xref: /openbmc/linux/drivers/tty/tty_io.c (revision 174cd4b1)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched/signal.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 #ifdef TTY_DEBUG_HANGUP
110 # define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
111 #else
112 # define tty_debug_hangup(tty, f, args...)	do { } while (0)
113 #endif
114 
115 #define TTY_PARANOIA_CHECK 1
116 #define CHECK_TTY_COUNT 1
117 
118 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
119 	.c_iflag = ICRNL | IXON,
120 	.c_oflag = OPOST | ONLCR,
121 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
122 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
123 		   ECHOCTL | ECHOKE | IEXTEN,
124 	.c_cc = INIT_C_CC,
125 	.c_ispeed = 38400,
126 	.c_ospeed = 38400,
127 	/* .c_line = N_TTY, */
128 };
129 
130 EXPORT_SYMBOL(tty_std_termios);
131 
132 /* This list gets poked at by procfs and various bits of boot up code. This
133    could do with some rationalisation such as pulling the tty proc function
134    into this file */
135 
136 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
137 
138 /* Mutex to protect creating and releasing a tty */
139 DEFINE_MUTEX(tty_mutex);
140 
141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143 ssize_t redirected_tty_write(struct file *, const char __user *,
144 							size_t, loff_t *);
145 static unsigned int tty_poll(struct file *, poll_table *);
146 static int tty_open(struct inode *, struct file *);
147 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148 #ifdef CONFIG_COMPAT
149 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
150 				unsigned long arg);
151 #else
152 #define tty_compat_ioctl NULL
153 #endif
154 static int __tty_fasync(int fd, struct file *filp, int on);
155 static int tty_fasync(int fd, struct file *filp, int on);
156 static void release_tty(struct tty_struct *tty, int idx);
157 
158 /**
159  *	free_tty_struct		-	free a disused tty
160  *	@tty: tty struct to free
161  *
162  *	Free the write buffers, tty queue and tty memory itself.
163  *
164  *	Locking: none. Must be called after tty is definitely unused
165  */
166 
167 static void free_tty_struct(struct tty_struct *tty)
168 {
169 	tty_ldisc_deinit(tty);
170 	put_device(tty->dev);
171 	kfree(tty->write_buf);
172 	tty->magic = 0xDEADDEAD;
173 	kfree(tty);
174 }
175 
176 static inline struct tty_struct *file_tty(struct file *file)
177 {
178 	return ((struct tty_file_private *)file->private_data)->tty;
179 }
180 
181 int tty_alloc_file(struct file *file)
182 {
183 	struct tty_file_private *priv;
184 
185 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
186 	if (!priv)
187 		return -ENOMEM;
188 
189 	file->private_data = priv;
190 
191 	return 0;
192 }
193 
194 /* Associate a new file with the tty structure */
195 void tty_add_file(struct tty_struct *tty, struct file *file)
196 {
197 	struct tty_file_private *priv = file->private_data;
198 
199 	priv->tty = tty;
200 	priv->file = file;
201 
202 	spin_lock(&tty->files_lock);
203 	list_add(&priv->list, &tty->tty_files);
204 	spin_unlock(&tty->files_lock);
205 }
206 
207 /**
208  * tty_free_file - free file->private_data
209  *
210  * This shall be used only for fail path handling when tty_add_file was not
211  * called yet.
212  */
213 void tty_free_file(struct file *file)
214 {
215 	struct tty_file_private *priv = file->private_data;
216 
217 	file->private_data = NULL;
218 	kfree(priv);
219 }
220 
221 /* Delete file from its tty */
222 static void tty_del_file(struct file *file)
223 {
224 	struct tty_file_private *priv = file->private_data;
225 	struct tty_struct *tty = priv->tty;
226 
227 	spin_lock(&tty->files_lock);
228 	list_del(&priv->list);
229 	spin_unlock(&tty->files_lock);
230 	tty_free_file(file);
231 }
232 
233 /**
234  *	tty_name	-	return tty naming
235  *	@tty: tty structure
236  *
237  *	Convert a tty structure into a name. The name reflects the kernel
238  *	naming policy and if udev is in use may not reflect user space
239  *
240  *	Locking: none
241  */
242 
243 const char *tty_name(const struct tty_struct *tty)
244 {
245 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
246 		return "NULL tty";
247 	return tty->name;
248 }
249 
250 EXPORT_SYMBOL(tty_name);
251 
252 const char *tty_driver_name(const struct tty_struct *tty)
253 {
254 	if (!tty || !tty->driver)
255 		return "";
256 	return tty->driver->name;
257 }
258 
259 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
260 			      const char *routine)
261 {
262 #ifdef TTY_PARANOIA_CHECK
263 	if (!tty) {
264 		pr_warn("(%d:%d): %s: NULL tty\n",
265 			imajor(inode), iminor(inode), routine);
266 		return 1;
267 	}
268 	if (tty->magic != TTY_MAGIC) {
269 		pr_warn("(%d:%d): %s: bad magic number\n",
270 			imajor(inode), iminor(inode), routine);
271 		return 1;
272 	}
273 #endif
274 	return 0;
275 }
276 
277 /* Caller must hold tty_lock */
278 static int check_tty_count(struct tty_struct *tty, const char *routine)
279 {
280 #ifdef CHECK_TTY_COUNT
281 	struct list_head *p;
282 	int count = 0;
283 
284 	spin_lock(&tty->files_lock);
285 	list_for_each(p, &tty->tty_files) {
286 		count++;
287 	}
288 	spin_unlock(&tty->files_lock);
289 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
290 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
291 	    tty->link && tty->link->count)
292 		count++;
293 	if (tty->count != count) {
294 		tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n",
295 			 routine, tty->count, count);
296 		return count;
297 	}
298 #endif
299 	return 0;
300 }
301 
302 /**
303  *	get_tty_driver		-	find device of a tty
304  *	@dev_t: device identifier
305  *	@index: returns the index of the tty
306  *
307  *	This routine returns a tty driver structure, given a device number
308  *	and also passes back the index number.
309  *
310  *	Locking: caller must hold tty_mutex
311  */
312 
313 static struct tty_driver *get_tty_driver(dev_t device, int *index)
314 {
315 	struct tty_driver *p;
316 
317 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
318 		dev_t base = MKDEV(p->major, p->minor_start);
319 		if (device < base || device >= base + p->num)
320 			continue;
321 		*index = device - base;
322 		return tty_driver_kref_get(p);
323 	}
324 	return NULL;
325 }
326 
327 #ifdef CONFIG_CONSOLE_POLL
328 
329 /**
330  *	tty_find_polling_driver	-	find device of a polled tty
331  *	@name: name string to match
332  *	@line: pointer to resulting tty line nr
333  *
334  *	This routine returns a tty driver structure, given a name
335  *	and the condition that the tty driver is capable of polled
336  *	operation.
337  */
338 struct tty_driver *tty_find_polling_driver(char *name, int *line)
339 {
340 	struct tty_driver *p, *res = NULL;
341 	int tty_line = 0;
342 	int len;
343 	char *str, *stp;
344 
345 	for (str = name; *str; str++)
346 		if ((*str >= '0' && *str <= '9') || *str == ',')
347 			break;
348 	if (!*str)
349 		return NULL;
350 
351 	len = str - name;
352 	tty_line = simple_strtoul(str, &str, 10);
353 
354 	mutex_lock(&tty_mutex);
355 	/* Search through the tty devices to look for a match */
356 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
357 		if (strncmp(name, p->name, len) != 0)
358 			continue;
359 		stp = str;
360 		if (*stp == ',')
361 			stp++;
362 		if (*stp == '\0')
363 			stp = NULL;
364 
365 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
366 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
367 			res = tty_driver_kref_get(p);
368 			*line = tty_line;
369 			break;
370 		}
371 	}
372 	mutex_unlock(&tty_mutex);
373 
374 	return res;
375 }
376 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
377 #endif
378 
379 static int is_ignored(int sig)
380 {
381 	return (sigismember(&current->blocked, sig) ||
382 		current->sighand->action[sig-1].sa.sa_handler == SIG_IGN);
383 }
384 
385 /**
386  *	tty_check_change	-	check for POSIX terminal changes
387  *	@tty: tty to check
388  *
389  *	If we try to write to, or set the state of, a terminal and we're
390  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
391  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
392  *
393  *	Locking: ctrl_lock
394  */
395 
396 int __tty_check_change(struct tty_struct *tty, int sig)
397 {
398 	unsigned long flags;
399 	struct pid *pgrp, *tty_pgrp;
400 	int ret = 0;
401 
402 	if (current->signal->tty != tty)
403 		return 0;
404 
405 	rcu_read_lock();
406 	pgrp = task_pgrp(current);
407 
408 	spin_lock_irqsave(&tty->ctrl_lock, flags);
409 	tty_pgrp = tty->pgrp;
410 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
411 
412 	if (tty_pgrp && pgrp != tty->pgrp) {
413 		if (is_ignored(sig)) {
414 			if (sig == SIGTTIN)
415 				ret = -EIO;
416 		} else if (is_current_pgrp_orphaned())
417 			ret = -EIO;
418 		else {
419 			kill_pgrp(pgrp, sig, 1);
420 			set_thread_flag(TIF_SIGPENDING);
421 			ret = -ERESTARTSYS;
422 		}
423 	}
424 	rcu_read_unlock();
425 
426 	if (!tty_pgrp)
427 		tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig);
428 
429 	return ret;
430 }
431 
432 int tty_check_change(struct tty_struct *tty)
433 {
434 	return __tty_check_change(tty, SIGTTOU);
435 }
436 EXPORT_SYMBOL(tty_check_change);
437 
438 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
439 				size_t count, loff_t *ppos)
440 {
441 	return 0;
442 }
443 
444 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
445 				 size_t count, loff_t *ppos)
446 {
447 	return -EIO;
448 }
449 
450 /* No kernel lock held - none needed ;) */
451 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
452 {
453 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
454 }
455 
456 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
457 		unsigned long arg)
458 {
459 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
460 }
461 
462 static long hung_up_tty_compat_ioctl(struct file *file,
463 				     unsigned int cmd, unsigned long arg)
464 {
465 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
466 }
467 
468 static int hung_up_tty_fasync(int fd, struct file *file, int on)
469 {
470 	return -ENOTTY;
471 }
472 
473 static const struct file_operations tty_fops = {
474 	.llseek		= no_llseek,
475 	.read		= tty_read,
476 	.write		= tty_write,
477 	.poll		= tty_poll,
478 	.unlocked_ioctl	= tty_ioctl,
479 	.compat_ioctl	= tty_compat_ioctl,
480 	.open		= tty_open,
481 	.release	= tty_release,
482 	.fasync		= tty_fasync,
483 };
484 
485 static const struct file_operations console_fops = {
486 	.llseek		= no_llseek,
487 	.read		= tty_read,
488 	.write		= redirected_tty_write,
489 	.poll		= tty_poll,
490 	.unlocked_ioctl	= tty_ioctl,
491 	.compat_ioctl	= tty_compat_ioctl,
492 	.open		= tty_open,
493 	.release	= tty_release,
494 	.fasync		= tty_fasync,
495 };
496 
497 static const struct file_operations hung_up_tty_fops = {
498 	.llseek		= no_llseek,
499 	.read		= hung_up_tty_read,
500 	.write		= hung_up_tty_write,
501 	.poll		= hung_up_tty_poll,
502 	.unlocked_ioctl	= hung_up_tty_ioctl,
503 	.compat_ioctl	= hung_up_tty_compat_ioctl,
504 	.release	= tty_release,
505 	.fasync		= hung_up_tty_fasync,
506 };
507 
508 static DEFINE_SPINLOCK(redirect_lock);
509 static struct file *redirect;
510 
511 
512 void proc_clear_tty(struct task_struct *p)
513 {
514 	unsigned long flags;
515 	struct tty_struct *tty;
516 	spin_lock_irqsave(&p->sighand->siglock, flags);
517 	tty = p->signal->tty;
518 	p->signal->tty = NULL;
519 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
520 	tty_kref_put(tty);
521 }
522 
523 /**
524  * proc_set_tty -  set the controlling terminal
525  *
526  * Only callable by the session leader and only if it does not already have
527  * a controlling terminal.
528  *
529  * Caller must hold:  tty_lock()
530  *		      a readlock on tasklist_lock
531  *		      sighand lock
532  */
533 static void __proc_set_tty(struct tty_struct *tty)
534 {
535 	unsigned long flags;
536 
537 	spin_lock_irqsave(&tty->ctrl_lock, flags);
538 	/*
539 	 * The session and fg pgrp references will be non-NULL if
540 	 * tiocsctty() is stealing the controlling tty
541 	 */
542 	put_pid(tty->session);
543 	put_pid(tty->pgrp);
544 	tty->pgrp = get_pid(task_pgrp(current));
545 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
546 	tty->session = get_pid(task_session(current));
547 	if (current->signal->tty) {
548 		tty_debug(tty, "current tty %s not NULL!!\n",
549 			  current->signal->tty->name);
550 		tty_kref_put(current->signal->tty);
551 	}
552 	put_pid(current->signal->tty_old_pgrp);
553 	current->signal->tty = tty_kref_get(tty);
554 	current->signal->tty_old_pgrp = NULL;
555 }
556 
557 static void proc_set_tty(struct tty_struct *tty)
558 {
559 	spin_lock_irq(&current->sighand->siglock);
560 	__proc_set_tty(tty);
561 	spin_unlock_irq(&current->sighand->siglock);
562 }
563 
564 struct tty_struct *get_current_tty(void)
565 {
566 	struct tty_struct *tty;
567 	unsigned long flags;
568 
569 	spin_lock_irqsave(&current->sighand->siglock, flags);
570 	tty = tty_kref_get(current->signal->tty);
571 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
572 	return tty;
573 }
574 EXPORT_SYMBOL_GPL(get_current_tty);
575 
576 static void session_clear_tty(struct pid *session)
577 {
578 	struct task_struct *p;
579 	do_each_pid_task(session, PIDTYPE_SID, p) {
580 		proc_clear_tty(p);
581 	} while_each_pid_task(session, PIDTYPE_SID, p);
582 }
583 
584 /**
585  *	tty_wakeup	-	request more data
586  *	@tty: terminal
587  *
588  *	Internal and external helper for wakeups of tty. This function
589  *	informs the line discipline if present that the driver is ready
590  *	to receive more output data.
