xref: /openbmc/linux/drivers/tty/tty_io.c (revision 12eb4683)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112 
113 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
114 	.c_iflag = ICRNL | IXON,
115 	.c_oflag = OPOST | ONLCR,
116 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 		   ECHOCTL | ECHOKE | IEXTEN,
119 	.c_cc = INIT_C_CC,
120 	.c_ispeed = 38400,
121 	.c_ospeed = 38400
122 };
123 
124 EXPORT_SYMBOL(tty_std_termios);
125 
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129 
130 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
131 
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136 
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139 
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 							size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 				unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 
159 /**
160  *	alloc_tty_struct	-	allocate a tty object
161  *
162  *	Return a new empty tty structure. The data fields have not
163  *	been initialized in any way but has been zeroed
164  *
165  *	Locking: none
166  */
167 
168 struct tty_struct *alloc_tty_struct(void)
169 {
170 	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172 
173 /**
174  *	free_tty_struct		-	free a disused tty
175  *	@tty: tty struct to free
176  *
177  *	Free the write buffers, tty queue and tty memory itself.
178  *
179  *	Locking: none. Must be called after tty is definitely unused
180  */
181 
182 void free_tty_struct(struct tty_struct *tty)
183 {
184 	if (!tty)
185 		return;
186 	if (tty->dev)
187 		put_device(tty->dev);
188 	kfree(tty->write_buf);
189 	tty->magic = 0xDEADDEAD;
190 	kfree(tty);
191 }
192 
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195 	return ((struct tty_file_private *)file->private_data)->tty;
196 }
197 
198 int tty_alloc_file(struct file *file)
199 {
200 	struct tty_file_private *priv;
201 
202 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203 	if (!priv)
204 		return -ENOMEM;
205 
206 	file->private_data = priv;
207 
208 	return 0;
209 }
210 
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214 	struct tty_file_private *priv = file->private_data;
215 
216 	priv->tty = tty;
217 	priv->file = file;
218 
219 	spin_lock(&tty_files_lock);
220 	list_add(&priv->list, &tty->tty_files);
221 	spin_unlock(&tty_files_lock);
222 }
223 
224 /**
225  * tty_free_file - free file->private_data
226  *
227  * This shall be used only for fail path handling when tty_add_file was not
228  * called yet.
229  */
230 void tty_free_file(struct file *file)
231 {
232 	struct tty_file_private *priv = file->private_data;
233 
234 	file->private_data = NULL;
235 	kfree(priv);
236 }
237 
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241 	struct tty_file_private *priv = file->private_data;
242 
243 	spin_lock(&tty_files_lock);
244 	list_del(&priv->list);
245 	spin_unlock(&tty_files_lock);
246 	tty_free_file(file);
247 }
248 
249 
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251 
252 /**
253  *	tty_name	-	return tty naming
254  *	@tty: tty structure
255  *	@buf: buffer for output
256  *
257  *	Convert a tty structure into a name. The name reflects the kernel
258  *	naming policy and if udev is in use may not reflect user space
259  *
260  *	Locking: none
261  */
262 
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
266 		strcpy(buf, "NULL tty");
267 	else
268 		strcpy(buf, tty->name);
269 	return buf;
270 }
271 
272 EXPORT_SYMBOL(tty_name);
273 
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275 			      const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278 	if (!tty) {
279 		printk(KERN_WARNING
280 			"null TTY for (%d:%d) in %s\n",
281 			imajor(inode), iminor(inode), routine);
282 		return 1;
283 	}
284 	if (tty->magic != TTY_MAGIC) {
285 		printk(KERN_WARNING
286 			"bad magic number for tty struct (%d:%d) in %s\n",
287 			imajor(inode), iminor(inode), routine);
288 		return 1;
289 	}
290 #endif
291 	return 0;
292 }
293 
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297 	struct list_head *p;
298 	int count = 0;
299 
300 	spin_lock(&tty_files_lock);
301 	list_for_each(p, &tty->tty_files) {
302 		count++;
303 	}
304 	spin_unlock(&tty_files_lock);
305 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
307 	    tty->link && tty->link->count)
308 		count++;
309 	if (tty->count != count) {
310 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311 				    "!= #fd's(%d) in %s\n",
312 		       tty->name, tty->count, count, routine);
313 		return count;
314 	}
315 #endif
316 	return 0;
317 }
318 
319 /**
320  *	get_tty_driver		-	find device of a tty
321  *	@dev_t: device identifier
322  *	@index: returns the index of the tty
323  *
324  *	This routine returns a tty driver structure, given a device number
325  *	and also passes back the index number.
326  *
327  *	Locking: caller must hold tty_mutex
328  */
329 
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332 	struct tty_driver *p;
333 
334 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
335 		dev_t base = MKDEV(p->major, p->minor_start);
336 		if (device < base || device >= base + p->num)
337 			continue;
338 		*index = device - base;
339 		return tty_driver_kref_get(p);
340 	}
341 	return NULL;
342 }
343 
344 #ifdef CONFIG_CONSOLE_POLL
345 
346 /**
347  *	tty_find_polling_driver	-	find device of a polled tty
348  *	@name: name string to match
349  *	@line: pointer to resulting tty line nr
350  *
351  *	This routine returns a tty driver structure, given a name
352  *	and the condition that the tty driver is capable of polled
353  *	operation.
354  */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357 	struct tty_driver *p, *res = NULL;
358 	int tty_line = 0;
359 	int len;
360 	char *str, *stp;
361 
362 	for (str = name; *str; str++)
363 		if ((*str >= '0' && *str <= '9') || *str == ',')
364 			break;
365 	if (!*str)
366 		return NULL;
367 
368 	len = str - name;
369 	tty_line = simple_strtoul(str, &str, 10);
370 
371 	mutex_lock(&tty_mutex);
372 	/* Search through the tty devices to look for a match */
373 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
374 		if (strncmp(name, p->name, len) != 0)
375 			continue;
376 		stp = str;
377 		if (*stp == ',')
378 			stp++;
379 		if (*stp == '\0')
380 			stp = NULL;
381 
382 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
383 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384 			res = tty_driver_kref_get(p);
385 			*line = tty_line;
386 			break;
387 		}
388 	}
389 	mutex_unlock(&tty_mutex);
390 
391 	return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395 
396 /**
397  *	tty_check_change	-	check for POSIX terminal changes
398  *	@tty: tty to check
399  *
400  *	If we try to write to, or set the state of, a terminal and we're
401  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
402  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
403  *
404  *	Locking: ctrl_lock
405  */
406 
407 int tty_check_change(struct tty_struct *tty)
408 {
409 	unsigned long flags;
410 	int ret = 0;
411 
412 	if (current->signal->tty != tty)
413 		return 0;
414 
415 	spin_lock_irqsave(&tty->ctrl_lock, flags);
416 
417 	if (!tty->pgrp) {
418 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419 		goto out_unlock;
420 	}
421 	if (task_pgrp(current) == tty->pgrp)
422 		goto out_unlock;
423 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424 	if (is_ignored(SIGTTOU))
425 		goto out;
426 	if (is_current_pgrp_orphaned()) {
427 		ret = -EIO;
428 		goto out;
429 	}
430 	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431 	set_thread_flag(TIF_SIGPENDING);
432 	ret = -ERESTARTSYS;
433 out:
434 	return ret;
435 out_unlock:
436 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437 	return ret;
438 }
439 
440 EXPORT_SYMBOL(tty_check_change);
441 
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443 				size_t count, loff_t *ppos)
444 {
445 	return 0;
446 }
447 
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449 				 size_t count, loff_t *ppos)
450 {
451 	return -EIO;
452 }
453 
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459 
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461 		unsigned long arg)
462 {
463 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465 
466 static long hung_up_tty_compat_ioctl(struct file *file,
467 				     unsigned int cmd, unsigned long arg)
468 {
469 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471 
472 static const struct file_operations tty_fops = {
473 	.llseek		= no_llseek,
474 	.read		= tty_read,
475 	.write		= tty_write,
476 	.poll		= tty_poll,
477 	.unlocked_ioctl	= tty_ioctl,
478 	.compat_ioctl	= tty_compat_ioctl,
479 	.open		= tty_open,
480 	.release	= tty_release,
481 	.fasync		= tty_fasync,
482 };
483 
484 static const struct file_operations console_fops = {
485 	.llseek		= no_llseek,
486 	.read		= tty_read,
487 	.write		= redirected_tty_write,
488 	.poll		= tty_poll,
489 	.unlocked_ioctl	= tty_ioctl,
490 	.compat_ioctl	= tty_compat_ioctl,
491 	.open		= tty_open,
492 	.release	= tty_release,
493 	.fasync		= tty_fasync,
494 };
495 
496 static const struct file_operations hung_up_tty_fops = {
497 	.llseek		= no_llseek,
498 	.read		= hung_up_tty_read,
499 	.write		= hung_up_tty_write,
500 	.poll		= hung_up_tty_poll,
501 	.unlocked_ioctl	= hung_up_tty_ioctl,
502 	.compat_ioctl	= hung_up_tty_compat_ioctl,
503 	.release	= tty_release,
504 };
505 
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508 
509 /**
510  *	tty_wakeup	-	request more data
511  *	@tty: terminal
512  *
513  *	Internal and external helper for wakeups of tty. This function
514  *	informs the line discipline if present that the driver is ready
515  *	to receive more output data.
516  */
517 
518 void tty_wakeup(struct tty_struct *tty)
519 {
520 	struct tty_ldisc *ld;
521 
522 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523 		ld = tty_ldisc_ref(tty);
524 		if (ld) {
525 			if (ld->ops->write_wakeup)
526 				ld->ops->write_wakeup(tty);
527 			tty_ldisc_deref(ld);
528 		}
529 	}
530 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532 
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534 
535 /**
536  *	tty_signal_session_leader	- sends SIGHUP to session leader
537  *	@tty		controlling tty
538  *	@exit_session	if non-zero, signal all foreground group processes
539  *
540  *	Send SIGHUP and SIGCONT to the session leader and its process group.
541  *	Optionally, signal all processes in the foreground process group.
542  *
543  *	Returns the number of processes in the session with this tty
544  *	as their controlling terminal. This value is used to drop
545  *	tty references for those processes.
546  */
547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
548 {
549 	struct task_struct *p;
550 	int refs = 0;
551 	struct pid *tty_pgrp = NULL;
552 
553 	read_lock(&tasklist_lock);
554 	if (tty->session) {
555 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
556 			spin_lock_irq(&p->sighand->siglock);
557 			if (p->signal->tty == tty) {
558 				p->signal->tty = NULL;
559 				/* We defer the dereferences outside fo
560 				   the tasklist lock */
561 				refs++;
562 			}
563 			if (!p->signal->leader) {
564 				spin_unlock_irq(&p->sighand->siglock);
565 				continue;
566 			}
567 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
568 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
569 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
570 			spin_lock(&tty->ctrl_lock);
571 			tty_pgrp = get_pid(tty->pgrp);
572 			if (tty->pgrp)
573 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
574 			spin_unlock(&tty->ctrl_lock);
575 			spin_unlock_irq(&p->sighand->siglock);
576 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
577 	}
578 	read_unlock(&tasklist_lock);
579 
580 	if (tty_pgrp) {
581 		if (exit_session)
582 			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
583 		put_pid(tty_pgrp);
584 	}
585 
586 	return refs;
587 }
588 
589 /**
590  *	__tty_hangup		-	actual handler for hangup events
591  *	@work: tty device
592  *
593  *	This can be called by a "kworker" kernel thread.  That is process
594  *	synchronous but doesn't hold any locks, so we need to make sure we
595  *	have the appropriate locks for what we're doing.
596  *
597  *	The hangup event clears any pending redirections onto the hung up
598  *	device. It ensures future writes will error and it does the needed
599  *	line discipline hangup and signal delivery. The tty object itself
600  *	remains intact.
601  *
602  *	Locking:
603  *		BTM
604  *		  redirect lock for undoing redirection
605  *		  file list lock for manipulating list of ttys
606  *		  tty_ldiscs_lock from called functions
607  *		  termios_rwsem resetting termios data
608  *		  tasklist_lock to walk task list for hangup event
609  *		    ->siglock to protect ->signal/->sighand
610  */
611 static void __tty_hangup(struct tty_struct *tty, int exit_session)
612 {
613 	struct file *cons_filp = NULL;
614 	struct file *filp, *f = NULL;
615 	struct tty_file_private *priv;
616 	int    closecount = 0, n;
617 	int refs;
618 
619 	if (!tty)
620 		return;
621 
622 
623 	spin_lock(&redirect_lock);
624 	if (redirect && file_tty(redirect) == tty) {
625 		f = redirect;
626 		redirect = NULL;
627 	}
628 	spin_unlock(&redirect_lock);
629 
630 	tty_lock(tty);
631 
632 	if (test_bit(TTY_HUPPED, &tty->flags)) {
633 		tty_unlock(tty);
634 		return;
635 	}
636 
637 	/* some functions below drop BTM, so we need this bit */
638 	set_bit(TTY_HUPPING, &tty->flags);
639 
640 	/* inuse_filps is protected by the single tty lock,
641 	   this really needs to change if we want to flush the
642 	   workqueue with the lock held */
643 	check_tty_count(tty, "tty_hangup");
644 
645 	spin_lock(&tty_files_lock);
646 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
647 	list_for_each_entry(priv, &tty->tty_files, list) {
648 		filp = priv->file;
649 		if (filp->f_op->write == redirected_tty_write)
650 			cons_filp = filp;
651 		if (filp->f_op->write != tty_write)
652 			continue;
653 		closecount++;
654 		__tty_fasync(-1, filp, 0);	/* can't block */
655 		filp->f_op = &hung_up_tty_fops;
656 	}
657 	spin_unlock(&tty_files_lock);
658 
659 	refs = tty_signal_session_leader(tty, exit_session);
660 	/* Account for the p->signal references we killed */
661 	while (refs--)
662 		tty_kref_put(tty);
663 
664 	/*
665 	 * it drops BTM and thus races with reopen
666 	 * we protect the race by TTY_HUPPING
667 	 */
668 	tty_ldisc_hangup(tty);
669 
670 	spin_lock_irq(&tty->ctrl_lock);
671 	clear_bit(TTY_THROTTLED, &tty->flags);
672 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
673 	put_pid(tty->session);
674 	put_pid(tty->pgrp);
675 	tty->session = NULL;
676 	tty->pgrp = NULL;
677 	tty->ctrl_status = 0;
678 	spin_unlock_irq(&tty->ctrl_lock);
679 
680 	/*
681 	 * If one of the devices matches a console pointer, we
682 	 * cannot just call hangup() because that will cause
683 	 * tty->count and state->count to go out of sync.
