1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 */ 4 5 /* 6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 7 * or rs-channels. It also implements echoing, cooked mode etc. 8 * 9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 10 * 11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 12 * tty_struct and tty_queue structures. Previously there was an array 13 * of 256 tty_struct's which was statically allocated, and the 14 * tty_queue structures were allocated at boot time. Both are now 15 * dynamically allocated only when the tty is open. 16 * 17 * Also restructured routines so that there is more of a separation 18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 19 * the low-level tty routines (serial.c, pty.c, console.c). This 20 * makes for cleaner and more compact code. -TYT, 9/17/92 21 * 22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 23 * which can be dynamically activated and de-activated by the line 24 * discipline handling modules (like SLIP). 25 * 26 * NOTE: pay no attention to the line discipline code (yet); its 27 * interface is still subject to change in this version... 28 * -- TYT, 1/31/92 29 * 30 * Added functionality to the OPOST tty handling. No delays, but all 31 * other bits should be there. 32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 33 * 34 * Rewrote canonical mode and added more termios flags. 35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 36 * 37 * Reorganized FASYNC support so mouse code can share it. 38 * -- ctm@ardi.com, 9Sep95 39 * 40 * New TIOCLINUX variants added. 41 * -- mj@k332.feld.cvut.cz, 19-Nov-95 42 * 43 * Restrict vt switching via ioctl() 44 * -- grif@cs.ucr.edu, 5-Dec-95 45 * 46 * Move console and virtual terminal code to more appropriate files, 47 * implement CONFIG_VT and generalize console device interface. 48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 49 * 50 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 51 * -- Bill Hawes <whawes@star.net>, June 97 52 * 53 * Added devfs support. 54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 55 * 56 * Added support for a Unix98-style ptmx device. 57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 58 * 59 * Reduced memory usage for older ARM systems 60 * -- Russell King <rmk@arm.linux.org.uk> 61 * 62 * Move do_SAK() into process context. Less stack use in devfs functions. 63 * alloc_tty_struct() always uses kmalloc() 64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 65 */ 66 67 #include <linux/types.h> 68 #include <linux/major.h> 69 #include <linux/errno.h> 70 #include <linux/signal.h> 71 #include <linux/fcntl.h> 72 #include <linux/sched/signal.h> 73 #include <linux/sched/task.h> 74 #include <linux/interrupt.h> 75 #include <linux/tty.h> 76 #include <linux/tty_driver.h> 77 #include <linux/tty_flip.h> 78 #include <linux/devpts_fs.h> 79 #include <linux/file.h> 80 #include <linux/fdtable.h> 81 #include <linux/console.h> 82 #include <linux/timer.h> 83 #include <linux/ctype.h> 84 #include <linux/kd.h> 85 #include <linux/mm.h> 86 #include <linux/string.h> 87 #include <linux/slab.h> 88 #include <linux/poll.h> 89 #include <linux/proc_fs.h> 90 #include <linux/init.h> 91 #include <linux/module.h> 92 #include <linux/device.h> 93 #include <linux/wait.h> 94 #include <linux/bitops.h> 95 #include <linux/delay.h> 96 #include <linux/seq_file.h> 97 #include <linux/serial.h> 98 #include <linux/ratelimit.h> 99 100 #include <linux/uaccess.h> 101 102 #include <linux/kbd_kern.h> 103 #include <linux/vt_kern.h> 104 #include <linux/selection.h> 105 106 #include <linux/kmod.h> 107 #include <linux/nsproxy.h> 108 109 #undef TTY_DEBUG_HANGUP 110 #ifdef TTY_DEBUG_HANGUP 111 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args) 112 #else 113 # define tty_debug_hangup(tty, f, args...) do { } while (0) 114 #endif 115 116 #define TTY_PARANOIA_CHECK 1 117 #define CHECK_TTY_COUNT 1 118 119 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 120 .c_iflag = ICRNL | IXON, 121 .c_oflag = OPOST | ONLCR, 122 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 123 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 124 ECHOCTL | ECHOKE | IEXTEN, 125 .c_cc = INIT_C_CC, 126 .c_ispeed = 38400, 127 .c_ospeed = 38400, 128 /* .c_line = N_TTY, */ 129 }; 130 131 EXPORT_SYMBOL(tty_std_termios); 132 133 /* This list gets poked at by procfs and various bits of boot up code. This 134 could do with some rationalisation such as pulling the tty proc function 135 into this file */ 136 137 LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 138 139 /* Mutex to protect creating and releasing a tty */ 140 DEFINE_MUTEX(tty_mutex); 141 142 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *); 143 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *); 144 ssize_t redirected_tty_write(struct file *, const char __user *, 145 size_t, loff_t *); 146 static unsigned int tty_poll(struct file *, poll_table *); 147 static int tty_open(struct inode *, struct file *); 148 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 149 #ifdef CONFIG_COMPAT 150 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 151 unsigned long arg); 152 #else 153 #define tty_compat_ioctl NULL 154 #endif 155 static int __tty_fasync(int fd, struct file *filp, int on); 156 static int tty_fasync(int fd, struct file *filp, int on); 157 static void release_tty(struct tty_struct *tty, int idx); 158 159 /** 160 * free_tty_struct - free a disused tty 161 * @tty: tty struct to free 162 * 163 * Free the write buffers, tty queue and tty memory itself. 164 * 165 * Locking: none. Must be called after tty is definitely unused 166 */ 167 168 static void free_tty_struct(struct tty_struct *tty) 169 { 170 tty_ldisc_deinit(tty); 171 put_device(tty->dev); 172 kfree(tty->write_buf); 173 tty->magic = 0xDEADDEAD; 174 kfree(tty); 175 } 176 177 static inline struct tty_struct *file_tty(struct file *file) 178 { 179 return ((struct tty_file_private *)file->private_data)->tty; 180 } 181 182 int tty_alloc_file(struct file *file) 183 { 184 struct tty_file_private *priv; 185 186 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 187 if (!priv) 188 return -ENOMEM; 189 190 file->private_data = priv; 191 192 return 0; 193 } 194 195 /* Associate a new file with the tty structure */ 196 void tty_add_file(struct tty_struct *tty, struct file *file) 197 { 198 struct tty_file_private *priv = file->private_data; 199 200 priv->tty = tty; 201 priv->file = file; 202 203 spin_lock(&tty->files_lock); 204 list_add(&priv->list, &tty->tty_files); 205 spin_unlock(&tty->files_lock); 206 } 207 208 /** 209 * tty_free_file - free file->private_data 210 * 211 * This shall be used only for fail path handling when tty_add_file was not 212 * called yet. 213 */ 214 void tty_free_file(struct file *file) 215 { 216 struct tty_file_private *priv = file->private_data; 217 218 file->private_data = NULL; 219 kfree(priv); 220 } 221 222 /* Delete file from its tty */ 223 static void tty_del_file(struct file *file) 224 { 225 struct tty_file_private *priv = file->private_data; 226 struct tty_struct *tty = priv->tty; 227 228 spin_lock(&tty->files_lock); 229 list_del(&priv->list); 230 spin_unlock(&tty->files_lock); 231 tty_free_file(file); 232 } 233 234 /** 235 * tty_name - return tty naming 236 * @tty: tty structure 237 * 238 * Convert a tty structure into a name. The name reflects the kernel 239 * naming policy and if udev is in use may not reflect user space 240 * 241 * Locking: none 242 */ 243 244 const char *tty_name(const struct tty_struct *tty) 245 { 246 if (!tty) /* Hmm. NULL pointer. That's fun. */ 247 return "NULL tty"; 248 return tty->name; 249 } 250 251 EXPORT_SYMBOL(tty_name); 252 253 const char *tty_driver_name(const struct tty_struct *tty) 254 { 255 if (!tty || !tty->driver) 256 return ""; 257 return tty->driver->name; 258 } 259 260 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 261 const char *routine) 262 { 263 #ifdef TTY_PARANOIA_CHECK 264 if (!tty) { 265 pr_warn("(%d:%d): %s: NULL tty\n", 266 imajor(inode), iminor(inode), routine); 267 return 1; 268 } 269 if (tty->magic != TTY_MAGIC) { 270 pr_warn("(%d:%d): %s: bad magic number\n", 271 imajor(inode), iminor(inode), routine); 272 return 1; 273 } 274 #endif 275 return 0; 276 } 277 278 /* Caller must hold tty_lock */ 279 static int check_tty_count(struct tty_struct *tty, const char *routine) 280 { 281 #ifdef CHECK_TTY_COUNT 282 struct list_head *p; 283 int count = 0; 284 285 spin_lock(&tty->files_lock); 286 list_for_each(p, &tty->tty_files) { 287 count++; 288 } 289 spin_unlock(&tty->files_lock); 290 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 291 tty->driver->subtype == PTY_TYPE_SLAVE && 292 tty->link && tty->link->count) 293 count++; 294 if (tty->count != count) { 295 tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n", 296 routine, tty->count, count); 297 return count; 298 } 299 #endif 300 return 0; 301 } 302 303 /** 304 * get_tty_driver - find device of a tty 305 * @dev_t: device identifier 306 * @index: returns the index of the tty 307 * 308 * This routine returns a tty driver structure, given a device number 309 * and also passes back the index number. 310 * 311 * Locking: caller must hold tty_mutex 312 */ 313 314 static struct tty_driver *get_tty_driver(dev_t device, int *index) 315 { 316 struct tty_driver *p; 317 318 list_for_each_entry(p, &tty_drivers, tty_drivers) { 319 dev_t base = MKDEV(p->major, p->minor_start); 320 if (device < base || device >= base + p->num) 321 continue; 322 *index = device - base; 323 return tty_driver_kref_get(p); 324 } 325 return NULL; 326 } 327 328 #ifdef CONFIG_CONSOLE_POLL 329 330 /** 331 * tty_find_polling_driver - find device of a polled tty 332 * @name: name string to match 333 * @line: pointer to resulting tty line nr 334 * 335 * This routine returns a tty driver structure, given a name 336 * and the condition that the tty driver is capable of polled 337 * operation. 338 */ 339 struct tty_driver *tty_find_polling_driver(char *name, int *line) 340 { 341 struct tty_driver *p, *res = NULL; 342 int tty_line = 0; 343 int len; 344 char *str, *stp; 345 346 for (str = name; *str; str++) 347 if ((*str >= '0' && *str <= '9') || *str == ',') 348 break; 349 if (!*str) 350 return NULL; 351 352 len = str - name; 353 tty_line = simple_strtoul(str, &str, 10); 354 355 mutex_lock(&tty_mutex); 356 /* Search through the tty devices to look for a match */ 357 list_for_each_entry(p, &tty_drivers, tty_drivers) { 358 if (strncmp(name, p->name, len) != 0) 359 continue; 360 stp = str; 361 if (*stp == ',') 362 stp++; 363 if (*stp == '\0') 364 stp = NULL; 365 366 if (tty_line >= 0 && tty_line < p->num && p->ops && 367 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 368 res = tty_driver_kref_get(p); 369 *line = tty_line; 370 break; 371 } 372 } 373 mutex_unlock(&tty_mutex); 374 375 return res; 376 } 377 EXPORT_SYMBOL_GPL(tty_find_polling_driver); 378 #endif 379 380 static int is_ignored(int sig) 381 { 382 return (sigismember(¤t->blocked, sig) || 383 current->sighand->action[sig-1].sa.sa_handler == SIG_IGN); 384 } 385 386 /** 387 * tty_check_change - check for POSIX terminal changes 388 * @tty: tty to check 389 * 390 * If we try to write to, or set the state of, a terminal and we're 391 * not in the foreground, send a SIGTTOU. If the signal is blocked or 392 * ignored, go ahead and perform the operation. (POSIX 7.2) 393 * 394 * Locking: ctrl_lock 395 */ 396 397 int __tty_check_change(struct tty_struct *tty, int sig) 398 { 399 unsigned long flags; 400 struct pid *pgrp, *tty_pgrp; 401 int ret = 0; 402 403 if (current->signal->tty != tty) 404 return 0; 405 406 rcu_read_lock(); 407 pgrp = task_pgrp(current); 408 409 spin_lock_irqsave(&tty->ctrl_lock, flags); 410 tty_pgrp = tty->pgrp; 411 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 412 413 if (tty_pgrp && pgrp != tty->pgrp) { 414 if (is_ignored(sig)) { 415 if (sig == SIGTTIN) 416 ret = -EIO; 417 } else if (is_current_pgrp_orphaned()) 418 ret = -EIO; 419 else { 420 kill_pgrp(pgrp, sig, 1); 421 set_thread_flag(TIF_SIGPENDING); 422 ret = -ERESTARTSYS; 423 } 424 } 425 rcu_read_unlock(); 426 427 if (!tty_pgrp) 428 tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig); 429 430 return ret; 431 } 432 433 int tty_check_change(struct tty_struct *tty) 434 { 435 return __tty_check_change(tty, SIGTTOU); 436 } 437 EXPORT_SYMBOL(tty_check_change); 438 439 static ssize_t hung_up_tty_read(struct file *file, char __user *buf, 440 size_t count, loff_t *ppos) 441 { 442 return 0; 443 } 444 445 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf, 446 size_t count, loff_t *ppos) 447 { 448 return -EIO; 449 } 450 451 /* No kernel lock held - none needed ;) */ 452 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait) 453 { 454 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM; 455 } 456 457 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 458 unsigned long arg) 459 { 460 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 461 } 462 463 static long hung_up_tty_compat_ioctl(struct file *file, 464 unsigned int cmd, unsigned long arg) 465 { 466 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 467 } 468 469 static int hung_up_tty_fasync(int fd, struct file *file, int on) 470 { 471 return -ENOTTY; 472 } 473 474 static const struct file_operations tty_fops = { 475 .llseek = no_llseek, 476 .read = tty_read, 477 .write = tty_write, 478 .poll = tty_poll, 479 .unlocked_ioctl = tty_ioctl, 480 .compat_ioctl = tty_compat_ioctl, 481 .open = tty_open, 482 .release = tty_release, 483 .fasync = tty_fasync, 484 }; 485 486 static const struct file_operations console_fops = { 487 .llseek = no_llseek, 488 .read = tty_read, 489 .write = redirected_tty_write, 490 .poll = tty_poll, 491 .unlocked_ioctl = tty_ioctl, 492 .compat_ioctl = tty_compat_ioctl, 493 .open = tty_open, 494 .release = tty_release, 495 .fasync = tty_fasync, 496 }; 497 498 static const struct file_operations hung_up_tty_fops = { 499 .llseek = no_llseek, 500 .read = hung_up_tty_read, 501 .write = hung_up_tty_write, 502 .poll = hung_up_tty_poll, 503 .unlocked_ioctl = hung_up_tty_ioctl, 504 .compat_ioctl = hung_up_tty_compat_ioctl, 505 .release = tty_release, 506 .fasync = hung_up_tty_fasync, 507 }; 508 509 static DEFINE_SPINLOCK(redirect_lock); 510 static struct file *redirect; 511 512 513 void proc_clear_tty(struct task_struct *p) 514 { 515 unsigned long flags; 516 struct tty_struct *tty; 517 spin_lock_irqsave(&p->sighand->siglock, flags); 518 tty = p->signal->tty; 519 p->signal->tty = NULL; 520 spin_unlock_irqrestore(&p->sighand->siglock, flags); 521 tty_kref_put(tty); 522 } 523 524 /** 525 * proc_set_tty - set the controlling terminal 526 * 527 * Only callable by the session leader and only if it does not already have 528 * a controlling terminal. 