591  */
592 
593 void tty_wakeup(struct tty_struct *tty)
594 {
595 	struct tty_ldisc *ld;
596 
597 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
598 		ld = tty_ldisc_ref(tty);
599 		if (ld) {
600 			if (ld->ops->write_wakeup)
601 				ld->ops->write_wakeup(tty);
602 			tty_ldisc_deref(ld);
603 		}
604 	}
605 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
606 }
607 
608 EXPORT_SYMBOL_GPL(tty_wakeup);
609 
610 /**
611  *	tty_signal_session_leader	- sends SIGHUP to session leader
612  *	@tty		controlling tty
613  *	@exit_session	if non-zero, signal all foreground group processes
614  *
615  *	Send SIGHUP and SIGCONT to the session leader and its process group.
616  *	Optionally, signal all processes in the foreground process group.
617  *
618  *	Returns the number of processes in the session with this tty
619  *	as their controlling terminal. This value is used to drop
620  *	tty references for those processes.
621  */
622 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
623 {
624 	struct task_struct *p;
625 	int refs = 0;
626 	struct pid *tty_pgrp = NULL;
627 
628 	read_lock(&tasklist_lock);
629 	if (tty->session) {
630 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
631 			spin_lock_irq(&p->sighand->siglock);
632 			if (p->signal->tty == tty) {
633 				p->signal->tty = NULL;
634 				/* We defer the dereferences outside fo
635 				   the tasklist lock */
636 				refs++;
637 			}
638 			if (!p->signal->leader) {
639 				spin_unlock_irq(&p->sighand->siglock);
640 				continue;
641 			}
642 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
643 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
644 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
645 			spin_lock(&tty->ctrl_lock);
646 			tty_pgrp = get_pid(tty->pgrp);
647 			if (tty->pgrp)
648 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
649 			spin_unlock(&tty->ctrl_lock);
650 			spin_unlock_irq(&p->sighand->siglock);
651 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
652 	}
653 	read_unlock(&tasklist_lock);
654 
655 	if (tty_pgrp) {
656 		if (exit_session)
657 			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
658 		put_pid(tty_pgrp);
659 	}
660 
661 	return refs;
662 }
663 
664 /**
665  *	__tty_hangup		-	actual handler for hangup events
666  *	@work: tty device
667  *
668  *	This can be called by a "kworker" kernel thread.  That is process
669  *	synchronous but doesn't hold any locks, so we need to make sure we
670  *	have the appropriate locks for what we're doing.
671  *
672  *	The hangup event clears any pending redirections onto the hung up
673  *	device. It ensures future writes will error and it does the needed
674  *	line discipline hangup and signal delivery. The tty object itself
675  *	remains intact.
676  *
677  *	Locking:
678  *		BTM
679  *		  redirect lock for undoing redirection
680  *		  file list lock for manipulating list of ttys
681  *		  tty_ldiscs_lock from called functions
682  *		  termios_rwsem resetting termios data
683  *		  tasklist_lock to walk task list for hangup event
684  *		    ->siglock to protect ->signal/->sighand
685  */
686 static void __tty_hangup(struct tty_struct *tty, int exit_session)
687 {
688 	struct file *cons_filp = NULL;
689 	struct file *filp, *f = NULL;
690 	struct tty_file_private *priv;
691 	int    closecount = 0, n;
692 	int refs;
693 
694 	if (!tty)
695 		return;
696 
697 
698 	spin_lock(&redirect_lock);
699 	if (redirect && file_tty(redirect) == tty) {
700 		f = redirect;
701 		redirect = NULL;
702 	}
703 	spin_unlock(&redirect_lock);
704 
705 	tty_lock(tty);
706 
707 	if (test_bit(TTY_HUPPED, &tty->flags)) {
708 		tty_unlock(tty);
709 		return;
710 	}
711 
712 	/* inuse_filps is protected by the single tty lock,
713 	   this really needs to change if we want to flush the
714 	   workqueue with the lock held */
715 	check_tty_count(tty, "tty_hangup");
716 
717 	spin_lock(&tty->files_lock);
718 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
719 	list_for_each_entry(priv, &tty->tty_files, list) {
720 		filp = priv->file;
721 		if (filp->f_op->write == redirected_tty_write)
722 			cons_filp = filp;
723 		if (filp->f_op->write != tty_write)
724 			continue;
725 		closecount++;
726 		__tty_fasync(-1, filp, 0);	/* can't block */
727 		filp->f_op = &hung_up_tty_fops;
728 	}
729 	spin_unlock(&tty->files_lock);
730 
731 	refs = tty_signal_session_leader(tty, exit_session);
732 	/* Account for the p->signal references we killed */
733 	while (refs--)
734 		tty_kref_put(tty);
735 
736 	tty_ldisc_hangup(tty, cons_filp != NULL);
737 
738 	spin_lock_irq(&tty->ctrl_lock);
739 	clear_bit(TTY_THROTTLED, &tty->flags);
740 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
741 	put_pid(tty->session);
742 	put_pid(tty->pgrp);
743 	tty->session = NULL;
744 	tty->pgrp = NULL;
745 	tty->ctrl_status = 0;
746 	spin_unlock_irq(&tty->ctrl_lock);
747 
748 	/*
749 	 * If one of the devices matches a console pointer, we
750 	 * cannot just call hangup() because that will cause
751 	 * tty->count and state->count to go out of sync.
752 	 * So we just call close() the right number of times.
753 	 */
754 	if (cons_filp) {
755 		if (tty->ops->close)
756 			for (n = 0; n < closecount; n++)
757 				tty->ops->close(tty, cons_filp);
758 	} else if (tty->ops->hangup)
759 		tty->ops->hangup(tty);
760 	/*
761 	 * We don't want to have driver/ldisc interactions beyond the ones
762 	 * we did here. The driver layer expects no calls after ->hangup()
763 	 * from the ldisc side, which is now guaranteed.
764 	 */
765 	set_bit(TTY_HUPPED, &tty->flags);
766 	tty_unlock(tty);
767 
768 	if (f)
769 		fput(f);
770 }
771 
772 static void do_tty_hangup(struct work_struct *work)
773 {
774 	struct tty_struct *tty =
775 		container_of(work, struct tty_struct, hangup_work);
776 
777 	__tty_hangup(tty, 0);
778 }
779 
780 /**
781  *	tty_hangup		-	trigger a hangup event
782  *	@tty: tty to hangup
783  *
784  *	A carrier loss (virtual or otherwise) has occurred on this like
785  *	schedule a hangup sequence to run after this event.
786  */
787 
788 void tty_hangup(struct tty_struct *tty)
789 {
790 	tty_debug_hangup(tty, "hangup\n");
791 	schedule_work(&tty->hangup_work);
792 }
793 
794 EXPORT_SYMBOL(tty_hangup);
795 
796 /**
797  *	tty_vhangup		-	process vhangup
798  *	@tty: tty to hangup
799  *
800  *	The user has asked via system call for the terminal to be hung up.
801  *	We do this synchronously so that when the syscall returns the process
802  *	is complete. That guarantee is necessary for security reasons.
803  */
804 
805 void tty_vhangup(struct tty_struct *tty)
806 {
807 	tty_debug_hangup(tty, "vhangup\n");
808 	__tty_hangup(tty, 0);
809 }
810 
811 EXPORT_SYMBOL(tty_vhangup);
812 
813 
814 /**
815  *	tty_vhangup_self	-	process vhangup for own ctty
816  *
817  *	Perform a vhangup on the current controlling tty
818  */
819 
820 void tty_vhangup_self(void)
821 {
822 	struct tty_struct *tty;
823 
824 	tty = get_current_tty();
825 	if (tty) {
826 		tty_vhangup(tty);
827 		tty_kref_put(tty);
828 	}
829 }
830 
831 /**
832  *	tty_vhangup_session		-	hangup session leader exit
833  *	@tty: tty to hangup
834  *
835  *	The session leader is exiting and hanging up its controlling terminal.
836  *	Every process in the foreground process group is signalled SIGHUP.
837  *
838  *	We do this synchronously so that when the syscall returns the process
839  *	is complete. That guarantee is necessary for security reasons.
840  */
841 
842 static void tty_vhangup_session(struct tty_struct *tty)
843 {
844 	tty_debug_hangup(tty, "session hangup\n");
845 	__tty_hangup(tty, 1);
846 }
847 
848 /**
849  *	tty_hung_up_p		-	was tty hung up
850  *	@filp: file pointer of tty
851  *
852  *	Return true if the tty has been subject to a vhangup or a carrier
853  *	loss
854  */
855 
856 int tty_hung_up_p(struct file *filp)
857 {
858 	return (filp && filp->f_op == &hung_up_tty_fops);
859 }
860 
861 EXPORT_SYMBOL(tty_hung_up_p);
862 
863 /**
864  *	disassociate_ctty	-	disconnect controlling tty
865  *	@on_exit: true if exiting so need to "hang up" the session
866  *
867  *	This function is typically called only by the session leader, when
868  *	it wants to disassociate itself from its controlling tty.
869  *
870  *	It performs the following functions:
871  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
872  * 	(2)  Clears the tty from being controlling the session
873  * 	(3)  Clears the controlling tty for all processes in the
874  * 		session group.
875  *
876  *	The argument on_exit is set to 1 if called when a process is
877  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
878  *
879  *	Locking:
880  *		BTM is taken for hysterical raisins, and held when
881  *		  called from no_tty().
882  *		  tty_mutex is taken to protect tty
883  *		  ->siglock is taken to protect ->signal/->sighand
884  *		  tasklist_lock is taken to walk process list for sessions
885  *		    ->siglock is taken to protect ->signal/->sighand
886  */
887 
888 void disassociate_ctty(int on_exit)
889 {
890 	struct tty_struct *tty;
891 
892 	if (!current->signal->leader)
893 		return;
894 
895 	tty = get_current_tty();
896 	if (tty) {
897 		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
898 			tty_vhangup_session(tty);
899 		} else {
900 			struct pid *tty_pgrp = tty_get_pgrp(tty);
901 			if (tty_pgrp) {
902 				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
903 				if (!on_exit)
904 					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
905 				put_pid(tty_pgrp);
906 			}
907 		}
908 		tty_kref_put(tty);
909 
910 	} else if (on_exit) {
911 		struct pid *old_pgrp;
912 		spin_lock_irq(&current->sighand->siglock);
913 		old_pgrp = current->signal->tty_old_pgrp;
914 		current->signal->tty_old_pgrp = NULL;
915 		spin_unlock_irq(&current->sighand->siglock);
916 		if (old_pgrp) {
917 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
918 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
919 			put_pid(old_pgrp);
920 		}
921 		return;
922 	}
923 
924 	spin_lock_irq(&current->sighand->siglock);
925 	put_pid(current->signal->tty_old_pgrp);
926 	current->signal->tty_old_pgrp = NULL;
927 
928 	tty = tty_kref_get(current->signal->tty);
929 	if (tty) {
930 		unsigned long flags;
931 		spin_lock_irqsave(&tty->ctrl_lock, flags);
932 		put_pid(tty->session);
933 		put_pid(tty->pgrp);
934 		tty->session = NULL;
935 		tty->pgrp = NULL;
936 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
937 		tty_kref_put(tty);
938 	} else
939 		tty_debug_hangup(tty, "no current tty\n");
940 
941 	spin_unlock_irq(&current->sighand->siglock);
942 	/* Now clear signal->tty under the lock */
943 	read_lock(&tasklist_lock);
944 	session_clear_tty(task_session(current));
945 	read_unlock(&tasklist_lock);
946 }
947 
948 /**
949  *
950  *	no_tty	- Ensure the current process does not have a controlling tty
951  */
952 void no_tty(void)
953 {
954 	/* FIXME: Review locking here. The tty_lock never covered any race
955 	   between a new association and proc_clear_tty but possible we need
956 	   to protect against this anyway */
957 	struct task_struct *tsk = current;
958 	disassociate_ctty(0);
959 	proc_clear_tty(tsk);
960 }
961 
962 
963 /**
964  *	stop_tty	-	propagate flow control
965  *	@tty: tty to stop
966  *
967  *	Perform flow control to the driver. May be called
968  *	on an already stopped device and will not re-call the driver
969  *	method.
970  *
971  *	This functionality is used by both the line disciplines for
972  *	halting incoming flow and by the driver. It may therefore be
973  *	called from any context, may be under the tty atomic_write_lock
974  *	but not always.
975  *
976  *	Locking:
977  *		flow_lock
978  */
979 
980 void __stop_tty(struct tty_struct *tty)
981 {
982 	if (tty->stopped)
983 		return;
984 	tty->stopped = 1;
985 	if (tty->ops->stop)
986 		tty->ops->stop(tty);
987 }
988 
989 void stop_tty(struct tty_struct *tty)
990 {
991 	unsigned long flags;
992 
993 	spin_lock_irqsave(&tty->flow_lock, flags);
994 	__stop_tty(tty);
995 	spin_unlock_irqrestore(&tty->flow_lock, flags);
996 }
997 EXPORT_SYMBOL(stop_tty);
998 
999 /**
1000  *	start_tty	-	propagate flow control
1001  *	@tty: tty to start
1002  *
1003  *	Start a tty that has been stopped if at all possible. If this
1004  *	tty was previous stopped and is now being started, the driver
1005  *	start method is invoked and the line discipline woken.
1006  *
1007  *	Locking:
1008  *		flow_lock
1009  */
1010 
1011 void __start_tty(struct tty_struct *tty)
1012 {
1013 	if (!tty->stopped || tty->flow_stopped)
1014 		return;
1015 	tty->stopped = 0;
1016 	if (tty->ops->start)
1017 		tty->ops->start(tty);
1018 	tty_wakeup(tty);
1019 }
1020 
1021 void start_tty(struct tty_struct *tty)
1022 {
1023 	unsigned long flags;
1024 
1025 	spin_lock_irqsave(&tty->flow_lock, flags);
1026 	__start_tty(tty);
1027 	spin_unlock_irqrestore(&tty->flow_lock, flags);
1028 }
1029 EXPORT_SYMBOL(start_tty);
1030 
1031 static void tty_update_time(struct timespec *time)
1032 {
1033 	unsigned long sec = get_seconds();
1034 
1035 	/*
1036 	 * We only care if the two values differ in anything other than the
1037 	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1038 	 * the time of the tty device, otherwise it could be construded as a
1039 	 * security leak to let userspace know the exact timing of the tty.
