1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 */ 5 6 /* 7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 8 * or rs-channels. It also implements echoing, cooked mode etc. 9 * 10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 11 * 12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 13 * tty_struct and tty_queue structures. Previously there was an array 14 * of 256 tty_struct's which was statically allocated, and the 15 * tty_queue structures were allocated at boot time. Both are now 16 * dynamically allocated only when the tty is open. 17 * 18 * Also restructured routines so that there is more of a separation 19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 20 * the low-level tty routines (serial.c, pty.c, console.c). This 21 * makes for cleaner and more compact code. -TYT, 9/17/92 22 * 23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 24 * which can be dynamically activated and de-activated by the line 25 * discipline handling modules (like SLIP). 26 * 27 * NOTE: pay no attention to the line discipline code (yet); its 28 * interface is still subject to change in this version... 29 * -- TYT, 1/31/92 30 * 31 * Added functionality to the OPOST tty handling. No delays, but all 32 * other bits should be there. 33 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 34 * 35 * Rewrote canonical mode and added more termios flags. 36 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 37 * 38 * Reorganized FASYNC support so mouse code can share it. 39 * -- ctm@ardi.com, 9Sep95 40 * 41 * New TIOCLINUX variants added. 42 * -- mj@k332.feld.cvut.cz, 19-Nov-95 43 * 44 * Restrict vt switching via ioctl() 45 * -- grif@cs.ucr.edu, 5-Dec-95 46 * 47 * Move console and virtual terminal code to more appropriate files, 48 * implement CONFIG_VT and generalize console device interface. 49 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 50 * 51 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 52 * -- Bill Hawes <whawes@star.net>, June 97 53 * 54 * Added devfs support. 55 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 56 * 57 * Added support for a Unix98-style ptmx device. 58 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 59 * 60 * Reduced memory usage for older ARM systems 61 * -- Russell King <rmk@arm.linux.org.uk> 62 * 63 * Move do_SAK() into process context. Less stack use in devfs functions. 64 * alloc_tty_struct() always uses kmalloc() 65 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 66 */ 67 68 #include <linux/types.h> 69 #include <linux/major.h> 70 #include <linux/errno.h> 71 #include <linux/signal.h> 72 #include <linux/fcntl.h> 73 #include <linux/sched/signal.h> 74 #include <linux/sched/task.h> 75 #include <linux/interrupt.h> 76 #include <linux/tty.h> 77 #include <linux/tty_driver.h> 78 #include <linux/tty_flip.h> 79 #include <linux/devpts_fs.h> 80 #include <linux/file.h> 81 #include <linux/fdtable.h> 82 #include <linux/console.h> 83 #include <linux/timer.h> 84 #include <linux/ctype.h> 85 #include <linux/kd.h> 86 #include <linux/mm.h> 87 #include <linux/string.h> 88 #include <linux/slab.h> 89 #include <linux/poll.h> 90 #include <linux/proc_fs.h> 91 #include <linux/init.h> 92 #include <linux/module.h> 93 #include <linux/device.h> 94 #include <linux/wait.h> 95 #include <linux/bitops.h> 96 #include <linux/delay.h> 97 #include <linux/seq_file.h> 98 #include <linux/serial.h> 99 #include <linux/ratelimit.h> 100 101 #include <linux/uaccess.h> 102 103 #include <linux/kbd_kern.h> 104 #include <linux/vt_kern.h> 105 #include <linux/selection.h> 106 107 #include <linux/kmod.h> 108 #include <linux/nsproxy.h> 109 110 #undef TTY_DEBUG_HANGUP 111 #ifdef TTY_DEBUG_HANGUP 112 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args) 113 #else 114 # define tty_debug_hangup(tty, f, args...) do { } while (0) 115 #endif 116 117 #define TTY_PARANOIA_CHECK 1 118 #define CHECK_TTY_COUNT 1 119 120 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 121 .c_iflag = ICRNL | IXON, 122 .c_oflag = OPOST | ONLCR, 123 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 124 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 125 ECHOCTL | ECHOKE | IEXTEN, 126 .c_cc = INIT_C_CC, 127 .c_ispeed = 38400, 128 .c_ospeed = 38400, 129 /* .c_line = N_TTY, */ 130 }; 131 132 EXPORT_SYMBOL(tty_std_termios); 133 134 /* This list gets poked at by procfs and various bits of boot up code. This 135 could do with some rationalisation such as pulling the tty proc function 136 into this file */ 137 138 LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 139 140 /* Mutex to protect creating and releasing a tty */ 141 DEFINE_MUTEX(tty_mutex); 142 143 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *); 144 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *); 145 ssize_t redirected_tty_write(struct file *, const char __user *, 146 size_t, loff_t *); 147 static __poll_t tty_poll(struct file *, poll_table *); 148 static int tty_open(struct inode *, struct file *); 149 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 150 #ifdef CONFIG_COMPAT 151 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 152 unsigned long arg); 153 #else 154 #define tty_compat_ioctl NULL 155 #endif 156 static int __tty_fasync(int fd, struct file *filp, int on); 157 static int tty_fasync(int fd, struct file *filp, int on); 158 static void release_tty(struct tty_struct *tty, int idx); 159 160 /** 161 * free_tty_struct - free a disused tty 162 * @tty: tty struct to free 163 * 164 * Free the write buffers, tty queue and tty memory itself. 165 * 166 * Locking: none. Must be called after tty is definitely unused 167 */ 168 169 static void free_tty_struct(struct tty_struct *tty) 170 { 171 tty_ldisc_deinit(tty); 172 put_device(tty->dev); 173 kfree(tty->write_buf); 174 tty->magic = 0xDEADDEAD; 175 kfree(tty); 176 } 177 178 static inline struct tty_struct *file_tty(struct file *file) 179 { 180 return ((struct tty_file_private *)file->private_data)->tty; 181 } 182 183 int tty_alloc_file(struct file *file) 184 { 185 struct tty_file_private *priv; 186 187 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 188 if (!priv) 189 return -ENOMEM; 190 191 file->private_data = priv; 192 193 return 0; 194 } 195 196 /* Associate a new file with the tty structure */ 197 void tty_add_file(struct tty_struct *tty, struct file *file) 198 { 199 struct tty_file_private *priv = file->private_data; 200 201 priv->tty = tty; 202 priv->file = file; 203 204 spin_lock(&tty->files_lock); 205 list_add(&priv->list, &tty->tty_files); 206 spin_unlock(&tty->files_lock); 207 } 208 209 /** 210 * tty_free_file - free file->private_data 211 * 212 * This shall be used only for fail path handling when tty_add_file was not 213 * called yet. 214 */ 215 void tty_free_file(struct file *file) 216 { 217 struct tty_file_private *priv = file->private_data; 218 219 file->private_data = NULL; 220 kfree(priv); 221 } 222 223 /* Delete file from its tty */ 224 static void tty_del_file(struct file *file) 225 { 226 struct tty_file_private *priv = file->private_data; 227 struct tty_struct *tty = priv->tty; 228 229 spin_lock(&tty->files_lock); 230 list_del(&priv->list); 231 spin_unlock(&tty->files_lock); 232 tty_free_file(file); 233 } 234 235 /** 236 * tty_name - return tty naming 237 * @tty: tty structure 238 * 239 * Convert a tty structure into a name. The name reflects the kernel 240 * naming policy and if udev is in use may not reflect user space 241 * 242 * Locking: none 243 */ 244 245 const char *tty_name(const struct tty_struct *tty) 246 { 247 if (!tty) /* Hmm. NULL pointer. That's fun. */ 248 return "NULL tty"; 249 return tty->name; 250 } 251 252 EXPORT_SYMBOL(tty_name); 253 254 const char *tty_driver_name(const struct tty_struct *tty) 255 { 256 if (!tty || !tty->driver) 257 return ""; 258 return tty->driver->name; 259 } 260 261 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 262 const char *routine) 263 { 264 #ifdef TTY_PARANOIA_CHECK 265 if (!tty) { 266 pr_warn("(%d:%d): %s: NULL tty\n", 267 imajor(inode), iminor(inode), routine); 268 return 1; 269 } 270 if (tty->magic != TTY_MAGIC) { 271 pr_warn("(%d:%d): %s: bad magic number\n", 272 imajor(inode), iminor(inode), routine); 273 return 1; 274 } 275 #endif 276 return 0; 277 } 278 279 /* Caller must hold tty_lock */ 280 static int check_tty_count(struct tty_struct *tty, const char *routine) 281 { 282 #ifdef CHECK_TTY_COUNT 283 struct list_head *p; 284 int count = 0, kopen_count = 0; 285 286 spin_lock(&tty->files_lock); 287 list_for_each(p, &tty->tty_files) { 288 count++; 289 } 290 spin_unlock(&tty->files_lock); 291 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 292 tty->driver->subtype == PTY_TYPE_SLAVE && 293 tty->link && tty->link->count) 294 count++; 295 if (tty_port_kopened(tty->port)) 296 kopen_count++; 297 if (tty->count != (count + kopen_count)) { 298 tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n", 299 routine, tty->count, count, kopen_count); 300 return (count + kopen_count); 301 } 302 #endif 303 return 0; 304 } 305 306 /** 307 * get_tty_driver - find device of a tty 308 * @dev_t: device identifier 309 * @index: returns the index of the tty 310 * 311 * This routine returns a tty driver structure, given a device number 312 * and also passes back the index number. 313 * 314 * Locking: caller must hold tty_mutex 315 */ 316 317 static struct tty_driver *get_tty_driver(dev_t device, int *index) 318 { 319 struct tty_driver *p; 320 321 list_for_each_entry(p, &tty_drivers, tty_drivers) { 322 dev_t base = MKDEV(p->major, p->minor_start); 323 if (device < base || device >= base + p->num) 324 continue; 325 *index = device - base; 326 return tty_driver_kref_get(p); 327 } 328 return NULL; 329 } 330 331 /** 332 * tty_dev_name_to_number - return dev_t for device name 333 * @name: user space name of device under /dev 334 * @number: pointer to dev_t that this function will populate 335 * 336 * This function converts device names like ttyS0 or ttyUSB1 into dev_t 337 * like (4, 64) or (188, 1). If no corresponding driver is registered then 338 * the function returns -ENODEV. 339 * 340 * Locking: this acquires tty_mutex to protect the tty_drivers list from 341 * being modified while we are traversing it, and makes sure to 342 * release it before exiting. 343 */ 344 int tty_dev_name_to_number(const char *name, dev_t *number) 345 { 346 struct tty_driver *p; 347 int ret; 348 int index, prefix_length = 0; 349 const char *str; 350 351 for (str = name; *str && !isdigit(*str); str++) 352 ; 353 354 if (!*str) 355 return -EINVAL; 356 357 ret = kstrtoint(str, 10, &index); 358 if (ret) 359 return ret; 360 361 prefix_length = str - name; 362 mutex_lock(&tty_mutex); 363 364 list_for_each_entry(p, &tty_drivers, tty_drivers) 365 if (prefix_length == strlen(p->name) && strncmp(name, 366 p->name, prefix_length) == 0) { 367 if (index < p->num) { 368 *number = MKDEV(p->major, p->minor_start + index); 369 goto out; 370 } 371 } 372 373 /* if here then driver wasn't found */ 374 ret = -ENODEV; 375 out: 376 mutex_unlock(&tty_mutex); 377 return ret; 378 } 379 EXPORT_SYMBOL_GPL(tty_dev_name_to_number); 380 381 #ifdef CONFIG_CONSOLE_POLL 382 383 /** 384 * tty_find_polling_driver - find device of a polled tty 385 * @name: name string to match 386 * @line: pointer to resulting tty line nr 387 * 388 * This routine returns a tty driver structure, given a name 389 * and the condition that the tty driver is capable of polled 390 * operation. 391 */ 392 struct tty_driver *tty_find_polling_driver(char *name, int *line) 393 { 394 struct tty_driver *p, *res = NULL; 395 int tty_line = 0; 396 int len; 397 char *str, *stp; 398 399 for (str = name; *str; str++) 400 if ((*str >= '0' && *str <= '9') || *str == ',') 401 break; 402 if (!