684 	 * So we just call close() the right number of times.
685 	 */
686 	if (cons_filp) {
687 		if (tty->ops->close)
688 			for (n = 0; n < closecount; n++)
689 				tty->ops->close(tty, cons_filp);
690 	} else if (tty->ops->hangup)
691 		(tty->ops->hangup)(tty);
692 	/*
693 	 * We don't want to have driver/ldisc interactions beyond
694 	 * the ones we did here. The driver layer expects no
695 	 * calls after ->hangup() from the ldisc side. However we
696 	 * can't yet guarantee all that.
697 	 */
698 	set_bit(TTY_HUPPED, &tty->flags);
699 	clear_bit(TTY_HUPPING, &tty->flags);
700 
701 	tty_unlock(tty);
702 
703 	if (f)
704 		fput(f);
705 }
706 
707 static void do_tty_hangup(struct work_struct *work)
708 {
709 	struct tty_struct *tty =
710 		container_of(work, struct tty_struct, hangup_work);
711 
712 	__tty_hangup(tty, 0);
713 }
714 
715 /**
716  *	tty_hangup		-	trigger a hangup event
717  *	@tty: tty to hangup
718  *
719  *	A carrier loss (virtual or otherwise) has occurred on this like
720  *	schedule a hangup sequence to run after this event.
721  */
722 
723 void tty_hangup(struct tty_struct *tty)
724 {
725 #ifdef TTY_DEBUG_HANGUP
726 	char	buf[64];
727 	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
728 #endif
729 	schedule_work(&tty->hangup_work);
730 }
731 
732 EXPORT_SYMBOL(tty_hangup);
733 
734 /**
735  *	tty_vhangup		-	process vhangup
736  *	@tty: tty to hangup
737  *
738  *	The user has asked via system call for the terminal to be hung up.
739  *	We do this synchronously so that when the syscall returns the process
740  *	is complete. That guarantee is necessary for security reasons.
741  */
742 
743 void tty_vhangup(struct tty_struct *tty)
744 {
745 #ifdef TTY_DEBUG_HANGUP
746 	char	buf[64];
747 
748 	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
749 #endif
750 	__tty_hangup(tty, 0);
751 }
752 
753 EXPORT_SYMBOL(tty_vhangup);
754 
755 
756 /**
757  *	tty_vhangup_self	-	process vhangup for own ctty
758  *
759  *	Perform a vhangup on the current controlling tty
760  */
761 
762 void tty_vhangup_self(void)
763 {
764 	struct tty_struct *tty;
765 
766 	tty = get_current_tty();
767 	if (tty) {
768 		tty_vhangup(tty);
769 		tty_kref_put(tty);
770 	}
771 }
772 
773 /**
774  *	tty_vhangup_session		-	hangup session leader exit
775  *	@tty: tty to hangup
776  *
777  *	The session leader is exiting and hanging up its controlling terminal.
778  *	Every process in the foreground process group is signalled SIGHUP.
779  *
780  *	We do this synchronously so that when the syscall returns the process
781  *	is complete. That guarantee is necessary for security reasons.
782  */
783 
784 static void tty_vhangup_session(struct tty_struct *tty)
785 {
786 #ifdef TTY_DEBUG_HANGUP
787 	char	buf[64];
788 
789 	printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
790 #endif
791 	__tty_hangup(tty, 1);
792 }
793 
794 /**
795  *	tty_hung_up_p		-	was tty hung up
796  *	@filp: file pointer of tty
797  *
798  *	Return true if the tty has been subject to a vhangup or a carrier
799  *	loss
800  */
801 
802 int tty_hung_up_p(struct file *filp)
803 {
804 	return (filp->f_op == &hung_up_tty_fops);
805 }
806 
807 EXPORT_SYMBOL(tty_hung_up_p);
808 
809 static void session_clear_tty(struct pid *session)
810 {
811 	struct task_struct *p;
812 	do_each_pid_task(session, PIDTYPE_SID, p) {
813 		proc_clear_tty(p);
814 	} while_each_pid_task(session, PIDTYPE_SID, p);
815 }
816 
817 /**
818  *	disassociate_ctty	-	disconnect controlling tty
819  *	@on_exit: true if exiting so need to "hang up" the session
820  *
821  *	This function is typically called only by the session leader, when
822  *	it wants to disassociate itself from its controlling tty.
823  *
824  *	It performs the following functions:
825  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
826  * 	(2)  Clears the tty from being controlling the session
827  * 	(3)  Clears the controlling tty for all processes in the
828  * 		session group.
829  *
830  *	The argument on_exit is set to 1 if called when a process is
831  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
832  *
833  *	Locking:
834  *		BTM is taken for hysterical raisins, and held when
835  *		  called from no_tty().
836  *		  tty_mutex is taken to protect tty
837  *		  ->siglock is taken to protect ->signal/->sighand
838  *		  tasklist_lock is taken to walk process list for sessions
839  *		    ->siglock is taken to protect ->signal/->sighand
840  */
841 
842 void disassociate_ctty(int on_exit)
843 {
844 	struct tty_struct *tty;
845 
846 	if (!current->signal->leader)
847 		return;
848 
849 	tty = get_current_tty();
850 	if (tty) {
851 		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
852 			tty_vhangup_session(tty);
853 		} else {
854 			struct pid *tty_pgrp = tty_get_pgrp(tty);
855 			if (tty_pgrp) {
856 				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
857 				if (!on_exit)
858 					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
859 				put_pid(tty_pgrp);
860 			}
861 		}
862 		tty_kref_put(tty);
863 
864 	} else if (on_exit) {
865 		struct pid *old_pgrp;
866 		spin_lock_irq(&current->sighand->siglock);
867 		old_pgrp = current->signal->tty_old_pgrp;
868 		current->signal->tty_old_pgrp = NULL;
869 		spin_unlock_irq(&current->sighand->siglock);
870 		if (old_pgrp) {
871 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
872 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
873 			put_pid(old_pgrp);
874 		}
875 		return;
876 	}
877 
878 	spin_lock_irq(&current->sighand->siglock);
879 	put_pid(current->signal->tty_old_pgrp);
880 	current->signal->tty_old_pgrp = NULL;
881 	spin_unlock_irq(&current->sighand->siglock);
882 
883 	tty = get_current_tty();
884 	if (tty) {
885 		unsigned long flags;
886 		spin_lock_irqsave(&tty->ctrl_lock, flags);
887 		put_pid(tty->session);
888 		put_pid(tty->pgrp);
889 		tty->session = NULL;
890 		tty->pgrp = NULL;
891 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
892 		tty_kref_put(tty);
893 	} else {
894 #ifdef TTY_DEBUG_HANGUP
895 		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
896 		       " = NULL", tty);
897 #endif
898 	}
899 
900 	/* Now clear signal->tty under the lock */
901 	read_lock(&tasklist_lock);
902 	session_clear_tty(task_session(current));
903 	read_unlock(&tasklist_lock);
904 }
905 
906 /**
907  *
908  *	no_tty	- Ensure the current process does not have a controlling tty
909  */
910 void no_tty(void)
911 {
912 	/* FIXME: Review locking here. The tty_lock never covered any race
913 	   between a new association and proc_clear_tty but possible we need
914 	   to protect against this anyway */
915 	struct task_struct *tsk = current;
916 	disassociate_ctty(0);
917 	proc_clear_tty(tsk);
918 }
919 
920 
921 /**
922  *	stop_tty	-	propagate flow control
923  *	@tty: tty to stop
924  *
925  *	Perform flow control to the driver. For PTY/TTY pairs we
926  *	must also propagate the TIOCKPKT status. May be called
927  *	on an already stopped device and will not re-call the driver
928  *	method.
929  *
930  *	This functionality is used by both the line disciplines for
931  *	halting incoming flow and by the driver. It may therefore be
932  *	called from any context, may be under the tty atomic_write_lock
933  *	but not always.
934  *
935  *	Locking:
936  *		Uses the tty control lock internally
937  */
938 
939 void stop_tty(struct tty_struct *tty)
940 {
941 	unsigned long flags;
942 	spin_lock_irqsave(&tty->ctrl_lock, flags);
943 	if (tty->stopped) {
944 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
945 		return;
946 	}
947 	tty->stopped = 1;
948 	if (tty->link && tty->link->packet) {
949 		tty->ctrl_status &= ~TIOCPKT_START;
950 		tty->ctrl_status |= TIOCPKT_STOP;
951 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
952 	}
953 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
954 	if (tty->ops->stop)
955 		(tty->ops->stop)(tty);
956 }
957 
958 EXPORT_SYMBOL(stop_tty);
959 
960 /**
961  *	start_tty	-	propagate flow control
962  *	@tty: tty to start
963  *
964  *	Start a tty that has been stopped if at all possible. Perform
965  *	any necessary wakeups and propagate the TIOCPKT status. If this
966  *	is the tty was previous stopped and is being started then the
967  *	driver start method is invoked and the line discipline woken.
968  *
969  *	Locking:
970  *		ctrl_lock
971  */
972 
973 void start_tty(struct tty_struct *tty)
974 {
975 	unsigned long flags;
976 	spin_lock_irqsave(&tty->ctrl_lock, flags);
977 	if (!tty->stopped || tty->flow_stopped) {
978 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
979 		return;
980 	}
981 	tty->stopped = 0;
982 	if (tty->link && tty->link->packet) {
983 		tty->ctrl_status &= ~TIOCPKT_STOP;
984 		tty->ctrl_status |= TIOCPKT_START;
985 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
986 	}
987 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
988 	if (tty->ops->start)
989 		(tty->ops->start)(tty);
990 	/* If we have a running line discipline it may need kicking */
991 	tty_wakeup(tty);
992 }
993 
994 EXPORT_SYMBOL(start_tty);
995 
996 /* We limit tty time update visibility to every 8 seconds or so. */
997 static void tty_update_time(struct timespec *time)
998 {
999 	unsigned long sec = get_seconds() & ~7;
1000 	if ((long)(sec - time->tv_sec) > 0)
1001 		time->tv_sec = sec;
1002 }
1003 
1004 /**
1005  *	tty_read	-	read method for tty device files
1006  *	@file: pointer to tty file
1007  *	@buf: user buffer
1008  *	@count: size of user buffer
1009  *	@ppos: unused
1010  *
1011  *	Perform the read system call function on this terminal device. Checks
1012  *	for hung up devices before calling the line discipline method.
1013  *
1014  *	Locking:
1015  *		Locks the line discipline internally while needed. Multiple
1016  *	read calls may be outstanding in parallel.
1017  */
1018 
1019 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1020 			loff_t *ppos)
1021 {
1022 	int i;
1023 	struct inode *inode = file_inode(file);
1024 	struct tty_struct *tty = file_tty(file);
1025 	struct tty_ldisc *ld;
1026 
1027 	if (tty_paranoia_check(tty, inode, "tty_read"))
1028 		return -EIO;
1029 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1030 		return -EIO;
1031 
1032 	/* We want to wait for the line discipline to sort out in this
1033 	   situation */
1034 	ld = tty_ldisc_ref_wait(tty);
1035 	if (ld->ops->read)
1036 		i = (ld->ops->read)(tty, file, buf, count);
1037 	else
1038 		i = -EIO;
1039 	tty_ldisc_deref(ld);
1040 
1041 	if (i > 0)
1042 		tty_update_time(&inode->i_atime);
1043 
1044 	return i;
1045 }
1046 
1047 void tty_write_unlock(struct tty_struct *tty)
1048 	__releases(&tty->atomic_write_lock)
1049 {
1050 	mutex_unlock(&tty->atomic_write_lock);
1051 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1052 }
1053 
1054 int tty_write_lock(struct tty_struct *tty, int ndelay)
1055 	__acquires(&tty->atomic_write_lock)
1056 {
1057 	if (!mutex_trylock(&tty->atomic_write_lock)) {
1058 		if (ndelay)
1059 			return -EAGAIN;
1060 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1061 			return -ERESTARTSYS;
1062 	}
1063 	return 0;
1064 }
1065 
1066 /*
1067  * Split writes up in sane blocksizes to avoid
1068  * denial-of-service type attacks
1069  */
1070 static inline ssize_t do_tty_write(
1071 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1072 	struct tty_struct *tty,
1073 	struct file *file,
1074 	const char __user *buf,
1075 	size_t count)
1076 {
1077 	ssize_t ret, written = 0;
1078 	unsigned int chunk;
1079 
1080 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1081 	if (ret < 0)
1082 		return ret;
1083 
1084 	/*
1085 	 * We chunk up writes into a temporary buffer. This
1086 	 * simplifies low-level drivers immensely, since they
1087 	 * don't have locking issues and user mode accesses.
