xref: /openbmc/linux/drivers/tty/tty_io.c (revision 2a954832)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992  Linus Torvalds
4  */
5 
6 /*
7  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8  * or rs-channels. It also implements echoing, cooked mode etc.
9  *
10  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11  *
12  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13  * tty_struct and tty_queue structures.  Previously there was an array
14  * of 256 tty_struct's which was statically allocated, and the
15  * tty_queue structures were allocated at boot time.  Both are now
16  * dynamically allocated only when the tty is open.
17  *
18  * Also restructured routines so that there is more of a separation
19  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20  * the low-level tty routines (serial.c, pty.c, console.c).  This
21  * makes for cleaner and more compact code.  -TYT, 9/17/92
22  *
23  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24  * which can be dynamically activated and de-activated by the line
25  * discipline handling modules (like SLIP).
26  *
27  * NOTE: pay no attention to the line discipline code (yet); its
28  * interface is still subject to change in this version...
29  * -- TYT, 1/31/92
30  *
31  * Added functionality to the OPOST tty handling.  No delays, but all
32  * other bits should be there.
33  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34  *
35  * Rewrote canonical mode and added more termios flags.
36  *	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37  *
38  * Reorganized FASYNC support so mouse code can share it.
39  *	-- ctm@ardi.com, 9Sep95
40  *
41  * New TIOCLINUX variants added.
42  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
43  *
44  * Restrict vt switching via ioctl()
45  *      -- grif@cs.ucr.edu, 5-Dec-95
46  *
47  * Move console and virtual terminal code to more appropriate files,
48  * implement CONFIG_VT and generalize console device interface.
49  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50  *
51  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52  *	-- Bill Hawes <whawes@star.net>, June 97
53  *
54  * Added devfs support.
55  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56  *
57  * Added support for a Unix98-style ptmx device.
58  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59  *
60  * Reduced memory usage for older ARM systems
61  *      -- Russell King <rmk@arm.linux.org.uk>
62  *
63  * Move do_SAK() into process context.  Less stack use in devfs functions.
64  * alloc_tty_struct() always uses kmalloc()
65  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66  */
67 
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched/signal.h>
74 #include <linux/sched/task.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/ppp-ioctl.h>
91 #include <linux/proc_fs.h>
92 #include <linux/init.h>
93 #include <linux/module.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99 #include <linux/serial.h>
100 #include <linux/ratelimit.h>
101 #include <linux/compat.h>
102 #include <linux/uaccess.h>
103 #include <linux/termios_internal.h>
104 
105 #include <linux/kbd_kern.h>
106 #include <linux/vt_kern.h>
107 #include <linux/selection.h>
108 
109 #include <linux/kmod.h>
110 #include <linux/nsproxy.h>
111 #include "tty.h"
112 
113 #undef TTY_DEBUG_HANGUP
114 #ifdef TTY_DEBUG_HANGUP
115 # define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
116 #else
117 # define tty_debug_hangup(tty, f, args...)	do { } while (0)
118 #endif
119 
120 #define TTY_PARANOIA_CHECK 1
121 #define CHECK_TTY_COUNT 1
122 
123 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
124 	.c_iflag = ICRNL | IXON,
125 	.c_oflag = OPOST | ONLCR,
126 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
127 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
128 		   ECHOCTL | ECHOKE | IEXTEN,
129 	.c_cc = INIT_C_CC,
130 	.c_ispeed = 38400,
131 	.c_ospeed = 38400,
132 	/* .c_line = N_TTY, */
133 };
134 EXPORT_SYMBOL(tty_std_termios);
135 
136 /* This list gets poked at by procfs and various bits of boot up code. This
137  * could do with some rationalisation such as pulling the tty proc function
138  * into this file.
139  */
140 
141 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
142 
143 /* Mutex to protect creating and releasing a tty */
144 DEFINE_MUTEX(tty_mutex);
145 
146 static ssize_t tty_read(struct kiocb *, struct iov_iter *);
147 static ssize_t tty_write(struct kiocb *, struct iov_iter *);
148 static __poll_t tty_poll(struct file *, poll_table *);
149 static int tty_open(struct inode *, struct file *);
150 #ifdef CONFIG_COMPAT
151 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
152 				unsigned long arg);
153 #else
154 #define tty_compat_ioctl NULL
155 #endif
156 static int __tty_fasync(int fd, struct file *filp, int on);
157 static int tty_fasync(int fd, struct file *filp, int on);
158 static void release_tty(struct tty_struct *tty, int idx);
159 
160 /**
161  * free_tty_struct	-	free a disused tty
162  * @tty: tty struct to free
163  *
164  * Free the write buffers, tty queue and tty memory itself.
165  *
166  * Locking: none. Must be called after tty is definitely unused
167  */
168 static void free_tty_struct(struct tty_struct *tty)
169 {
170 	tty_ldisc_deinit(tty);
171 	put_device(tty->dev);
172 	kvfree(tty->write_buf);
173 	kfree(tty);
174 }
175 
176 static inline struct tty_struct *file_tty(struct file *file)
177 {
178 	return ((struct tty_file_private *)file->private_data)->tty;
179 }
180 
181 int tty_alloc_file(struct file *file)
182 {
183 	struct tty_file_private *priv;
184 
185 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
186 	if (!priv)
187 		return -ENOMEM;
188 
189 	file->private_data = priv;
190 
191 	return 0;
192 }
193 
194 /* Associate a new file with the tty structure */
195 void tty_add_file(struct tty_struct *tty, struct file *file)
196 {
197 	struct tty_file_private *priv = file->private_data;
198 
199 	priv->tty = tty;
200 	priv->file = file;
201 
202 	spin_lock(&tty->files_lock);
203 	list_add(&priv->list, &tty->tty_files);
204 	spin_unlock(&tty->files_lock);
205 }
206 
207 /**
208  * tty_free_file - free file->private_data
209  * @file: to free private_data of
210  *
211  * This shall be used only for fail path handling when tty_add_file was not
212  * called yet.
213  */
214 void tty_free_file(struct file *file)
215 {
216 	struct tty_file_private *priv = file->private_data;
217 
218 	file->private_data = NULL;
219 	kfree(priv);
220 }
221 
222 /* Delete file from its tty */
223 static void tty_del_file(struct file *file)
224 {
225 	struct tty_file_private *priv = file->private_data;
226 	struct tty_struct *tty = priv->tty;
227 
228 	spin_lock(&tty->files_lock);
229 	list_del(&priv->list);
230 	spin_unlock(&tty->files_lock);
231 	tty_free_file(file);
232 }
233 
234 /**
235  * tty_name	-	return tty naming
236  * @tty: tty structure
237  *
238  * Convert a tty structure into a name. The name reflects the kernel naming
239  * policy and if udev is in use may not reflect user space
240  *
241  * Locking: none
242  */
243 const char *tty_name(const struct tty_struct *tty)
244 {
245 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
246 		return "NULL tty";
247 	return tty->name;
248 }
249 EXPORT_SYMBOL(tty_name);
250 
251 const char *tty_driver_name(const struct tty_struct *tty)
252 {
253 	if (!tty || !tty->driver)
254 		return "";
255 	return tty->driver->name;
256 }
257 
258 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
259 			      const char *routine)
260 {
261 #ifdef TTY_PARANOIA_CHECK
262 	if (!tty) {
263 		pr_warn("(%d:%d): %s: NULL tty\n",
264 			imajor(inode), iminor(inode), routine);
265 		return 1;
266 	}
267 #endif
268 	return 0;
269 }
270 
271 /* Caller must hold tty_lock */
272 static int check_tty_count(struct tty_struct *tty, const char *routine)
273 {
274 #ifdef CHECK_TTY_COUNT
275 	struct list_head *p;
276 	int count = 0, kopen_count = 0;
277 
278 	spin_lock(&tty->files_lock);
279 	list_for_each(p, &tty->tty_files) {
280 		count++;
281 	}
282 	spin_unlock(&tty->files_lock);
283 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
284 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
285 	    tty->link && tty->link->count)
286 		count++;
287 	if (tty_port_kopened(tty->port))
288 		kopen_count++;
289 	if (tty->count != (count + kopen_count)) {
290 		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
291 			 routine, tty->count, count, kopen_count);
292 		return (count + kopen_count);
293 	}
294 #endif
295 	return 0;
296 }
297 
298 /**
299  * get_tty_driver		-	find device of a tty
300  * @device: device identifier
301  * @index: returns the index of the tty
302  *
303  * This routine returns a tty driver structure, given a device number and also
304  * passes back the index number.
305  *
306  * Locking: caller must hold tty_mutex
307  */
308 static struct tty_driver *get_tty_driver(dev_t device, int *index)
309 {
310 	struct tty_driver *p;
311 
312 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
313 		dev_t base = MKDEV(p->major, p->minor_start);
314 
315 		if (device < base || device >= base + p->num)
316 			continue;
317 		*index = device - base;
318 		return tty_driver_kref_get(p);
319 	}
320 	return NULL;
321 }
322 
323 /**
324  * tty_dev_name_to_number	-	return dev_t for device name
325  * @name: user space name of device under /dev
326  * @number: pointer to dev_t that this function will populate
327  *
328  * This function converts device names like ttyS0 or ttyUSB1 into dev_t like
329  * (4, 64) or (188, 1). If no corresponding driver is registered then the
330  * function returns -%ENODEV.
331  *
332  * Locking: this acquires tty_mutex to protect the tty_drivers list from
333  *	being modified while we are traversing it, and makes sure to
334  *	release it before exiting.
335  */
336 int tty_dev_name_to_number(const char *name, dev_t *number)
337 {
338 	struct tty_driver *p;
339 	int ret;
340 	int index, prefix_length = 0;
341 	const char *str;
342 
343 	for (str = name; *str && !isdigit(*str); str++)
344 		;
345 
346 	if (!*str)
347 		return -EINVAL;
348 
349 	ret = kstrtoint(str, 10, &index);
350 	if (ret)
351 		return ret;
352 
353 	prefix_length = str - name;
354 	mutex_lock(&tty_mutex);
355 
356 	list_for_each_entry(p, &tty_drivers, tty_drivers)
357 		if (prefix_length == strlen(p->name) && strncmp(name,
358 					p->name, prefix_length) == 0) {
359 			if (index < p->num) {
360 				*number = MKDEV(p->major, p->minor_start + index);
361 				goto out;
362 			}
363 		}
364 
365 	/* if here then driver wasn't found */
366 	ret = -ENODEV;
367 out:
368 	mutex_unlock(&tty_mutex);
369 	return ret;
370 }
371 EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
372 
373 #ifdef CONFIG_CONSOLE_POLL
374 
375 /**
376  * tty_find_polling_driver	-	find device of a polled tty
377  * @name: name string to match
378  * @line: pointer to resulting tty line nr
379  *
380  * This routine returns a tty driver structure, given a name and the condition
381  * that the tty driver is capable of polled operation.
382  */
383 struct tty_driver *tty_find_polling_driver(char *name, int *line)
384 {
385 	struct tty_driver *p, *res = NULL;
386 	int tty_line = 0;
387 	int len;
388 	char *str, *stp;
389 
390 	for (str = name; *str; str++)
391 		if ((*str >= '0' && *str <= '9') || *str == ',')
392 			break;
393 	if (!*str)
394 		return NULL;
395 
396 	len = str - name;
397 	tty_line = simple_strtoul(str, &str, 10);
398 
399 	mutex_lock(&tty_mutex);
400 	/* Search through the tty devices to look for a match */
401 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
402 		if (!len || strncmp(name, p->name, len) != 0)
403 			continue;
404 		stp = str;
405 		if (*stp == ',')
406 			stp++;
407 		if (*stp == '\0')
408 			stp = NULL;
409 
410 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
411 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
412 			res = tty_driver_kref_get(p);
413 			*line = tty_line;
414 			break;
415 		}
416 	}
417 	mutex_unlock(&tty_mutex);
418 
419 	return res;
420 }
421 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
422 #endif
423 
424 static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
425 {
426 	return 0;
427 }
428 
429 static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
430 {
431 	return -EIO;
432 }
433 
434 /* No kernel lock held - none needed ;) */
435 static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
436 {
437 	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
438 }
439 
440 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
441 		unsigned long arg)
442 {
443 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
444 }
445 
446 static long hung_up_tty_compat_ioctl(struct file *file,
447 				     unsigned int cmd, unsigned long arg)
448 {
449 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
450 }
451 
452 static int hung_up_tty_fasync(int fd, struct file *file, int on)
453 {
454 	return -ENOTTY;
455 }
456 
457 static void tty_show_fdinfo(struct seq_file *m, struct file *file)
458 {
459 	struct tty_struct *tty = file_tty(file);
460 
461 	if (tty && tty->ops && tty->ops->show_fdinfo)
462 		tty->ops->show_fdinfo(tty, m);
463 }
464 
465 static const struct file_operations tty_fops = {
466 	.llseek		= no_llseek,
467 	.read_iter	= tty_read,
468 	.write_iter	= tty_write,
469 	.splice_read	= generic_file_splice_read,
470 	.splice_write	= iter_file_splice_write,
471 	.poll		= tty_poll,
472 	.unlocked_ioctl	= tty_ioctl,
473 	.compat_ioctl	= tty_compat_ioctl,
474 	.open		= tty_open,
475 	.release	= tty_release,
476 	.fasync		= tty_fasync,
477 	.show_fdinfo	= tty_show_fdinfo,
478 };
479 
480 static const struct file_operations console_fops = {
481 	.llseek		= no_llseek,
482 	.read_iter	= tty_read,
483 	.write_iter	= redirected_tty_write,
484 	.splice_read	= generic_file_splice_read,
485 	.splice_write	= iter_file_splice_write,
486 	.poll		= tty_poll,
487 	.unlocked_ioctl	= tty_ioctl,
488 	.compat_ioctl	= tty_compat_ioctl,
489 	.open		= tty_open,
490 	.release	= tty_release,
491 	.fasync		= tty_fasync,
492 };
493 
494 static const struct file_operations hung_up_tty_fops = {
495 	.llseek		= no_llseek,
496 	.read_iter	= hung_up_tty_read,
497 	.write_iter	= hung_up_tty_write,
498 	.poll		= hung_up_tty_poll,
499 	.unlocked_ioctl	= hung_up_tty_ioctl,
500 	.compat_ioctl	= hung_up_tty_compat_ioctl,
501 	.release	= tty_release,
502 	.fasync		= hung_up_tty_fasync,
503 };
504 
505 static DEFINE_SPINLOCK(redirect_lock);
506 static struct file *redirect;
507 
508 /**
509  * tty_wakeup	-	request more data
510  * @tty: terminal
511  *
512  * Internal and external helper for wakeups of tty. This function informs the
513  * line discipline if present that the driver is ready to receive more output
514  * data.