*str) 403 return NULL; 404 405 len = str - name; 406 tty_line = simple_strtoul(str, &str, 10); 407 408 mutex_lock(&tty_mutex); 409 /* Search through the tty devices to look for a match */ 410 list_for_each_entry(p, &tty_drivers, tty_drivers) { 411 if (strncmp(name, p->name, len) != 0) 412 continue; 413 stp = str; 414 if (*stp == ',') 415 stp++; 416 if (*stp == '\0') 417 stp = NULL; 418 419 if (tty_line >= 0 && tty_line < p->num && p->ops && 420 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 421 res = tty_driver_kref_get(p); 422 *line = tty_line; 423 break; 424 } 425 } 426 mutex_unlock(&tty_mutex); 427 428 return res; 429 } 430 EXPORT_SYMBOL_GPL(tty_find_polling_driver); 431 #endif 432 433 static ssize_t hung_up_tty_read(struct file *file, char __user *buf, 434 size_t count, loff_t *ppos) 435 { 436 return 0; 437 } 438 439 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf, 440 size_t count, loff_t *ppos) 441 { 442 return -EIO; 443 } 444 445 /* No kernel lock held - none needed ;) */ 446 static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait) 447 { 448 return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM; 449 } 450 451 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 452 unsigned long arg) 453 { 454 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 455 } 456 457 static long hung_up_tty_compat_ioctl(struct file *file, 458 unsigned int cmd, unsigned long arg) 459 { 460 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 461 } 462 463 static int hung_up_tty_fasync(int fd, struct file *file, int on) 464 { 465 return -ENOTTY; 466 } 467 468 static void tty_show_fdinfo(struct seq_file *m, struct file *file) 469 { 470 struct tty_struct *tty = file_tty(file); 471 472 if (tty && tty->ops && tty->ops->show_fdinfo) 473 tty->ops->show_fdinfo(tty, m); 474 } 475 476 static const struct file_operations tty_fops = { 477 .llseek = no_llseek, 478 .read = tty_read, 479 .write = tty_write, 480 .poll = tty_poll, 481 .unlocked_ioctl = tty_ioctl, 482 .compat_ioctl = tty_compat_ioctl, 483 .open = tty_open, 484 .release = tty_release, 485 .fasync = tty_fasync, 486 .show_fdinfo = tty_show_fdinfo, 487 }; 488 489 static const struct file_operations console_fops = { 490 .llseek = no_llseek, 491 .read = tty_read, 492 .write = redirected_tty_write, 493 .poll = tty_poll, 494 .unlocked_ioctl = tty_ioctl, 495 .compat_ioctl = tty_compat_ioctl, 496 .open = tty_open, 497 .release = tty_release, 498 .fasync = tty_fasync, 499 }; 500 501 static const struct file_operations hung_up_tty_fops = { 502 .llseek = no_llseek, 503 .read = hung_up_tty_read, 504 .write = hung_up_tty_write, 505 .poll = hung_up_tty_poll, 506 .unlocked_ioctl = hung_up_tty_ioctl, 507 .compat_ioctl = hung_up_tty_compat_ioctl, 508 .release = tty_release, 509 .fasync = hung_up_tty_fasync, 510 }; 511 512 static DEFINE_SPINLOCK(redirect_lock); 513 static struct file *redirect; 514 515 /** 516 * tty_wakeup - request more data 517 * @tty: terminal 518 * 519 * Internal and external helper for wakeups of tty. This function 520 * informs the line discipline if present that the driver is ready 521 * to receive more output data. 522 */ 523 524 void tty_wakeup(struct tty_struct *tty) 525 { 526 struct tty_ldisc *ld; 527 528 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 529 ld = tty_ldisc_ref(tty); 530 if (ld) { 531 if (ld->ops->write_wakeup) 532 ld->ops->write_wakeup(tty); 533 tty_ldisc_deref(ld); 534 } 535 } 536 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT); 537 } 538 539 EXPORT_SYMBOL_GPL(tty_wakeup); 540 541 /** 542 * __tty_hangup - actual handler for hangup events 543 * @work: tty device 544 * 545 * This can be called by a "kworker" kernel thread. That is process 546 * synchronous but doesn't hold any locks, so we need to make sure we 547 * have the appropriate locks for what we're doing. 548 * 549 * The hangup event clears any pending redirections onto the hung up 550 * device. It ensures future writes will error and it does the needed 551 * line discipline hangup and signal delivery. The tty object itself 552 * remains intact. 553 * 554 * Locking: 555 * BTM 556 * redirect lock for undoing redirection 557 * file list lock for manipulating list of ttys 558 * tty_ldiscs_lock from called functions 559 * termios_rwsem resetting termios data 560 * tasklist_lock to walk task list for hangup event 561 * ->siglock to protect ->signal/->sighand 562 */ 563 static void __tty_hangup(struct tty_struct *tty, int exit_session) 564 { 565 struct file *cons_filp = NULL; 566 struct file *filp, *f = NULL; 567 struct tty_file_private *priv; 568 int closecount = 0, n; 569 int refs; 570 571 if (!tty) 572 return; 573 574 575 spin_lock(&redirect_lock); 576 if (redirect && file_tty(redirect) == tty) { 577 f = redirect; 578 redirect = NULL; 579 } 580 spin_unlock(&redirect_lock); 581 582 tty_lock(tty); 583 584 if (test_bit(TTY_HUPPED, &tty->flags)) { 585 tty_unlock(tty); 586 return; 587 } 588 589 /* 590 * Some console devices aren't actually hung up for technical and 591 * historical reasons, which can lead to indefinite interruptible 592 * sleep in n_tty_read(). The following explicitly tells 593 * n_tty_read() to abort readers. 594 */ 595 set_bit(TTY_HUPPING, &tty->flags); 596 597 /* inuse_filps is protected by the single tty lock, 598 this really needs to change if we want to flush the 599 workqueue with the lock held */ 600 check_tty_count(tty, "tty_hangup"); 601 602 spin_lock(&tty->files_lock); 603 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 604 list_for_each_entry(priv, &tty->tty_files, list) { 605 filp = priv->file; 606 if (filp->f_op->write == redirected_tty_write) 607 cons_filp = filp; 608 if (filp->f_op->write != tty_write) 609 continue; 610 closecount++; 611 __tty_fasync(-1, filp, 0); /* can't block */ 612 filp->f_op = &hung_up_tty_fops; 613 } 614 spin_unlock(&tty->files_lock); 615 616 refs = tty_signal_session_leader(tty, exit_session); 617 /* Account for the p->signal references we killed */ 618 while (refs--) 619 tty_kref_put(tty); 620 621 tty_ldisc_hangup(tty, cons_filp != NULL); 622 623 spin_lock_irq(&tty->ctrl_lock); 624 clear_bit(TTY_THROTTLED, &tty->flags); 625 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 626 put_pid(tty->session); 627 put_pid(tty->pgrp); 628 tty->session = NULL; 629 tty->pgrp = NULL; 630 tty->ctrl_status = 0; 631 spin_unlock_irq(&tty->ctrl_lock); 632 633 /* 634 * If one of the devices matches a console pointer, we 635 * cannot just call hangup() because that will cause 636 * tty->count and state->count to go out of sync. 637 * So we just call close() the right number of times. 638 */ 639 if (cons_filp) { 640 if (tty->ops->close) 641 for (n = 0; n < closecount; n++) 642 tty->ops->close(tty, cons_filp); 643 } else if (tty->ops->hangup) 644 tty->ops->hangup(tty); 645 /* 646 * We don't want to have driver/ldisc interactions beyond the ones 647 * we did here. The driver layer expects no calls after ->hangup() 648 * from the ldisc side, which is now guaranteed. 649 */ 650 set_bit(TTY_HUPPED, &tty->flags); 651 clear_bit(TTY_HUPPING, &tty->flags); 652 tty_unlock(tty); 653 654 if (f) 655 fput(f); 656 } 657 658 static void do_tty_hangup(struct work_struct *work) 659 { 660 struct tty_struct *tty = 661 container_of(work, struct tty_struct, hangup_work); 662 663 __tty_hangup(tty, 0); 664 } 665 666 /** 667 * tty_hangup - trigger a hangup event 668 * @tty: tty to hangup 669 * 670 * A carrier loss (virtual or otherwise) has occurred on this like 671 * schedule a hangup sequence to run after this event. 672 */ 673 674 void tty_hangup(struct tty_struct *tty) 675 { 676 tty_debug_hangup(tty, "hangup\n"); 677 schedule_work(&tty->hangup_work); 678 } 679 680 EXPORT_SYMBOL(tty_hangup); 681 682 /** 683 * tty_vhangup - process vhangup 684 * @tty: tty to hangup 685 * 686 * The user has asked via system call for the terminal to be hung up. 687 * We do this synchronously so that when the syscall returns the process 688 * is complete. That guarantee is necessary for security reasons. 689 */ 690 691 void tty_vhangup(struct tty_struct *tty) 692 { 693 tty_debug_hangup(tty, "vhangup\n"); 694 __tty_hangup(tty, 0); 695 } 696 697 EXPORT_SYMBOL(tty_vhangup); 698 699 700 /** 701 * tty_vhangup_self - process vhangup for own ctty 702 * 703 * Perform a vhangup on the current controlling tty 704 */ 705 706 void tty_vhangup_self(void) 707 { 708 struct tty_struct *tty; 709 710 tty = get_current_tty(); 711 if (tty) { 712 tty_vhangup(tty); 713 tty_kref_put(tty); 714 } 715 } 716 717 /** 718 * tty_vhangup_session - hangup session leader exit 719 * @tty: tty to hangup 720 * 721 * The session leader is exiting and hanging up its controlling terminal. 722 * Every process in the foreground process group is signalled SIGHUP. 723 * 724 * We do this synchronously so that when the syscall returns the process 725 * is complete. That guarantee is necessary for security reasons. 726 */ 727 728 void tty_vhangup_session(struct tty_struct *tty) 729 { 730 tty_debug_hangup(tty, "session hangup\n"); 731 __tty_hangup(tty, 1); 732 } 733 734 /** 735 * tty_hung_up_p - was tty hung up 736 * @filp: file pointer of tty 737 * 738 * Return true if the tty has been subject to a vhangup or a carrier 739 * loss 740 */ 741 742 int tty_hung_up_p(struct file *filp) 743 { 744 return (filp && filp->f_op == &hung_up_tty_fops); 745 } 746 747 EXPORT_SYMBOL(tty_hung_up_p); 748 749 /** 750 * stop_tty - propagate flow control 751 * @tty: tty to stop 752 * 753 * Perform flow control to the driver. May be called 754 * on an already stopped device and will not re-call the driver 755 * method. 756 * 757 * This functionality is used by both the line disciplines for 758 * halting incoming flow and by the driver. It may therefore be 759 * called from any context, may be under the tty atomic_write_lock 760 * but not always. 761 * 762 * Locking: 763 * flow_lock 764 */ 765 766 void __stop_tty(struct tty_struct *tty) 767 { 768 if (tty->stopped) 769 return; 770 tty->stopped = 1; 771 if (tty->ops->stop) 772 tty->ops->stop(tty); 773 } 774 775 void stop_tty(struct tty_struct *tty) 776 { 777 unsigned long flags; 778 779 spin_lock_irqsave(&tty->flow_lock, flags); 780 __stop_tty(tty); 781 spin_unlock_irqrestore(&tty->flow_lock, flags); 782 } 783 EXPORT_SYMBOL(stop_tty); 784 785 /** 786 * start_tty - propagate flow control 787 * @tty: tty to start 788 * 789 * Start a tty that has been stopped if at all possible. If this 790 * tty was previous stopped and is now being started, the driver 791 * start method is invoked and the line discipline woken. 792 * 793 * Locking: 794 * flow_lock 795 */ 796 797 void __start_tty(struct tty_struct *tty) 798 { 799 if (!tty->stopped || tty->flow_stopped) 800 return; 801 tty->stopped = 0; 802 if (tty->ops->start) 803 tty->ops->start(tty); 804 tty_wakeup(tty); 805 } 806 807 void start_tty(struct tty_struct *tty) 808 { 809 unsigned long flags; 810 811 spin_lock_irqsave(&tty->flow_lock, flags); 812 __start_tty(tty); 813 spin_unlock_irqrestore(&tty->flow_lock, flags); 814 } 815 EXPORT_SYMBOL(start_tty); 816 817 static void tty_update_time(struct timespec64 *time) 818 { 819 time64_t sec = ktime_get_real_seconds(); 820 821 /* 822 * We only care if the two values differ in anything other than the 823 * lower three bits (i.e every 8 seconds). If so, then we can update 824 * the time of the tty device, otherwise it could be construded as a 825 * security leak to let userspace know the exact timing of the tty. 826 */ 827 if ((sec ^ time->tv_sec) & ~7) 828 time->tv_sec = sec; 829 } 830 831 /** 832 * tty_read - read method for tty device files 833 * @file: pointer to tty file 834 * @buf: user buffer 835 * @count: size of user buffer 836 * @ppos: unused 837 * 838 * Perform the read system call function on this terminal device. Checks 839 * for hung up devices before calling the line discipline method. 