1088 	 *
1089 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1090 	 * big chunk-size..
1091 	 *
1092 	 * The default chunk-size is 2kB, because the NTTY
1093 	 * layer has problems with bigger chunks. It will
1094 	 * claim to be able to handle more characters than
1095 	 * it actually does.
1096 	 *
1097 	 * FIXME: This can probably go away now except that 64K chunks
1098 	 * are too likely to fail unless switched to vmalloc...
1099 	 */
1100 	chunk = 2048;
1101 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1102 		chunk = 65536;
1103 	if (count < chunk)
1104 		chunk = count;
1105 
1106 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1107 	if (tty->write_cnt < chunk) {
1108 		unsigned char *buf_chunk;
1109 
1110 		if (chunk < 1024)
1111 			chunk = 1024;
1112 
1113 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1114 		if (!buf_chunk) {
1115 			ret = -ENOMEM;
1116 			goto out;
1117 		}
1118 		kfree(tty->write_buf);
1119 		tty->write_cnt = chunk;
1120 		tty->write_buf = buf_chunk;
1121 	}
1122 
1123 	/* Do the write .. */
1124 	for (;;) {
1125 		size_t size = count;
1126 		if (size > chunk)
1127 			size = chunk;
1128 		ret = -EFAULT;
1129 		if (copy_from_user(tty->write_buf, buf, size))
1130 			break;
1131 		ret = write(tty, file, tty->write_buf, size);
1132 		if (ret <= 0)
1133 			break;
1134 		written += ret;
1135 		buf += ret;
1136 		count -= ret;
1137 		if (!count)
1138 			break;
1139 		ret = -ERESTARTSYS;
1140 		if (signal_pending(current))
1141 			break;
1142 		cond_resched();
1143 	}
1144 	if (written) {
1145 		tty_update_time(&file_inode(file)->i_mtime);
1146 		ret = written;
1147 	}
1148 out:
1149 	tty_write_unlock(tty);
1150 	return ret;
1151 }
1152 
1153 /**
1154  * tty_write_message - write a message to a certain tty, not just the console.
1155  * @tty: the destination tty_struct
1156  * @msg: the message to write
1157  *
1158  * This is used for messages that need to be redirected to a specific tty.
1159  * We don't put it into the syslog queue right now maybe in the future if
1160  * really needed.
1161  *
1162  * We must still hold the BTM and test the CLOSING flag for the moment.
1163  */
1164 
1165 void tty_write_message(struct tty_struct *tty, char *msg)
1166 {
1167 	if (tty) {
1168 		mutex_lock(&tty->atomic_write_lock);
1169 		tty_lock(tty);
1170 		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1171 			tty_unlock(tty);
1172 			tty->ops->write(tty, msg, strlen(msg));
1173 		} else
1174 			tty_unlock(tty);
1175 		tty_write_unlock(tty);
1176 	}
1177 	return;
1178 }
1179 
1180 
1181 /**
1182  *	tty_write		-	write method for tty device file
1183  *	@file: tty file pointer
1184  *	@buf: user data to write
1185  *	@count: bytes to write
1186  *	@ppos: unused
1187  *
1188  *	Write data to a tty device via the line discipline.
1189  *
1190  *	Locking:
1191  *		Locks the line discipline as required
1192  *		Writes to the tty driver are serialized by the atomic_write_lock
1193  *	and are then processed in chunks to the device. The line discipline
1194  *	write method will not be invoked in parallel for each device.
1195  */
1196 
1197 static ssize_t tty_write(struct file *file, const char __user *buf,
1198 						size_t count, loff_t *ppos)
1199 {
1200 	struct tty_struct *tty = file_tty(file);
1201  	struct tty_ldisc *ld;
1202 	ssize_t ret;
1203 
1204 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1205 		return -EIO;
1206 	if (!tty || !tty->ops->write ||
1207 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1208 			return -EIO;
1209 	/* Short term debug to catch buggy drivers */
1210 	if (tty->ops->write_room == NULL)
1211 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1212 			tty->driver->name);
1213 	ld = tty_ldisc_ref_wait(tty);
1214 	if (!ld->ops->write)
1215 		ret = -EIO;
1216 	else
1217 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1218 	tty_ldisc_deref(ld);
1219 	return ret;
1220 }
1221 
1222 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1223 						size_t count, loff_t *ppos)
1224 {
1225 	struct file *p = NULL;
1226 
1227 	spin_lock(&redirect_lock);
1228 	if (redirect)
1229 		p = get_file(redirect);
1230 	spin_unlock(&redirect_lock);
1231 
1232 	if (p) {
1233 		ssize_t res;
1234 		res = vfs_write(p, buf, count, &p->f_pos);
1235 		fput(p);
1236 		return res;
1237 	}
1238 	return tty_write(file, buf, count, ppos);
1239 }
1240 
1241 static char ptychar[] = "pqrstuvwxyzabcde";
1242 
1243 /**
1244  *	pty_line_name	-	generate name for a pty
1245  *	@driver: the tty driver in use
1246  *	@index: the minor number
1247  *	@p: output buffer of at least 6 bytes
1248  *
1249  *	Generate a name from a driver reference and write it to the output
1250  *	buffer.
1251  *
1252  *	Locking: None
1253  */
1254 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1255 {
1256 	int i = index + driver->name_base;
1257 	/* ->name is initialized to "ttyp", but "tty" is expected */
1258 	sprintf(p, "%s%c%x",
1259 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1260 		ptychar[i >> 4 & 0xf], i & 0xf);
1261 }
1262 
1263 /**
1264  *	tty_line_name	-	generate name for a tty
1265  *	@driver: the tty driver in use
1266  *	@index: the minor number
1267  *	@p: output buffer of at least 7 bytes
1268  *
1269  *	Generate a name from a driver reference and write it to the output
1270  *	buffer.
1271  *
1272  *	Locking: None
1273  */
1274 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1275 {
1276 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1277 		strcpy(p, driver->name);
1278 	else
1279 		sprintf(p, "%s%d", driver->name, index + driver->name_base);
1280 }
1281 
1282 /**
1283  *	tty_driver_lookup_tty() - find an existing tty, if any
1284  *	@driver: the driver for the tty
1285  *	@idx:	 the minor number
1286  *
1287  *	Return the tty, if found or ERR_PTR() otherwise.
1288  *
1289  *	Locking: tty_mutex must be held. If tty is found, the mutex must
1290  *	be held until the 'fast-open' is also done. Will change once we
1291  *	have refcounting in the driver and per driver locking
1292  */
1293 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1294 		struct inode *inode, int idx)
1295 {
1296 	if (driver->ops->lookup)
1297 		return driver->ops->lookup(driver, inode, idx);
1298 
1299 	return driver->ttys[idx];
1300 }
1301 
1302 /**
1303  *	tty_init_termios	-  helper for termios setup
1304  *	@tty: the tty to set up
1305  *
1306  *	Initialise the termios structures for this tty. Thus runs under
1307  *	the tty_mutex currently so we can be relaxed about ordering.
1308  */
1309 
1310 int tty_init_termios(struct tty_struct *tty)
1311 {
1312 	struct ktermios *tp;
1313 	int idx = tty->index;
1314 
1315 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1316 		tty->termios = tty->driver->init_termios;
1317 	else {
1318 		/* Check for lazy saved data */
1319 		tp = tty->driver->termios[idx];
1320 		if (tp != NULL)
1321 			tty->termios = *tp;
1322 		else
1323 			tty->termios = tty->driver->init_termios;
1324 	}
1325 	/* Compatibility until drivers always set this */
1326 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1327 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1328 	return 0;
1329 }
1330 EXPORT_SYMBOL_GPL(tty_init_termios);
1331 
1332 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1333 {
1334 	int ret = tty_init_termios(tty);
1335 	if (ret)
1336 		return ret;
1337 
1338 	tty_driver_kref_get(driver);
1339 	tty->count++;
1340 	driver->ttys[tty->index] = tty;
1341 	return 0;
1342 }
1343 EXPORT_SYMBOL_GPL(tty_standard_install);
1344 
1345 /**
1346  *	tty_driver_install_tty() - install a tty entry in the driver
1347  *	@driver: the driver for the tty
1348  *	@tty: the tty
1349  *
1350  *	Install a tty object into the driver tables. The tty->index field
1351  *	will be set by the time this is called. This method is responsible
1352  *	for ensuring any need additional structures are allocated and
1353  *	configured.
1354  *
1355  *	Locking: tty_mutex for now
1356  */
1357 static int tty_driver_install_tty(struct tty_driver *driver,
1358 						struct tty_struct *tty)
1359 {
1360 	return driver->ops->install ? driver->ops->install(driver, tty) :
1361 		tty_standard_install(driver, tty);
1362 }
1363 
1364 /**
1365  *	tty_driver_remove_tty() - remove a tty from the driver tables
1366  *	@driver: the driver for the tty
1367  *	@idx:	 the minor number
1368  *
1369  *	Remvoe a tty object from the driver tables. The tty->index field
1370  *	will be set by the time this is called.
1371  *
1372  *	Locking: tty_mutex for now
1373  */
1374 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1375 {
1376 	if (driver->ops->remove)
1377 		driver->ops->remove(driver, tty);
1378 	else
1379 		driver->ttys[tty->index] = NULL;
1380 }
1381 
1382 /*
1383  * 	tty_reopen()	- fast re-open of an open tty
1384  * 	@tty	- the tty to open
1385  *
1386  *	Return 0 on success, -errno on error.
1387  *
1388  *	Locking: tty_mutex must be held from the time the tty was found
1389  *		 till this open completes.
1390  */
1391 static int tty_reopen(struct tty_struct *tty)
1392 {
1393 	struct tty_driver *driver = tty->driver;
1394 
1395 	if (test_bit(TTY_CLOSING, &tty->flags) ||
1396 			test_bit(TTY_HUPPING, &tty->flags))
1397 		return -EIO;
1398 
1399 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1400 	    driver->subtype == PTY_TYPE_MASTER) {
1401 		/*
1402 		 * special case for PTY masters: only one open permitted,
1403 		 * and the slave side open count is incremented as well.
1404 		 */
1405 		if (tty->count)
1406 			return -EIO;
1407 
1408 		tty->link->count++;
1409 	}
1410 	tty->count++;
1411 
1412 	WARN_ON(!tty->ldisc);
1413 
1414 	return 0;
1415 }
1416 
1417 /**
1418  *	tty_init_dev		-	initialise a tty device
1419  *	@driver: tty driver we are opening a device on
1420  *	@idx: device index
1421  *	@ret_tty: returned tty structure
1422  *
1423  *	Prepare a tty device. This may not be a "new" clean device but
1424  *	could also be an active device. The pty drivers require special
1425  *	handling because of this.
1426  *
1427  *	Locking:
1428  *		The function is called under the tty_mutex, which
1429  *	protects us from the tty struct or driver itself going away.
1430  *
1431  *	On exit the tty device has the line discipline attached and
1432  *	a reference count of 1. If a pair was created for pty/tty use
1433  *	and the other was a pty master then it too has a reference count of 1.
1434  *
1435  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1436  * failed open.  The new code protects the open with a mutex, so it's
1437  * really quite straightforward.  The mutex locking can probably be
1438  * relaxed for the (most common) case of reopening a tty.
1439  */
1440 
1441 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1442 {
1443 	struct tty_struct *tty;
1444 	int retval;
1445 
1446 	/*
1447 	 * First time open is complex, especially for PTY devices.
1448 	 * This code guarantees that either everything succeeds and the
1449 	 * TTY is ready for operation, or else the table slots are vacated
1450 	 * and the allocated memory released.  (Except that the termios
1451 	 * and locked termios may be retained.)
1452 	 */
1453 
1454 	if (!try_module_get(driver->owner))
1455 		return ERR_PTR(-ENODEV);
1456 
1457 	tty = alloc_tty_struct();
1458 	if (!tty) {
1459 		retval = -ENOMEM;
1460 		goto err_module_put;
1461 	}
1462 	initialize_tty_struct(tty, driver, idx);
1463 
1464 	tty_lock(tty);
1465 	retval = tty_driver_install_tty(driver, tty);
1466 	if (retval < 0)
1467 		goto err_deinit_tty;
1468 
1469 	if (!tty->port)
1470 		tty->port = driver->ports[idx];
1471 
1472 	WARN_RATELIMIT(!tty->port,
1473 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1474 			__func__, tty->driver->name);
1475 
1476 	tty->port->itty = tty;
1477 
1478 	/*
1479 	 * Structures all installed ... call the ldisc open routines.
1480 	 * If we fail here just call release_tty to clean up.  No need
1481 	 * to decrement the use counts, as release_tty doesn't care.
