 			}
1858 		}
1859 		if (o_tty && o_tty->count <= 1) {
1860 			if (waitqueue_active(&o_tty->read_wait)) {
1861 				wake_up_poll(&o_tty->read_wait, POLLIN);
1862 				do_sleep++;
1863 			}
1864 			if (waitqueue_active(&o_tty->write_wait)) {
1865 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1866 				do_sleep++;
1867 			}
1868 		}
1869 		if (!do_sleep)
1870 			break;
1871 
1872 		if (once) {
1873 			once = 0;
1874 			tty_warn(tty, "read/write wait queue active!\n");
1875 		}
1876 		schedule_timeout_killable(timeout);
1877 		if (timeout < 120 * HZ)
1878 			timeout = 2 * timeout + 1;
1879 		else
1880 			timeout = MAX_SCHEDULE_TIMEOUT;
1881 	}
1882 
1883 	if (o_tty) {
1884 		if (--o_tty->count < 0) {
1885 			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1886 			o_tty->count = 0;
1887 		}
1888 	}
1889 	if (--tty->count < 0) {
1890 		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1891 		tty->count = 0;
1892 	}
1893 
1894 	/*
1895 	 * We've decremented tty->count, so we need to remove this file
1896 	 * descriptor off the tty->tty_files list; this serves two
1897 	 * purposes:
1898 	 *  - check_tty_count sees the correct number of file descriptors
1899 	 *    associated with this tty.
1900 	 *  - do_tty_hangup no longer sees this file descriptor as
1901 	 *    something that needs to be handled for hangups.
1902 	 */
1903 	tty_del_file(filp);
1904 
1905 	/*
1906 	 * Perform some housekeeping before deciding whether to return.
1907 	 *
1908 	 * If _either_ side is closing, make sure there aren't any
1909 	 * processes that still think tty or o_tty is their controlling
1910 	 * tty.
1911 	 */
1912 	if (!tty->count) {
1913 		read_lock(&tasklist_lock);
1914 		session_clear_tty(tty->session);
1915 		if (o_tty)
1916 			session_clear_tty(o_tty->session);
1917 		read_unlock(&tasklist_lock);
1918 	}
1919 
1920 	/* check whether both sides are closing ... */
1921 	final = !tty->count && !(o_tty && o_tty->count);
1922 
1923 	tty_unlock_slave(o_tty);
1924 	tty_unlock(tty);
1925 
1926 	/* At this point, the tty->count == 0 should ensure a dead tty
1927 	   cannot be re-opened by a racing opener */
1928 
1929 	if (!final)
1930 		return 0;
1931 
1932 	tty_debug_hangup(tty, "final close\n");
1933 
1934 	tty_release_struct(tty, idx);
1935 	return 0;
1936 }
1937 
1938 /**
1939  *	tty_open_current_tty - get locked tty of current task
1940  *	@device: device number
1941  *	@filp: file pointer to tty
1942  *	@return: locked tty of the current task iff @device is /dev/tty
1943  *
1944  *	Performs a re-open of the current task's controlling tty.
1945  *
1946  *	We cannot return driver and index like for the other nodes because
1947  *	devpts will not work then. It expects inodes to be from devpts FS.
1948  */
1949 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1950 {
1951 	struct tty_struct *tty;
1952 	int retval;
1953 
1954 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1955 		return NULL;
1956 
1957 	tty = get_current_tty();
1958 	if (!tty)
1959 		return ERR_PTR(-ENXIO);
1960 
1961 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1962 	/* noctty = 1; */
1963 	tty_lock(tty);
1964 	tty_kref_put(tty);	/* safe to drop the kref now */
1965 
1966 	retval = tty_reopen(tty);
1967 	if (retval < 0) {
1968 		tty_unlock(tty);
1969 		tty = ERR_PTR(retval);
1970 	}
1971 	return tty;
1972 }
1973 
1974 /**
1975  *	tty_lookup_driver - lookup a tty driver for a given device file
1976  *	@device: device number
1977  *	@filp: file pointer to tty
1978  *	@index: index for the device in the @return driver
1979  *	@return: driver for this inode (with increased refcount)
1980  *
1981  * 	If @return is not erroneous, the caller is responsible to decrement the
1982  * 	refcount by tty_driver_kref_put.
1983  *
1984  *	Locking: tty_mutex protects get_tty_driver
1985  */
1986 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1987 		int *index)
1988 {
1989 	struct tty_driver *driver;
1990 
1991 	switch (device) {
1992 #ifdef CONFIG_VT
1993 	case MKDEV(TTY_MAJOR, 0): {
1994 		extern struct tty_driver *console_driver;
1995 		driver = tty_driver_kref_get(console_driver);
1996 		*index = fg_console;
1997 		break;
1998 	}
1999 #endif
2000 	case MKDEV(TTYAUX_MAJOR, 1): {
2001 		struct tty_driver *console_driver = console_device(index);
2002 		if (console_driver) {
2003 			driver = tty_driver_kref_get(console_driver);
2004 			if (driver) {
2005 				/* Don't let /dev/console block */
2006 				filp->f_flags |= O_NONBLOCK;
2007 				break;
2008 			}
2009 		}
2010 		return ERR_PTR(-ENODEV);
2011 	}
2012 	default:
2013 		driver = get_tty_driver(device, index);
2014 		if (!driver)
2015 			return ERR_PTR(-ENODEV);
2016 		break;
2017 	}
2018 	return driver;
2019 }
2020 
2021 /**
2022  *	tty_open_by_driver	-	open a tty device
2023  *	@device: dev_t of device to open
2024  *	@inode: inode of device file
2025  *	@filp: file pointer to tty
2026  *
2027  *	Performs the driver lookup, checks for a reopen, or otherwise
2028  *	performs the first-time tty initialization.
2029  *
2030  *	Returns the locked initialized or re-opened &tty_struct
2031  *
2032  *	Claims the global tty_mutex to serialize:
2033  *	  - concurrent first-time tty initialization
2034  *	  - concurrent tty driver removal w/ lookup
2035  *	  - concurrent tty removal from driver table
2036  */
2037 static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
2038 					     struct file *filp)
2039 {
2040 	struct tty_struct *tty;
2041 	struct tty_driver *driver = NULL;
2042 	int index = -1;
2043 	int retval;
2044 
2045 	mutex_lock(&tty_mutex);
2046 	driver = tty_lookup_driver(device, filp, &index);
2047 	if (IS_ERR(driver)) {
2048 		mutex_unlock(&tty_mutex);
2049 		return ERR_CAST(driver);
2050 	}
2051 
2052 	/* check whether we're reopening an existing tty */
2053 	tty = tty_driver_lookup_tty(driver, filp, index);
2054 	if (IS_ERR(tty)) {
2055 		mutex_unlock(&tty_mutex);
2056 		goto out;
2057 	}
2058 
2059 	if (tty) {
2060 		mutex_unlock(&tty_mutex);
2061 		retval = tty_lock_interruptible(tty);
2062 		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2063 		if (retval) {
2064 			if (retval == -EINTR)
2065 				retval = -ERESTARTSYS;
2066 			tty = ERR_PTR(retval);
2067 			goto out;
2068 		}
2069 		retval = tty_reopen(tty);
2070 		if (retval < 0) {
2071 			tty_unlock(tty);
2072 			tty = ERR_PTR(retval);
2073 		}
2074 	} else { /* Returns with the tty_lock held for now */
2075 		tty = tty_init_dev(driver, index);
2076 		mutex_unlock(&tty_mutex);
2077 	}
2078 out:
2079 	tty_driver_kref_put(driver);
2080 	return tty;
2081 }
2082 
2083 /**
2084  *	tty_open		-	open a tty device
2085  *	@inode: inode of device file
2086  *	@filp: file pointer to tty
2087  *
2088  *	tty_open and tty_release keep up the tty count that contains the
2089  *	number of opens done on a tty. We cannot use the inode-count, as
2090  *	different inodes might point to the same tty.
