xref: /openbmc/linux/drivers/tty/tty_io.c (revision 33ac9dba)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112 
113 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
114 	.c_iflag = ICRNL | IXON,
115 	.c_oflag = OPOST | ONLCR,
116 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 		   ECHOCTL | ECHOKE | IEXTEN,
119 	.c_cc = INIT_C_CC,
120 	.c_ispeed = 38400,
121 	.c_ospeed = 38400
122 };
123 
124 EXPORT_SYMBOL(tty_std_termios);
125 
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129 
130 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
131 
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136 
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139 
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 							size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 				unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 
159 /**
160  *	free_tty_struct		-	free a disused tty
161  *	@tty: tty struct to free
162  *
163  *	Free the write buffers, tty queue and tty memory itself.
164  *
165  *	Locking: none. Must be called after tty is definitely unused
166  */
167 
168 void free_tty_struct(struct tty_struct *tty)
169 {
170 	if (!tty)
171 		return;
172 	if (tty->dev)
173 		put_device(tty->dev);
174 	kfree(tty->write_buf);
175 	tty->magic = 0xDEADDEAD;
176 	kfree(tty);
177 }
178 
179 static inline struct tty_struct *file_tty(struct file *file)
180 {
181 	return ((struct tty_file_private *)file->private_data)->tty;
182 }
183 
184 int tty_alloc_file(struct file *file)
185 {
186 	struct tty_file_private *priv;
187 
188 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
189 	if (!priv)
190 		return -ENOMEM;
191 
192 	file->private_data = priv;
193 
194 	return 0;
195 }
196 
197 /* Associate a new file with the tty structure */
198 void tty_add_file(struct tty_struct *tty, struct file *file)
199 {
200 	struct tty_file_private *priv = file->private_data;
201 
202 	priv->tty = tty;
203 	priv->file = file;
204 
205 	spin_lock(&tty_files_lock);
206 	list_add(&priv->list, &tty->tty_files);
207 	spin_unlock(&tty_files_lock);
208 }
209 
210 /**
211  * tty_free_file - free file->private_data
212  *
213  * This shall be used only for fail path handling when tty_add_file was not
214  * called yet.
215  */
216 void tty_free_file(struct file *file)
217 {
218 	struct tty_file_private *priv = file->private_data;
219 
220 	file->private_data = NULL;
221 	kfree(priv);
222 }
223 
224 /* Delete file from its tty */
225 static void tty_del_file(struct file *file)
226 {
227 	struct tty_file_private *priv = file->private_data;
228 
229 	spin_lock(&tty_files_lock);
230 	list_del(&priv->list);
231 	spin_unlock(&tty_files_lock);
232 	tty_free_file(file);
233 }
234 
235 
236 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
237 
238 /**
239  *	tty_name	-	return tty naming
240  *	@tty: tty structure
241  *	@buf: buffer for output
242  *
243  *	Convert a tty structure into a name. The name reflects the kernel
244  *	naming policy and if udev is in use may not reflect user space
245  *
246  *	Locking: none
247  */
248 
249 char *tty_name(struct tty_struct *tty, char *buf)
250 {
251 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
252 		strcpy(buf, "NULL tty");
253 	else
254 		strcpy(buf, tty->name);
255 	return buf;
256 }
257 
258 EXPORT_SYMBOL(tty_name);
259 
260 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
261 			      const char *routine)
262 {
263 #ifdef TTY_PARANOIA_CHECK
264 	if (!tty) {
265 		printk(KERN_WARNING
266 			"null TTY for (%d:%d) in %s\n",
267 			imajor(inode), iminor(inode), routine);
268 		return 1;
269 	}
270 	if (tty->magic != TTY_MAGIC) {
271 		printk(KERN_WARNING
272 			"bad magic number for tty struct (%d:%d) in %s\n",
273 			imajor(inode), iminor(inode), routine);
274 		return 1;
275 	}
276 #endif
277 	return 0;
278 }
279 
280 static int check_tty_count(struct tty_struct *tty, const char *routine)
281 {
282 #ifdef CHECK_TTY_COUNT
283 	struct list_head *p;
284 	int count = 0;
285 
286 	spin_lock(&tty_files_lock);
287 	list_for_each(p, &tty->tty_files) {
288 		count++;
289 	}
290 	spin_unlock(&tty_files_lock);
291 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
293 	    tty->link && tty->link->count)
294 		count++;
295 	if (tty->count != count) {
296 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
297 				    "!= #fd's(%d) in %s\n",
298 		       tty->name, tty->count, count, routine);
299 		return count;
300 	}
301 #endif
302 	return 0;
303 }
304 
305 /**
306  *	get_tty_driver		-	find device of a tty
307  *	@dev_t: device identifier
308  *	@index: returns the index of the tty
309  *
310  *	This routine returns a tty driver structure, given a device number
311  *	and also passes back the index number.
312  *
313  *	Locking: caller must hold tty_mutex
314  */
315 
316 static struct tty_driver *get_tty_driver(dev_t device, int *index)
317 {
318 	struct tty_driver *p;
319 
320 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
321 		dev_t base = MKDEV(p->major, p->minor_start);
322 		if (device < base || device >= base + p->num)
323 			continue;
324 		*index = device - base;
325 		return tty_driver_kref_get(p);
326 	}
327 	return NULL;
328 }
329 
330 #ifdef CONFIG_CONSOLE_POLL
331 
332 /**
333  *	tty_find_polling_driver	-	find device of a polled tty
334  *	@name: name string to match
335  *	@line: pointer to resulting tty line nr
336  *
337  *	This routine returns a tty driver structure, given a name
338  *	and the condition that the tty driver is capable of polled
339  *	operation.
340  */
341 struct tty_driver *tty_find_polling_driver(char *name, int *line)
342 {
343 	struct tty_driver *p, *res = NULL;
344 	int tty_line = 0;
345 	int len;
346 	char *str, *stp;
347 
348 	for (str = name; *str; str++)
349 		if ((*str >= '0' && *str <= '9') || *str == ',')
350 			break;
351 	if (!*str)
352 		return NULL;
353 
354 	len = str - name;
355 	tty_line = simple_strtoul(str, &str, 10);
356 
357 	mutex_lock(&tty_mutex);
358 	/* Search through the tty devices to look for a match */
359 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
360 		if (strncmp(name, p->name, len) != 0)
361 			continue;
362 		stp = str;
363 		if (*stp == ',')
364 			stp++;
365 		if (*stp == '\0')
366 			stp = NULL;
367 
368 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
369 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
370 			res = tty_driver_kref_get(p);
371 			*line = tty_line;
372 			break;
373 		}
374 	}
375 	mutex_unlock(&tty_mutex);
376 
377 	return res;
378 }
379 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
380 #endif
381 
382 /**
383  *	tty_check_change	-	check for POSIX terminal changes
384  *	@tty: tty to check
385  *
386  *	If we try to write to, or set the state of, a terminal and we're
387  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
388  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
389  *
390  *	Locking: ctrl_lock
391  */
392 
393 int tty_check_change(struct tty_struct *tty)
394 {
395 	unsigned long flags;
396 	int ret = 0;
397 
398 	if (current->signal->tty != tty)
399 		return 0;
400 
401 	spin_lock_irqsave(&tty->ctrl_lock, flags);
402 
403 	if (!tty->pgrp) {
404 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
405 		goto out_unlock;
406 	}
407 	if (task_pgrp(current) == tty->pgrp)
408 		goto out_unlock;
409 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
410 	if (is_ignored(SIGTTOU))
411 		goto out;
412 	if (is_current_pgrp_orphaned()) {
413 		ret = -EIO;
414 		goto out;
415 	}
416 	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
417 	set_thread_flag(TIF_SIGPENDING);
418 	ret = -ERESTARTSYS;
419 out:
420 	return ret;
421 out_unlock:
422 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423 	return ret;
424 }
425 
426 EXPORT_SYMBOL(tty_check_change);
427 
428 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
429 				size_t count, loff_t *ppos)
430 {
431 	return 0;
432 }
433 
434 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
435 				 size_t count, loff_t *ppos)
436 {
437 	return -EIO;
438 }
439 
440 /* No kernel lock held - none needed ;) */
441 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
442 {
443 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
444 }
445 
446 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
447 		unsigned long arg)
448 {
449 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
450 }
451 
452 static long hung_up_tty_compat_ioctl(struct file *file,
453 				     unsigned int cmd, unsigned long arg)
454 {
455 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
456 }
457 
458 static const struct file_operations tty_fops = {
459 	.llseek		= no_llseek,
460 	.read		= tty_read,
461 	.write		= tty_write,
462 	.poll		= tty_poll,
463 	.unlocked_ioctl	= tty_ioctl,
464 	.compat_ioctl	= tty_compat_ioctl,
465 	.open		= tty_open,
466 	.release	= tty_release,
467 	.fasync		= tty_fasync,
468 };
469 
470 static const struct file_operations console_fops = {
471 	.llseek		= no_llseek,
472 	.read		= tty_read,
473 	.write		= redirected_tty_write,
474 	.poll		= tty_poll,
475 	.unlocked_ioctl	= tty_ioctl,
476 	.compat_ioctl	= tty_compat_ioctl,
477 	.open		= tty_open,
478 	.release	= tty_release,
479 	.fasync		= tty_fasync,
480 };
481 
482 static const struct file_operations hung_up_tty_fops = {
483 	.llseek		= no_llseek,
484 	.read		= hung_up_tty_read,
485 	.write		= hung_up_tty_write,
486 	.poll		= hung_up_tty_poll,
487 	.unlocked_ioctl	= hung_up_tty_ioctl,
488 	.compat_ioctl	= hung_up_tty_compat_ioctl,
489 	.release	= tty_release,
490 };
491 
492 static DEFINE_SPINLOCK(redirect_lock);
493 static struct file *redirect;
494 
495 /**
496  *	tty_wakeup	-	request more data
497  *	@tty: terminal
498  *
499  *	Internal and external helper for wakeups of tty. This function
500  *	informs the line discipline if present that the driver is ready
501  *	to receive more output data.
502  */
503 
504 void tty_wakeup(struct tty_struct *tty)
505 {
506 	struct tty_ldisc *ld;
507 
508 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
509 		ld = tty_ldisc_ref(tty);
510 		if (ld) {
511 			if (ld->ops->write_wakeup)
512 				ld->ops->write_wakeup(tty);
513 			tty_ldisc_deref(ld);
514 		}
515 	}
516 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
517 }
518 
519 EXPORT_SYMBOL_GPL(tty_wakeup);
520 
521 /**
522  *	tty_signal_session_leader	- sends SIGHUP to session leader
523  *	@tty		controlling tty
524  *	@exit_session	if non-zero, signal all foreground group processes
525  *
526  *	Send SIGHUP and SIGCONT to the session leader and its process group.
527  *	Optionally, signal all processes in the foreground process group.
528  *
529  *	Returns the number of processes in the session with this tty
530  *	as their controlling terminal. This value is used to drop
531  *	tty references for those processes.
532  */
533 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
534 {
535 	struct task_struct *p;
536 	int refs = 0;
537 	struct pid *tty_pgrp = NULL;
538 
539 	read_lock(&tasklist_lock);
540 	if (tty->session) {
541 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
542 			spin_lock_irq(&p->sighand->siglock);
543 			if (p->signal->tty == tty) {
544 				p->signal->tty = NULL;
545 				/* We defer the dereferences outside fo
546 				   the tasklist lock */
547 				refs++;
548 			}
549 			if (!p->signal->leader) {
550 				spin_unlock_irq(&p->sighand->siglock);
551 				continue;
552 			}
553 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
554 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
555 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
556 			spin_lock(&tty->ctrl_lock);
557 			tty_pgrp = get_pid(tty->pgrp);
558 			if (tty->pgrp)
559 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
560 			spin_unlock(&tty->ctrl_lock);
561 			spin_unlock_irq(&p->sighand->siglock);
562 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
563 	}
564 	read_unlock(&tasklist_lock);
565 
566 	if (tty_pgrp) {
567 		if (exit_session)
568 			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
569 		put_pid(tty_pgrp);
570 	}
571 
572 	return refs;
573 }
574 
575 /**
576  *	__tty_hangup		-	actual handler for hangup events
577  *	@work: tty device
578  *
579  *	This can be called by a "kworker" kernel thread.  That is process
580  *	synchronous but doesn't hold any locks, so we need to make sure we
581  *	have the appropriate locks for what we're doing.
582  *
583  *	The hangup event clears any pending redirections onto the hung up
584  *	device. It ensures future writes will error and it does the needed
585  *	line discipline hangup and signal delivery. The tty object itself
586  *	remains intact.