1482 	 */
1483 	retval = tty_ldisc_setup(tty, tty->link);
1484 	if (retval)
1485 		goto err_release_tty;
1486 	/* Return the tty locked so that it cannot vanish under the caller */
1487 	return tty;
1488 
1489 err_deinit_tty:
1490 	tty_unlock(tty);
1491 	deinitialize_tty_struct(tty);
1492 	free_tty_struct(tty);
1493 err_module_put:
1494 	module_put(driver->owner);
1495 	return ERR_PTR(retval);
1496 
1497 	/* call the tty release_tty routine to clean out this slot */
1498 err_release_tty:
1499 	tty_unlock(tty);
1500 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1501 				 "clearing slot %d\n", idx);
1502 	release_tty(tty, idx);
1503 	return ERR_PTR(retval);
1504 }
1505 
1506 void tty_free_termios(struct tty_struct *tty)
1507 {
1508 	struct ktermios *tp;
1509 	int idx = tty->index;
1510 
1511 	/* If the port is going to reset then it has no termios to save */
1512 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1513 		return;
1514 
1515 	/* Stash the termios data */
1516 	tp = tty->driver->termios[idx];
1517 	if (tp == NULL) {
1518 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1519 		if (tp == NULL) {
1520 			pr_warn("tty: no memory to save termios state.\n");
1521 			return;
1522 		}
1523 		tty->driver->termios[idx] = tp;
1524 	}
1525 	*tp = tty->termios;
1526 }
1527 EXPORT_SYMBOL(tty_free_termios);
1528 
1529 /**
1530  *	tty_flush_works		-	flush all works of a tty
1531  *	@tty: tty device to flush works for
1532  *
1533  *	Sync flush all works belonging to @tty.
1534  */
1535 static void tty_flush_works(struct tty_struct *tty)
1536 {
1537 	flush_work(&tty->SAK_work);
1538 	flush_work(&tty->hangup_work);
1539 }
1540 
1541 /**
1542  *	release_one_tty		-	release tty structure memory
1543  *	@kref: kref of tty we are obliterating
1544  *
1545  *	Releases memory associated with a tty structure, and clears out the
1546  *	driver table slots. This function is called when a device is no longer
1547  *	in use. It also gets called when setup of a device fails.
1548  *
1549  *	Locking:
1550  *		takes the file list lock internally when working on the list
1551  *	of ttys that the driver keeps.
1552  *
1553  *	This method gets called from a work queue so that the driver private
1554  *	cleanup ops can sleep (needed for USB at least)
1555  */
1556 static void release_one_tty(struct work_struct *work)
1557 {
1558 	struct tty_struct *tty =
1559 		container_of(work, struct tty_struct, hangup_work);
1560 	struct tty_driver *driver = tty->driver;
1561 
1562 	if (tty->ops->cleanup)
1563 		tty->ops->cleanup(tty);
1564 
1565 	tty->magic = 0;
1566 	tty_driver_kref_put(driver);
1567 	module_put(driver->owner);
1568 
1569 	spin_lock(&tty_files_lock);
1570 	list_del_init(&tty->tty_files);
1571 	spin_unlock(&tty_files_lock);
1572 
1573 	put_pid(tty->pgrp);
1574 	put_pid(tty->session);
1575 	free_tty_struct(tty);
1576 }
1577 
1578 static void queue_release_one_tty(struct kref *kref)
1579 {
1580 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1581 
1582 	/* The hangup queue is now free so we can reuse it rather than
1583 	   waste a chunk of memory for each port */
1584 	INIT_WORK(&tty->hangup_work, release_one_tty);
1585 	schedule_work(&tty->hangup_work);
1586 }
1587 
1588 /**
1589  *	tty_kref_put		-	release a tty kref
1590  *	@tty: tty device
1591  *
1592  *	Release a reference to a tty device and if need be let the kref
1593  *	layer destruct the object for us
1594  */
1595 
1596 void tty_kref_put(struct tty_struct *tty)
1597 {
1598 	if (tty)
1599 		kref_put(&tty->kref, queue_release_one_tty);
1600 }
1601 EXPORT_SYMBOL(tty_kref_put);
1602 
1603 /**
1604  *	release_tty		-	release tty structure memory
1605  *
1606  *	Release both @tty and a possible linked partner (think pty pair),
1607  *	and decrement the refcount of the backing module.
1608  *
1609  *	Locking:
1610  *		tty_mutex
1611  *		takes the file list lock internally when working on the list
1612  *	of ttys that the driver keeps.
1613  *
1614  */
1615 static void release_tty(struct tty_struct *tty, int idx)
1616 {
1617 	/* This should always be true but check for the moment */
1618 	WARN_ON(tty->index != idx);
1619 	WARN_ON(!mutex_is_locked(&tty_mutex));
1620 	if (tty->ops->shutdown)
1621 		tty->ops->shutdown(tty);
1622 	tty_free_termios(tty);
1623 	tty_driver_remove_tty(tty->driver, tty);
1624 	tty->port->itty = NULL;
1625 	if (tty->link)
1626 		tty->link->port->itty = NULL;
1627 	cancel_work_sync(&tty->port->buf.work);
1628 
1629 	if (tty->link)
1630 		tty_kref_put(tty->link);
1631 	tty_kref_put(tty);
1632 }
1633 
1634 /**
1635  *	tty_release_checks - check a tty before real release
1636  *	@tty: tty to check
1637  *	@o_tty: link of @tty (if any)
1638  *	@idx: index of the tty
1639  *
1640  *	Performs some paranoid checking before true release of the @tty.
1641  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1642  */
1643 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1644 		int idx)
1645 {
1646 #ifdef TTY_PARANOIA_CHECK
1647 	if (idx < 0 || idx >= tty->driver->num) {
1648 		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1649 				__func__, tty->name);
1650 		return -1;
1651 	}
1652 
1653 	/* not much to check for devpts */
1654 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1655 		return 0;
1656 
1657 	if (tty != tty->driver->ttys[idx]) {
1658 		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1659 				__func__, idx, tty->name);
1660 		return -1;
1661 	}
1662 	if (tty->driver->other) {
1663 		if (o_tty != tty->driver->other->ttys[idx]) {
1664 			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1665 					__func__, idx, tty->name);
1666 			return -1;
1667 		}
1668 		if (o_tty->link != tty) {
1669 			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1670 			return -1;
1671 		}
1672 	}
1673 #endif
1674 	return 0;
1675 }
1676 
1677 /**
1678  *	tty_release		-	vfs callback for close
1679  *	@inode: inode of tty
1680  *	@filp: file pointer for handle to tty
1681  *
1682  *	Called the last time each file handle is closed that references
1683  *	this tty. There may however be several such references.
1684  *
1685  *	Locking:
1686  *		Takes bkl. See tty_release_dev
1687  *
1688  * Even releasing the tty structures is a tricky business.. We have
1689  * to be very careful that the structures are all released at the
1690  * same time, as interrupts might otherwise get the wrong pointers.
1691  *
1692  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1693  * lead to double frees or releasing memory still in use.
1694  */
1695 
1696 int tty_release(struct inode *inode, struct file *filp)
1697 {
1698 	struct tty_struct *tty = file_tty(filp);
1699 	struct tty_struct *o_tty;
1700 	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1701 	int	idx;
1702 	char	buf[64];
1703 
1704 	if (tty_paranoia_check(tty, inode, __func__))
1705 		return 0;
1706 
1707 	tty_lock(tty);
1708 	check_tty_count(tty, __func__);
1709 
1710 	__tty_fasync(-1, filp, 0);
1711 
1712 	idx = tty->index;
1713 	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1714 		      tty->driver->subtype == PTY_TYPE_MASTER);
1715 	/* Review: parallel close */
1716 	o_tty = tty->link;
1717 
1718 	if (tty_release_checks(tty, o_tty, idx)) {
1719 		tty_unlock(tty);
1720 		return 0;
1721 	}
1722 
1723 #ifdef TTY_DEBUG_HANGUP
1724 	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1725 			tty_name(tty, buf), tty->count);
1726 #endif
1727 
1728 	if (tty->ops->close)
1729 		tty->ops->close(tty, filp);
1730 
1731 	tty_unlock(tty);
1732 	/*
1733 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1734 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1735 	 * wait queues and kick everyone out _before_ actually starting to
1736 	 * close.  This ensures that we won't block while releasing the tty
1737 	 * structure.
1738 	 *
1739 	 * The test for the o_tty closing is necessary, since the master and
1740 	 * slave sides may close in any order.  If the slave side closes out
1741 	 * first, its count will be one, since the master side holds an open.
1742 	 * Thus this test wouldn't be triggered at the time the slave closes,
1743 	 * so we do it now.
1744 	 *
1745 	 * Note that it's possible for the tty to be opened again while we're
1746 	 * flushing out waiters.  By recalculating the closing flags before
1747 	 * each iteration we avoid any problems.
1748 	 */
1749 	while (1) {
1750 		/* Guard against races with tty->count changes elsewhere and
1751 		   opens on /dev/tty */
1752 
1753 		mutex_lock(&tty_mutex);
1754 		tty_lock_pair(tty, o_tty);
1755 		tty_closing = tty->count <= 1;
1756 		o_tty_closing = o_tty &&
1757 			(o_tty->count <= (pty_master ? 1 : 0));
1758 		do_sleep = 0;
1759 
1760 		if (tty_closing) {
1761 			if (waitqueue_active(&tty->read_wait)) {
1762 				wake_up_poll(&tty->read_wait, POLLIN);
1763 				do_sleep++;
1764 			}
1765 			if (waitqueue_active(&tty->write_wait)) {
1766 				wake_up_poll(&tty->write_wait, POLLOUT);
1767 				do_sleep++;
1768 			}
1769 		}
1770 		if (o_tty_closing) {
1771 			if (waitqueue_active(&o_tty->read_wait)) {
1772 				wake_up_poll(&o_tty->read_wait, POLLIN);
1773 				do_sleep++;
1774 			}
1775 			if (waitqueue_active(&o_tty->write_wait)) {
1776 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1777 				do_sleep++;
1778 			}
1779 		}
1780 		if (!do_sleep)
1781 			break;
1782 
1783 		printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1784 				__func__, tty_name(tty, buf));
1785 		tty_unlock_pair(tty, o_tty);
1786 		mutex_unlock(&tty_mutex);
1787 		schedule();
1788 	}
1789 
1790 	/*
1791 	 * The closing flags are now consistent with the open counts on
1792 	 * both sides, and we've completed the last operation that could
1793 	 * block, so it's safe to proceed with closing.
1794 	 *
1795 	 * We must *not* drop the tty_mutex until we ensure that a further
1796 	 * entry into tty_open can not pick up this tty.
1797 	 */
1798 	if (pty_master) {
1799 		if (--o_tty->count < 0) {
1800 			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1801 				__func__, o_tty->count, tty_name(o_tty, buf));
1802 			o_tty->count = 0;
1803 		}
1804 	}
1805 	if (--tty->count < 0) {
1806 		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1807 				__func__, tty->count, tty_name(tty, buf));
1808 		tty->count = 0;
1809 	}
1810 
1811 	/*
1812 	 * We've decremented tty->count, so we need to remove this file
1813 	 * descriptor off the tty->tty_files list; this serves two
1814 	 * purposes:
1815 	 *  - check_tty_count sees the correct number of file descriptors
1816 	 *    associated with this tty.
1817 	 *  - do_tty_hangup no longer sees this file descriptor as
1818 	 *    something that needs to be handled for hangups.
1819 	 */
1820 	tty_del_file(filp);
1821 
1822 	/*
1823 	 * Perform some housekeeping before deciding whether to return.
1824 	 *
1825 	 * Set the TTY_CLOSING flag if this was the last open.  In the
1826 	 * case of a pty we may have to wait around for the other side
1827 	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1828 	 */
1829 	if (tty_closing)
1830 		set_bit(TTY_CLOSING, &tty->flags);
1831 	if (o_tty_closing)
1832 		set_bit(TTY_CLOSING, &o_tty->flags);
1833 
1834 	/*
1835 	 * If _either_ side is closing, make sure there aren't any
1836 	 * processes that still think tty or o_tty is their controlling
1837 	 * tty.
1838 	 */
1839 	if (tty_closing || o_tty_closing) {
1840 		read_lock(&tasklist_lock);
1841 		session_clear_tty(tty->session);
1842 		if (o_tty)
1843 			session_clear_tty(o_tty->session);
1844 		read_unlock(&tasklist_lock);
1845 	}
1846 
1847 	mutex_unlock(&tty_mutex);
1848 	tty_unlock_pair(tty, o_tty);
1849 	/* At this point the TTY_CLOSING flag should ensure a dead tty
1850 	   cannot be re-opened by a racing opener */
1851 
1852 	/* check whether both sides are closing ... */
1853 	if (!tty_closing || (o_tty && !o_tty_closing))
1854 		return 0;
1855 
1856 #ifdef TTY_DEBUG_HANGUP
1857 	printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1858 #endif
1859 	/*
1860 	 * Ask the line discipline code to release its structures
1861 	 */
1862 	tty_ldisc_release(tty, o_tty);
1863 
1864 	/* Wait for pending work before tty destruction commmences */
1865 	tty_flush_works(tty);
1866 	if (o_tty)
1867 		tty_flush_works(o_tty);
1868 
1869 #ifdef TTY_DEBUG_HANGUP
1870 	printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1871 #endif
1872 	/*
1873 	 * The release_tty function takes care of the details of clearing
1874 	 * the slots and preserving the termios structure. The tty_unlock_pair
1875 	 * should be safe as we keep a kref while the tty is locked (so the
1876 	 * unlock never unlocks a freed tty).
1877 	 */
1878 	mutex_lock(&tty_mutex);
1879 	release_tty(tty, idx);
1880 	mutex_unlock(&tty_mutex);
1881 
1882 	return 0;
1883 }
1884 
1885 /**
1886  *	tty_open_current_tty - get tty of current task for open
1887  *	@device: device number
1888  *	@filp: file pointer to tty
1889  *	@return: tty of the current task iff @device is /dev/tty
1890  *
1891  *	We cannot return driver and index like for the other nodes because
1892  *	devpts will not work then. It expects inodes to be from devpts FS.