1040 	 */
1041 	if ((sec ^ time->tv_sec) & ~7)
1042 		time->tv_sec = sec;
1043 }
1044 
1045 /**
1046  *	tty_read	-	read method for tty device files
1047  *	@file: pointer to tty file
1048  *	@buf: user buffer
1049  *	@count: size of user buffer
1050  *	@ppos: unused
1051  *
1052  *	Perform the read system call function on this terminal device. Checks
1053  *	for hung up devices before calling the line discipline method.
1054  *
1055  *	Locking:
1056  *		Locks the line discipline internally while needed. Multiple
1057  *	read calls may be outstanding in parallel.
1058  */
1059 
1060 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1061 			loff_t *ppos)
1062 {
1063 	int i;
1064 	struct inode *inode = file_inode(file);
1065 	struct tty_struct *tty = file_tty(file);
1066 	struct tty_ldisc *ld;
1067 
1068 	if (tty_paranoia_check(tty, inode, "tty_read"))
1069 		return -EIO;
1070 	if (!tty || tty_io_error(tty))
1071 		return -EIO;
1072 
1073 	/* We want to wait for the line discipline to sort out in this
1074 	   situation */
1075 	ld = tty_ldisc_ref_wait(tty);
1076 	if (!ld)
1077 		return hung_up_tty_read(file, buf, count, ppos);
1078 	if (ld->ops->read)
1079 		i = ld->ops->read(tty, file, buf, count);
1080 	else
1081 		i = -EIO;
1082 	tty_ldisc_deref(ld);
1083 
1084 	if (i > 0)
1085 		tty_update_time(&inode->i_atime);
1086 
1087 	return i;
1088 }
1089 
1090 static void tty_write_unlock(struct tty_struct *tty)
1091 {
1092 	mutex_unlock(&tty->atomic_write_lock);
1093 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1094 }
1095 
1096 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1097 {
1098 	if (!mutex_trylock(&tty->atomic_write_lock)) {
1099 		if (ndelay)
1100 			return -EAGAIN;
1101 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1102 			return -ERESTARTSYS;
1103 	}
1104 	return 0;
1105 }
1106 
1107 /*
1108  * Split writes up in sane blocksizes to avoid
1109  * denial-of-service type attacks
1110  */
1111 static inline ssize_t do_tty_write(
1112 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1113 	struct tty_struct *tty,
1114 	struct file *file,
1115 	const char __user *buf,
1116 	size_t count)
1117 {
1118 	ssize_t ret, written = 0;
1119 	unsigned int chunk;
1120 
1121 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1122 	if (ret < 0)
1123 		return ret;
1124 
1125 	/*
1126 	 * We chunk up writes into a temporary buffer. This
1127 	 * simplifies low-level drivers immensely, since they
1128 	 * don't have locking issues and user mode accesses.
1129 	 *
1130 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1131 	 * big chunk-size..
1132 	 *
1133 	 * The default chunk-size is 2kB, because the NTTY
1134 	 * layer has problems with bigger chunks. It will
1135 	 * claim to be able to handle more characters than
1136 	 * it actually does.
1137 	 *
1138 	 * FIXME: This can probably go away now except that 64K chunks
1139 	 * are too likely to fail unless switched to vmalloc...
1140 	 */
1141 	chunk = 2048;
1142 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1143 		chunk = 65536;
1144 	if (count < chunk)
1145 		chunk = count;
1146 
1147 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1148 	if (tty->write_cnt < chunk) {
1149 		unsigned char *buf_chunk;
1150 
1151 		if (chunk < 1024)
1152 			chunk = 1024;
1153 
1154 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1155 		if (!buf_chunk) {
1156 			ret = -ENOMEM;
1157 			goto out;
1158 		}
1159 		kfree(tty->write_buf);
1160 		tty->write_cnt = chunk;
1161 		tty->write_buf = buf_chunk;
1162 	}
1163 
1164 	/* Do the write .. */
1165 	for (;;) {
1166 		size_t size = count;
1167 		if (size > chunk)
1168 			size = chunk;
1169 		ret = -EFAULT;
1170 		if (copy_from_user(tty->write_buf, buf, size))
1171 			break;
1172 		ret = write(tty, file, tty->write_buf, size);
1173 		if (ret <= 0)
1174 			break;
1175 		written += ret;
1176 		buf += ret;
1177 		count -= ret;
1178 		if (!count)
1179 			break;
1180 		ret = -ERESTARTSYS;
1181 		if (signal_pending(current))
1182 			break;
1183 		cond_resched();
1184 	}
1185 	if (written) {
1186 		tty_update_time(&file_inode(file)->i_mtime);
1187 		ret = written;
1188 	}
1189 out:
1190 	tty_write_unlock(tty);
1191 	return ret;
1192 }
1193 
1194 /**
1195  * tty_write_message - write a message to a certain tty, not just the console.
1196  * @tty: the destination tty_struct
1197  * @msg: the message to write
1198  *
1199  * This is used for messages that need to be redirected to a specific tty.
1200  * We don't put it into the syslog queue right now maybe in the future if
1201  * really needed.
1202  *
1203  * We must still hold the BTM and test the CLOSING flag for the moment.
1204  */
1205 
1206 void tty_write_message(struct tty_struct *tty, char *msg)
1207 {
1208 	if (tty) {
1209 		mutex_lock(&tty->atomic_write_lock);
1210 		tty_lock(tty);
1211 		if (tty->ops->write && tty->count > 0)
1212 			tty->ops->write(tty, msg, strlen(msg));
1213 		tty_unlock(tty);
1214 		tty_write_unlock(tty);
1215 	}
1216 	return;
1217 }
1218 
1219 
1220 /**
1221  *	tty_write		-	write method for tty device file
1222  *	@file: tty file pointer
1223  *	@buf: user data to write
1224  *	@count: bytes to write
1225  *	@ppos: unused
1226  *
1227  *	Write data to a tty device via the line discipline.
1228  *
1229  *	Locking:
1230  *		Locks the line discipline as required
1231  *		Writes to the tty driver are serialized by the atomic_write_lock
1232  *	and are then processed in chunks to the device. The line discipline
1233  *	write method will not be invoked in parallel for each device.
1234  */
1235 
1236 static ssize_t tty_write(struct file *file, const char __user *buf,
1237 						size_t count, loff_t *ppos)
1238 {
1239 	struct tty_struct *tty = file_tty(file);
1240  	struct tty_ldisc *ld;
1241 	ssize_t ret;
1242 
1243 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1244 		return -EIO;
1245 	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1246 			return -EIO;
1247 	/* Short term debug to catch buggy drivers */
1248 	if (tty->ops->write_room == NULL)
1249 		tty_err(tty, "missing write_room method\n");
1250 	ld = tty_ldisc_ref_wait(tty);
1251 	if (!ld)
1252 		return hung_up_tty_write(file, buf, count, ppos);
1253 	if (!ld->ops->write)
1254 		ret = -EIO;
1255 	else
1256 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1257 	tty_ldisc_deref(ld);
1258 	return ret;
1259 }
1260 
1261 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1262 						size_t count, loff_t *ppos)
1263 {
1264 	struct file *p = NULL;
1265 
1266 	spin_lock(&redirect_lock);
1267 	if (redirect)
1268 		p = get_file(redirect);
1269 	spin_unlock(&redirect_lock);
1270 
1271 	if (p) {
1272 		ssize_t res;
1273 		res = vfs_write(p, buf, count, &p->f_pos);
1274 		fput(p);
1275 		return res;
1276 	}
1277 	return tty_write(file, buf, count, ppos);
1278 }
1279 
1280 /**
1281  *	tty_send_xchar	-	send priority character
1282  *
1283  *	Send a high priority character to the tty even if stopped
1284  *
1285  *	Locking: none for xchar method, write ordering for write method.
1286  */
1287 
1288 int tty_send_xchar(struct tty_struct *tty, char ch)
1289 {
1290 	int	was_stopped = tty->stopped;
1291 
1292 	if (tty->ops->send_xchar) {
1293 		down_read(&tty->termios_rwsem);
1294 		tty->ops->send_xchar(tty, ch);
1295 		up_read(&tty->termios_rwsem);
1296 		return 0;
1297 	}
1298 
1299 	if (tty_write_lock(tty, 0) < 0)
1300 		return -ERESTARTSYS;
1301 
1302 	down_read(&tty->termios_rwsem);
1303 	if (was_stopped)
1304 		start_tty(tty);
1305 	tty->ops->write(tty, &ch, 1);
1306 	if (was_stopped)
1307 		stop_tty(tty);
1308 	up_read(&tty->termios_rwsem);
1309 	tty_write_unlock(tty);
1310 	return 0;
1311 }
1312 
1313 static char ptychar[] = "pqrstuvwxyzabcde";
1314 
1315 /**
1316  *	pty_line_name	-	generate name for a pty
1317  *	@driver: the tty driver in use
1318  *	@index: the minor number
1319  *	@p: output buffer of at least 6 bytes
1320  *
1321  *	Generate a name from a driver reference and write it to the output
1322  *	buffer.
1323  *
1324  *	Locking: None
1325  */
1326 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1327 {
1328 	int i = index + driver->name_base;
1329 	/* ->name is initialized to "ttyp", but "tty" is expected */
1330 	sprintf(p, "%s%c%x",
1331 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1332 		ptychar[i >> 4 & 0xf], i & 0xf);
1333 }
1334 
1335 /**
1336  *	tty_line_name	-	generate name for a tty
1337  *	@driver: the tty driver in use
1338  *	@index: the minor number
1339  *	@p: output buffer of at least 7 bytes
1340  *
1341  *	Generate a name from a driver reference and write it to the output
1342  *	buffer.
1343  *
1344  *	Locking: None
1345  */
1346 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1347 {
1348 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1349 		return sprintf(p, "%s", driver->name);
1350 	else
1351 		return sprintf(p, "%s%d", driver->name,
1352 			       index + driver->name_base);
1353 }
1354 
1355 /**
1356  *	tty_driver_lookup_tty() - find an existing tty, if any
1357  *	@driver: the driver for the tty
1358  *	@idx:	 the minor number
1359  *
1360  *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1361  *	driver lookup() method returns an error.
1362  *
1363  *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1364  */
1365 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1366 		struct file *file, int idx)
1367 {
1368 	struct tty_struct *tty;
1369 
1370 	if (driver->ops->lookup)
1371 		tty = driver->ops->lookup(driver, file, idx);
1372 	else
1373 		tty = driver->ttys[idx];
1374 
1375 	if (!IS_ERR(tty))
1376 		tty_kref_get(tty);
1377 	return tty;
1378 }
1379 
1380 /**
1381  *	tty_init_termios	-  helper for termios setup
1382  *	@tty: the tty to set up
1383  *
1384  *	Initialise the termios structures for this tty. Thus runs under
1385  *	the tty_mutex currently so we can be relaxed about ordering.
1386  */
1387 
1388 void tty_init_termios(struct tty_struct *tty)
1389 {
1390 	struct ktermios *tp;
1391 	int idx = tty->index;
1392 
1393 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1394 		tty->termios = tty->driver->init_termios;
1395 	else {
1396 		/* Check for lazy saved data */
1397 		tp = tty->driver->termios[idx];
1398 		if (tp != NULL) {
1399 			tty->termios = *tp;
1400 			tty->termios.c_line  = tty->driver->init_termios.c_line;
1401 		} else
1402 			tty->termios = tty->driver->init_termios;
1403 	}
1404 	/* Compatibility until drivers always set this */
1405 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1406 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1407 }
1408 EXPORT_SYMBOL_GPL(tty_init_termios);
1409 
1410 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1411 {
1412 	tty_init_termios(tty);
1413 	tty_driver_kref_get(driver);
1414 	tty->count++;
1415 	driver->ttys[tty->index] = tty;
1416 	return 0;
1417 }
1418 EXPORT_SYMBOL_GPL(tty_standard_install);
1419 
1420 /**
1421  *	tty_driver_install_tty() - install a tty entry in the driver
1422  *	@driver: the driver for the tty
1423  *	@tty: the tty
1424  *
1425  *	Install a tty object into the driver tables. The tty->index field
1426  *	will be set by the time this is called. This method is responsible
1427  *	for ensuring any need additional structures are allocated and
1428  *	configured.
1429  *
1430  *	Locking: tty_mutex for now
1431  */
1432 static int tty_driver_install_tty(struct tty_driver *driver,
1433 						struct tty_struct *tty)
1434 {
1435 	return driver->ops->install ? driver->ops->install(driver, tty) :
1436 		tty_standard_install(driver, tty);
1437 }
1438 
1439 /**
1440  *	tty_driver_remove_tty() - remove a tty from the driver tables
1441  *	@driver: the driver for the tty
1442  *	@idx:	 the minor number
1443  *
1444  *	Remvoe a tty object from the driver tables. The tty->index field
1445  *	will be set by the time this is called.
1446  *
1447  *	Locking: tty_mutex for now
1448  */
1449 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1450 {
1451 	if (driver->ops->remove)
1452 		driver->ops->remove(driver, tty);
1453 	else
1454 		driver->ttys[tty->index] = NULL;
1455 }
1456 
1457 /*
1458  * 	tty_reopen()	- fast re-open of an open tty
1459  * 	@tty	- the tty to open
1460  *
1461  *	Return 0 on success, -errno on error.
1462  *	Re-opens on master ptys are not allowed and return -EIO.
1463  *
1464  *	Locking: Caller must hold tty_lock
1465  */
1466 static int tty_reopen(struct tty_struct *tty)
1467 {
1468 	struct tty_driver *driver = tty->driver;
1469 
1470 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1471 	    driver->subtype == PTY_TYPE_MASTER)
1472 		return -EIO;
1473 
1474 	if (!tty->count)
1475 		return -EAGAIN;
1476 
1477 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1478 		return -EBUSY;
1479 
1480 	tty->count++;
1481 
1482 	if (!tty->ldisc)
1483 		return tty_ldisc_reinit(tty, tty->termios.c_line);
1484 
1485 	return 0;
1486 }
1487 
1488 /**
1489  *	tty_init_dev		-	initialise a tty device
1490  *	@driver: tty driver we are opening a device on
1491  *	@idx: device index
1492  *	@ret_tty: returned tty structure
1493  *
1494  *	Prepare a tty device. This may not be a "new" clean device but
1495  *	could also be an active device. The pty drivers require special
1496  *	handling because of this.