587  *
588  *	Locking:
589  *		BTM
590  *		  redirect lock for undoing redirection
591  *		  file list lock for manipulating list of ttys
592  *		  tty_ldiscs_lock from called functions
593  *		  termios_rwsem resetting termios data
594  *		  tasklist_lock to walk task list for hangup event
595  *		    ->siglock to protect ->signal/->sighand
596  */
597 static void __tty_hangup(struct tty_struct *tty, int exit_session)
598 {
599 	struct file *cons_filp = NULL;
600 	struct file *filp, *f = NULL;
601 	struct tty_file_private *priv;
602 	int    closecount = 0, n;
603 	int refs;
604 
605 	if (!tty)
606 		return;
607 
608 
609 	spin_lock(&redirect_lock);
610 	if (redirect && file_tty(redirect) == tty) {
611 		f = redirect;
612 		redirect = NULL;
613 	}
614 	spin_unlock(&redirect_lock);
615 
616 	tty_lock(tty);
617 
618 	if (test_bit(TTY_HUPPED, &tty->flags)) {
619 		tty_unlock(tty);
620 		return;
621 	}
622 
623 	/* some functions below drop BTM, so we need this bit */
624 	set_bit(TTY_HUPPING, &tty->flags);
625 
626 	/* inuse_filps is protected by the single tty lock,
627 	   this really needs to change if we want to flush the
628 	   workqueue with the lock held */
629 	check_tty_count(tty, "tty_hangup");
630 
631 	spin_lock(&tty_files_lock);
632 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
633 	list_for_each_entry(priv, &tty->tty_files, list) {
634 		filp = priv->file;
635 		if (filp->f_op->write == redirected_tty_write)
636 			cons_filp = filp;
637 		if (filp->f_op->write != tty_write)
638 			continue;
639 		closecount++;
640 		__tty_fasync(-1, filp, 0);	/* can't block */
641 		filp->f_op = &hung_up_tty_fops;
642 	}
643 	spin_unlock(&tty_files_lock);
644 
645 	refs = tty_signal_session_leader(tty, exit_session);
646 	/* Account for the p->signal references we killed */
647 	while (refs--)
648 		tty_kref_put(tty);
649 
650 	/*
651 	 * it drops BTM and thus races with reopen
652 	 * we protect the race by TTY_HUPPING
653 	 */
654 	tty_ldisc_hangup(tty);
655 
656 	spin_lock_irq(&tty->ctrl_lock);
657 	clear_bit(TTY_THROTTLED, &tty->flags);
658 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
659 	put_pid(tty->session);
660 	put_pid(tty->pgrp);
661 	tty->session = NULL;
662 	tty->pgrp = NULL;
663 	tty->ctrl_status = 0;
664 	spin_unlock_irq(&tty->ctrl_lock);
665 
666 	/*
667 	 * If one of the devices matches a console pointer, we
668 	 * cannot just call hangup() because that will cause
669 	 * tty->count and state->count to go out of sync.
670 	 * So we just call close() the right number of times.
671 	 */
672 	if (cons_filp) {
673 		if (tty->ops->close)
674 			for (n = 0; n < closecount; n++)
675 				tty->ops->close(tty, cons_filp);
676 	} else if (tty->ops->hangup)
677 		tty->ops->hangup(tty);
678 	/*
679 	 * We don't want to have driver/ldisc interactions beyond
680 	 * the ones we did here. The driver layer expects no
681 	 * calls after ->hangup() from the ldisc side. However we
682 	 * can't yet guarantee all that.
683 	 */
684 	set_bit(TTY_HUPPED, &tty->flags);
685 	clear_bit(TTY_HUPPING, &tty->flags);
686 
687 	tty_unlock(tty);
688 
689 	if (f)
690 		fput(f);
691 }
692 
693 static void do_tty_hangup(struct work_struct *work)
694 {
695 	struct tty_struct *tty =
696 		container_of(work, struct tty_struct, hangup_work);
697 
698 	__tty_hangup(tty, 0);
699 }
700 
701 /**
702  *	tty_hangup		-	trigger a hangup event
703  *	@tty: tty to hangup
704  *
705  *	A carrier loss (virtual or otherwise) has occurred on this like
706  *	schedule a hangup sequence to run after this event.
707  */
708 
709 void tty_hangup(struct tty_struct *tty)
710 {
711 #ifdef TTY_DEBUG_HANGUP
712 	char	buf[64];
713 	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
714 #endif
715 	schedule_work(&tty->hangup_work);
716 }
717 
718 EXPORT_SYMBOL(tty_hangup);
719 
720 /**
721  *	tty_vhangup		-	process vhangup
722  *	@tty: tty to hangup
723  *
724  *	The user has asked via system call for the terminal to be hung up.
725  *	We do this synchronously so that when the syscall returns the process
726  *	is complete. That guarantee is necessary for security reasons.
727  */
728 
729 void tty_vhangup(struct tty_struct *tty)
730 {
731 #ifdef TTY_DEBUG_HANGUP
732 	char	buf[64];
733 
734 	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
735 #endif
736 	__tty_hangup(tty, 0);
737 }
738 
739 EXPORT_SYMBOL(tty_vhangup);
740 
741 
742 /**
743  *	tty_vhangup_self	-	process vhangup for own ctty
744  *
745  *	Perform a vhangup on the current controlling tty
746  */
747 
748 void tty_vhangup_self(void)
749 {
750 	struct tty_struct *tty;
751 
752 	tty = get_current_tty();
753 	if (tty) {
754 		tty_vhangup(tty);
755 		tty_kref_put(tty);
756 	}
757 }
758 
759 /**
760  *	tty_vhangup_session		-	hangup session leader exit
761  *	@tty: tty to hangup
762  *
763  *	The session leader is exiting and hanging up its controlling terminal.
764  *	Every process in the foreground process group is signalled SIGHUP.
765  *
766  *	We do this synchronously so that when the syscall returns the process
767  *	is complete. That guarantee is necessary for security reasons.
768  */
769 
770 static void tty_vhangup_session(struct tty_struct *tty)
771 {
772 #ifdef TTY_DEBUG_HANGUP
773 	char	buf[64];
774 
775 	printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
776 #endif
777 	__tty_hangup(tty, 1);
778 }
779 
780 /**
781  *	tty_hung_up_p		-	was tty hung up
782  *	@filp: file pointer of tty
783  *
784  *	Return true if the tty has been subject to a vhangup or a carrier
785  *	loss
786  */
787 
788 int tty_hung_up_p(struct file *filp)
789 {
790 	return (filp->f_op == &hung_up_tty_fops);
791 }
792 
793 EXPORT_SYMBOL(tty_hung_up_p);
794 
795 static void session_clear_tty(struct pid *session)
796 {
797 	struct task_struct *p;
798 	do_each_pid_task(session, PIDTYPE_SID, p) {
799 		proc_clear_tty(p);
800 	} while_each_pid_task(session, PIDTYPE_SID, p);
801 }
802 
803 /**
804  *	disassociate_ctty	-	disconnect controlling tty
805  *	@on_exit: true if exiting so need to "hang up" the session
806  *
807  *	This function is typically called only by the session leader, when
808  *	it wants to disassociate itself from its controlling tty.
809  *
810  *	It performs the following functions:
811  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
812  * 	(2)  Clears the tty from being controlling the session
813  * 	(3)  Clears the controlling tty for all processes in the
814  * 		session group.
815  *
816  *	The argument on_exit is set to 1 if called when a process is
817  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
818  *
819  *	Locking:
820  *		BTM is taken for hysterical raisins, and held when
821  *		  called from no_tty().
822  *		  tty_mutex is taken to protect tty
823  *		  ->siglock is taken to protect ->signal/->sighand
824  *		  tasklist_lock is taken to walk process list for sessions
825  *		    ->siglock is taken to protect ->signal/->sighand
826  */
827 
828 void disassociate_ctty(int on_exit)
829 {
830 	struct tty_struct *tty;
831 
832 	if (!current->signal->leader)
833 		return;
834 
835 	tty = get_current_tty();
836 	if (tty) {
837 		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
838 			tty_vhangup_session(tty);
839 		} else {
840 			struct pid *tty_pgrp = tty_get_pgrp(tty);
841 			if (tty_pgrp) {
842 				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
843 				if (!on_exit)
844 					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
845 				put_pid(tty_pgrp);
846 			}
847 		}
848 		tty_kref_put(tty);
849 
850 	} else if (on_exit) {
851 		struct pid *old_pgrp;
852 		spin_lock_irq(&current->sighand->siglock);
853 		old_pgrp = current->signal->tty_old_pgrp;
854 		current->signal->tty_old_pgrp = NULL;
855 		spin_unlock_irq(&current->sighand->siglock);
856 		if (old_pgrp) {
857 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
858 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
859 			put_pid(old_pgrp);
860 		}
861 		return;
862 	}
863 
864 	spin_lock_irq(&current->sighand->siglock);
865 	put_pid(current->signal->tty_old_pgrp);
866 	current->signal->tty_old_pgrp = NULL;
867 
868 	tty = tty_kref_get(current->signal->tty);
869 	if (tty) {
870 		unsigned long flags;
871 		spin_lock_irqsave(&tty->ctrl_lock, flags);
872 		put_pid(tty->session);
873 		put_pid(tty->pgrp);
874 		tty->session = NULL;
875 		tty->pgrp = NULL;
876 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
877 		tty_kref_put(tty);
878 	} else {
879 #ifdef TTY_DEBUG_HANGUP
880 		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
881 		       " = NULL", tty);
882 #endif
883 	}
884 
885 	spin_unlock_irq(&current->sighand->siglock);
886 	/* Now clear signal->tty under the lock */
887 	read_lock(&tasklist_lock);
888 	session_clear_tty(task_session(current));
889 	read_unlock(&tasklist_lock);
890 }
891 
892 /**
893  *
894  *	no_tty	- Ensure the current process does not have a controlling tty
895  */
896 void no_tty(void)
897 {
898 	/* FIXME: Review locking here. The tty_lock never covered any race
899 	   between a new association and proc_clear_tty but possible we need
900 	   to protect against this anyway */
901 	struct task_struct *tsk = current;
902 	disassociate_ctty(0);
903 	proc_clear_tty(tsk);
904 }
905 
906 
907 /**
908  *	stop_tty	-	propagate flow control
909  *	@tty: tty to stop
910  *
911  *	Perform flow control to the driver. For PTY/TTY pairs we
912  *	must also propagate the TIOCKPKT status. May be called
913  *	on an already stopped device and will not re-call the driver
914  *	method.
915  *
916  *	This functionality is used by both the line disciplines for
917  *	halting incoming flow and by the driver. It may therefore be
918  *	called from any context, may be under the tty atomic_write_lock
919  *	but not always.
920  *
921  *	Locking:
922  *		Uses the tty control lock internally
923  */
924 
925 void stop_tty(struct tty_struct *tty)
926 {
927 	unsigned long flags;
928 	spin_lock_irqsave(&tty->ctrl_lock, flags);
929 	if (tty->stopped) {
930 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
931 		return;
932 	}
933 	tty->stopped = 1;
934 	if (tty->link && tty->link->packet) {
935 		tty->ctrl_status &= ~TIOCPKT_START;
936 		tty->ctrl_status |= TIOCPKT_STOP;
937 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
938 	}
939 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
940 	if (tty->ops->stop)
941 		(tty->ops->stop)(tty);
942 }
943 
944 EXPORT_SYMBOL(stop_tty);
945 
946 /**
947  *	start_tty	-	propagate flow control
948  *	@tty: tty to start
949  *
950  *	Start a tty that has been stopped if at all possible. Perform
951  *	any necessary wakeups and propagate the TIOCPKT status. If this
952  *	is the tty was previous stopped and is being started then the
953  *	driver start method is invoked and the line discipline woken.
954  *
955  *	Locking:
956  *		ctrl_lock
957  */
958 
959 void start_tty(struct tty_struct *tty)
960 {
961 	unsigned long flags;
962 	spin_lock_irqsave(&tty->ctrl_lock, flags);
963 	if (!tty->stopped || tty->flow_stopped) {
964 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
965 		return;
966 	}
967 	tty->stopped = 0;
968 	if (tty->link && tty->link->packet) {
969 		tty->ctrl_status &= ~TIOCPKT_STOP;
970 		tty->ctrl_status |= TIOCPKT_START;
971 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
972 	}
973 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
974 	if (tty->ops->start)
975 		(tty->ops->start)(tty);
976 	/* If we have a running line discipline it may need kicking */
977 	tty_wakeup(tty);
978 }
979 
980 EXPORT_SYMBOL(start_tty);
981 
982 /* We limit tty time update visibility to every 8 seconds or so. */
983 static void tty_update_time(struct timespec *time)
984 {
985 	unsigned long sec = get_seconds() & ~7;
986 	if ((long)(sec - time->tv_sec) > 0)
987 		time->tv_sec = sec;
988 }
989 
990 /**
991  *	tty_read	-	read method for tty device files
992  *	@file: pointer to tty file
993  *	@buf: user buffer
994  *	@count: size of user buffer
995  *	@ppos: unused
996  *
997  *	Perform the read system call function on this terminal device. Checks
998  *	for hung up devices before calling the line discipline method.
999  *
1000  *	Locking:
1001  *		Locks the line discipline internally while needed. Multiple
1002  *	read calls may be outstanding in parallel.
1003  */
1004 
1005 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1006 			loff_t *ppos)
1007 {
1008 	int i;
1009 	struct inode *inode = file_inode(file);
1010 	struct tty_struct *tty = file_tty(file);
1011 	struct tty_ldisc *ld;
1012 
1013 	if (tty_paranoia_check(tty, inode, "tty_read"))
1014 		return -EIO;
1015 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1016 		return -EIO;
1017 
1018 	/* We want to wait for the line discipline to sort out in this
1019 	   situation */
1020 	ld = tty_ldisc_ref_wait(tty);
1021 	if (ld->ops->read)
1022 		i = (ld->ops->read)(tty, file, buf, count);
1023 	else
1024 		i = -EIO;
1025 	tty_ldisc_deref(ld);
1026 
1027 	if (i > 0)
1028 		tty_update_time(&inode->i_atime);
1029 
1030 	return i;
1031 }
1032 
1033 void tty_write_unlock(struct tty_struct *tty)
1034 	__releases(&tty->atomic_write_lock)
1035 {
1036 	mutex_unlock(&tty->atomic_write_lock);
1037 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1038 }
1039 
1040 int tty_write_lock(struct tty_struct *tty, int ndelay)
1041 	__acquires(&tty->atomic_write_lock)
1042 {
1043 	if (!mutex_trylock(&tty->atomic_write_lock)) {
1044 		if (ndelay)
1045 			return -EAGAIN;
1046 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1047 			return -ERESTARTSYS;
1048 	}
1049 	return 0;
1050 }
1051 
1052 /*
1053  * Split writes up in sane blocksizes to avoid
1054  * denial-of-service type attacks
1055  */
1056 static inline ssize_t do_tty_write(
1057 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1058 	struct tty_struct *tty,
1059 	struct file *file,
1060 	const char __user *buf,
1061 	size_t count)
1062 {
1063 	ssize_t ret, written = 0;
1064 	unsigned int chunk;
1065 
1066 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1067 	if (ret < 0)
1068 		return ret;
1069 
1070 	/*
1071 	 * We chunk up writes into a temporary buffer. This
1072 	 * simplifies low-level drivers immensely, since they
1073 	 * don't have locking issues and user mode accesses.