1893  *
1894  *	We need to move to returning a refcounted object from all the lookup
1895  *	paths including this one.
1896  */
1897 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1898 {
1899 	struct tty_struct *tty;
1900 
1901 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1902 		return NULL;
1903 
1904 	tty = get_current_tty();
1905 	if (!tty)
1906 		return ERR_PTR(-ENXIO);
1907 
1908 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1909 	/* noctty = 1; */
1910 	tty_kref_put(tty);
1911 	/* FIXME: we put a reference and return a TTY! */
1912 	/* This is only safe because the caller holds tty_mutex */
1913 	return tty;
1914 }
1915 
1916 /**
1917  *	tty_lookup_driver - lookup a tty driver for a given device file
1918  *	@device: device number
1919  *	@filp: file pointer to tty
1920  *	@noctty: set if the device should not become a controlling tty
1921  *	@index: index for the device in the @return driver
1922  *	@return: driver for this inode (with increased refcount)
1923  *
1924  * 	If @return is not erroneous, the caller is responsible to decrement the
1925  * 	refcount by tty_driver_kref_put.
1926  *
1927  *	Locking: tty_mutex protects get_tty_driver
1928  */
1929 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1930 		int *noctty, int *index)
1931 {
1932 	struct tty_driver *driver;
1933 
1934 	switch (device) {
1935 #ifdef CONFIG_VT
1936 	case MKDEV(TTY_MAJOR, 0): {
1937 		extern struct tty_driver *console_driver;
1938 		driver = tty_driver_kref_get(console_driver);
1939 		*index = fg_console;
1940 		*noctty = 1;
1941 		break;
1942 	}
1943 #endif
1944 	case MKDEV(TTYAUX_MAJOR, 1): {
1945 		struct tty_driver *console_driver = console_device(index);
1946 		if (console_driver) {
1947 			driver = tty_driver_kref_get(console_driver);
1948 			if (driver) {
1949 				/* Don't let /dev/console block */
1950 				filp->f_flags |= O_NONBLOCK;
1951 				*noctty = 1;
1952 				break;
1953 			}
1954 		}
1955 		return ERR_PTR(-ENODEV);
1956 	}
1957 	default:
1958 		driver = get_tty_driver(device, index);
1959 		if (!driver)
1960 			return ERR_PTR(-ENODEV);
1961 		break;
1962 	}
1963 	return driver;
1964 }
1965 
1966 /**
1967  *	tty_open		-	open a tty device
1968  *	@inode: inode of device file
1969  *	@filp: file pointer to tty
1970  *
1971  *	tty_open and tty_release keep up the tty count that contains the
1972  *	number of opens done on a tty. We cannot use the inode-count, as
1973  *	different inodes might point to the same tty.
1974  *
1975  *	Open-counting is needed for pty masters, as well as for keeping
1976  *	track of serial lines: DTR is dropped when the last close happens.
1977  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1978  *
1979  *	The termios state of a pty is reset on first open so that
1980  *	settings don't persist across reuse.
1981  *
1982  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1983  *		 tty->count should protect the rest.
1984  *		 ->siglock protects ->signal/->sighand
1985  *
1986  *	Note: the tty_unlock/lock cases without a ref are only safe due to
1987  *	tty_mutex
1988  */
1989 
1990 static int tty_open(struct inode *inode, struct file *filp)
1991 {
1992 	struct tty_struct *tty;
1993 	int noctty, retval;
1994 	struct tty_driver *driver = NULL;
1995 	int index;
1996 	dev_t device = inode->i_rdev;
1997 	unsigned saved_flags = filp->f_flags;
1998 
1999 	nonseekable_open(inode, filp);
2000 
2001 retry_open:
2002 	retval = tty_alloc_file(filp);
2003 	if (retval)
2004 		return -ENOMEM;
2005 
2006 	noctty = filp->f_flags & O_NOCTTY;
2007 	index  = -1;
2008 	retval = 0;
2009 
2010 	mutex_lock(&tty_mutex);
2011 	/* This is protected by the tty_mutex */
2012 	tty = tty_open_current_tty(device, filp);
2013 	if (IS_ERR(tty)) {
2014 		retval = PTR_ERR(tty);
2015 		goto err_unlock;
2016 	} else if (!tty) {
2017 		driver = tty_lookup_driver(device, filp, &noctty, &index);
2018 		if (IS_ERR(driver)) {
2019 			retval = PTR_ERR(driver);
2020 			goto err_unlock;
2021 		}
2022 
2023 		/* check whether we're reopening an existing tty */
2024 		tty = tty_driver_lookup_tty(driver, inode, index);
2025 		if (IS_ERR(tty)) {
2026 			retval = PTR_ERR(tty);
2027 			goto err_unlock;
2028 		}
2029 	}
2030 
2031 	if (tty) {
2032 		tty_lock(tty);
2033 		retval = tty_reopen(tty);
2034 		if (retval < 0) {
2035 			tty_unlock(tty);
2036 			tty = ERR_PTR(retval);
2037 		}
2038 	} else	/* Returns with the tty_lock held for now */
2039 		tty = tty_init_dev(driver, index);
2040 
2041 	mutex_unlock(&tty_mutex);
2042 	if (driver)
2043 		tty_driver_kref_put(driver);
2044 	if (IS_ERR(tty)) {
2045 		retval = PTR_ERR(tty);
2046 		goto err_file;
2047 	}
2048 
2049 	tty_add_file(tty, filp);
2050 
2051 	check_tty_count(tty, __func__);
2052 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2053 	    tty->driver->subtype == PTY_TYPE_MASTER)
2054 		noctty = 1;
2055 #ifdef TTY_DEBUG_HANGUP
2056 	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2057 #endif
2058 	if (tty->ops->open)
2059 		retval = tty->ops->open(tty, filp);
2060 	else
2061 		retval = -ENODEV;
2062 	filp->f_flags = saved_flags;
2063 
2064 	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2065 						!capable(CAP_SYS_ADMIN))
2066 		retval = -EBUSY;
2067 
2068 	if (retval) {
2069 #ifdef TTY_DEBUG_HANGUP
2070 		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2071 				retval, tty->name);
2072 #endif
2073 		tty_unlock(tty); /* need to call tty_release without BTM */
2074 		tty_release(inode, filp);
2075 		if (retval != -ERESTARTSYS)
2076 			return retval;
2077 
2078 		if (signal_pending(current))
2079 			return retval;
2080 
2081 		schedule();
2082 		/*
2083 		 * Need to reset f_op in case a hangup happened.
2084 		 */
2085 		if (filp->f_op == &hung_up_tty_fops)
2086 			filp->f_op = &tty_fops;
2087 		goto retry_open;
2088 	}
2089 	clear_bit(TTY_HUPPED, &tty->flags);
2090 	tty_unlock(tty);
2091 
2092 
2093 	mutex_lock(&tty_mutex);
2094 	tty_lock(tty);
2095 	spin_lock_irq(&current->sighand->siglock);
2096 	if (!noctty &&
2097 	    current->signal->leader &&
2098 	    !current->signal->tty &&
2099 	    tty->session == NULL)
2100 		__proc_set_tty(current, tty);
2101 	spin_unlock_irq(&current->sighand->siglock);
2102 	tty_unlock(tty);
2103 	mutex_unlock(&tty_mutex);
2104 	return 0;
2105 err_unlock:
2106 	mutex_unlock(&tty_mutex);
2107 	/* after locks to avoid deadlock */
2108 	if (!IS_ERR_OR_NULL(driver))
2109 		tty_driver_kref_put(driver);
2110 err_file:
2111 	tty_free_file(filp);
2112 	return retval;
2113 }
2114 
2115 
2116 
2117 /**
2118  *	tty_poll	-	check tty status
2119  *	@filp: file being polled
2120  *	@wait: poll wait structures to update
2121  *
2122  *	Call the line discipline polling method to obtain the poll
2123  *	status of the device.
2124  *
2125  *	Locking: locks called line discipline but ldisc poll method
2126  *	may be re-entered freely by other callers.
2127  */
2128 
2129 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2130 {
2131 	struct tty_struct *tty = file_tty(filp);
2132 	struct tty_ldisc *ld;
2133 	int ret = 0;
2134 
2135 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2136 		return 0;
2137 
2138 	ld = tty_ldisc_ref_wait(tty);
2139 	if (ld->ops->poll)
2140 		ret = (ld->ops->poll)(tty, filp, wait);
2141 	tty_ldisc_deref(ld);
2142 	return ret;
2143 }
2144 
2145 static int __tty_fasync(int fd, struct file *filp, int on)
2146 {
2147 	struct tty_struct *tty = file_tty(filp);
2148 	struct tty_ldisc *ldisc;
2149 	unsigned long flags;
2150 	int retval = 0;
2151 
2152 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2153 		goto out;
2154 
2155 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2156 	if (retval <= 0)
2157 		goto out;
2158 
2159 	ldisc = tty_ldisc_ref(tty);
2160 	if (ldisc) {
2161 		if (ldisc->ops->fasync)
2162 			ldisc->ops->fasync(tty, on);
2163 		tty_ldisc_deref(ldisc);
2164 	}
2165 
2166 	if (on) {
2167 		enum pid_type type;
2168 		struct pid *pid;
2169 
2170 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2171 		if (tty->pgrp) {
2172 			pid = tty->pgrp;
2173 			type = PIDTYPE_PGID;
2174 		} else {
2175 			pid = task_pid(current);
2176 			type = PIDTYPE_PID;
2177 		}
2178 		get_pid(pid);
2179 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2180 		retval = __f_setown(filp, pid, type, 0);
2181 		put_pid(pid);
2182 	}
2183 out:
2184 	return retval;
2185 }
2186 
2187 static int tty_fasync(int fd, struct file *filp, int on)
2188 {
2189 	struct tty_struct *tty = file_tty(filp);
2190 	int retval;
2191 
2192 	tty_lock(tty);
2193 	retval = __tty_fasync(fd, filp, on);
2194 	tty_unlock(tty);
2195 
2196 	return retval;
2197 }
2198 
2199 /**
2200  *	tiocsti			-	fake input character
2201  *	@tty: tty to fake input into
2202  *	@p: pointer to character
2203  *
2204  *	Fake input to a tty device. Does the necessary locking and
2205  *	input management.
2206  *
2207  *	FIXME: does not honour flow control ??
2208  *
2209  *	Locking:
2210  *		Called functions take tty_ldiscs_lock
2211  *		current->signal->tty check is safe without locks
2212  *
2213  *	FIXME: may race normal receive processing
2214  */
2215 
2216 static int tiocsti(struct tty_struct *tty, char __user *p)
2217 {
2218 	char ch, mbz = 0;
2219 	struct tty_ldisc *ld;
2220 
2221 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2222 		return -EPERM;
2223 	if (get_user(ch, p))
2224 		return -EFAULT;
2225 	tty_audit_tiocsti(tty, ch);
2226 	ld = tty_ldisc_ref_wait(tty);
2227 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2228 	tty_ldisc_deref(ld);
2229 	return 0;
2230 }
2231 
2232 /**
2233  *	tiocgwinsz		-	implement window query ioctl
2234  *	@tty; tty
2235  *	@arg: user buffer for result
2236  *
2237  *	Copies the kernel idea of the window size into the user buffer.
2238  *
2239  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2240  *		is consistent.
2241  */
2242 
2243 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2244 {
2245 	int err;
2246 
2247 	mutex_lock(&tty->winsize_mutex);
2248 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2249 	mutex_unlock(&tty->winsize_mutex);
2250 
2251 	return err ? -EFAULT: 0;
2252 }
2253 
2254 /**
2255  *	tty_do_resize		-	resize event
2256  *	@tty: tty being resized
2257  *	@rows: rows (character)
2258  *	@cols: cols (character)
2259  *
2260  *	Update the termios variables and send the necessary signals to
2261  *	peform a terminal resize correctly
2262  */
2263 
2264 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2265 {
2266 	struct pid *pgrp;
2267 	unsigned long flags;
2268 
2269 	/* Lock the tty */
2270 	mutex_lock(&tty->winsize_mutex);
2271 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2272 		goto done;
2273 	/* Get the PID values and reference them so we can
2274 	   avoid holding the tty ctrl lock while sending signals */
2275 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2276 	pgrp = get_pid(tty->pgrp);
2277 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2278 
2279 	if (pgrp)
2280 		kill_pgrp(pgrp, SIGWINCH, 1);
2281 	put_pid(pgrp);
2282 
2283 	tty->winsize = *ws;
2284 done:
2285 	mutex_unlock(&tty->winsize_mutex);
2286 	return 0;
2287 }
2288 EXPORT_SYMBOL(tty_do_resize);
2289 
2290 /**
2291  *	tiocswinsz		-	implement window size set ioctl
2292  *	@tty; tty side of tty
2293  *	@arg: user buffer for result
2294  *
2295  *	Copies the user idea of the window size to the kernel. Traditionally
2296  *	this is just advisory information but for the Linux console it
2297  *	actually has driver level meaning and triggers a VC resize.
2298  *
2299  *	Locking:
2300  *		Driver dependent. The default do_resize method takes the
2301  *	tty termios mutex and ctrl_lock. The console takes its own lock
2302  *	then calls into the default method.