1497  *
1498  *	Locking:
1499  *		The function is called under the tty_mutex, which
1500  *	protects us from the tty struct or driver itself going away.
1501  *
1502  *	On exit the tty device has the line discipline attached and
1503  *	a reference count of 1. If a pair was created for pty/tty use
1504  *	and the other was a pty master then it too has a reference count of 1.
1505  *
1506  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1507  * failed open.  The new code protects the open with a mutex, so it's
1508  * really quite straightforward.  The mutex locking can probably be
1509  * relaxed for the (most common) case of reopening a tty.
1510  */
1511 
1512 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1513 {
1514 	struct tty_struct *tty;
1515 	int retval;
1516 
1517 	/*
1518 	 * First time open is complex, especially for PTY devices.
1519 	 * This code guarantees that either everything succeeds and the
1520 	 * TTY is ready for operation, or else the table slots are vacated
1521 	 * and the allocated memory released.  (Except that the termios
1522 	 * and locked termios may be retained.)
1523 	 */
1524 
1525 	if (!try_module_get(driver->owner))
1526 		return ERR_PTR(-ENODEV);
1527 
1528 	tty = alloc_tty_struct(driver, idx);
1529 	if (!tty) {
1530 		retval = -ENOMEM;
1531 		goto err_module_put;
1532 	}
1533 
1534 	tty_lock(tty);
1535 	retval = tty_driver_install_tty(driver, tty);
1536 	if (retval < 0)
1537 		goto err_free_tty;
1538 
1539 	if (!tty->port)
1540 		tty->port = driver->ports[idx];
1541 
1542 	WARN_RATELIMIT(!tty->port,
1543 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1544 			__func__, tty->driver->name);
1545 
1546 	tty->port->itty = tty;
1547 
1548 	/*
1549 	 * Structures all installed ... call the ldisc open routines.
1550 	 * If we fail here just call release_tty to clean up.  No need
1551 	 * to decrement the use counts, as release_tty doesn't care.
1552 	 */
1553 	retval = tty_ldisc_setup(tty, tty->link);
1554 	if (retval)
1555 		goto err_release_tty;
1556 	/* Return the tty locked so that it cannot vanish under the caller */
1557 	return tty;
1558 
1559 err_free_tty:
1560 	tty_unlock(tty);
1561 	free_tty_struct(tty);
1562 err_module_put:
1563 	module_put(driver->owner);
1564 	return ERR_PTR(retval);
1565 
1566 	/* call the tty release_tty routine to clean out this slot */
1567 err_release_tty:
1568 	tty_unlock(tty);
1569 	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1570 			     retval, idx);
1571 	release_tty(tty, idx);
1572 	return ERR_PTR(retval);
1573 }
1574 
1575 static void tty_free_termios(struct tty_struct *tty)
1576 {
1577 	struct ktermios *tp;
1578 	int idx = tty->index;
1579 
1580 	/* If the port is going to reset then it has no termios to save */
1581 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1582 		return;
1583 
1584 	/* Stash the termios data */
1585 	tp = tty->driver->termios[idx];
1586 	if (tp == NULL) {
1587 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1588 		if (tp == NULL)
1589 			return;
1590 		tty->driver->termios[idx] = tp;
1591 	}
1592 	*tp = tty->termios;
1593 }
1594 
1595 /**
1596  *	tty_flush_works		-	flush all works of a tty/pty pair
1597  *	@tty: tty device to flush works for (or either end of a pty pair)
1598  *
1599  *	Sync flush all works belonging to @tty (and the 'other' tty).
1600  */
1601 static void tty_flush_works(struct tty_struct *tty)
1602 {
1603 	flush_work(&tty->SAK_work);
1604 	flush_work(&tty->hangup_work);
1605 	if (tty->link) {
1606 		flush_work(&tty->link->SAK_work);
1607 		flush_work(&tty->link->hangup_work);
1608 	}
1609 }
1610 
1611 /**
1612  *	release_one_tty		-	release tty structure memory
1613  *	@kref: kref of tty we are obliterating
1614  *
1615  *	Releases memory associated with a tty structure, and clears out the
1616  *	driver table slots. This function is called when a device is no longer
1617  *	in use. It also gets called when setup of a device fails.
1618  *
1619  *	Locking:
1620  *		takes the file list lock internally when working on the list
1621  *	of ttys that the driver keeps.
1622  *
1623  *	This method gets called from a work queue so that the driver private
1624  *	cleanup ops can sleep (needed for USB at least)
1625  */
1626 static void release_one_tty(struct work_struct *work)
1627 {
1628 	struct tty_struct *tty =
1629 		container_of(work, struct tty_struct, hangup_work);
1630 	struct tty_driver *driver = tty->driver;
1631 	struct module *owner = driver->owner;
1632 
1633 	if (tty->ops->cleanup)
1634 		tty->ops->cleanup(tty);
1635 
1636 	tty->magic = 0;
1637 	tty_driver_kref_put(driver);
1638 	module_put(owner);
1639 
1640 	spin_lock(&tty->files_lock);
1641 	list_del_init(&tty->tty_files);
1642 	spin_unlock(&tty->files_lock);
1643 
1644 	put_pid(tty->pgrp);
1645 	put_pid(tty->session);
1646 	free_tty_struct(tty);
1647 }
1648 
1649 static void queue_release_one_tty(struct kref *kref)
1650 {
1651 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1652 
1653 	/* The hangup queue is now free so we can reuse it rather than
1654 	   waste a chunk of memory for each port */
1655 	INIT_WORK(&tty->hangup_work, release_one_tty);
1656 	schedule_work(&tty->hangup_work);
1657 }
1658 
1659 /**
1660  *	tty_kref_put		-	release a tty kref
1661  *	@tty: tty device
1662  *
1663  *	Release a reference to a tty device and if need be let the kref
1664  *	layer destruct the object for us
1665  */
1666 
1667 void tty_kref_put(struct tty_struct *tty)
1668 {
1669 	if (tty)
1670 		kref_put(&tty->kref, queue_release_one_tty);
1671 }
1672 EXPORT_SYMBOL(tty_kref_put);
1673 
1674 /**
1675  *	release_tty		-	release tty structure memory
1676  *
1677  *	Release both @tty and a possible linked partner (think pty pair),
1678  *	and decrement the refcount of the backing module.
1679  *
1680  *	Locking:
1681  *		tty_mutex
1682  *		takes the file list lock internally when working on the list
1683  *	of ttys that the driver keeps.
1684  *
1685  */
1686 static void release_tty(struct tty_struct *tty, int idx)
1687 {
1688 	/* This should always be true but check for the moment */
1689 	WARN_ON(tty->index != idx);
1690 	WARN_ON(!mutex_is_locked(&tty_mutex));
1691 	if (tty->ops->shutdown)
1692 		tty->ops->shutdown(tty);
1693 	tty_free_termios(tty);
1694 	tty_driver_remove_tty(tty->driver, tty);
1695 	tty->port->itty = NULL;
1696 	if (tty->link)
1697 		tty->link->port->itty = NULL;
1698 	tty_buffer_cancel_work(tty->port);
1699 
1700 	tty_kref_put(tty->link);
1701 	tty_kref_put(tty);
1702 }
1703 
1704 /**
1705  *	tty_release_checks - check a tty before real release
1706  *	@tty: tty to check
1707  *	@o_tty: link of @tty (if any)
1708  *	@idx: index of the tty
1709  *
1710  *	Performs some paranoid checking before true release of the @tty.
1711  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1712  */
1713 static int tty_release_checks(struct tty_struct *tty, int idx)
1714 {
1715 #ifdef TTY_PARANOIA_CHECK
1716 	if (idx < 0 || idx >= tty->driver->num) {
1717 		tty_debug(tty, "bad idx %d\n", idx);
1718 		return -1;
1719 	}
1720 
1721 	/* not much to check for devpts */
1722 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1723 		return 0;
1724 
1725 	if (tty != tty->driver->ttys[idx]) {
1726 		tty_debug(tty, "bad driver table[%d] = %p\n",
1727 			  idx, tty->driver->ttys[idx]);
1728 		return -1;
1729 	}
1730 	if (tty->driver->other) {
1731 		struct tty_struct *o_tty = tty->link;
1732 
1733 		if (o_tty != tty->driver->other->ttys[idx]) {
1734 			tty_debug(tty, "bad other table[%d] = %p\n",
1735 				  idx, tty->driver->other->ttys[idx]);
1736 			return -1;
1737 		}
1738 		if (o_tty->link != tty) {
1739 			tty_debug(tty, "bad link = %p\n", o_tty->link);
1740 			return -1;
1741 		}
1742 	}
1743 #endif
1744 	return 0;
1745 }
1746 
1747 /**
1748  *	tty_release_struct	-	release a tty struct
1749  *	@tty: tty device
1750  *	@idx: index of the tty
1751  *
1752  *	Performs the final steps to release and free a tty device. It is
1753  *	roughly the reverse of tty_init_dev.
1754  */
1755 void tty_release_struct(struct tty_struct *tty, int idx)
1756 {
1757 	/*
1758 	 * Ask the line discipline code to release its structures
1759 	 */
1760 	tty_ldisc_release(tty);
1761 
1762 	/* Wait for pending work before tty destruction commmences */
1763 	tty_flush_works(tty);
1764 
1765 	tty_debug_hangup(tty, "freeing structure\n");
1766 	/*
1767 	 * The release_tty function takes care of the details of clearing
1768 	 * the slots and preserving the termios structure. The tty_unlock_pair
1769 	 * should be safe as we keep a kref while the tty is locked (so the
1770 	 * unlock never unlocks a freed tty).
1771 	 */
1772 	mutex_lock(&tty_mutex);
1773 	release_tty(tty, idx);
1774 	mutex_unlock(&tty_mutex);
1775 }
1776 EXPORT_SYMBOL_GPL(tty_release_struct);
1777 
1778 /**
1779  *	tty_release		-	vfs callback for close
1780  *	@inode: inode of tty
1781  *	@filp: file pointer for handle to tty
1782  *
1783  *	Called the last time each file handle is closed that references
1784  *	this tty. There may however be several such references.
1785  *
1786  *	Locking:
1787  *		Takes bkl. See tty_release_dev
1788  *
1789  * Even releasing the tty structures is a tricky business.. We have
1790  * to be very careful that the structures are all released at the
1791  * same time, as interrupts might otherwise get the wrong pointers.
1792  *
1793  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1794  * lead to double frees or releasing memory still in use.
1795  */
1796 
1797 int tty_release(struct inode *inode, struct file *filp)
1798 {
1799 	struct tty_struct *tty = file_tty(filp);
1800 	struct tty_struct *o_tty = NULL;
1801 	int	do_sleep, final;
1802 	int	idx;
1803 	long	timeout = 0;
1804 	int	once = 1;
1805 
1806 	if (tty_paranoia_check(tty, inode, __func__))
1807 		return 0;
1808 
1809 	tty_lock(tty);
1810 	check_tty_count(tty, __func__);
1811 
1812 	__tty_fasync(-1, filp, 0);
1813 
1814 	idx = tty->index;
1815 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1816 	    tty->driver->subtype == PTY_TYPE_MASTER)
1817 		o_tty = tty->link;
1818 
1819 	if (tty_release_checks(tty, idx)) {
1820 		tty_unlock(tty);
1821 		return 0;
1822 	}
1823 
1824 	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1825 
1826 	if (tty->ops->close)
1827 		tty->ops->close(tty, filp);
1828 
1829 	/* If tty is pty master, lock the slave pty (stable lock order) */
1830 	tty_lock_slave(o_tty);
1831 
1832 	/*
1833 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1834 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1835 	 * wait queues and kick everyone out _before_ actually starting to
1836 	 * close.  This ensures that we won't block while releasing the tty
1837 	 * structure.
1838 	 *
1839 	 * The test for the o_tty closing is necessary, since the master and
1840 	 * slave sides may close in any order.  If the slave side closes out
1841 	 * first, its count will be one, since the master side holds an open.
1842 	 * Thus this test wouldn't be triggered at the time the slave closed,
1843 	 * so we do it now.
1844 	 */
1845 	while (1) {
1846 		do_sleep = 0;
1847 
1848 		if (tty->count <= 1) {
1849 			if (waitqueue_active(&tty->read_wait)) {
1850 				wake_up_poll(&tty->read_wait, POLLIN);
1851 				do_sleep++;
1852 			}
1853 			if (waitqueue_active(&tty->write_wait)) {
1854 				wake_up_poll(&tty->write_wait, POLLOUT);
1855 				do_sleep++;
1856 			}
1857 		}
1858 		if (o_tty && o_tty->count <= 1) {
1859 			if (waitqueue_active(&o_tty->read_wait)) {
1860 				wake_up_poll(&o_tty->read_wait, POLLIN);
1861 				do_sleep++;
1862 			}
1863 			if (waitqueue_active(&o_tty->write_wait)) {
1864 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1865 				do_sleep++;
1866 			}
1867 		}
1868 		if (!do_sleep)
1869 			break;
1870 
1871 		if (once) {
1872 			once = 0;
1873 			tty_warn(tty, "read/write wait queue active!\n");
1874 		}
1875 		schedule_timeout_killable(timeout);
1876 		if (timeout < 120 * HZ)
1877 			timeout = 2 * timeout + 1;
1878 		else
1879 			timeout = MAX_SCHEDULE_TIMEOUT;
1880 	}
1881 
1882 	if (o_tty) {
1883 		if (--o_tty->count < 0) {
1884 			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1885 			o_tty->count = 0;
1886 		}
1887 	}
1888 	if (--tty->count < 0) {
1889 		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1890 		tty->count = 0;
1891 	}
1892 
1893 	/*
1894 	 * We've decremented tty->count, so we need to remove this file
1895 	 * descriptor off the tty->tty_files list; this serves two
1896 	 * purposes:
1897 	 *  - check_tty_count sees the correct number of file descriptors
1898 	 *    associated with this tty.
1899 	 *  - do_tty_hangup no longer sees this file descriptor as
1900 	 *    something that needs to be handled for hangups.