529 * 530 * Caller must hold: tty_lock() 531 * a readlock on tasklist_lock 532 * sighand lock 533 */ 534 static void __proc_set_tty(struct tty_struct *tty) 535 { 536 unsigned long flags; 537 538 spin_lock_irqsave(&tty->ctrl_lock, flags); 539 /* 540 * The session and fg pgrp references will be non-NULL if 541 * tiocsctty() is stealing the controlling tty 542 */ 543 put_pid(tty->session); 544 put_pid(tty->pgrp); 545 tty->pgrp = get_pid(task_pgrp(current)); 546 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 547 tty->session = get_pid(task_session(current)); 548 if (current->signal->tty) { 549 tty_debug(tty, "current tty %s not NULL!!\n", 550 current->signal->tty->name); 551 tty_kref_put(current->signal->tty); 552 } 553 put_pid(current->signal->tty_old_pgrp); 554 current->signal->tty = tty_kref_get(tty); 555 current->signal->tty_old_pgrp = NULL; 556 } 557 558 static void proc_set_tty(struct tty_struct *tty) 559 { 560 spin_lock_irq(¤t->sighand->siglock); 561 __proc_set_tty(tty); 562 spin_unlock_irq(¤t->sighand->siglock); 563 } 564 565 struct tty_struct *get_current_tty(void) 566 { 567 struct tty_struct *tty; 568 unsigned long flags; 569 570 spin_lock_irqsave(¤t->sighand->siglock, flags); 571 tty = tty_kref_get(current->signal->tty); 572 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 573 return tty; 574 } 575 EXPORT_SYMBOL_GPL(get_current_tty); 576 577 static void session_clear_tty(struct pid *session) 578 { 579 struct task_struct *p; 580 do_each_pid_task(session, PIDTYPE_SID, p) { 581 proc_clear_tty(p); 582 } while_each_pid_task(session, PIDTYPE_SID, p); 583 } 584 585 /** 586 * tty_wakeup - request more data 587 * @tty: terminal 588 * 589 * Internal and external helper for wakeups of tty. This function 590 * informs the line discipline if present that the driver is ready 591 * to receive more output data. 592 */ 593 594 void tty_wakeup(struct tty_struct *tty) 595 { 596 struct tty_ldisc *ld; 597 598 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 599 ld = tty_ldisc_ref(tty); 600 if (ld) { 601 if (ld->ops->write_wakeup) 602 ld->ops->write_wakeup(tty); 603 tty_ldisc_deref(ld); 604 } 605 } 606 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 607 } 608 609 EXPORT_SYMBOL_GPL(tty_wakeup); 610 611 /** 612 * tty_signal_session_leader - sends SIGHUP to session leader 613 * @tty controlling tty 614 * @exit_session if non-zero, signal all foreground group processes 615 * 616 * Send SIGHUP and SIGCONT to the session leader and its process group. 617 * Optionally, signal all processes in the foreground process group. 618 * 619 * Returns the number of processes in the session with this tty 620 * as their controlling terminal. This value is used to drop 621 * tty references for those processes. 622 */ 623 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session) 624 { 625 struct task_struct *p; 626 int refs = 0; 627 struct pid *tty_pgrp = NULL; 628 629 read_lock(&tasklist_lock); 630 if (tty->session) { 631 do_each_pid_task(tty->session, PIDTYPE_SID, p) { 632 spin_lock_irq(&p->sighand->siglock); 633 if (p->signal->tty == tty) { 634 p->signal->tty = NULL; 635 /* We defer the dereferences outside fo 636 the tasklist lock */ 637 refs++; 638 } 639 if (!p->signal->leader) { 640 spin_unlock_irq(&p->sighand->siglock); 641 continue; 642 } 643 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p); 644 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p); 645 put_pid(p->signal->tty_old_pgrp); /* A noop */ 646 spin_lock(&tty->ctrl_lock); 647 tty_pgrp = get_pid(tty->pgrp); 648 if (tty->pgrp) 649 p->signal->tty_old_pgrp = get_pid(tty->pgrp); 650 spin_unlock(&tty->ctrl_lock); 651 spin_unlock_irq(&p->sighand->siglock); 652 } while_each_pid_task(tty->session, PIDTYPE_SID, p); 653 } 654 read_unlock(&tasklist_lock); 655 656 if (tty_pgrp) { 657 if (exit_session) 658 kill_pgrp(tty_pgrp, SIGHUP, exit_session); 659 put_pid(tty_pgrp); 660 } 661 662 return refs; 663 } 664 665 /** 666 * __tty_hangup - actual handler for hangup events 667 * @work: tty device 668 * 669 * This can be called by a "kworker" kernel thread. That is process 670 * synchronous but doesn't hold any locks, so we need to make sure we 671 * have the appropriate locks for what we're doing. 672 * 673 * The hangup event clears any pending redirections onto the hung up 674 * device. It ensures future writes will error and it does the needed 675 * line discipline hangup and signal delivery. The tty object itself 676 * remains intact. 677 * 678 * Locking: 679 * BTM 680 * redirect lock for undoing redirection 681 * file list lock for manipulating list of ttys 682 * tty_ldiscs_lock from called functions 683 * termios_rwsem resetting termios data 684 * tasklist_lock to walk task list for hangup event 685 * ->siglock to protect ->signal/->sighand 686 */ 687 static void __tty_hangup(struct tty_struct *tty, int exit_session) 688 { 689 struct file *cons_filp = NULL; 690 struct file *filp, *f = NULL; 691 struct tty_file_private *priv; 692 int closecount = 0, n; 693 int refs; 694 695 if (!tty) 696 return; 697 698 699 spin_lock(&redirect_lock); 700 if (redirect && file_tty(redirect) == tty) { 701 f = redirect; 702 redirect = NULL; 703 } 704 spin_unlock(&redirect_lock); 705 706 tty_lock(tty); 707 708 if (test_bit(TTY_HUPPED, &tty->flags)) { 709 tty_unlock(tty); 710 return; 711 } 712 713 /* inuse_filps is protected by the single tty lock, 714 this really needs to change if we want to flush the 715 workqueue with the lock held */ 716 check_tty_count(tty, "tty_hangup"); 717 718 spin_lock(&tty->files_lock); 719 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 720 list_for_each_entry(priv, &tty->tty_files, list) { 721 filp = priv->file; 722 if (filp->f_op->write == redirected_tty_write) 723 cons_filp = filp; 724 if (filp->f_op->write != tty_write) 725 continue; 726 closecount++; 727 __tty_fasync(-1, filp, 0); /* can't block */ 728 filp->f_op = &hung_up_tty_fops; 729 } 730 spin_unlock(&tty->files_lock); 731 732 refs = tty_signal_session_leader(tty, exit_session); 733 /* Account for the p->signal references we killed */ 734 while (refs--) 735 tty_kref_put(tty); 736 737 tty_ldisc_hangup(tty, cons_filp != NULL); 738 739 spin_lock_irq(&tty->ctrl_lock); 740 clear_bit(TTY_THROTTLED, &tty->flags); 741 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 742 put_pid(tty->session); 743 put_pid(tty->pgrp); 744 tty->session = NULL; 745 tty->pgrp = NULL; 746 tty->ctrl_status = 0; 747 spin_unlock_irq(&tty->ctrl_lock); 748 749 /* 750 * If one of the devices matches a console pointer, we 751 * cannot just call hangup() because that will cause 752 * tty->count and state->count to go out of sync. 753 * So we just call close() the right number of times. 754 */ 755 if (cons_filp) { 756 if (tty->ops->close) 757 for (n = 0; n < closecount; n++) 758 tty->ops->close(tty, cons_filp); 759 } else if (tty->ops->hangup) 760 tty->ops->hangup(tty); 761 /* 762 * We don't want to have driver/ldisc interactions beyond the ones 763 * we did here. The driver layer expects no calls after ->hangup() 764 * from the ldisc side, which is now guaranteed. 765 */ 766 set_bit(TTY_HUPPED, &tty->flags); 767 tty_unlock(tty); 768 769 if (f) 770 fput(f); 771 } 772 773 static void do_tty_hangup(struct work_struct *work) 774 { 775 struct tty_struct *tty = 776 container_of(work, struct tty_struct, hangup_work); 777 778 __tty_hangup(tty, 0); 779 } 780 781 /** 782 * tty_hangup - trigger a hangup event 783 * @tty: tty to hangup 784 * 785 * A carrier loss (virtual or otherwise) has occurred on this like 786 * schedule a hangup sequence to run after this event. 787 */ 788 789 void tty_hangup(struct tty_struct *tty) 790 { 791 tty_debug_hangup(tty, "hangup\n"); 792 schedule_work(&tty->hangup_work); 793 } 794 795 EXPORT_SYMBOL(tty_hangup); 796 797 /** 798 * tty_vhangup - process vhangup 799 * @tty: tty to hangup 800 * 801 * The user has asked via system call for the terminal to be hung up. 802 * We do this synchronously so that when the syscall returns the process 803 * is complete. That guarantee is necessary for security reasons. 804 */ 805 806 void tty_vhangup(struct tty_struct *tty) 807 { 808 tty_debug_hangup(tty, "vhangup\n"); 809 __tty_hangup(tty, 0); 810 } 811 812 EXPORT_SYMBOL(tty_vhangup); 813 814 815 /** 816 * tty_vhangup_self - process vhangup for own ctty 817 * 818 * Perform a vhangup on the current controlling tty 819 */ 820 821 void tty_vhangup_self(void) 822 { 823 struct tty_struct *tty; 824 825 tty = get_current_tty(); 826 if (tty) { 827 tty_vhangup(tty); 828 tty_kref_put(tty); 829 } 830 } 831 832 /** 833 * tty_vhangup_session - hangup session leader exit 834 * @tty: tty to hangup 835 * 836 * The session leader is exiting and hanging up its controlling terminal. 837 * Every process in the foreground process group is signalled SIGHUP. 838 * 839 * We do this synchronously so that when the syscall returns the process 840 * is complete. That guarantee is necessary for security reasons. 841 */ 842 843 static void tty_vhangup_session(struct tty_struct *tty) 844 { 845 tty_debug_hangup(tty, "session hangup\n"); 846 __tty_hangup(tty, 1); 847 } 848 849 /** 850 * tty_hung_up_p - was tty hung up 851 * @filp: file pointer of tty 852 * 853 * Return true if the tty has been subject to a vhangup or a carrier 854 * loss 855 */ 856 857 int tty_hung_up_p(struct file *filp) 858 { 859 return (filp && filp->f_op == &hung_up_tty_fops); 860 } 861 862 EXPORT_SYMBOL(tty_hung_up_p); 863 864 /** 865 * disassociate_ctty - disconnect controlling tty 866 * @on_exit: true if exiting so need to "hang up" the session 867 * 868 * This function is typically called only by the session leader, when 869 * it wants to disassociate itself from its controlling tty. 870 * 871 * It performs the following functions: 872 * (1) Sends a SIGHUP and SIGCONT to the foreground process group 873 * (2) Clears the tty from being controlling the session 874 * (3) Clears the controlling tty for all processes in the 875 * session group. 876 * 877 * The argument on_exit is set to 1 if called when a process is 878 * exiting; it is 0 if called by the ioctl TIOCNOTTY. 879 * 880 * Locking: 881 * BTM is taken for hysterical raisins, and held when 882 * called from no_tty(). 