2303  */
2304 
2305 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2306 {
2307 	struct winsize tmp_ws;
2308 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2309 		return -EFAULT;
2310 
2311 	if (tty->ops->resize)
2312 		return tty->ops->resize(tty, &tmp_ws);
2313 	else
2314 		return tty_do_resize(tty, &tmp_ws);
2315 }
2316 
2317 /**
2318  *	tioccons	-	allow admin to move logical console
2319  *	@file: the file to become console
2320  *
2321  *	Allow the administrator to move the redirected console device
2322  *
2323  *	Locking: uses redirect_lock to guard the redirect information
2324  */
2325 
2326 static int tioccons(struct file *file)
2327 {
2328 	if (!capable(CAP_SYS_ADMIN))
2329 		return -EPERM;
2330 	if (file->f_op->write == redirected_tty_write) {
2331 		struct file *f;
2332 		spin_lock(&redirect_lock);
2333 		f = redirect;
2334 		redirect = NULL;
2335 		spin_unlock(&redirect_lock);
2336 		if (f)
2337 			fput(f);
2338 		return 0;
2339 	}
2340 	spin_lock(&redirect_lock);
2341 	if (redirect) {
2342 		spin_unlock(&redirect_lock);
2343 		return -EBUSY;
2344 	}
2345 	redirect = get_file(file);
2346 	spin_unlock(&redirect_lock);
2347 	return 0;
2348 }
2349 
2350 /**
2351  *	fionbio		-	non blocking ioctl
2352  *	@file: file to set blocking value
2353  *	@p: user parameter
2354  *
2355  *	Historical tty interfaces had a blocking control ioctl before
2356  *	the generic functionality existed. This piece of history is preserved
2357  *	in the expected tty API of posix OS's.
2358  *
2359  *	Locking: none, the open file handle ensures it won't go away.
2360  */
2361 
2362 static int fionbio(struct file *file, int __user *p)
2363 {
2364 	int nonblock;
2365 
2366 	if (get_user(nonblock, p))
2367 		return -EFAULT;
2368 
2369 	spin_lock(&file->f_lock);
2370 	if (nonblock)
2371 		file->f_flags |= O_NONBLOCK;
2372 	else
2373 		file->f_flags &= ~O_NONBLOCK;
2374 	spin_unlock(&file->f_lock);
2375 	return 0;
2376 }
2377 
2378 /**
2379  *	tiocsctty	-	set controlling tty
2380  *	@tty: tty structure
2381  *	@arg: user argument
2382  *
2383  *	This ioctl is used to manage job control. It permits a session
2384  *	leader to set this tty as the controlling tty for the session.
2385  *
2386  *	Locking:
2387  *		Takes tty_mutex() to protect tty instance
2388  *		Takes tasklist_lock internally to walk sessions
2389  *		Takes ->siglock() when updating signal->tty
2390  */
2391 
2392 static int tiocsctty(struct tty_struct *tty, int arg)
2393 {
2394 	int ret = 0;
2395 	if (current->signal->leader && (task_session(current) == tty->session))
2396 		return ret;
2397 
2398 	mutex_lock(&tty_mutex);
2399 	/*
2400 	 * The process must be a session leader and
2401 	 * not have a controlling tty already.
2402 	 */
2403 	if (!current->signal->leader || current->signal->tty) {
2404 		ret = -EPERM;
2405 		goto unlock;
2406 	}
2407 
2408 	if (tty->session) {
2409 		/*
2410 		 * This tty is already the controlling
2411 		 * tty for another session group!
2412 		 */
2413 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2414 			/*
2415 			 * Steal it away
2416 			 */
2417 			read_lock(&tasklist_lock);
2418 			session_clear_tty(tty->session);
2419 			read_unlock(&tasklist_lock);
2420 		} else {
2421 			ret = -EPERM;
2422 			goto unlock;
2423 		}
2424 	}
2425 	proc_set_tty(current, tty);
2426 unlock:
2427 	mutex_unlock(&tty_mutex);
2428 	return ret;
2429 }
2430 
2431 /**
2432  *	tty_get_pgrp	-	return a ref counted pgrp pid
2433  *	@tty: tty to read
2434  *
2435  *	Returns a refcounted instance of the pid struct for the process
2436  *	group controlling the tty.
2437  */
2438 
2439 struct pid *tty_get_pgrp(struct tty_struct *tty)
2440 {
2441 	unsigned long flags;
2442 	struct pid *pgrp;
2443 
2444 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2445 	pgrp = get_pid(tty->pgrp);
2446 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2447 
2448 	return pgrp;
2449 }
2450 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2451 
2452 /**
2453  *	tiocgpgrp		-	get process group
2454  *	@tty: tty passed by user
2455  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2456  *	@p: returned pid
2457  *
2458  *	Obtain the process group of the tty. If there is no process group
2459  *	return an error.
2460  *
2461  *	Locking: none. Reference to current->signal->tty is safe.
2462  */
2463 
2464 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2465 {
2466 	struct pid *pid;
2467 	int ret;
2468 	/*
2469 	 * (tty == real_tty) is a cheap way of
2470 	 * testing if the tty is NOT a master pty.
2471 	 */
2472 	if (tty == real_tty && current->signal->tty != real_tty)
2473 		return -ENOTTY;
2474 	pid = tty_get_pgrp(real_tty);
2475 	ret =  put_user(pid_vnr(pid), p);
2476 	put_pid(pid);
2477 	return ret;
2478 }
2479 
2480 /**
2481  *	tiocspgrp		-	attempt to set process group
2482  *	@tty: tty passed by user
2483  *	@real_tty: tty side device matching tty passed by user
2484  *	@p: pid pointer
2485  *
2486  *	Set the process group of the tty to the session passed. Only
2487  *	permitted where the tty session is our session.
2488  *
2489  *	Locking: RCU, ctrl lock
2490  */
2491 
2492 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2493 {
2494 	struct pid *pgrp;
2495 	pid_t pgrp_nr;
2496 	int retval = tty_check_change(real_tty);
2497 	unsigned long flags;
2498 
2499 	if (retval == -EIO)
2500 		return -ENOTTY;
2501 	if (retval)
2502 		return retval;
2503 	if (!current->signal->tty ||
2504 	    (current->signal->tty != real_tty) ||
2505 	    (real_tty->session != task_session(current)))
2506 		return -ENOTTY;
2507 	if (get_user(pgrp_nr, p))
2508 		return -EFAULT;
2509 	if (pgrp_nr < 0)
2510 		return -EINVAL;
2511 	rcu_read_lock();
2512 	pgrp = find_vpid(pgrp_nr);
2513 	retval = -ESRCH;
2514 	if (!pgrp)
2515 		goto out_unlock;
2516 	retval = -EPERM;
2517 	if (session_of_pgrp(pgrp) != task_session(current))
2518 		goto out_unlock;
2519 	retval = 0;
2520 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2521 	put_pid(real_tty->pgrp);
2522 	real_tty->pgrp = get_pid(pgrp);
2523 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2524 out_unlock:
2525 	rcu_read_unlock();
2526 	return retval;
2527 }
2528 
2529 /**
2530  *	tiocgsid		-	get session id
2531  *	@tty: tty passed by user
2532  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2533  *	@p: pointer to returned session id
2534  *
2535  *	Obtain the session id of the tty. If there is no session
2536  *	return an error.
2537  *
2538  *	Locking: none. Reference to current->signal->tty is safe.
2539  */
2540 
2541 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2542 {
2543 	/*
2544 	 * (tty == real_tty) is a cheap way of
2545 	 * testing if the tty is NOT a master pty.
2546 	*/
2547 	if (tty == real_tty && current->signal->tty != real_tty)
2548 		return -ENOTTY;
2549 	if (!real_tty->session)
2550 		return -ENOTTY;
2551 	return put_user(pid_vnr(real_tty->session), p);
2552 }
2553 
2554 /**
2555  *	tiocsetd	-	set line discipline
2556  *	@tty: tty device
2557  *	@p: pointer to user data
2558  *
2559  *	Set the line discipline according to user request.
2560  *
2561  *	Locking: see tty_set_ldisc, this function is just a helper
2562  */
2563 
2564 static int tiocsetd(struct tty_struct *tty, int __user *p)
2565 {
2566 	int ldisc;
2567 	int ret;
2568 
2569 	if (get_user(ldisc, p))
2570 		return -EFAULT;
2571 
2572 	ret = tty_set_ldisc(tty, ldisc);
2573 
2574 	return ret;
2575 }
2576 
2577 /**
2578  *	send_break	-	performed time break
2579  *	@tty: device to break on
2580  *	@duration: timeout in mS
2581  *
2582  *	Perform a timed break on hardware that lacks its own driver level
2583  *	timed break functionality.
2584  *
2585  *	Locking:
2586  *		atomic_write_lock serializes
2587  *
2588  */
2589 
2590 static int send_break(struct tty_struct *tty, unsigned int duration)
2591 {
2592 	int retval;
2593 
2594 	if (tty->ops->break_ctl == NULL)
2595 		return 0;
2596 
2597 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2598 		retval = tty->ops->break_ctl(tty, duration);
2599 	else {
2600 		/* Do the work ourselves */
2601 		if (tty_write_lock(tty, 0) < 0)
2602 			return -EINTR;
2603 		retval = tty->ops->break_ctl(tty, -1);
2604 		if (retval)
2605 			goto out;
2606 		if (!signal_pending(current))
2607 			msleep_interruptible(duration);
2608 		retval = tty->ops->break_ctl(tty, 0);
2609 out:
2610 		tty_write_unlock(tty);
2611 		if (signal_pending(current))
2612 			retval = -EINTR;
2613 	}
2614 	return retval;
2615 }
2616 
2617 /**
2618  *	tty_tiocmget		-	get modem status
2619  *	@tty: tty device
2620  *	@file: user file pointer
2621  *	@p: pointer to result
2622  *
2623  *	Obtain the modem status bits from the tty driver if the feature
2624  *	is supported. Return -EINVAL if it is not available.
2625  *
2626  *	Locking: none (up to the driver)
2627  */
2628 
2629 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2630 {
2631 	int retval = -EINVAL;
2632 
2633 	if (tty->ops->tiocmget) {
2634 		retval = tty->ops->tiocmget(tty);
2635 
2636 		if (retval >= 0)
2637 			retval = put_user(retval, p);
2638 	}
2639 	return retval;
2640 }
2641 
2642 /**
2643  *	tty_tiocmset		-	set modem status
2644  *	@tty: tty device
2645  *	@cmd: command - clear bits, set bits or set all
2646  *	@p: pointer to desired bits
2647  *
2648  *	Set the modem status bits from the tty driver if the feature
2649  *	is supported. Return -EINVAL if it is not available.
2650  *
2651  *	Locking: none (up to the driver)
2652  */
2653 
2654 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2655 	     unsigned __user *p)
2656 {
2657 	int retval;
2658 	unsigned int set, clear, val;
2659 
2660 	if (tty->ops->tiocmset == NULL)
2661 		return -EINVAL;
2662 
2663 	retval = get_user(val, p);
2664 	if (retval)
2665 		return retval;
2666 	set = clear = 0;
2667 	switch (cmd) {
2668 	case TIOCMBIS:
2669 		set = val;
2670 		break;
2671 	case TIOCMBIC:
2672 		clear = val;
2673 		break;
2674 	case TIOCMSET:
2675 		set = val;
2676 		clear = ~val;
2677 		break;
2678 	}
2679 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2680 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2681 	return tty->ops->tiocmset(tty, set, clear);
2682 }
2683 
2684 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2685 {
2686 	int retval = -EINVAL;
2687 	struct serial_icounter_struct icount;
2688 	memset(&icount, 0, sizeof(icount));
2689 	if (tty->ops->get_icount)
2690 		retval = tty->ops->get_icount(tty, &icount);
2691 	if (retval != 0)
2692 		return retval;
2693 	if (copy_to_user(arg, &icount, sizeof(icount)))
2694 		return -EFAULT;
2695 	return 0;
2696 }
2697 
2698 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2699 {
2700 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2701 	    tty->driver->subtype == PTY_TYPE_MASTER)
2702 		tty = tty->link;
2703 	return tty;
2704 }
2705 EXPORT_SYMBOL(tty_pair_get_tty);
2706 
2707 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2708 {
2709 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2710 	    tty->driver->subtype == PTY_TYPE_MASTER)
2711 	    return tty;
2712 	return tty->link;
2713 }
2714 EXPORT_SYMBOL(tty_pair_get_pty);
2715 
2716 /*
2717  * Split this up, as gcc can choke on it otherwise..
2718  */
2719 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2720 {
2721 	struct tty_struct *tty = file_tty(file);
2722 	struct tty_struct *real_tty;
2723 	void __user *p = (void __user *)arg;
2724 	int retval;
2725 	struct tty_ldisc *ld;
2726 
2727 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2728 		return -EINVAL;
2729 
2730 	real_tty = tty_pair_get_tty(tty);
2731 
2732 	/*
2733 	 * Factor out some common prep work
2734 	 */
2735 	switch (cmd) {
2736 	case TIOCSETD:
2737 	case TIOCSBRK:
2738 	case TIOCCBRK:
2739 	case TCSBRK:
2740 	case TCSBRKP:
2741 		retval = tty_check_change(tty);
2742 		if (retval)
2743 			return retval;
2744 		if (cmd != TIOCCBRK) {
2745 			tty_wait_until_sent(tty, 0);
2746 			if (signal_pending(current))
2747 				return -EINTR;
2748 		}
2749 		break;
2750 	}
2751 
2752 	/*
2753 	 *	Now do the stuff.