1074 	 *
1075 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1076 	 * big chunk-size..
1077 	 *
1078 	 * The default chunk-size is 2kB, because the NTTY
1079 	 * layer has problems with bigger chunks. It will
1080 	 * claim to be able to handle more characters than
1081 	 * it actually does.
1082 	 *
1083 	 * FIXME: This can probably go away now except that 64K chunks
1084 	 * are too likely to fail unless switched to vmalloc...
1085 	 */
1086 	chunk = 2048;
1087 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1088 		chunk = 65536;
1089 	if (count < chunk)
1090 		chunk = count;
1091 
1092 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1093 	if (tty->write_cnt < chunk) {
1094 		unsigned char *buf_chunk;
1095 
1096 		if (chunk < 1024)
1097 			chunk = 1024;
1098 
1099 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1100 		if (!buf_chunk) {
1101 			ret = -ENOMEM;
1102 			goto out;
1103 		}
1104 		kfree(tty->write_buf);
1105 		tty->write_cnt = chunk;
1106 		tty->write_buf = buf_chunk;
1107 	}
1108 
1109 	/* Do the write .. */
1110 	for (;;) {
1111 		size_t size = count;
1112 		if (size > chunk)
1113 			size = chunk;
1114 		ret = -EFAULT;
1115 		if (copy_from_user(tty->write_buf, buf, size))
1116 			break;
1117 		ret = write(tty, file, tty->write_buf, size);
1118 		if (ret <= 0)
1119 			break;
1120 		written += ret;
1121 		buf += ret;
1122 		count -= ret;
1123 		if (!count)
1124 			break;
1125 		ret = -ERESTARTSYS;
1126 		if (signal_pending(current))
1127 			break;
1128 		cond_resched();
1129 	}
1130 	if (written) {
1131 		tty_update_time(&file_inode(file)->i_mtime);
1132 		ret = written;
1133 	}
1134 out:
1135 	tty_write_unlock(tty);
1136 	return ret;
1137 }
1138 
1139 /**
1140  * tty_write_message - write a message to a certain tty, not just the console.
1141  * @tty: the destination tty_struct
1142  * @msg: the message to write
1143  *
1144  * This is used for messages that need to be redirected to a specific tty.
1145  * We don't put it into the syslog queue right now maybe in the future if
1146  * really needed.
1147  *
1148  * We must still hold the BTM and test the CLOSING flag for the moment.
1149  */
1150 
1151 void tty_write_message(struct tty_struct *tty, char *msg)
1152 {
1153 	if (tty) {
1154 		mutex_lock(&tty->atomic_write_lock);
1155 		tty_lock(tty);
1156 		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1157 			tty_unlock(tty);
1158 			tty->ops->write(tty, msg, strlen(msg));
1159 		} else
1160 			tty_unlock(tty);
1161 		tty_write_unlock(tty);
1162 	}
1163 	return;
1164 }
1165 
1166 
1167 /**
1168  *	tty_write		-	write method for tty device file
1169  *	@file: tty file pointer
1170  *	@buf: user data to write
1171  *	@count: bytes to write
1172  *	@ppos: unused
1173  *
1174  *	Write data to a tty device via the line discipline.
1175  *
1176  *	Locking:
1177  *		Locks the line discipline as required
1178  *		Writes to the tty driver are serialized by the atomic_write_lock
1179  *	and are then processed in chunks to the device. The line discipline
1180  *	write method will not be invoked in parallel for each device.
1181  */
1182 
1183 static ssize_t tty_write(struct file *file, const char __user *buf,
1184 						size_t count, loff_t *ppos)
1185 {
1186 	struct tty_struct *tty = file_tty(file);
1187  	struct tty_ldisc *ld;
1188 	ssize_t ret;
1189 
1190 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1191 		return -EIO;
1192 	if (!tty || !tty->ops->write ||
1193 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1194 			return -EIO;
1195 	/* Short term debug to catch buggy drivers */
1196 	if (tty->ops->write_room == NULL)
1197 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1198 			tty->driver->name);
1199 	ld = tty_ldisc_ref_wait(tty);
1200 	if (!ld->ops->write)
1201 		ret = -EIO;
1202 	else
1203 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1204 	tty_ldisc_deref(ld);
1205 	return ret;
1206 }
1207 
1208 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1209 						size_t count, loff_t *ppos)
1210 {
1211 	struct file *p = NULL;
1212 
1213 	spin_lock(&redirect_lock);
1214 	if (redirect)
1215 		p = get_file(redirect);
1216 	spin_unlock(&redirect_lock);
1217 
1218 	if (p) {
1219 		ssize_t res;
1220 		res = vfs_write(p, buf, count, &p->f_pos);
1221 		fput(p);
1222 		return res;
1223 	}
1224 	return tty_write(file, buf, count, ppos);
1225 }
1226 
1227 static char ptychar[] = "pqrstuvwxyzabcde";
1228 
1229 /**
1230  *	pty_line_name	-	generate name for a pty
1231  *	@driver: the tty driver in use
1232  *	@index: the minor number
1233  *	@p: output buffer of at least 6 bytes
1234  *
1235  *	Generate a name from a driver reference and write it to the output
1236  *	buffer.
1237  *
1238  *	Locking: None
1239  */
1240 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1241 {
1242 	int i = index + driver->name_base;
1243 	/* ->name is initialized to "ttyp", but "tty" is expected */
1244 	sprintf(p, "%s%c%x",
1245 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1246 		ptychar[i >> 4 & 0xf], i & 0xf);
1247 }
1248 
1249 /**
1250  *	tty_line_name	-	generate name for a tty
1251  *	@driver: the tty driver in use
1252  *	@index: the minor number
1253  *	@p: output buffer of at least 7 bytes
1254  *
1255  *	Generate a name from a driver reference and write it to the output
1256  *	buffer.
1257  *
1258  *	Locking: None
1259  */
1260 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1261 {
1262 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1263 		return sprintf(p, "%s", driver->name);
1264 	else
1265 		return sprintf(p, "%s%d", driver->name,
1266 			       index + driver->name_base);
1267 }
1268 
1269 /**
1270  *	tty_driver_lookup_tty() - find an existing tty, if any
1271  *	@driver: the driver for the tty
1272  *	@idx:	 the minor number
1273  *
1274  *	Return the tty, if found or ERR_PTR() otherwise.
1275  *
1276  *	Locking: tty_mutex must be held. If tty is found, the mutex must
1277  *	be held until the 'fast-open' is also done. Will change once we
1278  *	have refcounting in the driver and per driver locking
1279  */
1280 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1281 		struct inode *inode, int idx)
1282 {
1283 	if (driver->ops->lookup)
1284 		return driver->ops->lookup(driver, inode, idx);
1285 
1286 	return driver->ttys[idx];
1287 }
1288 
1289 /**
1290  *	tty_init_termios	-  helper for termios setup
1291  *	@tty: the tty to set up
1292  *
1293  *	Initialise the termios structures for this tty. Thus runs under
1294  *	the tty_mutex currently so we can be relaxed about ordering.
1295  */
1296 
1297 int tty_init_termios(struct tty_struct *tty)
1298 {
1299 	struct ktermios *tp;
1300 	int idx = tty->index;
1301 
1302 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1303 		tty->termios = tty->driver->init_termios;
1304 	else {
1305 		/* Check for lazy saved data */
1306 		tp = tty->driver->termios[idx];
1307 		if (tp != NULL)
1308 			tty->termios = *tp;
1309 		else
1310 			tty->termios = tty->driver->init_termios;
1311 	}
1312 	/* Compatibility until drivers always set this */
1313 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1314 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1315 	return 0;
1316 }
1317 EXPORT_SYMBOL_GPL(tty_init_termios);
1318 
1319 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1320 {
1321 	int ret = tty_init_termios(tty);
1322 	if (ret)
1323 		return ret;
1324 
1325 	tty_driver_kref_get(driver);
1326 	tty->count++;
1327 	driver->ttys[tty->index] = tty;
1328 	return 0;
1329 }
1330 EXPORT_SYMBOL_GPL(tty_standard_install);
1331 
1332 /**
1333  *	tty_driver_install_tty() - install a tty entry in the driver
1334  *	@driver: the driver for the tty
1335  *	@tty: the tty
1336  *
1337  *	Install a tty object into the driver tables. The tty->index field
1338  *	will be set by the time this is called. This method is responsible
1339  *	for ensuring any need additional structures are allocated and
1340  *	configured.
1341  *
1342  *	Locking: tty_mutex for now
1343  */
1344 static int tty_driver_install_tty(struct tty_driver *driver,
1345 						struct tty_struct *tty)
1346 {
1347 	return driver->ops->install ? driver->ops->install(driver, tty) :
1348 		tty_standard_install(driver, tty);
1349 }
1350 
1351 /**
1352  *	tty_driver_remove_tty() - remove a tty from the driver tables
1353  *	@driver: the driver for the tty
1354  *	@idx:	 the minor number
1355  *
1356  *	Remvoe a tty object from the driver tables. The tty->index field
1357  *	will be set by the time this is called.
1358  *
1359  *	Locking: tty_mutex for now
1360  */
1361 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1362 {
1363 	if (driver->ops->remove)
1364 		driver->ops->remove(driver, tty);
1365 	else
1366 		driver->ttys[tty->index] = NULL;
1367 }
1368 
1369 /*
1370  * 	tty_reopen()	- fast re-open of an open tty
1371  * 	@tty	- the tty to open
1372  *
1373  *	Return 0 on success, -errno on error.
1374  *
1375  *	Locking: tty_mutex must be held from the time the tty was found
1376  *		 till this open completes.
1377  */
1378 static int tty_reopen(struct tty_struct *tty)
1379 {
1380 	struct tty_driver *driver = tty->driver;
1381 
1382 	if (test_bit(TTY_CLOSING, &tty->flags) ||
1383 			test_bit(TTY_HUPPING, &tty->flags))
1384 		return -EIO;
1385 
1386 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1387 	    driver->subtype == PTY_TYPE_MASTER) {
1388 		/*
1389 		 * special case for PTY masters: only one open permitted,
1390 		 * and the slave side open count is incremented as well.
1391 		 */
1392 		if (tty->count)
1393 			return -EIO;
1394 
1395 		tty->link->count++;
1396 	}
1397 	tty->count++;
1398 
1399 	WARN_ON(!tty->ldisc);
1400 
1401 	return 0;
1402 }
1403 
1404 /**
1405  *	tty_init_dev		-	initialise a tty device
1406  *	@driver: tty driver we are opening a device on
1407  *	@idx: device index
1408  *	@ret_tty: returned tty structure
1409  *
1410  *	Prepare a tty device. This may not be a "new" clean device but
1411  *	could also be an active device. The pty drivers require special
1412  *	handling because of this.
1413  *
1414  *	Locking:
1415  *		The function is called under the tty_mutex, which
1416  *	protects us from the tty struct or driver itself going away.
1417  *
1418  *	On exit the tty device has the line discipline attached and
1419  *	a reference count of 1. If a pair was created for pty/tty use
1420  *	and the other was a pty master then it too has a reference count of 1.
1421  *
1422  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1423  * failed open.  The new code protects the open with a mutex, so it's
1424  * really quite straightforward.  The mutex locking can probably be
1425  * relaxed for the (most common) case of reopening a tty.
1426  */
1427 
1428 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1429 {
1430 	struct tty_struct *tty;
1431 	int retval;
1432 
1433 	/*
1434 	 * First time open is complex, especially for PTY devices.
1435 	 * This code guarantees that either everything succeeds and the
1436 	 * TTY is ready for operation, or else the table slots are vacated
1437 	 * and the allocated memory released.  (Except that the termios
1438 	 * and locked termios may be retained.)
1439 	 */
1440 
1441 	if (!try_module_get(driver->owner))
1442 		return ERR_PTR(-ENODEV);
1443 
1444 	tty = alloc_tty_struct(driver, idx);
1445 	if (!tty) {
1446 		retval = -ENOMEM;
1447 		goto err_module_put;
1448 	}
1449 
1450 	tty_lock(tty);
1451 	retval = tty_driver_install_tty(driver, tty);
1452 	if (retval < 0)
1453 		goto err_deinit_tty;
1454 
1455 	if (!tty->port)
1456 		tty->port = driver->ports[idx];
1457 
1458 	WARN_RATELIMIT(!tty->port,
1459 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1460 			__func__, tty->driver->name);
1461 
1462 	tty->port->itty = tty;
1463 
1464 	/*
1465 	 * Structures all installed ... call the ldisc open routines.
1466 	 * If we fail here just call release_tty to clean up.  No need
1467 	 * to decrement the use counts, as release_tty doesn't care.
