1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 */ 4 5 /* 6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 7 * or rs-channels. It also implements echoing, cooked mode etc. 8 * 9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 10 * 11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 12 * tty_struct and tty_queue structures. Previously there was an array 13 * of 256 tty_struct's which was statically allocated, and the 14 * tty_queue structures were allocated at boot time. Both are now 15 * dynamically allocated only when the tty is open. 16 * 17 * Also restructured routines so that there is more of a separation 18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 19 * the low-level tty routines (serial.c, pty.c, console.c). This 20 * makes for cleaner and more compact code. -TYT, 9/17/92 21 * 22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 23 * which can be dynamically activated and de-activated by the line 24 * discipline handling modules (like SLIP). 25 * 26 * NOTE: pay no attention to the line discipline code (yet); its 27 * interface is still subject to change in this version... 28 * -- TYT, 1/31/92 29 * 30 * Added functionality to the OPOST tty handling. No delays, but all 31 * other bits should be there. 32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 33 * 34 * Rewrote canonical mode and added more termios flags. 35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 36 * 37 * Reorganized FASYNC support so mouse code can share it. 38 * -- ctm@ardi.com, 9Sep95 39 * 40 * New TIOCLINUX variants added. 41 * -- mj@k332.feld.cvut.cz, 19-Nov-95 42 * 43 * Restrict vt switching via ioctl() 44 * -- grif@cs.ucr.edu, 5-Dec-95 45 * 46 * Move console and virtual terminal code to more appropriate files, 47 * implement CONFIG_VT and generalize console device interface. 48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 49 * 50 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 51 * -- Bill Hawes <whawes@star.net>, June 97 52 * 53 * Added devfs support. 54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 55 * 56 * Added support for a Unix98-style ptmx device. 57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 58 * 59 * Reduced memory usage for older ARM systems 60 * -- Russell King <rmk@arm.linux.org.uk> 61 * 62 * Move do_SAK() into process context. Less stack use in devfs functions. 63 * alloc_tty_struct() always uses kmalloc() 64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 65 */ 66 67 #include <linux/types.h> 68 #include <linux/major.h> 69 #include <linux/errno.h> 70 #include <linux/signal.h> 71 #include <linux/fcntl.h> 72 #include <linux/sched.h> 73 #include <linux/interrupt.h> 74 #include <linux/tty.h> 75 #include <linux/tty_driver.h> 76 #include <linux/tty_flip.h> 77 #include <linux/devpts_fs.h> 78 #include <linux/file.h> 79 #include <linux/fdtable.h> 80 #include <linux/console.h> 81 #include <linux/timer.h> 82 #include <linux/ctype.h> 83 #include <linux/kd.h> 84 #include <linux/mm.h> 85 #include <linux/string.h> 86 #include <linux/slab.h> 87 #include <linux/poll.h> 88 #include <linux/proc_fs.h> 89 #include <linux/init.h> 90 #include <linux/module.h> 91 #include <linux/device.h> 92 #include <linux/wait.h> 93 #include <linux/bitops.h> 94 #include <linux/delay.h> 95 #include <linux/seq_file.h> 96 #include <linux/serial.h> 97 #include <linux/ratelimit.h> 98 99 #include <linux/uaccess.h> 100 101 #include <linux/kbd_kern.h> 102 #include <linux/vt_kern.h> 103 #include <linux/selection.h> 104 105 #include <linux/kmod.h> 106 #include <linux/nsproxy.h> 107 108 #undef TTY_DEBUG_HANGUP 109 110 #define TTY_PARANOIA_CHECK 1 111 #define CHECK_TTY_COUNT 1 112 113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 114 .c_iflag = ICRNL | IXON, 115 .c_oflag = OPOST | ONLCR, 116 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 118 ECHOCTL | ECHOKE | IEXTEN, 119 .c_cc = INIT_C_CC, 120 .c_ispeed = 38400, 121 .c_ospeed = 38400 122 }; 123 124 EXPORT_SYMBOL(tty_std_termios); 125 126 /* This list gets poked at by procfs and various bits of boot up code. This 127 could do with some rationalisation such as pulling the tty proc function 128 into this file */ 129 130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 131 132 /* Mutex to protect creating and releasing a tty. This is shared with 133 vt.c for deeply disgusting hack reasons */ 134 DEFINE_MUTEX(tty_mutex); 135 EXPORT_SYMBOL(tty_mutex); 136 137 /* Spinlock to protect the tty->tty_files list */ 138 DEFINE_SPINLOCK(tty_files_lock); 139 140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *); 141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *); 142 ssize_t redirected_tty_write(struct file *, const char __user *, 143 size_t, loff_t *); 144 static unsigned int tty_poll(struct file *, poll_table *); 145 static int tty_open(struct inode *, struct file *); 146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 147 #ifdef CONFIG_COMPAT 148 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 149 unsigned long arg); 150 #else 151 #define tty_compat_ioctl NULL 152 #endif 153 static int __tty_fasync(int fd, struct file *filp, int on); 154 static int tty_fasync(int fd, struct file *filp, int on); 155 static void release_tty(struct tty_struct *tty, int idx); 156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty); 157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty); 158 159 /** 160 * alloc_tty_struct - allocate a tty object 161 * 162 * Return a new empty tty structure. The data fields have not 163 * been initialized in any way but has been zeroed 164 * 165 * Locking: none 166 */ 167 168 struct tty_struct *alloc_tty_struct(void) 169 { 170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL); 171 } 172 173 /** 174 * free_tty_struct - free a disused tty 175 * @tty: tty struct to free 176 * 177 * Free the write buffers, tty queue and tty memory itself. 178 * 179 * Locking: none. Must be called after tty is definitely unused 180 */ 181 182 void free_tty_struct(struct tty_struct *tty) 183 { 184 if (!tty) 185 return; 186 if (tty->dev) 187 put_device(tty->dev); 188 kfree(tty->write_buf); 189 tty->magic = 0xDEADDEAD; 190 kfree(tty); 191 } 192 193 static inline struct tty_struct *file_tty(struct file *file) 194 { 195 return ((struct tty_file_private *)file->private_data)->tty; 196 } 197 198 int tty_alloc_file(struct file *file) 199 { 200 struct tty_file_private *priv; 201 202 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 203 if (!priv) 204 return -ENOMEM; 205 206 file->private_data = priv; 207 208 return 0; 209 } 210 211 /* Associate a new file with the tty structure */ 212 void tty_add_file(struct tty_struct *tty, struct file *file) 213 { 214 struct tty_file_private *priv = file->private_data; 215 216 priv->tty = tty; 217 priv->file = file; 218 219 spin_lock(&tty_files_lock); 220 list_add(&priv->list, &tty->tty_files); 221 spin_unlock(&tty_files_lock); 222 } 223 224 /** 225 * tty_free_file - free file->private_data 226 * 227 * This shall be used only for fail path handling when tty_add_file was not 228 * called yet. 229 */ 230 void tty_free_file(struct file *file) 231 { 232 struct tty_file_private *priv = file->private_data; 233 234 file->private_data = NULL; 235 kfree(priv); 236 } 237 238 /* Delete file from its tty */ 239 static void tty_del_file(struct file *file) 240 { 241 struct tty_file_private *priv = file->private_data; 242 243 spin_lock(&tty_files_lock); 244 list_del(&priv->list); 245 spin_unlock(&tty_files_lock); 246 tty_free_file(file); 247 } 248 249 250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base) 251 252 /** 253 * tty_name - return tty naming 254 * @tty: tty structure 255 * @buf: buffer for output 256 * 257 * Convert a tty structure into a name. The name reflects the kernel 258 * naming policy and if udev is in use may not reflect user space 259 * 260 * Locking: none 261 */ 262 263 char *tty_name(struct tty_struct *tty, char *buf) 264 { 265 if (!tty) /* Hmm. NULL pointer. That's fun. */ 266 strcpy(buf, "NULL tty"); 267 else 268 strcpy(buf, tty->name); 269 return buf; 270 } 271 272 EXPORT_SYMBOL(tty_name); 273 274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 275 const char *routine) 276 { 277 #ifdef TTY_PARANOIA_CHECK 278 if (!tty) { 279 printk(KERN_WARNING 280 "null TTY for (%d:%d) in %s\n", 281 imajor(inode), iminor(inode), routine); 282 return 1; 283 } 284 if (tty->magic != TTY_MAGIC) { 285 printk(KERN_WARNING 286 "bad magic number for tty struct (%d:%d) in %s\n", 287 imajor(inode), iminor(inode), routine); 288 return 1; 289 } 290 #endif 291 return 0; 292 } 293 294 static int check_tty_count(struct tty_struct *tty, const char *routine) 295 { 296 #ifdef CHECK_TTY_COUNT 297 struct list_head *p; 298 int count = 0; 299 300 spin_lock(&tty_files_lock); 301 list_for_each(p, &tty->tty_files) { 302 count++; 303 } 304 spin_unlock(&tty_files_lock); 305 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 306 tty->driver->subtype == PTY_TYPE_SLAVE && 307 tty->link && tty->link->count) 308 count++; 309 if (tty->count != count) { 310 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) " 311 "!= #fd's(%d) in %s\n", 312 tty->name, tty->count, count, routine); 313 return count; 314 } 315 #endif 316 return 0; 317 } 318 319 /** 320 * get_tty_driver - find device of a tty 321 * @dev_t: device identifier 322 * @index: returns the index of the tty 323 * 324 * This routine returns a tty driver structure, given a device number 325 * and also passes back the index number. 326 * 327 * Locking: caller must hold tty_mutex 328 */ 329 330 static struct tty_driver *get_tty_driver(dev_t device, int *index) 331 { 332 struct tty_driver *p; 333 334 list_for_each_entry(p, &tty_drivers, tty_drivers) { 335 dev_t base = MKDEV(p->major, p->minor_start); 336 if (device < base || device >= base + p->num) 337 continue; 338 *index = device - base; 339 return tty_driver_kref_get(p); 340 } 341 return NULL; 342 } 343 344 #ifdef CONFIG_CONSOLE_POLL 345 346 /** 347 * tty_find_polling_driver - find device of a polled tty 348 * @name: name string to match 349 * @line: pointer to resulting tty line nr 350 * 351 * This routine returns a tty driver structure, given a name 352 * and the condition that the tty driver is capable of polled 353 * operation. 354 */ 355 struct tty_driver *tty_find_polling_driver(char *name, int *line) 356 { 357 struct tty_driver *p, *res = NULL; 358 int tty_line = 0; 359 int len; 360 char *str, *stp; 361 362 for (str = name; *str; str++) 363 if ((*str >= '0' && *str <= '9') || *str == ',') 364 break; 365 if (!*str) 366 return NULL; 367 368 len = str - name; 369 tty_line = simple_strtoul(str, &str, 10); 370 371 mutex_lock(&tty_mutex); 372 /* Search through the tty devices to look for a match */ 373 list_for_each_entry(p, &tty_drivers, tty_drivers) { 374 if (strncmp(name, p->name, len) != 0) 375 continue; 376 stp = str; 377 if (*stp == ',') 378 stp++; 379 if (*stp == '\0') 380 stp = NULL; 381 382 if (tty_line >= 0 && tty_line < p->num && p->ops && 383 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 384 res = tty_driver_kref_get(p); 385 *line = tty_line; 386 break; 387 } 388 } 389 mutex_unlock(&tty_mutex); 390 391 return res; 392 } 393 EXPORT_SYMBOL_GPL(tty_find_polling_driver); 394 #endif 395 396 /** 397 * tty_check_change - check for POSIX terminal changes 398 * @tty: tty to check 399 * 400 * If we try to write to, or set the state of, a terminal and we're 401 * not in the foreground, send a SIGTTOU. If the signal is blocked or 402 * ignored, go ahead and perform the operation. (POSIX 7.2) 403 * 404 * Locking: ctrl_lock 405 */ 406 407 int tty_check_change(struct tty_struct *tty) 408 { 409 unsigned long flags; 410 int ret = 0; 411 412 if (current->signal->tty != tty) 413 return 0; 414 415 spin_lock_irqsave(&tty->ctrl_lock, flags); 416 417 if (!tty->pgrp) { 418 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n"); 419 goto out_unlock; 420 } 421 if (task_pgrp(current) == tty->pgrp) 422 goto out_unlock; 423 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 424 if (is_ignored(SIGTTOU)) 425 goto out; 426 if (is_current_pgrp_orphaned()) { 427 ret = -EIO; 428 goto out; 429 } 430 kill_pgrp(task_pgrp(current), SIGTTOU, 1); 431 set_thread_flag(TIF_SIGPENDING); 432 ret = -ERESTARTSYS; 433 out: 434 return ret; 435 out_unlock: 436 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 437 return ret; 438 } 439 440 EXPORT_SYMBOL(tty_check_change); 441 442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf, 443 size_t count, loff_t *ppos) 444 { 445 return 0; 446 } 447 448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf, 449 size_t count, loff_t *ppos) 450 { 451 return -EIO; 452 } 453 454 /* No kernel lock held - none needed ;) */ 455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait) 