515  */
516 void tty_wakeup(struct tty_struct *tty)
517 {
518 	struct tty_ldisc *ld;
519 
520 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
521 		ld = tty_ldisc_ref(tty);
522 		if (ld) {
523 			if (ld->ops->write_wakeup)
524 				ld->ops->write_wakeup(tty);
525 			tty_ldisc_deref(ld);
526 		}
527 	}
528 	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
529 }
530 EXPORT_SYMBOL_GPL(tty_wakeup);
531 
532 /**
533  * tty_release_redirect	-	Release a redirect on a pty if present
534  * @tty: tty device
535  *
536  * This is available to the pty code so if the master closes, if the slave is a
537  * redirect it can release the redirect.
538  */
539 static struct file *tty_release_redirect(struct tty_struct *tty)
540 {
541 	struct file *f = NULL;
542 
543 	spin_lock(&redirect_lock);
544 	if (redirect && file_tty(redirect) == tty) {
545 		f = redirect;
546 		redirect = NULL;
547 	}
548 	spin_unlock(&redirect_lock);
549 
550 	return f;
551 }
552 
553 /**
554  * __tty_hangup		-	actual handler for hangup events
555  * @tty: tty device
556  * @exit_session: if non-zero, signal all foreground group processes
557  *
558  * This can be called by a "kworker" kernel thread. That is process synchronous
559  * but doesn't hold any locks, so we need to make sure we have the appropriate
560  * locks for what we're doing.
561  *
562  * The hangup event clears any pending redirections onto the hung up device. It
563  * ensures future writes will error and it does the needed line discipline
564  * hangup and signal delivery. The tty object itself remains intact.
565  *
566  * Locking:
567  *  * BTM
568  *
569  *   * redirect lock for undoing redirection
570  *   * file list lock for manipulating list of ttys
571  *   * tty_ldiscs_lock from called functions
572  *   * termios_rwsem resetting termios data
573  *   * tasklist_lock to walk task list for hangup event
574  *
575  *    * ->siglock to protect ->signal/->sighand
576  *
577  */
578 static void __tty_hangup(struct tty_struct *tty, int exit_session)
579 {
580 	struct file *cons_filp = NULL;
581 	struct file *filp, *f;
582 	struct tty_file_private *priv;
583 	int    closecount = 0, n;
584 	int refs;
585 
586 	if (!tty)
587 		return;
588 
589 	f = tty_release_redirect(tty);
590 
591 	tty_lock(tty);
592 
593 	if (test_bit(TTY_HUPPED, &tty->flags)) {
594 		tty_unlock(tty);
595 		return;
596 	}
597 
598 	/*
599 	 * Some console devices aren't actually hung up for technical and
600 	 * historical reasons, which can lead to indefinite interruptible
601 	 * sleep in n_tty_read().  The following explicitly tells
602 	 * n_tty_read() to abort readers.
603 	 */
604 	set_bit(TTY_HUPPING, &tty->flags);
605 
606 	/* inuse_filps is protected by the single tty lock,
607 	 * this really needs to change if we want to flush the
608 	 * workqueue with the lock held.
609 	 */
610 	check_tty_count(tty, "tty_hangup");
611 
612 	spin_lock(&tty->files_lock);
613 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
614 	list_for_each_entry(priv, &tty->tty_files, list) {
615 		filp = priv->file;
616 		if (filp->f_op->write_iter == redirected_tty_write)
617 			cons_filp = filp;
618 		if (filp->f_op->write_iter != tty_write)
619 			continue;
620 		closecount++;
621 		__tty_fasync(-1, filp, 0);	/* can't block */
622 		filp->f_op = &hung_up_tty_fops;
623 	}
624 	spin_unlock(&tty->files_lock);
625 
626 	refs = tty_signal_session_leader(tty, exit_session);
627 	/* Account for the p->signal references we killed */
628 	while (refs--)
629 		tty_kref_put(tty);
630 
631 	tty_ldisc_hangup(tty, cons_filp != NULL);
632 
633 	spin_lock_irq(&tty->ctrl.lock);
634 	clear_bit(TTY_THROTTLED, &tty->flags);
635 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
636 	put_pid(tty->ctrl.session);
637 	put_pid(tty->ctrl.pgrp);
638 	tty->ctrl.session = NULL;
639 	tty->ctrl.pgrp = NULL;
640 	tty->ctrl.pktstatus = 0;
641 	spin_unlock_irq(&tty->ctrl.lock);
642 
643 	/*
644 	 * If one of the devices matches a console pointer, we
645 	 * cannot just call hangup() because that will cause
646 	 * tty->count and state->count to go out of sync.
647 	 * So we just call close() the right number of times.
648 	 */
649 	if (cons_filp) {
650 		if (tty->ops->close)
651 			for (n = 0; n < closecount; n++)
652 				tty->ops->close(tty, cons_filp);
653 	} else if (tty->ops->hangup)
654 		tty->ops->hangup(tty);
655 	/*
656 	 * We don't want to have driver/ldisc interactions beyond the ones
657 	 * we did here. The driver layer expects no calls after ->hangup()
658 	 * from the ldisc side, which is now guaranteed.
659 	 */
660 	set_bit(TTY_HUPPED, &tty->flags);
661 	clear_bit(TTY_HUPPING, &tty->flags);
662 	tty_unlock(tty);
663 
664 	if (f)
665 		fput(f);
666 }
667 
668 static void do_tty_hangup(struct work_struct *work)
669 {
670 	struct tty_struct *tty =
671 		container_of(work, struct tty_struct, hangup_work);
672 
673 	__tty_hangup(tty, 0);
674 }
675 
676 /**
677  * tty_hangup		-	trigger a hangup event
678  * @tty: tty to hangup
679  *
680  * A carrier loss (virtual or otherwise) has occurred on @tty. Schedule a
681  * hangup sequence to run after this event.
682  */
683 void tty_hangup(struct tty_struct *tty)
684 {
685 	tty_debug_hangup(tty, "hangup\n");
686 	schedule_work(&tty->hangup_work);
687 }
688 EXPORT_SYMBOL(tty_hangup);
689 
690 /**
691  * tty_vhangup		-	process vhangup
692  * @tty: tty to hangup
693  *
694  * The user has asked via system call for the terminal to be hung up. We do
695  * this synchronously so that when the syscall returns the process is complete.
696  * That guarantee is necessary for security reasons.
697  */
698 void tty_vhangup(struct tty_struct *tty)
699 {
700 	tty_debug_hangup(tty, "vhangup\n");
701 	__tty_hangup(tty, 0);
702 }
703 EXPORT_SYMBOL(tty_vhangup);
704 
705 
706 /**
707  * tty_vhangup_self	-	process vhangup for own ctty
708  *
709  * Perform a vhangup on the current controlling tty
710  */
711 void tty_vhangup_self(void)
712 {
713 	struct tty_struct *tty;
714 
715 	tty = get_current_tty();
716 	if (tty) {
717 		tty_vhangup(tty);
718 		tty_kref_put(tty);
719 	}
720 }
721 
722 /**
723  * tty_vhangup_session	-	hangup session leader exit
724  * @tty: tty to hangup
725  *
726  * The session leader is exiting and hanging up its controlling terminal.
727  * Every process in the foreground process group is signalled %SIGHUP.
728  *
729  * We do this synchronously so that when the syscall returns the process is
730  * complete. That guarantee is necessary for security reasons.
731  */
732 void tty_vhangup_session(struct tty_struct *tty)
733 {
734 	tty_debug_hangup(tty, "session hangup\n");
735 	__tty_hangup(tty, 1);
736 }
737 
738 /**
739  * tty_hung_up_p	-	was tty hung up
740  * @filp: file pointer of tty
741  *
742  * Return: true if the tty has been subject to a vhangup or a carrier loss
743  */
744 int tty_hung_up_p(struct file *filp)
745 {
746 	return (filp && filp->f_op == &hung_up_tty_fops);
747 }
748 EXPORT_SYMBOL(tty_hung_up_p);
749 
750 void __stop_tty(struct tty_struct *tty)
751 {
752 	if (tty->flow.stopped)
753 		return;
754 	tty->flow.stopped = true;
755 	if (tty->ops->stop)
756 		tty->ops->stop(tty);
757 }
758 
759 /**
760  * stop_tty	-	propagate flow control
761  * @tty: tty to stop
762  *
763  * Perform flow control to the driver. May be called on an already stopped
764  * device and will not re-call the &tty_driver->stop() method.
765  *
766  * This functionality is used by both the line disciplines for halting incoming
767  * flow and by the driver. It may therefore be called from any context, may be
768  * under the tty %atomic_write_lock but not always.
769  *
770  * Locking:
771  *	flow.lock
772  */
773 void stop_tty(struct tty_struct *tty)
774 {
775 	unsigned long flags;
776 
777 	spin_lock_irqsave(&tty->flow.lock, flags);
778 	__stop_tty(tty);
779 	spin_unlock_irqrestore(&tty->flow.lock, flags);
780 }
781 EXPORT_SYMBOL(stop_tty);
782 
783 void __start_tty(struct tty_struct *tty)
784 {
785 	if (!tty->flow.stopped || tty->flow.tco_stopped)
786 		return;
787 	tty->flow.stopped = false;
788 	if (tty->ops->start)
789 		tty->ops->start(tty);
790 	tty_wakeup(tty);
791 }
792 
793 /**
794  * start_tty	-	propagate flow control
795  * @tty: tty to start
796  *
797  * Start a tty that has been stopped if at all possible. If @tty was previously
798  * stopped and is now being started, the &tty_driver->start() method is invoked
799  * and the line discipline woken.
800  *
801  * Locking:
802  *	flow.lock
803  */
804 void start_tty(struct tty_struct *tty)
805 {
806 	unsigned long flags;
807 
808 	spin_lock_irqsave(&tty->flow.lock, flags);
809 	__start_tty(tty);
810 	spin_unlock_irqrestore(&tty->flow.lock, flags);
811 }
812 EXPORT_SYMBOL(start_tty);
813 
814 static void tty_update_time(struct timespec64 *time)
815 {
816 	time64_t sec = ktime_get_real_seconds();
817 
818 	/*
819 	 * We only care if the two values differ in anything other than the
820 	 * lower three bits (i.e every 8 seconds).  If so, then we can update
821 	 * the time of the tty device, otherwise it could be construded as a
822 	 * security leak to let userspace know the exact timing of the tty.
823 	 */
824 	if ((sec ^ time->tv_sec) & ~7)
825 		time->tv_sec = sec;
826 }
827 
828 /*
829  * Iterate on the ldisc ->read() function until we've gotten all
830  * the data the ldisc has for us.
831  *
832  * The "cookie" is something that the ldisc read function can fill
833  * in to let us know that there is more data to be had.
834  *
835  * We promise to continue to call the ldisc until it stops returning
836  * data or clears the cookie. The cookie may be something that the
837  * ldisc maintains state for and needs to free.
838  */
839 static int iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
840 		struct file *file, struct iov_iter *to)
841 {
842 	int retval = 0;
843 	void *cookie = NULL;
844 	unsigned long offset = 0;
845 	char kernel_buf[64];
846 	size_t count = iov_iter_count(to);
847 
848 	do {
849 		int size, copied;
850 
851 		size = count > sizeof(kernel_buf) ? sizeof(kernel_buf) : count;
852 		size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
853 		if (!size)
854 			break;
855 
856 		if (size < 0) {
857 			/* Did we have an earlier error (ie -EFAULT)? */
858 			if (retval)
859 				break;
860 			retval = size;
861 
862 			/*
863 			 * -EOVERFLOW means we didn't have enough space
864 			 * for a whole packet, and we shouldn't return
865 			 * a partial result.
866 			 */
867 			if (retval == -EOVERFLOW)
868 				offset = 0;
869 			break;
870 		}
871 
872 		copied = copy_to_iter(kernel_buf, size, to);
873 		offset += copied;
874 		count -= copied;
875 
876 		/*
877 		 * If the user copy failed, we still need to do another ->read()
878 		 * call if we had a cookie to let the ldisc clear up.
879 		 *
880 		 * But make sure size is zeroed.
881 		 */
882 		if (unlikely(copied != size)) {
883 			count = 0;
884 			retval = -EFAULT;
885 		}
886 	} while (cookie);
887 
888 	/* We always clear tty buffer in case they contained passwords */
889 	memzero_explicit(kernel_buf, sizeof(kernel_buf));
890 	return offset ? offset : retval;
891 }
892 
893 
894 /**
895  * tty_read	-	read method for tty device files
896  * @iocb: kernel I/O control block
897  * @to: destination for the data read
898  *
899  * Perform the read system call function on this terminal device. Checks
900  * for hung up devices before calling the line discipline method.
901  *
902  * Locking:
903  *	Locks the line discipline internally while needed. Multiple read calls
904  *	may be outstanding in parallel.
905  */
906 static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
907 {
908 	int i;
909 	struct file *file = iocb->ki_filp;
910 	struct inode *inode = file_inode(file);
911 	struct tty_struct *tty = file_tty(file);
912 	struct tty_ldisc *ld;
913 
914 	if (tty_paranoia_check(tty, inode, "tty_read"))
915 		return -EIO;
916 	if (!tty || tty_io_error(tty))
917 		return -EIO;
918 
919 	/* We want to wait for the line discipline to sort out in this
920 	 * situation.
921 	 */
922 	ld = tty_ldisc_ref_wait(tty);
923 	if (!ld)
924 		return hung_up_tty_read(iocb, to);
925 	i = -EIO;
926 	if (ld->ops->read)
927 		i = iterate_tty_read(ld, tty, file, to);
928 	tty_ldisc_deref(ld);
929 
930 	if (i > 0)
931 		tty_update_time(&inode->i_atime);
932 
933 	return i;
934 }
935 
936 void tty_write_unlock(struct tty_struct *tty)
937 {
938 	mutex_unlock(&tty->atomic_write_lock);
939 	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
940 }
941 
942 int tty_write_lock(struct tty_struct *tty, int ndelay)
943 {
944 	if (!mutex_trylock(&tty->atomic_write_lock)) {
945 		if (ndelay)
946 			return -EAGAIN;
947 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
948 			return -ERESTARTSYS;
949 	}
950 	return 0;
951 }
952 
953 /*
954  * Split writes up in sane blocksizes to avoid
955  * denial-of-service type attacks
956  */
957 static inline ssize_t do_tty_write(
958 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
959 	struct tty_struct *tty,
960 	struct file *file,
961 	struct iov_iter *from)
962 {
963 	size_t count = iov_iter_count(from);
964 	ssize_t ret, written = 0;
965 	unsigned int chunk;
966 
967 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
968 	if (ret < 0)
969 		return ret;
970 
971 	/*
972 	 * We chunk up writes into a temporary buffer. This
973 	 * simplifies low-level drivers immensely, since they
974 	 * don't have locking issues and user mode accesses.