1468 	 */
1469 	retval = tty_ldisc_setup(tty, tty->link);
1470 	if (retval)
1471 		goto err_release_tty;
1472 	/* Return the tty locked so that it cannot vanish under the caller */
1473 	return tty;
1474 
1475 err_deinit_tty:
1476 	tty_unlock(tty);
1477 	deinitialize_tty_struct(tty);
1478 	free_tty_struct(tty);
1479 err_module_put:
1480 	module_put(driver->owner);
1481 	return ERR_PTR(retval);
1482 
1483 	/* call the tty release_tty routine to clean out this slot */
1484 err_release_tty:
1485 	tty_unlock(tty);
1486 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1487 				 "clearing slot %d\n", idx);
1488 	release_tty(tty, idx);
1489 	return ERR_PTR(retval);
1490 }
1491 
1492 void tty_free_termios(struct tty_struct *tty)
1493 {
1494 	struct ktermios *tp;
1495 	int idx = tty->index;
1496 
1497 	/* If the port is going to reset then it has no termios to save */
1498 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1499 		return;
1500 
1501 	/* Stash the termios data */
1502 	tp = tty->driver->termios[idx];
1503 	if (tp == NULL) {
1504 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1505 		if (tp == NULL) {
1506 			pr_warn("tty: no memory to save termios state.\n");
1507 			return;
1508 		}
1509 		tty->driver->termios[idx] = tp;
1510 	}
1511 	*tp = tty->termios;
1512 }
1513 EXPORT_SYMBOL(tty_free_termios);
1514 
1515 /**
1516  *	tty_flush_works		-	flush all works of a tty
1517  *	@tty: tty device to flush works for
1518  *
1519  *	Sync flush all works belonging to @tty.
1520  */
1521 static void tty_flush_works(struct tty_struct *tty)
1522 {
1523 	flush_work(&tty->SAK_work);
1524 	flush_work(&tty->hangup_work);
1525 }
1526 
1527 /**
1528  *	release_one_tty		-	release tty structure memory
1529  *	@kref: kref of tty we are obliterating
1530  *
1531  *	Releases memory associated with a tty structure, and clears out the
1532  *	driver table slots. This function is called when a device is no longer
1533  *	in use. It also gets called when setup of a device fails.
1534  *
1535  *	Locking:
1536  *		takes the file list lock internally when working on the list
1537  *	of ttys that the driver keeps.
1538  *
1539  *	This method gets called from a work queue so that the driver private
1540  *	cleanup ops can sleep (needed for USB at least)
1541  */
1542 static void release_one_tty(struct work_struct *work)
1543 {
1544 	struct tty_struct *tty =
1545 		container_of(work, struct tty_struct, hangup_work);
1546 	struct tty_driver *driver = tty->driver;
1547 
1548 	if (tty->ops->cleanup)
1549 		tty->ops->cleanup(tty);
1550 
1551 	tty->magic = 0;
1552 	tty_driver_kref_put(driver);
1553 	module_put(driver->owner);
1554 
1555 	spin_lock(&tty_files_lock);
1556 	list_del_init(&tty->tty_files);
1557 	spin_unlock(&tty_files_lock);
1558 
1559 	put_pid(tty->pgrp);
1560 	put_pid(tty->session);
1561 	free_tty_struct(tty);
1562 }
1563 
1564 static void queue_release_one_tty(struct kref *kref)
1565 {
1566 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1567 
1568 	/* The hangup queue is now free so we can reuse it rather than
1569 	   waste a chunk of memory for each port */
1570 	INIT_WORK(&tty->hangup_work, release_one_tty);
1571 	schedule_work(&tty->hangup_work);
1572 }
1573 
1574 /**
1575  *	tty_kref_put		-	release a tty kref
1576  *	@tty: tty device
1577  *
1578  *	Release a reference to a tty device and if need be let the kref
1579  *	layer destruct the object for us
1580  */
1581 
1582 void tty_kref_put(struct tty_struct *tty)
1583 {
1584 	if (tty)
1585 		kref_put(&tty->kref, queue_release_one_tty);
1586 }
1587 EXPORT_SYMBOL(tty_kref_put);
1588 
1589 /**
1590  *	release_tty		-	release tty structure memory
1591  *
1592  *	Release both @tty and a possible linked partner (think pty pair),
1593  *	and decrement the refcount of the backing module.
1594  *
1595  *	Locking:
1596  *		tty_mutex
1597  *		takes the file list lock internally when working on the list
1598  *	of ttys that the driver keeps.
1599  *
1600  */
1601 static void release_tty(struct tty_struct *tty, int idx)
1602 {
1603 	/* This should always be true but check for the moment */
1604 	WARN_ON(tty->index != idx);
1605 	WARN_ON(!mutex_is_locked(&tty_mutex));
1606 	if (tty->ops->shutdown)
1607 		tty->ops->shutdown(tty);
1608 	tty_free_termios(tty);
1609 	tty_driver_remove_tty(tty->driver, tty);
1610 	tty->port->itty = NULL;
1611 	if (tty->link)
1612 		tty->link->port->itty = NULL;
1613 	cancel_work_sync(&tty->port->buf.work);
1614 
1615 	if (tty->link)
1616 		tty_kref_put(tty->link);
1617 	tty_kref_put(tty);
1618 }
1619 
1620 /**
1621  *	tty_release_checks - check a tty before real release
1622  *	@tty: tty to check
1623  *	@o_tty: link of @tty (if any)
1624  *	@idx: index of the tty
1625  *
1626  *	Performs some paranoid checking before true release of the @tty.
1627  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1628  */
1629 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1630 		int idx)
1631 {
1632 #ifdef TTY_PARANOIA_CHECK
1633 	if (idx < 0 || idx >= tty->driver->num) {
1634 		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1635 				__func__, tty->name);
1636 		return -1;
1637 	}
1638 
1639 	/* not much to check for devpts */
1640 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1641 		return 0;
1642 
1643 	if (tty != tty->driver->ttys[idx]) {
1644 		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1645 				__func__, idx, tty->name);
1646 		return -1;
1647 	}
1648 	if (tty->driver->other) {
1649 		if (o_tty != tty->driver->other->ttys[idx]) {
1650 			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1651 					__func__, idx, tty->name);
1652 			return -1;
1653 		}
1654 		if (o_tty->link != tty) {
1655 			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1656 			return -1;
1657 		}
1658 	}
1659 #endif
1660 	return 0;
1661 }
1662 
1663 /**
1664  *	tty_release		-	vfs callback for close
1665  *	@inode: inode of tty
1666  *	@filp: file pointer for handle to tty
1667  *
1668  *	Called the last time each file handle is closed that references
1669  *	this tty. There may however be several such references.
1670  *
1671  *	Locking:
1672  *		Takes bkl. See tty_release_dev
1673  *
1674  * Even releasing the tty structures is a tricky business.. We have
1675  * to be very careful that the structures are all released at the
1676  * same time, as interrupts might otherwise get the wrong pointers.
1677  *
1678  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1679  * lead to double frees or releasing memory still in use.
1680  */
1681 
1682 int tty_release(struct inode *inode, struct file *filp)
1683 {
1684 	struct tty_struct *tty = file_tty(filp);
1685 	struct tty_struct *o_tty;
1686 	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1687 	int	idx;
1688 	char	buf[64];
1689 
1690 	if (tty_paranoia_check(tty, inode, __func__))
1691 		return 0;
1692 
1693 	tty_lock(tty);
1694 	check_tty_count(tty, __func__);
1695 
1696 	__tty_fasync(-1, filp, 0);
1697 
1698 	idx = tty->index;
1699 	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1700 		      tty->driver->subtype == PTY_TYPE_MASTER);
1701 	/* Review: parallel close */
1702 	o_tty = tty->link;
1703 
1704 	if (tty_release_checks(tty, o_tty, idx)) {
1705 		tty_unlock(tty);
1706 		return 0;
1707 	}
1708 
1709 #ifdef TTY_DEBUG_HANGUP
1710 	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1711 			tty_name(tty, buf), tty->count);
1712 #endif
1713 
1714 	if (tty->ops->close)
1715 		tty->ops->close(tty, filp);
1716 
1717 	tty_unlock(tty);
1718 	/*
1719 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1720 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1721 	 * wait queues and kick everyone out _before_ actually starting to
1722 	 * close.  This ensures that we won't block while releasing the tty
1723 	 * structure.
1724 	 *
1725 	 * The test for the o_tty closing is necessary, since the master and
1726 	 * slave sides may close in any order.  If the slave side closes out
1727 	 * first, its count will be one, since the master side holds an open.
1728 	 * Thus this test wouldn't be triggered at the time the slave closes,
1729 	 * so we do it now.
1730 	 *
1731 	 * Note that it's possible for the tty to be opened again while we're
1732 	 * flushing out waiters.  By recalculating the closing flags before
1733 	 * each iteration we avoid any problems.
1734 	 */
1735 	while (1) {
1736 		/* Guard against races with tty->count changes elsewhere and
1737 		   opens on /dev/tty */
1738 
1739 		mutex_lock(&tty_mutex);
1740 		tty_lock_pair(tty, o_tty);
1741 		tty_closing = tty->count <= 1;
1742 		o_tty_closing = o_tty &&
1743 			(o_tty->count <= (pty_master ? 1 : 0));
1744 		do_sleep = 0;
1745 
1746 		if (tty_closing) {
1747 			if (waitqueue_active(&tty->read_wait)) {
1748 				wake_up_poll(&tty->read_wait, POLLIN);
1749 				do_sleep++;
1750 			}
1751 			if (waitqueue_active(&tty->write_wait)) {
1752 				wake_up_poll(&tty->write_wait, POLLOUT);
1753 				do_sleep++;
1754 			}
1755 		}
1756 		if (o_tty_closing) {
1757 			if (waitqueue_active(&o_tty->read_wait)) {
1758 				wake_up_poll(&o_tty->read_wait, POLLIN);
1759 				do_sleep++;
1760 			}
1761 			if (waitqueue_active(&o_tty->write_wait)) {
1762 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1763 				do_sleep++;
1764 			}
1765 		}
1766 		if (!do_sleep)
1767 			break;
1768 
1769 		printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1770 				__func__, tty_name(tty, buf));
1771 		tty_unlock_pair(tty, o_tty);
1772 		mutex_unlock(&tty_mutex);
1773 		schedule();
1774 	}
1775 
1776 	/*
1777 	 * The closing flags are now consistent with the open counts on
1778 	 * both sides, and we've completed the last operation that could
1779 	 * block, so it's safe to proceed with closing.
1780 	 *
1781 	 * We must *not* drop the tty_mutex until we ensure that a further
1782 	 * entry into tty_open can not pick up this tty.
1783 	 */
1784 	if (pty_master) {
1785 		if (--o_tty->count < 0) {
1786 			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1787 				__func__, o_tty->count, tty_name(o_tty, buf));
1788 			o_tty->count = 0;
1789 		}
1790 	}
1791 	if (--tty->count < 0) {
1792 		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1793 				__func__, tty->count, tty_name(tty, buf));
1794 		tty->count = 0;
1795 	}
1796 
1797 	/*
1798 	 * We've decremented tty->count, so we need to remove this file
1799 	 * descriptor off the tty->tty_files list; this serves two
1800 	 * purposes:
1801 	 *  - check_tty_count sees the correct number of file descriptors
1802 	 *    associated with this tty.
1803 	 *  - do_tty_hangup no longer sees this file descriptor as
1804 	 *    something that needs to be handled for hangups.
1805 	 */
1806 	tty_del_file(filp);
1807 
1808 	/*
1809 	 * Perform some housekeeping before deciding whether to return.
1810 	 *
1811 	 * Set the TTY_CLOSING flag if this was the last open.  In the
1812 	 * case of a pty we may have to wait around for the other side
1813 	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1814 	 */
1815 	if (tty_closing)
1816 		set_bit(TTY_CLOSING, &tty->flags);
1817 	if (o_tty_closing)
1818 		set_bit(TTY_CLOSING, &o_tty->flags);
1819 
1820 	/*
1821 	 * If _either_ side is closing, make sure there aren't any
1822 	 * processes that still think tty or o_tty is their controlling
1823 	 * tty.
1824 	 */
1825 	if (tty_closing || o_tty_closing) {
1826 		read_lock(&tasklist_lock);
1827 		session_clear_tty(tty->session);
1828 		if (o_tty)
1829 			session_clear_tty(o_tty->session);
1830 		read_unlock(&tasklist_lock);
1831 	}
1832 
1833 	mutex_unlock(&tty_mutex);
1834 	tty_unlock_pair(tty, o_tty);
1835 	/* At this point the TTY_CLOSING flag should ensure a dead tty
1836 	   cannot be re-opened by a racing opener */
1837 
1838 	/* check whether both sides are closing ... */
1839 	if (!tty_closing || (o_tty && !o_tty_closing))
1840 		return 0;
1841 
1842 #ifdef TTY_DEBUG_HANGUP
1843 	printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1844 #endif
1845 	/*
1846 	 * Ask the line discipline code to release its structures
1847 	 */
1848 	tty_ldisc_release(tty, o_tty);
1849 
1850 	/* Wait for pending work before tty destruction commmences */
1851 	tty_flush_works(tty);
1852 	if (o_tty)
1853 		tty_flush_works(o_tty);
1854 
1855 #ifdef TTY_DEBUG_HANGUP
1856 	printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1857 #endif
1858 	/*
1859 	 * The release_tty function takes care of the details of clearing
1860 	 * the slots and preserving the termios structure. The tty_unlock_pair
1861 	 * should be safe as we keep a kref while the tty is locked (so the
1862 	 * unlock never unlocks a freed tty).