2091  *
2092  *	Open-counting is needed for pty masters, as well as for keeping
2093  *	track of serial lines: DTR is dropped when the last close happens.
2094  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2095  *
2096  *	The termios state of a pty is reset on first open so that
2097  *	settings don't persist across reuse.
2098  *
2099  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2100  *		 tty->count should protect the rest.
2101  *		 ->siglock protects ->signal/->sighand
2102  *
2103  *	Note: the tty_unlock/lock cases without a ref are only safe due to
2104  *	tty_mutex
2105  */
2106 
2107 static int tty_open(struct inode *inode, struct file *filp)
2108 {
2109 	struct tty_struct *tty;
2110 	int noctty, retval;
2111 	dev_t device = inode->i_rdev;
2112 	unsigned saved_flags = filp->f_flags;
2113 
2114 	nonseekable_open(inode, filp);
2115 
2116 retry_open:
2117 	retval = tty_alloc_file(filp);
2118 	if (retval)
2119 		return -ENOMEM;
2120 
2121 	tty = tty_open_current_tty(device, filp);
2122 	if (!tty)
2123 		tty = tty_open_by_driver(device, inode, filp);
2124 
2125 	if (IS_ERR(tty)) {
2126 		tty_free_file(filp);
2127 		retval = PTR_ERR(tty);
2128 		if (retval != -EAGAIN || signal_pending(current))
2129 			return retval;
2130 		schedule();
2131 		goto retry_open;
2132 	}
2133 
2134 	tty_add_file(tty, filp);
2135 
2136 	check_tty_count(tty, __func__);
2137 	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2138 
2139 	if (tty->ops->open)
2140 		retval = tty->ops->open(tty, filp);
2141 	else
2142 		retval = -ENODEV;
2143 	filp->f_flags = saved_flags;
2144 
2145 	if (retval) {
2146 		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2147 
2148 		tty_unlock(tty); /* need to call tty_release without BTM */
2149 		tty_release(inode, filp);
2150 		if (retval != -ERESTARTSYS)
2151 			return retval;
2152 
2153 		if (signal_pending(current))
2154 			return retval;
2155 
2156 		schedule();
2157 		/*
2158 		 * Need to reset f_op in case a hangup happened.
2159 		 */
2160 		if (tty_hung_up_p(filp))
2161 			filp->f_op = &tty_fops;
2162 		goto retry_open;
2163 	}
2164 	clear_bit(TTY_HUPPED, &tty->flags);
2165 
2166 
2167 	read_lock(&tasklist_lock);
2168 	spin_lock_irq(&current->sighand->siglock);
2169 	noctty = (filp->f_flags & O_NOCTTY) ||
2170 			(IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2171 			device == MKDEV(TTYAUX_MAJOR, 1) ||
2172 			(tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2173 			 tty->driver->subtype == PTY_TYPE_MASTER);
2174 
2175 	if (!noctty &&
2176 	    current->signal->leader &&
2177 	    !current->signal->tty &&
2178 	    tty->session == NULL) {
2179 		/*
2180 		 * Don't let a process that only has write access to the tty
2181 		 * obtain the privileges associated with having a tty as
2182 		 * controlling terminal (being able to reopen it with full
2183 		 * access through /dev/tty, being able to perform pushback).
2184 		 * Many distributions set the group of all ttys to "tty" and
2185 		 * grant write-only access to all terminals for setgid tty
2186 		 * binaries, which should not imply full privileges on all ttys.
2187 		 *
2188 		 * This could theoretically break old code that performs open()
2189 		 * on a write-only file descriptor. In that case, it might be
2190 		 * necessary to also permit this if
2191 		 * inode_permission(inode, MAY_READ) == 0.
2192 		 */
2193 		if (filp->f_mode & FMODE_READ)
2194 			__proc_set_tty(tty);
2195 	}
2196 	spin_unlock_irq(&current->sighand->siglock);
2197 	read_unlock(&tasklist_lock);
2198 	tty_unlock(tty);
2199 	return 0;
2200 }
2201 
2202 
2203 
2204 /**
2205  *	tty_poll	-	check tty status
2206  *	@filp: file being polled
2207  *	@wait: poll wait structures to update
2208  *
2209  *	Call the line discipline polling method to obtain the poll
2210  *	status of the device.
2211  *
2212  *	Locking: locks called line discipline but ldisc poll method
2213  *	may be re-entered freely by other callers.
2214  */
2215 
2216 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2217 {
2218 	struct tty_struct *tty = file_tty(filp);
2219 	struct tty_ldisc *ld;
2220 	int ret = 0;
2221 
2222 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2223 		return 0;
2224 
2225 	ld = tty_ldisc_ref_wait(tty);
2226 	if (!ld)
2227 		return hung_up_tty_poll(filp, wait);
2228 	if (ld->ops->poll)
2229 		ret = ld->ops->poll(tty, filp, wait);
2230 	tty_ldisc_deref(ld);
2231 	return ret;
2232 }
2233 
2234 static int __tty_fasync(int fd, struct file *filp, int on)
2235 {
2236 	struct tty_struct *tty = file_tty(filp);
2237 	unsigned long flags;
2238 	int retval = 0;
2239 
2240 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2241 		goto out;
2242 
2243 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2244 	if (retval <= 0)
2245 		goto out;
2246 
2247 	if (on) {
2248 		enum pid_type type;
2249 		struct pid *pid;
2250 
2251 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2252 		if (tty->pgrp) {
2253 			pid = tty->pgrp;
2254 			type = PIDTYPE_PGID;
2255 		} else {
2256 			pid = task_pid(current);
2257 			type = PIDTYPE_PID;
2258 		}
2259 		get_pid(pid);
2260 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2261 		__f_setown(filp, pid, type, 0);
2262 		put_pid(pid);
2263 		retval = 0;
2264 	}
2265 out:
2266 	return retval;
2267 }
2268 
2269 static int tty_fasync(int fd, struct file *filp, int on)
2270 {
2271 	struct tty_struct *tty = file_tty(filp);
2272 	int retval = -ENOTTY;
2273 
2274 	tty_lock(tty);
2275 	if (!tty_hung_up_p(filp))
2276 		retval = __tty_fasync(fd, filp, on);
2277 	tty_unlock(tty);
2278 
2279 	return retval;
2280 }
2281 
2282 /**
2283  *	tiocsti			-	fake input character
2284  *	@tty: tty to fake input into
2285  *	@p: pointer to character
2286  *
2287  *	Fake input to a tty device. Does the necessary locking and
2288  *	input management.
2289  *
2290  *	FIXME: does not honour flow control ??
