xref: /openbmc/linux/drivers/tty/tty_io.c (revision 0da85d1e)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112 
113 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
114 	.c_iflag = ICRNL | IXON,
115 	.c_oflag = OPOST | ONLCR,
116 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 		   ECHOCTL | ECHOKE | IEXTEN,
119 	.c_cc = INIT_C_CC,
120 	.c_ispeed = 38400,
121 	.c_ospeed = 38400
122 };
123 
124 EXPORT_SYMBOL(tty_std_termios);
125 
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129 
130 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
131 
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136 
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139 
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 							size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 				unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 
157 /**
158  *	free_tty_struct		-	free a disused tty
159  *	@tty: tty struct to free
160  *
161  *	Free the write buffers, tty queue and tty memory itself.
162  *
163  *	Locking: none. Must be called after tty is definitely unused
164  */
165 
166 void free_tty_struct(struct tty_struct *tty)
167 {
168 	if (!tty)
169 		return;
170 	put_device(tty->dev);
171 	kfree(tty->write_buf);
172 	tty->magic = 0xDEADDEAD;
173 	kfree(tty);
174 }
175 
176 static inline struct tty_struct *file_tty(struct file *file)
177 {
178 	return ((struct tty_file_private *)file->private_data)->tty;
179 }
180 
181 int tty_alloc_file(struct file *file)
182 {
183 	struct tty_file_private *priv;
184 
185 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
186 	if (!priv)
187 		return -ENOMEM;
188 
189 	file->private_data = priv;
190 
191 	return 0;
192 }
193 
194 /* Associate a new file with the tty structure */
195 void tty_add_file(struct tty_struct *tty, struct file *file)
196 {
197 	struct tty_file_private *priv = file->private_data;
198 
199 	priv->tty = tty;
200 	priv->file = file;
201 
202 	spin_lock(&tty_files_lock);
203 	list_add(&priv->list, &tty->tty_files);
204 	spin_unlock(&tty_files_lock);
205 }
206 
207 /**
208  * tty_free_file - free file->private_data
209  *
210  * This shall be used only for fail path handling when tty_add_file was not
211  * called yet.
212  */
213 void tty_free_file(struct file *file)
214 {
215 	struct tty_file_private *priv = file->private_data;
216 
217 	file->private_data = NULL;
218 	kfree(priv);
219 }
220 
221 /* Delete file from its tty */
222 static void tty_del_file(struct file *file)
223 {
224 	struct tty_file_private *priv = file->private_data;
225 
226 	spin_lock(&tty_files_lock);
227 	list_del(&priv->list);
228 	spin_unlock(&tty_files_lock);
229 	tty_free_file(file);
230 }
231 
232 
233 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
234 
235 /**
236  *	tty_name	-	return tty naming
237  *	@tty: tty structure
238  *	@buf: buffer for output
239  *
240  *	Convert a tty structure into a name. The name reflects the kernel
241  *	naming policy and if udev is in use may not reflect user space
242  *
243  *	Locking: none
244  */
245 
246 char *tty_name(struct tty_struct *tty, char *buf)
247 {
248 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
249 		strcpy(buf, "NULL tty");
250 	else
251 		strcpy(buf, tty->name);
252 	return buf;
253 }
254 
255 EXPORT_SYMBOL(tty_name);
256 
257 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
258 			      const char *routine)
259 {
260 #ifdef TTY_PARANOIA_CHECK
261 	if (!tty) {
262 		printk(KERN_WARNING
263 			"null TTY for (%d:%d) in %s\n",
264 			imajor(inode), iminor(inode), routine);
265 		return 1;
266 	}
267 	if (tty->magic != TTY_MAGIC) {
268 		printk(KERN_WARNING
269 			"bad magic number for tty struct (%d:%d) in %s\n",
270 			imajor(inode), iminor(inode), routine);
271 		return 1;
272 	}
273 #endif
274 	return 0;
275 }
276 
277 /* Caller must hold tty_lock */
278 static int check_tty_count(struct tty_struct *tty, const char *routine)
279 {
280 #ifdef CHECK_TTY_COUNT
281 	struct list_head *p;
282 	int count = 0;
283 
284 	spin_lock(&tty_files_lock);
285 	list_for_each(p, &tty->tty_files) {
286 		count++;
287 	}
288 	spin_unlock(&tty_files_lock);
289 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
290 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
291 	    tty->link && tty->link->count)
292 		count++;
293 	if (tty->count != count) {
294 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
295 				    "!= #fd's(%d) in %s\n",
296 		       tty->name, tty->count, count, routine);
297 		return count;
298 	}
299 #endif
300 	return 0;
301 }
302 
303 /**
304  *	get_tty_driver		-	find device of a tty
305  *	@dev_t: device identifier
306  *	@index: returns the index of the tty
307  *
308  *	This routine returns a tty driver structure, given a device number
309  *	and also passes back the index number.