456 { 457 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM; 458 } 459 460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 461 unsigned long arg) 462 { 463 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 464 } 465 466 static long hung_up_tty_compat_ioctl(struct file *file, 467 unsigned int cmd, unsigned long arg) 468 { 469 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 470 } 471 472 static const struct file_operations tty_fops = { 473 .llseek = no_llseek, 474 .read = tty_read, 475 .write = tty_write, 476 .poll = tty_poll, 477 .unlocked_ioctl = tty_ioctl, 478 .compat_ioctl = tty_compat_ioctl, 479 .open = tty_open, 480 .release = tty_release, 481 .fasync = tty_fasync, 482 }; 483 484 static const struct file_operations console_fops = { 485 .llseek = no_llseek, 486 .read = tty_read, 487 .write = redirected_tty_write, 488 .poll = tty_poll, 489 .unlocked_ioctl = tty_ioctl, 490 .compat_ioctl = tty_compat_ioctl, 491 .open = tty_open, 492 .release = tty_release, 493 .fasync = tty_fasync, 494 }; 495 496 static const struct file_operations hung_up_tty_fops = { 497 .llseek = no_llseek, 498 .read = hung_up_tty_read, 499 .write = hung_up_tty_write, 500 .poll = hung_up_tty_poll, 501 .unlocked_ioctl = hung_up_tty_ioctl, 502 .compat_ioctl = hung_up_tty_compat_ioctl, 503 .release = tty_release, 504 }; 505 506 static DEFINE_SPINLOCK(redirect_lock); 507 static struct file *redirect; 508 509 /** 510 * tty_wakeup - request more data 511 * @tty: terminal 512 * 513 * Internal and external helper for wakeups of tty. This function 514 * informs the line discipline if present that the driver is ready 515 * to receive more output data. 516 */ 517 518 void tty_wakeup(struct tty_struct *tty) 519 { 520 struct tty_ldisc *ld; 521 522 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 523 ld = tty_ldisc_ref(tty); 524 if (ld) { 525 if (ld->ops->write_wakeup) 526 ld->ops->write_wakeup(tty); 527 tty_ldisc_deref(ld); 528 } 529 } 530 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 531 } 532 533 EXPORT_SYMBOL_GPL(tty_wakeup); 534 535 /** 536 * tty_signal_session_leader - sends SIGHUP to session leader 537 * @tty controlling tty 538 * @exit_session if non-zero, signal all foreground group processes 539 * 540 * Send SIGHUP and SIGCONT to the session leader and its process group. 541 * Optionally, signal all processes in the foreground process group. 542 * 543 * Returns the number of processes in the session with this tty 544 * as their controlling terminal. This value is used to drop 545 * tty references for those processes. 546 */ 547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session) 548 { 549 struct task_struct *p; 550 int refs = 0; 551 struct pid *tty_pgrp = NULL; 552 553 read_lock(&tasklist_lock); 554 if (tty->session) { 555 do_each_pid_task(tty->session, PIDTYPE_SID, p) { 556 spin_lock_irq(&p->sighand->siglock); 557 if (p->signal->tty == tty) { 558 p->signal->tty = NULL; 559 /* We defer the dereferences outside fo 560 the tasklist lock */ 561 refs++; 562 } 563 if (!p->signal->leader) { 564 spin_unlock_irq(&p->sighand->siglock); 565 continue; 566 } 567 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p); 568 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p); 569 put_pid(p->signal->tty_old_pgrp); /* A noop */ 570 spin_lock(&tty->ctrl_lock); 571 tty_pgrp = get_pid(tty->pgrp); 572 if (tty->pgrp) 573 p->signal->tty_old_pgrp = get_pid(tty->pgrp); 574 spin_unlock(&tty->ctrl_lock); 575 spin_unlock_irq(&p->sighand->siglock); 576 } while_each_pid_task(tty->session, PIDTYPE_SID, p); 577 } 578 read_unlock(&tasklist_lock); 579 580 if (tty_pgrp) { 581 if (exit_session) 582 kill_pgrp(tty_pgrp, SIGHUP, exit_session); 583 put_pid(tty_pgrp); 584 } 585 586 return refs; 587 } 588 589 /** 590 * __tty_hangup - actual handler for hangup events 591 * @work: tty device 592 * 593 * This can be called by a "kworker" kernel thread. That is process 594 * synchronous but doesn't hold any locks, so we need to make sure we 595 * have the appropriate locks for what we're doing. 596 * 597 * The hangup event clears any pending redirections onto the hung up 598 * device. It ensures future writes will error and it does the needed 599 * line discipline hangup and signal delivery. The tty object itself 600 * remains intact. 601 * 602 * Locking: 603 * BTM 604 * redirect lock for undoing redirection 605 * file list lock for manipulating list of ttys 606 * tty_ldiscs_lock from called functions 607 * termios_rwsem resetting termios data 608 * tasklist_lock to walk task list for hangup event 609 * ->siglock to protect ->signal/->sighand 610 */ 611 static void __tty_hangup(struct tty_struct *tty, int exit_session) 612 { 613 struct file *cons_filp = NULL; 614 struct file *filp, *f = NULL; 615 struct tty_file_private *priv; 616 int closecount = 0, n; 617 int refs; 618 619 if (!tty) 620 return; 621 622 623 spin_lock(&redirect_lock); 624 if (redirect && file_tty(redirect) == tty) { 625 f = redirect; 626 redirect = NULL; 627 } 628 spin_unlock(&redirect_lock); 629 630 tty_lock(tty); 631 632 if (test_bit(TTY_HUPPED, &tty->flags)) { 633 tty_unlock(tty); 634 return; 635 } 636 637 /* some functions below drop BTM, so we need this bit */ 638 set_bit(TTY_HUPPING, &tty->flags); 639 640 /* inuse_filps is protected by the single tty lock, 641 this really needs to change if we want to flush the 642 workqueue with the lock held */ 643 check_tty_count(tty, "tty_hangup"); 644 645 spin_lock(&tty_files_lock); 646 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 647 list_for_each_entry(priv, &tty->tty_files, list) { 648 filp = priv->file; 649 if (filp->f_op->write == redirected_tty_write) 650 cons_filp = filp; 651 if (filp->f_op->write != tty_write) 652 continue; 653 closecount++; 654 __tty_fasync(-1, filp, 0); /* can't block */ 655 filp->f_op = &hung_up_tty_fops; 656 } 657 spin_unlock(&tty_files_lock); 658 659 refs = tty_signal_session_leader(tty, exit_session); 660 /* Account for the p->signal references we killed */ 661 while (refs--) 662 tty_kref_put(tty); 663 664 /* 665 * it drops BTM and thus races with reopen 666 * we protect the race by TTY_HUPPING 667 */ 668 tty_ldisc_hangup(tty); 669 670 spin_lock_irq(&tty->ctrl_lock); 671 clear_bit(TTY_THROTTLED, &tty->flags); 672 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 673 put_pid(tty->session); 674 put_pid(tty->pgrp); 675 tty->session = NULL; 676 tty->pgrp = NULL; 677 tty->ctrl_status = 0; 678 spin_unlock_irq(&tty->ctrl_lock); 679 680 /* 681 * If one of the devices matches a console pointer, we 682 * cannot just call hangup() because that will cause 683 * tty->count and state->count to go out of sync. 684 * So we just call close() the right number of times. 685 */ 686 if (cons_filp) { 687 if (tty->ops->close) 688 for (n = 0; n < closecount; n++) 689 tty->ops->close(tty, cons_filp); 690 } else if (tty->ops->hangup) 691 (tty->ops->hangup)(tty); 692 /* 693 * We don't want to have driver/ldisc interactions beyond 694 * the ones we did here. The driver layer expects no 695 * calls after ->hangup() from the ldisc side. However we 696 * can't yet guarantee all that. 697 */ 698 set_bit(TTY_HUPPED, &tty->flags); 699 clear_bit(TTY_HUPPING, &tty->flags); 700 701 tty_unlock(tty); 702 703 if (f) 704 fput(f); 705 } 706 707 static void do_tty_hangup(struct work_struct *work) 708 { 709 struct tty_struct *tty = 710 container_of(work, struct tty_struct, hangup_work); 711 712 __tty_hangup(tty, 0); 713 } 714 715 /** 716 * tty_hangup - trigger a hangup event 717 * @tty: tty to hangup 718 * 719 * A carrier loss (virtual or otherwise) has occurred on this like 720 * schedule a hangup sequence to run after this event. 721 */ 722 723 void tty_hangup(struct tty_struct *tty) 724 { 725 #ifdef TTY_DEBUG_HANGUP 726 char buf[64]; 727 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf)); 728 #endif 729 schedule_work(&tty->hangup_work); 730 } 731 732 EXPORT_SYMBOL(tty_hangup); 733 734 /** 735 * tty_vhangup - process vhangup 736 * @tty: tty to hangup 737 * 738 * The user has asked via system call for the terminal to be hung up. 739 * We do this synchronously so that when the syscall returns the process 740 * is complete. That guarantee is necessary for security reasons. 741 */ 742 743 void tty_vhangup(struct tty_struct *tty) 744 { 745 #ifdef TTY_DEBUG_HANGUP 746 char buf[64]; 747 748 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf)); 749 #endif 750 __tty_hangup(tty, 0); 751 } 752 753 EXPORT_SYMBOL(tty_vhangup); 754 755 756 /** 757 * tty_vhangup_self - process vhangup for own ctty 758 * 759 * Perform a vhangup on the current controlling tty 760 */ 761 762 void tty_vhangup_self(void) 763 { 764 struct tty_struct *tty; 765 766 tty = get_current_tty(); 767 if (tty) { 768 tty_vhangup(tty); 769 tty_kref_put(tty); 770 } 771 } 772 773 /** 774 * tty_vhangup_session - hangup session leader exit 775 * @tty: tty to hangup 776 * 777 * The session leader is exiting and hanging up its controlling terminal. 778 * Every process in the foreground process group is signalled SIGHUP. 779 * 780 * We do this synchronously so that when the syscall returns the process 781 * is complete. That guarantee is necessary for security reasons. 782 */ 783 784 static void tty_vhangup_session(struct tty_struct *tty) 785 { 786 #ifdef TTY_DEBUG_HANGUP 787 char buf[64]; 788 789 printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf)); 790 #endif 791 __tty_hangup(tty, 1); 792 } 793 794 /** 795 * tty_hung_up_p - was tty hung up 796 * @filp: file pointer of tty 797 * 798 * Return true if the tty has been subject to a vhangup or a carrier 799 * loss 800 */ 801 802 int tty_hung_up_p(struct file *filp) 803 { 804 return (filp->f_op == &hung_up_tty_fops); 805 } 806 807 EXPORT_SYMBOL(tty_hung_up_p); 808 809 static void session_clear_tty(struct pid *session) 810 { 811 struct task_struct *p; 812 do_each_pid_task(session, PIDTYPE_SID, p) { 813 proc_clear_tty(p); 814 } while_each_pid_task(session, PIDTYPE_SID, p); 815 } 816 817 /** 818 * disassociate_ctty - disconnect controlling tty 819 * @on_exit: true if exiting so need to "hang up" the session 820 * 821 * This function is typically called only by the session leader, when 822 * it wants to disassociate itself from its controlling tty. 823 * 824 * It performs the following functions: 825 * (1) Sends a SIGHUP and SIGCONT to the foreground process group 826 * (2) Clears the tty from being controlling the session 827 * (3) Clears the controlling tty for all processes in the 828 * session group. 829 * 830 * The argument on_exit is set to 1 if called when a process is 831 * exiting; it is 0 if called by the ioctl TIOCNOTTY. 832 * 833 * Locking: 834 * BTM is taken for hysterical raisins, and held when 835 * called from no_tty(). 836 * tty_mutex is taken to protect tty 837 * ->siglock is taken to protect ->signal/->sighand 838 * tasklist_lock is taken to walk process list for sessions 839 * ->siglock is taken to protect ->signal/->sighand 840 */ 841 842 void disassociate_ctty(int on_exit) 843 { 844 struct tty_struct *tty; 845 846 if (!current->signal->leader) 847 return; 848 849 tty = get_current_tty(); 850 if (tty) { 851 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) { 852 tty_vhangup_session(tty); 853 } else { 854 struct pid *tty_pgrp = tty_get_pgrp(tty); 855 if (tty_pgrp) { 856 kill_pgrp(tty_pgrp, SIGHUP, on_exit); 857 if (!on_exit) 858 kill_pgrp(tty_pgrp, SIGCONT, on_exit); 859 put_pid(tty_pgrp); 860 } 861 } 862 tty_kref_put(tty); 863 864 } else if (on_exit) { 865 struct pid *old_pgrp; 866 spin_lock_irq(¤t->sighand->siglock); 867 old_pgrp = current->signal->tty_old_pgrp; 868 current->signal->tty_old_pgrp = NULL; 869 spin_unlock_irq(¤t->sighand->siglock); 870 if (old_pgrp) { 871 kill_pgrp(old_pgrp, SIGHUP, on_exit); 872 kill_pgrp(old_pgrp, SIGCONT, on_exit); 873 put_pid(old_pgrp); 874 } 875 return; 876 } 877 878 spin_lock_irq(¤t->sighand->siglock); 879 put_pid(current->signal->tty_old_pgrp); 880 current->signal->tty_old_pgrp = NULL; 881 spin_unlock_irq(¤t->sighand->siglock); 882 883 tty = get_current_tty(); 884 if (tty) { 885 unsigned long flags; 886 spin_lock_irqsave(&tty->ctrl_lock, flags); 887 put_pid(tty->session); 888 put_pid(tty->pgrp); 889 tty->session = NULL; 890 tty->pgrp = NULL; 891 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 892 tty_kref_put(tty); 893 } else { 894 #ifdef TTY_DEBUG_HANGUP 895 printk(KERN_DEBUG "error attempted to write to tty [0x%p]" 896 " = NULL", tty); 897 #endif 898 } 899 900 /* Now clear signal->tty under the lock */ 901 read_lock(&tasklist_lock); 902 session_clear_tty(task_session(current)); 903 read_unlock(&tasklist_lock); 904 } 905 906 /** 907 * 908 * no_tty - Ensure the current process does not have a controlling tty 909 */ 910 void no_tty(void) 911 { 912 /* FIXME: Review locking here. The tty_lock never covered any race 913 between a new association and proc_clear_tty but possible we need 914 to protect against this anyway */ 915 struct task_struct *tsk = current; 916 disassociate_ctty(0); 917 proc_clear_tty(tsk); 918 } 919 920 921 /** 922 * stop_tty - propagate flow control 923 * @tty: tty to stop 924 * 925 * Perform flow control to the driver. For PTY/TTY pairs we 926 * must also propagate the TIOCKPKT status. May be called 927 * on an already stopped device and will not re-call the driver 928 * method. 