975 	 *
976 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
977 	 * big chunk-size..
978 	 *
979 	 * The default chunk-size is 2kB, because the NTTY
980 	 * layer has problems with bigger chunks. It will
981 	 * claim to be able to handle more characters than
982 	 * it actually does.
983 	 */
984 	chunk = 2048;
985 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
986 		chunk = 65536;
987 	if (count < chunk)
988 		chunk = count;
989 
990 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
991 	if (tty->write_cnt < chunk) {
992 		unsigned char *buf_chunk;
993 
994 		if (chunk < 1024)
995 			chunk = 1024;
996 
997 		buf_chunk = kvmalloc(chunk, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
998 		if (!buf_chunk) {
999 			ret = -ENOMEM;
1000 			goto out;
1001 		}
1002 		kvfree(tty->write_buf);
1003 		tty->write_cnt = chunk;
1004 		tty->write_buf = buf_chunk;
1005 	}
1006 
1007 	/* Do the write .. */
1008 	for (;;) {
1009 		size_t size = count;
1010 
1011 		if (size > chunk)
1012 			size = chunk;
1013 
1014 		ret = -EFAULT;
1015 		if (copy_from_iter(tty->write_buf, size, from) != size)
1016 			break;
1017 
1018 		ret = write(tty, file, tty->write_buf, size);
1019 		if (ret <= 0)
1020 			break;
1021 
1022 		written += ret;
1023 		if (ret > size)
1024 			break;
1025 
1026 		/* FIXME! Have Al check this! */
1027 		if (ret != size)
1028 			iov_iter_revert(from, size-ret);
1029 
1030 		count -= ret;
1031 		if (!count)
1032 			break;
1033 		ret = -ERESTARTSYS;
1034 		if (signal_pending(current))
1035 			break;
1036 		cond_resched();
1037 	}
1038 	if (written) {
1039 		tty_update_time(&file_inode(file)->i_mtime);
1040 		ret = written;
1041 	}
1042 out:
1043 	tty_write_unlock(tty);
1044 	return ret;
1045 }
1046 
1047 /**
1048  * tty_write_message - write a message to a certain tty, not just the console.
1049  * @tty: the destination tty_struct
1050  * @msg: the message to write
1051  *
1052  * This is used for messages that need to be redirected to a specific tty. We
1053  * don't put it into the syslog queue right now maybe in the future if really
1054  * needed.
1055  *
1056  * We must still hold the BTM and test the CLOSING flag for the moment.
1057  */
1058 void tty_write_message(struct tty_struct *tty, char *msg)
1059 {
1060 	if (tty) {
1061 		mutex_lock(&tty->atomic_write_lock);
1062 		tty_lock(tty);
1063 		if (tty->ops->write && tty->count > 0)
1064 			tty->ops->write(tty, msg, strlen(msg));
1065 		tty_unlock(tty);
1066 		tty_write_unlock(tty);
1067 	}
1068 }
1069 
1070 static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
1071 {
1072 	struct tty_struct *tty = file_tty(file);
1073 	struct tty_ldisc *ld;
1074 	ssize_t ret;
1075 
1076 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1077 		return -EIO;
1078 	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1079 		return -EIO;
1080 	/* Short term debug to catch buggy drivers */
1081 	if (tty->ops->write_room == NULL)
1082 		tty_err(tty, "missing write_room method\n");
1083 	ld = tty_ldisc_ref_wait(tty);
1084 	if (!ld)
1085 		return hung_up_tty_write(iocb, from);
1086 	if (!ld->ops->write)
1087 		ret = -EIO;
1088 	else
1089 		ret = do_tty_write(ld->ops->write, tty, file, from);
1090 	tty_ldisc_deref(ld);
1091 	return ret;
1092 }
1093 
1094 /**
1095  * tty_write		-	write method for tty device file
1096  * @iocb: kernel I/O control block
1097  * @from: iov_iter with data to write
1098  *
1099  * Write data to a tty device via the line discipline.
1100  *
1101  * Locking:
1102  *	Locks the line discipline as required
1103  *	Writes to the tty driver are serialized by the atomic_write_lock
1104  *	and are then processed in chunks to the device. The line
1105  *	discipline write method will not be invoked in parallel for
1106  *	each device.
1107  */
1108 static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1109 {
1110 	return file_tty_write(iocb->ki_filp, iocb, from);
1111 }
1112 
1113 ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1114 {
1115 	struct file *p = NULL;
1116 
1117 	spin_lock(&redirect_lock);
1118 	if (redirect)
1119 		p = get_file(redirect);
1120 	spin_unlock(&redirect_lock);
1121 
1122 	/*
1123 	 * We know the redirected tty is just another tty, we can
1124 	 * call file_tty_write() directly with that file pointer.
1125 	 */
1126 	if (p) {
1127 		ssize_t res;
1128 
1129 		res = file_tty_write(p, iocb, iter);
1130 		fput(p);
1131 		return res;
1132 	}
1133 	return tty_write(iocb, iter);
1134 }
1135 
1136 /**
1137  * tty_send_xchar	-	send priority character
1138  * @tty: the tty to send to
1139  * @ch: xchar to send
1140  *
1141  * Send a high priority character to the tty even if stopped.
1142  *
1143  * Locking: none for xchar method, write ordering for write method.
1144  */
1145 int tty_send_xchar(struct tty_struct *tty, char ch)
1146 {
1147 	bool was_stopped = tty->flow.stopped;
1148 
1149 	if (tty->ops->send_xchar) {
1150 		down_read(&tty->termios_rwsem);
1151 		tty->ops->send_xchar(tty, ch);
1152 		up_read(&tty->termios_rwsem);
1153 		return 0;
1154 	}
1155 
1156 	if (tty_write_lock(tty, 0) < 0)
1157 		return -ERESTARTSYS;
1158 
1159 	down_read(&tty->termios_rwsem);
1160 	if (was_stopped)
1161 		start_tty(tty);
1162 	tty->ops->write(tty, &ch, 1);
1163 	if (was_stopped)
1164 		stop_tty(tty);
1165 	up_read(&tty->termios_rwsem);
1166 	tty_write_unlock(tty);
1167 	return 0;
1168 }
1169 
1170 /**
1171  * pty_line_name	-	generate name for a pty
1172  * @driver: the tty driver in use
1173  * @index: the minor number
1174  * @p: output buffer of at least 6 bytes
1175  *
1176  * Generate a name from a @driver reference and write it to the output buffer
1177  * @p.
1178  *
1179  * Locking: None
1180  */
1181 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1182 {
1183 	static const char ptychar[] = "pqrstuvwxyzabcde";
1184 	int i = index + driver->name_base;
1185 	/* ->name is initialized to "ttyp", but "tty" is expected */
1186 	sprintf(p, "%s%c%x",
1187 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1188 		ptychar[i >> 4 & 0xf], i & 0xf);
1189 }
1190 
1191 /**
1192  * tty_line_name	-	generate name for a tty
1193  * @driver: the tty driver in use
1194  * @index: the minor number
1195  * @p: output buffer of at least 7 bytes
1196  *
1197  * Generate a name from a @driver reference and write it to the output buffer
1198  * @p.
1199  *
1200  * Locking: None
1201  */
1202 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1203 {
1204 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1205 		return sprintf(p, "%s", driver->name);
1206 	else
1207 		return sprintf(p, "%s%d", driver->name,
1208 			       index + driver->name_base);
1209 }
1210 
1211 /**
1212  * tty_driver_lookup_tty() - find an existing tty, if any
1213  * @driver: the driver for the tty
1214  * @file: file object
1215  * @idx: the minor number
1216  *
1217  * Return: the tty, if found. If not found, return %NULL or ERR_PTR() if the
1218  * driver lookup() method returns an error.
1219  *
1220  * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1221  */
1222 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1223 		struct file *file, int idx)
1224 {
1225 	struct tty_struct *tty;
1226 
1227 	if (driver->ops->lookup) {
1228 		if (!file)
1229 			tty = ERR_PTR(-EIO);
1230 		else
1231 			tty = driver->ops->lookup(driver, file, idx);
1232 	} else {
1233 		if (idx >= driver->num)
1234 			return ERR_PTR(-EINVAL);
1235 		tty = driver->ttys[idx];
1236 	}
1237 	if (!IS_ERR(tty))
1238 		tty_kref_get(tty);
1239 	return tty;
1240 }
1241 
1242 /**
1243  * tty_init_termios	-  helper for termios setup
1244  * @tty: the tty to set up
1245  *
1246  * Initialise the termios structure for this tty. This runs under the
1247  * %tty_mutex currently so we can be relaxed about ordering.
1248  */
1249 void tty_init_termios(struct tty_struct *tty)
1250 {
1251 	struct ktermios *tp;
1252 	int idx = tty->index;
1253 
1254 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1255 		tty->termios = tty->driver->init_termios;
1256 	else {
1257 		/* Check for lazy saved data */
1258 		tp = tty->driver->termios[idx];
1259 		if (tp != NULL) {
1260 			tty->termios = *tp;
1261 			tty->termios.c_line  = tty->driver->init_termios.c_line;
1262 		} else
1263 			tty->termios = tty->driver->init_termios;
1264 	}
1265 	/* Compatibility until drivers always set this */
1266 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1267 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1268 }
1269 EXPORT_SYMBOL_GPL(tty_init_termios);
1270 
1271 /**
1272  * tty_standard_install - usual tty->ops->install
1273  * @driver: the driver for the tty
1274  * @tty: the tty
1275  *
1276  * If the @driver overrides @tty->ops->install, it still can call this function
1277  * to perform the standard install operations.
1278  */
1279 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1280 {
1281 	tty_init_termios(tty);
1282 	tty_driver_kref_get(driver);
1283 	tty->count++;
1284 	driver->ttys[tty->index] = tty;
1285 	return 0;
1286 }
1287 EXPORT_SYMBOL_GPL(tty_standard_install);
1288 
1289 /**
1290  * tty_driver_install_tty() - install a tty entry in the driver
1291  * @driver: the driver for the tty
1292  * @tty: the tty
1293  *
1294  * Install a tty object into the driver tables. The @tty->index field will be
1295  * set by the time this is called. This method is responsible for ensuring any
1296  * need additional structures are allocated and configured.
1297  *
1298  * Locking: tty_mutex for now
1299  */
1300 static int tty_driver_install_tty(struct tty_driver *driver,
1301 						struct tty_struct *tty)
1302 {
1303 	return driver->ops->install ? driver->ops->install(driver, tty) :
1304 		tty_standard_install(driver, tty);
1305 }
1306 
1307 /**
1308  * tty_driver_remove_tty() - remove a tty from the driver tables
1309  * @driver: the driver for the tty
1310  * @tty: tty to remove
1311  *
1312  * Remove a tty object from the driver tables. The tty->index field will be set
1313  * by the time this is called.
1314  *
1315  * Locking: tty_mutex for now
1316  */
1317 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1318 {
1319 	if (driver->ops->remove)
1320 		driver->ops->remove(driver, tty);
1321 	else
1322 		driver->ttys[tty->index] = NULL;
1323 }
1324 
1325 /**
1326  * tty_reopen()	- fast re-open of an open tty
1327  * @tty: the tty to open
1328  *
1329  * Re-opens on master ptys are not allowed and return -%EIO.
1330  *
1331  * Locking: Caller must hold tty_lock
1332  * Return: 0 on success, -errno on error.
1333  */
1334 static int tty_reopen(struct tty_struct *tty)
1335 {
1336 	struct tty_driver *driver = tty->driver;
1337 	struct tty_ldisc *ld;
1338 	int retval = 0;
1339 
1340 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1341 	    driver->subtype == PTY_TYPE_MASTER)
1342 		return -EIO;
1343 
1344 	if (!tty->count)
1345 		return -EAGAIN;
1346 
1347 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1348 		return -EBUSY;
1349 
1350 	ld = tty_ldisc_ref_wait(tty);
1351 	if (ld) {
1352 		tty_ldisc_deref(ld);
1353 	} else {
1354 		retval = tty_ldisc_lock(tty, 5 * HZ);
1355 		if (retval)
1356 			return retval;
1357 
1358 		if (!tty->ldisc)
1359 			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1360 		tty_ldisc_unlock(tty);
1361 	}
1362 
1363 	if (retval == 0)
1364 		tty->count++;
1365 
1366 	return retval;
1367 }
1368 
1369 /**
1370  * tty_init_dev		-	initialise a tty device
1371  * @driver: tty driver we are opening a device on
1372  * @idx: device index
1373  *
1374  * Prepare a tty device. This may not be a "new" clean device but could also be
1375  * an active device. The pty drivers require special handling because of this.
1376  *
1377  * Locking:
1378  *	The function is called under the tty_mutex, which protects us from the
1379  *	tty struct or driver itself going away.
1380  *
1381  * On exit the tty device has the line discipline attached and a reference
1382  * count of 1. If a pair was created for pty/tty use and the other was a pty
1383  * master then it too has a reference count of 1.
1384  *
1385  * WSH 06/09/97: Rewritten to remove races and properly clean up after a failed
1386  * open. The new code protects the open with a mutex, so it's really quite
1387  * straightforward. The mutex locking can probably be relaxed for the (most
1388  * common) case of reopening a tty.
1389  *
1390  * Return: new tty structure
1391  */
1392 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1393 {
1394 	struct tty_struct *tty;
1395 	int retval;
1396 
1397 	/*
1398 	 * First time open is complex, especially for PTY devices.
1399 	 * This code guarantees that either everything succeeds and the
1400 	 * TTY is ready for operation, or else the table slots are vacated
1401 	 * and the allocated memory released.  (Except that the termios
1402 	 * may be retained.)
1403 	 */
1404 
1405 	if (!try_module_get(driver->owner))
1406 		return ERR_PTR(-ENODEV);
1407 
1408 	tty = alloc_tty_struct(driver, idx);
1409 	if (!tty) {
1410 		retval = -ENOMEM;
1411 		goto err_module_put;
1412 	}
1413 
1414 	tty_lock(tty);
1415 	retval = tty_driver_install_tty(driver, tty);
1416 	if (retval < 0)
1417 		goto err_free_tty;
1418 
1419 	if (!tty->port)
1420 		tty->port = driver->ports[idx];
1421 
1422 	if (WARN_RATELIMIT(!tty->port,
1423 			"%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1424 			__func__, tty->driver->name)) {
1425 		retval = -EINVAL;
1426 		goto err_release_lock;
1427 	}
1428 
1429 	retval = tty_ldisc_lock(tty, 5 * HZ);
1430 	if (retval)
1431 		goto err_release_lock;
1432 	tty->port->itty = tty;
1433 
1434 	/*
1435 	 * Structures all installed ... call the ldisc open routines.