2754 	 */
2755 	switch (cmd) {
2756 	case TIOCSTI:
2757 		return tiocsti(tty, p);
2758 	case TIOCGWINSZ:
2759 		return tiocgwinsz(real_tty, p);
2760 	case TIOCSWINSZ:
2761 		return tiocswinsz(real_tty, p);
2762 	case TIOCCONS:
2763 		return real_tty != tty ? -EINVAL : tioccons(file);
2764 	case FIONBIO:
2765 		return fionbio(file, p);
2766 	case TIOCEXCL:
2767 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2768 		return 0;
2769 	case TIOCNXCL:
2770 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2771 		return 0;
2772 	case TIOCGEXCL:
2773 	{
2774 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2775 		return put_user(excl, (int __user *)p);
2776 	}
2777 	case TIOCNOTTY:
2778 		if (current->signal->tty != tty)
2779 			return -ENOTTY;
2780 		no_tty();
2781 		return 0;
2782 	case TIOCSCTTY:
2783 		return tiocsctty(tty, arg);
2784 	case TIOCGPGRP:
2785 		return tiocgpgrp(tty, real_tty, p);
2786 	case TIOCSPGRP:
2787 		return tiocspgrp(tty, real_tty, p);
2788 	case TIOCGSID:
2789 		return tiocgsid(tty, real_tty, p);
2790 	case TIOCGETD:
2791 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2792 	case TIOCSETD:
2793 		return tiocsetd(tty, p);
2794 	case TIOCVHANGUP:
2795 		if (!capable(CAP_SYS_ADMIN))
2796 			return -EPERM;
2797 		tty_vhangup(tty);
2798 		return 0;
2799 	case TIOCGDEV:
2800 	{
2801 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2802 		return put_user(ret, (unsigned int __user *)p);
2803 	}
2804 	/*
2805 	 * Break handling
2806 	 */
2807 	case TIOCSBRK:	/* Turn break on, unconditionally */
2808 		if (tty->ops->break_ctl)
2809 			return tty->ops->break_ctl(tty, -1);
2810 		return 0;
2811 	case TIOCCBRK:	/* Turn break off, unconditionally */
2812 		if (tty->ops->break_ctl)
2813 			return tty->ops->break_ctl(tty, 0);
2814 		return 0;
2815 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2816 		/* non-zero arg means wait for all output data
2817 		 * to be sent (performed above) but don't send break.
2818 		 * This is used by the tcdrain() termios function.
2819 		 */
2820 		if (!arg)
2821 			return send_break(tty, 250);
2822 		return 0;
2823 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2824 		return send_break(tty, arg ? arg*100 : 250);
2825 
2826 	case TIOCMGET:
2827 		return tty_tiocmget(tty, p);
2828 	case TIOCMSET:
2829 	case TIOCMBIC:
2830 	case TIOCMBIS:
2831 		return tty_tiocmset(tty, cmd, p);
2832 	case TIOCGICOUNT:
2833 		retval = tty_tiocgicount(tty, p);
2834 		/* For the moment allow fall through to the old method */
2835         	if (retval != -EINVAL)
2836 			return retval;
2837 		break;
2838 	case TCFLSH:
2839 		switch (arg) {
2840 		case TCIFLUSH:
2841 		case TCIOFLUSH:
2842 		/* flush tty buffer and allow ldisc to process ioctl */
2843 			tty_buffer_flush(tty);
2844 			break;
2845 		}
2846 		break;
2847 	}
2848 	if (tty->ops->ioctl) {
2849 		retval = (tty->ops->ioctl)(tty, cmd, arg);
2850 		if (retval != -ENOIOCTLCMD)
2851 			return retval;
2852 	}
2853 	ld = tty_ldisc_ref_wait(tty);
2854 	retval = -EINVAL;
2855 	if (ld->ops->ioctl) {
2856 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2857 		if (retval == -ENOIOCTLCMD)
2858 			retval = -ENOTTY;
2859 	}
2860 	tty_ldisc_deref(ld);
2861 	return retval;
2862 }
2863 
2864 #ifdef CONFIG_COMPAT
2865 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2866 				unsigned long arg)
2867 {
2868 	struct tty_struct *tty = file_tty(file);
2869 	struct tty_ldisc *ld;
2870 	int retval = -ENOIOCTLCMD;
2871 
2872 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2873 		return -EINVAL;
2874 
2875 	if (tty->ops->compat_ioctl) {
2876 		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2877 		if (retval != -ENOIOCTLCMD)
2878 			return retval;
2879 	}
2880 
2881 	ld = tty_ldisc_ref_wait(tty);
2882 	if (ld->ops->compat_ioctl)
2883 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2884 	else
2885 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2886 	tty_ldisc_deref(ld);
2887 
2888 	return retval;
2889 }
2890 #endif
2891 
2892 static int this_tty(const void *t, struct file *file, unsigned fd)
2893 {
2894 	if (likely(file->f_op->read != tty_read))
2895 		return 0;
2896 	return file_tty(file) != t ? 0 : fd + 1;
2897 }
2898 
2899 /*
2900  * This implements the "Secure Attention Key" ---  the idea is to
2901  * prevent trojan horses by killing all processes associated with this
2902  * tty when the user hits the "Secure Attention Key".  Required for
2903  * super-paranoid applications --- see the Orange Book for more details.
2904  *
2905  * This code could be nicer; ideally it should send a HUP, wait a few
2906  * seconds, then send a INT, and then a KILL signal.  But you then
2907  * have to coordinate with the init process, since all processes associated
2908  * with the current tty must be dead before the new getty is allowed
2909  * to spawn.
2910  *
2911  * Now, if it would be correct ;-/ The current code has a nasty hole -
2912  * it doesn't catch files in flight. We may send the descriptor to ourselves
2913  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2914  *
2915  * Nasty bug: do_SAK is being called in interrupt context.  This can
2916  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2917  */
2918 void __do_SAK(struct tty_struct *tty)
2919 {
2920 #ifdef TTY_SOFT_SAK
2921 	tty_hangup(tty);
2922 #else
2923 	struct task_struct *g, *p;
2924 	struct pid *session;
2925 	int		i;
2926 
2927 	if (!tty)
2928 		return;
2929 	session = tty->session;
2930 
2931 	tty_ldisc_flush(tty);
2932 
2933 	tty_driver_flush_buffer(tty);
2934 
2935 	read_lock(&tasklist_lock);
2936 	/* Kill the entire session */
2937 	do_each_pid_task(session, PIDTYPE_SID, p) {
2938 		printk(KERN_NOTICE "SAK: killed process %d"
2939 			" (%s): task_session(p)==tty->session\n",
2940 			task_pid_nr(p), p->comm);
2941 		send_sig(SIGKILL, p, 1);
2942 	} while_each_pid_task(session, PIDTYPE_SID, p);
2943 	/* Now kill any processes that happen to have the
2944 	 * tty open.
2945 	 */
2946 	do_each_thread(g, p) {
2947 		if (p->signal->tty == tty) {
2948 			printk(KERN_NOTICE "SAK: killed process %d"
2949 			    " (%s): task_session(p)==tty->session\n",
2950 			    task_pid_nr(p), p->comm);
2951 			send_sig(SIGKILL, p, 1);
2952 			continue;
2953 		}
2954 		task_lock(p);
2955 		i = iterate_fd(p->files, 0, this_tty, tty);
2956 		if (i != 0) {
2957 			printk(KERN_NOTICE "SAK: killed process %d"
2958 			    " (%s): fd#%d opened to the tty\n",
2959 				    task_pid_nr(p), p->comm, i - 1);
2960 			force_sig(SIGKILL, p);
2961 		}
2962 		task_unlock(p);
2963 	} while_each_thread(g, p);
2964 	read_unlock(&tasklist_lock);
2965 #endif
2966 }
2967 
2968 static void do_SAK_work(struct work_struct *work)
2969 {
2970 	struct tty_struct *tty =
2971 		container_of(work, struct tty_struct, SAK_work);
2972 	__do_SAK(tty);
2973 }
2974 
2975 /*
2976  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2977  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2978  * the values which we write to it will be identical to the values which it
2979  * already has. --akpm
2980  */
2981 void do_SAK(struct tty_struct *tty)
2982 {
2983 	if (!tty)
2984 		return;
2985 	schedule_work(&tty->SAK_work);
2986 }
2987 
2988 EXPORT_SYMBOL(do_SAK);
2989 
2990 static int dev_match_devt(struct device *dev, const void *data)
2991 {
2992 	const dev_t *devt = data;
2993 	return dev->devt == *devt;
2994 }
2995 
2996 /* Must put_device() after it's unused! */
2997 static struct device *tty_get_device(struct tty_struct *tty)
2998 {
2999 	dev_t devt = tty_devnum(tty);
3000 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3001 }
3002 
3003 
3004 /**
3005  *	initialize_tty_struct
3006  *	@tty: tty to initialize
3007  *
3008  *	This subroutine initializes a tty structure that has been newly
3009  *	allocated.
3010  *
3011  *	Locking: none - tty in question must not be exposed at this point
3012  */
3013 
3014 void initialize_tty_struct(struct tty_struct *tty,
3015 		struct tty_driver *driver, int idx)
3016 {
3017 	memset(tty, 0, sizeof(struct tty_struct));
3018 	kref_init(&tty->kref);
3019 	tty->magic = TTY_MAGIC;
3020 	tty_ldisc_init(tty);
3021 	tty->session = NULL;
3022 	tty->pgrp = NULL;
3023 	mutex_init(&tty->legacy_mutex);
3024 	mutex_init(&tty->throttle_mutex);
3025 	init_rwsem(&tty->termios_rwsem);
3026 	mutex_init(&tty->winsize_mutex);
3027 	init_ldsem(&tty->ldisc_sem);
3028 	init_waitqueue_head(&tty->write_wait);
3029 	init_waitqueue_head(&tty->read_wait);
3030 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3031 	mutex_init(&tty->atomic_write_lock);
3032 	spin_lock_init(&tty->ctrl_lock);
3033 	INIT_LIST_HEAD(&tty->tty_files);
3034 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3035 
3036 	tty->driver = driver;
3037 	tty->ops = driver->ops;
3038 	tty->index = idx;
3039 	tty_line_name(driver, idx, tty->name);
3040 	tty->dev = tty_get_device(tty);
3041 }
3042 
3043 /**
3044  *	deinitialize_tty_struct
3045  *	@tty: tty to deinitialize
3046  *
3047  *	This subroutine deinitializes a tty structure that has been newly
3048  *	allocated but tty_release cannot be called on that yet.
3049  *
3050  *	Locking: none - tty in question must not be exposed at this point
3051  */
3052 void deinitialize_tty_struct(struct tty_struct *tty)
3053 {
3054 	tty_ldisc_deinit(tty);
3055 }
3056 
3057 /**
3058  *	tty_put_char	-	write one character to a tty
3059  *	@tty: tty
3060  *	@ch: character
3061  *
3062  *	Write one byte to the tty using the provided put_char method
3063  *	if present. Returns the number of characters successfully output.
3064  *
3065  *	Note: the specific put_char operation in the driver layer may go
3066  *	away soon. Don't call it directly, use this method
3067  */
3068 
3069 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3070 {
3071 	if (tty->ops->put_char)
3072 		return tty->ops->put_char(tty, ch);
3073 	return tty->ops->write(tty, &ch, 1);
3074 }
3075 EXPORT_SYMBOL_GPL(tty_put_char);
3076 
3077 struct class *tty_class;
3078 
3079 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3080 		unsigned int index, unsigned int count)
3081 {
3082 	/* init here, since reused cdevs cause crashes */
3083 	cdev_init(&driver->cdevs[index], &tty_fops);
3084 	driver->cdevs[index].owner = driver->owner;
3085 	return cdev_add(&driver->cdevs[index], dev, count);
3086 }
3087 
3088 /**
3089  *	tty_register_device - register a tty device
3090  *	@driver: the tty driver that describes the tty device
3091  *	@index: the index in the tty driver for this tty device
3092  *	@device: a struct device that is associated with this tty device.
3093  *		This field is optional, if there is no known struct device
3094  *		for this tty device it can be set to NULL safely.
3095  *
3096  *	Returns a pointer to the struct device for this tty device
3097  *	(or ERR_PTR(-EFOO) on error).
3098  *
3099  *	This call is required to be made to register an individual tty device
3100  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3101  *	that bit is not set, this function should not be called by a tty
3102  *	driver.
3103  *
3104  *	Locking: ??
3105  */
3106 
3107 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3108 				   struct device *device)
3109 {
3110 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3111 }
3112 EXPORT_SYMBOL(tty_register_device);
3113 
3114 static void tty_device_create_release(struct device *dev)
3115 {
3116 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3117 	kfree(dev);
3118 }
3119 
3120 /**
3121  *	tty_register_device_attr - register a tty device
3122  *	@driver: the tty driver that describes the tty device
3123  *	@index: the index in the tty driver for this tty device
3124  *	@device: a struct device that is associated with this tty device.
3125  *		This field is optional, if there is no known struct device
3126  *		for this tty device it can be set to NULL safely.
3127  *	@drvdata: Driver data to be set to device.
3128  *	@attr_grp: Attribute group to be set on device.
3129  *
3130  *	Returns a pointer to the struct device for this tty device
3131  *	(or ERR_PTR(-EFOO) on error).
3132  *
3133  *	This call is required to be made to register an individual tty device
3134  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3135  *	that bit is not set, this function should not be called by a tty
3136  *	driver.
3137  *
3138  *	Locking: ??