1901 	 */
1902 	tty_del_file(filp);
1903 
1904 	/*
1905 	 * Perform some housekeeping before deciding whether to return.
1906 	 *
1907 	 * If _either_ side is closing, make sure there aren't any
1908 	 * processes that still think tty or o_tty is their controlling
1909 	 * tty.
1910 	 */
1911 	if (!tty->count) {
1912 		read_lock(&tasklist_lock);
1913 		session_clear_tty(tty->session);
1914 		if (o_tty)
1915 			session_clear_tty(o_tty->session);
1916 		read_unlock(&tasklist_lock);
1917 	}
1918 
1919 	/* check whether both sides are closing ... */
1920 	final = !tty->count && !(o_tty && o_tty->count);
1921 
1922 	tty_unlock_slave(o_tty);
1923 	tty_unlock(tty);
1924 
1925 	/* At this point, the tty->count == 0 should ensure a dead tty
1926 	   cannot be re-opened by a racing opener */
1927 
1928 	if (!final)
1929 		return 0;
1930 
1931 	tty_debug_hangup(tty, "final close\n");
1932 
1933 	tty_release_struct(tty, idx);
1934 	return 0;
1935 }
1936 
1937 /**
1938  *	tty_open_current_tty - get locked tty of current task
1939  *	@device: device number
1940  *	@filp: file pointer to tty
1941  *	@return: locked tty of the current task iff @device is /dev/tty
1942  *
1943  *	Performs a re-open of the current task's controlling tty.
1944  *
1945  *	We cannot return driver and index like for the other nodes because
1946  *	devpts will not work then. It expects inodes to be from devpts FS.
1947  */
1948 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1949 {
1950 	struct tty_struct *tty;
1951 	int retval;
1952 
1953 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1954 		return NULL;
1955 
1956 	tty = get_current_tty();
1957 	if (!tty)
1958 		return ERR_PTR(-ENXIO);
1959 
1960 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1961 	/* noctty = 1; */
1962 	tty_lock(tty);
1963 	tty_kref_put(tty);	/* safe to drop the kref now */
1964 
1965 	retval = tty_reopen(tty);
1966 	if (retval < 0) {
1967 		tty_unlock(tty);
1968 		tty = ERR_PTR(retval);
1969 	}
1970 	return tty;
1971 }
1972 
1973 /**
1974  *	tty_lookup_driver - lookup a tty driver for a given device file
1975  *	@device: device number
1976  *	@filp: file pointer to tty
1977  *	@index: index for the device in the @return driver
1978  *	@return: driver for this inode (with increased refcount)
1979  *
1980  * 	If @return is not erroneous, the caller is responsible to decrement the
1981  * 	refcount by tty_driver_kref_put.
1982  *
1983  *	Locking: tty_mutex protects get_tty_driver
1984  */
1985 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1986 		int *index)
1987 {
1988 	struct tty_driver *driver;
1989 
1990 	switch (device) {
1991 #ifdef CONFIG_VT
1992 	case MKDEV(TTY_MAJOR, 0): {
1993 		extern struct tty_driver *console_driver;
1994 		driver = tty_driver_kref_get(console_driver);
1995 		*index = fg_console;
1996 		break;
1997 	}
1998 #endif
1999 	case MKDEV(TTYAUX_MAJOR, 1): {
2000 		struct tty_driver *console_driver = console_device(index);
2001 		if (console_driver) {
2002 			driver = tty_driver_kref_get(console_driver);
2003 			if (driver) {
2004 				/* Don't let /dev/console block */
2005 				filp->f_flags |= O_NONBLOCK;
2006 				break;
2007 			}
2008 		}
2009 		return ERR_PTR(-ENODEV);
2010 	}
2011 	default:
2012 		driver = get_tty_driver(device, index);
2013 		if (!driver)
2014 			return ERR_PTR(-ENODEV);
2015 		break;
2016 	}
2017 	return driver;
2018 }
2019 
2020 /**
2021  *	tty_open_by_driver	-	open a tty device
2022  *	@device: dev_t of device to open
2023  *	@inode: inode of device file
2024  *	@filp: file pointer to tty
2025  *
2026  *	Performs the driver lookup, checks for a reopen, or otherwise
2027  *	performs the first-time tty initialization.
2028  *
2029  *	Returns the locked initialized or re-opened &tty_struct
2030  *
2031  *	Claims the global tty_mutex to serialize:
2032  *	  - concurrent first-time tty initialization
2033  *	  - concurrent tty driver removal w/ lookup
2034  *	  - concurrent tty removal from driver table
2035  */
2036 static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
2037 					     struct file *filp)
2038 {
2039 	struct tty_struct *tty;
2040 	struct tty_driver *driver = NULL;
2041 	int index = -1;
2042 	int retval;
2043 
2044 	mutex_lock(&tty_mutex);
2045 	driver = tty_lookup_driver(device, filp, &index);
2046 	if (IS_ERR(driver)) {
2047 		mutex_unlock(&tty_mutex);
2048 		return ERR_CAST(driver);
2049 	}
2050 
2051 	/* check whether we're reopening an existing tty */
2052 	tty = tty_driver_lookup_tty(driver, filp, index);
2053 	if (IS_ERR(tty)) {
2054 		mutex_unlock(&tty_mutex);
2055 		goto out;
2056 	}
2057 
2058 	if (tty) {
2059 		mutex_unlock(&tty_mutex);
2060 		retval = tty_lock_interruptible(tty);
2061 		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2062 		if (retval) {
2063 			if (retval == -EINTR)
2064 				retval = -ERESTARTSYS;
2065 			tty = ERR_PTR(retval);
2066 			goto out;
2067 		}
2068 		retval = tty_reopen(tty);
2069 		if (retval < 0) {
2070 			tty_unlock(tty);
2071 			tty = ERR_PTR(retval);
2072 		}
2073 	} else { /* Returns with the tty_lock held for now */
2074 		tty = tty_init_dev(driver, index);
2075 		mutex_unlock(&tty_mutex);
2076 	}
2077 out:
2078 	tty_driver_kref_put(driver);
2079 	return tty;
2080 }
2081 
2082 /**
2083  *	tty_open		-	open a tty device
2084  *	@inode: inode of device file
2085  *	@filp: file pointer to tty
2086  *
2087  *	tty_open and tty_release keep up the tty count that contains the
2088  *	number of opens done on a tty. We cannot use the inode-count, as
2089  *	different inodes might point to the same tty.
2090  *
2091  *	Open-counting is needed for pty masters, as well as for keeping
2092  *	track of serial lines: DTR is dropped when the last close happens.
2093  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2094  *
2095  *	The termios state of a pty is reset on first open so that
2096  *	settings don't persist across reuse.
2097  *
2098  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2099  *		 tty->count should protect the rest.
2100  *		 ->siglock protects ->signal/->sighand
2101  *
2102  *	Note: the tty_unlock/lock cases without a ref are only safe due to
2103  *	tty_mutex
2104  */
2105 
2106 static int tty_open(struct inode *inode, struct file *filp)
2107 {
2108 	struct tty_struct *tty;
2109 	int noctty, retval;
2110 	dev_t device = inode->i_rdev;
2111 	unsigned saved_flags = filp->f_flags;
2112 
2113 	nonseekable_open(inode, filp);
2114 
2115 retry_open:
2116 	retval = tty_alloc_file(filp);
2117 	if (retval)
2118 		return -ENOMEM;
2119 
2120 	tty = tty_open_current_tty(device, filp);
2121 	if (!tty)
2122 		tty = tty_open_by_driver(device, inode, filp);
2123 
2124 	if (IS_ERR(tty)) {
2125 		tty_free_file(filp);
2126 		retval = PTR_ERR(tty);
2127 		if (retval != -EAGAIN || signal_pending(current))
2128 			return retval;
2129 		schedule();
2130 		goto retry_open;
2131 	}
2132 
2133 	tty_add_file(tty, filp);
2134 
2135 	check_tty_count(tty, __func__);
2136 	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2137 
2138 	if (tty->ops->open)
2139 		retval = tty->ops->open(tty, filp);
2140 	else
2141 		retval = -ENODEV;
2142 	filp->f_flags = saved_flags;
2143 
2144 	if (retval) {
2145 		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2146 
2147 		tty_unlock(tty); /* need to call tty_release without BTM */
2148 		tty_release(inode, filp);
2149 		if (retval != -ERESTARTSYS)
2150 			return retval;
2151 
2152 		if (signal_pending(current))
2153 			return retval;
2154 
2155 		schedule();
2156 		/*
2157 		 * Need to reset f_op in case a hangup happened.
2158 		 */
2159 		if (tty_hung_up_p(filp))
2160 			filp->f_op = &tty_fops;
2161 		goto retry_open;
2162 	}
2163 	clear_bit(TTY_HUPPED, &tty->flags);
2164 
2165 
2166 	read_lock(&tasklist_lock);
2167 	spin_lock_irq(&current->sighand->siglock);
2168 	noctty = (filp->f_flags & O_NOCTTY) ||
2169 			(IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2170 			device == MKDEV(TTYAUX_MAJOR, 1) ||
2171 			(tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2172 			 tty->driver->subtype == PTY_TYPE_MASTER);
2173 
2174 	if (!noctty &&
2175 	    current->signal->leader &&
2176 	    !current->signal->tty &&
2177 	    tty->session == NULL) {
2178 		/*
2179 		 * Don't let a process that only has write access to the tty
2180 		 * obtain the privileges associated with having a tty as
2181 		 * controlling terminal (being able to reopen it with full
2182 		 * access through /dev/tty, being able to perform pushback).
2183 		 * Many distributions set the group of all ttys to "tty" and
2184 		 * grant write-only access to all terminals for setgid tty
2185 		 * binaries, which should not imply full privileges on all ttys.
2186 		 *
2187 		 * This could theoretically break old code that performs open()
2188 		 * on a write-only file descriptor. In that case, it might be
2189 		 * necessary to also permit this if
2190 		 * inode_permission(inode, MAY_READ) == 0.
2191 		 */
2192 		if (filp->f_mode & FMODE_READ)
2193 			__proc_set_tty(tty);
2194 	}
2195 	spin_unlock_irq(&current->sighand->siglock);
2196 	read_unlock(&tasklist_lock);
2197 	tty_unlock(tty);
2198 	return 0;
2199 }
2200 
2201 
2202 
2203 /**
2204  *	tty_poll	-	check tty status
2205  *	@filp: file being polled
2206  *	@wait: poll wait structures to update
2207  *
2208  *	Call the line discipline polling method to obtain the poll
2209  *	status of the device.
2210  *
2211  *	Locking: locks called line discipline but ldisc poll method
2212  *	may be re-entered freely by other callers.
2213  */
2214 
2215 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2216 {
2217 	struct tty_struct *tty = file_tty(filp);
2218 	struct tty_ldisc *ld;
2219 	int ret = 0;
2220 
2221 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2222 		return 0;
2223 
2224 	ld = tty_ldisc_ref_wait(tty);
2225 	if (!ld)
2226 		return hung_up_tty_poll(filp, wait);
2227 	if (ld->ops->poll)
2228 		ret = ld->ops->poll(tty, filp, wait);
2229 	tty_ldisc_deref(ld);
2230 	return ret;
2231 }
2232 
2233 static int __tty_fasync(int fd, struct file *filp, int on)
2234 {
2235 	struct tty_struct *tty = file_tty(filp);
2236 	unsigned long flags;
2237 	int retval = 0;
2238 
2239 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2240 		goto out;
2241 
2242 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2243 	if (retval <= 0)
2244 		goto out;
2245 
2246 	if (on) {
2247 		enum pid_type type;
2248 		struct pid *pid;
2249 
2250 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2251 		if (tty->pgrp) {
2252 			pid = tty->pgrp;
2253 			type = PIDTYPE_PGID;
2254 		} else {
2255 			pid = task_pid(current);
2256 			type = PIDTYPE_PID;
2257 		}
2258 		get_pid(pid);
2259 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2260 		__f_setown(filp, pid, type, 0);
2261 		put_pid(pid);
2262 		retval = 0;
2263 	}
2264 out:
2265 	return retval;
2266 }
2267 
2268 static int tty_fasync(int fd, struct file *filp, int on)
2269 {
2270 	struct tty_struct *tty = file_tty(filp);
2271 	int retval = -ENOTTY;
2272 
2273 	tty_lock(tty);
2274 	if (!tty_hung_up_p(filp))
2275 		retval = __tty_fasync(fd, filp, on);
2276 	tty_unlock(tty);
2277 
2278 	return retval;
2279 }
2280 
2281 /**
2282  *	tiocsti			-	fake input character
2283  *	@tty: tty to fake input into
2284  *	@p: pointer to character
2285  *
2286  *	Fake input to a tty device. Does the necessary locking and
2287  *	input management.
2288  *
2289  *	FIXME: does not honour flow control ??
2290  *
2291  *	Locking:
2292  *		Called functions take tty_ldiscs_lock
2293  *		current->signal->tty check is safe without locks
2294  *
2295  *	FIXME: may race normal receive processing
2296  */
2297 
2298 static int tiocsti(struct tty_struct *tty, char __user *p)
2299 {
2300 	char ch, mbz = 0;
2301 	struct tty_ldisc *ld;
2302 
2303 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2304 		return -EPERM;
2305 	if (get_user(ch, p))
2306 		return -EFAULT;
2307 	tty_audit_tiocsti(tty, ch);
2308 	ld = tty_ldisc_ref_wait(tty);
2309 	if (!ld)
2310 		return -EIO;
2311 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2312 	tty_ldisc_deref(ld);
2313 	return 0;
2314 }
2315 
2316 /**
2317  *	tiocgwinsz		-	implement window query ioctl
2318  *	@tty; tty
2319  *	@arg: user buffer for result
2320  *
2321  *	Copies the kernel idea of the window size into the user buffer.
2322  *
2323  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2324  *		is consistent.