840 * 841 * Locking: 842 * Locks the line discipline internally while needed. Multiple 843 * read calls may be outstanding in parallel. 844 */ 845 846 static ssize_t tty_read(struct file *file, char __user *buf, size_t count, 847 loff_t *ppos) 848 { 849 int i; 850 struct inode *inode = file_inode(file); 851 struct tty_struct *tty = file_tty(file); 852 struct tty_ldisc *ld; 853 854 if (tty_paranoia_check(tty, inode, "tty_read")) 855 return -EIO; 856 if (!tty || tty_io_error(tty)) 857 return -EIO; 858 859 /* We want to wait for the line discipline to sort out in this 860 situation */ 861 ld = tty_ldisc_ref_wait(tty); 862 if (!ld) 863 return hung_up_tty_read(file, buf, count, ppos); 864 if (ld->ops->read) 865 i = ld->ops->read(tty, file, buf, count); 866 else 867 i = -EIO; 868 tty_ldisc_deref(ld); 869 870 if (i > 0) 871 tty_update_time(&inode->i_atime); 872 873 return i; 874 } 875 876 static void tty_write_unlock(struct tty_struct *tty) 877 { 878 mutex_unlock(&tty->atomic_write_lock); 879 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT); 880 } 881 882 static int tty_write_lock(struct tty_struct *tty, int ndelay) 883 { 884 if (!mutex_trylock(&tty->atomic_write_lock)) { 885 if (ndelay) 886 return -EAGAIN; 887 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 888 return -ERESTARTSYS; 889 } 890 return 0; 891 } 892 893 /* 894 * Split writes up in sane blocksizes to avoid 895 * denial-of-service type attacks 896 */ 897 static inline ssize_t do_tty_write( 898 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 899 struct tty_struct *tty, 900 struct file *file, 901 const char __user *buf, 902 size_t count) 903 { 904 ssize_t ret, written = 0; 905 unsigned int chunk; 906 907 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 908 if (ret < 0) 909 return ret; 910 911 /* 912 * We chunk up writes into a temporary buffer. This 913 * simplifies low-level drivers immensely, since they 914 * don't have locking issues and user mode accesses. 915 * 916 * But if TTY_NO_WRITE_SPLIT is set, we should use a 917 * big chunk-size.. 918 * 919 * The default chunk-size is 2kB, because the NTTY 920 * layer has problems with bigger chunks. It will 921 * claim to be able to handle more characters than 922 * it actually does. 923 * 924 * FIXME: This can probably go away now except that 64K chunks 925 * are too likely to fail unless switched to vmalloc... 926 */ 927 chunk = 2048; 928 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 929 chunk = 65536; 930 if (count < chunk) 931 chunk = count; 932 933 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 934 if (tty->write_cnt < chunk) { 935 unsigned char *buf_chunk; 936 937 if (chunk < 1024) 938 chunk = 1024; 939 940 buf_chunk = kmalloc(chunk, GFP_KERNEL); 941 if (!buf_chunk) { 942 ret = -ENOMEM; 943 goto out; 944 } 945 kfree(tty->write_buf); 946 tty->write_cnt = chunk; 947 tty->write_buf = buf_chunk; 948 } 949 950 /* Do the write .. */ 951 for (;;) { 952 size_t size = count; 953 if (size > chunk) 954 size = chunk; 955 ret = -EFAULT; 956 if (copy_from_user(tty->write_buf, buf, size)) 957 break; 958 ret = write(tty, file, tty->write_buf, size); 959 if (ret <= 0) 960 break; 961 written += ret; 962 buf += ret; 963 count -= ret; 964 if (!count) 965 break; 966 ret = -ERESTARTSYS; 967 if (signal_pending(current)) 968 break; 969 cond_resched(); 970 } 971 if (written) { 972 tty_update_time(&file_inode(file)->i_mtime); 973 ret = written; 974 } 975 out: 976 tty_write_unlock(tty); 977 return ret; 978 } 979 980 /** 981 * tty_write_message - write a message to a certain tty, not just the console. 982 * @tty: the destination tty_struct 983 * @msg: the message to write 984 * 985 * This is used for messages that need to be redirected to a specific tty. 986 * We don't put it into the syslog queue right now maybe in the future if 987 * really needed. 988 * 989 * We must still hold the BTM and test the CLOSING flag for the moment. 990 */ 991 992 void tty_write_message(struct tty_struct *tty, char *msg) 993 { 994 if (tty) { 995 mutex_lock(&tty->atomic_write_lock); 996 tty_lock(tty); 997 if (tty->ops->write && tty->count > 0) 998 tty->ops->write(tty, msg, strlen(msg)); 999 tty_unlock(tty); 1000 tty_write_unlock(tty); 1001 } 1002 return; 1003 } 1004 1005 1006 /** 1007 * tty_write - write method for tty device file 1008 * @file: tty file pointer 1009 * @buf: user data to write 1010 * @count: bytes to write 1011 * @ppos: unused 1012 * 1013 * Write data to a tty device via the line discipline. 1014 * 1015 * Locking: 1016 * Locks the line discipline as required 1017 * Writes to the tty driver are serialized by the atomic_write_lock 1018 * and are then processed in chunks to the device. The line discipline 1019 * write method will not be invoked in parallel for each device. 1020 */ 1021 1022 static ssize_t tty_write(struct file *file, const char __user *buf, 1023 size_t count, loff_t *ppos) 1024 { 1025 struct tty_struct *tty = file_tty(file); 1026 struct tty_ldisc *ld; 1027 ssize_t ret; 1028 1029 if (tty_paranoia_check(tty, file_inode(file), "tty_write")) 1030 return -EIO; 1031 if (!tty || !tty->ops->write || tty_io_error(tty)) 1032 return -EIO; 1033 /* Short term debug to catch buggy drivers */ 1034 if (tty->ops->write_room == NULL) 1035 tty_err(tty, "missing write_room method\n"); 1036 ld = tty_ldisc_ref_wait(tty); 1037 if (!ld) 1038 return hung_up_tty_write(file, buf, count, ppos); 1039 if (!ld->ops->write) 1040 ret = -EIO; 1041 else 1042 ret = do_tty_write(ld->ops->write, tty, file, buf, count); 1043 tty_ldisc_deref(ld); 1044 return ret; 1045 } 1046 1047 ssize_t redirected_tty_write(struct file *file, const char __user *buf, 1048 size_t count, loff_t *ppos) 1049 { 1050 struct file *p = NULL; 1051 1052 spin_lock(&redirect_lock); 1053 if (redirect) 1054 p = get_file(redirect); 1055 spin_unlock(&redirect_lock); 1056 1057 if (p) { 1058 ssize_t res; 1059 res = vfs_write(p, buf, count, &p->f_pos); 1060 fput(p); 1061 return res; 1062 } 1063 return tty_write(file, buf, count, ppos); 1064 } 1065 1066 /** 1067 * tty_send_xchar - send priority character 1068 * 1069 * Send a high priority character to the tty even if stopped 1070 * 1071 * Locking: none for xchar method, write ordering for write method. 1072 */ 1073 1074 int tty_send_xchar(struct tty_struct *tty, char ch) 1075 { 1076 int was_stopped = tty->stopped; 1077 1078 if (tty->ops->send_xchar) { 1079 down_read(&tty->termios_rwsem); 1080 tty->ops->send_xchar(tty, ch); 1081 up_read(&tty->termios_rwsem); 1082 return 0; 1083 } 1084 1085 if (tty_write_lock(tty, 0) < 0) 1086 return -ERESTARTSYS; 1087 1088 down_read(&tty->termios_rwsem); 1089 if (was_stopped) 1090 start_tty(tty); 1091 tty->ops->write(tty, &ch, 1); 1092 if (was_stopped) 1093 stop_tty(tty); 1094 up_read(&tty->termios_rwsem); 1095 tty_write_unlock(tty); 1096 return 0; 1097 } 1098 1099 static char ptychar[] = "pqrstuvwxyzabcde"; 1100 1101 /** 1102 * pty_line_name - generate name for a pty 1103 * @driver: the tty driver in use 1104 * @index: the minor number 1105 * @p: output buffer of at least 6 bytes 1106 * 1107 * Generate a name from a driver reference and write it to the output 1108 * buffer. 1109 * 1110 * Locking: None 1111 */ 1112 static void pty_line_name(struct tty_driver *driver, int index, char *p) 1113 { 1114 int i = index + driver->name_base; 1115 /* ->name is initialized to "ttyp", but "tty" is expected */ 1116 sprintf(p, "%s%c%x", 1117 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1118 ptychar[i >> 4 & 0xf], i & 0xf); 1119 } 1120 1121 /** 1122 * tty_line_name - generate name for a tty 1123 * @driver: the tty driver in use 1124 * @index: the minor number 1125 * @p: output buffer of at least 7 bytes 1126 * 1127 * Generate a name from a driver reference and write it to the output 1128 * buffer. 1129 * 1130 * Locking: None 1131 */ 1132 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p) 1133 { 1134 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE) 1135 return sprintf(p, "%s", driver->name); 1136 else 1137 return sprintf(p, "%s%d", driver->name, 1138 index + driver->name_base); 1139 } 1140 1141 /** 1142 * tty_driver_lookup_tty() - find an existing tty, if any 1143 * @driver: the driver for the tty 1144 * @idx: the minor number 1145 * 1146 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the 1147 * driver lookup() method returns an error. 1148 * 1149 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref. 1150 */ 1151 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1152 struct file *file, int idx) 1153 { 1154 struct tty_struct *tty; 1155 1156 if (driver->ops->lookup) 1157 if (!file) 1158 tty = ERR_PTR(-EIO); 1159 else 1160 tty = driver->ops->lookup(driver, file, idx); 1161 else 1162 tty = driver->ttys[idx]; 1163 1164 if (!IS_ERR(tty)) 1165 tty_kref_get(tty); 1166 return tty; 1167 } 1168 1169 /** 1170 * tty_init_termios - helper for termios setup 1171 * @tty: the tty to set up 1172 * 1173 * Initialise the termios structures for this tty. Thus runs under 1174 * the tty_mutex currently so we can be relaxed about ordering. 1175 */ 1176 1177 void tty_init_termios(struct tty_struct *tty) 1178 { 1179 struct ktermios *tp; 1180 int idx = tty->index; 1181 1182 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1183 tty->termios = tty->driver->init_termios; 1184 else { 1185 /* Check for lazy saved data */ 1186 tp = tty->driver->termios[idx]; 1187 if (tp != NULL) { 1188 tty->termios = *tp; 1189 tty->termios.c_line = tty->driver->init_termios.c_line; 1190 } else 1191 tty->termios = tty->driver->init_termios; 1192 } 1193 /* Compatibility until drivers always set this */ 1194 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios); 1195 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios); 1196 } 1197 EXPORT_SYMBOL_GPL(tty_init_termios); 1198 1199 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1200 { 1201 tty_init_termios(tty); 1202 tty_driver_kref_get(driver); 1203 tty->count++; 1204 driver->ttys[tty->index] = tty; 1205 return 0; 1206 } 1207 EXPORT_SYMBOL_GPL(tty_standard_install); 1208 1209 /** 1210 * tty_driver_install_tty() - install a tty entry in the driver 1211 * @driver: the driver for the tty 1212 * @tty: the tty 1213 * 1214 * Install a tty object into the driver tables. The tty->index field 1215 * will be set by the time this is called. This method is responsible 1216 * for ensuring any need additional structures are allocated and 1217 * configured. 1218 * 1219 * Locking: tty_mutex for now 1220 */ 1221 static int tty_driver_install_tty(struct tty_driver *driver, 1222 struct tty_struct *tty) 1223 { 1224 return driver->ops->install ? driver->ops->install(driver, tty) : 1225 tty_standard_install(driver, tty); 1226 } 1227 1228 /** 1229 * tty_driver_remove_tty() - remove a tty from the driver tables 1230 * @driver: the driver for the tty 1231 * @idx: the minor number 1232 * 1233 * Remvoe a tty object from the driver tables. The tty->index field 1234 * will be set by the time this is called. 1235 * 1236 * Locking: tty_mutex for now 1237 */ 1238 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1239 { 1240 if (driver->ops->remove) 1241 driver->ops->remove(driver, tty); 1242 else 1243 driver->ttys[tty->index] = NULL; 1244 } 1245 1246 /* 1247 * tty_reopen() - fast re-open of an open tty 1248 * @tty - the tty to open 1249 * 1250 * Return 0 on success, -errno on error. 