1863 	 */
1864 	mutex_lock(&tty_mutex);
1865 	release_tty(tty, idx);
1866 	mutex_unlock(&tty_mutex);
1867 
1868 	return 0;
1869 }
1870 
1871 /**
1872  *	tty_open_current_tty - get tty of current task for open
1873  *	@device: device number
1874  *	@filp: file pointer to tty
1875  *	@return: tty of the current task iff @device is /dev/tty
1876  *
1877  *	We cannot return driver and index like for the other nodes because
1878  *	devpts will not work then. It expects inodes to be from devpts FS.
1879  *
1880  *	We need to move to returning a refcounted object from all the lookup
1881  *	paths including this one.
1882  */
1883 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1884 {
1885 	struct tty_struct *tty;
1886 
1887 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1888 		return NULL;
1889 
1890 	tty = get_current_tty();
1891 	if (!tty)
1892 		return ERR_PTR(-ENXIO);
1893 
1894 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1895 	/* noctty = 1; */
1896 	tty_kref_put(tty);
1897 	/* FIXME: we put a reference and return a TTY! */
1898 	/* This is only safe because the caller holds tty_mutex */
1899 	return tty;
1900 }
1901 
1902 /**
1903  *	tty_lookup_driver - lookup a tty driver for a given device file
1904  *	@device: device number
1905  *	@filp: file pointer to tty
1906  *	@noctty: set if the device should not become a controlling tty
1907  *	@index: index for the device in the @return driver
1908  *	@return: driver for this inode (with increased refcount)
1909  *
1910  * 	If @return is not erroneous, the caller is responsible to decrement the
1911  * 	refcount by tty_driver_kref_put.
1912  *
1913  *	Locking: tty_mutex protects get_tty_driver
1914  */
1915 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1916 		int *noctty, int *index)
1917 {
1918 	struct tty_driver *driver;
1919 
1920 	switch (device) {
1921 #ifdef CONFIG_VT
1922 	case MKDEV(TTY_MAJOR, 0): {
1923 		extern struct tty_driver *console_driver;
1924 		driver = tty_driver_kref_get(console_driver);
1925 		*index = fg_console;
1926 		*noctty = 1;
1927 		break;
1928 	}
1929 #endif
1930 	case MKDEV(TTYAUX_MAJOR, 1): {
1931 		struct tty_driver *console_driver = console_device(index);
1932 		if (console_driver) {
1933 			driver = tty_driver_kref_get(console_driver);
1934 			if (driver) {
1935 				/* Don't let /dev/console block */
1936 				filp->f_flags |= O_NONBLOCK;
1937 				*noctty = 1;
1938 				break;
1939 			}
1940 		}
1941 		return ERR_PTR(-ENODEV);
1942 	}
1943 	default:
1944 		driver = get_tty_driver(device, index);
1945 		if (!driver)
1946 			return ERR_PTR(-ENODEV);
1947 		break;
1948 	}
1949 	return driver;
1950 }
1951 
1952 /**
1953  *	tty_open		-	open a tty device
1954  *	@inode: inode of device file
1955  *	@filp: file pointer to tty
1956  *
1957  *	tty_open and tty_release keep up the tty count that contains the
1958  *	number of opens done on a tty. We cannot use the inode-count, as
1959  *	different inodes might point to the same tty.
1960  *
1961  *	Open-counting is needed for pty masters, as well as for keeping
1962  *	track of serial lines: DTR is dropped when the last close happens.
1963  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1964  *
1965  *	The termios state of a pty is reset on first open so that
1966  *	settings don't persist across reuse.
1967  *
1968  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1969  *		 tty->count should protect the rest.
1970  *		 ->siglock protects ->signal/->sighand
1971  *
1972  *	Note: the tty_unlock/lock cases without a ref are only safe due to
1973  *	tty_mutex
1974  */
1975 
1976 static int tty_open(struct inode *inode, struct file *filp)
1977 {
1978 	struct tty_struct *tty;
1979 	int noctty, retval;
1980 	struct tty_driver *driver = NULL;
1981 	int index;
1982 	dev_t device = inode->i_rdev;
1983 	unsigned saved_flags = filp->f_flags;
1984 
1985 	nonseekable_open(inode, filp);
1986 
1987 retry_open:
1988 	retval = tty_alloc_file(filp);
1989 	if (retval)
1990 		return -ENOMEM;
1991 
1992 	noctty = filp->f_flags & O_NOCTTY;
1993 	index  = -1;
1994 	retval = 0;
1995 
1996 	mutex_lock(&tty_mutex);
1997 	/* This is protected by the tty_mutex */
1998 	tty = tty_open_current_tty(device, filp);
1999 	if (IS_ERR(tty)) {
2000 		retval = PTR_ERR(tty);
2001 		goto err_unlock;
2002 	} else if (!tty) {
2003 		driver = tty_lookup_driver(device, filp, &noctty, &index);
2004 		if (IS_ERR(driver)) {
2005 			retval = PTR_ERR(driver);
2006 			goto err_unlock;
2007 		}
2008 
2009 		/* check whether we're reopening an existing tty */
2010 		tty = tty_driver_lookup_tty(driver, inode, index);
2011 		if (IS_ERR(tty)) {
2012 			retval = PTR_ERR(tty);
2013 			goto err_unlock;
2014 		}
2015 	}
2016 
2017 	if (tty) {
2018 		tty_lock(tty);
2019 		retval = tty_reopen(tty);
2020 		if (retval < 0) {
2021 			tty_unlock(tty);
2022 			tty = ERR_PTR(retval);
2023 		}
2024 	} else	/* Returns with the tty_lock held for now */
2025 		tty = tty_init_dev(driver, index);
2026 
2027 	mutex_unlock(&tty_mutex);
2028 	if (driver)
2029 		tty_driver_kref_put(driver);
2030 	if (IS_ERR(tty)) {
2031 		retval = PTR_ERR(tty);
2032 		goto err_file;
2033 	}
2034 
2035 	tty_add_file(tty, filp);
2036 
2037 	check_tty_count(tty, __func__);
2038 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2039 	    tty->driver->subtype == PTY_TYPE_MASTER)
2040 		noctty = 1;
2041 #ifdef TTY_DEBUG_HANGUP
2042 	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2043 #endif
2044 	if (tty->ops->open)
2045 		retval = tty->ops->open(tty, filp);
2046 	else
2047 		retval = -ENODEV;
2048 	filp->f_flags = saved_flags;
2049 
2050 	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2051 						!capable(CAP_SYS_ADMIN))
2052 		retval = -EBUSY;
2053 
2054 	if (retval) {
2055 #ifdef TTY_DEBUG_HANGUP
2056 		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2057 				retval, tty->name);
2058 #endif
2059 		tty_unlock(tty); /* need to call tty_release without BTM */
2060 		tty_release(inode, filp);
2061 		if (retval != -ERESTARTSYS)
2062 			return retval;
2063 
2064 		if (signal_pending(current))
2065 			return retval;
2066 
2067 		schedule();
2068 		/*
2069 		 * Need to reset f_op in case a hangup happened.
2070 		 */
2071 		if (filp->f_op == &hung_up_tty_fops)
2072 			filp->f_op = &tty_fops;
2073 		goto retry_open;
2074 	}
2075 	clear_bit(TTY_HUPPED, &tty->flags);
2076 	tty_unlock(tty);
2077 
2078 
2079 	mutex_lock(&tty_mutex);
2080 	tty_lock(tty);
2081 	spin_lock_irq(&current->sighand->siglock);
2082 	if (!noctty &&
2083 	    current->signal->leader &&
2084 	    !current->signal->tty &&
2085 	    tty->session == NULL)
2086 		__proc_set_tty(current, tty);
2087 	spin_unlock_irq(&current->sighand->siglock);
2088 	tty_unlock(tty);
2089 	mutex_unlock(&tty_mutex);
2090 	return 0;
2091 err_unlock:
2092 	mutex_unlock(&tty_mutex);
2093 	/* after locks to avoid deadlock */
2094 	if (!IS_ERR_OR_NULL(driver))
2095 		tty_driver_kref_put(driver);
2096 err_file:
2097 	tty_free_file(filp);
2098 	return retval;
2099 }
2100 
2101 
2102 
2103 /**
2104  *	tty_poll	-	check tty status
2105  *	@filp: file being polled
2106  *	@wait: poll wait structures to update
2107  *
2108  *	Call the line discipline polling method to obtain the poll
2109  *	status of the device.
2110  *
2111  *	Locking: locks called line discipline but ldisc poll method
2112  *	may be re-entered freely by other callers.
2113  */
2114 
2115 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2116 {
2117 	struct tty_struct *tty = file_tty(filp);
2118 	struct tty_ldisc *ld;
2119 	int ret = 0;
2120 
2121 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2122 		return 0;
2123 
2124 	ld = tty_ldisc_ref_wait(tty);
2125 	if (ld->ops->poll)
2126 		ret = (ld->ops->poll)(tty, filp, wait);
2127 	tty_ldisc_deref(ld);
2128 	return ret;
2129 }
2130 
2131 static int __tty_fasync(int fd, struct file *filp, int on)
2132 {
2133 	struct tty_struct *tty = file_tty(filp);
2134 	struct tty_ldisc *ldisc;
2135 	unsigned long flags;
2136 	int retval = 0;
2137 
2138 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2139 		goto out;
2140 
2141 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2142 	if (retval <= 0)
2143 		goto out;
2144 
2145 	ldisc = tty_ldisc_ref(tty);
2146 	if (ldisc) {
2147 		if (ldisc->ops->fasync)
2148 			ldisc->ops->fasync(tty, on);
2149 		tty_ldisc_deref(ldisc);
2150 	}
2151 
2152 	if (on) {
2153 		enum pid_type type;
2154 		struct pid *pid;
2155 
2156 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2157 		if (tty->pgrp) {
2158 			pid = tty->pgrp;
2159 			type = PIDTYPE_PGID;
2160 		} else {
2161 			pid = task_pid(current);
2162 			type = PIDTYPE_PID;
2163 		}
2164 		get_pid(pid);
2165 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2166 		retval = __f_setown(filp, pid, type, 0);
2167 		put_pid(pid);
2168 	}
2169 out:
2170 	return retval;
2171 }
2172 
2173 static int tty_fasync(int fd, struct file *filp, int on)
2174 {
2175 	struct tty_struct *tty = file_tty(filp);
2176 	int retval;
2177 
2178 	tty_lock(tty);
2179 	retval = __tty_fasync(fd, filp, on);
2180 	tty_unlock(tty);
2181 
2182 	return retval;
2183 }
2184 
2185 /**
2186  *	tiocsti			-	fake input character
2187  *	@tty: tty to fake input into
2188  *	@p: pointer to character
2189  *
2190  *	Fake input to a tty device. Does the necessary locking and
2191  *	input management.
2192  *
2193  *	FIXME: does not honour flow control ??
2194  *
2195  *	Locking:
2196  *		Called functions take tty_ldiscs_lock
2197  *		current->signal->tty check is safe without locks
2198  *
2199  *	FIXME: may race normal receive processing
2200  */
2201 
2202 static int tiocsti(struct tty_struct *tty, char __user *p)
2203 {
2204 	char ch, mbz = 0;
2205 	struct tty_ldisc *ld;
2206 
2207 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2208 		return -EPERM;
2209 	if (get_user(ch, p))
2210 		return -EFAULT;
2211 	tty_audit_tiocsti(tty, ch);
2212 	ld = tty_ldisc_ref_wait(tty);
2213 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2214 	tty_ldisc_deref(ld);
2215 	return 0;
2216 }
2217 
2218 /**
2219  *	tiocgwinsz		-	implement window query ioctl
2220  *	@tty; tty
2221  *	@arg: user buffer for result
2222  *
2223  *	Copies the kernel idea of the window size into the user buffer.
2224  *
2225  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2226  *		is consistent.
2227  */
2228 
2229 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2230 {
2231 	int err;
2232 
2233 	mutex_lock(&tty->winsize_mutex);
2234 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2235 	mutex_unlock(&tty->winsize_mutex);
2236 
2237 	return err ? -EFAULT: 0;
2238 }
2239 
2240 /**
2241  *	tty_do_resize		-	resize event
2242  *	@tty: tty being resized
2243  *	@rows: rows (character)
2244  *	@cols: cols (character)
2245  *
2246  *	Update the termios variables and send the necessary signals to
2247  *	peform a terminal resize correctly
2248  */
2249 
2250 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2251 {
2252 	struct pid *pgrp;
2253 	unsigned long flags;
2254 
2255 	/* Lock the tty */
2256 	mutex_lock(&tty->winsize_mutex);
2257 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2258 		goto done;
2259 	/* Get the PID values and reference them so we can
2260 	   avoid holding the tty ctrl lock while sending signals */
2261 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2262 	pgrp = get_pid(tty->pgrp);
2263 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2264 
2265 	if (pgrp)
2266 		kill_pgrp(pgrp, SIGWINCH, 1);
2267 	put_pid(pgrp);
2268 
2269 	tty->winsize = *ws;
2270 done:
2271 	mutex_unlock(&tty->winsize_mutex);
2272 	return 0;
2273 }
2274 EXPORT_SYMBOL(tty_do_resize);
2275 
2276 /**
2277  *	tiocswinsz		-	implement window size set ioctl
2278  *	@tty; tty side of tty
2279  *	@arg: user buffer for result
2280  *
2281  *	Copies the user idea of the window size to the kernel. Traditionally
2282  *	this is just advisory information but for the Linux console it
2283  *	actually has driver level meaning and triggers a VC resize.
2284  *
2285  *	Locking:
2286  *		Driver dependent. The default do_resize method takes the
2287  *	tty termios mutex and ctrl_lock. The console takes its own lock
2288  *	then calls into the default method.