1436 	 * If we fail here just call release_tty to clean up.  No need
1437 	 * to decrement the use counts, as release_tty doesn't care.
1438 	 */
1439 	retval = tty_ldisc_setup(tty, tty->link);
1440 	if (retval)
1441 		goto err_release_tty;
1442 	tty_ldisc_unlock(tty);
1443 	/* Return the tty locked so that it cannot vanish under the caller */
1444 	return tty;
1445 
1446 err_free_tty:
1447 	tty_unlock(tty);
1448 	free_tty_struct(tty);
1449 err_module_put:
1450 	module_put(driver->owner);
1451 	return ERR_PTR(retval);
1452 
1453 	/* call the tty release_tty routine to clean out this slot */
1454 err_release_tty:
1455 	tty_ldisc_unlock(tty);
1456 	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1457 			     retval, idx);
1458 err_release_lock:
1459 	tty_unlock(tty);
1460 	release_tty(tty, idx);
1461 	return ERR_PTR(retval);
1462 }
1463 
1464 /**
1465  * tty_save_termios() - save tty termios data in driver table
1466  * @tty: tty whose termios data to save
1467  *
1468  * Locking: Caller guarantees serialisation with tty_init_termios().
1469  */
1470 void tty_save_termios(struct tty_struct *tty)
1471 {
1472 	struct ktermios *tp;
1473 	int idx = tty->index;
1474 
1475 	/* If the port is going to reset then it has no termios to save */
1476 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1477 		return;
1478 
1479 	/* Stash the termios data */
1480 	tp = tty->driver->termios[idx];
1481 	if (tp == NULL) {
1482 		tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1483 		if (tp == NULL)
1484 			return;
1485 		tty->driver->termios[idx] = tp;
1486 	}
1487 	*tp = tty->termios;
1488 }
1489 EXPORT_SYMBOL_GPL(tty_save_termios);
1490 
1491 /**
1492  * tty_flush_works	-	flush all works of a tty/pty pair
1493  * @tty: tty device to flush works for (or either end of a pty pair)
1494  *
1495  * Sync flush all works belonging to @tty (and the 'other' tty).
1496  */
1497 static void tty_flush_works(struct tty_struct *tty)
1498 {
1499 	flush_work(&tty->SAK_work);
1500 	flush_work(&tty->hangup_work);
1501 	if (tty->link) {
1502 		flush_work(&tty->link->SAK_work);
1503 		flush_work(&tty->link->hangup_work);
1504 	}
1505 }
1506 
1507 /**
1508  * release_one_tty	-	release tty structure memory
1509  * @work: work of tty we are obliterating
1510  *
1511  * Releases memory associated with a tty structure, and clears out the
1512  * driver table slots. This function is called when a device is no longer
1513  * in use. It also gets called when setup of a device fails.
1514  *
1515  * Locking:
1516  *	takes the file list lock internally when working on the list of ttys
1517  *	that the driver keeps.
1518  *
1519  * This method gets called from a work queue so that the driver private
1520  * cleanup ops can sleep (needed for USB at least)
1521  */
1522 static void release_one_tty(struct work_struct *work)
1523 {
1524 	struct tty_struct *tty =
1525 		container_of(work, struct tty_struct, hangup_work);
1526 	struct tty_driver *driver = tty->driver;
1527 	struct module *owner = driver->owner;
1528 
1529 	if (tty->ops->cleanup)
1530 		tty->ops->cleanup(tty);
1531 
1532 	tty_driver_kref_put(driver);
1533 	module_put(owner);
1534 
1535 	spin_lock(&tty->files_lock);
1536 	list_del_init(&tty->tty_files);
1537 	spin_unlock(&tty->files_lock);
1538 
1539 	put_pid(tty->ctrl.pgrp);
1540 	put_pid(tty->ctrl.session);
1541 	free_tty_struct(tty);
1542 }
1543 
1544 static void queue_release_one_tty(struct kref *kref)
1545 {
1546 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1547 
1548 	/* The hangup queue is now free so we can reuse it rather than
1549 	 *  waste a chunk of memory for each port.
1550 	 */
1551 	INIT_WORK(&tty->hangup_work, release_one_tty);
1552 	schedule_work(&tty->hangup_work);
1553 }
1554 
1555 /**
1556  * tty_kref_put		-	release a tty kref
1557  * @tty: tty device
1558  *
1559  * Release a reference to the @tty device and if need be let the kref layer
1560  * destruct the object for us.
1561  */
1562 void tty_kref_put(struct tty_struct *tty)
1563 {
1564 	if (tty)
1565 		kref_put(&tty->kref, queue_release_one_tty);
1566 }
1567 EXPORT_SYMBOL(tty_kref_put);
1568 
1569 /**
1570  * release_tty		-	release tty structure memory
1571  * @tty: tty device release
1572  * @idx: index of the tty device release
1573  *
1574  * Release both @tty and a possible linked partner (think pty pair),
1575  * and decrement the refcount of the backing module.
1576  *
1577  * Locking:
1578  *	tty_mutex
1579  *	takes the file list lock internally when working on the list of ttys
1580  *	that the driver keeps.
1581  */
1582 static void release_tty(struct tty_struct *tty, int idx)
1583 {
1584 	/* This should always be true but check for the moment */
1585 	WARN_ON(tty->index != idx);
1586 	WARN_ON(!mutex_is_locked(&tty_mutex));
1587 	if (tty->ops->shutdown)
1588 		tty->ops->shutdown(tty);
1589 	tty_save_termios(tty);
1590 	tty_driver_remove_tty(tty->driver, tty);
1591 	if (tty->port)
1592 		tty->port->itty = NULL;
1593 	if (tty->link)
1594 		tty->link->port->itty = NULL;
1595 	if (tty->port)
1596 		tty_buffer_cancel_work(tty->port);
1597 	if (tty->link)
1598 		tty_buffer_cancel_work(tty->link->port);
1599 
1600 	tty_kref_put(tty->link);
1601 	tty_kref_put(tty);
1602 }
1603 
1604 /**
1605  * tty_release_checks - check a tty before real release
1606  * @tty: tty to check
1607  * @idx: index of the tty
1608  *
1609  * Performs some paranoid checking before true release of the @tty. This is a
1610  * no-op unless %TTY_PARANOIA_CHECK is defined.
1611  */
1612 static int tty_release_checks(struct tty_struct *tty, int idx)
1613 {
1614 #ifdef TTY_PARANOIA_CHECK
1615 	if (idx < 0 || idx >= tty->driver->num) {
1616 		tty_debug(tty, "bad idx %d\n", idx);
1617 		return -1;
1618 	}
1619 
1620 	/* not much to check for devpts */
1621 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1622 		return 0;
1623 
1624 	if (tty != tty->driver->ttys[idx]) {
1625 		tty_debug(tty, "bad driver table[%d] = %p\n",
1626 			  idx, tty->driver->ttys[idx]);
1627 		return -1;
1628 	}
1629 	if (tty->driver->other) {
1630 		struct tty_struct *o_tty = tty->link;
1631 
1632 		if (o_tty != tty->driver->other->ttys[idx]) {
1633 			tty_debug(tty, "bad other table[%d] = %p\n",
1634 				  idx, tty->driver->other->ttys[idx]);
1635 			return -1;
1636 		}
1637 		if (o_tty->link != tty) {
1638 			tty_debug(tty, "bad link = %p\n", o_tty->link);
1639 			return -1;
1640 		}
1641 	}
1642 #endif
1643 	return 0;
1644 }
1645 
1646 /**
1647  * tty_kclose      -       closes tty opened by tty_kopen
1648  * @tty: tty device
1649  *
1650  * Performs the final steps to release and free a tty device. It is the same as
1651  * tty_release_struct() except that it also resets %TTY_PORT_KOPENED flag on
1652  * @tty->port.
1653  */
1654 void tty_kclose(struct tty_struct *tty)
1655 {
1656 	/*
1657 	 * Ask the line discipline code to release its structures
1658 	 */
1659 	tty_ldisc_release(tty);
1660 
1661 	/* Wait for pending work before tty destruction commences */
1662 	tty_flush_works(tty);
1663 
1664 	tty_debug_hangup(tty, "freeing structure\n");
1665 	/*
1666 	 * The release_tty function takes care of the details of clearing
1667 	 * the slots and preserving the termios structure.
1668 	 */
1669 	mutex_lock(&tty_mutex);
1670 	tty_port_set_kopened(tty->port, 0);
1671 	release_tty(tty, tty->index);
1672 	mutex_unlock(&tty_mutex);
1673 }
1674 EXPORT_SYMBOL_GPL(tty_kclose);
1675 
1676 /**
1677  * tty_release_struct	-	release a tty struct
1678  * @tty: tty device
1679  * @idx: index of the tty
1680  *
1681  * Performs the final steps to release and free a tty device. It is roughly the
1682  * reverse of tty_init_dev().
1683  */
1684 void tty_release_struct(struct tty_struct *tty, int idx)
1685 {
1686 	/*
1687 	 * Ask the line discipline code to release its structures
1688 	 */
1689 	tty_ldisc_release(tty);
1690 
1691 	/* Wait for pending work before tty destruction commmences */
1692 	tty_flush_works(tty);
1693 
1694 	tty_debug_hangup(tty, "freeing structure\n");
1695 	/*
1696 	 * The release_tty function takes care of the details of clearing
1697 	 * the slots and preserving the termios structure.
1698 	 */
1699 	mutex_lock(&tty_mutex);
1700 	release_tty(tty, idx);
1701 	mutex_unlock(&tty_mutex);
1702 }
1703 EXPORT_SYMBOL_GPL(tty_release_struct);
1704 
1705 /**
1706  * tty_release		-	vfs callback for close
1707  * @inode: inode of tty
1708  * @filp: file pointer for handle to tty
1709  *
1710  * Called the last time each file handle is closed that references this tty.
1711  * There may however be several such references.
1712  *
1713  * Locking:
1714  *	Takes BKL. See tty_release_dev().
1715  *
1716  * Even releasing the tty structures is a tricky business. We have to be very
1717  * careful that the structures are all released at the same time, as interrupts
1718  * might otherwise get the wrong pointers.
1719  *
1720  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1721  * lead to double frees or releasing memory still in use.
1722  */
1723 int tty_release(struct inode *inode, struct file *filp)
1724 {
1725 	struct tty_struct *tty = file_tty(filp);
1726 	struct tty_struct *o_tty = NULL;
1727 	int	do_sleep, final;
1728 	int	idx;
1729 	long	timeout = 0;
1730 	int	once = 1;
1731 
1732 	if (tty_paranoia_check(tty, inode, __func__))
1733 		return 0;
1734 
1735 	tty_lock(tty);
1736 	check_tty_count(tty, __func__);
1737 
1738 	__tty_fasync(-1, filp, 0);
1739 
1740 	idx = tty->index;
1741 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1742 	    tty->driver->subtype == PTY_TYPE_MASTER)
1743 		o_tty = tty->link;
1744 
1745 	if (tty_release_checks(tty, idx)) {
1746 		tty_unlock(tty);
1747 		return 0;
1748 	}
1749 
1750 	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1751 
1752 	if (tty->ops->close)
1753 		tty->ops->close(tty, filp);
1754 
1755 	/* If tty is pty master, lock the slave pty (stable lock order) */
1756 	tty_lock_slave(o_tty);
1757 
1758 	/*
1759 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1760 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1761 	 * wait queues and kick everyone out _before_ actually starting to
1762 	 * close.  This ensures that we won't block while releasing the tty
1763 	 * structure.
1764 	 *
1765 	 * The test for the o_tty closing is necessary, since the master and
1766 	 * slave sides may close in any order.  If the slave side closes out
1767 	 * first, its count will be one, since the master side holds an open.
1768 	 * Thus this test wouldn't be triggered at the time the slave closed,
1769 	 * so we do it now.
1770 	 */
1771 	while (1) {
1772 		do_sleep = 0;
1773 
1774 		if (tty->count <= 1) {
1775 			if (waitqueue_active(&tty->read_wait)) {
1776 				wake_up_poll(&tty->read_wait, EPOLLIN);
1777 				do_sleep++;
1778 			}
1779 			if (waitqueue_active(&tty->write_wait)) {
1780 				wake_up_poll(&tty->write_wait, EPOLLOUT);
1781 				do_sleep++;
1782 			}
1783 		}
1784 		if (o_tty && o_tty->count <= 1) {
1785 			if (waitqueue_active(&o_tty->read_wait)) {
1786 				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1787 				do_sleep++;
1788 			}
1789 			if (waitqueue_active(&o_tty->write_wait)) {
1790 				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1791 				do_sleep++;
1792 			}
1793 		}
1794 		if (!do_sleep)
1795 			break;
1796 
1797 		if (once) {
1798 			once = 0;
1799 			tty_warn(tty, "read/write wait queue active!\n");
1800 		}
1801 		schedule_timeout_killable(timeout);
1802 		if (timeout < 120 * HZ)
1803 			timeout = 2 * timeout + 1;
1804 		else
1805 			timeout = MAX_SCHEDULE_TIMEOUT;
1806 	}
1807 
1808 	if (o_tty) {
1809 		if (--o_tty->count < 0) {
1810 			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1811 			o_tty->count = 0;
1812 		}
1813 	}
1814 	if (--tty->count < 0) {
1815 		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1816 		tty->count = 0;
1817 	}
1818 
1819 	/*
1820 	 * We've decremented tty->count, so we need to remove this file
1821 	 * descriptor off the tty->tty_files list; this serves two
1822 	 * purposes:
1823 	 *  - check_tty_count sees the correct number of file descriptors
1824 	 *    associated with this tty.
1825 	 *  - do_tty_hangup no longer sees this file descriptor as
1826 	 *    something that needs to be handled for hangups.
1827 	 */
1828 	tty_del_file(filp);
1829 
1830 	/*
1831 	 * Perform some housekeeping before deciding whether to return.
1832 	 *
1833 	 * If _either_ side is closing, make sure there aren't any
1834 	 * processes that still think tty or o_tty is their controlling
1835 	 * tty.
1836 	 */
1837 	if (!tty->count) {
1838 		read_lock(&tasklist_lock);
1839 		session_clear_tty(tty->ctrl.session);
1840 		if (o_tty)
1841 			session_clear_tty(o_tty->ctrl.session);
1842 		read_unlock(&tasklist_lock);
1843 	}
1844 
1845 	/* check whether both sides are closing ... */
1846 	final = !tty->count && !(o_tty && o_tty->count);
1847 
1848 	tty_unlock_slave(o_tty);
1849 	tty_unlock(tty);
1850 
1851 	/* At this point, the tty->count == 0 should ensure a dead tty
1852 	 * cannot be re-opened by a racing opener.