883 * tty_mutex is taken to protect tty 884 * ->siglock is taken to protect ->signal/->sighand 885 * tasklist_lock is taken to walk process list for sessions 886 * ->siglock is taken to protect ->signal/->sighand 887 */ 888 889 void disassociate_ctty(int on_exit) 890 { 891 struct tty_struct *tty; 892 893 if (!current->signal->leader) 894 return; 895 896 tty = get_current_tty(); 897 if (tty) { 898 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) { 899 tty_vhangup_session(tty); 900 } else { 901 struct pid *tty_pgrp = tty_get_pgrp(tty); 902 if (tty_pgrp) { 903 kill_pgrp(tty_pgrp, SIGHUP, on_exit); 904 if (!on_exit) 905 kill_pgrp(tty_pgrp, SIGCONT, on_exit); 906 put_pid(tty_pgrp); 907 } 908 } 909 tty_kref_put(tty); 910 911 } else if (on_exit) { 912 struct pid *old_pgrp; 913 spin_lock_irq(¤t->sighand->siglock); 914 old_pgrp = current->signal->tty_old_pgrp; 915 current->signal->tty_old_pgrp = NULL; 916 spin_unlock_irq(¤t->sighand->siglock); 917 if (old_pgrp) { 918 kill_pgrp(old_pgrp, SIGHUP, on_exit); 919 kill_pgrp(old_pgrp, SIGCONT, on_exit); 920 put_pid(old_pgrp); 921 } 922 return; 923 } 924 925 spin_lock_irq(¤t->sighand->siglock); 926 put_pid(current->signal->tty_old_pgrp); 927 current->signal->tty_old_pgrp = NULL; 928 929 tty = tty_kref_get(current->signal->tty); 930 if (tty) { 931 unsigned long flags; 932 spin_lock_irqsave(&tty->ctrl_lock, flags); 933 put_pid(tty->session); 934 put_pid(tty->pgrp); 935 tty->session = NULL; 936 tty->pgrp = NULL; 937 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 938 tty_kref_put(tty); 939 } else 940 tty_debug_hangup(tty, "no current tty\n"); 941 942 spin_unlock_irq(¤t->sighand->siglock); 943 /* Now clear signal->tty under the lock */ 944 read_lock(&tasklist_lock); 945 session_clear_tty(task_session(current)); 946 read_unlock(&tasklist_lock); 947 } 948 949 /** 950 * 951 * no_tty - Ensure the current process does not have a controlling tty 952 */ 953 void no_tty(void) 954 { 955 /* FIXME: Review locking here. The tty_lock never covered any race 956 between a new association and proc_clear_tty but possible we need 957 to protect against this anyway */ 958 struct task_struct *tsk = current; 959 disassociate_ctty(0); 960 proc_clear_tty(tsk); 961 } 962 963 964 /** 965 * stop_tty - propagate flow control 966 * @tty: tty to stop 967 * 968 * Perform flow control to the driver. May be called 969 * on an already stopped device and will not re-call the driver 970 * method. 971 * 972 * This functionality is used by both the line disciplines for 973 * halting incoming flow and by the driver. It may therefore be 974 * called from any context, may be under the tty atomic_write_lock 975 * but not always. 976 * 977 * Locking: 978 * flow_lock 979 */ 980 981 void __stop_tty(struct tty_struct *tty) 982 { 983 if (tty->stopped) 984 return; 985 tty->stopped = 1; 986 if (tty->ops->stop) 987 tty->ops->stop(tty); 988 } 989 990 void stop_tty(struct tty_struct *tty) 991 { 992 unsigned long flags; 993 994 spin_lock_irqsave(&tty->flow_lock, flags); 995 __stop_tty(tty); 996 spin_unlock_irqrestore(&tty->flow_lock, flags); 997 } 998 EXPORT_SYMBOL(stop_tty); 999 1000 /** 1001 * start_tty - propagate flow control 1002 * @tty: tty to start 1003 * 1004 * Start a tty that has been stopped if at all possible. If this 1005 * tty was previous stopped and is now being started, the driver 1006 * start method is invoked and the line discipline woken. 1007 * 1008 * Locking: 1009 * flow_lock 1010 */ 1011 1012 void __start_tty(struct tty_struct *tty) 1013 { 1014 if (!tty->stopped || tty->flow_stopped) 1015 return; 1016 tty->stopped = 0; 1017 if (tty->ops->start) 1018 tty->ops->start(tty); 1019 tty_wakeup(tty); 1020 } 1021 1022 void start_tty(struct tty_struct *tty) 1023 { 1024 unsigned long flags; 1025 1026 spin_lock_irqsave(&tty->flow_lock, flags); 1027 __start_tty(tty); 1028 spin_unlock_irqrestore(&tty->flow_lock, flags); 1029 } 1030 EXPORT_SYMBOL(start_tty); 1031 1032 static void tty_update_time(struct timespec *time) 1033 { 1034 unsigned long sec = get_seconds(); 1035 1036 /* 1037 * We only care if the two values differ in anything other than the 1038 * lower three bits (i.e every 8 seconds). If so, then we can update 1039 * the time of the tty device, otherwise it could be construded as a 1040 * security leak to let userspace know the exact timing of the tty. 1041 */ 1042 if ((sec ^ time->tv_sec) & ~7) 1043 time->tv_sec = sec; 1044 } 1045 1046 /** 1047 * tty_read - read method for tty device files 1048 * @file: pointer to tty file 1049 * @buf: user buffer 1050 * @count: size of user buffer 1051 * @ppos: unused 1052 * 1053 * Perform the read system call function on this terminal device. Checks 1054 * for hung up devices before calling the line discipline method. 1055 * 1056 * Locking: 1057 * Locks the line discipline internally while needed. Multiple 1058 * read calls may be outstanding in parallel. 1059 */ 1060 1061 static ssize_t tty_read(struct file *file, char __user *buf, size_t count, 1062 loff_t *ppos) 1063 { 1064 int i; 1065 struct inode *inode = file_inode(file); 1066 struct tty_struct *tty = file_tty(file); 1067 struct tty_ldisc *ld; 1068 1069 if (tty_paranoia_check(tty, inode, "tty_read")) 1070 return -EIO; 1071 if (!tty || tty_io_error(tty)) 1072 return -EIO; 1073 1074 /* We want to wait for the line discipline to sort out in this 1075 situation */ 1076 ld = tty_ldisc_ref_wait(tty); 1077 if (!ld) 1078 return hung_up_tty_read(file, buf, count, ppos); 1079 if (ld->ops->read) 1080 i = ld->ops->read(tty, file, buf, count); 1081 else 1082 i = -EIO; 1083 tty_ldisc_deref(ld); 1084 1085 if (i > 0) 1086 tty_update_time(&inode->i_atime); 1087 1088 return i; 1089 } 1090 1091 static void tty_write_unlock(struct tty_struct *tty) 1092 { 1093 mutex_unlock(&tty->atomic_write_lock); 1094 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 1095 } 1096 1097 static int tty_write_lock(struct tty_struct *tty, int ndelay) 1098 { 1099 if (!mutex_trylock(&tty->atomic_write_lock)) { 1100 if (ndelay) 1101 return -EAGAIN; 1102 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 1103 return -ERESTARTSYS; 1104 } 1105 return 0; 1106 } 1107 1108 /* 1109 * Split writes up in sane blocksizes to avoid 1110 * denial-of-service type attacks 1111 */ 1112 static inline ssize_t do_tty_write( 1113 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 1114 struct tty_struct *tty, 1115 struct file *file, 1116 const char __user *buf, 1117 size_t count) 1118 { 1119 ssize_t ret, written = 0; 1120 unsigned int chunk; 1121 1122 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 1123 if (ret < 0) 1124 return ret; 1125 1126 /* 1127 * We chunk up writes into a temporary buffer. This 1128 * simplifies low-level drivers immensely, since they 1129 * don't have locking issues and user mode accesses. 1130 * 1131 * But if TTY_NO_WRITE_SPLIT is set, we should use a 1132 * big chunk-size.. 1133 * 1134 * The default chunk-size is 2kB, because the NTTY 1135 * layer has problems with bigger chunks. It will 1136 * claim to be able to handle more characters than 1137 * it actually does. 1138 * 1139 * FIXME: This can probably go away now except that 64K chunks 1140 * are too likely to fail unless switched to vmalloc... 1141 */ 1142 chunk = 2048; 1143 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 1144 chunk = 65536; 1145 if (count < chunk) 1146 chunk = count; 1147 1148 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 1149 if (tty->write_cnt < chunk) { 1150 unsigned char *buf_chunk; 1151 1152 if (chunk < 1024) 1153 chunk = 1024; 1154 1155 buf_chunk = kmalloc(chunk, GFP_KERNEL); 1156 if (!buf_chunk) { 1157 ret = -ENOMEM; 1158 goto out; 1159 } 1160 kfree(tty->write_buf); 1161 tty->write_cnt = chunk; 1162 tty->write_buf = buf_chunk; 1163 } 1164 1165 /* Do the write .. */ 1166 for (;;) { 1167 size_t size = count; 1168 if (size > chunk) 1169 size = chunk; 1170 ret = -EFAULT; 1171 if (copy_from_user(tty->write_buf, buf, size)) 1172 break; 1173 ret = write(tty, file, tty->write_buf, size); 1174 if (ret <= 0) 1175 break; 1176 written += ret; 1177 buf += ret; 1178 count -= ret; 1179 if (!count) 1180 break; 1181 ret = -ERESTARTSYS; 1182 if (signal_pending(current)) 1183 break; 1184 cond_resched(); 1185 } 1186 if (written) { 1187 tty_update_time(&file_inode(file)->i_mtime); 1188 ret = written; 1189 } 1190 out: 1191 tty_write_unlock(tty); 1192 return ret; 1193 } 1194 1195 /** 1196 * tty_write_message - write a message to a certain tty, not just the console. 1197 * @tty: the destination tty_struct 1198 * @msg: the message to write 1199 * 1200 * This is used for messages that need to be redirected to a specific tty. 1201 * We don't put it into the syslog queue right now maybe in the future if 1202 * really needed. 1203 * 1204 * We must still hold the BTM and test the CLOSING flag for the moment. 1205 */ 1206 1207 void tty_write_message(struct tty_struct *tty, char *msg) 1208 { 1209 if (tty) { 1210 mutex_lock(&tty->atomic_write_lock); 1211 tty_lock(tty); 1212 if (tty->ops->write && tty->count > 0) 1213 tty->ops->write(tty, msg, strlen(msg)); 1214 tty_unlock(tty); 1215 tty_write_unlock(tty); 1216 } 1217 return; 1218 } 1219 1220 1221 /** 1222 * tty_write - write method for tty device file 1223 * @file: tty file pointer 1224 * @buf: user data to write 1225 * @count: bytes to write 1226 * @ppos: unused 1227 * 1228 * Write data to a tty device via the line discipline. 1229 * 1230 * Locking: 1231 * Locks the line discipline as required 1232 * Writes to the tty driver are serialized by the atomic_write_lock 1233 * and are then processed in chunks to the device. The line discipline 1234 * write method will not be invoked in parallel for each device. 1235 */ 1236 1237 static ssize_t tty_write(struct file *file, const char __user *buf, 1238 size_t count, loff_t *ppos) 1239 { 1240 struct tty_struct *tty = file_tty(file); 1241 struct tty_ldisc *ld; 1242 ssize_t ret; 1243 1244 if (tty_paranoia_check(tty, file_inode(file), "tty_write")) 1245 return -EIO; 1246 if (!tty || !tty->ops->write || tty_io_error(tty)) 1247 return -EIO; 1248 /* Short term debug to catch buggy drivers */ 1249 if (tty->ops->write_room == NULL) 1250 tty_err(tty, "missing write_room method\n"); 1251 ld = tty_ldisc_ref_wait(tty); 1252 if (!ld) 1253 return hung_up_tty_write(file, buf, count, ppos); 1254 if (!ld->ops->write) 1255 ret = -EIO; 1256 else 1257 ret = do_tty_write(ld->ops->write, tty, file, buf, count); 1258 tty_ldisc_deref(ld); 1259 return ret; 1260 } 1261 1262 ssize_t redirected_tty_write(struct file *file, const char __user *buf, 1263 size_t count, loff_t *ppos) 1264 { 1265 struct file *p = NULL; 1266 1267 spin_lock(&redirect_lock); 1268 if (redirect) 1269 p = get_file(redirect); 1270 spin_unlock(&redirect_lock); 1271 1272 if (p) { 1273 ssize_t res; 1274 res = vfs_write(p, buf, count, &p->f_pos); 1275 fput(p); 1276 return res; 1277 } 1278 return tty_write(file, buf, count, ppos); 1279 } 1280 1281 /** 1282 * tty_send_xchar - send priority character 1283 * 1284 * Send a high priority character to the tty even if stopped 1285 * 1286 * Locking: none for xchar method, write ordering for write method. 1287 */ 1288 1289 int tty_send_xchar(struct tty_struct *tty, char ch) 1290 { 1291 int was_stopped = tty->stopped; 1292 1293 if (tty->ops->send_xchar) { 1294 down_read(&tty->termios_rwsem); 1295 tty->ops->send_xchar(tty, ch); 1296 up_read(&tty->termios_rwsem); 1297 return 0; 1298 } 1299 1300 if (tty_write_lock(tty, 0) < 0) 1301 return -ERESTARTSYS; 1302 1303 down_read(&tty->termios_rwsem); 1304 if (was_stopped) 1305 start_tty(tty); 1306 tty->ops->write(tty, &ch, 1); 1307 if (was_stopped) 1308 stop_tty(tty); 1309 up_read(&tty->termios_rwsem); 1310 tty_write_unlock(tty); 1311 return 0; 1312 } 1313 1314 static char ptychar[] = "pqrstuvwxyzabcde"; 1315 1316 /** 1317 * pty_line_name - generate name for a pty 1318 * @driver: the tty driver in use 1319 * @index: the minor number 1320 * @p: output buffer of at least 6 bytes 1321 * 1322 * Generate a name from a driver reference and write it to the output 1323 * buffer. 1324 * 1325 * Locking: None 1326 */ 1327 static void pty_line_name(struct tty_driver *driver, int index, char *p) 1328 { 1329 int i = index + driver->name_base; 1330 /* ->name is initialized to "ttyp", but "tty" is expected */ 1331 sprintf(p, "%s%c%x", 1332 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1333 ptychar[i >> 4 & 0xf], i & 0xf); 1334 } 1335 1336 /** 1337 * tty_line_name - generate name for a tty 1338 * @driver: the tty driver in use 1339 * @index: the minor number 1340 * @p: output buffer of at least 7 bytes 1341 * 1342 * Generate a name from a driver reference and write it to the output 1343 * buffer. 1344 * 1345 * Locking: None 1346 */ 1347 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p) 1348 { 1349 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE) 1350 return sprintf(p, "%s", driver->name); 1351 else 1352 return sprintf(p, "%s%d", driver->name, 1353 index + driver->name_base); 1354 } 1355 1356 /** 1357 * tty_driver_lookup_tty() - find an existing tty, if any 1358 * @driver: the driver for the tty 1359 * @idx: the minor number 1360 * 1361 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the 1362 * driver lookup() method returns an error. 1363 * 1364 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref. 1365 */ 1366 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1367 struct file *file, int idx) 1368 { 1369 struct tty_struct *tty; 1370 1371 if (driver->ops->lookup) 1372 tty = driver->ops->lookup(driver, file, idx); 1373 else 1374 tty = driver->ttys[idx]; 1375 1376 if (!IS_ERR(tty)) 1377 tty_kref_get(tty); 1378 return tty; 1379 } 1380 1381 /** 1382 * tty_init_termios - helper for termios setup 1383 * @tty: the tty to set up 1384 * 1385 * Initialise the termios structures for this tty. Thus runs under 1386 * the tty_mutex currently so we can be relaxed about ordering. 