2325  */
2326 
2327 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2328 {
2329 	int err;
2330 
2331 	mutex_lock(&tty->winsize_mutex);
2332 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2333 	mutex_unlock(&tty->winsize_mutex);
2334 
2335 	return err ? -EFAULT: 0;
2336 }
2337 
2338 /**
2339  *	tty_do_resize		-	resize event
2340  *	@tty: tty being resized
2341  *	@rows: rows (character)
2342  *	@cols: cols (character)
2343  *
2344  *	Update the termios variables and send the necessary signals to
2345  *	peform a terminal resize correctly
2346  */
2347 
2348 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2349 {
2350 	struct pid *pgrp;
2351 
2352 	/* Lock the tty */
2353 	mutex_lock(&tty->winsize_mutex);
2354 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2355 		goto done;
2356 
2357 	/* Signal the foreground process group */
2358 	pgrp = tty_get_pgrp(tty);
2359 	if (pgrp)
2360 		kill_pgrp(pgrp, SIGWINCH, 1);
2361 	put_pid(pgrp);
2362 
2363 	tty->winsize = *ws;
2364 done:
2365 	mutex_unlock(&tty->winsize_mutex);
2366 	return 0;
2367 }
2368 EXPORT_SYMBOL(tty_do_resize);
2369 
2370 /**
2371  *	tiocswinsz		-	implement window size set ioctl
2372  *	@tty; tty side of tty
2373  *	@arg: user buffer for result
2374  *
2375  *	Copies the user idea of the window size to the kernel. Traditionally
2376  *	this is just advisory information but for the Linux console it
2377  *	actually has driver level meaning and triggers a VC resize.
2378  *
2379  *	Locking:
2380  *		Driver dependent. The default do_resize method takes the
2381  *	tty termios mutex and ctrl_lock. The console takes its own lock
2382  *	then calls into the default method.
2383  */
2384 
2385 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2386 {
2387 	struct winsize tmp_ws;
2388 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2389 		return -EFAULT;
2390 
2391 	if (tty->ops->resize)
2392 		return tty->ops->resize(tty, &tmp_ws);
2393 	else
2394 		return tty_do_resize(tty, &tmp_ws);
2395 }
2396 
2397 /**
2398  *	tioccons	-	allow admin to move logical console
2399  *	@file: the file to become console
2400  *
2401  *	Allow the administrator to move the redirected console device
2402  *
2403  *	Locking: uses redirect_lock to guard the redirect information
2404  */
2405 
2406 static int tioccons(struct file *file)
2407 {
2408 	if (!capable(CAP_SYS_ADMIN))
2409 		return -EPERM;
2410 	if (file->f_op->write == redirected_tty_write) {
2411 		struct file *f;
2412 		spin_lock(&redirect_lock);
2413 		f = redirect;
2414 		redirect = NULL;
2415 		spin_unlock(&redirect_lock);
2416 		if (f)
2417 			fput(f);
2418 		return 0;
2419 	}
2420 	spin_lock(&redirect_lock);
2421 	if (redirect) {
2422 		spin_unlock(&redirect_lock);
2423 		return -EBUSY;
2424 	}
2425 	redirect = get_file(file);
2426 	spin_unlock(&redirect_lock);
2427 	return 0;
2428 }
2429 
2430 /**
2431  *	fionbio		-	non blocking ioctl
2432  *	@file: file to set blocking value
2433  *	@p: user parameter
2434  *
2435  *	Historical tty interfaces had a blocking control ioctl before
2436  *	the generic functionality existed. This piece of history is preserved
2437  *	in the expected tty API of posix OS's.
2438  *
2439  *	Locking: none, the open file handle ensures it won't go away.
2440  */
2441 
2442 static int fionbio(struct file *file, int __user *p)
2443 {
2444 	int nonblock;
2445 
2446 	if (get_user(nonblock, p))
2447 		return -EFAULT;
2448 
2449 	spin_lock(&file->f_lock);
2450 	if (nonblock)
2451 		file->f_flags |= O_NONBLOCK;
2452 	else
2453 		file->f_flags &= ~O_NONBLOCK;
2454 	spin_unlock(&file->f_lock);
2455 	return 0;
2456 }
2457 
2458 /**
2459  *	tiocsctty	-	set controlling tty
2460  *	@tty: tty structure
2461  *	@arg: user argument
2462  *
2463  *	This ioctl is used to manage job control. It permits a session
2464  *	leader to set this tty as the controlling tty for the session.
2465  *
2466  *	Locking:
2467  *		Takes tty_lock() to serialize proc_set_tty() for this tty
2468  *		Takes tasklist_lock internally to walk sessions
2469  *		Takes ->siglock() when updating signal->tty
2470  */
2471 
2472 static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2473 {
2474 	int ret = 0;
2475 
2476 	tty_lock(tty);
2477 	read_lock(&tasklist_lock);
2478 
2479 	if (current->signal->leader && (task_session(current) == tty->session))
2480 		goto unlock;
2481 
2482 	/*
2483 	 * The process must be a session leader and
2484 	 * not have a controlling tty already.
2485 	 */
2486 	if (!current->signal->leader || current->signal->tty) {
2487 		ret = -EPERM;
2488 		goto unlock;
2489 	}
2490 
2491 	if (tty->session) {
2492 		/*
2493 		 * This tty is already the controlling
2494 		 * tty for another session group!
2495 		 */
2496 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2497 			/*
2498 			 * Steal it away
2499 			 */
2500 			session_clear_tty(tty->session);
2501 		} else {
2502 			ret = -EPERM;
2503 			goto unlock;
2504 		}
2505 	}
2506 
2507 	/* See the comment in tty_open(). */
2508 	if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2509 		ret = -EPERM;
2510 		goto unlock;
2511 	}
2512 
2513 	proc_set_tty(tty);
2514 unlock:
2515 	read_unlock(&tasklist_lock);
2516 	tty_unlock(tty);
2517 	return ret;
2518 }
2519 
2520 /**
2521  *	tty_get_pgrp	-	return a ref counted pgrp pid
2522  *	@tty: tty to read
2523  *
2524  *	Returns a refcounted instance of the pid struct for the process
2525  *	group controlling the tty.
2526  */
2527 
2528 struct pid *tty_get_pgrp(struct tty_struct *tty)
2529 {
2530 	unsigned long flags;
2531 	struct pid *pgrp;
2532 
2533 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2534 	pgrp = get_pid(tty->pgrp);
2535 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2536 
2537 	return pgrp;
2538 }
2539 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2540 
2541 /*
2542  * This checks not only the pgrp, but falls back on the pid if no
2543  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2544  * without this...
2545  *
2546  * The caller must hold rcu lock or the tasklist lock.
2547  */
2548 static struct pid *session_of_pgrp(struct pid *pgrp)
2549 {
2550 	struct task_struct *p;
2551 	struct pid *sid = NULL;
2552 
2553 	p = pid_task(pgrp, PIDTYPE_PGID);
2554 	if (p == NULL)
2555 		p = pid_task(pgrp, PIDTYPE_PID);
2556 	if (p != NULL)
2557 		sid = task_session(p);
2558 
2559 	return sid;
2560 }
2561 
2562 /**
2563  *	tiocgpgrp		-	get process group
2564  *	@tty: tty passed by user
2565  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2566  *	@p: returned pid
2567  *
2568  *	Obtain the process group of the tty. If there is no process group
2569  *	return an error.
2570  *
2571  *	Locking: none. Reference to current->signal->tty is safe.
2572  */
2573 
2574 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2575 {
2576 	struct pid *pid;
2577 	int ret;
2578 	/*
2579 	 * (tty == real_tty) is a cheap way of
2580 	 * testing if the tty is NOT a master pty.
2581 	 */
2582 	if (tty == real_tty && current->signal->tty != real_tty)
2583 		return -ENOTTY;
2584 	pid = tty_get_pgrp(real_tty);
2585 	ret =  put_user(pid_vnr(pid), p);
2586 	put_pid(pid);
2587 	return ret;
2588 }
2589 
2590 /**
2591  *	tiocspgrp		-	attempt to set process group
2592  *	@tty: tty passed by user
2593  *	@real_tty: tty side device matching tty passed by user
2594  *	@p: pid pointer
2595  *
2596  *	Set the process group of the tty to the session passed. Only
2597  *	permitted where the tty session is our session.
2598  *
2599  *	Locking: RCU, ctrl lock
2600  */
2601 
2602 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2603 {
2604 	struct pid *pgrp;
2605 	pid_t pgrp_nr;
2606 	int retval = tty_check_change(real_tty);
2607 
2608 	if (retval == -EIO)
2609 		return -ENOTTY;
2610 	if (retval)
2611 		return retval;
2612 	if (!current->signal->tty ||
2613 	    (current->signal->tty != real_tty) ||
2614 	    (real_tty->session != task_session(current)))
2615 		return -ENOTTY;
2616 	if (get_user(pgrp_nr, p))
2617 		return -EFAULT;
2618 	if (pgrp_nr < 0)
2619 		return -EINVAL;
2620 	rcu_read_lock();
2621 	pgrp = find_vpid(pgrp_nr);
2622 	retval = -ESRCH;
2623 	if (!pgrp)
2624 		goto out_unlock;
2625 	retval = -EPERM;
2626 	if (session_of_pgrp(pgrp) != task_session(current))
2627 		goto out_unlock;
2628 	retval = 0;
2629 	spin_lock_irq(&tty->ctrl_lock);
2630 	put_pid(real_tty->pgrp);
2631 	real_tty->pgrp = get_pid(pgrp);
2632 	spin_unlock_irq(&tty->ctrl_lock);
2633 out_unlock:
2634 	rcu_read_unlock();
2635 	return retval;
2636 }
2637 
2638 /**
2639  *	tiocgsid		-	get session id
2640  *	@tty: tty passed by user
2641  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2642  *	@p: pointer to returned session id
2643  *
2644  *	Obtain the session id of the tty. If there is no session
2645  *	return an error.
2646  *
2647  *	Locking: none. Reference to current->signal->tty is safe.
2648  */
2649 
2650 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2651 {
2652 	/*
2653 	 * (tty == real_tty) is a cheap way of
2654 	 * testing if the tty is NOT a master pty.
2655 	*/
2656 	if (tty == real_tty && current->signal->tty != real_tty)
2657 		return -ENOTTY;
2658 	if (!real_tty->session)
2659 		return -ENOTTY;
2660 	return put_user(pid_vnr(real_tty->session), p);
2661 }
2662 
2663 /**
2664  *	tiocsetd	-	set line discipline
2665  *	@tty: tty device
2666  *	@p: pointer to user data
2667  *
2668  *	Set the line discipline according to user request.
2669  *
2670  *	Locking: see tty_set_ldisc, this function is just a helper
2671  */
2672 
2673 static int tiocsetd(struct tty_struct *tty, int __user *p)
2674 {
2675 	int disc;
2676 	int ret;
2677 
2678 	if (get_user(disc, p))
2679 		return -EFAULT;
2680 
2681 	ret = tty_set_ldisc(tty, disc);
2682 
2683 	return ret;
2684 }
2685 
2686 /**
2687  *	tiocgetd	-	get line discipline
2688  *	@tty: tty device
2689  *	@p: pointer to user data
2690  *
2691  *	Retrieves the line discipline id directly from the ldisc.
2692  *
2693  *	Locking: waits for ldisc reference (in case the line discipline
2694  *		is changing or the tty is being hungup)
2695  */
2696 
2697 static int tiocgetd(struct tty_struct *tty, int __user *p)
2698 {
2699 	struct tty_ldisc *ld;
2700 	int ret;
2701 
2702 	ld = tty_ldisc_ref_wait(tty);
2703 	if (!ld)
2704 		return -EIO;
2705 	ret = put_user(ld->ops->num, p);
2706 	tty_ldisc_deref(ld);
2707 	return ret;
2708 }
2709 
2710 /**
2711  *	send_break	-	performed time break
2712  *	@tty: device to break on
2713  *	@duration: timeout in mS
2714  *
2715  *	Perform a timed break on hardware that lacks its own driver level
2716  *	timed break functionality.
2717  *
2718  *	Locking:
2719  *		atomic_write_lock serializes
2720  *
2721  */
2722 
2723 static int send_break(struct tty_struct *tty, unsigned int duration)
2724 {
2725 	int retval;
2726 
2727 	if (tty->ops->break_ctl == NULL)
2728 		return 0;
2729 
2730 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2731 		retval = tty->ops->break_ctl(tty, duration);
2732 	else {
2733 		/* Do the work ourselves */
2734 		if (tty_write_lock(tty, 0) < 0)
2735 			return -EINTR;
2736 		retval = tty->ops->break_ctl(tty, -1);
2737 		if (retval)
2738 			goto out;
2739 		if (!signal_pending(current))
2740 			msleep_interruptible(duration);
2741 		retval = tty->ops->break_ctl(tty, 0);
2742 out:
2743 		tty_write_unlock(tty);
2744 		if (signal_pending(current))
2745 			retval = -EINTR;
2746 	}
2747 	return retval;
2748 }
2749 
2750 /**
2751  *	tty_tiocmget		-	get modem status
2752  *	@tty: tty device
2753  *	@file: user file pointer
2754  *	@p: pointer to result
2755  *
2756  *	Obtain the modem status bits from the tty driver if the feature
2757  *	is supported. Return -EINVAL if it is not available.
2758  *
2759  *	Locking: none (up to the driver)
2760  */
2761 
2762 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2763 {
2764 	int retval = -EINVAL;
2765 
2766 	if (tty->ops->tiocmget) {
2767 		retval = tty->ops->tiocmget(tty);
2768 
2769 		if (retval >= 0)
2770 			retval = put_user(retval, p);
2771 	}
2772 	return retval;
2773 }
2774 
2775 /**
2776  *	tty_tiocmset		-	set modem status
2777  *	@tty: tty device
2778  *	@cmd: command - clear bits, set bits or set all
2779  *	@p: pointer to desired bits
2780  *
2781  *	Set the modem status bits from the tty driver if the feature
2782  *	is supported. Return -EINVAL if it is not available.