929 * 930 * This functionality is used by both the line disciplines for 931 * halting incoming flow and by the driver. It may therefore be 932 * called from any context, may be under the tty atomic_write_lock 933 * but not always. 934 * 935 * Locking: 936 * Uses the tty control lock internally 937 */ 938 939 void stop_tty(struct tty_struct *tty) 940 { 941 unsigned long flags; 942 spin_lock_irqsave(&tty->ctrl_lock, flags); 943 if (tty->stopped) { 944 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 945 return; 946 } 947 tty->stopped = 1; 948 if (tty->link && tty->link->packet) { 949 tty->ctrl_status &= ~TIOCPKT_START; 950 tty->ctrl_status |= TIOCPKT_STOP; 951 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN); 952 } 953 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 954 if (tty->ops->stop) 955 (tty->ops->stop)(tty); 956 } 957 958 EXPORT_SYMBOL(stop_tty); 959 960 /** 961 * start_tty - propagate flow control 962 * @tty: tty to start 963 * 964 * Start a tty that has been stopped if at all possible. Perform 965 * any necessary wakeups and propagate the TIOCPKT status. If this 966 * is the tty was previous stopped and is being started then the 967 * driver start method is invoked and the line discipline woken. 968 * 969 * Locking: 970 * ctrl_lock 971 */ 972 973 void start_tty(struct tty_struct *tty) 974 { 975 unsigned long flags; 976 spin_lock_irqsave(&tty->ctrl_lock, flags); 977 if (!tty->stopped || tty->flow_stopped) { 978 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 979 return; 980 } 981 tty->stopped = 0; 982 if (tty->link && tty->link->packet) { 983 tty->ctrl_status &= ~TIOCPKT_STOP; 984 tty->ctrl_status |= TIOCPKT_START; 985 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN); 986 } 987 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 988 if (tty->ops->start) 989 (tty->ops->start)(tty); 990 /* If we have a running line discipline it may need kicking */ 991 tty_wakeup(tty); 992 } 993 994 EXPORT_SYMBOL(start_tty); 995 996 /* We limit tty time update visibility to every 8 seconds or so. */ 997 static void tty_update_time(struct timespec *time) 998 { 999 unsigned long sec = get_seconds() & ~7; 1000 if ((long)(sec - time->tv_sec) > 0) 1001 time->tv_sec = sec; 1002 } 1003 1004 /** 1005 * tty_read - read method for tty device files 1006 * @file: pointer to tty file 1007 * @buf: user buffer 1008 * @count: size of user buffer 1009 * @ppos: unused 1010 * 1011 * Perform the read system call function on this terminal device. Checks 1012 * for hung up devices before calling the line discipline method. 1013 * 1014 * Locking: 1015 * Locks the line discipline internally while needed. Multiple 1016 * read calls may be outstanding in parallel. 1017 */ 1018 1019 static ssize_t tty_read(struct file *file, char __user *buf, size_t count, 1020 loff_t *ppos) 1021 { 1022 int i; 1023 struct inode *inode = file_inode(file); 1024 struct tty_struct *tty = file_tty(file); 1025 struct tty_ldisc *ld; 1026 1027 if (tty_paranoia_check(tty, inode, "tty_read")) 1028 return -EIO; 1029 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags))) 1030 return -EIO; 1031 1032 /* We want to wait for the line discipline to sort out in this 1033 situation */ 1034 ld = tty_ldisc_ref_wait(tty); 1035 if (ld->ops->read) 1036 i = (ld->ops->read)(tty, file, buf, count); 1037 else 1038 i = -EIO; 1039 tty_ldisc_deref(ld); 1040 1041 if (i > 0) 1042 tty_update_time(&inode->i_atime); 1043 1044 return i; 1045 } 1046 1047 void tty_write_unlock(struct tty_struct *tty) 1048 __releases(&tty->atomic_write_lock) 1049 { 1050 mutex_unlock(&tty->atomic_write_lock); 1051 wake_up_interruptible_poll(&tty->write_wait, POLLOUT); 1052 } 1053 1054 int tty_write_lock(struct tty_struct *tty, int ndelay) 1055 __acquires(&tty->atomic_write_lock) 1056 { 1057 if (!mutex_trylock(&tty->atomic_write_lock)) { 1058 if (ndelay) 1059 return -EAGAIN; 1060 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 1061 return -ERESTARTSYS; 1062 } 1063 return 0; 1064 } 1065 1066 /* 1067 * Split writes up in sane blocksizes to avoid 1068 * denial-of-service type attacks 1069 */ 1070 static inline ssize_t do_tty_write( 1071 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 1072 struct tty_struct *tty, 1073 struct file *file, 1074 const char __user *buf, 1075 size_t count) 1076 { 1077 ssize_t ret, written = 0; 1078 unsigned int chunk; 1079 1080 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 1081 if (ret < 0) 1082 return ret; 1083 1084 /* 1085 * We chunk up writes into a temporary buffer. This 1086 * simplifies low-level drivers immensely, since they 1087 * don't have locking issues and user mode accesses. 1088 * 1089 * But if TTY_NO_WRITE_SPLIT is set, we should use a 1090 * big chunk-size.. 1091 * 1092 * The default chunk-size is 2kB, because the NTTY 1093 * layer has problems with bigger chunks. It will 1094 * claim to be able to handle more characters than 1095 * it actually does. 1096 * 1097 * FIXME: This can probably go away now except that 64K chunks 1098 * are too likely to fail unless switched to vmalloc... 1099 */ 1100 chunk = 2048; 1101 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 1102 chunk = 65536; 1103 if (count < chunk) 1104 chunk = count; 1105 1106 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 1107 if (tty->write_cnt < chunk) { 1108 unsigned char *buf_chunk; 1109 1110 if (chunk < 1024) 1111 chunk = 1024; 1112 1113 buf_chunk = kmalloc(chunk, GFP_KERNEL); 1114 if (!buf_chunk) { 1115 ret = -ENOMEM; 1116 goto out; 1117 } 1118 kfree(tty->write_buf); 1119 tty->write_cnt = chunk; 1120 tty->write_buf = buf_chunk; 1121 } 1122 1123 /* Do the write .. */ 1124 for (;;) { 1125 size_t size = count; 1126 if (size > chunk) 1127 size = chunk; 1128 ret = -EFAULT; 1129 if (copy_from_user(tty->write_buf, buf, size)) 1130 break; 1131 ret = write(tty, file, tty->write_buf, size); 1132 if (ret <= 0) 1133 break; 1134 written += ret; 1135 buf += ret; 1136 count -= ret; 1137 if (!count) 1138 break; 1139 ret = -ERESTARTSYS; 1140 if (signal_pending(current)) 1141 break; 1142 cond_resched(); 1143 } 1144 if (written) { 1145 tty_update_time(&file_inode(file)->i_mtime); 1146 ret = written; 1147 } 1148 out: 1149 tty_write_unlock(tty); 1150 return ret; 1151 } 1152 1153 /** 1154 * tty_write_message - write a message to a certain tty, not just the console. 1155 * @tty: the destination tty_struct 1156 * @msg: the message to write 1157 * 1158 * This is used for messages that need to be redirected to a specific tty. 1159 * We don't put it into the syslog queue right now maybe in the future if 1160 * really needed. 1161 * 1162 * We must still hold the BTM and test the CLOSING flag for the moment. 1163 */ 1164 1165 void tty_write_message(struct tty_struct *tty, char *msg) 1166 { 1167 if (tty) { 1168 mutex_lock(&tty->atomic_write_lock); 1169 tty_lock(tty); 1170 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) { 1171 tty_unlock(tty); 1172 tty->ops->write(tty, msg, strlen(msg)); 1173 } else 1174 tty_unlock(tty); 1175 tty_write_unlock(tty); 1176 } 1177 return; 1178 } 1179 1180 1181 /** 1182 * tty_write - write method for tty device file 1183 * @file: tty file pointer 1184 * @buf: user data to write 1185 * @count: bytes to write 1186 * @ppos: unused 1187 * 1188 * Write data to a tty device via the line discipline. 1189 * 1190 * Locking: 1191 * Locks the line discipline as required 1192 * Writes to the tty driver are serialized by the atomic_write_lock 1193 * and are then processed in chunks to the device. The line discipline 1194 * write method will not be invoked in parallel for each device. 1195 */ 1196 1197 static ssize_t tty_write(struct file *file, const char __user *buf, 1198 size_t count, loff_t *ppos) 1199 { 1200 struct tty_struct *tty = file_tty(file); 1201 struct tty_ldisc *ld; 1202 ssize_t ret; 1203 1204 if (tty_paranoia_check(tty, file_inode(file), "tty_write")) 1205 return -EIO; 1206 if (!tty || !tty->ops->write || 1207 (test_bit(TTY_IO_ERROR, &tty->flags))) 1208 return -EIO; 1209 /* Short term debug to catch buggy drivers */ 1210 if (tty->ops->write_room == NULL) 1211 printk(KERN_ERR "tty driver %s lacks a write_room method.\n", 1212 tty->driver->name); 1213 ld = tty_ldisc_ref_wait(tty); 1214 if (!ld->ops->write) 1215 ret = -EIO; 1216 else 1217 ret = do_tty_write(ld->ops->write, tty, file, buf, count); 1218 tty_ldisc_deref(ld); 1219 return ret; 1220 } 1221 1222 ssize_t redirected_tty_write(struct file *file, const char __user *buf, 1223 size_t count, loff_t *ppos) 1224 { 1225 struct file *p = NULL; 1226 1227 spin_lock(&redirect_lock); 1228 if (redirect) 1229 p = get_file(redirect); 1230 spin_unlock(&redirect_lock); 1231 1232 if (p) { 1233 ssize_t res; 1234 res = vfs_write(p, buf, count, &p->f_pos); 1235 fput(p); 1236 return res; 1237 } 1238 return tty_write(file, buf, count, ppos); 1239 } 1240 1241 static char ptychar[] = "pqrstuvwxyzabcde"; 1242 1243 /** 1244 * pty_line_name - generate name for a pty 1245 * @driver: the tty driver in use 1246 * @index: the minor number 1247 * @p: output buffer of at least 6 bytes 1248 * 1249 * Generate a name from a driver reference and write it to the output 1250 * buffer. 1251 * 1252 * Locking: None 1253 */ 1254 static void pty_line_name(struct tty_driver *driver, int index, char *p) 1255 { 1256 int i = index + driver->name_base; 1257 /* ->name is initialized to "ttyp", but "tty" is expected */ 1258 sprintf(p, "%s%c%x", 1259 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1260 ptychar[i >> 4 & 0xf], i & 0xf); 1261 } 1262 1263 /** 1264 * tty_line_name - generate name for a tty 1265 * @driver: the tty driver in use 1266 * @index: the minor number 1267 * @p: output buffer of at least 7 bytes 1268 * 1269 * Generate a name from a driver reference and write it to the output 1270 * buffer. 1271 * 1272 * Locking: None 1273 */ 1274 static void tty_line_name(struct tty_driver *driver, int index, char *p) 1275 { 1276 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE) 1277 strcpy(p, driver->name); 1278 else 1279 sprintf(p, "%s%d", driver->name, index + driver->name_base); 1280 } 1281 1282 /** 1283 * tty_driver_lookup_tty() - find an existing tty, if any 1284 * @driver: the driver for the tty 1285 * @idx: the minor number 1286 * 1287 * Return the tty, if found or ERR_PTR() otherwise. 1288 * 1289 * Locking: tty_mutex must be held. If tty is found, the mutex must 1290 * be held until the 'fast-open' is also done. Will change once we 1291 * have refcounting in the driver and per driver locking 1292 */ 1293 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1294 struct inode *inode, int idx) 1295 { 1296 if (driver->ops->lookup) 1297 return driver->ops->lookup(driver, inode, idx); 1298 1299 return driver->ttys[idx]; 1300 } 1301 1302 /** 1303 * tty_init_termios - helper for termios setup 1304 * @tty: the tty to set up 1305 * 1306 * Initialise the termios structures for this tty. Thus runs under 1307 * the tty_mutex currently so we can be relaxed about ordering. 1308 */ 1309 1310 int tty_init_termios(struct tty_struct *tty) 1311 { 1312 struct ktermios *tp; 1313 int idx = tty->index; 1314 1315 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1316 tty->termios = tty->driver->init_termios; 1317 else { 1318 /* Check for lazy saved data */ 1319 tp = tty->driver->termios[idx]; 1320 if (tp != NULL) 1321 tty->termios = *tp; 1322 else 1323 tty->termios = tty->driver->init_termios; 1324 } 1325 /* Compatibility until drivers always set this */ 1326 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios); 1327 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios); 1328 return 0; 1329 } 1330 EXPORT_SYMBOL_GPL(tty_init_termios); 1331 1332 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1333 { 1334 int ret = tty_init_termios(tty); 1335 if (ret) 1336 return ret; 1337 1338 tty_driver_kref_get(driver); 1339 tty->count++; 1340 driver->ttys[tty->index] = tty; 1341 return 0; 1342 } 1343 EXPORT_SYMBOL_GPL(tty_standard_install); 1344 1345 /** 1346 * tty_driver_install_tty() - install a tty entry in the driver 1347 * @driver: the driver for the tty 1348 * @tty: the tty 1349 * 1350 * Install a tty object into the driver tables. The tty->index field 1351 * will be set by the time this is called. This method is responsible 1352 * for ensuring any need additional structures are allocated and 1353 * configured. 