1387 */ 1388 1389 void tty_init_termios(struct tty_struct *tty) 1390 { 1391 struct ktermios *tp; 1392 int idx = tty->index; 1393 1394 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1395 tty->termios = tty->driver->init_termios; 1396 else { 1397 /* Check for lazy saved data */ 1398 tp = tty->driver->termios[idx]; 1399 if (tp != NULL) { 1400 tty->termios = *tp; 1401 tty->termios.c_line = tty->driver->init_termios.c_line; 1402 } else 1403 tty->termios = tty->driver->init_termios; 1404 } 1405 /* Compatibility until drivers always set this */ 1406 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios); 1407 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios); 1408 } 1409 EXPORT_SYMBOL_GPL(tty_init_termios); 1410 1411 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1412 { 1413 tty_init_termios(tty); 1414 tty_driver_kref_get(driver); 1415 tty->count++; 1416 driver->ttys[tty->index] = tty; 1417 return 0; 1418 } 1419 EXPORT_SYMBOL_GPL(tty_standard_install); 1420 1421 /** 1422 * tty_driver_install_tty() - install a tty entry in the driver 1423 * @driver: the driver for the tty 1424 * @tty: the tty 1425 * 1426 * Install a tty object into the driver tables. The tty->index field 1427 * will be set by the time this is called. This method is responsible 1428 * for ensuring any need additional structures are allocated and 1429 * configured. 1430 * 1431 * Locking: tty_mutex for now 1432 */ 1433 static int tty_driver_install_tty(struct tty_driver *driver, 1434 struct tty_struct *tty) 1435 { 1436 return driver->ops->install ? driver->ops->install(driver, tty) : 1437 tty_standard_install(driver, tty); 1438 } 1439 1440 /** 1441 * tty_driver_remove_tty() - remove a tty from the driver tables 1442 * @driver: the driver for the tty 1443 * @idx: the minor number 1444 * 1445 * Remvoe a tty object from the driver tables. The tty->index field 1446 * will be set by the time this is called. 1447 * 1448 * Locking: tty_mutex for now 1449 */ 1450 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1451 { 1452 if (driver->ops->remove) 1453 driver->ops->remove(driver, tty); 1454 else 1455 driver->ttys[tty->index] = NULL; 1456 } 1457 1458 /* 1459 * tty_reopen() - fast re-open of an open tty 1460 * @tty - the tty to open 1461 * 1462 * Return 0 on success, -errno on error. 1463 * Re-opens on master ptys are not allowed and return -EIO. 1464 * 1465 * Locking: Caller must hold tty_lock 1466 */ 1467 static int tty_reopen(struct tty_struct *tty) 1468 { 1469 struct tty_driver *driver = tty->driver; 1470 1471 if (driver->type == TTY_DRIVER_TYPE_PTY && 1472 driver->subtype == PTY_TYPE_MASTER) 1473 return -EIO; 1474 1475 if (!tty->count) 1476 return -EAGAIN; 1477 1478 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN)) 1479 return -EBUSY; 1480 1481 tty->count++; 1482 1483 if (!tty->ldisc) 1484 return tty_ldisc_reinit(tty, tty->termios.c_line); 1485 1486 return 0; 1487 } 1488 1489 /** 1490 * tty_init_dev - initialise a tty device 1491 * @driver: tty driver we are opening a device on 1492 * @idx: device index 1493 * @ret_tty: returned tty structure 1494 * 1495 * Prepare a tty device. This may not be a "new" clean device but 1496 * could also be an active device. The pty drivers require special 1497 * handling because of this. 1498 * 1499 * Locking: 1500 * The function is called under the tty_mutex, which 1501 * protects us from the tty struct or driver itself going away. 1502 * 1503 * On exit the tty device has the line discipline attached and 1504 * a reference count of 1. If a pair was created for pty/tty use 1505 * and the other was a pty master then it too has a reference count of 1. 1506 * 1507 * WSH 06/09/97: Rewritten to remove races and properly clean up after a 1508 * failed open. The new code protects the open with a mutex, so it's 1509 * really quite straightforward. The mutex locking can probably be 1510 * relaxed for the (most common) case of reopening a tty. 1511 */ 1512 1513 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1514 { 1515 struct tty_struct *tty; 1516 int retval; 1517 1518 /* 1519 * First time open is complex, especially for PTY devices. 1520 * This code guarantees that either everything succeeds and the 1521 * TTY is ready for operation, or else the table slots are vacated 1522 * and the allocated memory released. (Except that the termios 1523 * and locked termios may be retained.) 1524 */ 1525 1526 if (!try_module_get(driver->owner)) 1527 return ERR_PTR(-ENODEV); 1528 1529 tty = alloc_tty_struct(driver, idx); 1530 if (!tty) { 1531 retval = -ENOMEM; 1532 goto err_module_put; 1533 } 1534 1535 tty_lock(tty); 1536 retval = tty_driver_install_tty(driver, tty); 1537 if (retval < 0) 1538 goto err_free_tty; 1539 1540 if (!tty->port) 1541 tty->port = driver->ports[idx]; 1542 1543 WARN_RATELIMIT(!tty->port, 1544 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n", 1545 __func__, tty->driver->name); 1546 1547 tty->port->itty = tty; 1548 1549 /* 1550 * Structures all installed ... call the ldisc open routines. 1551 * If we fail here just call release_tty to clean up. No need 1552 * to decrement the use counts, as release_tty doesn't care. 1553 */ 1554 retval = tty_ldisc_setup(tty, tty->link); 1555 if (retval) 1556 goto err_release_tty; 1557 /* Return the tty locked so that it cannot vanish under the caller */ 1558 return tty; 1559 1560 err_free_tty: 1561 tty_unlock(tty); 1562 free_tty_struct(tty); 1563 err_module_put: 1564 module_put(driver->owner); 1565 return ERR_PTR(retval); 1566 1567 /* call the tty release_tty routine to clean out this slot */ 1568 err_release_tty: 1569 tty_unlock(tty); 1570 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n", 1571 retval, idx); 1572 release_tty(tty, idx); 1573 return ERR_PTR(retval); 1574 } 1575 1576 static void tty_free_termios(struct tty_struct *tty) 1577 { 1578 struct ktermios *tp; 1579 int idx = tty->index; 1580 1581 /* If the port is going to reset then it has no termios to save */ 1582 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1583 return; 1584 1585 /* Stash the termios data */ 1586 tp = tty->driver->termios[idx]; 1587 if (tp == NULL) { 1588 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL); 1589 if (tp == NULL) 1590 return; 1591 tty->driver->termios[idx] = tp; 1592 } 1593 *tp = tty->termios; 1594 } 1595 1596 /** 1597 * tty_flush_works - flush all works of a tty/pty pair 1598 * @tty: tty device to flush works for (or either end of a pty pair) 1599 * 1600 * Sync flush all works belonging to @tty (and the 'other' tty). 1601 */ 1602 static void tty_flush_works(struct tty_struct *tty) 1603 { 1604 flush_work(&tty->SAK_work); 1605 flush_work(&tty->hangup_work); 1606 if (tty->link) { 1607 flush_work(&tty->link->SAK_work); 1608 flush_work(&tty->link->hangup_work); 1609 } 1610 } 1611 1612 /** 1613 * release_one_tty - release tty structure memory 1614 * @kref: kref of tty we are obliterating 1615 * 1616 * Releases memory associated with a tty structure, and clears out the 1617 * driver table slots. This function is called when a device is no longer 1618 * in use. It also gets called when setup of a device fails. 1619 * 1620 * Locking: 1621 * takes the file list lock internally when working on the list 1622 * of ttys that the driver keeps. 1623 * 1624 * This method gets called from a work queue so that the driver private 1625 * cleanup ops can sleep (needed for USB at least) 1626 */ 1627 static void release_one_tty(struct work_struct *work) 1628 { 1629 struct tty_struct *tty = 1630 container_of(work, struct tty_struct, hangup_work); 1631 struct tty_driver *driver = tty->driver; 1632 struct module *owner = driver->owner; 1633 1634 if (tty->ops->cleanup) 1635 tty->ops->cleanup(tty); 1636 1637 tty->magic = 0; 1638 tty_driver_kref_put(driver); 1639 module_put(owner); 1640 1641 spin_lock(&tty->files_lock); 1642 list_del_init(&tty->tty_files); 1643 spin_unlock(&tty->files_lock); 1644 1645 put_pid(tty->pgrp); 1646 put_pid(tty->session); 1647 free_tty_struct(tty); 1648 } 1649 1650 static void queue_release_one_tty(struct kref *kref) 1651 { 1652 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1653 1654 /* The hangup queue is now free so we can reuse it rather than 1655 waste a chunk of memory for each port */ 1656 INIT_WORK(&tty->hangup_work, release_one_tty); 1657 schedule_work(&tty->hangup_work); 1658 } 1659 1660 /** 1661 * tty_kref_put - release a tty kref 1662 * @tty: tty device 1663 * 1664 * Release a reference to a tty device and if need be let the kref 1665 * layer destruct the object for us 1666 */ 1667 1668 void tty_kref_put(struct tty_struct *tty) 1669 { 1670 if (tty) 1671 kref_put(&tty->kref, queue_release_one_tty); 1672 } 1673 EXPORT_SYMBOL(tty_kref_put); 1674 1675 /** 1676 * release_tty - release tty structure memory 1677 * 1678 * Release both @tty and a possible linked partner (think pty pair), 1679 * and decrement the refcount of the backing module. 1680 * 1681 * Locking: 1682 * tty_mutex 1683 * takes the file list lock internally when working on the list 1684 * of ttys that the driver keeps. 1685 * 1686 */ 1687 static void release_tty(struct tty_struct *tty, int idx) 1688 { 1689 /* This should always be true but check for the moment */ 1690 WARN_ON(tty->index != idx); 1691 WARN_ON(!mutex_is_locked(&tty_mutex)); 1692 if (tty->ops->shutdown) 1693 tty->ops->shutdown(tty); 1694 tty_free_termios(tty); 1695 tty_driver_remove_tty(tty->driver, tty); 1696 tty->port->itty = NULL; 1697 if (tty->link) 1698 tty->link->port->itty = NULL; 1699 tty_buffer_cancel_work(tty->port); 1700 1701 tty_kref_put(tty->link); 1702 tty_kref_put(tty); 1703 } 1704 1705 /** 1706 * tty_release_checks - check a tty before real release 1707 * @tty: tty to check 1708 * @o_tty: link of @tty (if any) 1709 * @idx: index of the tty 1710 * 1711 * Performs some paranoid checking before true release of the @tty. 1712 * This is a no-op unless TTY_PARANOIA_CHECK is defined. 1713 */ 1714 static int tty_release_checks(struct tty_struct *tty, int idx) 1715 { 1716 #ifdef TTY_PARANOIA_CHECK 1717 if (idx < 0 || idx >= tty->driver->num) { 1718 tty_debug(tty, "bad idx %d\n", idx); 1719 return -1; 1720 } 1721 1722 /* not much to check for devpts */ 1723 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1724 return 0; 1725 1726 if (tty != tty->driver->ttys[idx]) { 1727 tty_debug(tty, "bad driver table[%d] = %p\n", 1728 idx, tty->driver->ttys[idx]); 1729 return -1; 1730 } 1731 if (tty->driver->other) { 1732 struct tty_struct *o_tty = tty->link; 1733 1734 if (o_tty != tty->driver->other->ttys[idx]) { 1735 tty_debug(tty, "bad other table[%d] = %p\n", 1736 idx, tty->driver->other->ttys[idx]); 1737 return -1; 1738 } 1739 if (o_tty->link != tty) { 1740 tty_debug(tty, "bad link = %p\n", o_tty->link); 1741 return -1; 1742 } 1743 } 1744 #endif 1745 return 0; 1746 } 1747 1748 /** 1749 * tty_release_struct - release a tty struct 1750 * @tty: tty device 1751 * @idx: index of the tty 1752 * 1753 * Performs the final steps to release and free a tty device. It is 1754 * roughly the reverse of tty_init_dev. 1755 */ 1756 void tty_release_struct(struct tty_struct *tty, int idx) 1757 { 1758 /* 1759 * Ask the line discipline code to release its structures 1760 */ 1761 tty_ldisc_release(tty); 1762 1763 /* Wait for pending work before tty destruction commmences */ 1764 tty_flush_works(tty); 1765 1766 tty_debug_hangup(tty, "freeing structure\n"); 1767 /* 1768 * The release_tty function takes care of the details of clearing 1769 * the slots and preserving the termios structure. The tty_unlock_pair 1770 * should be safe as we keep a kref while the tty is locked (so the 1771 * unlock never unlocks a freed tty). 1772 */ 1773 mutex_lock(&tty_mutex); 1774 release_tty(tty, idx); 1775 mutex_unlock(&tty_mutex); 1776 } 1777 EXPORT_SYMBOL_GPL(tty_release_struct); 1778 1779 /** 1780 * tty_release - vfs callback for close 1781 * @inode: inode of tty 1782 * @filp: file pointer for handle to tty 1783 * 1784 * Called the last time each file handle is closed that references 1785 * this tty. There may however be several such references. 1786 * 1787 * Locking: 1788 * Takes bkl. See tty_release_dev 1789 * 1790 * Even releasing the tty structures is a tricky business.. We have 1791 * to be very careful that the structures are all released at the 1792 * same time, as interrupts might otherwise get the wrong pointers. 1793 * 1794 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1795 * lead to double frees or releasing memory still in use. 1796 */ 1797 1798 int tty_release(struct inode *inode, struct file *filp) 1799 { 1800 struct tty_struct *tty = file_tty(filp); 1801 struct tty_struct *o_tty = NULL; 1802 int do_sleep, final; 1803 int idx; 1804 long timeout = 0; 1805 int once = 1; 1806 1807 if (tty_paranoia_check(tty, inode, __func__)) 1808 return 0; 1809 1810 tty_lock(tty); 1811 check_tty_count(tty, __func__); 1812 1813 __tty_fasync(-1, filp, 0); 1814 1815 idx = tty->index; 1816 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1817 tty->driver->subtype == PTY_TYPE_MASTER) 1818 o_tty = tty->link; 1819 1820 if (tty_release_checks(tty, idx)) { 1821 tty_unlock(tty); 1822 return 0; 1823 } 1824 1825 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count); 1826 1827 if (tty->ops->close) 1828 tty->ops->close(tty, filp); 1829 1830 /* If tty is pty master, lock the slave pty (stable lock order) */ 1831 tty_lock_slave(o_tty); 1832 1833 /* 1834 * Sanity check: if tty->count is going to zero, there shouldn't be 1835 * any waiters on tty->read_wait or tty->write_wait. We test the 1836 * wait queues and kick everyone out _before_ actually starting to 1837 * close. This ensures that we won't block while releasing the tty 1838 * structure. 