310  *
311  *	Locking: caller must hold tty_mutex
312  */
313 
314 static struct tty_driver *get_tty_driver(dev_t device, int *index)
315 {
316 	struct tty_driver *p;
317 
318 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
319 		dev_t base = MKDEV(p->major, p->minor_start);
320 		if (device < base || device >= base + p->num)
321 			continue;
322 		*index = device - base;
323 		return tty_driver_kref_get(p);
324 	}
325 	return NULL;
326 }
327 
328 #ifdef CONFIG_CONSOLE_POLL
329 
330 /**
331  *	tty_find_polling_driver	-	find device of a polled tty
332  *	@name: name string to match
333  *	@line: pointer to resulting tty line nr
334  *
335  *	This routine returns a tty driver structure, given a name
336  *	and the condition that the tty driver is capable of polled
337  *	operation.
338  */
339 struct tty_driver *tty_find_polling_driver(char *name, int *line)
340 {
341 	struct tty_driver *p, *res = NULL;
342 	int tty_line = 0;
343 	int len;
344 	char *str, *stp;
345 
346 	for (str = name; *str; str++)
347 		if ((*str >= '0' && *str <= '9') || *str == ',')
348 			break;
349 	if (!*str)
350 		return NULL;
351 
352 	len = str - name;
353 	tty_line = simple_strtoul(str, &str, 10);
354 
355 	mutex_lock(&tty_mutex);
356 	/* Search through the tty devices to look for a match */
357 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
358 		if (strncmp(name, p->name, len) != 0)
359 			continue;
360 		stp = str;
361 		if (*stp == ',')
362 			stp++;
363 		if (*stp == '\0')
364 			stp = NULL;
365 
366 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
367 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
368 			res = tty_driver_kref_get(p);
369 			*line = tty_line;
370 			break;
371 		}
372 	}
373 	mutex_unlock(&tty_mutex);
374 
375 	return res;
376 }
377 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
378 #endif
379 
380 /**
381  *	tty_check_change	-	check for POSIX terminal changes
382  *	@tty: tty to check
383  *
384  *	If we try to write to, or set the state of, a terminal and we're
385  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
386  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
387  *
388  *	Locking: ctrl_lock
389  */
390 
391 int tty_check_change(struct tty_struct *tty)
392 {
393 	unsigned long flags;
394 	int ret = 0;
395 
396 	if (current->signal->tty != tty)
397 		return 0;
398 
399 	spin_lock_irqsave(&tty->ctrl_lock, flags);
400 
401 	if (!tty->pgrp) {
402 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
403 		goto out_unlock;
404 	}
405 	if (task_pgrp(current) == tty->pgrp)
406 		goto out_unlock;
407 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
408 	if (is_ignored(SIGTTOU))
409 		goto out;
410 	if (is_current_pgrp_orphaned()) {
411 		ret = -EIO;
412 		goto out;
413 	}
414 	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
415 	set_thread_flag(TIF_SIGPENDING);
416 	ret = -ERESTARTSYS;
417 out:
418 	return ret;
419 out_unlock:
420 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
421 	return ret;
422 }
423 
424 EXPORT_SYMBOL(tty_check_change);
425 
426 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
427 				size_t count, loff_t *ppos)
428 {
429 	return 0;
430 }
431 
432 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
433 				 size_t count, loff_t *ppos)
434 {
435 	return -EIO;
436 }
437 
438 /* No kernel lock held - none needed ;) */
439 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
440 {
441 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
442 }
443 
444 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
445 		unsigned long arg)
446 {
447 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