1853 	 */
1854 
1855 	if (!final)
1856 		return 0;
1857 
1858 	tty_debug_hangup(tty, "final close\n");
1859 
1860 	tty_release_struct(tty, idx);
1861 	return 0;
1862 }
1863 
1864 /**
1865  * tty_open_current_tty - get locked tty of current task
1866  * @device: device number
1867  * @filp: file pointer to tty
1868  * @return: locked tty of the current task iff @device is /dev/tty
1869  *
1870  * Performs a re-open of the current task's controlling tty.
1871  *
1872  * We cannot return driver and index like for the other nodes because devpts
1873  * will not work then. It expects inodes to be from devpts FS.
1874  */
1875 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1876 {
1877 	struct tty_struct *tty;
1878 	int retval;
1879 
1880 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1881 		return NULL;
1882 
1883 	tty = get_current_tty();
1884 	if (!tty)
1885 		return ERR_PTR(-ENXIO);
1886 
1887 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1888 	/* noctty = 1; */
1889 	tty_lock(tty);
1890 	tty_kref_put(tty);	/* safe to drop the kref now */
1891 
1892 	retval = tty_reopen(tty);
1893 	if (retval < 0) {
1894 		tty_unlock(tty);
1895 		tty = ERR_PTR(retval);
1896 	}
1897 	return tty;
1898 }
1899 
1900 /**
1901  * tty_lookup_driver - lookup a tty driver for a given device file
1902  * @device: device number
1903  * @filp: file pointer to tty
1904  * @index: index for the device in the @return driver
1905  *
1906  * If returned value is not erroneous, the caller is responsible to decrement
1907  * the refcount by tty_driver_kref_put().
1908  *
1909  * Locking: %tty_mutex protects get_tty_driver()
1910  *
1911  * Return: driver for this inode (with increased refcount)
1912  */
1913 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1914 		int *index)
1915 {
1916 	struct tty_driver *driver = NULL;
1917 
1918 	switch (device) {
1919 #ifdef CONFIG_VT
1920 	case MKDEV(TTY_MAJOR, 0): {
1921 		extern struct tty_driver *console_driver;
1922 
1923 		driver = tty_driver_kref_get(console_driver);
1924 		*index = fg_console;
1925 		break;
1926 	}
1927 #endif
1928 	case MKDEV(TTYAUX_MAJOR, 1): {
1929 		struct tty_driver *console_driver = console_device(index);
1930 
1931 		if (console_driver) {
1932 			driver = tty_driver_kref_get(console_driver);
1933 			if (driver && filp) {
1934 				/* Don't let /dev/console block */
1935 				filp->f_flags |= O_NONBLOCK;
1936 				break;
1937 			}
1938 		}
1939 		if (driver)
1940 			tty_driver_kref_put(driver);
1941 		return ERR_PTR(-ENODEV);
1942 	}
1943 	default:
1944 		driver = get_tty_driver(device, index);
1945 		if (!driver)
1946 			return ERR_PTR(-ENODEV);
1947 		break;
1948 	}
1949 	return driver;
1950 }
1951 
1952 static struct tty_struct *tty_kopen(dev_t device, int shared)
1953 {
1954 	struct tty_struct *tty;
1955 	struct tty_driver *driver;
1956 	int index = -1;
1957 
1958 	mutex_lock(&tty_mutex);
1959 	driver = tty_lookup_driver(device, NULL, &index);
1960 	if (IS_ERR(driver)) {
1961 		mutex_unlock(&tty_mutex);
1962 		return ERR_CAST(driver);
1963 	}
1964 
1965 	/* check whether we're reopening an existing tty */
1966 	tty = tty_driver_lookup_tty(driver, NULL, index);
1967 	if (IS_ERR(tty) || shared)
1968 		goto out;
1969 
1970 	if (tty) {
1971 		/* drop kref from tty_driver_lookup_tty() */
1972 		tty_kref_put(tty);
1973 		tty = ERR_PTR(-EBUSY);
1974 	} else { /* tty_init_dev returns tty with the tty_lock held */
1975 		tty = tty_init_dev(driver, index);
1976 		if (IS_ERR(tty))
1977 			goto out;
1978 		tty_port_set_kopened(tty->port, 1);
1979 	}
1980 out:
1981 	mutex_unlock(&tty_mutex);
1982 	tty_driver_kref_put(driver);
1983 	return tty;
1984 }
1985 
1986 /**
1987  * tty_kopen_exclusive	-	open a tty device for kernel
1988  * @device: dev_t of device to open
1989  *
1990  * Opens tty exclusively for kernel. Performs the driver lookup, makes sure
1991  * it's not already opened and performs the first-time tty initialization.
1992  *
1993  * Claims the global %tty_mutex to serialize:
1994  *  * concurrent first-time tty initialization
1995  *  * concurrent tty driver removal w/ lookup
1996  *  * concurrent tty removal from driver table
1997  *
1998  * Return: the locked initialized &tty_struct
1999  */
2000 struct tty_struct *tty_kopen_exclusive(dev_t device)
2001 {
2002 	return tty_kopen(device, 0);
2003 }
2004 EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2005 
2006 /**
2007  * tty_kopen_shared	-	open a tty device for shared in-kernel use
2008  * @device: dev_t of device to open
2009  *
2010  * Opens an already existing tty for in-kernel use. Compared to
2011  * tty_kopen_exclusive() above it doesn't ensure to be the only user.
2012  *
2013  * Locking: identical to tty_kopen() above.
2014  */
2015 struct tty_struct *tty_kopen_shared(dev_t device)
2016 {
2017 	return tty_kopen(device, 1);
2018 }
2019 EXPORT_SYMBOL_GPL(tty_kopen_shared);
2020 
2021 /**
2022  * tty_open_by_driver	-	open a tty device
2023  * @device: dev_t of device to open
2024  * @filp: file pointer to tty
2025  *
2026  * Performs the driver lookup, checks for a reopen, or otherwise performs the
2027  * first-time tty initialization.
2028  *
2029  *
2030  * Claims the global tty_mutex to serialize:
2031  *  * concurrent first-time tty initialization
2032  *  * concurrent tty driver removal w/ lookup
2033  *  * concurrent tty removal from driver table
2034  *
2035  * Return: the locked initialized or re-opened &tty_struct
2036  */
2037 static struct tty_struct *tty_open_by_driver(dev_t device,
2038 					     struct file *filp)
2039 {
2040 	struct tty_struct *tty;
2041 	struct tty_driver *driver = NULL;
2042 	int index = -1;
2043 	int retval;
2044 
2045 	mutex_lock(&tty_mutex);
2046 	driver = tty_lookup_driver(device, filp, &index);
2047 	if (IS_ERR(driver)) {
2048 		mutex_unlock(&tty_mutex);
2049 		return ERR_CAST(driver);
2050 	}
2051 
2052 	/* check whether we're reopening an existing tty */
2053 	tty = tty_driver_lookup_tty(driver, filp, index);
2054 	if (IS_ERR(tty)) {
2055 		mutex_unlock(&tty_mutex);
2056 		goto out;
2057 	}
2058 
2059 	if (tty) {
2060 		if (tty_port_kopened(tty->port)) {
2061 			tty_kref_put(tty);
2062 			mutex_unlock(&tty_mutex);
2063 			tty = ERR_PTR(-EBUSY);
2064 			goto out;
2065 		}
2066 		mutex_unlock(&tty_mutex);
2067 		retval = tty_lock_interruptible(tty);
2068 		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2069 		if (retval) {
2070 			if (retval == -EINTR)
2071 				retval = -ERESTARTSYS;
2072 			tty = ERR_PTR(retval);
2073 			goto out;
2074 		}
2075 		retval = tty_reopen(tty);
2076 		if (retval < 0) {
2077 			tty_unlock(tty);
2078 			tty = ERR_PTR(retval);
2079 		}
2080 	} else { /* Returns with the tty_lock held for now */
2081 		tty = tty_init_dev(driver, index);
2082 		mutex_unlock(&tty_mutex);
2083 	}
2084 out:
2085 	tty_driver_kref_put(driver);
2086 	return tty;
2087 }
2088 
2089 /**
2090  * tty_open	-	open a tty device
2091  * @inode: inode of device file
2092  * @filp: file pointer to tty
2093  *
2094  * tty_open() and tty_release() keep up the tty count that contains the number
2095  * of opens done on a tty. We cannot use the inode-count, as different inodes
2096  * might point to the same tty.
2097  *
2098  * Open-counting is needed for pty masters, as well as for keeping track of
2099  * serial lines: DTR is dropped when the last close happens.
2100  * (This is not done solely through tty->count, now.  - Ted 1/27/92)
2101  *
2102  * The termios state of a pty is reset on the first open so that settings don't
2103  * persist across reuse.
2104  *
2105  * Locking:
2106  *  * %tty_mutex protects tty, tty_lookup_driver() and tty_init_dev().
2107  *  * @tty->count should protect the rest.
2108  *  * ->siglock protects ->signal/->sighand
2109  *
2110  * Note: the tty_unlock/lock cases without a ref are only safe due to %tty_mutex
2111  */
2112 static int tty_open(struct inode *inode, struct file *filp)
2113 {
2114 	struct tty_struct *tty;
2115 	int noctty, retval;
2116 	dev_t device = inode->i_rdev;
2117 	unsigned saved_flags = filp->f_flags;
2118 
2119 	nonseekable_open(inode, filp);
2120 
2121 retry_open:
2122 	retval = tty_alloc_file(filp);
2123 	if (retval)
2124 		return -ENOMEM;
2125 
2126 	tty = tty_open_current_tty(device, filp);
2127 	if (!tty)
2128 		tty = tty_open_by_driver(device, filp);
2129 
2130 	if (IS_ERR(tty)) {
2131 		tty_free_file(filp);
2132 		retval = PTR_ERR(tty);
2133 		if (retval != -EAGAIN || signal_pending(current))
2134 			return retval;
2135 		schedule();
2136 		goto retry_open;
2137 	}
2138 
2139 	tty_add_file(tty, filp);
2140 
2141 	check_tty_count(tty, __func__);
2142 	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2143 
2144 	if (tty->ops->open)
2145 		retval = tty->ops->open(tty, filp);
2146 	else
2147 		retval = -ENODEV;
2148 	filp->f_flags = saved_flags;
2149 
2150 	if (retval) {
2151 		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2152 
2153 		tty_unlock(tty); /* need to call tty_release without BTM */
2154 		tty_release(inode, filp);
2155 		if (retval != -ERESTARTSYS)
2156 			return retval;
2157 
2158 		if (signal_pending(current))
2159 			return retval;
2160 
2161 		schedule();
2162 		/*
2163 		 * Need to reset f_op in case a hangup happened.
2164 		 */
2165 		if (tty_hung_up_p(filp))
2166 			filp->f_op = &tty_fops;
2167 		goto retry_open;
2168 	}
2169 	clear_bit(TTY_HUPPED, &tty->flags);
2170 
2171 	noctty = (filp->f_flags & O_NOCTTY) ||
2172 		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2173 		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2174 		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2175 		  tty->driver->subtype == PTY_TYPE_MASTER);
2176 	if (!noctty)
2177 		tty_open_proc_set_tty(filp, tty);
2178 	tty_unlock(tty);
2179 	return 0;
2180 }
2181 
2182 
2183 /**
2184  * tty_poll	-	check tty status
2185  * @filp: file being polled
2186  * @wait: poll wait structures to update
2187  *
2188  * Call the line discipline polling method to obtain the poll status of the
2189  * device.
2190  *
2191  * Locking: locks called line discipline but ldisc poll method may be
2192  * re-entered freely by other callers.
2193  */
2194 static __poll_t tty_poll(struct file *filp, poll_table *wait)
2195 {
2196 	struct tty_struct *tty = file_tty(filp);
2197 	struct tty_ldisc *ld;
2198 	__poll_t ret = 0;
2199 
2200 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2201 		return 0;
2202 
2203 	ld = tty_ldisc_ref_wait(tty);
2204 	if (!ld)
2205 		return hung_up_tty_poll(filp, wait);
2206 	if (ld->ops->poll)
2207 		ret = ld->ops->poll(tty, filp, wait);
2208 	tty_ldisc_deref(ld);
2209 	return ret;
2210 }
2211 
2212 static int __tty_fasync(int fd, struct file *filp, int on)
2213 {
2214 	struct tty_struct *tty = file_tty(filp);
2215 	unsigned long flags;
2216 	int retval = 0;
2217 
2218 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2219 		goto out;
2220 
2221 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2222 	if (retval <= 0)
2223 		goto out;
2224 
2225 	if (on) {
2226 		enum pid_type type;
2227 		struct pid *pid;
2228 
2229 		spin_lock_irqsave(&tty->ctrl.lock, flags);
2230 		if (tty->ctrl.pgrp) {
2231 			pid = tty->ctrl.pgrp;
2232 			type = PIDTYPE_PGID;
2233 		} else {
2234 			pid = task_pid(current);
2235 			type = PIDTYPE_TGID;
2236 		}
2237 		get_pid(pid);
2238 		spin_unlock_irqrestore(&tty->ctrl.lock, flags);
2239 		__f_setown(filp, pid, type, 0);
2240 		put_pid(pid);
2241 		retval = 0;
2242 	}
2243 out:
2244 	return retval;
2245 }
2246 
2247 static int tty_fasync(int fd, struct file *filp, int on)
2248 {
2249 	struct tty_struct *tty = file_tty(filp);
2250 	int retval = -ENOTTY;
2251 
2252 	tty_lock(tty);
2253 	if (!tty_hung_up_p(filp))
2254 		retval = __tty_fasync(fd, filp, on);
2255 	tty_unlock(tty);
2256 
2257 	return retval;
2258 }
2259 
2260 static bool tty_legacy_tiocsti __read_mostly = IS_ENABLED(CONFIG_LEGACY_TIOCSTI);
2261 /**
2262  * tiocsti		-	fake input character
2263  * @tty: tty to fake input into
2264  * @p: pointer to character
2265  *
2266  * Fake input to a tty device. Does the necessary locking and input management.
2267  *
2268  * FIXME: does not honour flow control ??