1354 * 1355 * Locking: tty_mutex for now 1356 */ 1357 static int tty_driver_install_tty(struct tty_driver *driver, 1358 struct tty_struct *tty) 1359 { 1360 return driver->ops->install ? driver->ops->install(driver, tty) : 1361 tty_standard_install(driver, tty); 1362 } 1363 1364 /** 1365 * tty_driver_remove_tty() - remove a tty from the driver tables 1366 * @driver: the driver for the tty 1367 * @idx: the minor number 1368 * 1369 * Remvoe a tty object from the driver tables. The tty->index field 1370 * will be set by the time this is called. 1371 * 1372 * Locking: tty_mutex for now 1373 */ 1374 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1375 { 1376 if (driver->ops->remove) 1377 driver->ops->remove(driver, tty); 1378 else 1379 driver->ttys[tty->index] = NULL; 1380 } 1381 1382 /* 1383 * tty_reopen() - fast re-open of an open tty 1384 * @tty - the tty to open 1385 * 1386 * Return 0 on success, -errno on error. 1387 * 1388 * Locking: tty_mutex must be held from the time the tty was found 1389 * till this open completes. 1390 */ 1391 static int tty_reopen(struct tty_struct *tty) 1392 { 1393 struct tty_driver *driver = tty->driver; 1394 1395 if (test_bit(TTY_CLOSING, &tty->flags) || 1396 test_bit(TTY_HUPPING, &tty->flags)) 1397 return -EIO; 1398 1399 if (driver->type == TTY_DRIVER_TYPE_PTY && 1400 driver->subtype == PTY_TYPE_MASTER) { 1401 /* 1402 * special case for PTY masters: only one open permitted, 1403 * and the slave side open count is incremented as well. 1404 */ 1405 if (tty->count) 1406 return -EIO; 1407 1408 tty->link->count++; 1409 } 1410 tty->count++; 1411 1412 WARN_ON(!tty->ldisc); 1413 1414 return 0; 1415 } 1416 1417 /** 1418 * tty_init_dev - initialise a tty device 1419 * @driver: tty driver we are opening a device on 1420 * @idx: device index 1421 * @ret_tty: returned tty structure 1422 * 1423 * Prepare a tty device. This may not be a "new" clean device but 1424 * could also be an active device. The pty drivers require special 1425 * handling because of this. 1426 * 1427 * Locking: 1428 * The function is called under the tty_mutex, which 1429 * protects us from the tty struct or driver itself going away. 1430 * 1431 * On exit the tty device has the line discipline attached and 1432 * a reference count of 1. If a pair was created for pty/tty use 1433 * and the other was a pty master then it too has a reference count of 1. 1434 * 1435 * WSH 06/09/97: Rewritten to remove races and properly clean up after a 1436 * failed open. The new code protects the open with a mutex, so it's 1437 * really quite straightforward. The mutex locking can probably be 1438 * relaxed for the (most common) case of reopening a tty. 1439 */ 1440 1441 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1442 { 1443 struct tty_struct *tty; 1444 int retval; 1445 1446 /* 1447 * First time open is complex, especially for PTY devices. 1448 * This code guarantees that either everything succeeds and the 1449 * TTY is ready for operation, or else the table slots are vacated 1450 * and the allocated memory released. (Except that the termios 1451 * and locked termios may be retained.) 1452 */ 1453 1454 if (!try_module_get(driver->owner)) 1455 return ERR_PTR(-ENODEV); 1456 1457 tty = alloc_tty_struct(); 1458 if (!tty) { 1459 retval = -ENOMEM; 1460 goto err_module_put; 1461 } 1462 initialize_tty_struct(tty, driver, idx); 1463 1464 tty_lock(tty); 1465 retval = tty_driver_install_tty(driver, tty); 1466 if (retval < 0) 1467 goto err_deinit_tty; 1468 1469 if (!tty->port) 1470 tty->port = driver->ports[idx]; 1471 1472 WARN_RATELIMIT(!tty->port, 1473 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n", 1474 __func__, tty->driver->name); 1475 1476 tty->port->itty = tty; 1477 1478 /* 1479 * Structures all installed ... call the ldisc open routines. 1480 * If we fail here just call release_tty to clean up. No need 1481 * to decrement the use counts, as release_tty doesn't care. 1482 */ 1483 retval = tty_ldisc_setup(tty, tty->link); 1484 if (retval) 1485 goto err_release_tty; 1486 /* Return the tty locked so that it cannot vanish under the caller */ 1487 return tty; 1488 1489 err_deinit_tty: 1490 tty_unlock(tty); 1491 deinitialize_tty_struct(tty); 1492 free_tty_struct(tty); 1493 err_module_put: 1494 module_put(driver->owner); 1495 return ERR_PTR(retval); 1496 1497 /* call the tty release_tty routine to clean out this slot */ 1498 err_release_tty: 1499 tty_unlock(tty); 1500 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, " 1501 "clearing slot %d\n", idx); 1502 release_tty(tty, idx); 1503 return ERR_PTR(retval); 1504 } 1505 1506 void tty_free_termios(struct tty_struct *tty) 1507 { 1508 struct ktermios *tp; 1509 int idx = tty->index; 1510 1511 /* If the port is going to reset then it has no termios to save */ 1512 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1513 return; 1514 1515 /* Stash the termios data */ 1516 tp = tty->driver->termios[idx]; 1517 if (tp == NULL) { 1518 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL); 1519 if (tp == NULL) { 1520 pr_warn("tty: no memory to save termios state.\n"); 1521 return; 1522 } 1523 tty->driver->termios[idx] = tp; 1524 } 1525 *tp = tty->termios; 1526 } 1527 EXPORT_SYMBOL(tty_free_termios); 1528 1529 /** 1530 * tty_flush_works - flush all works of a tty 1531 * @tty: tty device to flush works for 1532 * 1533 * Sync flush all works belonging to @tty. 1534 */ 1535 static void tty_flush_works(struct tty_struct *tty) 1536 { 1537 flush_work(&tty->SAK_work); 1538 flush_work(&tty->hangup_work); 1539 } 1540 1541 /** 1542 * release_one_tty - release tty structure memory 1543 * @kref: kref of tty we are obliterating 1544 * 1545 * Releases memory associated with a tty structure, and clears out the 1546 * driver table slots. This function is called when a device is no longer 1547 * in use. It also gets called when setup of a device fails. 1548 * 1549 * Locking: 1550 * takes the file list lock internally when working on the list 1551 * of ttys that the driver keeps. 1552 * 1553 * This method gets called from a work queue so that the driver private 1554 * cleanup ops can sleep (needed for USB at least) 1555 */ 1556 static void release_one_tty(struct work_struct *work) 1557 { 1558 struct tty_struct *tty = 1559 container_of(work, struct tty_struct, hangup_work); 1560 struct tty_driver *driver = tty->driver; 1561 1562 if (tty->ops->cleanup) 1563 tty->ops->cleanup(tty); 1564 1565 tty->magic = 0; 1566 tty_driver_kref_put(driver); 1567 module_put(driver->owner); 1568 1569 spin_lock(&tty_files_lock); 1570 list_del_init(&tty->tty_files); 1571 spin_unlock(&tty_files_lock); 1572 1573 put_pid(tty->pgrp); 1574 put_pid(tty->session); 1575 free_tty_struct(tty); 1576 } 1577 1578 static void queue_release_one_tty(struct kref *kref) 1579 { 1580 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1581 1582 /* The hangup queue is now free so we can reuse it rather than 1583 waste a chunk of memory for each port */ 1584 INIT_WORK(&tty->hangup_work, release_one_tty); 1585 schedule_work(&tty->hangup_work); 1586 } 1587 1588 /** 1589 * tty_kref_put - release a tty kref 1590 * @tty: tty device 1591 * 1592 * Release a reference to a tty device and if need be let the kref 1593 * layer destruct the object for us 1594 */ 1595 1596 void tty_kref_put(struct tty_struct *tty) 1597 { 1598 if (tty) 1599 kref_put(&tty->kref, queue_release_one_tty); 1600 } 1601 EXPORT_SYMBOL(tty_kref_put); 1602 1603 /** 1604 * release_tty - release tty structure memory 1605 * 1606 * Release both @tty and a possible linked partner (think pty pair), 1607 * and decrement the refcount of the backing module. 1608 * 1609 * Locking: 1610 * tty_mutex 1611 * takes the file list lock internally when working on the list 1612 * of ttys that the driver keeps. 1613 * 1614 */ 1615 static void release_tty(struct tty_struct *tty, int idx) 1616 { 1617 /* This should always be true but check for the moment */ 1618 WARN_ON(tty->index != idx); 1619 WARN_ON(!mutex_is_locked(&tty_mutex)); 1620 if (tty->ops->shutdown) 1621 tty->ops->shutdown(tty); 1622 tty_free_termios(tty); 1623 tty_driver_remove_tty(tty->driver, tty); 1624 tty->port->itty = NULL; 1625 if (tty->link) 1626 tty->link->port->itty = NULL; 1627 cancel_work_sync(&tty->port->buf.work); 1628 1629 if (tty->link) 1630 tty_kref_put(tty->link); 1631 tty_kref_put(tty); 1632 } 1633 1634 /** 1635 * tty_release_checks - check a tty before real release 1636 * @tty: tty to check 1637 * @o_tty: link of @tty (if any) 1638 * @idx: index of the tty 1639 * 1640 * Performs some paranoid checking before true release of the @tty. 1641 * This is a no-op unless TTY_PARANOIA_CHECK is defined. 1642 */ 1643 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty, 1644 int idx) 1645 { 1646 #ifdef TTY_PARANOIA_CHECK 1647 if (idx < 0 || idx >= tty->driver->num) { 1648 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n", 1649 __func__, tty->name); 1650 return -1; 1651 } 1652 1653 /* not much to check for devpts */ 1654 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1655 return 0; 1656 1657 if (tty != tty->driver->ttys[idx]) { 1658 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n", 1659 __func__, idx, tty->name); 1660 return -1; 1661 } 1662 if (tty->driver->other) { 1663 if (o_tty != tty->driver->other->ttys[idx]) { 1664 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n", 1665 __func__, idx, tty->name); 1666 return -1; 1667 } 1668 if (o_tty->link != tty) { 1669 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__); 1670 return -1; 1671 } 1672 } 1673 #endif 1674 return 0; 1675 } 1676 1677 /** 1678 * tty_release - vfs callback for close 1679 * @inode: inode of tty 1680 * @filp: file pointer for handle to tty 1681 * 1682 * Called the last time each file handle is closed that references 1683 * this tty. There may however be several such references. 1684 * 1685 * Locking: 1686 * Takes bkl. See tty_release_dev 1687 * 1688 * Even releasing the tty structures is a tricky business.. We have 1689 * to be very careful that the structures are all released at the 1690 * same time, as interrupts might otherwise get the wrong pointers. 1691 * 1692 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1693 * lead to double frees or releasing memory still in use. 1694 */ 1695 1696 int tty_release(struct inode *inode, struct file *filp) 1697 { 1698 struct tty_struct *tty = file_tty(filp); 1699 struct tty_struct *o_tty; 1700 int pty_master, tty_closing, o_tty_closing, do_sleep; 1701 int idx; 1702 char buf[64]; 1703 1704 if (tty_paranoia_check(tty, inode, __func__)) 1705 return 0; 1706 1707 tty_lock(tty); 1708 check_tty_count(tty, __func__); 1709 1710 __tty_fasync(-1, filp, 0); 1711 1712 idx = tty->index; 1713 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1714 tty->driver->subtype == PTY_TYPE_MASTER); 1715 /* Review: parallel close */ 1716 o_tty = tty->link; 1717 1718 if (tty_release_checks(tty, o_tty, idx)) { 1719 tty_unlock(tty); 1720 return 0; 1721 } 1722 1723 #ifdef TTY_DEBUG_HANGUP 1724 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__, 1725 tty_name(tty, buf), tty->count); 1726 #endif 1727 1728 if (tty->ops->close) 1729 tty->ops->close(tty, filp); 1730 1731 tty_unlock(tty); 1732 /* 1733 * Sanity check: if tty->count is going to zero, there shouldn't be 1734 * any waiters on tty->read_wait or tty->write_wait. We test the 1735 * wait queues and kick everyone out _before_ actually starting to 1736 * close. This ensures that we won't block while releasing the tty 1737 * structure. 1738 * 1739 * The test for the o_tty closing is necessary, since the master and 1740 * slave sides may close in any order. If the slave side closes out 1741 * first, its count will be one, since the master side holds an open. 1742 * Thus this test wouldn't be triggered at the time the slave closes, 1743 * so we do it now. 1744 * 1745 * Note that it's possible for the tty to be opened again while we're 1746 * flushing out waiters. By recalculating the closing flags before 1747 * each iteration we avoid any problems. 1748 */ 1749 while (1) { 1750 /* Guard against races with tty->count changes elsewhere and 1751 opens on /dev/tty */ 1752 1753 mutex_lock(&tty_mutex); 1754 tty_lock_pair(tty, o_tty); 1755 tty_closing = tty->count <= 1; 1756 o_tty_closing = o_tty && 1757 (o_tty->count <= (pty_master ? 