448 }
449 
450 static long hung_up_tty_compat_ioctl(struct file *file,
451 				     unsigned int cmd, unsigned long arg)
452 {
453 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
454 }
455 
456 static const struct file_operations tty_fops = {
457 	.llseek		= no_llseek,
458 	.read		= tty_read,
459 	.write		= tty_write,
460 	.poll		= tty_poll,
461 	.unlocked_ioctl	= tty_ioctl,
462 	.compat_ioctl	= tty_compat_ioctl,
463 	.open		= tty_open,
464 	.release	= tty_release,
465 	.fasync		= tty_fasync,
466 };
467 
468 static const struct file_operations console_fops = {
469 	.llseek		= no_llseek,
470 	.read		= tty_read,
471 	.write		= redirected_tty_write,
472 	.poll		= tty_poll,
473 	.unlocked_ioctl	= tty_ioctl,
474 	.compat_ioctl	= tty_compat_ioctl,
475 	.open		= tty_open,
476 	.release	= tty_release,
477 	.fasync		= tty_fasync,
478 };
479 
480 static const struct file_operations hung_up_tty_fops = {
481 	.llseek		= no_llseek,
482 	.read		= hung_up_tty_read,
483 	.write		= hung_up_tty_write,
484 	.poll		= hung_up_tty_poll,
485 	.unlocked_ioctl	= hung_up_tty_ioctl,
486 	.compat_ioctl	= hung_up_tty_compat_ioctl,
487 	.release	= tty_release,
488 };
489 
490 static DEFINE_SPINLOCK(redirect_lock);
491 static struct file *redirect;
492 
493 
494 void proc_clear_tty(struct task_struct *p)
495 {
496 	unsigned long flags;
497 	struct tty_struct *tty;
498 	spin_lock_irqsave(&p->sighand->siglock, flags);
499 	tty = p->signal->tty;
500 	p->signal->tty = NULL;
501 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
502 	tty_kref_put(tty);
503 }
504 
505 /**
506  * proc_set_tty -  set the controlling terminal
507  *
508  * Only callable by the session leader and only if it does not already have
509  * a controlling terminal.
510  *
511  * Caller must hold:  tty_lock()
512  *		      a readlock on tasklist_lock
513  *		      sighand lock
514  */
515 static void __proc_set_tty(struct tty_struct *tty)
516 {
517 	unsigned long flags;
518 
519 	spin_lock_irqsave(&tty->ctrl_lock, flags);
520 	/*
521 	 * The session and fg pgrp references will be non-NULL if
522 	 * tiocsctty() is stealing the controlling tty
523 	 */
524 	put_pid(tty->session);
525 	put_pid(tty->pgrp);
526 	tty->pgrp = get_pid(task_pgrp(current));
527 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
528 	tty->session = get_pid(task_session(current));
529 	if (current->signal->tty) {
530 		printk(KERN_DEBUG "tty not NULL!!\n");
531 		tty_kref_put(current->signal->tty);
532 	}
533 	put_pid(current->signal->tty_old_pgrp);
534 	current->signal->tty = tty_kref_get(tty);
535 	current->signal->tty_old_pgrp = NULL;
536 }
537 
538 static void proc_set_tty(struct tty_struct *tty)
539 {
540 	spin_lock_irq(&current->sighand->siglock);
541 	__proc_set_tty(tty);
542 	spin_unlock_irq(&current->sighand->siglock);
543 }
544 
545 struct tty_struct *get_current_tty(void)
546 {
547 	struct tty_struct *tty;
548 	unsigned long flags;
549 
550 	spin_lock_irqsave(&current->sighand->siglock, flags);
551 	tty = tty_kref_get(current->signal->tty);
552 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
553 	return tty;
554 }
555 EXPORT_SYMBOL_GPL(get_current_tty);
556 
557 static void session_clear_tty(struct pid *session)
558 {
559 	struct task_struct *p;
560 	do_each_pid_task(session, PIDTYPE_SID, p) {
561 		proc_clear_tty(p);
562 	} while_each_pid_task(session, PIDTYPE_SID, p);
563 }
564 
565 /**
566  *	tty_wakeup	-	request more data
567  *	@tty: terminal
568  *
569  *	Internal and external helper for wakeups of tty. This function
570  *	informs the line discipline if present that the driver is ready
571  *	to receive more output data.