2269  *
2270  * Locking:
2271  *  * Called functions take tty_ldiscs_lock
2272  *  * current->signal->tty check is safe without locks
2273  */
2274 static int tiocsti(struct tty_struct *tty, char __user *p)
2275 {
2276 	char ch, mbz = 0;
2277 	struct tty_ldisc *ld;
2278 
2279 	if (!tty_legacy_tiocsti)
2280 		return -EIO;
2281 
2282 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2283 		return -EPERM;
2284 	if (get_user(ch, p))
2285 		return -EFAULT;
2286 	tty_audit_tiocsti(tty, ch);
2287 	ld = tty_ldisc_ref_wait(tty);
2288 	if (!ld)
2289 		return -EIO;
2290 	tty_buffer_lock_exclusive(tty->port);
2291 	if (ld->ops->receive_buf)
2292 		ld->ops->receive_buf(tty, &ch, &mbz, 1);
2293 	tty_buffer_unlock_exclusive(tty->port);
2294 	tty_ldisc_deref(ld);
2295 	return 0;
2296 }
2297 
2298 /**
2299  * tiocgwinsz		-	implement window query ioctl
2300  * @tty: tty
2301  * @arg: user buffer for result
2302  *
2303  * Copies the kernel idea of the window size into the user buffer.
2304  *
2305  * Locking: @tty->winsize_mutex is taken to ensure the winsize data is
2306  * consistent.
2307  */
2308 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2309 {
2310 	int err;
2311 
2312 	mutex_lock(&tty->winsize_mutex);
2313 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2314 	mutex_unlock(&tty->winsize_mutex);
2315 
2316 	return err ? -EFAULT : 0;
2317 }
2318 
2319 /**
2320  * tty_do_resize	-	resize event
2321  * @tty: tty being resized
2322  * @ws: new dimensions
2323  *
2324  * Update the termios variables and send the necessary signals to peform a
2325  * terminal resize correctly.
2326  */
2327 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2328 {
2329 	struct pid *pgrp;
2330 
2331 	/* Lock the tty */
2332 	mutex_lock(&tty->winsize_mutex);
2333 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2334 		goto done;
2335 
2336 	/* Signal the foreground process group */
2337 	pgrp = tty_get_pgrp(tty);
2338 	if (pgrp)
2339 		kill_pgrp(pgrp, SIGWINCH, 1);
2340 	put_pid(pgrp);
2341 
2342 	tty->winsize = *ws;
2343 done:
2344 	mutex_unlock(&tty->winsize_mutex);
2345 	return 0;
2346 }
2347 EXPORT_SYMBOL(tty_do_resize);
2348 
2349 /**
2350  * tiocswinsz		-	implement window size set ioctl
2351  * @tty: tty side of tty
2352  * @arg: user buffer for result
2353  *
2354  * Copies the user idea of the window size to the kernel. Traditionally this is
2355  * just advisory information but for the Linux console it actually has driver
2356  * level meaning and triggers a VC resize.
2357  *
2358  * Locking:
2359  *	Driver dependent. The default do_resize method takes the tty termios
2360  *	mutex and ctrl.lock. The console takes its own lock then calls into the
2361  *	default method.
2362  */
2363 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2364 {
2365 	struct winsize tmp_ws;
2366 
2367 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2368 		return -EFAULT;
2369 
2370 	if (tty->ops->resize)
2371 		return tty->ops->resize(tty, &tmp_ws);
2372 	else
2373 		return tty_do_resize(tty, &tmp_ws);
2374 }
2375 
2376 /**
2377  * tioccons	-	allow admin to move logical console
2378  * @file: the file to become console
2379  *
2380  * Allow the administrator to move the redirected console device.
2381  *
2382  * Locking: uses redirect_lock to guard the redirect information
2383  */
2384 static int tioccons(struct file *file)
2385 {
2386 	if (!capable(CAP_SYS_ADMIN))
2387 		return -EPERM;
2388 	if (file->f_op->write_iter == redirected_tty_write) {
2389 		struct file *f;
2390 
2391 		spin_lock(&redirect_lock);
2392 		f = redirect;
2393 		redirect = NULL;
2394 		spin_unlock(&redirect_lock);
2395 		if (f)
2396 			fput(f);
2397 		return 0;
2398 	}
2399 	if (file->f_op->write_iter != tty_write)
2400 		return -ENOTTY;
2401 	if (!(file->f_mode & FMODE_WRITE))
2402 		return -EBADF;
2403 	if (!(file->f_mode & FMODE_CAN_WRITE))
2404 		return -EINVAL;
2405 	spin_lock(&redirect_lock);
2406 	if (redirect) {
2407 		spin_unlock(&redirect_lock);
2408 		return -EBUSY;
2409 	}
2410 	redirect = get_file(file);
2411 	spin_unlock(&redirect_lock);
2412 	return 0;
2413 }
2414 
2415 /**
2416  * tiocsetd	-	set line discipline
2417  * @tty: tty device
2418  * @p: pointer to user data
2419  *
2420  * Set the line discipline according to user request.
2421  *
2422  * Locking: see tty_set_ldisc(), this function is just a helper
2423  */
2424 static int tiocsetd(struct tty_struct *tty, int __user *p)
2425 {
2426 	int disc;
2427 	int ret;
2428 
2429 	if (get_user(disc, p))
2430 		return -EFAULT;
2431 
2432 	ret = tty_set_ldisc(tty, disc);
2433 
2434 	return ret;
2435 }
2436 
2437 /**
2438  * tiocgetd	-	get line discipline
2439  * @tty: tty device
2440  * @p: pointer to user data
2441  *
2442  * Retrieves the line discipline id directly from the ldisc.
2443  *
2444  * Locking: waits for ldisc reference (in case the line discipline is changing
2445  * or the @tty is being hungup)
2446  */
2447 static int tiocgetd(struct tty_struct *tty, int __user *p)
2448 {
2449 	struct tty_ldisc *ld;
2450 	int ret;
2451 
2452 	ld = tty_ldisc_ref_wait(tty);
2453 	if (!ld)
2454 		return -EIO;
2455 	ret = put_user(ld->ops->num, p);
2456 	tty_ldisc_deref(ld);
2457 	return ret;
2458 }
2459 
2460 /**
2461  * send_break	-	performed time break
2462  * @tty: device to break on
2463  * @duration: timeout in mS
2464  *
2465  * Perform a timed break on hardware that lacks its own driver level timed
2466  * break functionality.
2467  *
2468  * Locking:
2469  *	@tty->atomic_write_lock serializes
2470  */
2471 static int send_break(struct tty_struct *tty, unsigned int duration)
2472 {
2473 	int retval;
2474 
2475 	if (tty->ops->break_ctl == NULL)
2476 		return 0;
2477 
2478 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2479 		retval = tty->ops->break_ctl(tty, duration);
2480 	else {
2481 		/* Do the work ourselves */
2482 		if (tty_write_lock(tty, 0) < 0)
2483 			return -EINTR;
2484 		retval = tty->ops->break_ctl(tty, -1);
2485 		if (retval)
2486 			goto out;
2487 		if (!signal_pending(current))
2488 			msleep_interruptible(duration);
2489 		retval = tty->ops->break_ctl(tty, 0);
2490 out:
2491 		tty_write_unlock(tty);
2492 		if (signal_pending(current))
2493 			retval = -EINTR;
2494 	}
2495 	return retval;
2496 }
2497 
2498 /**
2499  * tty_tiocmget		-	get modem status
2500  * @tty: tty device
2501  * @p: pointer to result
2502  *
2503  * Obtain the modem status bits from the tty driver if the feature is
2504  * supported. Return -%ENOTTY if it is not available.
2505  *
2506  * Locking: none (up to the driver)
2507  */
2508 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2509 {
2510 	int retval = -ENOTTY;
2511 
2512 	if (tty->ops->tiocmget) {
2513 		retval = tty->ops->tiocmget(tty);
2514 
2515 		if (retval >= 0)
2516 			retval = put_user(retval, p);
2517 	}
2518 	return retval;
2519 }
2520 
2521 /**
2522  * tty_tiocmset		-	set modem status
2523  * @tty: tty device
2524  * @cmd: command - clear bits, set bits or set all
2525  * @p: pointer to desired bits
2526  *
2527  * Set the modem status bits from the tty driver if the feature
2528  * is supported. Return -%ENOTTY if it is not available.
2529  *
2530  * Locking: none (up to the driver)
2531  */
2532 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2533 	     unsigned __user *p)
2534 {
2535 	int retval;
2536 	unsigned int set, clear, val;
2537 
2538 	if (tty->ops->tiocmset == NULL)
2539 		return -ENOTTY;
2540 
2541 	retval = get_user(val, p);
2542 	if (retval)
2543 		return retval;
2544 	set = clear = 0;
2545 	switch (cmd) {
2546 	case TIOCMBIS:
2547 		set = val;
2548 		break;
2549 	case TIOCMBIC:
2550 		clear = val;
2551 		break;
2552 	case TIOCMSET:
2553 		set = val;
2554 		clear = ~val;
2555 		break;
2556 	}
2557 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2558 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2559 	return tty->ops->tiocmset(tty, set, clear);
2560 }
2561 
2562 /**
2563  * tty_get_icount	-	get tty statistics
2564  * @tty: tty device
2565  * @icount: output parameter
2566  *
2567  * Gets a copy of the @tty's icount statistics.
2568  *
2569  * Locking: none (up to the driver)
2570  */
2571 int tty_get_icount(struct tty_struct *tty,
2572 		   struct serial_icounter_struct *icount)
2573 {
2574 	memset(icount, 0, sizeof(*icount));
2575 
2576 	if (tty->ops->get_icount)
2577 		return tty->ops->get_icount(tty, icount);
2578 	else
2579 		return -ENOTTY;
2580 }
2581 EXPORT_SYMBOL_GPL(tty_get_icount);
2582 
2583 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2584 {
2585 	struct serial_icounter_struct icount;
2586 	int retval;
2587 
2588 	retval = tty_get_icount(tty, &icount);
2589 	if (retval != 0)
2590 		return retval;
2591 
2592 	if (copy_to_user(arg, &icount, sizeof(icount)))
2593 		return -EFAULT;
2594 	return 0;
2595 }
2596 
2597 static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss)
2598 {
2599 	char comm[TASK_COMM_LEN];
2600 	int flags;
2601 
2602 	flags = ss->flags & ASYNC_DEPRECATED;
2603 
2604 	if (flags)
2605 		pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2606 				__func__, get_task_comm(comm, current), flags);
2607 
2608 	if (!tty->ops->set_serial)
2609 		return -ENOTTY;
2610 
2611 	return tty->ops->set_serial(tty, ss);
2612 }
2613 
2614 static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2615 {
2616 	struct serial_struct v;
2617 
2618 	if (copy_from_user(&v, ss, sizeof(*ss)))
2619 		return -EFAULT;
2620 
2621 	return tty_set_serial(tty, &v);
2622 }
2623 
2624 static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2625 {
2626 	struct serial_struct v;
2627 	int err;
2628 
2629 	memset(&v, 0, sizeof(v));
2630 	if (!tty->ops->get_serial)
2631 		return -ENOTTY;
2632 	err = tty->ops->get_serial(tty, &v);
2633 	if (!err && copy_to_user(ss, &v, sizeof(v)))
2634 		err = -EFAULT;
2635 	return err;
2636 }
2637 
2638 /*
2639  * if pty, return the slave side (real_tty)
2640  * otherwise, return self
2641  */
2642 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2643 {
2644 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2645 	    tty->driver->subtype == PTY_TYPE_MASTER)
2646 		tty = tty->link;
2647 	return tty;
2648 }
2649 
2650 /*
2651  * Split this up, as gcc can choke on it otherwise..
2652  */
2653 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2654 {
2655 	struct tty_struct *tty = file_tty(file);
2656 	struct tty_struct *real_tty;
2657 	void __user *p = (void __user *)arg;
2658 	int retval;
2659 	struct tty_ldisc *ld;
2660 
2661 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2662 		return -EINVAL;
2663 
2664 	real_tty = tty_pair_get_tty(tty);
2665 
2666 	/*
2667 	 * Factor out some common prep work
2668 	 */
2669 	switch (cmd) {
2670 	case TIOCSETD:
2671 	case TIOCSBRK:
2672 	case TIOCCBRK:
2673 	case TCSBRK:
2674 	case TCSBRKP:
2675 		retval = tty_check_change(tty);
2676 		if (retval)
2677 			return retval;
2678 		if (cmd != TIOCCBRK) {
2679 			tty_wait_until_sent(tty, 0);
2680 			if (signal_pending(current))
2681 				return -EINTR;
2682 		}
2683 		break;
2684 	}
2685 
2686 	/*
2687 	 *	Now do the stuff.
2688 	 */
2689 	switch (cmd) {
2690 	case TIOCSTI:
2691 		return tiocsti(tty, p);
2692 	case TIOCGWINSZ:
2693 		return tiocgwinsz(real_tty, p);
2694 	case TIOCSWINSZ:
2695 		return tiocswinsz(real_tty, p);
2696 	case TIOCCONS:
2697 		return real_tty != tty ? -EINVAL : tioccons(file);
2698 	case TIOCEXCL:
2699 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2700 		return 0;
2701 	case TIOCNXCL:
2702 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2703 		return 0;
2704 	case TIOCGEXCL:
2705 	{
2706 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2707 
2708 		return put_user(excl, (int __user *)p);
2709 	}
2710 	case TIOCGETD:
2711 		return tiocgetd(tty, p);
2712 	case TIOCSETD:
2713 		return tiocsetd(tty, p);
2714 	case TIOCVHANGUP:
2715 		if (!capable(CAP_SYS_ADMIN))
2716 			return -EPERM;
2717 		tty_vhangup(tty);
2718 		return 0;
2719 	case TIOCGDEV:
2720 	{
2721 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2722 
2723 		return put_user(ret, (unsigned int __user *)p);
2724 	}
2725 	/*
2726 	 * Break handling
2727 	 */
2728 	case TIOCSBRK:	/* Turn break on, unconditionally */
2729 		if (tty->ops->break_ctl)
2730 			return tty->ops->break_ctl(tty, -1);
2731 		return 0;
2732 	case TIOCCBRK:	/* Turn break off, unconditionally */
2733 		if (tty->ops->break_ctl)
2734 			return tty->ops->break_ctl(tty, 0);
2735 		return 0;
2736 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2737 		/* non-zero arg means wait for all output data
2738 		 * to be sent (performed above) but don't send break.
2739 		 * This is used by the tcdrain() termios function.