2289  */
2290 
2291 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2292 {
2293 	struct winsize tmp_ws;
2294 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2295 		return -EFAULT;
2296 
2297 	if (tty->ops->resize)
2298 		return tty->ops->resize(tty, &tmp_ws);
2299 	else
2300 		return tty_do_resize(tty, &tmp_ws);
2301 }
2302 
2303 /**
2304  *	tioccons	-	allow admin to move logical console
2305  *	@file: the file to become console
2306  *
2307  *	Allow the administrator to move the redirected console device
2308  *
2309  *	Locking: uses redirect_lock to guard the redirect information
2310  */
2311 
2312 static int tioccons(struct file *file)
2313 {
2314 	if (!capable(CAP_SYS_ADMIN))
2315 		return -EPERM;
2316 	if (file->f_op->write == redirected_tty_write) {
2317 		struct file *f;
2318 		spin_lock(&redirect_lock);
2319 		f = redirect;
2320 		redirect = NULL;
2321 		spin_unlock(&redirect_lock);
2322 		if (f)
2323 			fput(f);
2324 		return 0;
2325 	}
2326 	spin_lock(&redirect_lock);
2327 	if (redirect) {
2328 		spin_unlock(&redirect_lock);
2329 		return -EBUSY;
2330 	}
2331 	redirect = get_file(file);
2332 	spin_unlock(&redirect_lock);
2333 	return 0;
2334 }
2335 
2336 /**
2337  *	fionbio		-	non blocking ioctl
2338  *	@file: file to set blocking value
2339  *	@p: user parameter
2340  *
2341  *	Historical tty interfaces had a blocking control ioctl before
2342  *	the generic functionality existed. This piece of history is preserved
2343  *	in the expected tty API of posix OS's.
2344  *
2345  *	Locking: none, the open file handle ensures it won't go away.
2346  */
2347 
2348 static int fionbio(struct file *file, int __user *p)
2349 {
2350 	int nonblock;
2351 
2352 	if (get_user(nonblock, p))
2353 		return -EFAULT;
2354 
2355 	spin_lock(&file->f_lock);
2356 	if (nonblock)
2357 		file->f_flags |= O_NONBLOCK;
2358 	else
2359 		file->f_flags &= ~O_NONBLOCK;
2360 	spin_unlock(&file->f_lock);
2361 	return 0;
2362 }
2363 
2364 /**
2365  *	tiocsctty	-	set controlling tty
2366  *	@tty: tty structure
2367  *	@arg: user argument
2368  *
2369  *	This ioctl is used to manage job control. It permits a session
2370  *	leader to set this tty as the controlling tty for the session.
2371  *
2372  *	Locking:
2373  *		Takes tty_mutex() to protect tty instance
2374  *		Takes tasklist_lock internally to walk sessions
2375  *		Takes ->siglock() when updating signal->tty
2376  */
2377 
2378 static int tiocsctty(struct tty_struct *tty, int arg)
2379 {
2380 	int ret = 0;
2381 	if (current->signal->leader && (task_session(current) == tty->session))
2382 		return ret;
2383 
2384 	mutex_lock(&tty_mutex);
2385 	/*
2386 	 * The process must be a session leader and
2387 	 * not have a controlling tty already.
2388 	 */
2389 	if (!current->signal->leader || current->signal->tty) {
2390 		ret = -EPERM;
2391 		goto unlock;
2392 	}
2393 
2394 	if (tty->session) {
2395 		/*
2396 		 * This tty is already the controlling
2397 		 * tty for another session group!
2398 		 */
2399 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2400 			/*
2401 			 * Steal it away
2402 			 */
2403 			read_lock(&tasklist_lock);
2404 			session_clear_tty(tty->session);
2405 			read_unlock(&tasklist_lock);
2406 		} else {
2407 			ret = -EPERM;
2408 			goto unlock;
2409 		}
2410 	}
2411 	proc_set_tty(current, tty);
2412 unlock:
2413 	mutex_unlock(&tty_mutex);
2414 	return ret;
2415 }
2416 
2417 /**
2418  *	tty_get_pgrp	-	return a ref counted pgrp pid
2419  *	@tty: tty to read
2420  *
2421  *	Returns a refcounted instance of the pid struct for the process
2422  *	group controlling the tty.
2423  */
2424 
2425 struct pid *tty_get_pgrp(struct tty_struct *tty)
2426 {
2427 	unsigned long flags;
2428 	struct pid *pgrp;
2429 
2430 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2431 	pgrp = get_pid(tty->pgrp);
2432 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2433 
2434 	return pgrp;
2435 }
2436 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2437 
2438 /**
2439  *	tiocgpgrp		-	get process group
2440  *	@tty: tty passed by user
2441  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2442  *	@p: returned pid
2443  *
2444  *	Obtain the process group of the tty. If there is no process group
2445  *	return an error.
2446  *
2447  *	Locking: none. Reference to current->signal->tty is safe.
2448  */
2449 
2450 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2451 {
2452 	struct pid *pid;
2453 	int ret;
2454 	/*
2455 	 * (tty == real_tty) is a cheap way of
2456 	 * testing if the tty is NOT a master pty.
2457 	 */
2458 	if (tty == real_tty && current->signal->tty != real_tty)
2459 		return -ENOTTY;
2460 	pid = tty_get_pgrp(real_tty);
2461 	ret =  put_user(pid_vnr(pid), p);
2462 	put_pid(pid);
2463 	return ret;
2464 }
2465 
2466 /**
2467  *	tiocspgrp		-	attempt to set process group
2468  *	@tty: tty passed by user
2469  *	@real_tty: tty side device matching tty passed by user
2470  *	@p: pid pointer
2471  *
2472  *	Set the process group of the tty to the session passed. Only
2473  *	permitted where the tty session is our session.
2474  *
2475  *	Locking: RCU, ctrl lock
2476  */
2477 
2478 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2479 {
2480 	struct pid *pgrp;
2481 	pid_t pgrp_nr;
2482 	int retval = tty_check_change(real_tty);
2483 	unsigned long flags;
2484 
2485 	if (retval == -EIO)
2486 		return -ENOTTY;
2487 	if (retval)
2488 		return retval;
2489 	if (!current->signal->tty ||
2490 	    (current->signal->tty != real_tty) ||
2491 	    (real_tty->session != task_session(current)))
2492 		return -ENOTTY;
2493 	if (get_user(pgrp_nr, p))
2494 		return -EFAULT;
2495 	if (pgrp_nr < 0)
2496 		return -EINVAL;
2497 	rcu_read_lock();
2498 	pgrp = find_vpid(pgrp_nr);
2499 	retval = -ESRCH;
2500 	if (!pgrp)
2501 		goto out_unlock;
2502 	retval = -EPERM;
2503 	if (session_of_pgrp(pgrp) != task_session(current))
2504 		goto out_unlock;
2505 	retval = 0;
2506 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2507 	put_pid(real_tty->pgrp);
2508 	real_tty->pgrp = get_pid(pgrp);
2509 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2510 out_unlock:
2511 	rcu_read_unlock();
2512 	return retval;
2513 }
2514 
2515 /**
2516  *	tiocgsid		-	get session id
2517  *	@tty: tty passed by user
2518  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2519  *	@p: pointer to returned session id
2520  *
2521  *	Obtain the session id of the tty. If there is no session
2522  *	return an error.
2523  *
2524  *	Locking: none. Reference to current->signal->tty is safe.
2525  */
2526 
2527 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2528 {
2529 	/*
2530 	 * (tty == real_tty) is a cheap way of
2531 	 * testing if the tty is NOT a master pty.
2532 	*/
2533 	if (tty == real_tty && current->signal->tty != real_tty)
2534 		return -ENOTTY;
2535 	if (!real_tty->session)
2536 		return -ENOTTY;
2537 	return put_user(pid_vnr(real_tty->session), p);
2538 }
2539 
2540 /**
2541  *	tiocsetd	-	set line discipline
2542  *	@tty: tty device
2543  *	@p: pointer to user data
2544  *
2545  *	Set the line discipline according to user request.
2546  *
2547  *	Locking: see tty_set_ldisc, this function is just a helper
2548  */
2549 
2550 static int tiocsetd(struct tty_struct *tty, int __user *p)
2551 {
2552 	int ldisc;
2553 	int ret;
2554 
2555 	if (get_user(ldisc, p))
2556 		return -EFAULT;
2557 
2558 	ret = tty_set_ldisc(tty, ldisc);
2559 
2560 	return ret;
2561 }
2562 
2563 /**
2564  *	send_break	-	performed time break
2565  *	@tty: device to break on
2566  *	@duration: timeout in mS
2567  *
2568  *	Perform a timed break on hardware that lacks its own driver level
2569  *	timed break functionality.
2570  *
2571  *	Locking:
2572  *		atomic_write_lock serializes
2573  *
2574  */
2575 
2576 static int send_break(struct tty_struct *tty, unsigned int duration)
2577 {
2578 	int retval;
2579 
2580 	if (tty->ops->break_ctl == NULL)
2581 		return 0;
2582 
2583 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2584 		retval = tty->ops->break_ctl(tty, duration);
2585 	else {
2586 		/* Do the work ourselves */
2587 		if (tty_write_lock(tty, 0) < 0)
2588 			return -EINTR;
2589 		retval = tty->ops->break_ctl(tty, -1);
2590 		if (retval)
2591 			goto out;
2592 		if (!signal_pending(current))
2593 			msleep_interruptible(duration);
2594 		retval = tty->ops->break_ctl(tty, 0);
2595 out:
2596 		tty_write_unlock(tty);
2597 		if (signal_pending(current))
2598 			retval = -EINTR;
2599 	}
2600 	return retval;
2601 }
2602 
2603 /**
2604  *	tty_tiocmget		-	get modem status
2605  *	@tty: tty device
2606  *	@file: user file pointer
2607  *	@p: pointer to result
2608  *
2609  *	Obtain the modem status bits from the tty driver if the feature
2610  *	is supported. Return -EINVAL if it is not available.
2611  *
2612  *	Locking: none (up to the driver)
2613  */
2614 
2615 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2616 {
2617 	int retval = -EINVAL;
2618 
2619 	if (tty->ops->tiocmget) {
2620 		retval = tty->ops->tiocmget(tty);
2621 
2622 		if (retval >= 0)
2623 			retval = put_user(retval, p);
2624 	}
2625 	return retval;
2626 }
2627 
2628 /**
2629  *	tty_tiocmset		-	set modem status
2630  *	@tty: tty device
2631  *	@cmd: command - clear bits, set bits or set all
2632  *	@p: pointer to desired bits
2633  *
2634  *	Set the modem status bits from the tty driver if the feature
2635  *	is supported. Return -EINVAL if it is not available.
2636  *
2637  *	Locking: none (up to the driver)
2638  */
2639 
2640 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2641 	     unsigned __user *p)
2642 {
2643 	int retval;
2644 	unsigned int set, clear, val;
2645 
2646 	if (tty->ops->tiocmset == NULL)
2647 		return -EINVAL;
2648 
2649 	retval = get_user(val, p);
2650 	if (retval)
2651 		return retval;
2652 	set = clear = 0;
2653 	switch (cmd) {
2654 	case TIOCMBIS:
2655 		set = val;
2656 		break;
2657 	case TIOCMBIC:
2658 		clear = val;
2659 		break;
2660 	case TIOCMSET:
2661 		set = val;
2662 		clear = ~val;
2663 		break;
2664 	}
2665 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2666 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2667 	return tty->ops->tiocmset(tty, set, clear);
2668 }
2669 
2670 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2671 {
2672 	int retval = -EINVAL;
2673 	struct serial_icounter_struct icount;
2674 	memset(&icount, 0, sizeof(icount));
2675 	if (tty->ops->get_icount)
2676 		retval = tty->ops->get_icount(tty, &icount);
2677 	if (retval != 0)
2678 		return retval;
2679 	if (copy_to_user(arg, &icount, sizeof(icount)))
2680 		return -EFAULT;
2681 	return 0;
2682 }
2683 
2684 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2685 {
2686 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2687 	    tty->driver->subtype == PTY_TYPE_MASTER)
2688 		tty = tty->link;
2689 	return tty;
2690 }
2691 EXPORT_SYMBOL(tty_pair_get_tty);
2692 
2693 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2694 {
2695 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2696 	    tty->driver->subtype == PTY_TYPE_MASTER)
2697 	    return tty;
2698 	return tty->link;
2699 }
2700 EXPORT_SYMBOL(tty_pair_get_pty);
2701 
2702 /*
2703  * Split this up, as gcc can choke on it otherwise..
2704  */
2705 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2706 {
2707 	struct tty_struct *tty = file_tty(file);
2708 	struct tty_struct *real_tty;
2709 	void __user *p = (void __user *)arg;
2710 	int retval;
2711 	struct tty_ldisc *ld;
2712 
2713 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2714 		return -EINVAL;
2715 
2716 	real_tty = tty_pair_get_tty(tty);
2717 
2718 	/*
2719 	 * Factor out some common prep work
2720 	 */
2721 	switch (cmd) {
2722 	case TIOCSETD:
2723 	case TIOCSBRK:
2724 	case TIOCCBRK:
2725 	case TCSBRK:
2726 	case TCSBRKP:
2727 		retval = tty_check_change(tty);
2728 		if (retval)
2729 			return retval;
2730 		if (cmd != TIOCCBRK) {
2731 			tty_wait_until_sent(tty, 0);
2732 			if (signal_pending(current))
2733 				return -EINTR;
2734 		}
2735 		break;
2736 	}
2737 
2738 	/*
2739 	 *	Now do the stuff.