572  */
573 
574 void tty_wakeup(struct tty_struct *tty)
575 {
576 	struct tty_ldisc *ld;
577 
578 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
579 		ld = tty_ldisc_ref(tty);
580 		if (ld) {
581 			if (ld->ops->write_wakeup)
582 				ld->ops->write_wakeup(tty);
583 			tty_ldisc_deref(ld);
584 		}
585 	}
586 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
587 }
588 
589 EXPORT_SYMBOL_GPL(tty_wakeup);
590 
591 /**
592  *	tty_signal_session_leader	- sends SIGHUP to session leader
593  *	@tty		controlling tty
594  *	@exit_session	if non-zero, signal all foreground group processes
595  *
596  *	Send SIGHUP and SIGCONT to the session leader and its process group.
597  *	Optionally, signal all processes in the foreground process group.
598  *
599  *	Returns the number of processes in the session with this tty
600  *	as their controlling terminal. This value is used to drop
601  *	tty references for those processes.
602  */
603 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
604 {
605 	struct task_struct *p;
606 	int refs = 0;
607 	struct pid *tty_pgrp = NULL;
608 
609 	read_lock(&tasklist_lock);
610 	if (tty->session) {
611 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
612 			spin_lock_irq(&p->sighand->siglock);
613 			if (p->signal->tty == tty) {
614 				p->signal->tty = NULL;
615 				/* We defer the dereferences outside fo
616 				   the tasklist lock */
617 				refs++;
618 			}
619 			if (!p->signal->leader) {
620 				spin_unlock_irq(&p->sighand->siglock);
621 				continue;
622 			}
623 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
624 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
625 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
626 			spin_lock(&tty->ctrl_lock);
627 			tty_pgrp = get_pid(tty->pgrp);
628 			if (tty->pgrp)
629 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
630 			spin_unlock(&tty->ctrl_lock);
631 			spin_unlock_irq(&p->sighand->siglock);
632 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
633 	}
634 	read_unlock(&tasklist_lock);
635 
636 	if (tty_pgrp) {
637 		if (exit_session)
638 			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
639 		put_pid(tty_pgrp);
640 	}
641 
642 	return refs;
643 }
644 
645 /**
646  *	__tty_hangup		-	actual handler for hangup events
647  *	@work: tty device
648  *
649  *	This can be called by a "kworker" kernel thread.  That is process
650  *	synchronous but doesn't hold any locks, so we need to make sure we
651  *	have the appropriate locks for what we're doing.
652  *
653  *	The hangup event clears any pending redirections onto the hung up
654  *	device. It ensures future writes will error and it does the needed
655  *	line discipline hangup and signal delivery. The tty object itself
656  *	remains intact.