1251 * Re-opens on master ptys are not allowed and return -EIO. 1252 * 1253 * Locking: Caller must hold tty_lock 1254 */ 1255 static int tty_reopen(struct tty_struct *tty) 1256 { 1257 struct tty_driver *driver = tty->driver; 1258 1259 if (driver->type == TTY_DRIVER_TYPE_PTY && 1260 driver->subtype == PTY_TYPE_MASTER) 1261 return -EIO; 1262 1263 if (!tty->count) 1264 return -EAGAIN; 1265 1266 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN)) 1267 return -EBUSY; 1268 1269 tty->count++; 1270 1271 if (!tty->ldisc) 1272 return tty_ldisc_reinit(tty, tty->termios.c_line); 1273 1274 return 0; 1275 } 1276 1277 /** 1278 * tty_init_dev - initialise a tty device 1279 * @driver: tty driver we are opening a device on 1280 * @idx: device index 1281 * @ret_tty: returned tty structure 1282 * 1283 * Prepare a tty device. This may not be a "new" clean device but 1284 * could also be an active device. The pty drivers require special 1285 * handling because of this. 1286 * 1287 * Locking: 1288 * The function is called under the tty_mutex, which 1289 * protects us from the tty struct or driver itself going away. 1290 * 1291 * On exit the tty device has the line discipline attached and 1292 * a reference count of 1. If a pair was created for pty/tty use 1293 * and the other was a pty master then it too has a reference count of 1. 1294 * 1295 * WSH 06/09/97: Rewritten to remove races and properly clean up after a 1296 * failed open. The new code protects the open with a mutex, so it's 1297 * really quite straightforward. The mutex locking can probably be 1298 * relaxed for the (most common) case of reopening a tty. 1299 */ 1300 1301 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1302 { 1303 struct tty_struct *tty; 1304 int retval; 1305 1306 /* 1307 * First time open is complex, especially for PTY devices. 1308 * This code guarantees that either everything succeeds and the 1309 * TTY is ready for operation, or else the table slots are vacated 1310 * and the allocated memory released. (Except that the termios 1311 * may be retained.) 1312 */ 1313 1314 if (!try_module_get(driver->owner)) 1315 return ERR_PTR(-ENODEV); 1316 1317 tty = alloc_tty_struct(driver, idx); 1318 if (!tty) { 1319 retval = -ENOMEM; 1320 goto err_module_put; 1321 } 1322 1323 tty_lock(tty); 1324 retval = tty_driver_install_tty(driver, tty); 1325 if (retval < 0) 1326 goto err_free_tty; 1327 1328 if (!tty->port) 1329 tty->port = driver->ports[idx]; 1330 1331 WARN_RATELIMIT(!tty->port, 1332 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n", 1333 __func__, tty->driver->name); 1334 1335 retval = tty_ldisc_lock(tty, 5 * HZ); 1336 if (retval) 1337 goto err_release_lock; 1338 tty->port->itty = tty; 1339 1340 /* 1341 * Structures all installed ... call the ldisc open routines. 1342 * If we fail here just call release_tty to clean up. No need 1343 * to decrement the use counts, as release_tty doesn't care. 1344 */ 1345 retval = tty_ldisc_setup(tty, tty->link); 1346 if (retval) 1347 goto err_release_tty; 1348 tty_ldisc_unlock(tty); 1349 /* Return the tty locked so that it cannot vanish under the caller */ 1350 return tty; 1351 1352 err_free_tty: 1353 tty_unlock(tty); 1354 free_tty_struct(tty); 1355 err_module_put: 1356 module_put(driver->owner); 1357 return ERR_PTR(retval); 1358 1359 /* call the tty release_tty routine to clean out this slot */ 1360 err_release_tty: 1361 tty_ldisc_unlock(tty); 1362 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n", 1363 retval, idx); 1364 err_release_lock: 1365 tty_unlock(tty); 1366 release_tty(tty, idx); 1367 return ERR_PTR(retval); 1368 } 1369 1370 static void tty_free_termios(struct tty_struct *tty) 1371 { 1372 struct ktermios *tp; 1373 int idx = tty->index; 1374 1375 /* If the port is going to reset then it has no termios to save */ 1376 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1377 return; 1378 1379 /* Stash the termios data */ 1380 tp = tty->driver->termios[idx]; 1381 if (tp == NULL) { 1382 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL); 1383 if (tp == NULL) 1384 return; 1385 tty->driver->termios[idx] = tp; 1386 } 1387 *tp = tty->termios; 1388 } 1389 1390 /** 1391 * tty_flush_works - flush all works of a tty/pty pair 1392 * @tty: tty device to flush works for (or either end of a pty pair) 1393 * 1394 * Sync flush all works belonging to @tty (and the 'other' tty). 1395 */ 1396 static void tty_flush_works(struct tty_struct *tty) 1397 { 1398 flush_work(&tty->SAK_work); 1399 flush_work(&tty->hangup_work); 1400 if (tty->link) { 1401 flush_work(&tty->link->SAK_work); 1402 flush_work(&tty->link->hangup_work); 1403 } 1404 } 1405 1406 /** 1407 * release_one_tty - release tty structure memory 1408 * @kref: kref of tty we are obliterating 1409 * 1410 * Releases memory associated with a tty structure, and clears out the 1411 * driver table slots. This function is called when a device is no longer 1412 * in use. It also gets called when setup of a device fails. 1413 * 1414 * Locking: 1415 * takes the file list lock internally when working on the list 1416 * of ttys that the driver keeps. 1417 * 1418 * This method gets called from a work queue so that the driver private 1419 * cleanup ops can sleep (needed for USB at least) 1420 */ 1421 static void release_one_tty(struct work_struct *work) 1422 { 1423 struct tty_struct *tty = 1424 container_of(work, struct tty_struct, hangup_work); 1425 struct tty_driver *driver = tty->driver; 1426 struct module *owner = driver->owner; 1427 1428 if (tty->ops->cleanup) 1429 tty->ops->cleanup(tty); 1430 1431 tty->magic = 0; 1432 tty_driver_kref_put(driver); 1433 module_put(owner); 1434 1435 spin_lock(&tty->files_lock); 1436 list_del_init(&tty->tty_files); 1437 spin_unlock(&tty->files_lock); 1438 1439 put_pid(tty->pgrp); 1440 put_pid(tty->session); 1441 free_tty_struct(tty); 1442 } 1443 1444 static void queue_release_one_tty(struct kref *kref) 1445 { 1446 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1447 1448 /* The hangup queue is now free so we can reuse it rather than 1449 waste a chunk of memory for each port */ 1450 INIT_WORK(&tty->hangup_work, release_one_tty); 1451 schedule_work(&tty->hangup_work); 1452 } 1453 1454 /** 1455 * tty_kref_put - release a tty kref 1456 * @tty: tty device 1457 * 1458 * Release a reference to a tty device and if need be let the kref 1459 * layer destruct the object for us 1460 */ 1461 1462 void tty_kref_put(struct tty_struct *tty) 1463 { 1464 if (tty) 1465 kref_put(&tty->kref, queue_release_one_tty); 1466 } 1467 EXPORT_SYMBOL(tty_kref_put); 1468 1469 /** 1470 * release_tty - release tty structure memory 1471 * 1472 * Release both @tty and a possible linked partner (think pty pair), 1473 * and decrement the refcount of the backing module. 1474 * 1475 * Locking: 1476 * tty_mutex 1477 * takes the file list lock internally when working on the list 1478 * of ttys that the driver keeps. 1479 * 1480 */ 1481 static void release_tty(struct tty_struct *tty, int idx) 1482 { 1483 /* This should always be true but check for the moment */ 1484 WARN_ON(tty->index != idx); 1485 WARN_ON(!mutex_is_locked(&tty_mutex)); 1486 if (tty->ops->shutdown) 1487 tty->ops->shutdown(tty); 1488 tty_free_termios(tty); 1489 tty_driver_remove_tty(tty->driver, tty); 1490 tty->port->itty = NULL; 1491 if (tty->link) 1492 tty->link->port->itty = NULL; 1493 tty_buffer_cancel_work(tty->port); 1494 if (tty->link) 1495 tty_buffer_cancel_work(tty->link->port); 1496 1497 tty_kref_put(tty->link); 1498 tty_kref_put(tty); 1499 } 1500 1501 /** 1502 * tty_release_checks - check a tty before real release 1503 * @tty: tty to check 1504 * @o_tty: link of @tty (if any) 1505 * @idx: index of the tty 1506 * 1507 * Performs some paranoid checking before true release of the @tty. 1508 * This is a no-op unless TTY_PARANOIA_CHECK is defined. 1509 */ 1510 static int tty_release_checks(struct tty_struct *tty, int idx) 1511 { 1512 #ifdef TTY_PARANOIA_CHECK 1513 if (idx < 0 || idx >= tty->driver->num) { 1514 tty_debug(tty, "bad idx %d\n", idx); 1515 return -1; 1516 } 1517 1518 /* not much to check for devpts */ 1519 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1520 return 0; 1521 1522 if (tty != tty->driver->ttys[idx]) { 1523 tty_debug(tty, "bad driver table[%d] = %p\n", 1524 idx, tty->driver->ttys[idx]); 1525 return -1; 1526 } 1527 if (tty->driver->other) { 1528 struct tty_struct *o_tty = tty->link; 1529 1530 if (o_tty != tty->driver->other->ttys[idx]) { 1531 tty_debug(tty, "bad other table[%d] = %p\n", 1532 idx, tty->driver->other->ttys[idx]); 1533 return -1; 1534 } 1535 if (o_tty->link != tty) { 1536 tty_debug(tty, "bad link = %p\n", o_tty->link); 1537 return -1; 1538 } 1539 } 1540 #endif 1541 return 0; 1542 } 1543 1544 /** 1545 * tty_kclose - closes tty opened by tty_kopen 1546 * @tty: tty device 1547 * 1548 * Performs the final steps to release and free a tty device. It is the 1549 * same as tty_release_struct except that it also resets TTY_PORT_KOPENED 1550 * flag on tty->port. 1551 */ 1552 void tty_kclose(struct tty_struct *tty) 1553 { 1554 /* 1555 * Ask the line discipline code to release its structures 1556 */ 1557 tty_ldisc_release(tty); 1558 1559 /* Wait for pending work before tty destruction commmences */ 1560 tty_flush_works(tty); 1561 1562 tty_debug_hangup(tty, "freeing structure\n"); 1563 /* 1564 * The release_tty function takes care of the details of clearing 1565 * the slots and preserving the termios structure. The tty_unlock_pair 1566 * should be safe as we keep a kref while the tty is locked (so the 1567 * unlock never unlocks a freed tty). 1568 */ 1569 mutex_lock(&tty_mutex); 1570 tty_port_set_kopened(tty->port, 0); 1571 release_tty(tty, tty->index); 1572 mutex_unlock(&tty_mutex); 1573 } 1574 EXPORT_SYMBOL_GPL(tty_kclose); 1575 1576 /** 1577 * tty_release_struct - release a tty struct 1578 * @tty: tty device 1579 * @idx: index of the tty 1580 * 1581 * Performs the final steps to release and free a tty device. It is 1582 * roughly the reverse of tty_init_dev. 1583 */ 1584 void tty_release_struct(struct tty_struct *tty, int idx) 1585 { 1586 /* 1587 * Ask the line discipline code to release its structures 1588 */ 1589 tty_ldisc_release(tty); 1590 1591 /* Wait for pending work before tty destruction commmences */ 1592 tty_flush_works(tty); 1593 1594 tty_debug_hangup(tty, "freeing structure\n"); 1595 /* 1596 * The release_tty function takes care of the details of clearing 1597 * the slots and preserving the termios structure. The tty_unlock_pair 1598 * should be safe as we keep a kref while the tty is locked (so the 1599 * unlock never unlocks a freed tty). 1600 */ 1601 mutex_lock(&tty_mutex); 1602 release_tty(tty, idx); 1603 mutex_unlock(&tty_mutex); 1604 } 1605 EXPORT_SYMBOL_GPL(tty_release_struct); 1606 1607 /** 1608 * tty_release - vfs callback for close 1609 * @inode: inode of tty 1610 * @filp: file pointer for handle to tty 1611 * 1612 * Called the last time each file handle is closed that references 1613 * this tty. There may however be several such references. 1614 * 1615 * Locking: 1616 * Takes bkl. See tty_release_dev 1617 * 1618 * Even releasing the tty structures is a tricky business.. We have 1619 * to be very careful that the structures are all released at the 1620 * same time, as interrupts might otherwise get the wrong pointers. 1621 * 1622 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1623 * lead to double frees or releasing memory still in use. 1624 */ 1625 1626 int tty_release(struct inode *inode, struct file *filp) 1627 { 1628 struct tty_struct *tty = file_tty(filp); 1629 struct tty_struct *o_tty = NULL; 1630 int do_sleep, final; 1631 int idx; 1632 long timeout = 0; 1633 int once = 1; 1634 1635 if (tty_paranoia_check(tty, inode, __func__)) 1636 return 0; 1637 1638 tty_lock(tty); 1639 check_tty_count(tty, __func__); 1640 1641 __tty_fasync(-1, filp, 0); 1642 1643 idx = tty->index; 1644 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1645 tty->driver->subtype == PTY_TYPE_MASTER) 1646 o_tty = tty->link; 1647 1648 if (tty_release_checks(tty, idx)) { 1649 tty_unlock(tty); 1650 return 0; 1651 } 1652 1653 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count); 1654 1655 if (tty->ops->close) 1656 tty->ops->close(tty, filp); 1657 1658 /* If tty is pty master, lock the slave pty (stable lock order) */ 1659 tty_lock_slave(o_tty); 1660 1661 /* 1662 * Sanity check: if tty->count is going to zero, there shouldn't be 1663 * any waiters on tty->read_wait or tty->write_wait. We test the 1664 * wait queues and kick everyone out _before_ actually starting to 1665 * close. This ensures that we won't block while releasing the tty 1666 * structure. 