2740 	 */
2741 	switch (cmd) {
2742 	case TIOCSTI:
2743 		return tiocsti(tty, p);
2744 	case TIOCGWINSZ:
2745 		return tiocgwinsz(real_tty, p);
2746 	case TIOCSWINSZ:
2747 		return tiocswinsz(real_tty, p);
2748 	case TIOCCONS:
2749 		return real_tty != tty ? -EINVAL : tioccons(file);
2750 	case FIONBIO:
2751 		return fionbio(file, p);
2752 	case TIOCEXCL:
2753 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2754 		return 0;
2755 	case TIOCNXCL:
2756 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2757 		return 0;
2758 	case TIOCGEXCL:
2759 	{
2760 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2761 		return put_user(excl, (int __user *)p);
2762 	}
2763 	case TIOCNOTTY:
2764 		if (current->signal->tty != tty)
2765 			return -ENOTTY;
2766 		no_tty();
2767 		return 0;
2768 	case TIOCSCTTY:
2769 		return tiocsctty(tty, arg);
2770 	case TIOCGPGRP:
2771 		return tiocgpgrp(tty, real_tty, p);
2772 	case TIOCSPGRP:
2773 		return tiocspgrp(tty, real_tty, p);
2774 	case TIOCGSID:
2775 		return tiocgsid(tty, real_tty, p);
2776 	case TIOCGETD:
2777 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2778 	case TIOCSETD:
2779 		return tiocsetd(tty, p);
2780 	case TIOCVHANGUP:
2781 		if (!capable(CAP_SYS_ADMIN))
2782 			return -EPERM;
2783 		tty_vhangup(tty);
2784 		return 0;
2785 	case TIOCGDEV:
2786 	{
2787 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2788 		return put_user(ret, (unsigned int __user *)p);
2789 	}
2790 	/*
2791 	 * Break handling
2792 	 */
2793 	case TIOCSBRK:	/* Turn break on, unconditionally */
2794 		if (tty->ops->break_ctl)
2795 			return tty->ops->break_ctl(tty, -1);
2796 		return 0;
2797 	case TIOCCBRK:	/* Turn break off, unconditionally */
2798 		if (tty->ops->break_ctl)
2799 			return tty->ops->break_ctl(tty, 0);
2800 		return 0;
2801 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2802 		/* non-zero arg means wait for all output data
2803 		 * to be sent (performed above) but don't send break.
2804 		 * This is used by the tcdrain() termios function.
2805 		 */
2806 		if (!arg)
2807 			return send_break(tty, 250);
2808 		return 0;
2809 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2810 		return send_break(tty, arg ? arg*100 : 250);
2811 
2812 	case TIOCMGET:
2813 		return tty_tiocmget(tty, p);
2814 	case TIOCMSET:
2815 	case TIOCMBIC:
2816 	case TIOCMBIS:
2817 		return tty_tiocmset(tty, cmd, p);
2818 	case TIOCGICOUNT:
2819 		retval = tty_tiocgicount(tty, p);
2820 		/* For the moment allow fall through to the old method */
2821         	if (retval != -EINVAL)
2822 			return retval;
2823 		break;
2824 	case TCFLSH:
2825 		switch (arg) {
2826 		case TCIFLUSH:
2827 		case TCIOFLUSH:
2828 		/* flush tty buffer and allow ldisc to process ioctl */
2829 			tty_buffer_flush(tty);
2830 			break;
2831 		}
2832 		break;
2833 	}
2834 	if (tty->ops->ioctl) {
2835 		retval = (tty->ops->ioctl)(tty, cmd, arg);
2836 		if (retval != -ENOIOCTLCMD)
2837 			return retval;
2838 	}
2839 	ld = tty_ldisc_ref_wait(tty);
2840 	retval = -EINVAL;
2841 	if (ld->ops->ioctl) {
2842 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2843 		if (retval == -ENOIOCTLCMD)
2844 			retval = -ENOTTY;
2845 	}
2846 	tty_ldisc_deref(ld);
2847 	return retval;
2848 }
2849 
2850 #ifdef CONFIG_COMPAT
2851 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2852 				unsigned long arg)
2853 {
2854 	struct tty_struct *tty = file_tty(file);
2855 	struct tty_ldisc *ld;
2856 	int retval = -ENOIOCTLCMD;
2857 
2858 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2859 		return -EINVAL;
2860 
2861 	if (tty->ops->compat_ioctl) {
2862 		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2863 		if (retval != -ENOIOCTLCMD)
2864 			return retval;
2865 	}
2866 
2867 	ld = tty_ldisc_ref_wait(tty);
2868 	if (ld->ops->compat_ioctl)
2869 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2870 	else
2871 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2872 	tty_ldisc_deref(ld);
2873 
2874 	return retval;
2875 }
2876 #endif
2877 
2878 static int this_tty(const void *t, struct file *file, unsigned fd)
2879 {
2880 	if (likely(file->f_op->read != tty_read))
2881 		return 0;
2882 	return file_tty(file) != t ? 0 : fd + 1;
2883 }
2884 
2885 /*
2886  * This implements the "Secure Attention Key" ---  the idea is to
2887  * prevent trojan horses by killing all processes associated with this
2888  * tty when the user hits the "Secure Attention Key".  Required for
2889  * super-paranoid applications --- see the Orange Book for more details.
2890  *
2891  * This code could be nicer; ideally it should send a HUP, wait a few
2892  * seconds, then send a INT, and then a KILL signal.  But you then
2893  * have to coordinate with the init process, since all processes associated
2894  * with the current tty must be dead before the new getty is allowed
2895  * to spawn.
2896  *
2897  * Now, if it would be correct ;-/ The current code has a nasty hole -
2898  * it doesn't catch files in flight. We may send the descriptor to ourselves
2899  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2900  *
2901  * Nasty bug: do_SAK is being called in interrupt context.  This can
2902  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2903  */
2904 void __do_SAK(struct tty_struct *tty)
2905 {
2906 #ifdef TTY_SOFT_SAK
2907 	tty_hangup(tty);
2908 #else
2909 	struct task_struct *g, *p;
2910 	struct pid *session;
2911 	int		i;
2912 
2913 	if (!tty)
2914 		return;
2915 	session = tty->session;
2916 
2917 	tty_ldisc_flush(tty);
2918 
2919 	tty_driver_flush_buffer(tty);
2920 
2921 	read_lock(&tasklist_lock);
2922 	/* Kill the entire session */
2923 	do_each_pid_task(session, PIDTYPE_SID, p) {
2924 		printk(KERN_NOTICE "SAK: killed process %d"
2925 			" (%s): task_session(p)==tty->session\n",
2926 			task_pid_nr(p), p->comm);
2927 		send_sig(SIGKILL, p, 1);
2928 	} while_each_pid_task(session, PIDTYPE_SID, p);
2929 	/* Now kill any processes that happen to have the
2930 	 * tty open.
2931 	 */
2932 	do_each_thread(g, p) {
2933 		if (p->signal->tty == tty) {
2934 			printk(KERN_NOTICE "SAK: killed process %d"
2935 			    " (%s): task_session(p)==tty->session\n",
2936 			    task_pid_nr(p), p->comm);
2937 			send_sig(SIGKILL, p, 1);
2938 			continue;
2939 		}
2940 		task_lock(p);
2941 		i = iterate_fd(p->files, 0, this_tty, tty);
2942 		if (i != 0) {
2943 			printk(KERN_NOTICE "SAK: killed process %d"
2944 			    " (%s): fd#%d opened to the tty\n",
2945 				    task_pid_nr(p), p->comm, i - 1);
2946 			force_sig(SIGKILL, p);
2947 		}
2948 		task_unlock(p);
2949 	} while_each_thread(g, p);
2950 	read_unlock(&tasklist_lock);
2951 #endif
2952 }
2953 
2954 static void do_SAK_work(struct work_struct *work)
2955 {
2956 	struct tty_struct *tty =
2957 		container_of(work, struct tty_struct, SAK_work);
2958 	__do_SAK(tty);
2959 }
2960 
2961 /*
2962  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2963  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2964  * the values which we write to it will be identical to the values which it
2965  * already has. --akpm
2966  */
2967 void do_SAK(struct tty_struct *tty)
2968 {
2969 	if (!tty)
2970 		return;
2971 	schedule_work(&tty->SAK_work);
2972 }
2973 
2974 EXPORT_SYMBOL(do_SAK);
2975 
2976 static int dev_match_devt(struct device *dev, const void *data)
2977 {
2978 	const dev_t *devt = data;
2979 	return dev->devt == *devt;
2980 }
2981 
2982 /* Must put_device() after it's unused! */
2983 static struct device *tty_get_device(struct tty_struct *tty)
2984 {
2985 	dev_t devt = tty_devnum(tty);
2986 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2987 }
2988 
2989 
2990 /**
2991  *	alloc_tty_struct
2992  *
2993  *	This subroutine allocates and initializes a tty structure.
2994  *
2995  *	Locking: none - tty in question is not exposed at this point
2996  */
2997 
2998 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
2999 {
3000 	struct tty_struct *tty;
3001 
3002 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3003 	if (!tty)
3004 		return NULL;
3005 
3006 	kref_init(&tty->kref);
3007 	tty->magic = TTY_MAGIC;
3008 	tty_ldisc_init(tty);
3009 	tty->session = NULL;
3010 	tty->pgrp = NULL;
3011 	mutex_init(&tty->legacy_mutex);
3012 	mutex_init(&tty->throttle_mutex);
3013 	init_rwsem(&tty->termios_rwsem);
3014 	mutex_init(&tty->winsize_mutex);
3015 	init_ldsem(&tty->ldisc_sem);
3016 	init_waitqueue_head(&tty->write_wait);
3017 	init_waitqueue_head(&tty->read_wait);
3018 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3019 	mutex_init(&tty->atomic_write_lock);
3020 	spin_lock_init(&tty->ctrl_lock);
3021 	INIT_LIST_HEAD(&tty->tty_files);
3022 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3023 
3024 	tty->driver = driver;
3025 	tty->ops = driver->ops;
3026 	tty->index = idx;
3027 	tty_line_name(driver, idx, tty->name);
3028 	tty->dev = tty_get_device(tty);
3029 
3030 	return tty;
3031 }
3032 
3033 /**
3034  *	deinitialize_tty_struct
3035  *	@tty: tty to deinitialize
3036  *
3037  *	This subroutine deinitializes a tty structure that has been newly
3038  *	allocated but tty_release cannot be called on that yet.
3039  *
3040  *	Locking: none - tty in question must not be exposed at this point
3041  */
3042 void deinitialize_tty_struct(struct tty_struct *tty)
3043 {
3044 	tty_ldisc_deinit(tty);
3045 }
3046 
3047 /**
3048  *	tty_put_char	-	write one character to a tty
3049  *	@tty: tty
3050  *	@ch: character
3051  *
3052  *	Write one byte to the tty using the provided put_char method
3053  *	if present. Returns the number of characters successfully output.
3054  *
3055  *	Note: the specific put_char operation in the driver layer may go
3056  *	away soon. Don't call it directly, use this method
3057  */
3058 
3059 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3060 {
3061 	if (tty->ops->put_char)
3062 		return tty->ops->put_char(tty, ch);
3063 	return tty->ops->write(tty, &ch, 1);
3064 }
3065 EXPORT_SYMBOL_GPL(tty_put_char);
3066 
3067 struct class *tty_class;
3068 
3069 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3070 		unsigned int index, unsigned int count)
3071 {
3072 	/* init here, since reused cdevs cause crashes */
3073 	cdev_init(&driver->cdevs[index], &tty_fops);
3074 	driver->cdevs[index].owner = driver->owner;
3075 	return cdev_add(&driver->cdevs[index], dev, count);
3076 }
3077 
3078 /**
3079  *	tty_register_device - register a tty device
3080  *	@driver: the tty driver that describes the tty device
3081  *	@index: the index in the tty driver for this tty device
3082  *	@device: a struct device that is associated with this tty device.
3083  *		This field is optional, if there is no known struct device
3084  *		for this tty device it can be set to NULL safely.
3085  *
3086  *	Returns a pointer to the struct device for this tty device
3087  *	(or ERR_PTR(-EFOO) on error).
3088  *
3089  *	This call is required to be made to register an individual tty device
3090  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3091  *	that bit is not set, this function should not be called by a tty
3092  *	driver.
3093  *
3094  *	Locking: ??
3095  */
3096 
3097 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3098 				   struct device *device)
3099 {
3100 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3101 }
3102 EXPORT_SYMBOL(tty_register_device);
3103 
3104 static void tty_device_create_release(struct device *dev)
3105 {
3106 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3107 	kfree(dev);
3108 }
3109 
3110 /**
3111  *	tty_register_device_attr - register a tty device
3112  *	@driver: the tty driver that describes the tty device
3113  *	@index: the index in the tty driver for this tty device
3114  *	@device: a struct device that is associated with this tty device.
3115  *		This field is optional, if there is no known struct device
3116  *		for this tty device it can be set to NULL safely.
3117  *	@drvdata: Driver data to be set to device.
3118  *	@attr_grp: Attribute group to be set on device.
3119  *
3120  *	Returns a pointer to the struct device for this tty device
3121  *	(or ERR_PTR(-EFOO) on error).
3122  *
3123  *	This call is required to be made to register an individual tty device
3124  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3125  *	that bit is not set, this function should not be called by a tty
3126  *	driver.
3127  *
3128  *	Locking: ??