2291  *
2292  *	Locking:
2293  *		Called functions take tty_ldiscs_lock
2294  *		current->signal->tty check is safe without locks
2295  *
2296  *	FIXME: may race normal receive processing
2297  */
2298 
2299 static int tiocsti(struct tty_struct *tty, char __user *p)
2300 {
2301 	char ch, mbz = 0;
2302 	struct tty_ldisc *ld;
2303 
2304 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2305 		return -EPERM;
2306 	if (get_user(ch, p))
2307 		return -EFAULT;
2308 	tty_audit_tiocsti(tty, ch);
2309 	ld = tty_ldisc_ref_wait(tty);
2310 	if (!ld)
2311 		return -EIO;
2312 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2313 	tty_ldisc_deref(ld);
2314 	return 0;
2315 }
2316 
2317 /**
2318  *	tiocgwinsz		-	implement window query ioctl
2319  *	@tty; tty
2320  *	@arg: user buffer for result
2321  *
2322  *	Copies the kernel idea of the window size into the user buffer.
2323  *
2324  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2325  *		is consistent.
2326  */
2327 
2328 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2329 {
2330 	int err;
2331 
2332 	mutex_lock(&tty->winsize_mutex);
2333 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2334 	mutex_unlock(&tty->winsize_mutex);
2335 
2336 	return err ? -EFAULT: 0;
2337 }
2338 
2339 /**
2340  *	tty_do_resize		-	resize event
2341  *	@tty: tty being resized
2342  *	@rows: rows (character)
2343  *	@cols: cols (character)
2344  *
2345  *	Update the termios variables and send the necessary signals to
2346  *	peform a terminal resize correctly
2347  */
2348 
2349 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2350 {
2351 	struct pid *pgrp;
2352 
2353 	/* Lock the tty */
2354 	mutex_lock(&tty->winsize_mutex);
2355 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2356 		goto done;
2357 
2358 	/* Signal the foreground process group */
2359 	pgrp = tty_get_pgrp(tty);
2360 	if (pgrp)
2361 		kill_pgrp(pgrp, SIGWINCH, 1);
2362 	put_pid(pgrp);
2363 
2364 	tty->winsize = *ws;
2365 done:
2366 	mutex_unlock(&tty->winsize_mutex);
2367 	return 0;
2368 }
2369 EXPORT_SYMBOL(tty_do_resize);
2370 
2371 /**
2372  *	tiocswinsz		-	implement window size set ioctl
2373  *	@tty; tty side of tty
2374  *	@arg: user buffer for result
2375  *
2376  *	Copies the user idea of the window size to the kernel. Traditionally
2377  *	this is just advisory information but for the Linux console it
2378  *	actually has driver level meaning and triggers a VC resize.
2379  *
2380  *	Locking:
2381  *		Driver dependent. The default do_resize method takes the
2382  *	tty termios mutex and ctrl_lock. The console takes its own lock
2383  *	then calls into the default method.
2384  */
2385 
2386 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2387 {
2388 	struct winsize tmp_ws;
2389 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2390 		return -EFAULT;
2391 
2392 	if (tty->ops->resize)
2393 		return tty->ops->resize(tty, &tmp_ws);
2394 	else
2395 		return tty_do_resize(tty, &tmp_ws);
2396 }
2397 
2398 /**
2399  *	tioccons	-	allow admin to move logical console
2400  *	@file: the file to become console
2401  *
2402  *	Allow the administrator to move the redirected console device
2403  *
2404  *	Locking: uses redirect_lock to guard the redirect information
2405  */
2406 
2407 static int tioccons(struct file *file)
2408 {
2409 	if (!capable(CAP_SYS_ADMIN))
2410 		return -EPERM;
2411 	if (file->f_op->write == redirected_tty_write) {
2412 		struct file *f;
2413 		spin_lock(&redirect_lock);
2414 		f = redirect;
2415 		redirect = NULL;
2416 		spin_unlock(&redirect_lock);
2417 		if (f)
2418 			fput(f);
2419 		return 0;
2420 	}
2421 	spin_lock(&redirect_lock);
2422 	if (redirect) {
2423 		spin_unlock(&redirect_lock);
2424 		return -EBUSY;
2425 	}
2426 	redirect = get_file(file);
2427 	spin_unlock(&redirect_lock);
2428 	return 0;
2429 }
2430 
2431 /**
2432  *	fionbio		-	non blocking ioctl
2433  *	@file: file to set blocking value
2434  *	@p: user parameter
2435  *
2436  *	Historical tty interfaces had a blocking control ioctl before
2437  *	the generic functionality existed. This piece of history is preserved
2438  *	in the expected tty API of posix OS's.
2439  *
2440  *	Locking: none, the open file handle ensures it won't go away.
2441  */
2442 
2443 static int fionbio(struct file *file, int __user *p)
2444 {
2445 	int nonblock;
2446 
2447 	if (get_user(nonblock, p))
2448 		return -EFAULT;
2449 
2450 	spin_lock(&file->f_lock);
2451 	if (nonblock)
2452 		file->f_flags |= O_NONBLOCK;
2453 	else
2454 		file->f_flags &= ~O_NONBLOCK;
2455 	spin_unlock(&file->f_lock);
2456 	return 0;
2457 }
2458 
2459 /**
2460  *	tiocsctty	-	set controlling tty
2461  *	@tty: tty structure
2462  *	@arg: user argument
2463  *
2464  *	This ioctl is used to manage job control. It permits a session
2465  *	leader to set this tty as the controlling tty for the session.
2466  *
2467  *	Locking:
2468  *		Takes tty_lock() to serialize proc_set_tty() for this tty
2469  *		Takes tasklist_lock internally to walk sessions
2470  *		Takes ->siglock() when updating signal->tty
2471  */
2472 
2473 static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2474 {
2475 	int ret = 0;
2476 
2477 	tty_lock(tty);
2478 	read_lock(&tasklist_lock);
2479 
2480 	if (current->signal->leader && (task_session(current) == tty->session))
2481 		goto unlock;
2482 
2483 	/*
2484 	 * The process must be a session leader and
2485 	 * not have a controlling tty already.
2486 	 */
2487 	if (!current->signal->leader || current->signal->tty) {
2488 		ret = -EPERM;
2489 		goto unlock;
2490 	}
2491 
2492 	if (tty->session) {
2493 		/*
2494 		 * This tty is already the controlling
2495 		 * tty for another session group!
2496 		 */
2497 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2498 			/*
2499 			 * Steal it away
2500 			 */
2501 			session_clear_tty(tty->session);
2502 		} else {
2503 			ret = -EPERM;
2504 			goto unlock;
2505 		}
2506 	}
2507 
2508 	/* See the comment in tty_open(). */
2509 	if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2510 		ret = -EPERM;
2511 		goto unlock;
2512 	}
2513 
2514 	proc_set_tty(tty);
2515 unlock:
2516 	read_unlock(&tasklist_lock);
2517 	tty_unlock(tty);
2518 	return ret;
2519 }
2520 
2521 /**
2522  *	tty_get_pgrp	-	return a ref counted pgrp pid
2523  *	@tty: tty to read
2524  *
2525  *	Returns a refcounted instance of the pid struct for the process
2526  *	group controlling the tty.
2527  */
2528 
2529 struct pid *tty_get_pgrp(struct tty_struct *tty)
2530 {
2531 	unsigned long flags;
2532 	struct pid *pgrp;
2533 
2534 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2535 	pgrp = get_pid(tty->pgrp);
2536 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2537 
2538 	return pgrp;
2539 }
2540 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2541 
2542 /*
2543  * This checks not only the pgrp, but falls back on the pid if no
2544  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2545  * without this...
2546  *
2547  * The caller must hold rcu lock or the tasklist lock.