2740 		 */
2741 		if (!arg)
2742 			return send_break(tty, 250);
2743 		return 0;
2744 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2745 		return send_break(tty, arg ? arg*100 : 250);
2746 
2747 	case TIOCMGET:
2748 		return tty_tiocmget(tty, p);
2749 	case TIOCMSET:
2750 	case TIOCMBIC:
2751 	case TIOCMBIS:
2752 		return tty_tiocmset(tty, cmd, p);
2753 	case TIOCGICOUNT:
2754 		return tty_tiocgicount(tty, p);
2755 	case TCFLSH:
2756 		switch (arg) {
2757 		case TCIFLUSH:
2758 		case TCIOFLUSH:
2759 		/* flush tty buffer and allow ldisc to process ioctl */
2760 			tty_buffer_flush(tty, NULL);
2761 			break;
2762 		}
2763 		break;
2764 	case TIOCSSERIAL:
2765 		return tty_tiocsserial(tty, p);
2766 	case TIOCGSERIAL:
2767 		return tty_tiocgserial(tty, p);
2768 	case TIOCGPTPEER:
2769 		/* Special because the struct file is needed */
2770 		return ptm_open_peer(file, tty, (int)arg);
2771 	default:
2772 		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2773 		if (retval != -ENOIOCTLCMD)
2774 			return retval;
2775 	}
2776 	if (tty->ops->ioctl) {
2777 		retval = tty->ops->ioctl(tty, cmd, arg);
2778 		if (retval != -ENOIOCTLCMD)
2779 			return retval;
2780 	}
2781 	ld = tty_ldisc_ref_wait(tty);
2782 	if (!ld)
2783 		return hung_up_tty_ioctl(file, cmd, arg);
2784 	retval = -EINVAL;
2785 	if (ld->ops->ioctl) {
2786 		retval = ld->ops->ioctl(tty, cmd, arg);
2787 		if (retval == -ENOIOCTLCMD)
2788 			retval = -ENOTTY;
2789 	}
2790 	tty_ldisc_deref(ld);
2791 	return retval;
2792 }
2793 
2794 #ifdef CONFIG_COMPAT
2795 
2796 struct serial_struct32 {
2797 	compat_int_t    type;
2798 	compat_int_t    line;
2799 	compat_uint_t   port;
2800 	compat_int_t    irq;
2801 	compat_int_t    flags;
2802 	compat_int_t    xmit_fifo_size;
2803 	compat_int_t    custom_divisor;
2804 	compat_int_t    baud_base;
2805 	unsigned short  close_delay;
2806 	char    io_type;
2807 	char    reserved_char;
2808 	compat_int_t    hub6;
2809 	unsigned short  closing_wait; /* time to wait before closing */
2810 	unsigned short  closing_wait2; /* no longer used... */
2811 	compat_uint_t   iomem_base;
2812 	unsigned short  iomem_reg_shift;
2813 	unsigned int    port_high;
2814 	/* compat_ulong_t  iomap_base FIXME */
2815 	compat_int_t    reserved;
2816 };
2817 
2818 static int compat_tty_tiocsserial(struct tty_struct *tty,
2819 		struct serial_struct32 __user *ss)
2820 {
2821 	struct serial_struct32 v32;
2822 	struct serial_struct v;
2823 
2824 	if (copy_from_user(&v32, ss, sizeof(*ss)))
2825 		return -EFAULT;
2826 
2827 	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2828 	v.iomem_base = compat_ptr(v32.iomem_base);
2829 	v.iomem_reg_shift = v32.iomem_reg_shift;
2830 	v.port_high = v32.port_high;
2831 	v.iomap_base = 0;
2832 
2833 	return tty_set_serial(tty, &v);
2834 }
2835 
2836 static int compat_tty_tiocgserial(struct tty_struct *tty,
2837 			struct serial_struct32 __user *ss)
2838 {
2839 	struct serial_struct32 v32;
2840 	struct serial_struct v;
2841 	int err;
2842 
2843 	memset(&v, 0, sizeof(v));
2844 	memset(&v32, 0, sizeof(v32));
2845 
2846 	if (!tty->ops->get_serial)
2847 		return -ENOTTY;
2848 	err = tty->ops->get_serial(tty, &v);
2849 	if (!err) {
2850 		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2851 		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2852 			0xfffffff : ptr_to_compat(v.iomem_base);
2853 		v32.iomem_reg_shift = v.iomem_reg_shift;
2854 		v32.port_high = v.port_high;
2855 		if (copy_to_user(ss, &v32, sizeof(v32)))
2856 			err = -EFAULT;
2857 	}
2858 	return err;
2859 }
2860 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2861 				unsigned long arg)
2862 {
2863 	struct tty_struct *tty = file_tty(file);
2864 	struct tty_ldisc *ld;
2865 	int retval = -ENOIOCTLCMD;
2866 
2867 	switch (cmd) {
2868 	case TIOCOUTQ:
2869 	case TIOCSTI:
2870 	case TIOCGWINSZ:
2871 	case TIOCSWINSZ:
2872 	case TIOCGEXCL:
2873 	case TIOCGETD:
2874 	case TIOCSETD:
2875 	case TIOCGDEV:
2876 	case TIOCMGET:
2877 	case TIOCMSET:
2878 	case TIOCMBIC:
2879 	case TIOCMBIS:
2880 	case TIOCGICOUNT:
2881 	case TIOCGPGRP:
2882 	case TIOCSPGRP:
2883 	case TIOCGSID:
2884 	case TIOCSERGETLSR:
2885 	case TIOCGRS485:
2886 	case TIOCSRS485:
2887 #ifdef TIOCGETP
2888 	case TIOCGETP:
2889 	case TIOCSETP:
2890 	case TIOCSETN:
2891 #endif
2892 #ifdef TIOCGETC
2893 	case TIOCGETC:
2894 	case TIOCSETC:
2895 #endif
2896 #ifdef TIOCGLTC
2897 	case TIOCGLTC:
2898 	case TIOCSLTC:
2899 #endif
2900 	case TCSETSF:
2901 	case TCSETSW:
2902 	case TCSETS:
2903 	case TCGETS:
2904 #ifdef TCGETS2
2905 	case TCGETS2:
2906 	case TCSETSF2:
2907 	case TCSETSW2:
2908 	case TCSETS2:
2909 #endif
2910 	case TCGETA:
2911 	case TCSETAF:
2912 	case TCSETAW:
2913 	case TCSETA:
2914 	case TIOCGLCKTRMIOS:
2915 	case TIOCSLCKTRMIOS:
2916 #ifdef TCGETX
2917 	case TCGETX:
2918 	case TCSETX:
2919 	case TCSETXW:
2920 	case TCSETXF:
2921 #endif
2922 	case TIOCGSOFTCAR:
2923 	case TIOCSSOFTCAR:
2924 
2925 	case PPPIOCGCHAN:
2926 	case PPPIOCGUNIT:
2927 		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2928 	case TIOCCONS:
2929 	case TIOCEXCL:
2930 	case TIOCNXCL:
2931 	case TIOCVHANGUP:
2932 	case TIOCSBRK:
2933 	case TIOCCBRK:
2934 	case TCSBRK:
2935 	case TCSBRKP:
2936 	case TCFLSH:
2937 	case TIOCGPTPEER:
2938 	case TIOCNOTTY:
2939 	case TIOCSCTTY:
2940 	case TCXONC:
2941 	case TIOCMIWAIT:
2942 	case TIOCSERCONFIG:
2943 		return tty_ioctl(file, cmd, arg);
2944 	}
2945 
2946 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2947 		return -EINVAL;
2948 
2949 	switch (cmd) {
2950 	case TIOCSSERIAL:
2951 		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2952 	case TIOCGSERIAL:
2953 		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2954 	}
2955 	if (tty->ops->compat_ioctl) {
2956 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2957 		if (retval != -ENOIOCTLCMD)
2958 			return retval;
2959 	}
2960 
2961 	ld = tty_ldisc_ref_wait(tty);
2962 	if (!ld)
2963 		return hung_up_tty_compat_ioctl(file, cmd, arg);
2964 	if (ld->ops->compat_ioctl)
2965 		retval = ld->ops->compat_ioctl(tty, cmd, arg);
2966 	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2967 		retval = ld->ops->ioctl(tty, (unsigned long)compat_ptr(cmd),
2968 				arg);
2969 	tty_ldisc_deref(ld);
2970 
2971 	return retval;
2972 }
2973 #endif
2974 
2975 static int this_tty(const void *t, struct file *file, unsigned fd)
2976 {
2977 	if (likely(file->f_op->read_iter != tty_read))
2978 		return 0;
2979 	return file_tty(file) != t ? 0 : fd + 1;
2980 }
2981 
2982 /*
2983  * This implements the "Secure Attention Key" ---  the idea is to
2984  * prevent trojan horses by killing all processes associated with this
2985  * tty when the user hits the "Secure Attention Key".  Required for
2986  * super-paranoid applications --- see the Orange Book for more details.
2987  *
2988  * This code could be nicer; ideally it should send a HUP, wait a few
2989  * seconds, then send a INT, and then a KILL signal.  But you then
2990  * have to coordinate with the init process, since all processes associated
2991  * with the current tty must be dead before the new getty is allowed
2992  * to spawn.
2993  *
2994  * Now, if it would be correct ;-/ The current code has a nasty hole -
2995  * it doesn't catch files in flight. We may send the descriptor to ourselves
2996  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2997  *
2998  * Nasty bug: do_SAK is being called in interrupt context.  This can
2999  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3000  */
3001 void __do_SAK(struct tty_struct *tty)
3002 {
3003 	struct task_struct *g, *p;
3004 	struct pid *session;
3005 	int i;
3006 	unsigned long flags;
3007 
3008 	spin_lock_irqsave(&tty->ctrl.lock, flags);
3009 	session = get_pid(tty->ctrl.session);
3010 	spin_unlock_irqrestore(&tty->ctrl.lock, flags);
3011 
3012 	tty_ldisc_flush(tty);
3013 
3014 	tty_driver_flush_buffer(tty);
3015 
3016 	read_lock(&tasklist_lock);
3017 	/* Kill the entire session */
3018 	do_each_pid_task(session, PIDTYPE_SID, p) {
3019 		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3020 			   task_pid_nr(p), p->comm);
3021 		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3022 	} while_each_pid_task(session, PIDTYPE_SID, p);
3023 
3024 	/* Now kill any processes that happen to have the tty open */
3025 	do_each_thread(g, p) {
3026 		if (p->signal->tty == tty) {
3027 			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3028 				   task_pid_nr(p), p->comm);
3029 			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3030 					PIDTYPE_SID);
3031 			continue;
3032 		}
3033 		task_lock(p);
3034 		i = iterate_fd(p->files, 0, this_tty, tty);
3035 		if (i != 0) {
3036 			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3037 				   task_pid_nr(p), p->comm, i - 1);
3038 			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3039 					PIDTYPE_SID);
3040 		}
3041 		task_unlock(p);
3042 	} while_each_thread(g, p);
3043 	read_unlock(&tasklist_lock);
3044 	put_pid(session);
3045 }
3046 
3047 static void do_SAK_work(struct work_struct *work)
3048 {
3049 	struct tty_struct *tty =
3050 		container_of(work, struct tty_struct, SAK_work);
3051 	__do_SAK(tty);
3052 }
3053 
3054 /*
3055  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3056  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3057  * the values which we write to it will be identical to the values which it
3058  * already has. --akpm
3059  */
3060 void do_SAK(struct tty_struct *tty)
3061 {
3062 	if (!tty)
3063 		return;
3064 	schedule_work(&tty->SAK_work);
3065 }
3066 EXPORT_SYMBOL(do_SAK);
3067 
3068 /* Must put_device() after it's unused! */
3069 static struct device *tty_get_device(struct tty_struct *tty)
3070 {
3071 	dev_t devt = tty_devnum(tty);
3072 
3073 	return class_find_device_by_devt(&tty_class, devt);
3074 }
3075 
3076 
3077 /**
3078  * alloc_tty_struct - allocate a new tty
3079  * @driver: driver which will handle the returned tty
3080  * @idx: minor of the tty
3081  *
3082  * This subroutine allocates and initializes a tty structure.
3083  *
3084  * Locking: none - @tty in question is not exposed at this point
3085  */
3086 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3087 {
3088 	struct tty_struct *tty;
3089 
3090 	tty = kzalloc(sizeof(*tty), GFP_KERNEL_ACCOUNT);
3091 	if (!tty)
3092 		return NULL;
3093 
3094 	kref_init(&tty->kref);
3095 	if (tty_ldisc_init(tty)) {
3096 		kfree(tty);
3097 		return NULL;
3098 	}
3099 	tty->ctrl.session = NULL;
3100 	tty->ctrl.pgrp = NULL;
3101 	mutex_init(&tty->legacy_mutex);
3102 	mutex_init(&tty->throttle_mutex);
3103 	init_rwsem(&tty->termios_rwsem);
3104 	mutex_init(&tty->winsize_mutex);
3105 	init_ldsem(&tty->ldisc_sem);
3106 	init_waitqueue_head(&tty->write_wait);
3107 	init_waitqueue_head(&tty->read_wait);
3108 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3109 	mutex_init(&tty->atomic_write_lock);
3110 	spin_lock_init(&tty->ctrl.lock);
3111 	spin_lock_init(&tty->flow.lock);
3112 	spin_lock_init(&tty->files_lock);
3113 	INIT_LIST_HEAD(&tty->tty_files);
3114 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3115 
3116 	tty->driver = driver;
3117 	tty->ops = driver->ops;
3118 	tty->index = idx;
3119 	tty_line_name(driver, idx, tty->name);
3120 	tty->dev = tty_get_device(tty);
3121 
3122 	return tty;
3123 }
3124 
3125 /**
3126  * tty_put_char	- write one character to a tty
3127  * @tty: tty
3128  * @ch: character to write
3129  *
3130  * Write one byte to the @tty using the provided @tty->ops->put_char() method
3131  * if present.
3132  *
3133  * Note: the specific put_char operation in the driver layer may go
3134  * away soon. Don't call it directly, use this method
3135  *
3136  * Return: the number of characters successfully output.
3137  */
3138 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3139 {
3140 	if (tty->ops->put_char)
3141 		return tty->ops->put_char(tty, ch);
3142 	return tty->ops->write(tty, &ch, 1);
3143 }
3144 EXPORT_SYMBOL_GPL(tty_put_char);
3145 
3146 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3147 		unsigned int index, unsigned int count)
3148 {
3149 	int err;
3150 
3151 	/* init here, since reused cdevs cause crashes */
3152 	driver->cdevs[index] = cdev_alloc();
3153 	if (!driver->cdevs[index])
3154 		return -ENOMEM;
3155 	driver->cdevs[index]->ops = &tty_fops;
3156 	driver->cdevs[index]->owner = driver->owner;
3157 	err = cdev_add(driver->cdevs[index], dev, count);
3158 	if (err)
3159 		kobject_put(&driver->cdevs[index]->kobj);
3160 	return err;
3161 }
3162 
3163 /**
3164  * tty_register_device - register a tty device
3165  * @driver: the tty driver that describes the tty device
3166  * @index: the index in the tty driver for this tty device
3167  * @device: a struct device that is associated with this tty device.