1839 * 1840 * The test for the o_tty closing is necessary, since the master and 1841 * slave sides may close in any order. If the slave side closes out 1842 * first, its count will be one, since the master side holds an open. 1843 * Thus this test wouldn't be triggered at the time the slave closed, 1844 * so we do it now. 1845 */ 1846 while (1) { 1847 do_sleep = 0; 1848 1849 if (tty->count <= 1) { 1850 if (waitqueue_active(&tty->read_wait)) { 1851 wake_up_poll(&tty->read_wait, POLLIN); 1852 do_sleep++; 1853 } 1854 if (waitqueue_active(&tty->write_wait)) { 1855 wake_up_poll(&tty->write_wait, POLLOUT); 1856 do_sleep++; 1857 } 1858 } 1859 if (o_tty && o_tty->count <= 1) { 1860 if (waitqueue_active(&o_tty->read_wait)) { 1861 wake_up_poll(&o_tty->read_wait, POLLIN); 1862 do_sleep++; 1863 } 1864 if (waitqueue_active(&o_tty->write_wait)) { 1865 wake_up_poll(&o_tty->write_wait, POLLOUT); 1866 do_sleep++; 1867 } 1868 } 1869 if (!do_sleep) 1870 break; 1871 1872 if (once) { 1873 once = 0; 1874 tty_warn(tty, "read/write wait queue active!\n"); 1875 } 1876 schedule_timeout_killable(timeout); 1877 if (timeout < 120 * HZ) 1878 timeout = 2 * timeout + 1; 1879 else 1880 timeout = MAX_SCHEDULE_TIMEOUT; 1881 } 1882 1883 if (o_tty) { 1884 if (--o_tty->count < 0) { 1885 tty_warn(tty, "bad slave count (%d)\n", o_tty->count); 1886 o_tty->count = 0; 1887 } 1888 } 1889 if (--tty->count < 0) { 1890 tty_warn(tty, "bad tty->count (%d)\n", tty->count); 1891 tty->count = 0; 1892 } 1893 1894 /* 1895 * We've decremented tty->count, so we need to remove this file 1896 * descriptor off the tty->tty_files list; this serves two 1897 * purposes: 1898 * - check_tty_count sees the correct number of file descriptors 1899 * associated with this tty. 1900 * - do_tty_hangup no longer sees this file descriptor as 1901 * something that needs to be handled for hangups. 1902 */ 1903 tty_del_file(filp); 1904 1905 /* 1906 * Perform some housekeeping before deciding whether to return. 1907 * 1908 * If _either_ side is closing, make sure there aren't any 1909 * processes that still think tty or o_tty is their controlling 1910 * tty. 1911 */ 1912 if (!tty->count) { 1913 read_lock(&tasklist_lock); 1914 session_clear_tty(tty->session); 1915 if (o_tty) 1916 session_clear_tty(o_tty->session); 1917 read_unlock(&tasklist_lock); 1918 } 1919 1920 /* check whether both sides are closing ... */ 1921 final = !tty->count && !(o_tty && o_tty->count); 1922 1923 tty_unlock_slave(o_tty); 1924 tty_unlock(tty); 1925 1926 /* At this point, the tty->count == 0 should ensure a dead tty 1927 cannot be re-opened by a racing opener */ 1928 1929 if (!final) 1930 return 0; 1931 1932 tty_debug_hangup(tty, "final close\n"); 1933 1934 tty_release_struct(tty, idx); 1935 return 0; 1936 } 1937 1938 /** 1939 * tty_open_current_tty - get locked tty of current task 1940 * @device: device number 1941 * @filp: file pointer to tty 1942 * @return: locked tty of the current task iff @device is /dev/tty 1943 * 1944 * Performs a re-open of the current task's controlling tty. 1945 * 1946 * We cannot return driver and index like for the other nodes because 1947 * devpts will not work then. It expects inodes to be from devpts FS. 1948 */ 1949 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1950 { 1951 struct tty_struct *tty; 1952 int retval; 1953 1954 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1955 return NULL; 1956 1957 tty = get_current_tty(); 1958 if (!tty) 1959 return ERR_PTR(-ENXIO); 1960 1961 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1962 /* noctty = 1; */ 1963 tty_lock(tty); 1964 tty_kref_put(tty); /* safe to drop the kref now */ 1965 1966 retval = tty_reopen(tty); 1967 if (retval < 0) { 1968 tty_unlock(tty); 1969 tty = ERR_PTR(retval); 1970 } 1971 return tty; 1972 } 1973 1974 /** 1975 * tty_lookup_driver - lookup a tty driver for a given device file 1976 * @device: device number 1977 * @filp: file pointer to tty 1978 * @index: index for the device in the @return driver 1979 * @return: driver for this inode (with increased refcount) 1980 * 1981 * If @return is not erroneous, the caller is responsible to decrement the 1982 * refcount by tty_driver_kref_put. 1983 * 1984 * Locking: tty_mutex protects get_tty_driver 1985 */ 1986 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1987 int *index) 1988 { 1989 struct tty_driver *driver; 1990 1991 switch (device) { 1992 #ifdef CONFIG_VT 1993 case MKDEV(TTY_MAJOR, 0): { 1994 extern struct tty_driver *console_driver; 1995 driver = tty_driver_kref_get(console_driver); 1996 *index = fg_console; 1997 break; 1998 } 1999 #endif 2000 case MKDEV(TTYAUX_MAJOR, 1): { 2001 struct tty_driver *console_driver = console_device(index); 2002 if (console_driver) { 2003 driver = tty_driver_kref_get(console_driver); 2004 if (driver) { 2005 /* Don't let /dev/console block */ 2006 filp->f_flags |= O_NONBLOCK; 2007 break; 2008 } 2009 } 2010 return ERR_PTR(-ENODEV); 2011 } 2012 default: 2013 driver = get_tty_driver(device, index); 2014 if (!driver) 2015 return ERR_PTR(-ENODEV); 2016 break; 2017 } 2018 return driver; 2019 } 2020 2021 /** 2022 * tty_open_by_driver - open a tty device 2023 * @device: dev_t of device to open 2024 * @inode: inode of device file 2025 * @filp: file pointer to tty 2026 * 2027 * Performs the driver lookup, checks for a reopen, or otherwise 2028 * performs the first-time tty initialization. 2029 * 2030 * Returns the locked initialized or re-opened &tty_struct 2031 * 2032 * Claims the global tty_mutex to serialize: 2033 * - concurrent first-time tty initialization 2034 * - concurrent tty driver removal w/ lookup 2035 * - concurrent tty removal from driver table 2036 */ 2037 static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode, 2038 struct file *filp) 2039 { 2040 struct tty_struct *tty; 2041 struct tty_driver *driver = NULL; 2042 int index = -1; 2043 int retval; 2044 2045 mutex_lock(&tty_mutex); 2046 driver = tty_lookup_driver(device, filp, &index); 2047 if (IS_ERR(driver)) { 2048 mutex_unlock(&tty_mutex); 2049 return ERR_CAST(driver); 2050 } 2051 2052 /* check whether we're reopening an existing tty */ 2053 tty = tty_driver_lookup_tty(driver, filp, index); 2054 if (IS_ERR(tty)) { 2055 mutex_unlock(&tty_mutex); 2056 goto out; 2057 } 2058 2059 if (tty) { 2060 mutex_unlock(&tty_mutex); 2061 retval = tty_lock_interruptible(tty); 2062 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */ 2063 if (retval) { 2064 if (retval == -EINTR) 2065 retval = -ERESTARTSYS; 2066 tty = ERR_PTR(retval); 2067 goto out; 2068 } 2069 retval = tty_reopen(tty); 2070 if (retval < 0) { 2071 tty_unlock(tty); 2072 tty = ERR_PTR(retval); 2073 } 2074 } else { /* Returns with the tty_lock held for now */ 2075 tty = tty_init_dev(driver, index); 2076 mutex_unlock(&tty_mutex); 2077 } 2078 out: 2079 tty_driver_kref_put(driver); 2080 return tty; 2081 } 2082 2083 /** 2084 * tty_open - open a tty device 2085 * @inode: inode of device file 2086 * @filp: file pointer to tty 2087 * 2088 * tty_open and tty_release keep up the tty count that contains the 2089 * number of opens done on a tty. We cannot use the inode-count, as 2090 * different inodes might point to the same tty. 2091 * 2092 * Open-counting is needed for pty masters, as well as for keeping 2093 * track of serial lines: DTR is dropped when the last close happens. 2094 * (This is not done solely through tty->count, now. - Ted 1/27/92) 2095 * 2096 * The termios state of a pty is reset on first open so that 2097 * settings don't persist across reuse. 2098 * 2099 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev. 2100 * tty->count should protect the rest. 2101 * ->siglock protects ->signal/->sighand 2102 * 2103 * Note: the tty_unlock/lock cases without a ref are only safe due to 2104 * tty_mutex 2105 */ 2106 2107 static int tty_open(struct inode *inode, struct file *filp) 2108 { 2109 struct tty_struct *tty; 2110 int noctty, retval; 2111 dev_t device = inode->i_rdev; 2112 unsigned saved_flags = filp->f_flags; 2113 2114 nonseekable_open(inode, filp); 2115 2116 retry_open: 2117 retval = tty_alloc_file(filp); 2118 if (retval) 2119 return -ENOMEM; 2120 2121 tty = tty_open_current_tty(device, filp); 2122 if (!tty) 2123 tty = tty_open_by_driver(device, inode, filp); 2124 2125 if (IS_ERR(tty)) { 2126 tty_free_file(filp); 2127 retval = PTR_ERR(tty); 2128 if (retval != -EAGAIN || signal_pending(current)) 2129 return retval; 2130 schedule(); 2131 goto retry_open; 2132 } 2133 2134 tty_add_file(tty, filp); 2135 2136 check_tty_count(tty, __func__); 2137 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count); 2138 2139 if (tty->ops->open) 2140 retval = tty->ops->open(tty, filp); 2141 else 2142 retval = -ENODEV; 2143 filp->f_flags = saved_flags; 2144 2145 if (retval) { 2146 tty_debug_hangup(tty, "open error %d, releasing\n", retval); 2147 2148 tty_unlock(tty); /* need to call tty_release without BTM */ 2149 tty_release(inode, filp); 2150 if (retval != -ERESTARTSYS) 2151 return retval; 2152 2153 if (signal_pending(current)) 2154 return retval; 2155 2156 schedule(); 2157 /* 2158 * Need to reset f_op in case a hangup happened. 2159 */ 2160 if (tty_hung_up_p(filp)) 2161 filp->f_op = &tty_fops; 2162 goto retry_open; 2163 } 2164 clear_bit(TTY_HUPPED, &tty->flags); 2165 2166 2167 read_lock(&tasklist_lock); 2168 spin_lock_irq(¤t->sighand->siglock); 2169 noctty = (filp->f_flags & O_NOCTTY) || 2170 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) || 2171 device == MKDEV(TTYAUX_MAJOR, 1) || 2172 (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2173 tty->driver->subtype == PTY_TYPE_MASTER); 2174 2175 if (!noctty && 2176 current->signal->leader && 2177 !current->signal->tty && 2178 tty->session == NULL) { 2179 /* 2180 * Don't let a process that only has write access to the tty 2181 * obtain the privileges associated with having a tty as 2182 * controlling terminal (being able to reopen it with full 2183 * access through /dev/tty, being able to perform pushback). 2184 * Many distributions set the group of all ttys to "tty" and 2185 * grant write-only access to all terminals for setgid tty 2186 * binaries, which should not imply full privileges on all ttys. 2187 * 2188 * This could theoretically break old code that performs open() 2189 * on a write-only file descriptor. In that case, it might be 2190 * necessary to also permit this if 2191 * inode_permission(inode, MAY_READ) == 0. 2192 */ 2193 if (filp->f_mode & FMODE_READ) 2194 __proc_set_tty(tty); 2195 } 2196 spin_unlock_irq(¤t->sighand->siglock); 2197 read_unlock(&tasklist_lock); 2198 tty_unlock(tty); 2199 return 0; 2200 } 2201 2202 2203 2204 /** 2205 * tty_poll - check tty status 2206 * @filp: file being polled 2207 * @wait: poll wait structures to update 2208 * 2209 * Call the line discipline polling method to obtain the poll 2210 * status of the device. 2211 * 2212 * Locking: locks called line discipline but ldisc poll method 2213 * may be re-entered freely by other callers. 2214 */ 2215 2216 static unsigned int tty_poll(struct file *filp, poll_table *wait) 2217 { 2218 struct tty_struct *tty = file_tty(filp); 2219 struct tty_ldisc *ld; 2220 int ret = 0; 2221 2222 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll")) 2223 return 0; 2224 2225 ld = tty_ldisc_ref_wait(tty); 2226 if (!ld) 2227 return hung_up_tty_poll(filp, wait); 2228 if (ld->ops->poll) 2229 ret = ld->ops->poll(tty, filp, wait); 2230 tty_ldisc_deref(ld); 2231 return ret; 2232 } 2233 2234 static int __tty_fasync(int fd, struct file *filp, int on) 2235 { 2236 struct tty_struct *tty = file_tty(filp); 2237 unsigned long flags; 2238 int retval = 0; 2239 2240 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync")) 2241 goto out; 2242 2243 retval = fasync_helper(fd, filp, on, &tty->fasync); 2244 if (retval <= 0) 2245 goto out; 2246 2247 if (on) { 2248 enum pid_type type; 2249 struct pid *pid; 2250 2251 spin_lock_irqsave(&tty->ctrl_lock, flags); 2252 if (tty->pgrp) { 2253 pid = tty->pgrp; 2254 type = PIDTYPE_PGID; 2255 } else { 2256 pid = task_pid(current); 2257 type = PIDTYPE_PID; 2258 } 2259 get_pid(pid); 2260 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2261 __f_setown(filp, pid, type, 0); 2262 put_pid(pid); 2263 retval = 0; 2264 } 2265 out: 2266 return retval; 2267 } 2268 2269 static int tty_fasync(int fd, struct file *filp, int on) 2270 { 2271 struct tty_struct *tty = file_tty(filp); 2272 int retval = -ENOTTY; 2273 2274 tty_lock(tty); 2275 if (!tty_hung_up_p(filp)) 2276 retval = __tty_fasync(fd, filp, on); 2277 tty_unlock(tty); 2278 2279 return retval; 2280 } 2281 2282 /** 2283 * tiocsti - fake input character 2284 * @tty: tty to fake input into 2285 * @p: pointer to character 2286 * 2287 * Fake input to a tty device. Does the necessary locking and 2288 * input management. 