2548  */
2549 static struct pid *session_of_pgrp(struct pid *pgrp)
2550 {
2551 	struct task_struct *p;
2552 	struct pid *sid = NULL;
2553 
2554 	p = pid_task(pgrp, PIDTYPE_PGID);
2555 	if (p == NULL)
2556 		p = pid_task(pgrp, PIDTYPE_PID);
2557 	if (p != NULL)
2558 		sid = task_session(p);
2559 
2560 	return sid;
2561 }
2562 
2563 /**
2564  *	tiocgpgrp		-	get process group
2565  *	@tty: tty passed by user
2566  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2567  *	@p: returned pid
2568  *
2569  *	Obtain the process group of the tty. If there is no process group
2570  *	return an error.
2571  *
2572  *	Locking: none. Reference to current->signal->tty is safe.
2573  */
2574 
2575 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2576 {
2577 	struct pid *pid;
2578 	int ret;
2579 	/*
2580 	 * (tty == real_tty) is a cheap way of
2581 	 * testing if the tty is NOT a master pty.
2582 	 */
2583 	if (tty == real_tty && current->signal->tty != real_tty)
2584 		return -ENOTTY;
2585 	pid = tty_get_pgrp(real_tty);
2586 	ret =  put_user(pid_vnr(pid), p);
2587 	put_pid(pid);
2588 	return ret;
2589 }
2590 
2591 /**
2592  *	tiocspgrp		-	attempt to set process group
2593  *	@tty: tty passed by user
2594  *	@real_tty: tty side device matching tty passed by user
2595  *	@p: pid pointer
2596  *
2597  *	Set the process group of the tty to the session passed. Only
2598  *	permitted where the tty session is our session.
2599  *
2600  *	Locking: RCU, ctrl lock
2601  */
2602 
2603 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2604 {
2605 	struct pid *pgrp;
2606 	pid_t pgrp_nr;
2607 	int retval = tty_check_change(real_tty);
2608 
2609 	if (retval == -EIO)
2610 		return -ENOTTY;
2611 	if (retval)
2612 		return retval;
2613 	if (!current->signal->tty ||
2614 	    (current->signal->tty != real_tty) ||
2615 	    (real_tty->session != task_session(current)))
2616 		return -ENOTTY;
2617 	if (get_user(pgrp_nr, p))
2618 		return -EFAULT;
2619 	if (pgrp_nr < 0)
2620 		return -EINVAL;
2621 	rcu_read_lock();
2622 	pgrp = find_vpid(pgrp_nr);
2623 	retval = -ESRCH;
2624 	if (!pgrp)
2625 		goto out_unlock;
2626 	retval = -EPERM;
2627 	if (session_of_pgrp(pgrp) != task_session(current))
2628 		goto out_unlock;
2629 	retval = 0;
2630 	spin_lock_irq(&tty->ctrl_lock);
2631 	put_pid(real_tty->pgrp);
2632 	real_tty->pgrp = get_pid(pgrp);
2633 	spin_unlock_irq(&tty->ctrl_lock);
2634 out_unlock:
2635 	rcu_read_unlock();
2636 	return retval;
2637 }
2638 
2639 /**
2640  *	tiocgsid		-	get session id
2641  *	@tty: tty passed by user
2642  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2643  *	@p: pointer to returned session id
2644  *
2645  *	Obtain the session id of the tty. If there is no session
2646  *	return an error.
2647  *
2648  *	Locking: none. Reference to current->signal->tty is safe.
2649  */
2650 
2651 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2652 {
2653 	/*
2654 	 * (tty == real_tty) is a cheap way of
2655 	 * testing if the tty is NOT a master pty.
2656 	*/
2657 	if (tty == real_tty && current->signal->tty != real_tty)
2658 		return -ENOTTY;
2659 	if (!real_tty->session)
2660 		return -ENOTTY;
2661 	return put_user(pid_vnr(real_tty->session), p);
2662 }
2663 
2664 /**
2665  *	tiocsetd	-	set line discipline
2666  *	@tty: tty device
2667  *	@p: pointer to user data
2668  *
2669  *	Set the line discipline according to user request.
2670  *
2671  *	Locking: see tty_set_ldisc, this function is just a helper
2672  */
2673 
2674 static int tiocsetd(struct tty_struct *tty, int __user *p)
2675 {
2676 	int disc;
2677 	int ret;
2678 
2679 	if (get_user(disc, p))
2680 		return -EFAULT;
2681 
2682 	ret = tty_set_ldisc(tty, disc);
2683 
2684 	return ret;
2685 }
2686 
2687 /**
2688  *	tiocgetd	-	get line discipline
2689  *	@tty: tty device
2690  *	@p: pointer to user data
2691  *
2692  *	Retrieves the line discipline id directly from the ldisc.
2693  *
2694  *	Locking: waits for ldisc reference (in case the line discipline
2695  *		is changing or the tty is being hungup)
2696  */
2697 
2698 static int tiocgetd(struct tty_struct *tty, int __user *p)
2699 {
2700 	struct tty_ldisc *ld;
2701 	int ret;
2702 
2703 	ld = tty_ldisc_ref_wait(tty);
2704 	if (!ld)
2705 		return -EIO;
2706 	ret = put_user(ld->ops->num, p);
2707 	tty_ldisc_deref(ld);
2708 	return ret;
2709 }
2710 
2711 /**
2712  *	send_break	-	performed time break
2713  *	@tty: device to break on
2714  *	@duration: timeout in mS
2715  *
2716  *	Perform a timed break on hardware that lacks its own driver level
2717  *	timed break functionality.
2718  *
2719  *	Locking:
2720  *		atomic_write_lock serializes
2721  *
2722  */
2723 
2724 static int send_break(struct tty_struct *tty, unsigned int duration)
2725 {
2726 	int retval;
2727 
2728 	if (tty->ops->break_ctl == NULL)
2729 		return 0;
2730 
2731 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2732 		retval = tty->ops->break_ctl(tty, duration);
2733 	else {
2734 		/* Do the work ourselves */
2735 		if (tty_write_lock(tty, 0) < 0)
2736 			return -EINTR;
2737 		retval = tty->ops->break_ctl(tty, -1);
2738 		if (retval)
2739 			goto out;
2740 		if (!signal_pending(current))
2741 			msleep_interruptible(duration);
2742 		retval = tty->ops->break_ctl(tty, 0);
2743 out:
2744 		tty_write_unlock(tty);
2745 		if (signal_pending(current))
2746 			retval = -EINTR;
2747 	}
2748 	return retval;
2749 }
2750 
2751 /**
2752  *	tty_tiocmget		-	get modem status
2753  *	@tty: tty device
2754  *	@file: user file pointer
2755  *	@p: pointer to result
2756  *
2757  *	Obtain the modem status bits from the tty driver if the feature
2758  *	is supported. Return -EINVAL if it is not available.
2759  *
2760  *	Locking: none (up to the driver)
2761  */
2762 
2763 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2764 {
2765 	int retval = -EINVAL;
2766 
2767 	if (tty->ops->tiocmget) {
2768 		retval = tty->ops->tiocmget(tty);
2769 
2770 		if (retval >= 0)
2771 			retval = put_user(retval, p);
2772 	}
2773 	return retval;
2774 }
2775 
2776 /**
2777  *	tty_tiocmset		-	set modem status
2778  *	@tty: tty device
2779  *	@cmd: command - clear bits, set bits or set all
2780  *	@p: pointer to desired bits
2781  *
2782  *	Set the modem status bits from the tty driver if the feature
2783  *	is supported. Return -EINVAL if it is not available.