1 : 0)); 1758 do_sleep = 0; 1759 1760 if (tty_closing) { 1761 if (waitqueue_active(&tty->read_wait)) { 1762 wake_up_poll(&tty->read_wait, POLLIN); 1763 do_sleep++; 1764 } 1765 if (waitqueue_active(&tty->write_wait)) { 1766 wake_up_poll(&tty->write_wait, POLLOUT); 1767 do_sleep++; 1768 } 1769 } 1770 if (o_tty_closing) { 1771 if (waitqueue_active(&o_tty->read_wait)) { 1772 wake_up_poll(&o_tty->read_wait, POLLIN); 1773 do_sleep++; 1774 } 1775 if (waitqueue_active(&o_tty->write_wait)) { 1776 wake_up_poll(&o_tty->write_wait, POLLOUT); 1777 do_sleep++; 1778 } 1779 } 1780 if (!do_sleep) 1781 break; 1782 1783 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n", 1784 __func__, tty_name(tty, buf)); 1785 tty_unlock_pair(tty, o_tty); 1786 mutex_unlock(&tty_mutex); 1787 schedule(); 1788 } 1789 1790 /* 1791 * The closing flags are now consistent with the open counts on 1792 * both sides, and we've completed the last operation that could 1793 * block, so it's safe to proceed with closing. 1794 * 1795 * We must *not* drop the tty_mutex until we ensure that a further 1796 * entry into tty_open can not pick up this tty. 1797 */ 1798 if (pty_master) { 1799 if (--o_tty->count < 0) { 1800 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n", 1801 __func__, o_tty->count, tty_name(o_tty, buf)); 1802 o_tty->count = 0; 1803 } 1804 } 1805 if (--tty->count < 0) { 1806 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n", 1807 __func__, tty->count, tty_name(tty, buf)); 1808 tty->count = 0; 1809 } 1810 1811 /* 1812 * We've decremented tty->count, so we need to remove this file 1813 * descriptor off the tty->tty_files list; this serves two 1814 * purposes: 1815 * - check_tty_count sees the correct number of file descriptors 1816 * associated with this tty. 1817 * - do_tty_hangup no longer sees this file descriptor as 1818 * something that needs to be handled for hangups. 1819 */ 1820 tty_del_file(filp); 1821 1822 /* 1823 * Perform some housekeeping before deciding whether to return. 1824 * 1825 * Set the TTY_CLOSING flag if this was the last open. In the 1826 * case of a pty we may have to wait around for the other side 1827 * to close, and TTY_CLOSING makes sure we can't be reopened. 1828 */ 1829 if (tty_closing) 1830 set_bit(TTY_CLOSING, &tty->flags); 1831 if (o_tty_closing) 1832 set_bit(TTY_CLOSING, &o_tty->flags); 1833 1834 /* 1835 * If _either_ side is closing, make sure there aren't any 1836 * processes that still think tty or o_tty is their controlling 1837 * tty. 1838 */ 1839 if (tty_closing || o_tty_closing) { 1840 read_lock(&tasklist_lock); 1841 session_clear_tty(tty->session); 1842 if (o_tty) 1843 session_clear_tty(o_tty->session); 1844 read_unlock(&tasklist_lock); 1845 } 1846 1847 mutex_unlock(&tty_mutex); 1848 tty_unlock_pair(tty, o_tty); 1849 /* At this point the TTY_CLOSING flag should ensure a dead tty 1850 cannot be re-opened by a racing opener */ 1851 1852 /* check whether both sides are closing ... */ 1853 if (!tty_closing || (o_tty && !o_tty_closing)) 1854 return 0; 1855 1856 #ifdef TTY_DEBUG_HANGUP 1857 printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf)); 1858 #endif 1859 /* 1860 * Ask the line discipline code to release its structures 1861 */ 1862 tty_ldisc_release(tty, o_tty); 1863 1864 /* Wait for pending work before tty destruction commmences */ 1865 tty_flush_works(tty); 1866 if (o_tty) 1867 tty_flush_works(o_tty); 1868 1869 #ifdef TTY_DEBUG_HANGUP 1870 printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf)); 1871 #endif 1872 /* 1873 * The release_tty function takes care of the details of clearing 1874 * the slots and preserving the termios structure. The tty_unlock_pair 1875 * should be safe as we keep a kref while the tty is locked (so the 1876 * unlock never unlocks a freed tty). 1877 */ 1878 mutex_lock(&tty_mutex); 1879 release_tty(tty, idx); 1880 mutex_unlock(&tty_mutex); 1881 1882 return 0; 1883 } 1884 1885 /** 1886 * tty_open_current_tty - get tty of current task for open 1887 * @device: device number 1888 * @filp: file pointer to tty 1889 * @return: tty of the current task iff @device is /dev/tty 1890 * 1891 * We cannot return driver and index like for the other nodes because 1892 * devpts will not work then. It expects inodes to be from devpts FS. 1893 * 1894 * We need to move to returning a refcounted object from all the lookup 1895 * paths including this one. 1896 */ 1897 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1898 { 1899 struct tty_struct *tty; 1900 1901 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1902 return NULL; 1903 1904 tty = get_current_tty(); 1905 if (!tty) 1906 return ERR_PTR(-ENXIO); 1907 1908 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1909 /* noctty = 1; */ 1910 tty_kref_put(tty); 1911 /* FIXME: we put a reference and return a TTY! */ 1912 /* This is only safe because the caller holds tty_mutex */ 1913 return tty; 1914 } 1915 1916 /** 1917 * tty_lookup_driver - lookup a tty driver for a given device file 1918 * @device: device number 1919 * @filp: file pointer to tty 1920 * @noctty: set if the device should not become a controlling tty 1921 * @index: index for the device in the @return driver 1922 * @return: driver for this inode (with increased refcount) 1923 * 1924 * If @return is not erroneous, the caller is responsible to decrement the 1925 * refcount by tty_driver_kref_put. 1926 * 1927 * Locking: tty_mutex protects get_tty_driver 1928 */ 1929 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1930 int *noctty, int *index) 1931 { 1932 struct tty_driver *driver; 1933 1934 switch (device) { 1935 #ifdef CONFIG_VT 1936 case MKDEV(TTY_MAJOR, 0): { 1937 extern struct tty_driver *console_driver; 1938 driver = tty_driver_kref_get(console_driver); 1939 *index = fg_console; 1940 *noctty = 1; 1941 break; 1942 } 1943 #endif 1944 case MKDEV(TTYAUX_MAJOR, 1): { 1945 struct tty_driver *console_driver = console_device(index); 1946 if (console_driver) { 1947 driver = tty_driver_kref_get(console_driver); 1948 if (driver) { 1949 /* Don't let /dev/console block */ 1950 filp->f_flags |= O_NONBLOCK; 1951 *noctty = 1; 1952 break; 1953 } 1954 } 1955 return ERR_PTR(-ENODEV); 1956 } 1957 default: 1958 driver = get_tty_driver(device, index); 1959 if (!driver) 1960 return ERR_PTR(-ENODEV); 1961 break; 1962 } 1963 return driver; 1964 } 1965 1966 /** 1967 * tty_open - open a tty device 1968 * @inode: inode of device file 1969 * @filp: file pointer to tty 1970 * 1971 * tty_open and tty_release keep up the tty count that contains the 1972 * number of opens done on a tty. We cannot use the inode-count, as 1973 * different inodes might point to the same tty. 1974 * 1975 * Open-counting is needed for pty masters, as well as for keeping 1976 * track of serial lines: DTR is dropped when the last close happens. 1977 * (This is not done solely through tty->count, now. - Ted 1/27/92) 1978 * 1979 * The termios state of a pty is reset on first open so that 1980 * settings don't persist across reuse. 1981 * 1982 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev. 1983 * tty->count should protect the rest. 1984 * ->siglock protects ->signal/->sighand 1985 * 1986 * Note: the tty_unlock/lock cases without a ref are only safe due to 1987 * tty_mutex 1988 */ 1989 1990 static int tty_open(struct inode *inode, struct file *filp) 1991 { 1992 struct tty_struct *tty; 1993 int noctty, retval; 1994 struct tty_driver *driver = NULL; 1995 int index; 1996 dev_t device = inode->i_rdev; 1997 unsigned saved_flags = filp->f_flags; 1998 1999 nonseekable_open(inode, filp); 2000 2001 retry_open: 2002 retval = tty_alloc_file(filp); 2003 if (retval) 2004 return -ENOMEM; 2005 2006 noctty = filp->f_flags & O_NOCTTY; 2007 index = -1; 2008 retval = 0; 2009 2010 mutex_lock(&tty_mutex); 2011 /* This is protected by the tty_mutex */ 2012 tty = tty_open_current_tty(device, filp); 2013 if (IS_ERR(tty)) { 2014 retval = PTR_ERR(tty); 2015 goto err_unlock; 2016 } else if (!tty) { 2017 driver = tty_lookup_driver(device, filp, &noctty, &index); 2018 if (IS_ERR(driver)) { 2019 retval = PTR_ERR(driver); 2020 goto err_unlock; 2021 } 2022 2023 /* check whether we're reopening an existing tty */ 2024 tty = tty_driver_lookup_tty(driver, inode, index); 2025 if (IS_ERR(tty)) { 2026 retval = PTR_ERR(tty); 2027 goto err_unlock; 2028 } 2029 } 2030 2031 if (tty) { 2032 tty_lock(tty); 2033 retval = tty_reopen(tty); 2034 if (retval < 0) { 2035 tty_unlock(tty); 2036 tty = ERR_PTR(retval); 2037 } 2038 } else /* Returns with the tty_lock held for now */ 2039 tty = tty_init_dev(driver, index); 2040 2041 mutex_unlock(&tty_mutex); 2042 if (driver) 2043 tty_driver_kref_put(driver); 2044 if (IS_ERR(tty)) { 2045 retval = PTR_ERR(tty); 2046 goto err_file; 2047 } 2048 2049 tty_add_file(tty, filp); 2050 2051 check_tty_count(tty, __func__); 2052 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2053 tty->driver->subtype == PTY_TYPE_MASTER) 2054 noctty = 1; 2055 #ifdef TTY_DEBUG_HANGUP 2056 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name); 2057 #endif 2058 if (tty->ops->open) 2059 retval = tty->ops->open(tty, filp); 2060 else 2061 retval = -ENODEV; 2062 filp->f_flags = saved_flags; 2063 2064 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && 2065 !capable(CAP_SYS_ADMIN)) 2066 retval = -EBUSY; 2067 2068 if (retval) { 2069 #ifdef TTY_DEBUG_HANGUP 2070 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__, 2071 retval, tty->name); 2072 #endif 2073 tty_unlock(tty); /* need to call tty_release without BTM */ 2074 tty_release(inode, filp); 2075 if (retval != -ERESTARTSYS) 2076 return retval; 2077 2078 if (signal_pending(current)) 2079 return retval; 2080 2081 schedule(); 2082 /* 2083 * Need to reset f_op in case a hangup happened. 2084 */ 2085 if (filp->f_op == &hung_up_tty_fops) 2086 filp->f_op = &tty_fops; 2087 goto retry_open; 2088 } 2089 clear_bit(TTY_HUPPED, &tty->flags); 2090 tty_unlock(tty); 2091 2092 2093 mutex_lock(&tty_mutex); 2094 tty_lock(tty); 2095 spin_lock_irq(¤t->sighand->siglock); 2096 if (!noctty && 2097 current->signal->leader && 2098 !current->signal->tty && 2099 tty->session == NULL) 2100 __proc_set_tty(current, tty); 2101 spin_unlock_irq(¤t->sighand->siglock); 2102 tty_unlock(tty); 2103 mutex_unlock(&tty_mutex); 2104 return 0; 2105 err_unlock: 2106 mutex_unlock(&tty_mutex); 2107 /* after locks to avoid deadlock */ 2108 if (!IS_ERR_OR_NULL(driver)) 2109 tty_driver_kref_put(driver); 2110 err_file: 2111 tty_free_file(filp); 2112 return retval; 2113 } 2114 2115 2116 2117 /** 2118 * tty_poll - check tty status 2119 * @filp: file being polled 2120 * @wait: poll wait structures to update 2121 * 2122 * Call the line discipline polling method to obtain the poll 2123 * status of the device. 2124 * 2125 * Locking: locks called line discipline but ldisc poll method 2126 * may be re-entered freely by other callers. 2127 */ 2128 2129 static unsigned int tty_poll(struct file *filp, poll_table *wait) 2130 { 2131 struct tty_struct *tty = file_tty(filp); 2132 struct tty_ldisc *ld; 2133 int ret = 0; 2134 2135 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll")) 2136 return 0; 2137 2138 ld = tty_ldisc_ref_wait(tty); 2139 if (ld->ops->poll) 2140 ret = (ld->ops->poll)(tty, filp, wait); 2141 tty_ldisc_deref(ld); 2142 return ret; 2143 } 2144 2145 static int __tty_fasync(int fd, struct file *filp, int on) 2146 { 2147 struct tty_struct *tty = file_tty(filp); 2148 struct tty_ldisc *ldisc; 2149 unsigned long flags; 2150 int retval = 0; 2151 2152 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync")) 2153 goto out; 2154 2155 retval = fasync_helper(fd, filp, on, &tty->fasync); 2156 if (retval <= 0) 2157 goto out; 2158 2159 ldisc = tty_ldisc_ref(tty); 2160 if (ldisc) { 2161 if (ldisc->ops->fasync) 2162 ldisc->ops->fasync(tty, on); 2163 tty_ldisc_deref(ldisc); 2164 } 2165 2166 if (on) { 2167 enum pid_type type; 2168 struct pid *pid; 2169 2170 spin_lock_irqsave(&tty->ctrl_lock, flags); 2171 if (tty->pgrp) { 2172 pid = tty->pgrp; 2173 type = PIDTYPE_PGID; 2174 } else { 2175 pid = task_pid(current); 2176 type = PIDTYPE_PID; 2177 } 2178 get_pid(pid); 2179 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2180 retval = __f_setown(filp, pid, type, 0); 2181 put_pid(pid); 2182 } 2183 out: 2184 return retval; 2185 } 2186 2187 static int tty_fasync(int fd, struct file *filp, int on) 2188 { 2189 struct tty_struct *tty = file_tty(filp); 2190 int retval; 2191 2192 tty_lock(tty); 2193 retval = __tty_fasync(fd, filp, on); 2194 tty_unlock(tty); 2195 2196 return retval; 2197 } 2198 2199 /** 2200 * tiocsti - fake input character 2201 * @tty: tty to fake input into 2202 * @p: pointer to character 2203 * 2204 * Fake input to a tty device. Does the necessary locking and 2205 * input management. 2206 * 2207 * FIXME: does not honour flow control ?? 