3139  */
3140 struct device *tty_register_device_attr(struct tty_driver *driver,
3141 				   unsigned index, struct device *device,
3142 				   void *drvdata,
3143 				   const struct attribute_group **attr_grp)
3144 {
3145 	char name[64];
3146 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3147 	struct device *dev = NULL;
3148 	int retval = -ENODEV;
3149 	bool cdev = false;
3150 
3151 	if (index >= driver->num) {
3152 		printk(KERN_ERR "Attempt to register invalid tty line number "
3153 		       " (%d).\n", index);
3154 		return ERR_PTR(-EINVAL);
3155 	}
3156 
3157 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3158 		pty_line_name(driver, index, name);
3159 	else
3160 		tty_line_name(driver, index, name);
3161 
3162 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3163 		retval = tty_cdev_add(driver, devt, index, 1);
3164 		if (retval)
3165 			goto error;
3166 		cdev = true;
3167 	}
3168 
3169 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3170 	if (!dev) {
3171 		retval = -ENOMEM;
3172 		goto error;
3173 	}
3174 
3175 	dev->devt = devt;
3176 	dev->class = tty_class;
3177 	dev->parent = device;
3178 	dev->release = tty_device_create_release;
3179 	dev_set_name(dev, "%s", name);
3180 	dev->groups = attr_grp;
3181 	dev_set_drvdata(dev, drvdata);
3182 
3183 	retval = device_register(dev);
3184 	if (retval)
3185 		goto error;
3186 
3187 	return dev;
3188 
3189 error:
3190 	put_device(dev);
3191 	if (cdev)
3192 		cdev_del(&driver->cdevs[index]);
3193 	return ERR_PTR(retval);
3194 }
3195 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3196 
3197 /**
3198  * 	tty_unregister_device - unregister a tty device
3199  * 	@driver: the tty driver that describes the tty device
3200  * 	@index: the index in the tty driver for this tty device
3201  *
3202  * 	If a tty device is registered with a call to tty_register_device() then
3203  *	this function must be called when the tty device is gone.
3204  *
3205  *	Locking: ??
3206  */
3207 
3208 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3209 {
3210 	device_destroy(tty_class,
3211 		MKDEV(driver->major, driver->minor_start) + index);
3212 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3213 		cdev_del(&driver->cdevs[index]);
3214 }
3215 EXPORT_SYMBOL(tty_unregister_device);
3216 
3217 /**
3218  * __tty_alloc_driver -- allocate tty driver
3219  * @lines: count of lines this driver can handle at most
3220  * @owner: module which is repsonsible for this driver
3221  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3222  *
3223  * This should not be called directly, some of the provided macros should be
3224  * used instead. Use IS_ERR and friends on @retval.
3225  */
3226 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3227 		unsigned long flags)
3228 {
3229 	struct tty_driver *driver;
3230 	unsigned int cdevs = 1;
3231 	int err;
3232 
3233 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3234 		return ERR_PTR(-EINVAL);
3235 
3236 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3237 	if (!driver)
3238 		return ERR_PTR(-ENOMEM);
3239 
3240 	kref_init(&driver->kref);
3241 	driver->magic = TTY_DRIVER_MAGIC;
3242 	driver->num = lines;
3243 	driver->owner = owner;
3244 	driver->flags = flags;
3245 
3246 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3247 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3248 				GFP_KERNEL);
3249 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3250 				GFP_KERNEL);
3251 		if (!driver->ttys || !driver->termios) {
3252 			err = -ENOMEM;
3253 			goto err_free_all;
3254 		}
3255 	}
3256 
3257 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3258 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3259 				GFP_KERNEL);
3260 		if (!driver->ports) {
3261 			err = -ENOMEM;
3262 			goto err_free_all;
3263 		}
3264 		cdevs = lines;
3265 	}
3266 
3267 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3268 	if (!driver->cdevs) {
3269 		err = -ENOMEM;
3270 		goto err_free_all;
3271 	}
3272 
3273 	return driver;
3274 err_free_all:
3275 	kfree(driver->ports);
3276 	kfree(driver->ttys);
3277 	kfree(driver->termios);
3278 	kfree(driver);
3279 	return ERR_PTR(err);
3280 }
3281 EXPORT_SYMBOL(__tty_alloc_driver);
3282 
3283 static void destruct_tty_driver(struct kref *kref)
3284 {
3285 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3286 	int i;
3287 	struct ktermios *tp;
3288 
3289 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3290 		/*
3291 		 * Free the termios and termios_locked structures because
3292 		 * we don't want to get memory leaks when modular tty
3293 		 * drivers are removed from the kernel.
3294 		 */
3295 		for (i = 0; i < driver->num; i++) {
3296 			tp = driver->termios[i];
3297 			if (tp) {
3298 				driver->termios[i] = NULL;
3299 				kfree(tp);
3300 			}
3301 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3302 				tty_unregister_device(driver, i);
3303 		}
3304 		proc_tty_unregister_driver(driver);
3305 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3306 			cdev_del(&driver->cdevs[0]);
3307 	}
3308 	kfree(driver->cdevs);
3309 	kfree(driver->ports);
3310 	kfree(driver->termios);
3311 	kfree(driver->ttys);
3312 	kfree(driver);
3313 }
3314 
3315 void tty_driver_kref_put(struct tty_driver *driver)
3316 {
3317 	kref_put(&driver->kref, destruct_tty_driver);
3318 }
3319 EXPORT_SYMBOL(tty_driver_kref_put);
3320 
3321 void tty_set_operations(struct tty_driver *driver,
3322 			const struct tty_operations *op)
3323 {
3324 	driver->ops = op;
3325 };
3326 EXPORT_SYMBOL(tty_set_operations);
3327 
3328 void put_tty_driver(struct tty_driver *d)
3329 {
3330 	tty_driver_kref_put(d);
3331 }
3332 EXPORT_SYMBOL(put_tty_driver);
3333 
3334 /*
3335  * Called by a tty driver to register itself.
3336  */
3337 int tty_register_driver(struct tty_driver *driver)
3338 {
3339 	int error;
3340 	int i;
3341 	dev_t dev;
3342 	struct device *d;
3343 
3344 	if (!driver->major) {
3345 		error = alloc_chrdev_region(&dev, driver->minor_start,
3346 						driver->num, driver->name);
3347 		if (!error) {
3348 			driver->major = MAJOR(dev);
3349 			driver->minor_start = MINOR(dev);
3350 		}
3351 	} else {
3352 		dev = MKDEV(driver->major, driver->minor_start);
3353 		error = register_chrdev_region(dev, driver->num, driver->name);
3354 	}
3355 	if (error < 0)
3356 		goto err;
3357 
3358 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3359 		error = tty_cdev_add(driver, dev, 0, driver->num);
3360 		if (error)
3361 			goto err_unreg_char;
3362 	}
3363 
3364 	mutex_lock(&tty_mutex);
3365 	list_add(&driver->tty_drivers, &tty_drivers);
3366 	mutex_unlock(&tty_mutex);
3367 
3368 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3369 		for (i = 0; i < driver->num; i++) {
3370 			d = tty_register_device(driver, i, NULL);
3371 			if (IS_ERR(d)) {
3372 				error = PTR_ERR(d);
3373 				goto err_unreg_devs;
3374 			}
3375 		}
3376 	}
3377 	proc_tty_register_driver(driver);
3378 	driver->flags |= TTY_DRIVER_INSTALLED;
3379 	return 0;
3380 
3381 err_unreg_devs:
3382 	for (i--; i >= 0; i--)
3383 		tty_unregister_device(driver, i);
3384 
3385 	mutex_lock(&tty_mutex);
3386 	list_del(&driver->tty_drivers);
3387 	mutex_unlock(&tty_mutex);
3388 
3389 err_unreg_char:
3390 	unregister_chrdev_region(dev, driver->num);
3391 err:
3392 	return error;
3393 }
3394 EXPORT_SYMBOL(tty_register_driver);
3395 
3396 /*
3397  * Called by a tty driver to unregister itself.
3398  */
3399 int tty_unregister_driver(struct tty_driver *driver)
3400 {
3401 #if 0
3402 	/* FIXME */
3403 	if (driver->refcount)
3404 		return -EBUSY;
3405 #endif
3406 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3407 				driver->num);
3408 	mutex_lock(&tty_mutex);
3409 	list_del(&driver->tty_drivers);
3410 	mutex_unlock(&tty_mutex);
3411 	return 0;
3412 }
3413 
3414 EXPORT_SYMBOL(tty_unregister_driver);
3415 
3416 dev_t tty_devnum(struct tty_struct *tty)
3417 {
3418 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3419 }
3420 EXPORT_SYMBOL(tty_devnum);
3421 
3422 void proc_clear_tty(struct task_struct *p)
3423 {
3424 	unsigned long flags;
3425 	struct tty_struct *tty;
3426 	spin_lock_irqsave(&p->sighand->siglock, flags);
3427 	tty = p->signal->tty;
3428 	p->signal->tty = NULL;
3429 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3430 	tty_kref_put(tty);
3431 }
3432 
3433 /* Called under the sighand lock */
3434 
3435 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3436 {
3437 	if (tty) {
3438 		unsigned long flags;
3439 		/* We should not have a session or pgrp to put here but.... */
3440 		spin_lock_irqsave(&tty->ctrl_lock, flags);
3441 		put_pid(tty->session);
3442 		put_pid(tty->pgrp);
3443 		tty->pgrp = get_pid(task_pgrp(tsk));
3444 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3445 		tty->session = get_pid(task_session(tsk));
3446 		if (tsk->signal->tty) {
3447 			printk(KERN_DEBUG "tty not NULL!!\n");
3448 			tty_kref_put(tsk->signal->tty);
3449 		}
3450 	}
3451 	put_pid(tsk->signal->tty_old_pgrp);
3452 	tsk->signal->tty = tty_kref_get(tty);
3453 	tsk->signal->tty_old_pgrp = NULL;
3454 }
3455 
3456 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3457 {
3458 	spin_lock_irq(&tsk->sighand->siglock);
3459 	__proc_set_tty(tsk, tty);
3460 	spin_unlock_irq(&tsk->sighand->siglock);
3461 }
3462 
3463 struct tty_struct *get_current_tty(void)
3464 {
3465 	struct tty_struct *tty;
3466 	unsigned long flags;
3467 
3468 	spin_lock_irqsave(&current->sighand->siglock, flags);
3469 	tty = tty_kref_get(current->signal->tty);
3470 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3471 	return tty;
3472 }
3473 EXPORT_SYMBOL_GPL(get_current_tty);
3474 
3475 void tty_default_fops(struct file_operations *fops)
3476 {
3477 	*fops = tty_fops;
3478 }
3479 
3480 /*
3481  * Initialize the console device. This is called *early*, so
3482  * we can't necessarily depend on lots of kernel help here.
3483  * Just do some early initializations, and do the complex setup
3484  * later.
3485  */
3486 void __init console_init(void)
3487 {
3488 	initcall_t *call;
3489 
3490 	/* Setup the default TTY line discipline. */
3491 	tty_ldisc_begin();
3492 
3493 	/*
3494 	 * set up the console device so that later boot sequences can
3495 	 * inform about problems etc..
3496 	 */
3497 	call = __con_initcall_start;
3498 	while (call < __con_initcall_end) {
3499 		(*call)();
3500 		call++;
3501 	}
3502 }
3503 
3504 static char *tty_devnode(struct device *dev, umode_t *mode)
3505 {
3506 	if (!mode)
3507 		return NULL;
3508 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3509 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3510 		*mode = 0666;
3511 	return NULL;
3512 }
3513 
3514 static int __init tty_class_init(void)
3515 {
3516 	tty_class = class_create(THIS_MODULE, "tty");
3517 	if (IS_ERR(tty_class))
3518 		return PTR_ERR(tty_class);
3519 	tty_class->devnode = tty_devnode;
3520 	return 0;
3521 }
3522 
3523 postcore_initcall(tty_class_init);
3524 
3525 /* 3/2004 jmc: why do these devices exist? */
3526 static struct cdev tty_cdev, console_cdev;
3527 
3528 static ssize_t show_cons_active(struct device *dev,
3529 				struct device_attribute *attr, char *buf)
3530 {
3531 	struct console *cs[16];
3532 	int i = 0;
3533 	struct console *c;
3534 	ssize_t count = 0;
3535 
3536 	console_lock();
3537 	for_each_console(c) {
3538 		if (!c->device)
3539 			continue;
3540 		if (!c->write)
3541 			continue;
3542 		if ((c->flags & CON_ENABLED) == 0)
3543 			continue;
3544 		cs[i++] = c;
3545 		if (i >= ARRAY_SIZE(cs))
3546 			break;
3547 	}
3548 	while (i--)
3549 		count += sprintf(buf + count, "%s%d%c",
3550 				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3551 	console_unlock();
3552 
3553 	return count;
3554 }
3555 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3556 
3557 static struct device *consdev;
3558 
3559 void console_sysfs_notify(void)
3560 {
3561 	if (consdev)
3562 		sysfs_notify(&consdev->kobj, NULL, "active");
3563 }
3564 
3565 /*
3566  * Ok, now we can initialize the rest of the tty devices and can count
3567  * on memory allocations, interrupts etc..
3568  */
3569 int __init tty_init(void)
3570 {
3571 	cdev_init(&tty_cdev, &tty_fops);
3572 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3573 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3574 		panic("Couldn't register /dev/tty driver\n");
3575 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3576 
3577 	cdev_init(&console_cdev, &console_fops);
3578 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3579 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3580 		panic("Couldn't register /dev/console driver\n");
3581 	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3582 			      "console");
3583 	if (IS_ERR(consdev))
3584 		consdev = NULL;
3585 	else
3586 		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3587 
3588 #ifdef CONFIG_VT
3589 	vty_init(&console_fops);
3590 #endif
3591 	return 0;
3592 }
3593 
3594