3168  *	This field is optional, if there is no known struct device
3169  *	for this tty device it can be set to NULL safely.
3170  *
3171  * This call is required to be made to register an individual tty device
3172  * if the tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set.  If
3173  * that bit is not set, this function should not be called by a tty
3174  * driver.
3175  *
3176  * Locking: ??
3177  *
3178  * Return: A pointer to the struct device for this tty device (or
3179  * ERR_PTR(-EFOO) on error).
3180  */
3181 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3182 				   struct device *device)
3183 {
3184 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3185 }
3186 EXPORT_SYMBOL(tty_register_device);
3187 
3188 static void tty_device_create_release(struct device *dev)
3189 {
3190 	dev_dbg(dev, "releasing...\n");
3191 	kfree(dev);
3192 }
3193 
3194 /**
3195  * tty_register_device_attr - register a tty device
3196  * @driver: the tty driver that describes the tty device
3197  * @index: the index in the tty driver for this tty device
3198  * @device: a struct device that is associated with this tty device.
3199  *	This field is optional, if there is no known struct device
3200  *	for this tty device it can be set to %NULL safely.
3201  * @drvdata: Driver data to be set to device.
3202  * @attr_grp: Attribute group to be set on device.
3203  *
3204  * This call is required to be made to register an individual tty device if the
3205  * tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If that bit is
3206  * not set, this function should not be called by a tty driver.
3207  *
3208  * Locking: ??
3209  *
3210  * Return: A pointer to the struct device for this tty device (or
3211  * ERR_PTR(-EFOO) on error).
3212  */
3213 struct device *tty_register_device_attr(struct tty_driver *driver,
3214 				   unsigned index, struct device *device,
3215 				   void *drvdata,
3216 				   const struct attribute_group **attr_grp)
3217 {
3218 	char name[64];
3219 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3220 	struct ktermios *tp;
3221 	struct device *dev;
3222 	int retval;
3223 
3224 	if (index >= driver->num) {
3225 		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3226 		       driver->name, index);
3227 		return ERR_PTR(-EINVAL);
3228 	}
3229 
3230 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3231 		pty_line_name(driver, index, name);
3232 	else
3233 		tty_line_name(driver, index, name);
3234 
3235 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3236 	if (!dev)
3237 		return ERR_PTR(-ENOMEM);
3238 
3239 	dev->devt = devt;
3240 	dev->class = &tty_class;
3241 	dev->parent = device;
3242 	dev->release = tty_device_create_release;
3243 	dev_set_name(dev, "%s", name);
3244 	dev->groups = attr_grp;
3245 	dev_set_drvdata(dev, drvdata);
3246 
3247 	dev_set_uevent_suppress(dev, 1);
3248 
3249 	retval = device_register(dev);
3250 	if (retval)
3251 		goto err_put;
3252 
3253 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3254 		/*
3255 		 * Free any saved termios data so that the termios state is
3256 		 * reset when reusing a minor number.
3257 		 */
3258 		tp = driver->termios[index];
3259 		if (tp) {
3260 			driver->termios[index] = NULL;
3261 			kfree(tp);
3262 		}
3263 
3264 		retval = tty_cdev_add(driver, devt, index, 1);
3265 		if (retval)
3266 			goto err_del;
3267 	}
3268 
3269 	dev_set_uevent_suppress(dev, 0);
3270 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3271 
3272 	return dev;
3273 
3274 err_del:
3275 	device_del(dev);
3276 err_put:
3277 	put_device(dev);
3278 
3279 	return ERR_PTR(retval);
3280 }
3281 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3282 
3283 /**
3284  * tty_unregister_device - unregister a tty device
3285  * @driver: the tty driver that describes the tty device
3286  * @index: the index in the tty driver for this tty device
3287  *
3288  * If a tty device is registered with a call to tty_register_device() then
3289  * this function must be called when the tty device is gone.
3290  *
3291  * Locking: ??
3292  */
3293 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3294 {
3295 	device_destroy(&tty_class, MKDEV(driver->major, driver->minor_start) + index);
3296 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3297 		cdev_del(driver->cdevs[index]);
3298 		driver->cdevs[index] = NULL;
3299 	}
3300 }
3301 EXPORT_SYMBOL(tty_unregister_device);
3302 
3303 /**
3304  * __tty_alloc_driver -- allocate tty driver
3305  * @lines: count of lines this driver can handle at most
3306  * @owner: module which is responsible for this driver
3307  * @flags: some of %TTY_DRIVER_ flags, will be set in driver->flags
3308  *
3309  * This should not be called directly, some of the provided macros should be
3310  * used instead. Use IS_ERR() and friends on @retval.
3311  */
3312 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3313 		unsigned long flags)
3314 {
3315 	struct tty_driver *driver;
3316 	unsigned int cdevs = 1;
3317 	int err;
3318 
3319 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3320 		return ERR_PTR(-EINVAL);
3321 
3322 	driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3323 	if (!driver)
3324 		return ERR_PTR(-ENOMEM);
3325 
3326 	kref_init(&driver->kref);
3327 	driver->num = lines;
3328 	driver->owner = owner;
3329 	driver->flags = flags;
3330 
3331 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3332 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3333 				GFP_KERNEL);
3334 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3335 				GFP_KERNEL);
3336 		if (!driver->ttys || !driver->termios) {
3337 			err = -ENOMEM;
3338 			goto err_free_all;
3339 		}
3340 	}
3341 
3342 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3343 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3344 				GFP_KERNEL);
3345 		if (!driver->ports) {
3346 			err = -ENOMEM;
3347 			goto err_free_all;
3348 		}
3349 		cdevs = lines;
3350 	}
3351 
3352 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3353 	if (!driver->cdevs) {
3354 		err = -ENOMEM;
3355 		goto err_free_all;
3356 	}
3357 
3358 	return driver;
3359 err_free_all:
3360 	kfree(driver->ports);
3361 	kfree(driver->ttys);
3362 	kfree(driver->termios);
3363 	kfree(driver->cdevs);
3364 	kfree(driver);
3365 	return ERR_PTR(err);
3366 }
3367 EXPORT_SYMBOL(__tty_alloc_driver);
3368 
3369 static void destruct_tty_driver(struct kref *kref)
3370 {
3371 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3372 	int i;
3373 	struct ktermios *tp;
3374 
3375 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3376 		for (i = 0; i < driver->num; i++) {
3377 			tp = driver->termios[i];
3378 			if (tp) {
3379 				driver->termios[i] = NULL;
3380 				kfree(tp);
3381 			}
3382 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3383 				tty_unregister_device(driver, i);
3384 		}
3385 		proc_tty_unregister_driver(driver);
3386 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3387 			cdev_del(driver->cdevs[0]);
3388 	}
3389 	kfree(driver->cdevs);
3390 	kfree(driver->ports);
3391 	kfree(driver->termios);
3392 	kfree(driver->ttys);
3393 	kfree(driver);
3394 }
3395 
3396 /**
3397  * tty_driver_kref_put -- drop a reference to a tty driver
3398  * @driver: driver of which to drop the reference
3399  *
3400  * The final put will destroy and free up the driver.
3401  */
3402 void tty_driver_kref_put(struct tty_driver *driver)
3403 {
3404 	kref_put(&driver->kref, destruct_tty_driver);
3405 }
3406 EXPORT_SYMBOL(tty_driver_kref_put);
3407 
3408 /**
3409  * tty_register_driver -- register a tty driver
3410  * @driver: driver to register
3411  *
3412  * Called by a tty driver to register itself.
3413  */
3414 int tty_register_driver(struct tty_driver *driver)
3415 {
3416 	int error;
3417 	int i;
3418 	dev_t dev;
3419 	struct device *d;
3420 
3421 	if (!driver->major) {
3422 		error = alloc_chrdev_region(&dev, driver->minor_start,
3423 						driver->num, driver->name);
3424 		if (!error) {
3425 			driver->major = MAJOR(dev);
3426 			driver->minor_start = MINOR(dev);
3427 		}
3428 	} else {
3429 		dev = MKDEV(driver->major, driver->minor_start);
3430 		error = register_chrdev_region(dev, driver->num, driver->name);
3431 	}
3432 	if (error < 0)
3433 		goto err;
3434 
3435 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3436 		error = tty_cdev_add(driver, dev, 0, driver->num);
3437 		if (error)
3438 			goto err_unreg_char;
3439 	}
3440 
3441 	mutex_lock(&tty_mutex);
3442 	list_add(&driver->tty_drivers, &tty_drivers);
3443 	mutex_unlock(&tty_mutex);
3444 
3445 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3446 		for (i = 0; i < driver->num; i++) {
3447 			d = tty_register_device(driver, i, NULL);
3448 			if (IS_ERR(d)) {
3449 				error = PTR_ERR(d);
3450 				goto err_unreg_devs;
3451 			}
3452 		}
3453 	}
3454 	proc_tty_register_driver(driver);
3455 	driver->flags |= TTY_DRIVER_INSTALLED;
3456 	return 0;
3457 
3458 err_unreg_devs:
3459 	for (i--; i >= 0; i--)
3460 		tty_unregister_device(driver, i);
3461 
3462 	mutex_lock(&tty_mutex);
3463 	list_del(&driver->tty_drivers);
3464 	mutex_unlock(&tty_mutex);
3465 
3466 err_unreg_char:
3467 	unregister_chrdev_region(dev, driver->num);
3468 err:
3469 	return error;
3470 }
3471 EXPORT_SYMBOL(tty_register_driver);
3472 
3473 /**
3474  * tty_unregister_driver -- unregister a tty driver
3475  * @driver: driver to unregister
3476  *
3477  * Called by a tty driver to unregister itself.
3478  */
3479 void tty_unregister_driver(struct tty_driver *driver)
3480 {
3481 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3482 				driver->num);
3483 	mutex_lock(&tty_mutex);
3484 	list_del(&driver->tty_drivers);
3485 	mutex_unlock(&tty_mutex);
3486 }
3487 EXPORT_SYMBOL(tty_unregister_driver);
3488 
3489 dev_t tty_devnum(struct tty_struct *tty)
3490 {
3491 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3492 }
3493 EXPORT_SYMBOL(tty_devnum);
3494 
3495 void tty_default_fops(struct file_operations *fops)
3496 {
3497 	*fops = tty_fops;
3498 }
3499 
3500 static char *tty_devnode(const struct device *dev, umode_t *mode)
3501 {
3502 	if (!mode)
3503 		return NULL;
3504 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3505 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3506 		*mode = 0666;
3507 	return NULL;
3508 }
3509 
3510 const struct class tty_class = {
3511 	.name		= "tty",
3512 	.devnode	= tty_devnode,
3513 };
3514 
3515 static int __init tty_class_init(void)
3516 {
3517 	return class_register(&tty_class);
3518 }
3519 
3520 postcore_initcall(tty_class_init);
3521 
3522 /* 3/2004 jmc: why do these devices exist? */
3523 static struct cdev tty_cdev, console_cdev;
3524 
3525 static ssize_t show_cons_active(struct device *dev,
3526 				struct device_attribute *attr, char *buf)
3527 {
3528 	struct console *cs[16];
3529 	int i = 0;
3530 	struct console *c;
3531 	ssize_t count = 0;
3532 
3533 	/*
3534 	 * Hold the console_list_lock to guarantee that no consoles are
3535 	 * unregistered until all console processing is complete.
3536 	 * This also allows safe traversal of the console list and
3537 	 * race-free reading of @flags.
3538 	 */
3539 	console_list_lock();
3540 
3541 	for_each_console(c) {
3542 		if (!c->device)
3543 			continue;
3544 		if (!c->write)
3545 			continue;
3546 		if ((c->flags & CON_ENABLED) == 0)
3547 			continue;
3548 		cs[i++] = c;
3549 		if (i >= ARRAY_SIZE(cs))
3550 			break;
3551 	}
3552 
3553 	/*
3554 	 * Take console_lock to serialize device() callback with
3555 	 * other console operations. For example, fg_console is
3556 	 * modified under console_lock when switching vt.
3557 	 */
3558 	console_lock();
3559 	while (i--) {
3560 		int index = cs[i]->index;
3561 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3562 
3563 		/* don't resolve tty0 as some programs depend on it */
3564 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3565 			count += tty_line_name(drv, index, buf + count);
3566 		else
3567 			count += sprintf(buf + count, "%s%d",
3568 					 cs[i]->name, cs[i]->index);
3569 
3570 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3571 	}
3572 	console_unlock();
3573 
3574 	console_list_unlock();
3575 
3576 	return count;
3577 }
3578 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3579 
3580 static struct attribute *cons_dev_attrs[] = {
3581 	&dev_attr_active.attr,
3582 	NULL
3583 };
3584 
3585 ATTRIBUTE_GROUPS(cons_dev);
3586 
3587 static struct device *consdev;
3588 
3589 void console_sysfs_notify(void)
3590 {
3591 	if (consdev)
3592 		sysfs_notify(&consdev->kobj, NULL, "active");
3593 }
3594 
3595 static struct ctl_table tty_table[] = {
3596 	{
3597 		.procname	= "legacy_tiocsti",
3598 		.data		= &tty_legacy_tiocsti,
3599 		.maxlen		= sizeof(tty_legacy_tiocsti),
3600 		.mode		= 0644,
3601 		.proc_handler	= proc_dobool,
3602 	},
3603 	{
3604 		.procname	= "ldisc_autoload",
3605 		.data		= &tty_ldisc_autoload,
3606 		.maxlen		= sizeof(tty_ldisc_autoload),
3607 		.mode		= 0644,
3608 		.proc_handler	= proc_dointvec,
3609 		.extra1		= SYSCTL_ZERO,
3610 		.extra2		= SYSCTL_ONE,
3611 	},
3612 	{ }
3613 };
3614 
3615 /*
3616  * Ok, now we can initialize the rest of the tty devices and can count
3617  * on memory allocations, interrupts etc..
3618  */
3619 int __init tty_init(void)
3620 {
3621 	register_sysctl_init("dev/tty", tty_table);
3622 	cdev_init(&tty_cdev, &tty_fops);
3623 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3624 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3625 		panic("Couldn't register /dev/tty driver\n");
3626 	device_create(&tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3627 
3628 	cdev_init(&console_cdev, &console_fops);
3629 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3630 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3631 		panic("Couldn't register /dev/console driver\n");
3632 	consdev = device_create_with_groups(&tty_class, NULL,
3633 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3634 					    cons_dev_groups, "console");
3635 	if (IS_ERR(consdev))
3636 		consdev = NULL;
3637 
3638 #ifdef CONFIG_VT
3639 	vty_init(&console_fops);
3640 #endif
3641 	return 0;
3642 }
3643