657  *
658  *	Locking:
659  *		BTM
660  *		  redirect lock for undoing redirection
661  *		  file list lock for manipulating list of ttys
662  *		  tty_ldiscs_lock from called functions
663  *		  termios_rwsem resetting termios data
664  *		  tasklist_lock to walk task list for hangup event
665  *		    ->siglock to protect ->signal/->sighand
666  */
667 static void __tty_hangup(struct tty_struct *tty, int exit_session)
668 {
669 	struct file *cons_filp = NULL;
670 	struct file *filp, *f = NULL;
671 	struct tty_file_private *priv;
672 	int    closecount = 0, n;
673 	int refs;
674 
675 	if (!tty)
676 		return;
677 
678 
679 	spin_lock(&redirect_lock);
680 	if (redirect && file_tty(redirect) == tty) {
681 		f = redirect;
682 		redirect = NULL;
683 	}
684 	spin_unlock(&redirect_lock);
685 
686 	tty_lock(tty);
687 
688 	if (test_bit(TTY_HUPPED, &tty->flags)) {
689 		tty_unlock(tty);
690 		return;
691 	}
692 
693 	/* inuse_filps is protected by the single tty lock,
694 	   this really needs to change if we want to flush the
695 	   workqueue with the lock held */
696 	check_tty_count(tty, "tty_hangup");
697 
698 	spin_lock(&tty_files_lock);
699 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
700 	list_for_each_entry(priv, &tty->tty_files, list) {
701 		filp = priv->file;
702 		if (filp->f_op->write == redirected_tty_write)
703 			cons_filp = filp;
704 		if (filp->f_op->write != tty_write)
705 			continue;
706 		closecount++;
707 		__tty_fasync(-1, filp, 0);	/* can't block */
708 		filp->f_op = &hung_up_tty_fops;
709 	}
710 	spin_unlock(&tty_files_lock);
711 
712 	refs = tty_signal_session_leader(tty, exit_session);
713 	/* Account for the p->signal references we killed */
714 	while (refs--)
715 		tty_kref_put(tty);
716 
717 	tty_ldisc_hangup(tty);
718 
719 	spin_lock_irq(&tty->ctrl_lock);
720 	clear_bit(TTY_THROTTLED, &tty->flags);
721 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
722 	put_pid(tty->session);
723 	put_pid(tty->pgrp);
724 	tty->session = NULL;
725 	tty->pgrp = NULL;
726 	tty->ctrl_status = 0;
727 	spin_unlock_irq(&tty->ctrl_lock);
728 
729 	/*
730 	 * If one of the devices matches a console pointer, we
731 	 * cannot just call hangup() because that will cause
732 	 * tty->count and state->count to go out of sync.
733 	 * So we just call close() the right number of times.
734 	 */
735 	if (cons_filp) {
736 		if (tty->ops->close)
737 			for (n = 0; n < closecount; n++)
738 				tty->ops->close(tty, cons_filp);
739 	} else if (tty->ops->hangup)
740 		tty->ops->hangup(tty);
741 	/*
742 	 * We don't want to have driver/ldisc interactions beyond
743 	 * the ones we did here. The driver layer expects no
744 	 * calls after ->hangup() from the ldisc side. However we
745 	 * can't yet guarantee all that.
746 	 */
747 	set_bit(TTY_HUPPED, &tty->flags);
748 	tty_unlock(tty);
749 
750 	if (f)
751 		fput(f);
752 }
753 
754 static void do_tty_hangup(struct work_struct *work)
755 {
756 	struct tty_struct *tty =
757 		container_of(work, struct tty_struct, hangup_work);
758 
759 	__tty_hangup(tty, 0);
760 }
761 
762 /**
763  *	tty_hangup		-	trigger a hangup event
764  *	@tty: tty to hangup
765  *
766  *	A carrier loss (virtual or otherwise) has occurred on this like
767  *	schedule a hangup sequence to run after this event.
768  */
769 
770 void tty_hangup(struct tty_struct *tty)
771 {
772 #ifdef TTY_DEBUG_HANGUP
773 	char	buf[64];
774 	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
775 #endif
776 	schedule_work(&tty->hangup_work);
777 }
778 
779 EXPORT_SYMBOL(tty_hangup);
780 
781 /**
782  *	tty_vhangup		-	process vhangup
783  *	@tty: tty to hangup
784  *
785  *	The user has asked via system call for the terminal to be hung up.
786  *	We do this synchronously so that when the syscall returns the process
787  *	is complete. That guarantee is necessary for security reasons.
788  */
789 
790 void tty_vhangup(struct tty_struct *tty)
791 {
792 #ifdef TTY_DEBUG_HANGUP
793 	char	buf[64];
794 
795 	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
796 #endif
797 	__tty_hangup(tty, 0);
798 }
799 
800 EXPORT_SYMBOL(tty_vhangup);
801 
802 
803 /**
804  *	tty_vhangup_self	-	process vhangup for own ctty
805  *
806  *	Perform a vhangup on the current controlling tty
807  */
808 
809 void tty_vhangup_self(void)
810 {
811 	struct tty_struct *tty;
812 
813 	tty = get_current_tty();
814 	if (tty) {
815 		tty_vhangup(tty);
816 		tty_kref_put(tty);
817 	}
818 }
819 
820 /**
821  *	tty_vhangup_session		-	hangup session leader exit
822  *	@tty: tty to hangup
823  *
824  *	The session leader is exiting and hanging up its controlling terminal.