1667 * 1668 * The test for the o_tty closing is necessary, since the master and 1669 * slave sides may close in any order. If the slave side closes out 1670 * first, its count will be one, since the master side holds an open. 1671 * Thus this test wouldn't be triggered at the time the slave closed, 1672 * so we do it now. 1673 */ 1674 while (1) { 1675 do_sleep = 0; 1676 1677 if (tty->count <= 1) { 1678 if (waitqueue_active(&tty->read_wait)) { 1679 wake_up_poll(&tty->read_wait, EPOLLIN); 1680 do_sleep++; 1681 } 1682 if (waitqueue_active(&tty->write_wait)) { 1683 wake_up_poll(&tty->write_wait, EPOLLOUT); 1684 do_sleep++; 1685 } 1686 } 1687 if (o_tty && o_tty->count <= 1) { 1688 if (waitqueue_active(&o_tty->read_wait)) { 1689 wake_up_poll(&o_tty->read_wait, EPOLLIN); 1690 do_sleep++; 1691 } 1692 if (waitqueue_active(&o_tty->write_wait)) { 1693 wake_up_poll(&o_tty->write_wait, EPOLLOUT); 1694 do_sleep++; 1695 } 1696 } 1697 if (!do_sleep) 1698 break; 1699 1700 if (once) { 1701 once = 0; 1702 tty_warn(tty, "read/write wait queue active!\n"); 1703 } 1704 schedule_timeout_killable(timeout); 1705 if (timeout < 120 * HZ) 1706 timeout = 2 * timeout + 1; 1707 else 1708 timeout = MAX_SCHEDULE_TIMEOUT; 1709 } 1710 1711 if (o_tty) { 1712 if (--o_tty->count < 0) { 1713 tty_warn(tty, "bad slave count (%d)\n", o_tty->count); 1714 o_tty->count = 0; 1715 } 1716 } 1717 if (--tty->count < 0) { 1718 tty_warn(tty, "bad tty->count (%d)\n", tty->count); 1719 tty->count = 0; 1720 } 1721 1722 /* 1723 * We've decremented tty->count, so we need to remove this file 1724 * descriptor off the tty->tty_files list; this serves two 1725 * purposes: 1726 * - check_tty_count sees the correct number of file descriptors 1727 * associated with this tty. 1728 * - do_tty_hangup no longer sees this file descriptor as 1729 * something that needs to be handled for hangups. 1730 */ 1731 tty_del_file(filp); 1732 1733 /* 1734 * Perform some housekeeping before deciding whether to return. 1735 * 1736 * If _either_ side is closing, make sure there aren't any 1737 * processes that still think tty or o_tty is their controlling 1738 * tty. 1739 */ 1740 if (!tty->count) { 1741 read_lock(&tasklist_lock); 1742 session_clear_tty(tty->session); 1743 if (o_tty) 1744 session_clear_tty(o_tty->session); 1745 read_unlock(&tasklist_lock); 1746 } 1747 1748 /* check whether both sides are closing ... */ 1749 final = !tty->count && !(o_tty && o_tty->count); 1750 1751 tty_unlock_slave(o_tty); 1752 tty_unlock(tty); 1753 1754 /* At this point, the tty->count == 0 should ensure a dead tty 1755 cannot be re-opened by a racing opener */ 1756 1757 if (!final) 1758 return 0; 1759 1760 tty_debug_hangup(tty, "final close\n"); 1761 1762 tty_release_struct(tty, idx); 1763 return 0; 1764 } 1765 1766 /** 1767 * tty_open_current_tty - get locked tty of current task 1768 * @device: device number 1769 * @filp: file pointer to tty 1770 * @return: locked tty of the current task iff @device is /dev/tty 1771 * 1772 * Performs a re-open of the current task's controlling tty. 1773 * 1774 * We cannot return driver and index like for the other nodes because 1775 * devpts will not work then. It expects inodes to be from devpts FS. 1776 */ 1777 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1778 { 1779 struct tty_struct *tty; 1780 int retval; 1781 1782 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1783 return NULL; 1784 1785 tty = get_current_tty(); 1786 if (!tty) 1787 return ERR_PTR(-ENXIO); 1788 1789 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1790 /* noctty = 1; */ 1791 tty_lock(tty); 1792 tty_kref_put(tty); /* safe to drop the kref now */ 1793 1794 retval = tty_reopen(tty); 1795 if (retval < 0) { 1796 tty_unlock(tty); 1797 tty = ERR_PTR(retval); 1798 } 1799 return tty; 1800 } 1801 1802 /** 1803 * tty_lookup_driver - lookup a tty driver for a given device file 1804 * @device: device number 1805 * @filp: file pointer to tty 1806 * @index: index for the device in the @return driver 1807 * @return: driver for this inode (with increased refcount) 1808 * 1809 * If @return is not erroneous, the caller is responsible to decrement the 1810 * refcount by tty_driver_kref_put. 1811 * 1812 * Locking: tty_mutex protects get_tty_driver 1813 */ 1814 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1815 int *index) 1816 { 1817 struct tty_driver *driver; 1818 1819 switch (device) { 1820 #ifdef CONFIG_VT 1821 case MKDEV(TTY_MAJOR, 0): { 1822 extern struct tty_driver *console_driver; 1823 driver = tty_driver_kref_get(console_driver); 1824 *index = fg_console; 1825 break; 1826 } 1827 #endif 1828 case MKDEV(TTYAUX_MAJOR, 1): { 1829 struct tty_driver *console_driver = console_device(index); 1830 if (console_driver) { 1831 driver = tty_driver_kref_get(console_driver); 1832 if (driver && filp) { 1833 /* Don't let /dev/console block */ 1834 filp->f_flags |= O_NONBLOCK; 1835 break; 1836 } 1837 } 1838 return ERR_PTR(-ENODEV); 1839 } 1840 default: 1841 driver = get_tty_driver(device, index); 1842 if (!driver) 1843 return ERR_PTR(-ENODEV); 1844 break; 1845 } 1846 return driver; 1847 } 1848 1849 /** 1850 * tty_kopen - open a tty device for kernel 1851 * @device: dev_t of device to open 1852 * 1853 * Opens tty exclusively for kernel. Performs the driver lookup, 1854 * makes sure it's not already opened and performs the first-time 1855 * tty initialization. 1856 * 1857 * Returns the locked initialized &tty_struct 1858 * 1859 * Claims the global tty_mutex to serialize: 1860 * - concurrent first-time tty initialization 1861 * - concurrent tty driver removal w/ lookup 1862 * - concurrent tty removal from driver table 1863 */ 1864 struct tty_struct *tty_kopen(dev_t device) 1865 { 1866 struct tty_struct *tty; 1867 struct tty_driver *driver = NULL; 1868 int index = -1; 1869 1870 mutex_lock(&tty_mutex); 1871 driver = tty_lookup_driver(device, NULL, &index); 1872 if (IS_ERR(driver)) { 1873 mutex_unlock(&tty_mutex); 1874 return ERR_CAST(driver); 1875 } 1876 1877 /* check whether we're reopening an existing tty */ 1878 tty = tty_driver_lookup_tty(driver, NULL, index); 1879 if (IS_ERR(tty)) 1880 goto out; 1881 1882 if (tty) { 1883 /* drop kref from tty_driver_lookup_tty() */ 1884 tty_kref_put(tty); 1885 tty = ERR_PTR(-EBUSY); 1886 } else { /* tty_init_dev returns tty with the tty_lock held */ 1887 tty = tty_init_dev(driver, index); 1888 if (IS_ERR(tty)) 1889 goto out; 1890 tty_port_set_kopened(tty->port, 1); 1891 } 1892 out: 1893 mutex_unlock(&tty_mutex); 1894 tty_driver_kref_put(driver); 1895 return tty; 1896 } 1897 EXPORT_SYMBOL_GPL(tty_kopen); 1898 1899 /** 1900 * tty_open_by_driver - open a tty device 1901 * @device: dev_t of device to open 1902 * @inode: inode of device file 1903 * @filp: file pointer to tty 1904 * 1905 * Performs the driver lookup, checks for a reopen, or otherwise 1906 * performs the first-time tty initialization. 1907 * 1908 * Returns the locked initialized or re-opened &tty_struct 1909 * 1910 * Claims the global tty_mutex to serialize: 1911 * - concurrent first-time tty initialization 1912 * - concurrent tty driver removal w/ lookup 1913 * - concurrent tty removal from driver table 1914 */ 1915 static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode, 1916 struct file *filp) 1917 { 1918 struct tty_struct *tty; 1919 struct tty_driver *driver = NULL; 1920 int index = -1; 1921 int retval; 1922 1923 mutex_lock(&tty_mutex); 1924 driver = tty_lookup_driver(device, filp, &index); 1925 if (IS_ERR(driver)) { 1926 mutex_unlock(&tty_mutex); 1927 return ERR_CAST(driver); 1928 } 1929 1930 /* check whether we're reopening an existing tty */ 1931 tty = tty_driver_lookup_tty(driver, filp, index); 1932 if (IS_ERR(tty)) { 1933 mutex_unlock(&tty_mutex); 1934 goto out; 1935 } 1936 1937 if (tty) { 1938 if (tty_port_kopened(tty->port)) { 1939 tty_kref_put(tty); 1940 mutex_unlock(&tty_mutex); 1941 tty = ERR_PTR(-EBUSY); 1942 goto out; 1943 } 1944 mutex_unlock(&tty_mutex); 1945 retval = tty_lock_interruptible(tty); 1946 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */ 1947 if (retval) { 1948 if (retval == -EINTR) 1949 retval = -ERESTARTSYS; 1950 tty = ERR_PTR(retval); 1951 goto out; 1952 } 1953 retval = tty_reopen(tty); 1954 if (retval < 0) { 1955 tty_unlock(tty); 1956 tty = ERR_PTR(retval); 1957 } 1958 } else { /* Returns with the tty_lock held for now */ 1959 tty = tty_init_dev(driver, index); 1960 mutex_unlock(&tty_mutex); 1961 } 1962 out: 1963 tty_driver_kref_put(driver); 1964 return tty; 1965 } 1966 1967 /** 1968 * tty_open - open a tty device 1969 * @inode: inode of device file 1970 * @filp: file pointer to tty 1971 * 1972 * tty_open and tty_release keep up the tty count that contains the 1973 * number of opens done on a tty. We cannot use the inode-count, as 1974 * different inodes might point to the same tty. 1975 * 1976 * Open-counting is needed for pty masters, as well as for keeping 1977 * track of serial lines: DTR is dropped when the last close happens. 1978 * (This is not done solely through tty->count, now. - Ted 1/27/92) 1979 * 1980 * The termios state of a pty is reset on first open so that 1981 * settings don't persist across reuse. 1982 * 1983 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev. 1984 * tty->count should protect the rest. 1985 * ->siglock protects ->signal/->sighand 1986 * 1987 * Note: the tty_unlock/lock cases without a ref are only safe due to 1988 * tty_mutex 1989 */ 1990 1991 static int tty_open(struct inode *inode, struct file *filp) 1992 { 1993 struct tty_struct *tty; 1994 int noctty, retval; 1995 dev_t device = inode->i_rdev; 1996 unsigned saved_flags = filp->f_flags; 1997 1998 nonseekable_open(inode, filp); 1999 2000 retry_open: 2001 retval = tty_alloc_file(filp); 2002 if (retval) 2003 return -ENOMEM; 2004 2005 tty = tty_open_current_tty(device, filp); 2006 if (!tty) 2007 tty = tty_open_by_driver(device, inode, filp); 2008 2009 if (IS_ERR(tty)) { 2010 tty_free_file(filp); 2011 retval = PTR_ERR(tty); 2012 if (retval != -EAGAIN || signal_pending(current)) 2013 return retval; 2014 schedule(); 2015 goto retry_open; 2016 } 2017 2018 tty_add_file(tty, filp); 2019 2020 check_tty_count(tty, __func__); 2021 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count); 2022 2023 if (tty->ops->open) 2024 retval = tty->ops->open(tty, filp); 2025 else 2026 retval = -ENODEV; 2027 filp->f_flags = saved_flags; 2028 2029 if (retval) { 2030 tty_debug_hangup(tty, "open error %d, releasing\n", retval); 2031 2032 tty_unlock(tty); /* need to call tty_release without BTM */ 2033 tty_release(inode, filp); 2034 if (retval != -ERESTARTSYS) 2035 return retval; 2036 2037 if (signal_pending(current)) 2038 return retval; 2039 2040 schedule(); 2041 /* 2042 * Need to reset f_op in case a hangup happened. 2043 */ 2044 if (tty_hung_up_p(filp)) 2045 filp->f_op = &tty_fops; 2046 goto retry_open; 2047 } 2048 clear_bit(TTY_HUPPED, &tty->flags); 2049 2050 noctty = (filp->f_flags & O_NOCTTY) || 2051 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) || 2052 device == MKDEV(TTYAUX_MAJOR, 1) || 2053 (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2054 tty->driver->subtype == PTY_TYPE_MASTER); 2055 if (!noctty) 2056 tty_open_proc_set_tty(filp, tty); 2057 tty_unlock(tty); 2058 return 0; 2059 } 2060 2061 2062 2063 /** 2064 * tty_poll - check tty status 2065 * @filp: file being polled 2066 * @wait: poll wait structures to update 2067 * 2068 * Call the line discipline polling method to obtain the poll 2069 * status of the device. 