2783  *
2784  *	Locking: none (up to the driver)
2785  */
2786 
2787 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2788 	     unsigned __user *p)
2789 {
2790 	int retval;
2791 	unsigned int set, clear, val;
2792 
2793 	if (tty->ops->tiocmset == NULL)
2794 		return -EINVAL;
2795 
2796 	retval = get_user(val, p);
2797 	if (retval)
2798 		return retval;
2799 	set = clear = 0;
2800 	switch (cmd) {
2801 	case TIOCMBIS:
2802 		set = val;
2803 		break;
2804 	case TIOCMBIC:
2805 		clear = val;
2806 		break;
2807 	case TIOCMSET:
2808 		set = val;
2809 		clear = ~val;
2810 		break;
2811 	}
2812 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2813 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2814 	return tty->ops->tiocmset(tty, set, clear);
2815 }
2816 
2817 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2818 {
2819 	int retval = -EINVAL;
2820 	struct serial_icounter_struct icount;
2821 	memset(&icount, 0, sizeof(icount));
2822 	if (tty->ops->get_icount)
2823 		retval = tty->ops->get_icount(tty, &icount);
2824 	if (retval != 0)
2825 		return retval;
2826 	if (copy_to_user(arg, &icount, sizeof(icount)))
2827 		return -EFAULT;
2828 	return 0;
2829 }
2830 
2831 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2832 {
2833 	static DEFINE_RATELIMIT_STATE(depr_flags,
2834 			DEFAULT_RATELIMIT_INTERVAL,
2835 			DEFAULT_RATELIMIT_BURST);
2836 	char comm[TASK_COMM_LEN];
2837 	int flags;
2838 
2839 	if (get_user(flags, &ss->flags))
2840 		return;
2841 
2842 	flags &= ASYNC_DEPRECATED;
2843 
2844 	if (flags && __ratelimit(&depr_flags))
2845 		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2846 				__func__, get_task_comm(comm, current), flags);
2847 }
2848 
2849 /*
2850  * if pty, return the slave side (real_tty)
2851  * otherwise, return self
2852  */
2853 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2854 {
2855 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2856 	    tty->driver->subtype == PTY_TYPE_MASTER)
2857 		tty = tty->link;
2858 	return tty;
2859 }
2860 
2861 /*
2862  * Split this up, as gcc can choke on it otherwise..
2863  */
2864 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2865 {
2866 	struct tty_struct *tty = file_tty(file);
2867 	struct tty_struct *real_tty;
2868 	void __user *p = (void __user *)arg;
2869 	int retval;
2870 	struct tty_ldisc *ld;
2871 
2872 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2873 		return -EINVAL;
2874 
2875 	real_tty = tty_pair_get_tty(tty);
2876 
2877 	/*
2878 	 * Factor out some common prep work
2879 	 */
2880 	switch (cmd) {
2881 	case TIOCSETD:
2882 	case TIOCSBRK:
2883 	case TIOCCBRK:
2884 	case TCSBRK:
2885 	case TCSBRKP:
2886 		retval = tty_check_change(tty);
2887 		if (retval)
2888 			return retval;
2889 		if (cmd != TIOCCBRK) {
2890 			tty_wait_until_sent(tty, 0);
2891 			if (signal_pending(current))
2892 				return -EINTR;
2893 		}
2894 		break;
2895 	}
2896 
2897 	/*
2898 	 *	Now do the stuff.
2899 	 */
2900 	switch (cmd) {
2901 	case TIOCSTI:
2902 		return tiocsti(tty, p);
2903 	case TIOCGWINSZ:
2904 		return tiocgwinsz(real_tty, p);
2905 	case TIOCSWINSZ:
2906 		return tiocswinsz(real_tty, p);
2907 	case TIOCCONS:
2908 		return real_tty != tty ? -EINVAL : tioccons(file);
2909 	case FIONBIO:
2910 		return fionbio(file, p);
2911 	case TIOCEXCL:
2912 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2913 		return 0;
2914 	case TIOCNXCL:
2915 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2916 		return 0;
2917 	case TIOCGEXCL:
2918 	{
2919 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2920 		return put_user(excl, (int __user *)p);
2921 	}
2922 	case TIOCNOTTY:
2923 		if (current->signal->tty != tty)
2924 			return -ENOTTY;
2925 		no_tty();
2926 		return 0;
2927 	case TIOCSCTTY:
2928 		return tiocsctty(real_tty, file, arg);
2929 	case TIOCGPGRP:
2930 		return tiocgpgrp(tty, real_tty, p);
2931 	case TIOCSPGRP:
2932 		return tiocspgrp(tty, real_tty, p);
2933 	case TIOCGSID:
2934 		return tiocgsid(tty, real_tty, p);
2935 	case TIOCGETD:
2936 		return tiocgetd(tty, p);
2937 	case TIOCSETD:
2938 		return tiocsetd(tty, p);
2939 	case TIOCVHANGUP:
2940 		if (!capable(CAP_SYS_ADMIN))
2941 			return -EPERM;
2942 		tty_vhangup(tty);
2943 		return 0;
2944 	case TIOCGDEV:
2945 	{
2946 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2947 		return put_user(ret, (unsigned int __user *)p);
2948 	}
2949 	/*
2950 	 * Break handling
2951 	 */
2952 	case TIOCSBRK:	/* Turn break on, unconditionally */
2953 		if (tty->ops->break_ctl)
2954 			return tty->ops->break_ctl(tty, -1);
2955 		return 0;
2956 	case TIOCCBRK:	/* Turn break off, unconditionally */
2957 		if (tty->ops->break_ctl)
2958 			return tty->ops->break_ctl(tty, 0);
2959 		return 0;
2960 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2961 		/* non-zero arg means wait for all output data
2962 		 * to be sent (performed above) but don't send break.
2963 		 * This is used by the tcdrain() termios function.
2964 		 */
2965 		if (!arg)
2966 			return send_break(tty, 250);
2967 		return 0;
2968 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2969 		return send_break(tty, arg ? arg*100 : 250);
2970 
2971 	case TIOCMGET:
2972 		return tty_tiocmget(tty, p);
2973 	case TIOCMSET:
2974 	case TIOCMBIC:
2975 	case TIOCMBIS:
2976 		return tty_tiocmset(tty, cmd, p);
2977 	case TIOCGICOUNT:
2978 		retval = tty_tiocgicount(tty, p);
2979 		/* For the moment allow fall through to the old method */
2980         	if (retval != -EINVAL)
2981 			return retval;
2982 		break;
2983 	case TCFLSH:
2984 		switch (arg) {
2985 		case TCIFLUSH:
2986 		case TCIOFLUSH:
2987 		/* flush tty buffer and allow ldisc to process ioctl */
2988 			tty_buffer_flush(tty, NULL);
2989 			break;
2990 		}
2991 		break;
2992 	case TIOCSSERIAL:
2993 		tty_warn_deprecated_flags(p);
2994 		break;
2995 	}
2996 	if (tty->ops->ioctl) {
2997 		retval = tty->ops->ioctl(tty, cmd, arg);
2998 		if (retval != -ENOIOCTLCMD)
2999 			return retval;
3000 	}
3001 	ld = tty_ldisc_ref_wait(tty);
3002 	if (!ld)
3003 		return hung_up_tty_ioctl(file, cmd, arg);
3004 	retval = -EINVAL;
3005 	if (ld->ops->ioctl) {
3006 		retval = ld->ops->ioctl(tty, file, cmd, arg);
3007 		if (retval == -ENOIOCTLCMD)
3008 			retval = -ENOTTY;
3009 	}
3010 	tty_ldisc_deref(ld);
3011 	return retval;
3012 }
3013 
3014 #ifdef CONFIG_COMPAT
3015 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3016 				unsigned long arg)
3017 {
3018 	struct tty_struct *tty = file_tty(file);
3019 	struct tty_ldisc *ld;
3020 	int retval = -ENOIOCTLCMD;
3021 
3022 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
3023 		return -EINVAL;
3024 
3025 	if (tty->ops->compat_ioctl) {
3026 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
3027 		if (retval != -ENOIOCTLCMD)
3028 			return retval;
3029 	}
3030 
3031 	ld = tty_ldisc_ref_wait(tty);
3032 	if (!ld)
3033 		return hung_up_tty_compat_ioctl(file, cmd, arg);
3034 	if (ld->ops->compat_ioctl)
3035 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3036 	else
3037 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
3038 	tty_ldisc_deref(ld);
3039 
3040 	return retval;
3041 }
3042 #endif
3043 
3044 static int this_tty(const void *t, struct file *file, unsigned fd)
3045 {
3046 	if (likely(file->f_op->read != tty_read))
3047 		return 0;
3048 	return file_tty(file) != t ? 0 : fd + 1;
3049 }
3050 
3051 /*
3052  * This implements the "Secure Attention Key" ---  the idea is to
3053  * prevent trojan horses by killing all processes associated with this
3054  * tty when the user hits the "Secure Attention Key".  Required for
3055  * super-paranoid applications --- see the Orange Book for more details.
3056  *
3057  * This code could be nicer; ideally it should send a HUP, wait a few
3058  * seconds, then send a INT, and then a KILL signal.  But you then
3059  * have to coordinate with the init process, since all processes associated
3060  * with the current tty must be dead before the new getty is allowed
3061  * to spawn.
3062  *
3063  * Now, if it would be correct ;-/ The current code has a nasty hole -
3064  * it doesn't catch files in flight. We may send the descriptor to ourselves
3065  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3066  *
3067  * Nasty bug: do_SAK is being called in interrupt context.  This can
3068  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3069  */
3070 void __do_SAK(struct tty_struct *tty)
3071 {
3072 #ifdef TTY_SOFT_SAK
3073 	tty_hangup(tty);
3074 #else
3075 	struct task_struct *g, *p;
3076 	struct pid *session;
3077 	int		i;
3078 
3079 	if (!tty)
3080 		return;
3081 	session = tty->session;
3082 
3083 	tty_ldisc_flush(tty);
3084 
3085 	tty_driver_flush_buffer(tty);
3086 
3087 	read_lock(&tasklist_lock);
3088 	/* Kill the entire session */
3089 	do_each_pid_task(session, PIDTYPE_SID, p) {
3090 		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3091 			   task_pid_nr(p), p->comm);
3092 		send_sig(SIGKILL, p, 1);
3093 	} while_each_pid_task(session, PIDTYPE_SID, p);
3094 
3095 	/* Now kill any processes that happen to have the tty open */
3096 	do_each_thread(g, p) {
3097 		if (p->signal->tty == tty) {
3098 			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3099 				   task_pid_nr(p), p->comm);
3100 			send_sig(SIGKILL, p, 1);
3101 			continue;
3102 		}
3103 		task_lock(p);
3104 		i = iterate_fd(p->files, 0, this_tty, tty);
3105 		if (i != 0) {
3106 			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3107 				   task_pid_nr(p), p->comm, i - 1);
3108 			force_sig(SIGKILL, p);
3109 		}
3110 		task_unlock(p);
3111 	} while_each_thread(g, p);
3112 	read_unlock(&tasklist_lock);
3113 #endif
3114 }
3115 
3116 static void do_SAK_work(struct work_struct *work)
3117 {
3118 	struct tty_struct *tty =
3119 		container_of(work, struct tty_struct, SAK_work);
3120 	__do_SAK(tty);
3121 }
3122 
3123 /*
3124  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3125  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3126  * the values which we write to it will be identical to the values which it
3127  * already has. --akpm
3128  */
3129 void do_SAK(struct tty_struct *tty)
3130 {
3131 	if (!tty)
3132 		return;
3133 	schedule_work(&tty->SAK_work);
3134 }
3135 
3136 EXPORT_SYMBOL(do_SAK);
3137 
3138 static int dev_match_devt(struct device *dev, const void *data)
3139 {
3140 	const dev_t *devt = data;
3141 	return dev->devt == *devt;
3142 }
3143 
3144 /* Must put_device() after it's unused! */
3145 static struct device *tty_get_device(struct tty_struct *tty)
3146 {
3147 	dev_t devt = tty_devnum(tty);
3148 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3149 }
3150 
3151 
3152 /**
3153  *	alloc_tty_struct
3154  *
3155  *	This subroutine allocates and initializes a tty structure.
3156  *
3157  *	Locking: none - tty in question is not exposed at this point
3158  */
3159 
3160 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3161 {
3162 	struct tty_struct *tty;
3163 
3164 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3165 	if (!tty)
3166 		return NULL;
3167 
3168 	kref_init(&tty->kref);
3169 	tty->magic = TTY_MAGIC;
3170 	tty_ldisc_init(tty);
3171 	tty->session = NULL;
3172 	tty->pgrp = NULL;
3173 	mutex_init(&tty->legacy_mutex);
3174 	mutex_init(&tty->throttle_mutex);
3175 	init_rwsem(&tty->termios_rwsem);
3176 	mutex_init(&tty->winsize_mutex);
3177 	init_ldsem(&tty->ldisc_sem);
3178 	init_waitqueue_head(&tty->write_wait);
3179 	init_waitqueue_head(&tty->read_wait);
3180 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3181 	mutex_init(&tty->atomic_write_lock);
3182 	spin_lock_init(&tty->ctrl_lock);
3183 	spin_lock_init(&tty->flow_lock);
3184 	spin_lock_init(&tty->files_lock);
3185 	INIT_LIST_HEAD(&tty->tty_files);
3186 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3187 
3188 	tty->driver = driver;
3189 	tty->ops = driver->ops;
3190 	tty->index = idx;
3191 	tty_line_name(driver, idx, tty->name);
3192 	tty->dev = tty_get_device(tty);
3193 
3194 	return tty;
3195 }
3196 
3197 /**
3198  *	tty_put_char	-	write one character to a tty
3199  *	@tty: tty
3200  *	@ch: character
3201  *
3202  *	Write one byte to the tty using the provided put_char method
3203  *	if present. Returns the number of characters successfully output.
3204  *
3205  *	Note: the specific put_char operation in the driver layer may go
3206  *	away soon. Don't call it directly, use this method
3207  */
3208 
3209 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3210 {
3211 	if (tty->ops->put_char)
3212 		return tty->ops->put_char(tty, ch);
3213 	return tty->ops->write(tty, &ch, 1);
3214 }
3215 EXPORT_SYMBOL_GPL(tty_put_char);
3216 
3217 struct class *tty_class;
3218 
3219 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3220 		unsigned int index, unsigned int count)
3221 {
3222 	int err;
3223 
3224 	/* init here, since reused cdevs cause crashes */
3225 	driver->cdevs[index] = cdev_alloc();
3226 	if (!driver->cdevs[index])
3227 		return -ENOMEM;
3228 	driver->cdevs[index]->ops = &tty_fops;
3229 	driver->cdevs[index]->owner = driver->owner;
3230 	err = cdev_add(driver->cdevs[index], dev, count);
3231 	if (err)
3232 		kobject_put(&driver->cdevs[index]->kobj);
3233 	return err;
3234 }
3235 
3236 /**
3237  *	tty_register_device - register a tty device
3238  *	@driver: the tty driver that describes the tty device
3239  *	@index: the index in the tty driver for this tty device
3240  *	@device: a struct device that is associated with this tty device.