2784  *
2785  *	Locking: none (up to the driver)
2786  */
2787 
2788 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2789 	     unsigned __user *p)
2790 {
2791 	int retval;
2792 	unsigned int set, clear, val;
2793 
2794 	if (tty->ops->tiocmset == NULL)
2795 		return -EINVAL;
2796 
2797 	retval = get_user(val, p);
2798 	if (retval)
2799 		return retval;
2800 	set = clear = 0;
2801 	switch (cmd) {
2802 	case TIOCMBIS:
2803 		set = val;
2804 		break;
2805 	case TIOCMBIC:
2806 		clear = val;
2807 		break;
2808 	case TIOCMSET:
2809 		set = val;
2810 		clear = ~val;
2811 		break;
2812 	}
2813 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2814 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2815 	return tty->ops->tiocmset(tty, set, clear);
2816 }
2817 
2818 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2819 {
2820 	int retval = -EINVAL;
2821 	struct serial_icounter_struct icount;
2822 	memset(&icount, 0, sizeof(icount));
2823 	if (tty->ops->get_icount)
2824 		retval = tty->ops->get_icount(tty, &icount);
2825 	if (retval != 0)
2826 		return retval;
2827 	if (copy_to_user(arg, &icount, sizeof(icount)))
2828 		return -EFAULT;
2829 	return 0;
2830 }
2831 
2832 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2833 {
2834 	static DEFINE_RATELIMIT_STATE(depr_flags,
2835 			DEFAULT_RATELIMIT_INTERVAL,
2836 			DEFAULT_RATELIMIT_BURST);
2837 	char comm[TASK_COMM_LEN];
2838 	int flags;
2839 
2840 	if (get_user(flags, &ss->flags))
2841 		return;
2842 
2843 	flags &= ASYNC_DEPRECATED;
2844 
2845 	if (flags && __ratelimit(&depr_flags))
2846 		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2847 				__func__, get_task_comm(comm, current), flags);
2848 }
2849 
2850 /*
2851  * if pty, return the slave side (real_tty)
2852  * otherwise, return self
2853  */
2854 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2855 {
2856 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2857 	    tty->driver->subtype == PTY_TYPE_MASTER)
2858 		tty = tty->link;
2859 	return tty;
2860 }
2861 
2862 /*
2863  * Split this up, as gcc can choke on it otherwise..
2864  */
2865 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2866 {
2867 	struct tty_struct *tty = file_tty(file);
2868 	struct tty_struct *real_tty;
2869 	void __user *p = (void __user *)arg;
2870 	int retval;
2871 	struct tty_ldisc *ld;
2872 
2873 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2874 		return -EINVAL;
2875 
2876 	real_tty = tty_pair_get_tty(tty);
2877 
2878 	/*
2879 	 * Factor out some common prep work
2880 	 */
2881 	switch (cmd) {
2882 	case TIOCSETD:
2883 	case TIOCSBRK:
2884 	case TIOCCBRK:
2885 	case TCSBRK:
2886 	case TCSBRKP:
2887 		retval = tty_check_change(tty);
2888 		if (retval)
2889 			return retval;
2890 		if (cmd != TIOCCBRK) {
2891 			tty_wait_until_sent(tty, 0);
2892 			if (signal_pending(current))
2893 				return -EINTR;
2894 		}
2895 		break;
2896 	}
2897 
2898 	/*
2899 	 *	Now do the stuff.
2900 	 */
2901 	switch (cmd) {
2902 	case TIOCSTI:
2903 		return tiocsti(tty, p);
2904 	case TIOCGWINSZ:
2905 		return tiocgwinsz(real_tty, p);
2906 	case TIOCSWINSZ:
2907 		return tiocswinsz(real_tty, p);
2908 	case TIOCCONS:
2909 		return real_tty != tty ? -EINVAL : tioccons(file);
2910 	case FIONBIO:
2911 		return fionbio(file, p);
2912 	case TIOCEXCL:
2913 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2914 		return 0;
2915 	case TIOCNXCL:
2916 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2917 		return 0;
2918 	case TIOCGEXCL:
2919 	{
2920 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2921 		return put_user(excl, (int __user *)p);
2922 	}
2923 	case TIOCNOTTY:
2924 		if (current->signal->tty != tty)
2925 			return -ENOTTY;
2926 		no_tty();
2927 		return 0;
2928 	case TIOCSCTTY:
2929 		return tiocsctty(real_tty, file, arg);
2930 	case TIOCGPGRP:
2931 		return tiocgpgrp(tty, real_tty, p);
2932 	case TIOCSPGRP:
2933 		return tiocspgrp(tty, real_tty, p);
2934 	case TIOCGSID:
2935 		return tiocgsid(tty, real_tty, p);
2936 	case TIOCGETD:
2937 		return tiocgetd(tty, p);
2938 	case TIOCSETD:
2939 		return tiocsetd(tty, p);
2940 	case TIOCVHANGUP:
2941 		if (!capable(CAP_SYS_ADMIN))
2942 			return -EPERM;
2943 		tty_vhangup(tty);
2944 		return 0;
2945 	case TIOCGDEV:
2946 	{
2947 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2948 		return put_user(ret, (unsigned int __user *)p);
2949 	}
2950 	/*
2951 	 * Break handling
2952 	 */
2953 	case TIOCSBRK:	/* Turn break on, unconditionally */
2954 		if (tty->ops->break_ctl)
2955 			return tty->ops->break_ctl(tty, -1);
2956 		return 0;
2957 	case TIOCCBRK:	/* Turn break off, unconditionally */
2958 		if (tty->ops->break_ctl)
2959 			return tty->ops->break_ctl(tty, 0);
2960 		return 0;
2961 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2962 		/* non-zero arg means wait for all output data
2963 		 * to be sent (performed above) but don't send break.
2964 		 * This is used by the tcdrain() termios function.