2070 * 2071 * Locking: locks called line discipline but ldisc poll method 2072 * may be re-entered freely by other callers. 2073 */ 2074 2075 static __poll_t tty_poll(struct file *filp, poll_table *wait) 2076 { 2077 struct tty_struct *tty = file_tty(filp); 2078 struct tty_ldisc *ld; 2079 __poll_t ret = 0; 2080 2081 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll")) 2082 return 0; 2083 2084 ld = tty_ldisc_ref_wait(tty); 2085 if (!ld) 2086 return hung_up_tty_poll(filp, wait); 2087 if (ld->ops->poll) 2088 ret = ld->ops->poll(tty, filp, wait); 2089 tty_ldisc_deref(ld); 2090 return ret; 2091 } 2092 2093 static int __tty_fasync(int fd, struct file *filp, int on) 2094 { 2095 struct tty_struct *tty = file_tty(filp); 2096 unsigned long flags; 2097 int retval = 0; 2098 2099 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync")) 2100 goto out; 2101 2102 retval = fasync_helper(fd, filp, on, &tty->fasync); 2103 if (retval <= 0) 2104 goto out; 2105 2106 if (on) { 2107 enum pid_type type; 2108 struct pid *pid; 2109 2110 spin_lock_irqsave(&tty->ctrl_lock, flags); 2111 if (tty->pgrp) { 2112 pid = tty->pgrp; 2113 type = PIDTYPE_PGID; 2114 } else { 2115 pid = task_pid(current); 2116 type = PIDTYPE_TGID; 2117 } 2118 get_pid(pid); 2119 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2120 __f_setown(filp, pid, type, 0); 2121 put_pid(pid); 2122 retval = 0; 2123 } 2124 out: 2125 return retval; 2126 } 2127 2128 static int tty_fasync(int fd, struct file *filp, int on) 2129 { 2130 struct tty_struct *tty = file_tty(filp); 2131 int retval = -ENOTTY; 2132 2133 tty_lock(tty); 2134 if (!tty_hung_up_p(filp)) 2135 retval = __tty_fasync(fd, filp, on); 2136 tty_unlock(tty); 2137 2138 return retval; 2139 } 2140 2141 /** 2142 * tiocsti - fake input character 2143 * @tty: tty to fake input into 2144 * @p: pointer to character 2145 * 2146 * Fake input to a tty device. Does the necessary locking and 2147 * input management. 2148 * 2149 * FIXME: does not honour flow control ?? 2150 * 2151 * Locking: 2152 * Called functions take tty_ldiscs_lock 2153 * current->signal->tty check is safe without locks 2154 * 2155 * FIXME: may race normal receive processing 2156 */ 2157 2158 static int tiocsti(struct tty_struct *tty, char __user *p) 2159 { 2160 char ch, mbz = 0; 2161 struct tty_ldisc *ld; 2162 2163 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2164 return -EPERM; 2165 if (get_user(ch, p)) 2166 return -EFAULT; 2167 tty_audit_tiocsti(tty, ch); 2168 ld = tty_ldisc_ref_wait(tty); 2169 if (!ld) 2170 return -EIO; 2171 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2172 tty_ldisc_deref(ld); 2173 return 0; 2174 } 2175 2176 /** 2177 * tiocgwinsz - implement window query ioctl 2178 * @tty; tty 2179 * @arg: user buffer for result 2180 * 2181 * Copies the kernel idea of the window size into the user buffer. 2182 * 2183 * Locking: tty->winsize_mutex is taken to ensure the winsize data 2184 * is consistent. 2185 */ 2186 2187 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2188 { 2189 int err; 2190 2191 mutex_lock(&tty->winsize_mutex); 2192 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2193 mutex_unlock(&tty->winsize_mutex); 2194 2195 return err ? -EFAULT: 0; 2196 } 2197 2198 /** 2199 * tty_do_resize - resize event 2200 * @tty: tty being resized 2201 * @rows: rows (character) 2202 * @cols: cols (character) 2203 * 2204 * Update the termios variables and send the necessary signals to 2205 * peform a terminal resize correctly 2206 */ 2207 2208 int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2209 { 2210 struct pid *pgrp; 2211 2212 /* Lock the tty */ 2213 mutex_lock(&tty->winsize_mutex); 2214 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2215 goto done; 2216 2217 /* Signal the foreground process group */ 2218 pgrp = tty_get_pgrp(tty); 2219 if (pgrp) 2220 kill_pgrp(pgrp, SIGWINCH, 1); 2221 put_pid(pgrp); 2222 2223 tty->winsize = *ws; 2224 done: 2225 mutex_unlock(&tty->winsize_mutex); 2226 return 0; 2227 } 2228 EXPORT_SYMBOL(tty_do_resize); 2229 2230 /** 2231 * tiocswinsz - implement window size set ioctl 2232 * @tty; tty side of tty 2233 * @arg: user buffer for result 2234 * 2235 * Copies the user idea of the window size to the kernel. Traditionally 2236 * this is just advisory information but for the Linux console it 2237 * actually has driver level meaning and triggers a VC resize. 2238 * 2239 * Locking: 2240 * Driver dependent. The default do_resize method takes the 2241 * tty termios mutex and ctrl_lock. The console takes its own lock 2242 * then calls into the default method. 2243 */ 2244 2245 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2246 { 2247 struct winsize tmp_ws; 2248 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2249 return -EFAULT; 2250 2251 if (tty->ops->resize) 2252 return tty->ops->resize(tty, &tmp_ws); 2253 else 2254 return tty_do_resize(tty, &tmp_ws); 2255 } 2256 2257 /** 2258 * tioccons - allow admin to move logical console 2259 * @file: the file to become console 2260 * 2261 * Allow the administrator to move the redirected console device 2262 * 2263 * Locking: uses redirect_lock to guard the redirect information 2264 */ 2265 2266 static int tioccons(struct file *file) 2267 { 2268 if (!capable(CAP_SYS_ADMIN)) 2269 return -EPERM; 2270 if (file->f_op->write == redirected_tty_write) { 2271 struct file *f; 2272 spin_lock(&redirect_lock); 2273 f = redirect; 2274 redirect = NULL; 2275 spin_unlock(&redirect_lock); 2276 if (f) 2277 fput(f); 2278 return 0; 2279 } 2280 spin_lock(&redirect_lock); 2281 if (redirect) { 2282 spin_unlock(&redirect_lock); 2283 return -EBUSY; 2284 } 2285 redirect = get_file(file); 2286 spin_unlock(&redirect_lock); 2287 return 0; 2288 } 2289 2290 /** 2291 * fionbio - non blocking ioctl 2292 * @file: file to set blocking value 2293 * @p: user parameter 2294 * 2295 * Historical tty interfaces had a blocking control ioctl before 2296 * the generic functionality existed. This piece of history is preserved 2297 * in the expected tty API of posix OS's. 2298 * 2299 * Locking: none, the open file handle ensures it won't go away. 2300 */ 2301 2302 static int fionbio(struct file *file, int __user *p) 2303 { 2304 int nonblock; 2305 2306 if (get_user(nonblock, p)) 2307 return -EFAULT; 2308 2309 spin_lock(&file->f_lock); 2310 if (nonblock) 2311 file->f_flags |= O_NONBLOCK; 2312 else 2313 file->f_flags &= ~O_NONBLOCK; 2314 spin_unlock(&file->f_lock); 2315 return 0; 2316 } 2317 2318 /** 2319 * tiocsetd - set line discipline 2320 * @tty: tty device 2321 * @p: pointer to user data 2322 * 2323 * Set the line discipline according to user request. 2324 * 2325 * Locking: see tty_set_ldisc, this function is just a helper 2326 */ 2327 2328 static int tiocsetd(struct tty_struct *tty, int __user *p) 2329 { 2330 int disc; 2331 int ret; 2332 2333 if (get_user(disc, p)) 2334 return -EFAULT; 2335 2336 ret = tty_set_ldisc(tty, disc); 2337 2338 return ret; 2339 } 2340 2341 /** 2342 * tiocgetd - get line discipline 2343 * @tty: tty device 2344 * @p: pointer to user data 2345 * 2346 * Retrieves the line discipline id directly from the ldisc. 2347 * 2348 * Locking: waits for ldisc reference (in case the line discipline 2349 * is changing or the tty is being hungup) 2350 */ 2351 2352 static int tiocgetd(struct tty_struct *tty, int __user *p) 2353 { 2354 struct tty_ldisc *ld; 2355 int ret; 2356 2357 ld = tty_ldisc_ref_wait(tty); 2358 if (!ld) 2359 return -EIO; 2360 ret = put_user(ld->ops->num, p); 2361 tty_ldisc_deref(ld); 2362 return ret; 2363 } 2364 2365 /** 2366 * send_break - performed time break 2367 * @tty: device to break on 2368 * @duration: timeout in mS 2369 * 2370 * Perform a timed break on hardware that lacks its own driver level 2371 * timed break functionality. 2372 * 2373 * Locking: 2374 * atomic_write_lock serializes 2375 * 2376 */ 2377 2378 static int send_break(struct tty_struct *tty, unsigned int duration) 2379 { 2380 int retval; 2381 2382 if (tty->ops->break_ctl == NULL) 2383 return 0; 2384 2385 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2386 retval = tty->ops->break_ctl(tty, duration); 2387 else { 2388 /* Do the work ourselves */ 2389 if (tty_write_lock(tty, 0) < 0) 2390 return -EINTR; 2391 retval = tty->ops->break_ctl(tty, -1); 2392 if (retval) 2393 goto out; 2394 if (!signal_pending(current)) 2395 msleep_interruptible(duration); 2396 retval = tty->ops->break_ctl(tty, 0); 2397 out: 2398 tty_write_unlock(tty); 2399 if (signal_pending(current)) 2400 retval = -EINTR; 2401 } 2402 return retval; 2403 } 2404 2405 /** 2406 * tty_tiocmget - get modem status 2407 * @tty: tty device 2408 * @file: user file pointer 2409 * @p: pointer to result 2410 * 2411 * Obtain the modem status bits from the tty driver if the feature 2412 * is supported. Return -EINVAL if it is not available. 2413 * 2414 * Locking: none (up to the driver) 2415 */ 2416 2417 static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2418 { 2419 int retval = -EINVAL; 2420 2421 if (tty->ops->tiocmget) { 2422 retval = tty->ops->tiocmget(tty); 2423 2424 if (retval >= 0) 2425 retval = put_user(retval, p); 2426 } 2427 return retval; 2428 } 2429 2430 /** 2431 * tty_tiocmset - set modem status 2432 * @tty: tty device 2433 * @cmd: command - clear bits, set bits or set all 2434 * @p: pointer to desired bits 2435 * 2436 * Set the modem status bits from the tty driver if the feature 2437 * is supported. Return -EINVAL if it is not available. 2438 * 2439 * Locking: none (up to the driver) 2440 */ 2441 2442 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2443 unsigned __user *p) 2444 { 2445 int retval; 2446 unsigned int set, clear, val; 2447 2448 if (tty->ops->tiocmset == NULL) 2449 return -EINVAL; 2450 2451 retval = get_user(val, p); 2452 if (retval) 2453 return retval; 2454 set = clear = 0; 2455 switch (cmd) { 2456 case TIOCMBIS: 2457 set = val; 2458 break; 2459 case TIOCMBIC: 2460 clear = val; 2461 break; 2462 case TIOCMSET: 2463 set = val; 2464 clear = ~val; 2465 break; 2466 } 2467 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2468 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2469 return tty->ops->tiocmset(tty, set, clear); 2470 } 2471 2472 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2473 { 2474 int retval = -EINVAL; 2475 struct serial_icounter_struct icount; 2476 memset(&icount, 0, sizeof(icount)); 2477 if (tty->ops->get_icount) 2478 retval = tty->ops->get_icount(tty, &icount); 2479 if (retval != 0) 2480 return retval; 2481 if (copy_to_user(arg, &icount, sizeof(icount))) 2482 return -EFAULT; 2483 return 0; 2484 } 2485 2486 static void tty_warn_deprecated_flags(struct serial_struct __user *ss) 2487 { 2488 static DEFINE_RATELIMIT_STATE(depr_flags, 2489 DEFAULT_RATELIMIT_INTERVAL, 2490 DEFAULT_RATELIMIT_BURST); 2491 char comm[TASK_COMM_LEN]; 2492 int flags; 2493 2494 if (get_user(flags, &ss->flags)) 2495 return; 2496 2497 flags &= ASYNC_DEPRECATED; 2498 2499 if (flags && __ratelimit(&depr_flags)) 2500 pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n", 2501 __func__, get_task_comm(comm, current), flags); 2502 } 2503 2504 /* 2505 * if pty, return the slave side (real_tty) 2506 * otherwise, return self 2507 */ 2508 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2509 { 2510 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2511 tty->driver->subtype == PTY_TYPE_MASTER) 2512 tty = tty->link; 2513 return tty; 2514 } 2515 2516 /* 2517 * Split this up, as gcc can choke on it otherwise.. 