3129  */
3130 struct device *tty_register_device_attr(struct tty_driver *driver,
3131 				   unsigned index, struct device *device,
3132 				   void *drvdata,
3133 				   const struct attribute_group **attr_grp)
3134 {
3135 	char name[64];
3136 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3137 	struct device *dev = NULL;
3138 	int retval = -ENODEV;
3139 	bool cdev = false;
3140 
3141 	if (index >= driver->num) {
3142 		printk(KERN_ERR "Attempt to register invalid tty line number "
3143 		       " (%d).\n", index);
3144 		return ERR_PTR(-EINVAL);
3145 	}
3146 
3147 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3148 		pty_line_name(driver, index, name);
3149 	else
3150 		tty_line_name(driver, index, name);
3151 
3152 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3153 		retval = tty_cdev_add(driver, devt, index, 1);
3154 		if (retval)
3155 			goto error;
3156 		cdev = true;
3157 	}
3158 
3159 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3160 	if (!dev) {
3161 		retval = -ENOMEM;
3162 		goto error;
3163 	}
3164 
3165 	dev->devt = devt;
3166 	dev->class = tty_class;
3167 	dev->parent = device;
3168 	dev->release = tty_device_create_release;
3169 	dev_set_name(dev, "%s", name);
3170 	dev->groups = attr_grp;
3171 	dev_set_drvdata(dev, drvdata);
3172 
3173 	retval = device_register(dev);
3174 	if (retval)
3175 		goto error;
3176 
3177 	return dev;
3178 
3179 error:
3180 	put_device(dev);
3181 	if (cdev)
3182 		cdev_del(&driver->cdevs[index]);
3183 	return ERR_PTR(retval);
3184 }
3185 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3186 
3187 /**
3188  * 	tty_unregister_device - unregister a tty device
3189  * 	@driver: the tty driver that describes the tty device
3190  * 	@index: the index in the tty driver for this tty device
3191  *
3192  * 	If a tty device is registered with a call to tty_register_device() then
3193  *	this function must be called when the tty device is gone.
3194  *
3195  *	Locking: ??
3196  */
3197 
3198 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3199 {
3200 	device_destroy(tty_class,
3201 		MKDEV(driver->major, driver->minor_start) + index);
3202 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3203 		cdev_del(&driver->cdevs[index]);
3204 }
3205 EXPORT_SYMBOL(tty_unregister_device);
3206 
3207 /**
3208  * __tty_alloc_driver -- allocate tty driver
3209  * @lines: count of lines this driver can handle at most
3210  * @owner: module which is repsonsible for this driver
3211  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3212  *
3213  * This should not be called directly, some of the provided macros should be
3214  * used instead. Use IS_ERR and friends on @retval.
3215  */
3216 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3217 		unsigned long flags)
3218 {
3219 	struct tty_driver *driver;
3220 	unsigned int cdevs = 1;
3221 	int err;
3222 
3223 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3224 		return ERR_PTR(-EINVAL);
3225 
3226 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3227 	if (!driver)
3228 		return ERR_PTR(-ENOMEM);
3229 
3230 	kref_init(&driver->kref);
3231 	driver->magic = TTY_DRIVER_MAGIC;
3232 	driver->num = lines;
3233 	driver->owner = owner;
3234 	driver->flags = flags;
3235 
3236 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3237 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3238 				GFP_KERNEL);
3239 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3240 				GFP_KERNEL);
3241 		if (!driver->ttys || !driver->termios) {
3242 			err = -ENOMEM;
3243 			goto err_free_all;
3244 		}
3245 	}
3246 
3247 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3248 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3249 				GFP_KERNEL);
3250 		if (!driver->ports) {
3251 			err = -ENOMEM;
3252 			goto err_free_all;
3253 		}
3254 		cdevs = lines;
3255 	}
3256 
3257 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3258 	if (!driver->cdevs) {
3259 		err = -ENOMEM;
3260 		goto err_free_all;
3261 	}
3262 
3263 	return driver;
3264 err_free_all:
3265 	kfree(driver->ports);
3266 	kfree(driver->ttys);
3267 	kfree(driver->termios);
3268 	kfree(driver);
3269 	return ERR_PTR(err);
3270 }
3271 EXPORT_SYMBOL(__tty_alloc_driver);
3272 
3273 static void destruct_tty_driver(struct kref *kref)
3274 {
3275 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3276 	int i;
3277 	struct ktermios *tp;
3278 
3279 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3280 		/*
3281 		 * Free the termios and termios_locked structures because
3282 		 * we don't want to get memory leaks when modular tty
3283 		 * drivers are removed from the kernel.
3284 		 */
3285 		for (i = 0; i < driver->num; i++) {
3286 			tp = driver->termios[i];
3287 			if (tp) {
3288 				driver->termios[i] = NULL;
3289 				kfree(tp);
3290 			}
3291 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3292 				tty_unregister_device(driver, i);
3293 		}
3294 		proc_tty_unregister_driver(driver);
3295 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3296 			cdev_del(&driver->cdevs[0]);
3297 	}
3298 	kfree(driver->cdevs);
3299 	kfree(driver->ports);
3300 	kfree(driver->termios);
3301 	kfree(driver->ttys);
3302 	kfree(driver);
3303 }
3304 
3305 void tty_driver_kref_put(struct tty_driver *driver)
3306 {
3307 	kref_put(&driver->kref, destruct_tty_driver);
3308 }
3309 EXPORT_SYMBOL(tty_driver_kref_put);
3310 
3311 void tty_set_operations(struct tty_driver *driver,
3312 			const struct tty_operations *op)
3313 {
3314 	driver->ops = op;
3315 };
3316 EXPORT_SYMBOL(tty_set_operations);
3317 
3318 void put_tty_driver(struct tty_driver *d)
3319 {
3320 	tty_driver_kref_put(d);
3321 }
3322 EXPORT_SYMBOL(put_tty_driver);
3323 
3324 /*
3325  * Called by a tty driver to register itself.
3326  */
3327 int tty_register_driver(struct tty_driver *driver)
3328 {
3329 	int error;
3330 	int i;
3331 	dev_t dev;
3332 	struct device *d;
3333 
3334 	if (!driver->major) {
3335 		error = alloc_chrdev_region(&dev, driver->minor_start,
3336 						driver->num, driver->name);
3337 		if (!error) {
3338 			driver->major = MAJOR(dev);
3339 			driver->minor_start = MINOR(dev);
3340 		}
3341 	} else {
3342 		dev = MKDEV(driver->major, driver->minor_start);
3343 		error = register_chrdev_region(dev, driver->num, driver->name);
3344 	}
3345 	if (error < 0)
3346 		goto err;
3347 
3348 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3349 		error = tty_cdev_add(driver, dev, 0, driver->num);
3350 		if (error)
3351 			goto err_unreg_char;
3352 	}
3353 
3354 	mutex_lock(&tty_mutex);
3355 	list_add(&driver->tty_drivers, &tty_drivers);
3356 	mutex_unlock(&tty_mutex);
3357 
3358 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3359 		for (i = 0; i < driver->num; i++) {
3360 			d = tty_register_device(driver, i, NULL);
3361 			if (IS_ERR(d)) {
3362 				error = PTR_ERR(d);
3363 				goto err_unreg_devs;
3364 			}
3365 		}
3366 	}
3367 	proc_tty_register_driver(driver);
3368 	driver->flags |= TTY_DRIVER_INSTALLED;
3369 	return 0;
3370 
3371 err_unreg_devs:
3372 	for (i--; i >= 0; i--)
3373 		tty_unregister_device(driver, i);
3374 
3375 	mutex_lock(&tty_mutex);
3376 	list_del(&driver->tty_drivers);
3377 	mutex_unlock(&tty_mutex);
3378 
3379 err_unreg_char:
3380 	unregister_chrdev_region(dev, driver->num);
3381 err:
3382 	return error;
3383 }
3384 EXPORT_SYMBOL(tty_register_driver);
3385 
3386 /*
3387  * Called by a tty driver to unregister itself.
3388  */
3389 int tty_unregister_driver(struct tty_driver *driver)
3390 {
3391 #if 0
3392 	/* FIXME */
3393 	if (driver->refcount)
3394 		return -EBUSY;
3395 #endif
3396 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3397 				driver->num);
3398 	mutex_lock(&tty_mutex);
3399 	list_del(&driver->tty_drivers);
3400 	mutex_unlock(&tty_mutex);
3401 	return 0;
3402 }
3403 
3404 EXPORT_SYMBOL(tty_unregister_driver);
3405 
3406 dev_t tty_devnum(struct tty_struct *tty)
3407 {
3408 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3409 }
3410 EXPORT_SYMBOL(tty_devnum);
3411 
3412 void proc_clear_tty(struct task_struct *p)
3413 {
3414 	unsigned long flags;
3415 	struct tty_struct *tty;
3416 	spin_lock_irqsave(&p->sighand->siglock, flags);
3417 	tty = p->signal->tty;
3418 	p->signal->tty = NULL;
3419 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3420 	tty_kref_put(tty);
3421 }
3422 
3423 /* Called under the sighand lock */
3424 
3425 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3426 {
3427 	if (tty) {
3428 		unsigned long flags;
3429 		/* We should not have a session or pgrp to put here but.... */
3430 		spin_lock_irqsave(&tty->ctrl_lock, flags);
3431 		put_pid(tty->session);
3432 		put_pid(tty->pgrp);
3433 		tty->pgrp = get_pid(task_pgrp(tsk));
3434 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3435 		tty->session = get_pid(task_session(tsk));
3436 		if (tsk->signal->tty) {
3437 			printk(KERN_DEBUG "tty not NULL!!\n");
3438 			tty_kref_put(tsk->signal->tty);
3439 		}
3440 	}
3441 	put_pid(tsk->signal->tty_old_pgrp);
3442 	tsk->signal->tty = tty_kref_get(tty);
3443 	tsk->signal->tty_old_pgrp = NULL;
3444 }
3445 
3446 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3447 {
3448 	spin_lock_irq(&tsk->sighand->siglock);
3449 	__proc_set_tty(tsk, tty);
3450 	spin_unlock_irq(&tsk->sighand->siglock);
3451 }
3452 
3453 struct tty_struct *get_current_tty(void)
3454 {
3455 	struct tty_struct *tty;
3456 	unsigned long flags;
3457 
3458 	spin_lock_irqsave(&current->sighand->siglock, flags);
3459 	tty = tty_kref_get(current->signal->tty);
3460 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3461 	return tty;
3462 }
3463 EXPORT_SYMBOL_GPL(get_current_tty);
3464 
3465 void tty_default_fops(struct file_operations *fops)
3466 {
3467 	*fops = tty_fops;
3468 }
3469 
3470 /*
3471  * Initialize the console device. This is called *early*, so
3472  * we can't necessarily depend on lots of kernel help here.
3473  * Just do some early initializations, and do the complex setup
3474  * later.
3475  */
3476 void __init console_init(void)
3477 {
3478 	initcall_t *call;
3479 
3480 	/* Setup the default TTY line discipline. */
3481 	tty_ldisc_begin();
3482 
3483 	/*
3484 	 * set up the console device so that later boot sequences can
3485 	 * inform about problems etc..
3486 	 */
3487 	call = __con_initcall_start;
3488 	while (call < __con_initcall_end) {
3489 		(*call)();
3490 		call++;
3491 	}
3492 }
3493 
3494 static char *tty_devnode(struct device *dev, umode_t *mode)
3495 {
3496 	if (!mode)
3497 		return NULL;
3498 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3499 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3500 		*mode = 0666;
3501 	return NULL;
3502 }
3503 
3504 static int __init tty_class_init(void)
3505 {
3506 	tty_class = class_create(THIS_MODULE, "tty");
3507 	if (IS_ERR(tty_class))
3508 		return PTR_ERR(tty_class);
3509 	tty_class->devnode = tty_devnode;
3510 	return 0;
3511 }
3512 
3513 postcore_initcall(tty_class_init);
3514 
3515 /* 3/2004 jmc: why do these devices exist? */
3516 static struct cdev tty_cdev, console_cdev;
3517 
3518 static ssize_t show_cons_active(struct device *dev,
3519 				struct device_attribute *attr, char *buf)
3520 {
3521 	struct console *cs[16];
3522 	int i = 0;
3523 	struct console *c;
3524 	ssize_t count = 0;
3525 
3526 	console_lock();
3527 	for_each_console(c) {
3528 		if (!c->device)
3529 			continue;
3530 		if (!c->write)
3531 			continue;
3532 		if ((c->flags & CON_ENABLED) == 0)
3533 			continue;
3534 		cs[i++] = c;
3535 		if (i >= ARRAY_SIZE(cs))
3536 			break;
3537 	}
3538 	while (i--) {
3539 		int index = cs[i]->index;
3540 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3541 
3542 		/* don't resolve tty0 as some programs depend on it */
3543 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3544 			count += tty_line_name(drv, index, buf + count);
3545 		else
3546 			count += sprintf(buf + count, "%s%d",
3547 					 cs[i]->name, cs[i]->index);
3548 
3549 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3550 	}
3551 	console_unlock();
3552 
3553 	return count;
3554 }
3555 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3556 
3557 static struct device *consdev;
3558 
3559 void console_sysfs_notify(void)
3560 {
3561 	if (consdev)
3562 		sysfs_notify(&consdev->kobj, NULL, "active");
3563 }
3564 
3565 /*
3566  * Ok, now we can initialize the rest of the tty devices and can count
3567  * on memory allocations, interrupts etc..
3568  */
3569 int __init tty_init(void)
3570 {
3571 	cdev_init(&tty_cdev, &tty_fops);
3572 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3573 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3574 		panic("Couldn't register /dev/tty driver\n");
3575 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3576 
3577 	cdev_init(&console_cdev, &console_fops);
3578 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3579 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3580 		panic("Couldn't register /dev/console driver\n");
3581 	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3582 			      "console");
3583 	if (IS_ERR(consdev))
3584 		consdev = NULL;
3585 	else
3586 		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3587 
3588 #ifdef CONFIG_VT
3589 	vty_init(&console_fops);
3590 #endif
3591 	return 0;
3592 }
3593 
3594