2289 * 2290 * FIXME: does not honour flow control ?? 2291 * 2292 * Locking: 2293 * Called functions take tty_ldiscs_lock 2294 * current->signal->tty check is safe without locks 2295 * 2296 * FIXME: may race normal receive processing 2297 */ 2298 2299 static int tiocsti(struct tty_struct *tty, char __user *p) 2300 { 2301 char ch, mbz = 0; 2302 struct tty_ldisc *ld; 2303 2304 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2305 return -EPERM; 2306 if (get_user(ch, p)) 2307 return -EFAULT; 2308 tty_audit_tiocsti(tty, ch); 2309 ld = tty_ldisc_ref_wait(tty); 2310 if (!ld) 2311 return -EIO; 2312 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2313 tty_ldisc_deref(ld); 2314 return 0; 2315 } 2316 2317 /** 2318 * tiocgwinsz - implement window query ioctl 2319 * @tty; tty 2320 * @arg: user buffer for result 2321 * 2322 * Copies the kernel idea of the window size into the user buffer. 2323 * 2324 * Locking: tty->winsize_mutex is taken to ensure the winsize data 2325 * is consistent. 2326 */ 2327 2328 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2329 { 2330 int err; 2331 2332 mutex_lock(&tty->winsize_mutex); 2333 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2334 mutex_unlock(&tty->winsize_mutex); 2335 2336 return err ? -EFAULT: 0; 2337 } 2338 2339 /** 2340 * tty_do_resize - resize event 2341 * @tty: tty being resized 2342 * @rows: rows (character) 2343 * @cols: cols (character) 2344 * 2345 * Update the termios variables and send the necessary signals to 2346 * peform a terminal resize correctly 2347 */ 2348 2349 int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2350 { 2351 struct pid *pgrp; 2352 2353 /* Lock the tty */ 2354 mutex_lock(&tty->winsize_mutex); 2355 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2356 goto done; 2357 2358 /* Signal the foreground process group */ 2359 pgrp = tty_get_pgrp(tty); 2360 if (pgrp) 2361 kill_pgrp(pgrp, SIGWINCH, 1); 2362 put_pid(pgrp); 2363 2364 tty->winsize = *ws; 2365 done: 2366 mutex_unlock(&tty->winsize_mutex); 2367 return 0; 2368 } 2369 EXPORT_SYMBOL(tty_do_resize); 2370 2371 /** 2372 * tiocswinsz - implement window size set ioctl 2373 * @tty; tty side of tty 2374 * @arg: user buffer for result 2375 * 2376 * Copies the user idea of the window size to the kernel. Traditionally 2377 * this is just advisory information but for the Linux console it 2378 * actually has driver level meaning and triggers a VC resize. 2379 * 2380 * Locking: 2381 * Driver dependent. The default do_resize method takes the 2382 * tty termios mutex and ctrl_lock. The console takes its own lock 2383 * then calls into the default method. 2384 */ 2385 2386 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2387 { 2388 struct winsize tmp_ws; 2389 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2390 return -EFAULT; 2391 2392 if (tty->ops->resize) 2393 return tty->ops->resize(tty, &tmp_ws); 2394 else 2395 return tty_do_resize(tty, &tmp_ws); 2396 } 2397 2398 /** 2399 * tioccons - allow admin to move logical console 2400 * @file: the file to become console 2401 * 2402 * Allow the administrator to move the redirected console device 2403 * 2404 * Locking: uses redirect_lock to guard the redirect information 2405 */ 2406 2407 static int tioccons(struct file *file) 2408 { 2409 if (!capable(CAP_SYS_ADMIN)) 2410 return -EPERM; 2411 if (file->f_op->write == redirected_tty_write) { 2412 struct file *f; 2413 spin_lock(&redirect_lock); 2414 f = redirect; 2415 redirect = NULL; 2416 spin_unlock(&redirect_lock); 2417 if (f) 2418 fput(f); 2419 return 0; 2420 } 2421 spin_lock(&redirect_lock); 2422 if (redirect) { 2423 spin_unlock(&redirect_lock); 2424 return -EBUSY; 2425 } 2426 redirect = get_file(file); 2427 spin_unlock(&redirect_lock); 2428 return 0; 2429 } 2430 2431 /** 2432 * fionbio - non blocking ioctl 2433 * @file: file to set blocking value 2434 * @p: user parameter 2435 * 2436 * Historical tty interfaces had a blocking control ioctl before 2437 * the generic functionality existed. This piece of history is preserved 2438 * in the expected tty API of posix OS's. 2439 * 2440 * Locking: none, the open file handle ensures it won't go away. 2441 */ 2442 2443 static int fionbio(struct file *file, int __user *p) 2444 { 2445 int nonblock; 2446 2447 if (get_user(nonblock, p)) 2448 return -EFAULT; 2449 2450 spin_lock(&file->f_lock); 2451 if (nonblock) 2452 file->f_flags |= O_NONBLOCK; 2453 else 2454 file->f_flags &= ~O_NONBLOCK; 2455 spin_unlock(&file->f_lock); 2456 return 0; 2457 } 2458 2459 /** 2460 * tiocsctty - set controlling tty 2461 * @tty: tty structure 2462 * @arg: user argument 2463 * 2464 * This ioctl is used to manage job control. It permits a session 2465 * leader to set this tty as the controlling tty for the session. 2466 * 2467 * Locking: 2468 * Takes tty_lock() to serialize proc_set_tty() for this tty 2469 * Takes tasklist_lock internally to walk sessions 2470 * Takes ->siglock() when updating signal->tty 2471 */ 2472 2473 static int tiocsctty(struct tty_struct *tty, struct file *file, int arg) 2474 { 2475 int ret = 0; 2476 2477 tty_lock(tty); 2478 read_lock(&tasklist_lock); 2479 2480 if (current->signal->leader && (task_session(current) == tty->session)) 2481 goto unlock; 2482 2483 /* 2484 * The process must be a session leader and 2485 * not have a controlling tty already. 2486 */ 2487 if (!current->signal->leader || current->signal->tty) { 2488 ret = -EPERM; 2489 goto unlock; 2490 } 2491 2492 if (tty->session) { 2493 /* 2494 * This tty is already the controlling 2495 * tty for another session group! 2496 */ 2497 if (arg == 1 && capable(CAP_SYS_ADMIN)) { 2498 /* 2499 * Steal it away 2500 */ 2501 session_clear_tty(tty->session); 2502 } else { 2503 ret = -EPERM; 2504 goto unlock; 2505 } 2506 } 2507 2508 /* See the comment in tty_open(). */ 2509 if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) { 2510 ret = -EPERM; 2511 goto unlock; 2512 } 2513 2514 proc_set_tty(tty); 2515 unlock: 2516 read_unlock(&tasklist_lock); 2517 tty_unlock(tty); 2518 return ret; 2519 } 2520 2521 /** 2522 * tty_get_pgrp - return a ref counted pgrp pid 2523 * @tty: tty to read 2524 * 2525 * Returns a refcounted instance of the pid struct for the process 2526 * group controlling the tty. 2527 */ 2528 2529 struct pid *tty_get_pgrp(struct tty_struct *tty) 2530 { 2531 unsigned long flags; 2532 struct pid *pgrp; 2533 2534 spin_lock_irqsave(&tty->ctrl_lock, flags); 2535 pgrp = get_pid(tty->pgrp); 2536 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2537 2538 return pgrp; 2539 } 2540 EXPORT_SYMBOL_GPL(tty_get_pgrp); 2541 2542 /* 2543 * This checks not only the pgrp, but falls back on the pid if no 2544 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 2545 * without this... 2546 * 2547 * The caller must hold rcu lock or the tasklist lock. 2548 */ 2549 static struct pid *session_of_pgrp(struct pid *pgrp) 2550 { 2551 struct task_struct *p; 2552 struct pid *sid = NULL; 2553 2554 p = pid_task(pgrp, PIDTYPE_PGID); 2555 if (p == NULL) 2556 p = pid_task(pgrp, PIDTYPE_PID); 2557 if (p != NULL) 2558 sid = task_session(p); 2559 2560 return sid; 2561 } 2562 2563 /** 2564 * tiocgpgrp - get process group 2565 * @tty: tty passed by user 2566 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2567 * @p: returned pid 2568 * 2569 * Obtain the process group of the tty. If there is no process group 2570 * return an error. 2571 * 2572 * Locking: none. Reference to current->signal->tty is safe. 2573 */ 2574 2575 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2576 { 2577 struct pid *pid; 2578 int ret; 2579 /* 2580 * (tty == real_tty) is a cheap way of 2581 * testing if the tty is NOT a master pty. 2582 */ 2583 if (tty == real_tty && current->signal->tty != real_tty) 2584 return -ENOTTY; 2585 pid = tty_get_pgrp(real_tty); 2586 ret = put_user(pid_vnr(pid), p); 2587 put_pid(pid); 2588 return ret; 2589 } 2590 2591 /** 2592 * tiocspgrp - attempt to set process group 2593 * @tty: tty passed by user 2594 * @real_tty: tty side device matching tty passed by user 2595 * @p: pid pointer 2596 * 2597 * Set the process group of the tty to the session passed. Only 2598 * permitted where the tty session is our session. 2599 * 2600 * Locking: RCU, ctrl lock 2601 */ 2602 2603 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2604 { 2605 struct pid *pgrp; 2606 pid_t pgrp_nr; 2607 int retval = tty_check_change(real_tty); 2608 2609 if (retval == -EIO) 2610 return -ENOTTY; 2611 if (retval) 2612 return retval; 2613 if (!current->signal->tty || 2614 (current->signal->tty != real_tty) || 2615 (real_tty->session != task_session(current))) 2616 return -ENOTTY; 2617 if (get_user(pgrp_nr, p)) 2618 return -EFAULT; 2619 if (pgrp_nr < 0) 2620 return -EINVAL; 2621 rcu_read_lock(); 2622 pgrp = find_vpid(pgrp_nr); 2623 retval = -ESRCH; 2624 if (!pgrp) 2625 goto out_unlock; 2626 retval = -EPERM; 2627 if (session_of_pgrp(pgrp) != task_session(current)) 2628 goto out_unlock; 2629 retval = 0; 2630 spin_lock_irq(&tty->ctrl_lock); 2631 put_pid(real_tty->pgrp); 2632 real_tty->pgrp = get_pid(pgrp); 2633 spin_unlock_irq(&tty->ctrl_lock); 2634 out_unlock: 2635 rcu_read_unlock(); 2636 return retval; 2637 } 2638 2639 /** 2640 * tiocgsid - get session id 2641 * @tty: tty passed by user 2642 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2643 * @p: pointer to returned session id 2644 * 2645 * Obtain the session id of the tty. If there is no session 2646 * return an error. 2647 * 2648 * Locking: none. Reference to current->signal->tty is safe. 2649 */ 2650 2651 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2652 { 2653 /* 2654 * (tty == real_tty) is a cheap way of 2655 * testing if the tty is NOT a master pty. 2656 */ 2657 if (tty == real_tty && current->signal->tty != real_tty) 2658 return -ENOTTY; 2659 if (!real_tty->session) 2660 return -ENOTTY; 2661 return put_user(pid_vnr(real_tty->session), p); 2662 } 2663 2664 /** 2665 * tiocsetd - set line discipline 2666 * @tty: tty device 2667 * @p: pointer to user data 2668 * 2669 * Set the line discipline according to user request. 2670 * 2671 * Locking: see tty_set_ldisc, this function is just a helper 2672 */ 2673 2674 static int tiocsetd(struct tty_struct *tty, int __user *p) 2675 { 2676 int disc; 2677 int ret; 2678 2679 if (get_user(disc, p)) 2680 return -EFAULT; 2681 2682 ret = tty_set_ldisc(tty, disc); 2683 2684 return ret; 2685 } 2686 2687 /** 2688 * tiocgetd - get line discipline 2689 * @tty: tty device 2690 * @p: pointer to user data 2691 * 2692 * Retrieves the line discipline id directly from the ldisc. 2693 * 2694 * Locking: waits for ldisc reference (in case the line discipline 2695 * is changing or the tty is being hungup) 2696 */ 2697 2698 static int tiocgetd(struct tty_struct *tty, int __user *p) 2699 { 2700 struct tty_ldisc *ld; 2701 int ret; 2702 2703 ld = tty_ldisc_ref_wait(tty); 2704 if (!ld) 2705 return -EIO; 2706 ret = put_user(ld->ops->num, p); 2707 tty_ldisc_deref(ld); 2708 return ret; 2709 } 2710 2711 /** 2712 * send_break - performed time break 2713 * @tty: device to break on 2714 * @duration: timeout in mS 2715 * 2716 * Perform a timed break on hardware that lacks its own driver level 2717 * timed break functionality. 2718 * 2719 * Locking: 2720 * atomic_write_lock serializes 2721 * 2722 */ 2723 2724 static int send_break(struct tty_struct *tty, unsigned int duration) 2725 { 2726 int retval; 2727 2728 if (tty->ops->break_ctl == NULL) 2729 return 0; 2730 2731 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2732 retval = tty->ops->break_ctl(tty, duration); 2733 else { 2734 /* Do the work ourselves */ 2735 if (tty_write_lock(tty, 0) < 0) 2736 return -EINTR; 2737 retval = tty->ops->break_ctl(tty, -1); 2738 if (retval) 2739 goto out; 2740 if (!signal_pending(current)) 2741 msleep_interruptible(duration); 2742 retval = tty->ops->break_ctl(tty, 0); 2743 out: 2744 tty_write_unlock(tty); 2745 if (signal_pending(current)) 2746 retval = -EINTR; 2747 } 2748 return retval; 2749 } 2750 2751 /** 2752 * tty_tiocmget - get modem status 2753 * @tty: tty device 2754 * @file: user file pointer 2755 * @p: pointer to result 2756 * 2757 * Obtain the modem status bits from the tty driver if the feature 2758 * is supported. Return -EINVAL if it is not available. 2759 * 2760 * Locking: none (up to the driver) 2761 */ 2762 2763 static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2764 { 2765 int retval = -EINVAL; 2766 2767 if (tty->ops->tiocmget) { 2768 retval = tty->ops->tiocmget(tty); 2769 2770 if (retval >= 0) 2771 retval = put_user(retval, p); 2772 } 2773 return retval; 2774 } 2775 2776 /** 2777 * tty_tiocmset - set modem status 2778 * @tty: tty device 2779 * @cmd: command - clear bits, set bits or set all 2780 * @p: pointer to desired bits 2781 * 2782 * Set the modem status bits from the tty driver if the feature 2783 * is supported. Return -EINVAL if it is not available. 