2208 * 2209 * Locking: 2210 * Called functions take tty_ldiscs_lock 2211 * current->signal->tty check is safe without locks 2212 * 2213 * FIXME: may race normal receive processing 2214 */ 2215 2216 static int tiocsti(struct tty_struct *tty, char __user *p) 2217 { 2218 char ch, mbz = 0; 2219 struct tty_ldisc *ld; 2220 2221 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2222 return -EPERM; 2223 if (get_user(ch, p)) 2224 return -EFAULT; 2225 tty_audit_tiocsti(tty, ch); 2226 ld = tty_ldisc_ref_wait(tty); 2227 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2228 tty_ldisc_deref(ld); 2229 return 0; 2230 } 2231 2232 /** 2233 * tiocgwinsz - implement window query ioctl 2234 * @tty; tty 2235 * @arg: user buffer for result 2236 * 2237 * Copies the kernel idea of the window size into the user buffer. 2238 * 2239 * Locking: tty->winsize_mutex is taken to ensure the winsize data 2240 * is consistent. 2241 */ 2242 2243 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2244 { 2245 int err; 2246 2247 mutex_lock(&tty->winsize_mutex); 2248 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2249 mutex_unlock(&tty->winsize_mutex); 2250 2251 return err ? -EFAULT: 0; 2252 } 2253 2254 /** 2255 * tty_do_resize - resize event 2256 * @tty: tty being resized 2257 * @rows: rows (character) 2258 * @cols: cols (character) 2259 * 2260 * Update the termios variables and send the necessary signals to 2261 * peform a terminal resize correctly 2262 */ 2263 2264 int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2265 { 2266 struct pid *pgrp; 2267 unsigned long flags; 2268 2269 /* Lock the tty */ 2270 mutex_lock(&tty->winsize_mutex); 2271 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2272 goto done; 2273 /* Get the PID values and reference them so we can 2274 avoid holding the tty ctrl lock while sending signals */ 2275 spin_lock_irqsave(&tty->ctrl_lock, flags); 2276 pgrp = get_pid(tty->pgrp); 2277 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2278 2279 if (pgrp) 2280 kill_pgrp(pgrp, SIGWINCH, 1); 2281 put_pid(pgrp); 2282 2283 tty->winsize = *ws; 2284 done: 2285 mutex_unlock(&tty->winsize_mutex); 2286 return 0; 2287 } 2288 EXPORT_SYMBOL(tty_do_resize); 2289 2290 /** 2291 * tiocswinsz - implement window size set ioctl 2292 * @tty; tty side of tty 2293 * @arg: user buffer for result 2294 * 2295 * Copies the user idea of the window size to the kernel. Traditionally 2296 * this is just advisory information but for the Linux console it 2297 * actually has driver level meaning and triggers a VC resize. 2298 * 2299 * Locking: 2300 * Driver dependent. The default do_resize method takes the 2301 * tty termios mutex and ctrl_lock. The console takes its own lock 2302 * then calls into the default method. 2303 */ 2304 2305 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2306 { 2307 struct winsize tmp_ws; 2308 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2309 return -EFAULT; 2310 2311 if (tty->ops->resize) 2312 return tty->ops->resize(tty, &tmp_ws); 2313 else 2314 return tty_do_resize(tty, &tmp_ws); 2315 } 2316 2317 /** 2318 * tioccons - allow admin to move logical console 2319 * @file: the file to become console 2320 * 2321 * Allow the administrator to move the redirected console device 2322 * 2323 * Locking: uses redirect_lock to guard the redirect information 2324 */ 2325 2326 static int tioccons(struct file *file) 2327 { 2328 if (!capable(CAP_SYS_ADMIN)) 2329 return -EPERM; 2330 if (file->f_op->write == redirected_tty_write) { 2331 struct file *f; 2332 spin_lock(&redirect_lock); 2333 f = redirect; 2334 redirect = NULL; 2335 spin_unlock(&redirect_lock); 2336 if (f) 2337 fput(f); 2338 return 0; 2339 } 2340 spin_lock(&redirect_lock); 2341 if (redirect) { 2342 spin_unlock(&redirect_lock); 2343 return -EBUSY; 2344 } 2345 redirect = get_file(file); 2346 spin_unlock(&redirect_lock); 2347 return 0; 2348 } 2349 2350 /** 2351 * fionbio - non blocking ioctl 2352 * @file: file to set blocking value 2353 * @p: user parameter 2354 * 2355 * Historical tty interfaces had a blocking control ioctl before 2356 * the generic functionality existed. This piece of history is preserved 2357 * in the expected tty API of posix OS's. 2358 * 2359 * Locking: none, the open file handle ensures it won't go away. 2360 */ 2361 2362 static int fionbio(struct file *file, int __user *p) 2363 { 2364 int nonblock; 2365 2366 if (get_user(nonblock, p)) 2367 return -EFAULT; 2368 2369 spin_lock(&file->f_lock); 2370 if (nonblock) 2371 file->f_flags |= O_NONBLOCK; 2372 else 2373 file->f_flags &= ~O_NONBLOCK; 2374 spin_unlock(&file->f_lock); 2375 return 0; 2376 } 2377 2378 /** 2379 * tiocsctty - set controlling tty 2380 * @tty: tty structure 2381 * @arg: user argument 2382 * 2383 * This ioctl is used to manage job control. It permits a session 2384 * leader to set this tty as the controlling tty for the session. 2385 * 2386 * Locking: 2387 * Takes tty_mutex() to protect tty instance 2388 * Takes tasklist_lock internally to walk sessions 2389 * Takes ->siglock() when updating signal->tty 2390 */ 2391 2392 static int tiocsctty(struct tty_struct *tty, int arg) 2393 { 2394 int ret = 0; 2395 if (current->signal->leader && (task_session(current) == tty->session)) 2396 return ret; 2397 2398 mutex_lock(&tty_mutex); 2399 /* 2400 * The process must be a session leader and 2401 * not have a controlling tty already. 2402 */ 2403 if (!current->signal->leader || current->signal->tty) { 2404 ret = -EPERM; 2405 goto unlock; 2406 } 2407 2408 if (tty->session) { 2409 /* 2410 * This tty is already the controlling 2411 * tty for another session group! 2412 */ 2413 if (arg == 1 && capable(CAP_SYS_ADMIN)) { 2414 /* 2415 * Steal it away 2416 */ 2417 read_lock(&tasklist_lock); 2418 session_clear_tty(tty->session); 2419 read_unlock(&tasklist_lock); 2420 } else { 2421 ret = -EPERM; 2422 goto unlock; 2423 } 2424 } 2425 proc_set_tty(current, tty); 2426 unlock: 2427 mutex_unlock(&tty_mutex); 2428 return ret; 2429 } 2430 2431 /** 2432 * tty_get_pgrp - return a ref counted pgrp pid 2433 * @tty: tty to read 2434 * 2435 * Returns a refcounted instance of the pid struct for the process 2436 * group controlling the tty. 2437 */ 2438 2439 struct pid *tty_get_pgrp(struct tty_struct *tty) 2440 { 2441 unsigned long flags; 2442 struct pid *pgrp; 2443 2444 spin_lock_irqsave(&tty->ctrl_lock, flags); 2445 pgrp = get_pid(tty->pgrp); 2446 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2447 2448 return pgrp; 2449 } 2450 EXPORT_SYMBOL_GPL(tty_get_pgrp); 2451 2452 /** 2453 * tiocgpgrp - get process group 2454 * @tty: tty passed by user 2455 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2456 * @p: returned pid 2457 * 2458 * Obtain the process group of the tty. If there is no process group 2459 * return an error. 2460 * 2461 * Locking: none. Reference to current->signal->tty is safe. 2462 */ 2463 2464 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2465 { 2466 struct pid *pid; 2467 int ret; 2468 /* 2469 * (tty == real_tty) is a cheap way of 2470 * testing if the tty is NOT a master pty. 2471 */ 2472 if (tty == real_tty && current->signal->tty != real_tty) 2473 return -ENOTTY; 2474 pid = tty_get_pgrp(real_tty); 2475 ret = put_user(pid_vnr(pid), p); 2476 put_pid(pid); 2477 return ret; 2478 } 2479 2480 /** 2481 * tiocspgrp - attempt to set process group 2482 * @tty: tty passed by user 2483 * @real_tty: tty side device matching tty passed by user 2484 * @p: pid pointer 2485 * 2486 * Set the process group of the tty to the session passed. Only 2487 * permitted where the tty session is our session. 2488 * 2489 * Locking: RCU, ctrl lock 2490 */ 2491 2492 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2493 { 2494 struct pid *pgrp; 2495 pid_t pgrp_nr; 2496 int retval = tty_check_change(real_tty); 2497 unsigned long flags; 2498 2499 if (retval == -EIO) 2500 return -ENOTTY; 2501 if (retval) 2502 return retval; 2503 if (!current->signal->tty || 2504 (current->signal->tty != real_tty) || 2505 (real_tty->session != task_session(current))) 2506 return -ENOTTY; 2507 if (get_user(pgrp_nr, p)) 2508 return -EFAULT; 2509 if (pgrp_nr < 0) 2510 return -EINVAL; 2511 rcu_read_lock(); 2512 pgrp = find_vpid(pgrp_nr); 2513 retval = -ESRCH; 2514 if (!pgrp) 2515 goto out_unlock; 2516 retval = -EPERM; 2517 if (session_of_pgrp(pgrp) != task_session(current)) 2518 goto out_unlock; 2519 retval = 0; 2520 spin_lock_irqsave(&tty->ctrl_lock, flags); 2521 put_pid(real_tty->pgrp); 2522 real_tty->pgrp = get_pid(pgrp); 2523 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2524 out_unlock: 2525 rcu_read_unlock(); 2526 return retval; 2527 } 2528 2529 /** 2530 * tiocgsid - get session id 2531 * @tty: tty passed by user 2532 * @real_tty: tty side of the tty passed by the user if a pty else the tty 2533 * @p: pointer to returned session id 2534 * 2535 * Obtain the session id of the tty. If there is no session 2536 * return an error. 2537 * 2538 * Locking: none. Reference to current->signal->tty is safe. 2539 */ 2540 2541 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p) 2542 { 2543 /* 2544 * (tty == real_tty) is a cheap way of 2545 * testing if the tty is NOT a master pty. 2546 */ 2547 if (tty == real_tty && current->signal->tty != real_tty) 2548 return -ENOTTY; 2549 if (!real_tty->session) 2550 return -ENOTTY; 2551 return put_user(pid_vnr(real_tty->session), p); 2552 } 2553 2554 /** 2555 * tiocsetd - set line discipline 2556 * @tty: tty device 2557 * @p: pointer to user data 2558 * 2559 * Set the line discipline according to user request. 2560 * 2561 * Locking: see tty_set_ldisc, this function is just a helper 2562 */ 2563 2564 static int tiocsetd(struct tty_struct *tty, int __user *p) 2565 { 2566 int ldisc; 2567 int ret; 2568 2569 if (get_user(ldisc, p)) 2570 return -EFAULT; 2571 2572 ret = tty_set_ldisc(tty, ldisc); 2573 2574 return ret; 2575 } 2576 2577 /** 2578 * send_break - performed time break 2579 * @tty: device to break on 2580 * @duration: timeout in mS 2581 * 2582 * Perform a timed break on hardware that lacks its own driver level 2583 * timed break functionality. 2584 * 2585 * Locking: 2586 * atomic_write_lock serializes 2587 * 2588 */ 2589 2590 static int send_break(struct tty_struct *tty, unsigned int duration) 2591 { 2592 int retval; 2593 2594 if (tty->ops->break_ctl == NULL) 2595 return 0; 2596 2597 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2598 retval = tty->ops->break_ctl(tty, duration); 2599 else { 2600 /* Do the work ourselves */ 2601 if (tty_write_lock(tty, 0) < 0) 2602 return -EINTR; 2603 retval = tty->ops->break_ctl(tty, -1); 2604 if (retval) 2605 goto out; 2606 if (!signal_pending(current)) 2607 msleep_interruptible(duration); 2608 retval = tty->ops->break_ctl(tty, 0); 2609 out: 2610 tty_write_unlock(tty); 2611 if (signal_pending(current)) 2612 retval = -EINTR; 2613 } 2614 return retval; 2615 } 2616 2617 /** 2618 * tty_tiocmget - get modem status 2619 * @tty: tty device 2620 * @file: user file pointer 2621 * @p: pointer to result 2622 * 2623 * Obtain the modem status bits from the tty driver if the feature 2624 * is supported. Return -EINVAL if it is not available. 2625 * 2626 * Locking: none (up to the driver) 2627 */ 2628 2629 static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2630 { 2631 int retval = -EINVAL; 2632 2633 if (tty->ops->tiocmget) { 2634 retval = tty->ops->tiocmget(tty); 2635 2636 if (retval >= 0) 2637 retval = put_user(retval, p); 2638 } 2639 return retval; 2640 } 2641 2642 /** 2643 * tty_tiocmset - set modem status 2644 * @tty: tty device 2645 * @cmd: command - clear bits, set bits or set all 2646 * @p: pointer to desired bits 2647 * 2648 * Set the modem status bits from the tty driver if the feature 2649 * is supported. Return -EINVAL if it is not available. 2650 * 2651 * Locking: none (up to the driver) 2652 */ 2653 2654 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2655 unsigned __user *p) 2656 { 2657 int retval; 2658 unsigned int set, clear, val; 2659 2660 if (tty->ops->tiocmset == NULL) 2661 return -EINVAL; 2662 2663 retval = get_user(val, p); 2664 if (retval) 2665 return retval; 2666 set = clear = 0; 2667 switch (cmd) { 2668 case TIOCMBIS: 2669 set = val; 2670 break; 2671 case TIOCMBIC: 2672 clear = val; 2673 break; 2674 case TIOCMSET: 2675 set = val; 2676 clear = ~val; 2677 break; 2678 } 2679 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2680 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2681 return tty->ops->tiocmset(tty, set, clear); 2682 } 2683 2684 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2685 { 2686 int retval = -EINVAL; 2687 struct serial_icounter_struct icount; 2688 memset(&icount, 0, sizeof(icount)); 2689 if (tty->ops->get_icount) 2690 retval = tty->ops->get_icount(tty, &icount); 2691 if (retval != 0) 2692 return retval; 2693 if (copy_to_user(arg, &icount, sizeof(icount))) 2694 return -EFAULT; 2695 return 0; 2696 } 2697 2698 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2699 { 2700 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2701 tty->driver->subtype == PTY_TYPE_MASTER) 2702 tty = tty->link; 2703 return tty; 2704 } 2705 EXPORT_SYMBOL(tty_pair_get_tty); 2706 2707 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty) 2708 { 2709 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2710 tty->driver->subtype == PTY_TYPE_MASTER) 2711 return tty; 2712 return tty->link; 2713 } 2714 EXPORT_SYMBOL(tty_pair_get_pty); 2715 2716 /* 2717 * Split this up, as gcc can choke on it otherwise.. 