2965 		 */
2966 		if (!arg)
2967 			return send_break(tty, 250);
2968 		return 0;
2969 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2970 		return send_break(tty, arg ? arg*100 : 250);
2971 
2972 	case TIOCMGET:
2973 		return tty_tiocmget(tty, p);
2974 	case TIOCMSET:
2975 	case TIOCMBIC:
2976 	case TIOCMBIS:
2977 		return tty_tiocmset(tty, cmd, p);
2978 	case TIOCGICOUNT:
2979 		retval = tty_tiocgicount(tty, p);
2980 		/* For the moment allow fall through to the old method */
2981         	if (retval != -EINVAL)
2982 			return retval;
2983 		break;
2984 	case TCFLSH:
2985 		switch (arg) {
2986 		case TCIFLUSH:
2987 		case TCIOFLUSH:
2988 		/* flush tty buffer and allow ldisc to process ioctl */
2989 			tty_buffer_flush(tty, NULL);
2990 			break;
2991 		}
2992 		break;
2993 	case TIOCSSERIAL:
2994 		tty_warn_deprecated_flags(p);
2995 		break;
2996 	}
2997 	if (tty->ops->ioctl) {
2998 		retval = tty->ops->ioctl(tty, cmd, arg);
2999 		if (retval != -ENOIOCTLCMD)
3000 			return retval;
3001 	}
3002 	ld = tty_ldisc_ref_wait(tty);
3003 	if (!ld)
3004 		return hung_up_tty_ioctl(file, cmd, arg);
3005 	retval = -EINVAL;
3006 	if (ld->ops->ioctl) {
3007 		retval = ld->ops->ioctl(tty, file, cmd, arg);
3008 		if (retval == -ENOIOCTLCMD)
3009 			retval = -ENOTTY;
3010 	}
3011 	tty_ldisc_deref(ld);
3012 	return retval;
3013 }
3014 
3015 #ifdef CONFIG_COMPAT
3016 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3017 				unsigned long arg)
3018 {
3019 	struct tty_struct *tty = file_tty(file);
3020 	struct tty_ldisc *ld;
3021 	int retval = -ENOIOCTLCMD;
3022 
3023 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
3024 		return -EINVAL;
3025 
3026 	if (tty->ops->compat_ioctl) {
3027 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
3028 		if (retval != -ENOIOCTLCMD)
3029 			return retval;
3030 	}
3031 
3032 	ld = tty_ldisc_ref_wait(tty);
3033 	if (!ld)
3034 		return hung_up_tty_compat_ioctl(file, cmd, arg);
3035 	if (ld->ops->compat_ioctl)
3036 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3037 	else
3038 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
3039 	tty_ldisc_deref(ld);
3040 
3041 	return retval;
3042 }
3043 #endif
3044 
3045 static int this_tty(const void *t, struct file *file, unsigned fd)
3046 {
3047 	if (likely(file->f_op->read != tty_read))
3048 		return 0;
3049 	return file_tty(file) != t ? 0 : fd + 1;
3050 }
3051 
3052 /*
3053  * This implements the "Secure Attention Key" ---  the idea is to
3054  * prevent trojan horses by killing all processes associated with this
3055  * tty when the user hits the "Secure Attention Key".  Required for
3056  * super-paranoid applications --- see the Orange Book for more details.
3057  *
3058  * This code could be nicer; ideally it should send a HUP, wait a few
3059  * seconds, then send a INT, and then a KILL signal.  But you then
3060  * have to coordinate with the init process, since all processes associated
3061  * with the current tty must be dead before the new getty is allowed
3062  * to spawn.
3063  *
3064  * Now, if it would be correct ;-/ The current code has a nasty hole -
3065  * it doesn't catch files in flight. We may send the descriptor to ourselves
3066  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3067  *
3068  * Nasty bug: do_SAK is being called in interrupt context.  This can
3069  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3070  */
3071 void __do_SAK(struct tty_struct *tty)
3072 {
3073 #ifdef TTY_SOFT_SAK
3074 	tty_hangup(tty);
3075 #else
3076 	struct task_struct *g, *p;
3077 	struct pid *session;
3078 	int		i;
3079 
3080 	if (!tty)
3081 		return;
3082 	session = tty->session;
3083 
3084 	tty_ldisc_flush(tty);
3085 
3086 	tty_driver_flush_buffer(tty);
3087 
3088 	read_lock(&tasklist_lock);
3089 	/* Kill the entire session */
3090 	do_each_pid_task(session, PIDTYPE_SID, p) {
3091 		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3092 			   task_pid_nr(p), p->comm);
3093 		send_sig(SIGKILL, p, 1);
3094 	} while_each_pid_task(session, PIDTYPE_SID, p);
3095 
3096 	/* Now kill any processes that happen to have the tty open */
3097 	do_each_thread(g, p) {
3098 		if (p->signal->tty == tty) {
3099 			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3100 				   task_pid_nr(p), p->comm);
3101 			send_sig(SIGKILL, p, 1);
3102 			continue;
3103 		}
3104 		task_lock(p);
3105 		i = iterate_fd(p->files, 0, this_tty, tty);
3106 		if (i != 0) {
3107 			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3108 				   task_pid_nr(p), p->comm, i - 1);
3109 			force_sig(SIGKILL, p);
3110 		}
3111 		task_unlock(p);
3112 	} while_each_thread(g, p);
3113 	read_unlock(&tasklist_lock);
3114 #endif
3115 }
3116 
3117 static void do_SAK_work(struct work_struct *work)
3118 {
3119 	struct tty_struct *tty =
3120 		container_of(work, struct tty_struct, SAK_work);
3121 	__do_SAK(tty);
3122 }
3123 
3124 /*
3125  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3126  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3127  * the values which we write to it will be identical to the values which it
3128  * already has. --akpm
3129  */
3130 void do_SAK(struct tty_struct *tty)
3131 {
3132 	if (!tty)
3133 		return;
3134 	schedule_work(&tty->SAK_work);
3135 }
3136 
3137 EXPORT_SYMBOL(do_SAK);
3138 
3139 static int dev_match_devt(struct device *dev, const void *data)
3140 {
3141 	const dev_t *devt = data;
3142 	return dev->devt == *devt;
3143 }
3144 
3145 /* Must put_device() after it's unused! */
3146 static struct device *tty_get_device(struct tty_struct *tty)
3147 {
3148 	dev_t devt = tty_devnum(tty);
3149 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3150 }
3151 
3152 
3153 /**
3154  *	alloc_tty_struct
3155  *
3156  *	This subroutine allocates and initializes a tty structure.
3157  *
3158  *	Locking: none - tty in question is not exposed at this point
3159  */
3160 
3161 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3162 {
3163 	struct tty_struct *tty;
3164 
3165 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3166 	if (!tty)
3167 		return NULL;
3168 
3169 	kref_init(&tty->kref);
3170 	tty->magic = TTY_MAGIC;
3171 	tty_ldisc_init(tty);
3172 	tty->session = NULL;
3173 	tty->pgrp = NULL;
3174 	mutex_init(&tty->legacy_mutex);
3175 	mutex_init(&tty->throttle_mutex);
3176 	init_rwsem(&tty->termios_rwsem);
3177 	mutex_init(&tty->winsize_mutex);
3178 	init_ldsem(&tty->ldisc_sem);
3179 	init_waitqueue_head(&tty->write_wait);
3180 	init_waitqueue_head(&tty->read_wait);
3181 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3182 	mutex_init(&tty->atomic_write_lock);
3183 	spin_lock_init(&tty->ctrl_lock);
3184 	spin_lock_init(&tty->flow_lock);
3185 	spin_lock_init(&tty->files_lock);
3186 	INIT_LIST_HEAD(&tty->tty_files);
3187 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3188 
3189 	tty->driver = driver;
3190 	tty->ops = driver->ops;
3191 	tty->index = idx;
3192 	tty_line_name(driver, idx, tty->name);
3193 	tty->dev = tty_get_device(tty);
3194 
3195 	return tty;
3196 }
3197 
3198 /**
3199  *	tty_put_char	-	write one character to a tty
3200  *	@tty: tty
3201  *	@ch: character
3202  *
3203  *	Write one byte to the tty using the provided put_char method
3204  *	if present. Returns the number of characters successfully output.
3205  *
3206  *	Note: the specific put_char operation in the driver layer may go
3207  *	away soon. Don't call it directly, use this method
3208  */
3209 
3210 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3211 {
3212 	if (tty->ops->put_char)
3213 		return tty->ops->put_char(tty, ch);
3214 	return tty->ops->write(tty, &ch, 1);
3215 }
3216 EXPORT_SYMBOL_GPL(tty_put_char);
3217 
3218 struct class *tty_class;
3219 
3220 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3221 		unsigned int index, unsigned int count)
3222 {
3223 	int err;
3224 
3225 	/* init here, since reused cdevs cause crashes */
3226 	driver->cdevs[index] = cdev_alloc();
3227 	if (!driver->cdevs[index])
3228 		return -ENOMEM;
3229 	driver->cdevs[index]->ops = &tty_fops;
3230 	driver->cdevs[index]->owner = driver->owner;
3231 	err = cdev_add(driver->cdevs[index], dev, count);
3232 	if (err)
3233 		kobject_put(&driver->cdevs[index]->kobj);
3234 	return err;
3235 }
3236 
3237 /**
3238  *	tty_register_device - register a tty device
3239  *	@driver: the tty driver that describes the tty device
3240  *	@index: the index in the tty driver for this tty device
3241  *	@device: a struct device that is associated with this tty device.