2784 * 2785 * Locking: none (up to the driver) 2786 */ 2787 2788 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2789 unsigned __user *p) 2790 { 2791 int retval; 2792 unsigned int set, clear, val; 2793 2794 if (tty->ops->tiocmset == NULL) 2795 return -EINVAL; 2796 2797 retval = get_user(val, p); 2798 if (retval) 2799 return retval; 2800 set = clear = 0; 2801 switch (cmd) { 2802 case TIOCMBIS: 2803 set = val; 2804 break; 2805 case TIOCMBIC: 2806 clear = val; 2807 break; 2808 case TIOCMSET: 2809 set = val; 2810 clear = ~val; 2811 break; 2812 } 2813 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2814 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2815 return tty->ops->tiocmset(tty, set, clear); 2816 } 2817 2818 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2819 { 2820 int retval = -EINVAL; 2821 struct serial_icounter_struct icount; 2822 memset(&icount, 0, sizeof(icount)); 2823 if (tty->ops->get_icount) 2824 retval = tty->ops->get_icount(tty, &icount); 2825 if (retval != 0) 2826 return retval; 2827 if (copy_to_user(arg, &icount, sizeof(icount))) 2828 return -EFAULT; 2829 return 0; 2830 } 2831 2832 static void tty_warn_deprecated_flags(struct serial_struct __user *ss) 2833 { 2834 static DEFINE_RATELIMIT_STATE(depr_flags, 2835 DEFAULT_RATELIMIT_INTERVAL, 2836 DEFAULT_RATELIMIT_BURST); 2837 char comm[TASK_COMM_LEN]; 2838 int flags; 2839 2840 if (get_user(flags, &ss->flags)) 2841 return; 2842 2843 flags &= ASYNC_DEPRECATED; 2844 2845 if (flags && __ratelimit(&depr_flags)) 2846 pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n", 2847 __func__, get_task_comm(comm, current), flags); 2848 } 2849 2850 /* 2851 * if pty, return the slave side (real_tty) 2852 * otherwise, return self 2853 */ 2854 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2855 { 2856 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2857 tty->driver->subtype == PTY_TYPE_MASTER) 2858 tty = tty->link; 2859 return tty; 2860 } 2861 2862 /* 2863 * Split this up, as gcc can choke on it otherwise.. 2864 */ 2865 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2866 { 2867 struct tty_struct *tty = file_tty(file); 2868 struct tty_struct *real_tty; 2869 void __user *p = (void __user *)arg; 2870 int retval; 2871 struct tty_ldisc *ld; 2872 2873 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2874 return -EINVAL; 2875 2876 real_tty = tty_pair_get_tty(tty); 2877 2878 /* 2879 * Factor out some common prep work 2880 */ 2881 switch (cmd) { 2882 case TIOCSETD: 2883 case TIOCSBRK: 2884 case TIOCCBRK: 2885 case TCSBRK: 2886 case TCSBRKP: 2887 retval = tty_check_change(tty); 2888 if (retval) 2889 return retval; 2890 if (cmd != TIOCCBRK) { 2891 tty_wait_until_sent(tty, 0); 2892 if (signal_pending(current)) 2893 return -EINTR; 2894 } 2895 break; 2896 } 2897 2898 /* 2899 * Now do the stuff. 2900 */ 2901 switch (cmd) { 2902 case TIOCSTI: 2903 return tiocsti(tty, p); 2904 case TIOCGWINSZ: 2905 return tiocgwinsz(real_tty, p); 2906 case TIOCSWINSZ: 2907 return tiocswinsz(real_tty, p); 2908 case TIOCCONS: 2909 return real_tty != tty ? -EINVAL : tioccons(file); 2910 case FIONBIO: 2911 return fionbio(file, p); 2912 case TIOCEXCL: 2913 set_bit(TTY_EXCLUSIVE, &tty->flags); 2914 return 0; 2915 case TIOCNXCL: 2916 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2917 return 0; 2918 case TIOCGEXCL: 2919 { 2920 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags); 2921 return put_user(excl, (int __user *)p); 2922 } 2923 case TIOCNOTTY: 2924 if (current->signal->tty != tty) 2925 return -ENOTTY; 2926 no_tty(); 2927 return 0; 2928 case TIOCSCTTY: 2929 return tiocsctty(real_tty, file, arg); 2930 case TIOCGPGRP: 2931 return tiocgpgrp(tty, real_tty, p); 2932 case TIOCSPGRP: 2933 return tiocspgrp(tty, real_tty, p); 2934 case TIOCGSID: 2935 return tiocgsid(tty, real_tty, p); 2936 case TIOCGETD: 2937 return tiocgetd(tty, p); 2938 case TIOCSETD: 2939 return tiocsetd(tty, p); 2940 case TIOCVHANGUP: 2941 if (!capable(CAP_SYS_ADMIN)) 2942 return -EPERM; 2943 tty_vhangup(tty); 2944 return 0; 2945 case TIOCGDEV: 2946 { 2947 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2948 return put_user(ret, (unsigned int __user *)p); 2949 } 2950 /* 2951 * Break handling 2952 */ 2953 case TIOCSBRK: /* Turn break on, unconditionally */ 2954 if (tty->ops->break_ctl) 2955 return tty->ops->break_ctl(tty, -1); 2956 return 0; 2957 case TIOCCBRK: /* Turn break off, unconditionally */ 2958 if (tty->ops->break_ctl) 2959 return tty->ops->break_ctl(tty, 0); 2960 return 0; 2961 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2962 /* non-zero arg means wait for all output data 2963 * to be sent (performed above) but don't send break. 2964 * This is used by the tcdrain() termios function. 2965 */ 2966 if (!arg) 2967 return send_break(tty, 250); 2968 return 0; 2969 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2970 return send_break(tty, arg ? arg*100 : 250); 2971 2972 case TIOCMGET: 2973 return tty_tiocmget(tty, p); 2974 case TIOCMSET: 2975 case TIOCMBIC: 2976 case TIOCMBIS: 2977 return tty_tiocmset(tty, cmd, p); 2978 case TIOCGICOUNT: 2979 retval = tty_tiocgicount(tty, p); 2980 /* For the moment allow fall through to the old method */ 2981 if (retval != -EINVAL) 2982 return retval; 2983 break; 2984 case TCFLSH: 2985 switch (arg) { 2986 case TCIFLUSH: 2987 case TCIOFLUSH: 2988 /* flush tty buffer and allow ldisc to process ioctl */ 2989 tty_buffer_flush(tty, NULL); 2990 break; 2991 } 2992 break; 2993 case TIOCSSERIAL: 2994 tty_warn_deprecated_flags(p); 2995 break; 2996 } 2997 if (tty->ops->ioctl) { 2998 retval = tty->ops->ioctl(tty, cmd, arg); 2999 if (retval != -ENOIOCTLCMD) 3000 return retval; 3001 } 3002 ld = tty_ldisc_ref_wait(tty); 3003 if (!ld) 3004 return hung_up_tty_ioctl(file, cmd, arg); 3005 retval = -EINVAL; 3006 if (ld->ops->ioctl) { 3007 retval = ld->ops->ioctl(tty, file, cmd, arg); 3008 if (retval == -ENOIOCTLCMD) 3009 retval = -ENOTTY; 3010 } 3011 tty_ldisc_deref(ld); 3012 return retval; 3013 } 3014 3015 #ifdef CONFIG_COMPAT 3016 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 3017 unsigned long arg) 3018 { 3019 struct tty_struct *tty = file_tty(file); 3020 struct tty_ldisc *ld; 3021 int retval = -ENOIOCTLCMD; 3022 3023 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 3024 return -EINVAL; 3025 3026 if (tty->ops->compat_ioctl) { 3027 retval = tty->ops->compat_ioctl(tty, cmd, arg); 3028 if (retval != -ENOIOCTLCMD) 3029 return retval; 3030 } 3031 3032 ld = tty_ldisc_ref_wait(tty); 3033 if (!ld) 3034 return hung_up_tty_compat_ioctl(file, cmd, arg); 3035 if (ld->ops->compat_ioctl) 3036 retval = ld->ops->compat_ioctl(tty, file, cmd, arg); 3037 else 3038 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg); 3039 tty_ldisc_deref(ld); 3040 3041 return retval; 3042 } 3043 #endif 3044 3045 static int this_tty(const void *t, struct file *file, unsigned fd) 3046 { 3047 if (likely(file->f_op->read != tty_read)) 3048 return 0; 3049 return file_tty(file) != t ? 0 : fd + 1; 3050 } 3051 3052 /* 3053 * This implements the "Secure Attention Key" --- the idea is to 3054 * prevent trojan horses by killing all processes associated with this 3055 * tty when the user hits the "Secure Attention Key". Required for 3056 * super-paranoid applications --- see the Orange Book for more details. 3057 * 3058 * This code could be nicer; ideally it should send a HUP, wait a few 3059 * seconds, then send a INT, and then a KILL signal. But you then 3060 * have to coordinate with the init process, since all processes associated 3061 * with the current tty must be dead before the new getty is allowed 3062 * to spawn. 3063 * 3064 * Now, if it would be correct ;-/ The current code has a nasty hole - 3065 * it doesn't catch files in flight. We may send the descriptor to ourselves 3066 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 3067 * 3068 * Nasty bug: do_SAK is being called in interrupt context. This can 3069 * deadlock. We punt it up to process context. AKPM - 16Mar2001 3070 */ 3071 void __do_SAK(struct tty_struct *tty) 3072 { 3073 #ifdef TTY_SOFT_SAK 3074 tty_hangup(tty); 3075 #else 3076 struct task_struct *g, *p; 3077 struct pid *session; 3078 int i; 3079 3080 if (!tty) 3081 return; 3082 session = tty->session; 3083 3084 tty_ldisc_flush(tty); 3085 3086 tty_driver_flush_buffer(tty); 3087 3088 read_lock(&tasklist_lock); 3089 /* Kill the entire session */ 3090 do_each_pid_task(session, PIDTYPE_SID, p) { 3091 tty_notice(tty, "SAK: killed process %d (%s): by session\n", 3092 task_pid_nr(p), p->comm); 3093 send_sig(SIGKILL, p, 1); 3094 } while_each_pid_task(session, PIDTYPE_SID, p); 3095 3096 /* Now kill any processes that happen to have the tty open */ 3097 do_each_thread(g, p) { 3098 if (p->signal->tty == tty) { 3099 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n", 3100 task_pid_nr(p), p->comm); 3101 send_sig(SIGKILL, p, 1); 3102 continue; 3103 } 3104 task_lock(p); 3105 i = iterate_fd(p->files, 0, this_tty, tty); 3106 if (i != 0) { 3107 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n", 3108 task_pid_nr(p), p->comm, i - 1); 3109 force_sig(SIGKILL, p); 3110 } 3111 task_unlock(p); 3112 } while_each_thread(g, p); 3113 read_unlock(&tasklist_lock); 3114 #endif 3115 } 3116 3117 static void do_SAK_work(struct work_struct *work) 3118 { 3119 struct tty_struct *tty = 3120 container_of(work, struct tty_struct, SAK_work); 3121 __do_SAK(tty); 3122 } 3123 3124 /* 3125 * The tq handling here is a little racy - tty->SAK_work may already be queued. 3126 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 3127 * the values which we write to it will be identical to the values which it 3128 * already has. --akpm 3129 */ 3130 void do_SAK(struct tty_struct *tty) 3131 { 3132 if (!tty) 3133 return; 3134 schedule_work(&tty->SAK_work); 3135 } 3136 3137 EXPORT_SYMBOL(do_SAK); 3138 3139 static int dev_match_devt(struct device *dev, const void *data) 3140 { 3141 const dev_t *devt = data; 3142 return dev->devt == *devt; 3143 } 3144 3145 /* Must put_device() after it's unused! */ 3146 static struct device *tty_get_device(struct tty_struct *tty) 3147 { 3148 dev_t devt = tty_devnum(tty); 3149 return class_find_device(tty_class, NULL, &devt, dev_match_devt); 3150 } 3151 3152 3153 /** 3154 * alloc_tty_struct 3155 * 3156 * This subroutine allocates and initializes a tty structure. 3157 * 3158 * Locking: none - tty in question is not exposed at this point 3159 */ 3160 3161 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx) 3162 { 3163 struct tty_struct *tty; 3164 3165 tty = kzalloc(sizeof(*tty), GFP_KERNEL); 3166 if (!tty) 3167 return NULL; 3168 3169 kref_init(&tty->kref); 3170 tty->magic = TTY_MAGIC; 3171 tty_ldisc_init(tty); 3172 tty->session = NULL; 3173 tty->pgrp = NULL; 3174 mutex_init(&tty->legacy_mutex); 3175 mutex_init(&tty->throttle_mutex); 3176 init_rwsem(&tty->termios_rwsem); 3177 mutex_init(&tty->winsize_mutex); 3178 init_ldsem(&tty->ldisc_sem); 3179 init_waitqueue_head(&tty->write_wait); 3180 init_waitqueue_head(&tty->read_wait); 3181 INIT_WORK(&tty->hangup_work, do_tty_hangup); 3182 mutex_init(&tty->atomic_write_lock); 3183 spin_lock_init(&tty->ctrl_lock); 3184 spin_lock_init(&tty->flow_lock); 3185 spin_lock_init(&tty->files_lock); 3186 INIT_LIST_HEAD(&tty->tty_files); 3187 INIT_WORK(&tty->SAK_work, do_SAK_work); 3188 3189 tty->driver = driver; 3190 tty->ops = driver->ops; 3191 tty->index = idx; 3192 tty_line_name(driver, idx, tty->name); 3193 tty->dev = tty_get_device(tty); 3194 3195 return tty; 3196 } 3197 3198 /** 3199 * tty_put_char - write one character to a tty 3200 * @tty: tty 3201 * @ch: character 3202 * 3203 * Write one byte to the tty using the provided put_char method 3204 * if present. Returns the number of characters successfully output. 3205 * 3206 * Note: the specific put_char operation in the driver layer may go 3207 * away soon. Don't call it directly, use this method 3208 */ 3209 3210 int tty_put_char(struct tty_struct *tty, unsigned char ch) 3211 { 3212 if (tty->ops->put_char) 3213 return tty->ops->put_char(tty, ch); 3214 return tty->ops->write(tty, &ch, 1); 3215 } 3216 EXPORT_SYMBOL_GPL(tty_put_char); 3217 3218 struct class *tty_class; 3219 3220 static int tty_cdev_add(struct tty_driver *driver, dev_t dev, 3221 unsigned int index, unsigned int count) 3222 { 3223 int err; 3224 3225 /* init here, since reused cdevs cause crashes */ 3226 driver->cdevs[index] = cdev_alloc(); 3227 if (!driver->cdevs[index]) 3228 return -ENOMEM; 3229 driver->cdevs[index]->ops = &tty_fops; 3230 driver->cdevs[index]->owner = driver->owner; 3231 err = cdev_add(driver->cdevs[index], dev, count); 3232 if (err) 3233 kobject_put(&driver->cdevs[index]->kobj); 3234 return err; 3235 } 3236 3237 /** 3238 * tty_register_device - register a tty device 3239 * @driver: the tty driver that describes the tty device 3240 * @index: the index in the tty driver for this tty device 3241 * @device: a struct device that is associated with this tty device. 3242 * This field is optional, if there is no known struct device 3243 * for this tty device it can be set to NULL safely. 