2718 */ 2719 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2720 { 2721 struct tty_struct *tty = file_tty(file); 2722 struct tty_struct *real_tty; 2723 void __user *p = (void __user *)arg; 2724 int retval; 2725 struct tty_ldisc *ld; 2726 2727 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2728 return -EINVAL; 2729 2730 real_tty = tty_pair_get_tty(tty); 2731 2732 /* 2733 * Factor out some common prep work 2734 */ 2735 switch (cmd) { 2736 case TIOCSETD: 2737 case TIOCSBRK: 2738 case TIOCCBRK: 2739 case TCSBRK: 2740 case TCSBRKP: 2741 retval = tty_check_change(tty); 2742 if (retval) 2743 return retval; 2744 if (cmd != TIOCCBRK) { 2745 tty_wait_until_sent(tty, 0); 2746 if (signal_pending(current)) 2747 return -EINTR; 2748 } 2749 break; 2750 } 2751 2752 /* 2753 * Now do the stuff. 2754 */ 2755 switch (cmd) { 2756 case TIOCSTI: 2757 return tiocsti(tty, p); 2758 case TIOCGWINSZ: 2759 return tiocgwinsz(real_tty, p); 2760 case TIOCSWINSZ: 2761 return tiocswinsz(real_tty, p); 2762 case TIOCCONS: 2763 return real_tty != tty ? -EINVAL : tioccons(file); 2764 case FIONBIO: 2765 return fionbio(file, p); 2766 case TIOCEXCL: 2767 set_bit(TTY_EXCLUSIVE, &tty->flags); 2768 return 0; 2769 case TIOCNXCL: 2770 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2771 return 0; 2772 case TIOCGEXCL: 2773 { 2774 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags); 2775 return put_user(excl, (int __user *)p); 2776 } 2777 case TIOCNOTTY: 2778 if (current->signal->tty != tty) 2779 return -ENOTTY; 2780 no_tty(); 2781 return 0; 2782 case TIOCSCTTY: 2783 return tiocsctty(tty, arg); 2784 case TIOCGPGRP: 2785 return tiocgpgrp(tty, real_tty, p); 2786 case TIOCSPGRP: 2787 return tiocspgrp(tty, real_tty, p); 2788 case TIOCGSID: 2789 return tiocgsid(tty, real_tty, p); 2790 case TIOCGETD: 2791 return put_user(tty->ldisc->ops->num, (int __user *)p); 2792 case TIOCSETD: 2793 return tiocsetd(tty, p); 2794 case TIOCVHANGUP: 2795 if (!capable(CAP_SYS_ADMIN)) 2796 return -EPERM; 2797 tty_vhangup(tty); 2798 return 0; 2799 case TIOCGDEV: 2800 { 2801 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2802 return put_user(ret, (unsigned int __user *)p); 2803 } 2804 /* 2805 * Break handling 2806 */ 2807 case TIOCSBRK: /* Turn break on, unconditionally */ 2808 if (tty->ops->break_ctl) 2809 return tty->ops->break_ctl(tty, -1); 2810 return 0; 2811 case TIOCCBRK: /* Turn break off, unconditionally */ 2812 if (tty->ops->break_ctl) 2813 return tty->ops->break_ctl(tty, 0); 2814 return 0; 2815 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2816 /* non-zero arg means wait for all output data 2817 * to be sent (performed above) but don't send break. 2818 * This is used by the tcdrain() termios function. 2819 */ 2820 if (!arg) 2821 return send_break(tty, 250); 2822 return 0; 2823 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2824 return send_break(tty, arg ? arg*100 : 250); 2825 2826 case TIOCMGET: 2827 return tty_tiocmget(tty, p); 2828 case TIOCMSET: 2829 case TIOCMBIC: 2830 case TIOCMBIS: 2831 return tty_tiocmset(tty, cmd, p); 2832 case TIOCGICOUNT: 2833 retval = tty_tiocgicount(tty, p); 2834 /* For the moment allow fall through to the old method */ 2835 if (retval != -EINVAL) 2836 return retval; 2837 break; 2838 case TCFLSH: 2839 switch (arg) { 2840 case TCIFLUSH: 2841 case TCIOFLUSH: 2842 /* flush tty buffer and allow ldisc to process ioctl */ 2843 tty_buffer_flush(tty); 2844 break; 2845 } 2846 break; 2847 } 2848 if (tty->ops->ioctl) { 2849 retval = (tty->ops->ioctl)(tty, cmd, arg); 2850 if (retval != -ENOIOCTLCMD) 2851 return retval; 2852 } 2853 ld = tty_ldisc_ref_wait(tty); 2854 retval = -EINVAL; 2855 if (ld->ops->ioctl) { 2856 retval = ld->ops->ioctl(tty, file, cmd, arg); 2857 if (retval == -ENOIOCTLCMD) 2858 retval = -ENOTTY; 2859 } 2860 tty_ldisc_deref(ld); 2861 return retval; 2862 } 2863 2864 #ifdef CONFIG_COMPAT 2865 static long tty_compat_ioctl(struct file *file, unsigned int cmd, 2866 unsigned long arg) 2867 { 2868 struct tty_struct *tty = file_tty(file); 2869 struct tty_ldisc *ld; 2870 int retval = -ENOIOCTLCMD; 2871 2872 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2873 return -EINVAL; 2874 2875 if (tty->ops->compat_ioctl) { 2876 retval = (tty->ops->compat_ioctl)(tty, cmd, arg); 2877 if (retval != -ENOIOCTLCMD) 2878 return retval; 2879 } 2880 2881 ld = tty_ldisc_ref_wait(tty); 2882 if (ld->ops->compat_ioctl) 2883 retval = ld->ops->compat_ioctl(tty, file, cmd, arg); 2884 else 2885 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg); 2886 tty_ldisc_deref(ld); 2887 2888 return retval; 2889 } 2890 #endif 2891 2892 static int this_tty(const void *t, struct file *file, unsigned fd) 2893 { 2894 if (likely(file->f_op->read != tty_read)) 2895 return 0; 2896 return file_tty(file) != t ? 0 : fd + 1; 2897 } 2898 2899 /* 2900 * This implements the "Secure Attention Key" --- the idea is to 2901 * prevent trojan horses by killing all processes associated with this 2902 * tty when the user hits the "Secure Attention Key". Required for 2903 * super-paranoid applications --- see the Orange Book for more details. 2904 * 2905 * This code could be nicer; ideally it should send a HUP, wait a few 2906 * seconds, then send a INT, and then a KILL signal. But you then 2907 * have to coordinate with the init process, since all processes associated 2908 * with the current tty must be dead before the new getty is allowed 2909 * to spawn. 2910 * 2911 * Now, if it would be correct ;-/ The current code has a nasty hole - 2912 * it doesn't catch files in flight. We may send the descriptor to ourselves 2913 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 2914 * 2915 * Nasty bug: do_SAK is being called in interrupt context. This can 2916 * deadlock. We punt it up to process context. AKPM - 16Mar2001 2917 */ 2918 void __do_SAK(struct tty_struct *tty) 2919 { 2920 #ifdef TTY_SOFT_SAK 2921 tty_hangup(tty); 2922 #else 2923 struct task_struct *g, *p; 2924 struct pid *session; 2925 int i; 2926 2927 if (!tty) 2928 return; 2929 session = tty->session; 2930 2931 tty_ldisc_flush(tty); 2932 2933 tty_driver_flush_buffer(tty); 2934 2935 read_lock(&tasklist_lock); 2936 /* Kill the entire session */ 2937 do_each_pid_task(session, PIDTYPE_SID, p) { 2938 printk(KERN_NOTICE "SAK: killed process %d" 2939 " (%s): task_session(p)==tty->session\n", 2940 task_pid_nr(p), p->comm); 2941 send_sig(SIGKILL, p, 1); 2942 } while_each_pid_task(session, PIDTYPE_SID, p); 2943 /* Now kill any processes that happen to have the 2944 * tty open. 2945 */ 2946 do_each_thread(g, p) { 2947 if (p->signal->tty == tty) { 2948 printk(KERN_NOTICE "SAK: killed process %d" 2949 " (%s): task_session(p)==tty->session\n", 2950 task_pid_nr(p), p->comm); 2951 send_sig(SIGKILL, p, 1); 2952 continue; 2953 } 2954 task_lock(p); 2955 i = iterate_fd(p->files, 0, this_tty, tty); 2956 if (i != 0) { 2957 printk(KERN_NOTICE "SAK: killed process %d" 2958 " (%s): fd#%d opened to the tty\n", 2959 task_pid_nr(p), p->comm, i - 1); 2960 force_sig(SIGKILL, p); 2961 } 2962 task_unlock(p); 2963 } while_each_thread(g, p); 2964 read_unlock(&tasklist_lock); 2965 #endif 2966 } 2967 2968 static void do_SAK_work(struct work_struct *work) 2969 { 2970 struct tty_struct *tty = 2971 container_of(work, struct tty_struct, SAK_work); 2972 __do_SAK(tty); 2973 } 2974 2975 /* 2976 * The tq handling here is a little racy - tty->SAK_work may already be queued. 2977 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 2978 * the values which we write to it will be identical to the values which it 2979 * already has. --akpm 2980 */ 2981 void do_SAK(struct tty_struct *tty) 2982 { 2983 if (!tty) 2984 return; 2985 schedule_work(&tty->SAK_work); 2986 } 2987 2988 EXPORT_SYMBOL(do_SAK); 2989 2990 static int dev_match_devt(struct device *dev, const void *data) 2991 { 2992 const dev_t *devt = data; 2993 return dev->devt == *devt; 2994 } 2995 2996 /* Must put_device() after it's unused! */ 2997 static struct device *tty_get_device(struct tty_struct *tty) 2998 { 2999 dev_t devt = tty_devnum(tty); 3000 return class_find_device(tty_class, NULL, &devt, dev_match_devt); 3001 } 3002 3003 3004 /** 3005 * initialize_tty_struct 3006 * @tty: tty to initialize 3007 * 3008 * This subroutine initializes a tty structure that has been newly 3009 * allocated. 3010 * 3011 * Locking: none - tty in question must not be exposed at this point 3012 */ 3013 3014 void initialize_tty_struct(struct tty_struct *tty, 3015 struct tty_driver *driver, int idx) 3016 { 3017 memset(tty, 0, sizeof(struct tty_struct)); 3018 kref_init(&tty->kref); 3019 tty->magic = TTY_MAGIC; 3020 tty_ldisc_init(tty); 3021 tty->session = NULL; 3022 tty->pgrp = NULL; 3023 mutex_init(&tty->legacy_mutex); 3024 mutex_init(&tty->throttle_mutex); 3025 init_rwsem(&tty->termios_rwsem); 3026 mutex_init(&tty->winsize_mutex); 3027 init_ldsem(&tty->ldisc_sem); 3028 init_waitqueue_head(&tty->write_wait); 3029 init_waitqueue_head(&tty->read_wait); 3030 INIT_WORK(&tty->hangup_work, do_tty_hangup); 3031 mutex_init(&tty->atomic_write_lock); 3032 spin_lock_init(&tty->ctrl_lock); 3033 INIT_LIST_HEAD(&tty->tty_files); 3034 INIT_WORK(&tty->SAK_work, do_SAK_work); 3035 3036 tty->driver = driver; 3037 tty->ops = driver->ops; 3038 tty->index = idx; 3039 tty_line_name(driver, idx, tty->name); 3040 tty->dev = tty_get_device(tty); 3041 } 3042 3043 /** 3044 * deinitialize_tty_struct 3045 * @tty: tty to deinitialize 3046 * 3047 * This subroutine deinitializes a tty structure that has been newly 3048 * allocated but tty_release cannot be called on that yet. 3049 * 3050 * Locking: none - tty in question must not be exposed at this point 3051 */ 3052 void deinitialize_tty_struct(struct tty_struct *tty) 3053 { 3054 tty_ldisc_deinit(tty); 3055 } 3056 3057 /** 3058 * tty_put_char - write one character to a tty 3059 * @tty: tty 3060 * @ch: character 3061 * 3062 * Write one byte to the tty using the provided put_char method 3063 * if present. Returns the number of characters successfully output. 3064 * 3065 * Note: the specific put_char operation in the driver layer may go 3066 * away soon. Don't call it directly, use this method 3067 */ 3068 3069 int tty_put_char(struct tty_struct *tty, unsigned char ch) 3070 { 3071 if (tty->ops->put_char) 3072 return tty->ops->put_char(tty, ch); 3073 return tty->ops->write(tty, &ch, 1); 3074 } 3075 EXPORT_SYMBOL_GPL(tty_put_char); 3076 3077 struct class *tty_class; 3078 3079 static int tty_cdev_add(struct tty_driver *driver, dev_t dev, 3080 unsigned int index, unsigned int count) 3081 { 3082 /* init here, since reused cdevs cause crashes */ 3083 cdev_init(&driver->cdevs[index], &tty_fops); 3084 driver->cdevs[index].owner = driver->owner; 3085 return cdev_add(&driver->cdevs[index], dev, count); 3086 } 3087 3088 /** 3089 * tty_register_device - register a tty device 3090 * @driver: the tty driver that describes the tty device 3091 * @index: the index in the tty driver for this tty device 3092 * @device: a struct device that is associated with this tty device. 3093 * This field is optional, if there is no known struct device 3094 * for this tty device it can be set to NULL safely. 3095 * 3096 * Returns a pointer to the struct device for this tty device 3097 * (or ERR_PTR(-EFOO) on error). 3098 * 3099 * This call is required to be made to register an individual tty device 3100 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3101 * that bit is not set, this function should not be called by a tty 3102 * driver. 3103 * 3104 * Locking: ?? 3105 */ 3106 3107 struct device *tty_register_device(struct tty_driver *driver, unsigned index, 3108 struct device *device) 3109 { 3110 return tty_register_device_attr(driver, index, device, NULL, NULL); 3111 } 3112 EXPORT_SYMBOL(tty_register_device); 3113 3114 static void tty_device_create_release(struct device *dev) 3115 { 3116 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3117 kfree(dev); 3118 } 3119 3120 /** 3121 * tty_register_device_attr - register a tty device 3122 * @driver: the tty driver that describes the tty device 3123 * @index: the index in the tty driver for this tty device 3124 * @device: a struct device that is associated with this tty device. 3125 * This field is optional, if there is no known struct device 3126 * for this tty device it can be set to NULL safely. 3127 * @drvdata: Driver data to be set to device. 3128 * @attr_grp: Attribute group to be set on device. 