3241  *		This field is optional, if there is no known struct device
3242  *		for this tty device it can be set to NULL safely.
3243  *
3244  *	Returns a pointer to the struct device for this tty device
3245  *	(or ERR_PTR(-EFOO) on error).
3246  *
3247  *	This call is required to be made to register an individual tty device
3248  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3249  *	that bit is not set, this function should not be called by a tty
3250  *	driver.
3251  *
3252  *	Locking: ??
3253  */
3254 
3255 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3256 				   struct device *device)
3257 {
3258 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3259 }
3260 EXPORT_SYMBOL(tty_register_device);
3261 
3262 static void tty_device_create_release(struct device *dev)
3263 {
3264 	dev_dbg(dev, "releasing...\n");
3265 	kfree(dev);
3266 }
3267 
3268 /**
3269  *	tty_register_device_attr - register a tty device
3270  *	@driver: the tty driver that describes the tty device
3271  *	@index: the index in the tty driver for this tty device
3272  *	@device: a struct device that is associated with this tty device.
3273  *		This field is optional, if there is no known struct device
3274  *		for this tty device it can be set to NULL safely.
3275  *	@drvdata: Driver data to be set to device.
3276  *	@attr_grp: Attribute group to be set on device.
3277  *
3278  *	Returns a pointer to the struct device for this tty device
3279  *	(or ERR_PTR(-EFOO) on error).
3280  *
3281  *	This call is required to be made to register an individual tty device
3282  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3283  *	that bit is not set, this function should not be called by a tty
3284  *	driver.
3285  *
3286  *	Locking: ??
3287  */
3288 struct device *tty_register_device_attr(struct tty_driver *driver,
3289 				   unsigned index, struct device *device,
3290 				   void *drvdata,
3291 				   const struct attribute_group **attr_grp)
3292 {
3293 	char name[64];
3294 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3295 	struct device *dev = NULL;
3296 	int retval = -ENODEV;
3297 	bool cdev = false;
3298 
3299 	if (index >= driver->num) {
3300 		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3301 		       driver->name, index);
3302 		return ERR_PTR(-EINVAL);
3303 	}
3304 
3305 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3306 		pty_line_name(driver, index, name);
3307 	else
3308 		tty_line_name(driver, index, name);
3309 
3310 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3311 		retval = tty_cdev_add(driver, devt, index, 1);
3312 		if (retval)
3313 			goto error;
3314 		cdev = true;
3315 	}
3316 
3317 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3318 	if (!dev) {
3319 		retval = -ENOMEM;
3320 		goto error;
3321 	}
3322 
3323 	dev->devt = devt;
3324 	dev->class = tty_class;
3325 	dev->parent = device;
3326 	dev->release = tty_device_create_release;
3327 	dev_set_name(dev, "%s", name);
3328 	dev->groups = attr_grp;
3329 	dev_set_drvdata(dev, drvdata);
3330 
3331 	retval = device_register(dev);
3332 	if (retval)
3333 		goto error;
3334 
3335 	return dev;
3336 
3337 error:
3338 	put_device(dev);
3339 	if (cdev) {
3340 		cdev_del(driver->cdevs[index]);
3341 		driver->cdevs[index] = NULL;
3342 	}
3343 	return ERR_PTR(retval);
3344 }
3345 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3346 
3347 /**
3348  * 	tty_unregister_device - unregister a tty device
3349  * 	@driver: the tty driver that describes the tty device
3350  * 	@index: the index in the tty driver for this tty device
3351  *
3352  * 	If a tty device is registered with a call to tty_register_device() then
3353  *	this function must be called when the tty device is gone.
3354  *
3355  *	Locking: ??
3356  */
3357 
3358 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3359 {
3360 	device_destroy(tty_class,
3361 		MKDEV(driver->major, driver->minor_start) + index);
3362 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3363 		cdev_del(driver->cdevs[index]);
3364 		driver->cdevs[index] = NULL;
3365 	}
3366 }
3367 EXPORT_SYMBOL(tty_unregister_device);
3368 
3369 /**
3370  * __tty_alloc_driver -- allocate tty driver
3371  * @lines: count of lines this driver can handle at most
3372  * @owner: module which is repsonsible for this driver
3373  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3374  *
3375  * This should not be called directly, some of the provided macros should be
3376  * used instead. Use IS_ERR and friends on @retval.
3377  */
3378 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3379 		unsigned long flags)
3380 {
3381 	struct tty_driver *driver;
3382 	unsigned int cdevs = 1;
3383 	int err;
3384 
3385 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3386 		return ERR_PTR(-EINVAL);
3387 
3388 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3389 	if (!driver)
3390 		return ERR_PTR(-ENOMEM);
3391 
3392 	kref_init(&driver->kref);
3393 	driver->magic = TTY_DRIVER_MAGIC;
3394 	driver->num = lines;
3395 	driver->owner = owner;
3396 	driver->flags = flags;
3397 
3398 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3399 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3400 				GFP_KERNEL);
3401 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3402 				GFP_KERNEL);
3403 		if (!driver->ttys || !driver->termios) {
3404 			err = -ENOMEM;
3405 			goto err_free_all;
3406 		}
3407 	}
3408 
3409 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3410 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3411 				GFP_KERNEL);
3412 		if (!driver->ports) {
3413 			err = -ENOMEM;
3414 			goto err_free_all;
3415 		}
3416 		cdevs = lines;
3417 	}
3418 
3419 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3420 	if (!driver->cdevs) {
3421 		err = -ENOMEM;
3422 		goto err_free_all;
3423 	}
3424 
3425 	return driver;
3426 err_free_all:
3427 	kfree(driver->ports);
3428 	kfree(driver->ttys);
3429 	kfree(driver->termios);
3430 	kfree(driver->cdevs);
3431 	kfree(driver);
3432 	return ERR_PTR(err);
3433 }
3434 EXPORT_SYMBOL(__tty_alloc_driver);
3435 
3436 static void destruct_tty_driver(struct kref *kref)
3437 {
3438 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3439 	int i;
3440 	struct ktermios *tp;
3441 
3442 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3443 		/*
3444 		 * Free the termios and termios_locked structures because
3445 		 * we don't want to get memory leaks when modular tty
3446 		 * drivers are removed from the kernel.
3447 		 */
3448 		for (i = 0; i < driver->num; i++) {
3449 			tp = driver->termios[i];
3450 			if (tp) {
3451 				driver->termios[i] = NULL;
3452 				kfree(tp);
3453 			}
3454 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3455 				tty_unregister_device(driver, i);
3456 		}
3457 		proc_tty_unregister_driver(driver);
3458 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3459 			cdev_del(driver->cdevs[0]);
3460 	}
3461 	kfree(driver->cdevs);
3462 	kfree(driver->ports);
3463 	kfree(driver->termios);
3464 	kfree(driver->ttys);
3465 	kfree(driver);
3466 }
3467 
3468 void tty_driver_kref_put(struct tty_driver *driver)
3469 {
3470 	kref_put(&driver->kref, destruct_tty_driver);
3471 }
3472 EXPORT_SYMBOL(tty_driver_kref_put);
3473 
3474 void tty_set_operations(struct tty_driver *driver,
3475 			const struct tty_operations *op)
3476 {
3477 	driver->ops = op;
3478 };
3479 EXPORT_SYMBOL(tty_set_operations);
3480 
3481 void put_tty_driver(struct tty_driver *d)
3482 {
3483 	tty_driver_kref_put(d);
3484 }
3485 EXPORT_SYMBOL(put_tty_driver);
3486 
3487 /*
3488  * Called by a tty driver to register itself.
3489  */
3490 int tty_register_driver(struct tty_driver *driver)
3491 {
3492 	int error;
3493 	int i;
3494 	dev_t dev;
3495 	struct device *d;
3496 
3497 	if (!driver->major) {
3498 		error = alloc_chrdev_region(&dev, driver->minor_start,
3499 						driver->num, driver->name);
3500 		if (!error) {
3501 			driver->major = MAJOR(dev);
3502 			driver->minor_start = MINOR(dev);
3503 		}
3504 	} else {
3505 		dev = MKDEV(driver->major, driver->minor_start);
3506 		error = register_chrdev_region(dev, driver->num, driver->name);
3507 	}
3508 	if (error < 0)
3509 		goto err;
3510 
3511 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3512 		error = tty_cdev_add(driver, dev, 0, driver->num);
3513 		if (error)
3514 			goto err_unreg_char;
3515 	}
3516 
3517 	mutex_lock(&tty_mutex);
3518 	list_add(&driver->tty_drivers, &tty_drivers);
3519 	mutex_unlock(&tty_mutex);
3520 
3521 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3522 		for (i = 0; i < driver->num; i++) {
3523 			d = tty_register_device(driver, i, NULL);
3524 			if (IS_ERR(d)) {
3525 				error = PTR_ERR(d);
3526 				goto err_unreg_devs;
3527 			}
3528 		}
3529 	}
3530 	proc_tty_register_driver(driver);
3531 	driver->flags |= TTY_DRIVER_INSTALLED;
3532 	return 0;
3533 
3534 err_unreg_devs:
3535 	for (i--; i >= 0; i--)
3536 		tty_unregister_device(driver, i);
3537 
3538 	mutex_lock(&tty_mutex);
3539 	list_del(&driver->tty_drivers);
3540 	mutex_unlock(&tty_mutex);
3541 
3542 err_unreg_char:
3543 	unregister_chrdev_region(dev, driver->num);
3544 err:
3545 	return error;
3546 }
3547 EXPORT_SYMBOL(tty_register_driver);
3548 
3549 /*
3550  * Called by a tty driver to unregister itself.
3551  */
3552 int tty_unregister_driver(struct tty_driver *driver)
3553 {
3554 #if 0
3555 	/* FIXME */
3556 	if (driver->refcount)
3557 		return -EBUSY;
3558 #endif
3559 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3560 				driver->num);
3561 	mutex_lock(&tty_mutex);
3562 	list_del(&driver->tty_drivers);
3563 	mutex_unlock(&tty_mutex);
3564 	return 0;
3565 }
3566 
3567 EXPORT_SYMBOL(tty_unregister_driver);
3568 
3569 dev_t tty_devnum(struct tty_struct *tty)
3570 {
3571 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3572 }
3573 EXPORT_SYMBOL(tty_devnum);
3574 
3575 void tty_default_fops(struct file_operations *fops)
3576 {
3577 	*fops = tty_fops;
3578 }
3579 
3580 /*
3581  * Initialize the console device. This is called *early*, so
3582  * we can't necessarily depend on lots of kernel help here.
3583  * Just do some early initializations, and do the complex setup
3584  * later.
3585  */
3586 void __init console_init(void)
3587 {
3588 	initcall_t *call;
3589 
3590 	/* Setup the default TTY line discipline. */
3591 	n_tty_init();
3592 
3593 	/*
3594 	 * set up the console device so that later boot sequences can
3595 	 * inform about problems etc..
3596 	 */
3597 	call = __con_initcall_start;
3598 	while (call < __con_initcall_end) {
3599 		(*call)();
3600 		call++;
3601 	}
3602 }
3603 
3604 static char *tty_devnode(struct device *dev, umode_t *mode)
3605 {
3606 	if (!mode)
3607 		return NULL;
3608 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3609 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3610 		*mode = 0666;
3611 	return NULL;
3612 }
3613 
3614 static int __init tty_class_init(void)
3615 {
3616 	tty_class = class_create(THIS_MODULE, "tty");
3617 	if (IS_ERR(tty_class))
3618 		return PTR_ERR(tty_class);
3619 	tty_class->devnode = tty_devnode;
3620 	return 0;
3621 }
3622 
3623 postcore_initcall(tty_class_init);
3624 
3625 /* 3/2004 jmc: why do these devices exist? */
3626 static struct cdev tty_cdev, console_cdev;
3627 
3628 static ssize_t show_cons_active(struct device *dev,
3629 				struct device_attribute *attr, char *buf)
3630 {
3631 	struct console *cs[16];
3632 	int i = 0;
3633 	struct console *c;
3634 	ssize_t count = 0;
3635 
3636 	console_lock();
3637 	for_each_console(c) {
3638 		if (!c->device)
3639 			continue;
3640 		if (!c->write)
3641 			continue;
3642 		if ((c->flags & CON_ENABLED) == 0)
3643 			continue;
3644 		cs[i++] = c;
3645 		if (i >= ARRAY_SIZE(cs))
3646 			break;
3647 	}
3648 	while (i--) {
3649 		int index = cs[i]->index;
3650 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3651 
3652 		/* don't resolve tty0 as some programs depend on it */
3653 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3654 			count += tty_line_name(drv, index, buf + count);
3655 		else
3656 			count += sprintf(buf + count, "%s%d",
3657 					 cs[i]->name, cs[i]->index);
3658 
3659 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3660 	}
3661 	console_unlock();
3662 
3663 	return count;
3664 }
3665 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3666 
3667 static struct attribute *cons_dev_attrs[] = {
3668 	&dev_attr_active.attr,
3669 	NULL
3670 };
3671 
3672 ATTRIBUTE_GROUPS(cons_dev);
3673 
3674 static struct device *consdev;
3675 
3676 void console_sysfs_notify(void)
3677 {
3678 	if (consdev)
3679 		sysfs_notify(&consdev->kobj, NULL, "active");
3680 }
3681 
3682 /*
3683  * Ok, now we can initialize the rest of the tty devices and can count
3684  * on memory allocations, interrupts etc..
3685  */
3686 int __init tty_init(void)
3687 {
3688 	cdev_init(&tty_cdev, &tty_fops);
3689 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3690 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3691 		panic("Couldn't register /dev/tty driver\n");
3692 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3693 
3694 	cdev_init(&console_cdev, &console_fops);
3695 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3696 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3697 		panic("Couldn't register /dev/console driver\n");
3698 	consdev = device_create_with_groups(tty_class, NULL,
3699 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3700 					    cons_dev_groups, "console");
3701 	if (IS_ERR(consdev))
3702 		consdev = NULL;
3703 
3704 #ifdef CONFIG_VT
3705 	vty_init(&console_fops);
3706 #endif
3707 	return 0;
3708 }
3709 
3710