3242  *		This field is optional, if there is no known struct device
3243  *		for this tty device it can be set to NULL safely.
3244  *
3245  *	Returns a pointer to the struct device for this tty device
3246  *	(or ERR_PTR(-EFOO) on error).
3247  *
3248  *	This call is required to be made to register an individual tty device
3249  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3250  *	that bit is not set, this function should not be called by a tty
3251  *	driver.
3252  *
3253  *	Locking: ??
3254  */
3255 
3256 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3257 				   struct device *device)
3258 {
3259 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3260 }
3261 EXPORT_SYMBOL(tty_register_device);
3262 
3263 static void tty_device_create_release(struct device *dev)
3264 {
3265 	dev_dbg(dev, "releasing...\n");
3266 	kfree(dev);
3267 }
3268 
3269 /**
3270  *	tty_register_device_attr - register a tty device
3271  *	@driver: the tty driver that describes the tty device
3272  *	@index: the index in the tty driver for this tty device
3273  *	@device: a struct device that is associated with this tty device.
3274  *		This field is optional, if there is no known struct device
3275  *		for this tty device it can be set to NULL safely.
3276  *	@drvdata: Driver data to be set to device.
3277  *	@attr_grp: Attribute group to be set on device.
3278  *
3279  *	Returns a pointer to the struct device for this tty device
3280  *	(or ERR_PTR(-EFOO) on error).
3281  *
3282  *	This call is required to be made to register an individual tty device
3283  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3284  *	that bit is not set, this function should not be called by a tty
3285  *	driver.
3286  *
3287  *	Locking: ??
3288  */
3289 struct device *tty_register_device_attr(struct tty_driver *driver,
3290 				   unsigned index, struct device *device,
3291 				   void *drvdata,
3292 				   const struct attribute_group **attr_grp)
3293 {
3294 	char name[64];
3295 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3296 	struct device *dev = NULL;
3297 	int retval = -ENODEV;
3298 	bool cdev = false;
3299 
3300 	if (index >= driver->num) {
3301 		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3302 		       driver->name, index);
3303 		return ERR_PTR(-EINVAL);
3304 	}
3305 
3306 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3307 		pty_line_name(driver, index, name);
3308 	else
3309 		tty_line_name(driver, index, name);
3310 
3311 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3312 		retval = tty_cdev_add(driver, devt, index, 1);
3313 		if (retval)
3314 			goto error;
3315 		cdev = true;
3316 	}
3317 
3318 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3319 	if (!dev) {
3320 		retval = -ENOMEM;
3321 		goto error;
3322 	}
3323 
3324 	dev->devt = devt;
3325 	dev->class = tty_class;
3326 	dev->parent = device;
3327 	dev->release = tty_device_create_release;
3328 	dev_set_name(dev, "%s", name);
3329 	dev->groups = attr_grp;
3330 	dev_set_drvdata(dev, drvdata);
3331 
3332 	retval = device_register(dev);
3333 	if (retval)
3334 		goto error;
3335 
3336 	return dev;
3337 
3338 error:
3339 	put_device(dev);
3340 	if (cdev) {
3341 		cdev_del(driver->cdevs[index]);
3342 		driver->cdevs[index] = NULL;
3343 	}
3344 	return ERR_PTR(retval);
3345 }
3346 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3347 
3348 /**
3349  * 	tty_unregister_device - unregister a tty device
3350  * 	@driver: the tty driver that describes the tty device
3351  * 	@index: the index in the tty driver for this tty device
3352  *
3353  * 	If a tty device is registered with a call to tty_register_device() then
3354  *	this function must be called when the tty device is gone.
3355  *
3356  *	Locking: ??
3357  */
3358 
3359 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3360 {
3361 	device_destroy(tty_class,
3362 		MKDEV(driver->major, driver->minor_start) + index);
3363 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3364 		cdev_del(driver->cdevs[index]);
3365 		driver->cdevs[index] = NULL;
3366 	}
3367 }
3368 EXPORT_SYMBOL(tty_unregister_device);
3369 
3370 /**
3371  * __tty_alloc_driver -- allocate tty driver
3372  * @lines: count of lines this driver can handle at most
3373  * @owner: module which is repsonsible for this driver
3374  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3375  *
3376  * This should not be called directly, some of the provided macros should be
3377  * used instead. Use IS_ERR and friends on @retval.
3378  */
3379 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3380 		unsigned long flags)
3381 {
3382 	struct tty_driver *driver;
3383 	unsigned int cdevs = 1;
3384 	int err;
3385 
3386 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3387 		return ERR_PTR(-EINVAL);
3388 
3389 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3390 	if (!driver)
3391 		return ERR_PTR(-ENOMEM);
3392 
3393 	kref_init(&driver->kref);
3394 	driver->magic = TTY_DRIVER_MAGIC;
3395 	driver->num = lines;
3396 	driver->owner = owner;
3397 	driver->flags = flags;
3398 
3399 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3400 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3401 				GFP_KERNEL);
3402 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3403 				GFP_KERNEL);
3404 		if (!driver->ttys || !driver->termios) {
3405 			err = -ENOMEM;
3406 			goto err_free_all;
3407 		}
3408 	}
3409 
3410 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3411 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3412 				GFP_KERNEL);
3413 		if (!driver->ports) {
3414 			err = -ENOMEM;
3415 			goto err_free_all;
3416 		}
3417 		cdevs = lines;
3418 	}
3419 
3420 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3421 	if (!driver->cdevs) {
3422 		err = -ENOMEM;
3423 		goto err_free_all;
3424 	}
3425 
3426 	return driver;
3427 err_free_all:
3428 	kfree(driver->ports);
3429 	kfree(driver->ttys);
3430 	kfree(driver->termios);
3431 	kfree(driver->cdevs);
3432 	kfree(driver);
3433 	return ERR_PTR(err);
3434 }
3435 EXPORT_SYMBOL(__tty_alloc_driver);
3436 
3437 static void destruct_tty_driver(struct kref *kref)
3438 {
3439 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3440 	int i;
3441 	struct ktermios *tp;
3442 
3443 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3444 		/*
3445 		 * Free the termios and termios_locked structures because
3446 		 * we don't want to get memory leaks when modular tty
3447 		 * drivers are removed from the kernel.