3244 * 3245 * Returns a pointer to the struct device for this tty device 3246 * (or ERR_PTR(-EFOO) on error). 3247 * 3248 * This call is required to be made to register an individual tty device 3249 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3250 * that bit is not set, this function should not be called by a tty 3251 * driver. 3252 * 3253 * Locking: ?? 3254 */ 3255 3256 struct device *tty_register_device(struct tty_driver *driver, unsigned index, 3257 struct device *device) 3258 { 3259 return tty_register_device_attr(driver, index, device, NULL, NULL); 3260 } 3261 EXPORT_SYMBOL(tty_register_device); 3262 3263 static void tty_device_create_release(struct device *dev) 3264 { 3265 dev_dbg(dev, "releasing...\n"); 3266 kfree(dev); 3267 } 3268 3269 /** 3270 * tty_register_device_attr - register a tty device 3271 * @driver: the tty driver that describes the tty device 3272 * @index: the index in the tty driver for this tty device 3273 * @device: a struct device that is associated with this tty device. 3274 * This field is optional, if there is no known struct device 3275 * for this tty device it can be set to NULL safely. 3276 * @drvdata: Driver data to be set to device. 3277 * @attr_grp: Attribute group to be set on device. 3278 * 3279 * Returns a pointer to the struct device for this tty device 3280 * (or ERR_PTR(-EFOO) on error). 3281 * 3282 * This call is required to be made to register an individual tty device 3283 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3284 * that bit is not set, this function should not be called by a tty 3285 * driver. 3286 * 3287 * Locking: ?? 3288 */ 3289 struct device *tty_register_device_attr(struct tty_driver *driver, 3290 unsigned index, struct device *device, 3291 void *drvdata, 3292 const struct attribute_group **attr_grp) 3293 { 3294 char name[64]; 3295 dev_t devt = MKDEV(driver->major, driver->minor_start) + index; 3296 struct device *dev = NULL; 3297 int retval = -ENODEV; 3298 bool cdev = false; 3299 3300 if (index >= driver->num) { 3301 pr_err("%s: Attempt to register invalid tty line number (%d)\n", 3302 driver->name, index); 3303 return ERR_PTR(-EINVAL); 3304 } 3305 3306 if (driver->type == TTY_DRIVER_TYPE_PTY) 3307 pty_line_name(driver, index, name); 3308 else 3309 tty_line_name(driver, index, name); 3310 3311 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3312 retval = tty_cdev_add(driver, devt, index, 1); 3313 if (retval) 3314 goto error; 3315 cdev = true; 3316 } 3317 3318 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3319 if (!dev) { 3320 retval = -ENOMEM; 3321 goto error; 3322 } 3323 3324 dev->devt = devt; 3325 dev->class = tty_class; 3326 dev->parent = device; 3327 dev->release = tty_device_create_release; 3328 dev_set_name(dev, "%s", name); 3329 dev->groups = attr_grp; 3330 dev_set_drvdata(dev, drvdata); 3331 3332 retval = device_register(dev); 3333 if (retval) 3334 goto error; 3335 3336 return dev; 3337 3338 error: 3339 put_device(dev); 3340 if (cdev) { 3341 cdev_del(driver->cdevs[index]); 3342 driver->cdevs[index] = NULL; 3343 } 3344 return ERR_PTR(retval); 3345 } 3346 EXPORT_SYMBOL_GPL(tty_register_device_attr); 3347 3348 /** 3349 * tty_unregister_device - unregister a tty device 3350 * @driver: the tty driver that describes the tty device 3351 * @index: the index in the tty driver for this tty device 3352 * 3353 * If a tty device is registered with a call to tty_register_device() then 3354 * this function must be called when the tty device is gone. 3355 * 3356 * Locking: ?? 3357 */ 3358 3359 void tty_unregister_device(struct tty_driver *driver, unsigned index) 3360 { 3361 device_destroy(tty_class, 3362 MKDEV(driver->major, driver->minor_start) + index); 3363 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3364 cdev_del(driver->cdevs[index]); 3365 driver->cdevs[index] = NULL; 3366 } 3367 } 3368 EXPORT_SYMBOL(tty_unregister_device); 3369 3370 /** 3371 * __tty_alloc_driver -- allocate tty driver 3372 * @lines: count of lines this driver can handle at most 3373 * @owner: module which is repsonsible for this driver 3374 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags 3375 * 3376 * This should not be called directly, some of the provided macros should be 3377 * used instead. Use IS_ERR and friends on @retval. 3378 */ 3379 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner, 3380 unsigned long flags) 3381 { 3382 struct tty_driver *driver; 3383 unsigned int cdevs = 1; 3384 int err; 3385 3386 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1)) 3387 return ERR_PTR(-EINVAL); 3388 3389 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL); 3390 if (!driver) 3391 return ERR_PTR(-ENOMEM); 3392 3393 kref_init(&driver->kref); 3394 driver->magic = TTY_DRIVER_MAGIC; 3395 driver->num = lines; 3396 driver->owner = owner; 3397 driver->flags = flags; 3398 3399 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) { 3400 driver->ttys = kcalloc(lines, sizeof(*driver->ttys), 3401 GFP_KERNEL); 3402 driver->termios = kcalloc(lines, sizeof(*driver->termios), 3403 GFP_KERNEL); 3404 if (!driver->ttys || !driver->termios) { 3405 err = -ENOMEM; 3406 goto err_free_all; 3407 } 3408 } 3409 3410 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3411 driver->ports = kcalloc(lines, sizeof(*driver->ports), 3412 GFP_KERNEL); 3413 if (!driver->ports) { 3414 err = -ENOMEM; 3415 goto err_free_all; 3416 } 3417 cdevs = lines; 3418 } 3419 3420 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL); 3421 if (!driver->cdevs) { 3422 err = -ENOMEM; 3423 goto err_free_all; 3424 } 3425 3426 return driver; 3427 err_free_all: 3428 kfree(driver->ports); 3429 kfree(driver->ttys); 3430 kfree(driver->termios); 3431 kfree(driver->cdevs); 3432 kfree(driver); 3433 return ERR_PTR(err); 3434 } 3435 EXPORT_SYMBOL(__tty_alloc_driver); 3436 3437 static void destruct_tty_driver(struct kref *kref) 3438 { 3439 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3440 int i; 3441 struct ktermios *tp; 3442 3443 if (driver->flags & TTY_DRIVER_INSTALLED) { 3444 /* 3445 * Free the termios and termios_locked structures because 3446 * we don't want to get memory leaks when modular tty 3447 * drivers are removed from the kernel. 3448 */ 3449 for (i = 0; i < driver->num; i++) { 3450 tp = driver->termios[i]; 3451 if (tp) { 3452 driver->termios[i] = NULL; 3453 kfree(tp); 3454 } 3455 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3456 tty_unregister_device(driver, i); 3457 } 3458 proc_tty_unregister_driver(driver); 3459 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) 3460 cdev_del(driver->cdevs[0]); 3461 } 3462 kfree(driver->cdevs); 3463 kfree(driver->ports); 3464 kfree(driver->termios); 3465 kfree(driver->ttys); 3466 kfree(driver); 3467 } 3468 3469 void tty_driver_kref_put(struct tty_driver *driver) 3470 { 3471 kref_put(&driver->kref, destruct_tty_driver); 3472 } 3473 EXPORT_SYMBOL(tty_driver_kref_put); 3474 3475 void tty_set_operations(struct tty_driver *driver, 3476 const struct tty_operations *op) 3477 { 3478 driver->ops = op; 3479 }; 3480 EXPORT_SYMBOL(tty_set_operations); 3481 3482 void put_tty_driver(struct tty_driver *d) 3483 { 3484 tty_driver_kref_put(d); 3485 } 3486 EXPORT_SYMBOL(put_tty_driver); 3487 3488 /* 3489 * Called by a tty driver to register itself. 3490 */ 3491 int tty_register_driver(struct tty_driver *driver) 3492 { 3493 int error; 3494 int i; 3495 dev_t dev; 3496 struct device *d; 3497 3498 if (!driver->major) { 3499 error = alloc_chrdev_region(&dev, driver->minor_start, 3500 driver->num, driver->name); 3501 if (!error) { 3502 driver->major = MAJOR(dev); 3503 driver->minor_start = MINOR(dev); 3504 } 3505 } else { 3506 dev = MKDEV(driver->major, driver->minor_start); 3507 error = register_chrdev_region(dev, driver->num, driver->name); 3508 } 3509 if (error < 0) 3510 goto err; 3511 3512 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) { 3513 error = tty_cdev_add(driver, dev, 0, driver->num); 3514 if (error) 3515 goto err_unreg_char; 3516 } 3517 3518 mutex_lock(&tty_mutex); 3519 list_add(&driver->tty_drivers, &tty_drivers); 3520 mutex_unlock(&tty_mutex); 3521 3522 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3523 for (i = 0; i < driver->num; i++) { 3524 d = tty_register_device(driver, i, NULL); 3525 if (IS_ERR(d)) { 3526 error = PTR_ERR(d); 3527 goto err_unreg_devs; 3528 } 3529 } 3530 } 3531 proc_tty_register_driver(driver); 3532 driver->flags |= TTY_DRIVER_INSTALLED; 3533 return 0; 3534 3535 err_unreg_devs: 3536 for (i--; i >= 0; i--) 3537 tty_unregister_device(driver, i); 3538 3539 mutex_lock(&tty_mutex); 3540 list_del(&driver->tty_drivers); 3541 mutex_unlock(&tty_mutex); 3542 3543 err_unreg_char: 3544 unregister_chrdev_region(dev, driver->num); 3545 err: 3546 return error; 3547 } 3548 EXPORT_SYMBOL(tty_register_driver); 3549 3550 /* 3551 * Called by a tty driver to unregister itself. 3552 */ 3553 int tty_unregister_driver(struct tty_driver *driver) 3554 { 3555 #if 0 3556 /* FIXME */ 3557 if (driver->refcount) 3558 return -EBUSY; 3559 #endif 3560 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3561 driver->num); 3562 mutex_lock(&tty_mutex); 3563 list_del(&driver->tty_drivers); 3564 mutex_unlock(&tty_mutex); 3565 return 0; 3566 } 3567 3568 EXPORT_SYMBOL(tty_unregister_driver); 3569 3570 dev_t tty_devnum(struct tty_struct *tty) 3571 { 3572 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3573 } 3574 EXPORT_SYMBOL(tty_devnum); 3575 3576 void tty_default_fops(struct file_operations *fops) 3577 { 3578 *fops = tty_fops; 3579 } 3580 3581 /* 3582 * Initialize the console device. This is called *early*, so 3583 * we can't necessarily depend on lots of kernel help here. 3584 * Just do some early initializations, and do the complex setup 3585 * later. 3586 */ 3587 void __init console_init(void) 3588 { 3589 initcall_t *call; 3590 3591 /* Setup the default TTY line discipline. */ 3592 n_tty_init(); 3593 3594 /* 3595 * set up the console device so that later boot sequences can 3596 * inform about problems etc.. 3597 */ 3598 call = __con_initcall_start; 3599 while (call < __con_initcall_end) { 3600 (*call)(); 3601 call++; 3602 } 3603 } 3604 3605 static char *tty_devnode(struct device *dev, umode_t *mode) 3606 { 3607 if (!mode) 3608 return NULL; 3609 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3610 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3611 *mode = 0666; 3612 return NULL; 3613 } 3614 3615 static int __init tty_class_init(void) 3616 { 3617 tty_class = class_create(THIS_MODULE, "tty"); 3618 if (IS_ERR(tty_class)) 3619 return PTR_ERR(tty_class); 3620 tty_class->devnode = tty_devnode; 3621 return 0; 3622 } 3623 3624 postcore_initcall(tty_class_init); 3625 3626 /* 3/2004 jmc: why do these devices exist? */ 3627 static struct cdev tty_cdev, console_cdev; 3628 3629 static ssize_t show_cons_active(struct device *dev, 3630 struct device_attribute *attr, char *buf) 3631 { 3632 struct console *cs[16]; 3633 int i = 0; 3634 struct console *c; 3635 ssize_t count = 0; 3636 3637 console_lock(); 3638 for_each_console(c) { 3639 if (!c->device) 3640 continue; 3641 if (!c->write) 3642 continue; 3643 if ((c->flags & CON_ENABLED) == 0) 3644 continue; 3645 cs[i++] = c; 3646 if (i >= ARRAY_SIZE(cs)) 3647 break; 3648 } 3649 while (i--) { 3650 int index = cs[i]->index; 3651 struct tty_driver *drv = cs[i]->device(cs[i], &index); 3652 3653 /* don't resolve tty0 as some programs depend on it */ 3654 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR)) 3655 count += tty_line_name(drv, index, buf + count); 3656 else 3657 count += sprintf(buf + count, "%s%d", 3658 cs[i]->name, cs[i]->index); 3659 3660 count += sprintf(buf + count, "%c", i ? ' ':'\n'); 3661 } 3662 console_unlock(); 3663 3664 return count; 3665 } 3666 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3667 3668 static struct attribute *cons_dev_attrs[] = { 3669 &dev_attr_active.attr, 3670 NULL 3671 }; 3672 3673 ATTRIBUTE_GROUPS(cons_dev); 3674 3675 static struct device *consdev; 3676 3677 void console_sysfs_notify(void) 3678 { 3679 if (consdev) 3680 sysfs_notify(&consdev->kobj, NULL, "active"); 3681 } 3682 3683 /* 3684 * Ok, now we can initialize the rest of the tty devices and can count 3685 * on memory allocations, interrupts etc.. 3686 */ 3687 int __init tty_init(void) 3688 { 3689 cdev_init(&tty_cdev, &tty_fops); 3690 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3691 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3692 panic("Couldn't register /dev/tty driver\n"); 3693 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3694 3695 cdev_init(&console_cdev, &console_fops); 3696 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3697 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3698 panic("Couldn't register /dev/console driver\n"); 3699 consdev = device_create_with_groups(tty_class, NULL, 3700 MKDEV(TTYAUX_MAJOR, 1), NULL, 3701 cons_dev_groups, "console"); 3702 if (IS_ERR(consdev)) 3703 consdev = NULL; 3704 3705 #ifdef CONFIG_VT 3706 vty_init(&console_fops); 3707 #endif 3708 return 0; 3709 } 3710 3711