2518 */ 2519 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2520 { 2521 struct tty_struct *tty = file_tty(file); 2522 struct tty_struct *real_tty; 2523 void __user *p = (void __user *)arg; 2524 int retval; 2525 struct tty_ldisc *ld; 2526 2527 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2528 return -EINVAL; 2529 2530 real_tty = tty_pair_get_tty(tty); 2531 2532 /* 2533 * Factor out some common prep work 2534 */ 2535 switch (cmd) { 2536 case TIOCSETD: 2537 case TIOCSBRK: 2538 case TIOCCBRK: 2539 case TCSBRK: 2540 case TCSBRKP: 2541 retval = tty_check_change(tty); 2542 if (retval) 2543 return retval; 2544 if (cmd != TIOCCBRK) { 2545 tty_wait_until_sent(tty, 0); 2546 if (signal_pending(current)) 2547 return -EINTR; 2548 } 2549 break; 2550 } 2551 2552 /* 2553 * Now do the stuff. 2554 */ 2555 switch (cmd) { 2556 case TIOCSTI: 2557 return tiocsti(tty, p); 2558 case TIOCGWINSZ: 2559 return tiocgwinsz(real_tty, p); 2560 case TIOCSWINSZ: 2561 return tiocswinsz(real_tty, p); 2562 case TIOCCONS: 2563 return real_tty != tty ? -EINVAL : tioccons(file); 2564 case FIONBIO: 2565 return fionbio(file, p); 2566 case TIOCEXCL: 2567 set_bit(TTY_EXCLUSIVE, &tty->flags); 2568 return 0; 2569 case TIOCNXCL: 2570 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2571 return 0; 2572 case TIOCGEXCL: 2573 { 2574 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags); 2575 return put_user(excl, (int __user *)p); 2576 } 2577 case TIOCGETD: 2578 return tiocgetd(tty, p); 2579 case TIOCSETD: 2580 return tiocsetd(tty, p); 2581 case TIOCVHANGUP: 2582 if (!capable(CAP_SYS_ADMIN)) 2583 return -EPERM; 2584 tty_vhangup(tty); 2585 return 0; 2586 case TIOCGDEV: 2587 { 2588 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2589 return put_user(ret, (unsigned int __user *)p); 2590 } 2591 /* 2592 * Break handling 2593 */ 2594 case TIOCSBRK: /* Turn break on, unconditionally */ 2595 if (tty->ops->break_ctl) 2596 return tty->ops->break_ctl(tty, -1); 2597 return 0; 2598 case TIOCCBRK: /* Turn break off, unconditionally */ 2599 if (tty->ops->break_ctl) 2600 return tty->ops->break_ctl(tty, 0); 2601 return 0; 2602 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2603 /* non-zero arg means wait for all output data 2604 * to be sent (performed above) but don't send break. 2605 * This is used by the tcdrain() termios function. 2606 */ 2607 if (!arg) 2608 return send_break(tty, 250); 2609 return 0; 2610 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2611 return send_break(tty, arg ? arg*100 : 250); 2612 2613 case TIOCMGET: 2614 return tty_tiocmget(tty, p); 2615 case TIOCMSET: 2616 case TIOCMBIC: 2617 case TIOCMBIS: 2618 return tty_tiocmset(tty, cmd, p); 2619 case TIOCGICOUNT: 2620 retval = tty_tiocgicount(tty, p); 2621 /* For the moment allow fall through to the old method */ 2622 if (retval != -EINVAL) 2623 return retval; 2624 break; 2625 case TCFLSH: 2626 switch (arg) { 2627 case TCIFLUSH: 2628 case TCIOFLUSH: 2629 /* flush tty buffer and allow ldisc to process ioctl */ 2630 tty_buffer_flush(tty, NULL); 2631 break; 2632 } 2633 break; 2634 case TIOCSSERIAL: 2635 tty_warn_deprecated_flags(p); 2636 break; 2637 case TIOCGPTPEER: 2638 /* Special because the struct file is needed */ 2639 return ptm_open_peer(file, tty, (int)arg); 2640 default: 2641 retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg); 2642 if (retval != -ENOIOCTLCMD) 2643 return retval; 2644 } 2645 if (tty->ops->ioctl) { 2646 retval = tty->ops->ioctl(tty, cmd, arg); 2647 if (retval != -ENOIOCTLCMD) 2648 return retval; 2649 } 2650 ld = tty_ldisc_ref_wait(tty); 2651 if (!ld) 2652 return hung_up_tty_ioctl(file, cmd, arg); 2653 retval = -EINVAL; 2654 if (ld->ops->ioctl) { 2655 retval = ld->ops->ioctl(tty, file, cmd, arg); 2656 if (retval == -ENOIOCTLCMD) 2657 retval = -ENOTTY; 2658 } 2659 tty_ldisc_deref(ld); 2660 return retval; 2661 } 2662 2663 #ifdef CONFIG_COMPAT 2664 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 2665 unsigned long arg) 2666 { 2667 struct tty_struct *tty = file_tty(file); 2668 struct tty_ldisc *ld; 2669 int retval = -ENOIOCTLCMD; 2670 2671 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2672 return -EINVAL; 2673 2674 if (tty->ops->compat_ioctl) { 2675 retval = tty->ops->compat_ioctl(tty, cmd, arg); 2676 if (retval != -ENOIOCTLCMD) 2677 return retval; 2678 } 2679 2680 ld = tty_ldisc_ref_wait(tty); 2681 if (!ld) 2682 return hung_up_tty_compat_ioctl(file, cmd, arg); 2683 if (ld->ops->compat_ioctl) 2684 retval = ld->ops->compat_ioctl(tty, file, cmd, arg); 2685 else 2686 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg); 2687 tty_ldisc_deref(ld); 2688 2689 return retval; 2690 } 2691 #endif 2692 2693 static int this_tty(const void *t, struct file *file, unsigned fd) 2694 { 2695 if (likely(file->f_op->read != tty_read)) 2696 return 0; 2697 return file_tty(file) != t ? 0 : fd + 1; 2698 } 2699 2700 /* 2701 * This implements the "Secure Attention Key" --- the idea is to 2702 * prevent trojan horses by killing all processes associated with this 2703 * tty when the user hits the "Secure Attention Key". Required for 2704 * super-paranoid applications --- see the Orange Book for more details. 2705 * 2706 * This code could be nicer; ideally it should send a HUP, wait a few 2707 * seconds, then send a INT, and then a KILL signal. But you then 2708 * have to coordinate with the init process, since all processes associated 2709 * with the current tty must be dead before the new getty is allowed 2710 * to spawn. 2711 * 2712 * Now, if it would be correct ;-/ The current code has a nasty hole - 2713 * it doesn't catch files in flight. We may send the descriptor to ourselves 2714 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 2715 * 2716 * Nasty bug: do_SAK is being called in interrupt context. This can 2717 * deadlock. We punt it up to process context. AKPM - 16Mar2001 2718 */ 2719 void __do_SAK(struct tty_struct *tty) 2720 { 2721 #ifdef TTY_SOFT_SAK 2722 tty_hangup(tty); 2723 #else 2724 struct task_struct *g, *p; 2725 struct pid *session; 2726 int i; 2727 2728 if (!tty) 2729 return; 2730 session = tty->session; 2731 2732 tty_ldisc_flush(tty); 2733 2734 tty_driver_flush_buffer(tty); 2735 2736 read_lock(&tasklist_lock); 2737 /* Kill the entire session */ 2738 do_each_pid_task(session, PIDTYPE_SID, p) { 2739 tty_notice(tty, "SAK: killed process %d (%s): by session\n", 2740 task_pid_nr(p), p->comm); 2741 send_sig(SIGKILL, p, 1); 2742 } while_each_pid_task(session, PIDTYPE_SID, p); 2743 2744 /* Now kill any processes that happen to have the tty open */ 2745 do_each_thread(g, p) { 2746 if (p->signal->tty == tty) { 2747 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n", 2748 task_pid_nr(p), p->comm); 2749 send_sig(SIGKILL, p, 1); 2750 continue; 2751 } 2752 task_lock(p); 2753 i = iterate_fd(p->files, 0, this_tty, tty); 2754 if (i != 0) { 2755 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n", 2756 task_pid_nr(p), p->comm, i - 1); 2757 force_sig(SIGKILL, p); 2758 } 2759 task_unlock(p); 2760 } while_each_thread(g, p); 2761 read_unlock(&tasklist_lock); 2762 #endif 2763 } 2764 2765 static void do_SAK_work(struct work_struct *work) 2766 { 2767 struct tty_struct *tty = 2768 container_of(work, struct tty_struct, SAK_work); 2769 __do_SAK(tty); 2770 } 2771 2772 /* 2773 * The tq handling here is a little racy - tty->SAK_work may already be queued. 2774 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 2775 * the values which we write to it will be identical to the values which it 2776 * already has. --akpm 2777 */ 2778 void do_SAK(struct tty_struct *tty) 2779 { 2780 if (!tty) 2781 return; 2782 schedule_work(&tty->SAK_work); 2783 } 2784 2785 EXPORT_SYMBOL(do_SAK); 2786 2787 static int dev_match_devt(struct device *dev, const void *data) 2788 { 2789 const dev_t *devt = data; 2790 return dev->devt == *devt; 2791 } 2792 2793 /* Must put_device() after it's unused! */ 2794 static struct device *tty_get_device(struct tty_struct *tty) 2795 { 2796 dev_t devt = tty_devnum(tty); 2797 return class_find_device(tty_class, NULL, &devt, dev_match_devt); 2798 } 2799 2800 2801 /** 2802 * alloc_tty_struct 2803 * 2804 * This subroutine allocates and initializes a tty structure. 2805 * 2806 * Locking: none - tty in question is not exposed at this point 2807 */ 2808 2809 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx) 2810 { 2811 struct tty_struct *tty; 2812 2813 tty = kzalloc(sizeof(*tty), GFP_KERNEL); 2814 if (!tty) 2815 return NULL; 2816 2817 kref_init(&tty->kref); 2818 tty->magic = TTY_MAGIC; 2819 if (tty_ldisc_init(tty)) { 2820 kfree(tty); 2821 return NULL; 2822 } 2823 tty->session = NULL; 2824 tty->pgrp = NULL; 2825 mutex_init(&tty->legacy_mutex); 2826 mutex_init(&tty->throttle_mutex); 2827 init_rwsem(&tty->termios_rwsem); 2828 mutex_init(&tty->winsize_mutex); 2829 init_ldsem(&tty->ldisc_sem); 2830 init_waitqueue_head(&tty->write_wait); 2831 init_waitqueue_head(&tty->read_wait); 2832 INIT_WORK(&tty->hangup_work, do_tty_hangup); 2833 mutex_init(&tty->atomic_write_lock); 2834 spin_lock_init(&tty->ctrl_lock); 2835 spin_lock_init(&tty->flow_lock); 2836 spin_lock_init(&tty->files_lock); 2837 INIT_LIST_HEAD(&tty->tty_files); 2838 INIT_WORK(&tty->SAK_work, do_SAK_work); 2839 2840 tty->driver = driver; 2841 tty->ops = driver->ops; 2842 tty->index = idx; 2843 tty_line_name(driver, idx, tty->name); 2844 tty->dev = tty_get_device(tty); 2845 2846 return tty; 2847 } 2848 2849 /** 2850 * tty_put_char - write one character to a tty 2851 * @tty: tty 2852 * @ch: character 2853 * 2854 * Write one byte to the tty using the provided put_char method 2855 * if present. Returns the number of characters successfully output. 2856 * 2857 * Note: the specific put_char operation in the driver layer may go 2858 * away soon. Don't call it directly, use this method 2859 */ 2860 2861 int tty_put_char(struct tty_struct *tty, unsigned char ch) 2862 { 2863 if (tty->ops->put_char) 2864 return tty->ops->put_char(tty, ch); 2865 return tty->ops->write(tty, &ch, 1); 2866 } 2867 EXPORT_SYMBOL_GPL(tty_put_char); 2868 2869 struct class *tty_class; 2870 2871 static int tty_cdev_add(struct tty_driver *driver, dev_t dev, 2872 unsigned int index, unsigned int count) 2873 { 2874 int err; 2875 2876 /* init here, since reused cdevs cause crashes */ 2877 driver->cdevs[index] = cdev_alloc(); 2878 if (!driver->cdevs[index]) 2879 return -ENOMEM; 2880 driver->cdevs[index]->ops = &tty_fops; 2881 driver->cdevs[index]->owner = driver->owner; 2882 err = cdev_add(driver->cdevs[index], dev, count); 2883 if (err) 2884 kobject_put(&driver->cdevs[index]->kobj); 2885 return err; 2886 } 2887 2888 /** 2889 * tty_register_device - register a tty device 2890 * @driver: the tty driver that describes the tty device 2891 * @index: the index in the tty driver for this tty device 2892 * @device: a struct device that is associated with this tty device. 2893 * This field is optional, if there is no known struct device 2894 * for this tty device it can be set to NULL safely. 2895 * 2896 * Returns a pointer to the struct device for this tty device 2897 * (or ERR_PTR(-EFOO) on error). 2898 * 2899 * This call is required to be made to register an individual tty device 2900 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 2901 * that bit is not set, this function should not be called by a tty 2902 * driver. 2903 * 2904 * Locking: ?? 2905 */ 2906 2907 struct device *tty_register_device(struct tty_driver *driver, unsigned index, 2908 struct device *device) 2909 { 2910 return tty_register_device_attr(driver, index, device, NULL, NULL); 2911 } 2912 EXPORT_SYMBOL(tty_register_device); 2913 2914 static void tty_device_create_release(struct device *dev) 2915 { 2916 dev_dbg(dev, "releasing...