3448 		 */
3449 		for (i = 0; i < driver->num; i++) {
3450 			tp = driver->termios[i];
3451 			if (tp) {
3452 				driver->termios[i] = NULL;
3453 				kfree(tp);
3454 			}
3455 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3456 				tty_unregister_device(driver, i);
3457 		}
3458 		proc_tty_unregister_driver(driver);
3459 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3460 			cdev_del(driver->cdevs[0]);
3461 	}
3462 	kfree(driver->cdevs);
3463 	kfree(driver->ports);
3464 	kfree(driver->termios);
3465 	kfree(driver->ttys);
3466 	kfree(driver);
3467 }
3468 
3469 void tty_driver_kref_put(struct tty_driver *driver)
3470 {
3471 	kref_put(&driver->kref, destruct_tty_driver);
3472 }
3473 EXPORT_SYMBOL(tty_driver_kref_put);
3474 
3475 void tty_set_operations(struct tty_driver *driver,
3476 			const struct tty_operations *op)
3477 {
3478 	driver->ops = op;
3479 };
3480 EXPORT_SYMBOL(tty_set_operations);
3481 
3482 void put_tty_driver(struct tty_driver *d)
3483 {
3484 	tty_driver_kref_put(d);
3485 }
3486 EXPORT_SYMBOL(put_tty_driver);
3487 
3488 /*
3489  * Called by a tty driver to register itself.
3490  */
3491 int tty_register_driver(struct tty_driver *driver)
3492 {
3493 	int error;
3494 	int i;
3495 	dev_t dev;
3496 	struct device *d;
3497 
3498 	if (!driver->major) {
3499 		error = alloc_chrdev_region(&dev, driver->minor_start,
3500 						driver->num, driver->name);
3501 		if (!error) {
3502 			driver->major = MAJOR(dev);
3503 			driver->minor_start = MINOR(dev);
3504 		}
3505 	} else {
3506 		dev = MKDEV(driver->major, driver->minor_start);
3507 		error = register_chrdev_region(dev, driver->num, driver->name);
3508 	}
3509 	if (error < 0)
3510 		goto err;
3511 
3512 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3513 		error = tty_cdev_add(driver, dev, 0, driver->num);
3514 		if (error)
3515 			goto err_unreg_char;
3516 	}
3517 
3518 	mutex_lock(&tty_mutex);
3519 	list_add(&driver->tty_drivers, &tty_drivers);
3520 	mutex_unlock(&tty_mutex);
3521 
3522 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3523 		for (i = 0; i < driver->num; i++) {
3524 			d = tty_register_device(driver, i, NULL);
3525 			if (IS_ERR(d)) {
3526 				error = PTR_ERR(d);
3527 				goto err_unreg_devs;
3528 			}
3529 		}
3530 	}
3531 	proc_tty_register_driver(driver);
3532 	driver->flags |= TTY_DRIVER_INSTALLED;
3533 	return 0;
3534 
3535 err_unreg_devs:
3536 	for (i--; i >= 0; i--)
3537 		tty_unregister_device(driver, i);
3538 
3539 	mutex_lock(&tty_mutex);
3540 	list_del(&driver->tty_drivers);
3541 	mutex_unlock(&tty_mutex);
3542 
3543 err_unreg_char:
3544 	unregister_chrdev_region(dev, driver->num);
3545 err:
3546 	return error;
3547 }
3548 EXPORT_SYMBOL(tty_register_driver);
3549 
3550 /*
3551  * Called by a tty driver to unregister itself.
3552  */
3553 int tty_unregister_driver(struct tty_driver *driver)
3554 {
3555 #if 0
3556 	/* FIXME */
3557 	if (driver->refcount)
3558 		return -EBUSY;
3559 #endif
3560 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3561 				driver->num);
3562 	mutex_lock(&tty_mutex);
3563 	list_del(&driver->tty_drivers);
3564 	mutex_unlock(&tty_mutex);
3565 	return 0;
3566 }
3567 
3568 EXPORT_SYMBOL(tty_unregister_driver);
3569 
3570 dev_t tty_devnum(struct tty_struct *tty)
3571 {
3572 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3573 }
3574 EXPORT_SYMBOL(tty_devnum);
3575 
3576 void tty_default_fops(struct file_operations *fops)
3577 {
3578 	*fops = tty_fops;
3579 }
3580 
3581 /*
3582  * Initialize the console device. This is called *early*, so
3583  * we can't necessarily depend on lots of kernel help here.
3584  * Just do some early initializations, and do the complex setup
3585  * later.
3586  */
3587 void __init console_init(void)
3588 {
3589 	initcall_t *call;
3590 
3591 	/* Setup the default TTY line discipline. */
3592 	n_tty_init();
3593 
3594 	/*
3595 	 * set up the console device so that later boot sequences can
3596 	 * inform about problems etc..
3597 	 */
3598 	call = __con_initcall_start;
3599 	while (call < __con_initcall_end) {
3600 		(*call)();
3601 		call++;
3602 	}
3603 }
3604 
3605 static char *tty_devnode(struct device *dev, umode_t *mode)
3606 {
3607 	if (!mode)
3608 		return NULL;
3609 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3610 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3611 		*mode = 0666;
3612 	return NULL;
3613 }
3614 
3615 static int __init tty_class_init(void)
3616 {
3617 	tty_class = class_create(THIS_MODULE, "tty");
3618 	if (IS_ERR(tty_class))
3619 		return PTR_ERR(tty_class);
3620 	tty_class->devnode = tty_devnode;
3621 	return 0;
3622 }
3623 
3624 postcore_initcall(tty_class_init);
3625 
3626 /* 3/2004 jmc: why do these devices exist? */
3627 static struct cdev tty_cdev, console_cdev;
3628 
3629 static ssize_t show_cons_active(struct device *dev,
3630 				struct device_attribute *attr, char *buf)
3631 {
3632 	struct console *cs[16];
3633 	int i = 0;
3634 	struct console *c;
3635 	ssize_t count = 0;
3636 
3637 	console_lock();
3638 	for_each_console(c) {
3639 		if (!c->device)
3640 			continue;
3641 		if (!c->write)
3642 			continue;
3643 		if ((c->flags & CON_ENABLED) == 0)
3644 			continue;
3645 		cs[i++] = c;
3646 		if (i >= ARRAY_SIZE(cs))
3647 			break;
3648 	}
3649 	while (i--) {
3650 		int index = cs[i]->index;
3651 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3652 
3653 		/* don't resolve tty0 as some programs depend on it */
3654 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3655 			count += tty_line_name(drv, index, buf + count);
3656 		else
3657 			count += sprintf(buf + count, "%s%d",
3658 					 cs[i]->name, cs[i]->index);
3659 
3660 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3661 	}
3662 	console_unlock();
3663 
3664 	return count;
3665 }
3666 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3667 
3668 static struct attribute *cons_dev_attrs[] = {
3669 	&dev_attr_active.attr,
3670 	NULL
3671 };
3672 
3673 ATTRIBUTE_GROUPS(cons_dev);
3674 
3675 static struct device *consdev;
3676 
3677 void console_sysfs_notify(void)
3678 {
3679 	if (consdev)
3680 		sysfs_notify(&consdev->kobj, NULL, "active");
3681 }
3682 
3683 /*
3684  * Ok, now we can initialize the rest of the tty devices and can count
3685  * on memory allocations, interrupts etc..
3686  */
3687 int __init tty_init(void)
3688 {
3689 	cdev_init(&tty_cdev, &tty_fops);
3690 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3691 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3692 		panic("Couldn't register /dev/tty driver\n");
3693 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3694 
3695 	cdev_init(&console_cdev, &console_fops);
3696 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3697 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3698 		panic("Couldn't register /dev/console driver\n");
3699 	consdev = device_create_with_groups(tty_class, NULL,
3700 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3701 					    cons_dev_groups, "console");
3702 	if (IS_ERR(consdev))
3703 		consdev = NULL;
3704 
3705 #ifdef CONFIG_VT
3706 	vty_init(&console_fops);
3707 #endif
3708 	return 0;
3709 }
3710 
3711