3129 * 3130 * Returns a pointer to the struct device for this tty device 3131 * (or ERR_PTR(-EFOO) on error). 3132 * 3133 * This call is required to be made to register an individual tty device 3134 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3135 * that bit is not set, this function should not be called by a tty 3136 * driver. 3137 * 3138 * Locking: ?? 3139 */ 3140 struct device *tty_register_device_attr(struct tty_driver *driver, 3141 unsigned index, struct device *device, 3142 void *drvdata, 3143 const struct attribute_group **attr_grp) 3144 { 3145 char name[64]; 3146 dev_t devt = MKDEV(driver->major, driver->minor_start) + index; 3147 struct device *dev = NULL; 3148 int retval = -ENODEV; 3149 bool cdev = false; 3150 3151 if (index >= driver->num) { 3152 printk(KERN_ERR "Attempt to register invalid tty line number " 3153 " (%d).\n", index); 3154 return ERR_PTR(-EINVAL); 3155 } 3156 3157 if (driver->type == TTY_DRIVER_TYPE_PTY) 3158 pty_line_name(driver, index, name); 3159 else 3160 tty_line_name(driver, index, name); 3161 3162 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3163 retval = tty_cdev_add(driver, devt, index, 1); 3164 if (retval) 3165 goto error; 3166 cdev = true; 3167 } 3168 3169 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3170 if (!dev) { 3171 retval = -ENOMEM; 3172 goto error; 3173 } 3174 3175 dev->devt = devt; 3176 dev->class = tty_class; 3177 dev->parent = device; 3178 dev->release = tty_device_create_release; 3179 dev_set_name(dev, "%s", name); 3180 dev->groups = attr_grp; 3181 dev_set_drvdata(dev, drvdata); 3182 3183 retval = device_register(dev); 3184 if (retval) 3185 goto error; 3186 3187 return dev; 3188 3189 error: 3190 put_device(dev); 3191 if (cdev) 3192 cdev_del(&driver->cdevs[index]); 3193 return ERR_PTR(retval); 3194 } 3195 EXPORT_SYMBOL_GPL(tty_register_device_attr); 3196 3197 /** 3198 * tty_unregister_device - unregister a tty device 3199 * @driver: the tty driver that describes the tty device 3200 * @index: the index in the tty driver for this tty device 3201 * 3202 * If a tty device is registered with a call to tty_register_device() then 3203 * this function must be called when the tty device is gone. 3204 * 3205 * Locking: ?? 3206 */ 3207 3208 void tty_unregister_device(struct tty_driver *driver, unsigned index) 3209 { 3210 device_destroy(tty_class, 3211 MKDEV(driver->major, driver->minor_start) + index); 3212 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) 3213 cdev_del(&driver->cdevs[index]); 3214 } 3215 EXPORT_SYMBOL(tty_unregister_device); 3216 3217 /** 3218 * __tty_alloc_driver -- allocate tty driver 3219 * @lines: count of lines this driver can handle at most 3220 * @owner: module which is repsonsible for this driver 3221 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags 3222 * 3223 * This should not be called directly, some of the provided macros should be 3224 * used instead. Use IS_ERR and friends on @retval. 3225 */ 3226 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner, 3227 unsigned long flags) 3228 { 3229 struct tty_driver *driver; 3230 unsigned int cdevs = 1; 3231 int err; 3232 3233 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1)) 3234 return ERR_PTR(-EINVAL); 3235 3236 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL); 3237 if (!driver) 3238 return ERR_PTR(-ENOMEM); 3239 3240 kref_init(&driver->kref); 3241 driver->magic = TTY_DRIVER_MAGIC; 3242 driver->num = lines; 3243 driver->owner = owner; 3244 driver->flags = flags; 3245 3246 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) { 3247 driver->ttys = kcalloc(lines, sizeof(*driver->ttys), 3248 GFP_KERNEL); 3249 driver->termios = kcalloc(lines, sizeof(*driver->termios), 3250 GFP_KERNEL); 3251 if (!driver->ttys || !driver->termios) { 3252 err = -ENOMEM; 3253 goto err_free_all; 3254 } 3255 } 3256 3257 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3258 driver->ports = kcalloc(lines, sizeof(*driver->ports), 3259 GFP_KERNEL); 3260 if (!driver->ports) { 3261 err = -ENOMEM; 3262 goto err_free_all; 3263 } 3264 cdevs = lines; 3265 } 3266 3267 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL); 3268 if (!driver->cdevs) { 3269 err = -ENOMEM; 3270 goto err_free_all; 3271 } 3272 3273 return driver; 3274 err_free_all: 3275 kfree(driver->ports); 3276 kfree(driver->ttys); 3277 kfree(driver->termios); 3278 kfree(driver); 3279 return ERR_PTR(err); 3280 } 3281 EXPORT_SYMBOL(__tty_alloc_driver); 3282 3283 static void destruct_tty_driver(struct kref *kref) 3284 { 3285 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3286 int i; 3287 struct ktermios *tp; 3288 3289 if (driver->flags & TTY_DRIVER_INSTALLED) { 3290 /* 3291 * Free the termios and termios_locked structures because 3292 * we don't want to get memory leaks when modular tty 3293 * drivers are removed from the kernel. 3294 */ 3295 for (i = 0; i < driver->num; i++) { 3296 tp = driver->termios[i]; 3297 if (tp) { 3298 driver->termios[i] = NULL; 3299 kfree(tp); 3300 } 3301 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3302 tty_unregister_device(driver, i); 3303 } 3304 proc_tty_unregister_driver(driver); 3305 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) 3306 cdev_del(&driver->cdevs[0]); 3307 } 3308 kfree(driver->cdevs); 3309 kfree(driver->ports); 3310 kfree(driver->termios); 3311 kfree(driver->ttys); 3312 kfree(driver); 3313 } 3314 3315 void tty_driver_kref_put(struct tty_driver *driver) 3316 { 3317 kref_put(&driver->kref, destruct_tty_driver); 3318 } 3319 EXPORT_SYMBOL(tty_driver_kref_put); 3320 3321 void tty_set_operations(struct tty_driver *driver, 3322 const struct tty_operations *op) 3323 { 3324 driver->ops = op; 3325 }; 3326 EXPORT_SYMBOL(tty_set_operations); 3327 3328 void put_tty_driver(struct tty_driver *d) 3329 { 3330 tty_driver_kref_put(d); 3331 } 3332 EXPORT_SYMBOL(put_tty_driver); 3333 3334 /* 3335 * Called by a tty driver to register itself. 3336 */ 3337 int tty_register_driver(struct tty_driver *driver) 3338 { 3339 int error; 3340 int i; 3341 dev_t dev; 3342 struct device *d; 3343 3344 if (!driver->major) { 3345 error = alloc_chrdev_region(&dev, driver->minor_start, 3346 driver->num, driver->name); 3347 if (!error) { 3348 driver->major = MAJOR(dev); 3349 driver->minor_start = MINOR(dev); 3350 } 3351 } else { 3352 dev = MKDEV(driver->major, driver->minor_start); 3353 error = register_chrdev_region(dev, driver->num, driver->name); 3354 } 3355 if (error < 0) 3356 goto err; 3357 3358 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) { 3359 error = tty_cdev_add(driver, dev, 0, driver->num); 3360 if (error) 3361 goto err_unreg_char; 3362 } 3363 3364 mutex_lock(&tty_mutex); 3365 list_add(&driver->tty_drivers, &tty_drivers); 3366 mutex_unlock(&tty_mutex); 3367 3368 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3369 for (i = 0; i < driver->num; i++) { 3370 d = tty_register_device(driver, i, NULL); 3371 if (IS_ERR(d)) { 3372 error = PTR_ERR(d); 3373 goto err_unreg_devs; 3374 } 3375 } 3376 } 3377 proc_tty_register_driver(driver); 3378 driver->flags |= TTY_DRIVER_INSTALLED; 3379 return 0; 3380 3381 err_unreg_devs: 3382 for (i--; i >= 0; i--) 3383 tty_unregister_device(driver, i); 3384 3385 mutex_lock(&tty_mutex); 3386 list_del(&driver->tty_drivers); 3387 mutex_unlock(&tty_mutex); 3388 3389 err_unreg_char: 3390 unregister_chrdev_region(dev, driver->num); 3391 err: 3392 return error; 3393 } 3394 EXPORT_SYMBOL(tty_register_driver); 3395 3396 /* 3397 * Called by a tty driver to unregister itself. 3398 */ 3399 int tty_unregister_driver(struct tty_driver *driver) 3400 { 3401 #if 0 3402 /* FIXME */ 3403 if (driver->refcount) 3404 return -EBUSY; 3405 #endif 3406 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3407 driver->num); 3408 mutex_lock(&tty_mutex); 3409 list_del(&driver->tty_drivers); 3410 mutex_unlock(&tty_mutex); 3411 return 0; 3412 } 3413 3414 EXPORT_SYMBOL(tty_unregister_driver); 3415 3416 dev_t tty_devnum(struct tty_struct *tty) 3417 { 3418 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3419 } 3420 EXPORT_SYMBOL(tty_devnum); 3421 3422 void proc_clear_tty(struct task_struct *p) 3423 { 3424 unsigned long flags; 3425 struct tty_struct *tty; 3426 spin_lock_irqsave(&p->sighand->siglock, flags); 3427 tty = p->signal->tty; 3428 p->signal->tty = NULL; 3429 spin_unlock_irqrestore(&p->sighand->siglock, flags); 3430 tty_kref_put(tty); 3431 } 3432 3433 /* Called under the sighand lock */ 3434 3435 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty) 3436 { 3437 if (tty) { 3438 unsigned long flags; 3439 /* We should not have a session or pgrp to put here but.... */ 3440 spin_lock_irqsave(&tty->ctrl_lock, flags); 3441 put_pid(tty->session); 3442 put_pid(tty->pgrp); 3443 tty->pgrp = get_pid(task_pgrp(tsk)); 3444 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 3445 tty->session = get_pid(task_session(tsk)); 3446 if (tsk->signal->tty) { 3447 printk(KERN_DEBUG "tty not NULL!!\n"); 3448 tty_kref_put(tsk->signal->tty); 3449 } 3450 } 3451 put_pid(tsk->signal->tty_old_pgrp); 3452 tsk->signal->tty = tty_kref_get(tty); 3453 tsk->signal->tty_old_pgrp = NULL; 3454 } 3455 3456 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty) 3457 { 3458 spin_lock_irq(&tsk->sighand->siglock); 3459 __proc_set_tty(tsk, tty); 3460 spin_unlock_irq(&tsk->sighand->siglock); 3461 } 3462 3463 struct tty_struct *get_current_tty(void) 3464 { 3465 struct tty_struct *tty; 3466 unsigned long flags; 3467 3468 spin_lock_irqsave(¤t->sighand->siglock, flags); 3469 tty = tty_kref_get(current->signal->tty); 3470 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 3471 return tty; 3472 } 3473 EXPORT_SYMBOL_GPL(get_current_tty); 3474 3475 void tty_default_fops(struct file_operations *fops) 3476 { 3477 *fops = tty_fops; 3478 } 3479 3480 /* 3481 * Initialize the console device. This is called *early*, so 3482 * we can't necessarily depend on lots of kernel help here. 3483 * Just do some early initializations, and do the complex setup 3484 * later. 3485 */ 3486 void __init console_init(void) 3487 { 3488 initcall_t *call; 3489 3490 /* Setup the default TTY line discipline. */ 3491 tty_ldisc_begin(); 3492 3493 /* 3494 * set up the console device so that later boot sequences can 3495 * inform about problems etc.. 3496 */ 3497 call = __con_initcall_start; 3498 while (call < __con_initcall_end) { 3499 (*call)(); 3500 call++; 3501 } 3502 } 3503 3504 static char *tty_devnode(struct device *dev, umode_t *mode) 3505 { 3506 if (!mode) 3507 return NULL; 3508 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3509 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3510 *mode = 0666; 3511 return NULL; 3512 } 3513 3514 static int __init tty_class_init(void) 3515 { 3516 tty_class = class_create(THIS_MODULE, "tty"); 3517 if (IS_ERR(tty_class)) 3518 return PTR_ERR(tty_class); 3519 tty_class->devnode = tty_devnode; 3520 return 0; 3521 } 3522 3523 postcore_initcall(tty_class_init); 3524 3525 /* 3/2004 jmc: why do these devices exist? */ 3526 static struct cdev tty_cdev, console_cdev; 3527 3528 static ssize_t show_cons_active(struct device *dev, 3529 struct device_attribute *attr, char *buf) 3530 { 3531 struct console *cs[16]; 3532 int i = 0; 3533 struct console *c; 3534 ssize_t count = 0; 3535 3536 console_lock(); 3537 for_each_console(c) { 3538 if (!c->device) 3539 continue; 3540 if (!c->write) 3541 continue; 3542 if ((c->flags & CON_ENABLED) == 0) 3543 continue; 3544 cs[i++] = c; 3545 if (i >= ARRAY_SIZE(cs)) 3546 break; 3547 } 3548 while (i--) 3549 count += sprintf(buf + count, "%s%d%c", 3550 cs[i]->name, cs[i]->index, i ? ' ':'\n'); 3551 console_unlock(); 3552 3553 return count; 3554 } 3555 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3556 3557 static struct device *consdev; 3558 3559 void console_sysfs_notify(void) 3560 { 3561 if (consdev) 3562 sysfs_notify(&consdev->kobj, NULL, "active"); 3563 } 3564 3565 /* 3566 * Ok, now we can initialize the rest of the tty devices and can count 3567 * on memory allocations, interrupts etc.. 3568 */ 3569 int __init tty_init(void) 3570 { 3571 cdev_init(&tty_cdev, &tty_fops); 3572 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3573 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3574 panic("Couldn't register /dev/tty driver\n"); 3575 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3576 3577 cdev_init(&console_cdev, &console_fops); 3578 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3579 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3580 panic("Couldn't register /dev/console driver\n"); 3581 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL, 3582 "console"); 3583 if (IS_ERR(consdev)) 3584 consdev = NULL; 3585 else 3586 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0); 3587 3588 #ifdef CONFIG_VT 3589 vty_init(&console_fops); 3590 #endif 3591 return 0; 3592 } 3593 3594