\n"); 2917 kfree(dev); 2918 } 2919 2920 /** 2921 * tty_register_device_attr - register a tty device 2922 * @driver: the tty driver that describes the tty device 2923 * @index: the index in the tty driver for this tty device 2924 * @device: a struct device that is associated with this tty device. 2925 * This field is optional, if there is no known struct device 2926 * for this tty device it can be set to NULL safely. 2927 * @drvdata: Driver data to be set to device. 2928 * @attr_grp: Attribute group to be set on device. 2929 * 2930 * Returns a pointer to the struct device for this tty device 2931 * (or ERR_PTR(-EFOO) on error). 2932 * 2933 * This call is required to be made to register an individual tty device 2934 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 2935 * that bit is not set, this function should not be called by a tty 2936 * driver. 2937 * 2938 * Locking: ?? 2939 */ 2940 struct device *tty_register_device_attr(struct tty_driver *driver, 2941 unsigned index, struct device *device, 2942 void *drvdata, 2943 const struct attribute_group **attr_grp) 2944 { 2945 char name[64]; 2946 dev_t devt = MKDEV(driver->major, driver->minor_start) + index; 2947 struct ktermios *tp; 2948 struct device *dev; 2949 int retval; 2950 2951 if (index >= driver->num) { 2952 pr_err("%s: Attempt to register invalid tty line number (%d)\n", 2953 driver->name, index); 2954 return ERR_PTR(-EINVAL); 2955 } 2956 2957 if (driver->type == TTY_DRIVER_TYPE_PTY) 2958 pty_line_name(driver, index, name); 2959 else 2960 tty_line_name(driver, index, name); 2961 2962 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2963 if (!dev) 2964 return ERR_PTR(-ENOMEM); 2965 2966 dev->devt = devt; 2967 dev->class = tty_class; 2968 dev->parent = device; 2969 dev->release = tty_device_create_release; 2970 dev_set_name(dev, "%s", name); 2971 dev->groups = attr_grp; 2972 dev_set_drvdata(dev, drvdata); 2973 2974 dev_set_uevent_suppress(dev, 1); 2975 2976 retval = device_register(dev); 2977 if (retval) 2978 goto err_put; 2979 2980 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 2981 /* 2982 * Free any saved termios data so that the termios state is 2983 * reset when reusing a minor number. 2984 */ 2985 tp = driver->termios[index]; 2986 if (tp) { 2987 driver->termios[index] = NULL; 2988 kfree(tp); 2989 } 2990 2991 retval = tty_cdev_add(driver, devt, index, 1); 2992 if (retval) 2993 goto err_del; 2994 } 2995 2996 dev_set_uevent_suppress(dev, 0); 2997 kobject_uevent(&dev->kobj, KOBJ_ADD); 2998 2999 return dev; 3000 3001 err_del: 3002 device_del(dev); 3003 err_put: 3004 put_device(dev); 3005 3006 return ERR_PTR(retval); 3007 } 3008 EXPORT_SYMBOL_GPL(tty_register_device_attr); 3009 3010 /** 3011 * tty_unregister_device - unregister a tty device 3012 * @driver: the tty driver that describes the tty device 3013 * @index: the index in the tty driver for this tty device 3014 * 3015 * If a tty device is registered with a call to tty_register_device() then 3016 * this function must be called when the tty device is gone. 3017 * 3018 * Locking: ?? 3019 */ 3020 3021 void tty_unregister_device(struct tty_driver *driver, unsigned index) 3022 { 3023 device_destroy(tty_class, 3024 MKDEV(driver->major, driver->minor_start) + index); 3025 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3026 cdev_del(driver->cdevs[index]); 3027 driver->cdevs[index] = NULL; 3028 } 3029 } 3030 EXPORT_SYMBOL(tty_unregister_device); 3031 3032 /** 3033 * __tty_alloc_driver -- allocate tty driver 3034 * @lines: count of lines this driver can handle at most 3035 * @owner: module which is responsible for this driver 3036 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags 3037 * 3038 * This should not be called directly, some of the provided macros should be 3039 * used instead. Use IS_ERR and friends on @retval. 3040 */ 3041 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner, 3042 unsigned long flags) 3043 { 3044 struct tty_driver *driver; 3045 unsigned int cdevs = 1; 3046 int err; 3047 3048 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1)) 3049 return ERR_PTR(-EINVAL); 3050 3051 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL); 3052 if (!driver) 3053 return ERR_PTR(-ENOMEM); 3054 3055 kref_init(&driver->kref); 3056 driver->magic = TTY_DRIVER_MAGIC; 3057 driver->num = lines; 3058 driver->owner = owner; 3059 driver->flags = flags; 3060 3061 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) { 3062 driver->ttys = kcalloc(lines, sizeof(*driver->ttys), 3063 GFP_KERNEL); 3064 driver->termios = kcalloc(lines, sizeof(*driver->termios), 3065 GFP_KERNEL); 3066 if (!driver->ttys || !driver->termios) { 3067 err = -ENOMEM; 3068 goto err_free_all; 3069 } 3070 } 3071 3072 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3073 driver->ports = kcalloc(lines, sizeof(*driver->ports), 3074 GFP_KERNEL); 3075 if (!driver->ports) { 3076 err = -ENOMEM; 3077 goto err_free_all; 3078 } 3079 cdevs = lines; 3080 } 3081 3082 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL); 3083 if (!driver->cdevs) { 3084 err = -ENOMEM; 3085 goto err_free_all; 3086 } 3087 3088 return driver; 3089 err_free_all: 3090 kfree(driver->ports); 3091 kfree(driver->ttys); 3092 kfree(driver->termios); 3093 kfree(driver->cdevs); 3094 kfree(driver); 3095 return ERR_PTR(err); 3096 } 3097 EXPORT_SYMBOL(__tty_alloc_driver); 3098 3099 static void destruct_tty_driver(struct kref *kref) 3100 { 3101 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3102 int i; 3103 struct ktermios *tp; 3104 3105 if (driver->flags & TTY_DRIVER_INSTALLED) { 3106 for (i = 0; i < driver->num; i++) { 3107 tp = driver->termios[i]; 3108 if (tp) { 3109 driver->termios[i] = NULL; 3110 kfree(tp); 3111 } 3112 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3113 tty_unregister_device(driver, i); 3114 } 3115 proc_tty_unregister_driver(driver); 3116 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) 3117 cdev_del(driver->cdevs[0]); 3118 } 3119 kfree(driver->cdevs); 3120 kfree(driver->ports); 3121 kfree(driver->termios); 3122 kfree(driver->ttys); 3123 kfree(driver); 3124 } 3125 3126 void tty_driver_kref_put(struct tty_driver *driver) 3127 { 3128 kref_put(&driver->kref, destruct_tty_driver); 3129 } 3130 EXPORT_SYMBOL(tty_driver_kref_put); 3131 3132 void tty_set_operations(struct tty_driver *driver, 3133 const struct tty_operations *op) 3134 { 3135 driver->ops = op; 3136 }; 3137 EXPORT_SYMBOL(tty_set_operations); 3138 3139 void put_tty_driver(struct tty_driver *d) 3140 { 3141 tty_driver_kref_put(d); 3142 } 3143 EXPORT_SYMBOL(put_tty_driver); 3144 3145 /* 3146 * Called by a tty driver to register itself. 3147 */ 3148 int tty_register_driver(struct tty_driver *driver) 3149 { 3150 int error; 3151 int i; 3152 dev_t dev; 3153 struct device *d; 3154 3155 if (!driver->major) { 3156 error = alloc_chrdev_region(&dev, driver->minor_start, 3157 driver->num, driver->name); 3158 if (!error) { 3159 driver->major = MAJOR(dev); 3160 driver->minor_start = MINOR(dev); 3161 } 3162 } else { 3163 dev = MKDEV(driver->major, driver->minor_start); 3164 error = register_chrdev_region(dev, driver->num, driver->name); 3165 } 3166 if (error < 0) 3167 goto err; 3168 3169 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) { 3170 error = tty_cdev_add(driver, dev, 0, driver->num); 3171 if (error) 3172 goto err_unreg_char; 3173 } 3174 3175 mutex_lock(&tty_mutex); 3176 list_add(&driver->tty_drivers, &tty_drivers); 3177 mutex_unlock(&tty_mutex); 3178 3179 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3180 for (i = 0; i < driver->num; i++) { 3181 d = tty_register_device(driver, i, NULL); 3182 if (IS_ERR(d)) { 3183 error = PTR_ERR(d); 3184 goto err_unreg_devs; 3185 } 3186 } 3187 } 3188 proc_tty_register_driver(driver); 3189 driver->flags |= TTY_DRIVER_INSTALLED; 3190 return 0; 3191 3192 err_unreg_devs: 3193 for (i--; i >= 0; i--) 3194 tty_unregister_device(driver, i); 3195 3196 mutex_lock(&tty_mutex); 3197 list_del(&driver->tty_drivers); 3198 mutex_unlock(&tty_mutex); 3199 3200 err_unreg_char: 3201 unregister_chrdev_region(dev, driver->num); 3202 err: 3203 return error; 3204 } 3205 EXPORT_SYMBOL(tty_register_driver); 3206 3207 /* 3208 * Called by a tty driver to unregister itself. 3209 */ 3210 int tty_unregister_driver(struct tty_driver *driver) 3211 { 3212 #if 0 3213 /* FIXME */ 3214 if (driver->refcount) 3215 return -EBUSY; 3216 #endif 3217 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3218 driver->num); 3219 mutex_lock(&tty_mutex); 3220 list_del(&driver->tty_drivers); 3221 mutex_unlock(&tty_mutex); 3222 return 0; 3223 } 3224 3225 EXPORT_SYMBOL(tty_unregister_driver); 3226 3227 dev_t tty_devnum(struct tty_struct *tty) 3228 { 3229 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3230 } 3231 EXPORT_SYMBOL(tty_devnum); 3232 3233 void tty_default_fops(struct file_operations *fops) 3234 { 3235 *fops = tty_fops; 3236 } 3237 3238 static char *tty_devnode(struct device *dev, umode_t *mode) 3239 { 3240 if (!mode) 3241 return NULL; 3242 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3243 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3244 *mode = 0666; 3245 return NULL; 3246 } 3247 3248 static int __init tty_class_init(void) 3249 { 3250 tty_class = class_create(THIS_MODULE, "tty"); 3251 if (IS_ERR(tty_class)) 3252 return PTR_ERR(tty_class); 3253 tty_class->devnode = tty_devnode; 3254 return 0; 3255 } 3256 3257 postcore_initcall(tty_class_init); 3258 3259 /* 3/2004 jmc: why do these devices exist? */ 3260 static struct cdev tty_cdev, console_cdev; 3261 3262 static ssize_t show_cons_active(struct device *dev, 3263 struct device_attribute *attr, char *buf) 3264 { 3265 struct console *cs[16]; 3266 int i = 0; 3267 struct console *c; 3268 ssize_t count = 0; 3269 3270 console_lock(); 3271 for_each_console(c) { 3272 if (!c->device) 3273 continue; 3274 if (!c->write) 3275 continue; 3276 if ((c->flags & CON_ENABLED) == 0) 3277 continue; 3278 cs[i++] = c; 3279 if (i >= ARRAY_SIZE(cs)) 3280 break; 3281 } 3282 while (i--) { 3283 int index = cs[i]->index; 3284 struct tty_driver *drv = cs[i]->device(cs[i], &index); 3285 3286 /* don't resolve tty0 as some programs depend on it */ 3287 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR)) 3288 count += tty_line_name(drv, index, buf + count); 3289 else 3290 count += sprintf(buf + count, "%s%d", 3291 cs[i]->name, cs[i]->index); 3292 3293 count += sprintf(buf + count, "%c", i ? ' ':'\n'); 3294 } 3295 console_unlock(); 3296 3297 return count; 3298 } 3299 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3300 3301 static struct attribute *cons_dev_attrs[] = { 3302 &dev_attr_active.attr, 3303 NULL 3304 }; 3305 3306 ATTRIBUTE_GROUPS(cons_dev); 3307 3308 static struct device *consdev; 3309 3310 void console_sysfs_notify(void) 3311 { 3312 if (consdev) 3313 sysfs_notify(&consdev->kobj, NULL, "active"); 3314 } 3315 3316 /* 3317 * Ok, now we can initialize the rest of the tty devices and can count 3318 * on memory allocations, interrupts etc.. 3319 */ 3320 int __init tty_init(void) 3321 { 3322 cdev_init(&tty_cdev, &tty_fops); 3323 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3324 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3325 panic("Couldn't register /dev/tty driver\n"); 3326 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3327 3328 cdev_init(&console_cdev, &console_fops); 3329 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3330 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3331 panic("Couldn't register /dev/console driver\n"); 3332 consdev = device_create_with_groups(tty_class, NULL, 3333 MKDEV(TTYAUX_MAJOR, 1), NULL, 3334 cons_dev_groups, "console"); 3335 if (IS_ERR(consdev)) 3336 consdev = NULL; 3337 3338 #ifdef CONFIG_VT 3339 vty_init(&console_fops); 3340 #endif 3341 return 0; 3342 } 3343 3344