825  *	Every process in the foreground process group is signalled SIGHUP.
826  *
827  *	We do this synchronously so that when the syscall returns the process
828  *	is complete. That guarantee is necessary for security reasons.
829  */
830 
831 static void tty_vhangup_session(struct tty_struct *tty)
832 {
833 #ifdef TTY_DEBUG_HANGUP
834 	char	buf[64];
835 
836 	printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
837 #endif
838 	__tty_hangup(tty, 1);
839 }
840 
841 /**
842  *	tty_hung_up_p		-	was tty hung up
843  *	@filp: file pointer of tty
844  *
845  *	Return true if the tty has been subject to a vhangup or a carrier
846  *	loss
847  */
848 
849 int tty_hung_up_p(struct file *filp)
850 {
851 	return (filp->f_op == &hung_up_tty_fops);
852 }
853 
854 EXPORT_SYMBOL(tty_hung_up_p);
855 
856 /**
857  *	disassociate_ctty	-	disconnect controlling tty
858  *	@on_exit: true if exiting so need to "hang up" the session
859  *
860  *	This function is typically called only by the session leader, when
861  *	it wants to disassociate itself from its controlling tty.
862  *
863  *	It performs the following functions:
864  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
865  * 	(2)  Clears the tty from being controlling the session
866  * 	(3)  Clears the controlling tty for all processes in the
867  * 		session group.
868  *
869  *	The argument on_exit is set to 1 if called when a process is
870  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
871  *
872  *	Locking:
873  *		BTM is taken for hysterical raisins, and held when
874  *		  called from no_tty().
875  *		  tty_mutex is taken to protect tty
876  *		  ->siglock is taken to protect ->signal/->sighand
877  *		  tasklist_lock is taken to walk process list for sessions
878  *		    ->siglock is taken to protect ->signal/->sighand
879  */
880 
881 void disassociate_ctty(int on_exit)
882 {
883 	struct tty_struct *tty;
884 
885 	if (!current->signal->leader)
886 		return;
887 
888 	tty = get_current_tty();
889 	if (tty) {
890 		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
891 			tty_vhangup_session(tty);
892 		} else {
893 			struct pid *tty_pgrp = tty_get_pgrp(tty);
894 			if (tty_pgrp) {
895 				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
896 				if (!on_exit)
897 					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
898 				put_pid(tty_pgrp);
899 			}
900 		}
901 		tty_kref_put(tty);
902 
903 	} else if (on_exit) {
904 		struct pid *old_pgrp;
905 		spin_lock_irq(&current->sighand->siglock);
906 		old_pgrp = current->signal->tty_old_pgrp;
907 		current->signal->tty_old_pgrp = NULL;
908 		spin_unlock_irq(&current->sighand->siglock);
909 		if (old_pgrp) {
910 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
911 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
912 			put_pid(old_pgrp);
913 		}
914 		return;
915 	}
916 
917 	spin_lock_irq(&current->sighand->siglock);
918 	put_pid(current->signal->tty_old_pgrp);
919 	current->signal->tty_old_pgrp = NULL;
920 
921 	tty = tty_kref_get(current->signal->tty);
922 	if (tty) {
923 		unsigned long flags;
924 		spin_lock_irqsave(&tty->ctrl_lock, flags);
925 		put_pid(tty->session);
926 		put_pid(tty->pgrp);
927 		tty->session = NULL;
928 		tty->pgrp = NULL;
929 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
930 		tty_kref_put(tty);
931 	} else {
932 #ifdef TTY_DEBUG_HANGUP
933 		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
934 		       " = NULL", tty);
935 #endif
936 	}
937 
938 	spin_unlock_irq(&current->sighand->siglock);
939 	/* Now clear signal->tty under the lock */
940 	read_lock(&tasklist_lock);
941 	session_clear_tty(task_session(current));
942 	read_unlock(&tasklist_lock);
943 }
944 
945 /**
946  *
947  *	no_tty	- Ensure the current process does not have a controlling tty
948  */
949 void no_tty(void)
950 {
951 	/* FIXME: Review locking here. The tty_lock never covered any race
952 	   between a new association and proc_clear_tty but possible we need
953 	   to protect against this anyway */
954 	struct task_struct *tsk = current;
955 	disassociate_ctty(0);
956 	proc_clear_tty(tsk);
957 }
958 
959 
960 /**
961  *	stop_tty	-	propagate flow control
962  *	@tty: tty to stop
963  *
964  *	Perform flow control to the driver. May be called
965  *	on an already stopped device and will not re-call the driver
966  *	method.
967  *
968  *	This functionality is used by both the line disciplines for
969  *	halting incoming flow and by the driver. It may therefore be
970  *	called from any context, may be under the tty atomic_write_lock
971  *	but not always.
972  *
973  *	Locking:
974  *		flow_lock
975  */
976 
977 void __stop_tty(struct tty_struct *tty)
978 {
979 	if (tty->stopped)
980 		return;
981 	tty->stopped = 1;
982 	if (tty->ops->stop)
983 		tty->ops->stop(tty);
984 }
985 
986 void stop_tty(struct tty_struct *tty)
987 {
988 	unsigned long flags;
989 
990 	spin_lock_irqsave(&tty->flow_lock, flags);
991 	__stop_tty(tty);
992 	spin_unlock_irqrestore(&tty->flow_lock, flags);
993 }
994 EXPORT_SYMBOL(stop_tty);
995 
996 /**
997  *	start_tty	-	propagate flow control
998  *	@tty: tty to start
999  *
1000  *	Start a tty that has been stopped if at all possible. If this
1001  *	tty was previous stopped and is now being started, the driver
1002  *	start method is invoked and the line discipline woken.
1003  *
1004  *	Locking:
1005  *		flow_lock
1006  */
1007 
1008 void __start_tty(struct tty_struct *tty)
1009 {
1010 	if (!tty->stopped || tty->flow_stopped)
1011 		return;
1012 	tty->stopped = 0;
1013 	if (tty->ops->start)
1014 		tty->ops->start(tty);
1015 	tty_wakeup(tty);
1016 }
1017 
1018 void start_tty(struct tty_struct *tty)
1019 {
1020 	unsigned long flags;
1021 
1022 	spin_lock_irqsave(&tty->flow_lock, flags);
1023 	__start_tty(tty);
1024 	spin_unlock_irqrestore(&tty->flow_lock, flags);
1025 }
1026 EXPORT_SYMBOL(start_tty);
1027 
1028 static void tty_update_time(struct timespec *time)
1029 {
1030 	unsigned long sec = get_seconds();
1031 
1032 	/*
1033 	 * We only care if the two values differ in anything other than the
1034 	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1035 	 * the time of the tty device, otherwise it could be construded as a
1036 	 * security leak to let userspace know the exact timing of the tty.
1037 	 */
1038 	if ((sec ^ time->tv_sec) & ~7)
1039 		time->tv_sec = sec;
1040 }
1041 
1042 /**
1043  *	tty_read	-	read method for tty device files
1044  *	@file: pointer to tty file
1045  *	@buf: user buffer
1046  *	@count: size of user buffer
1047  *	@ppos: unused
1048  *
1049  *	Perform the read system call function on this terminal device. Checks
1050  *	for hung up devices before calling the line discipline method.
1051  *
1052  *	Locking:
1053  *		Locks the line discipline internally while needed. Multiple
1054  *	read calls may be outstanding in parallel.
1055  */
1056 
1057 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1058 			loff_t *ppos)
1059 {
1060 	int i;
1061 	struct inode *inode = file_inode(file);
1062 	struct tty_struct *tty = file_tty(file);
1063 	struct tty_ldisc *ld;
1064 
1065 	if (tty_paranoia_check(tty, inode, "tty_read"))
1066 		return -EIO;
1067 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1068 		return -EIO;
1069 
1070 	/* We want to wait for the line discipline to sort out in this
1071 	   situation */
1072 	ld = tty_ldisc_ref_wait(tty);
1073 	if (ld->ops->read)
1074 		i = ld->ops->read(tty, file, buf, count);
1075 	else
1076 		i = -EIO;
1077 	tty_ldisc_deref(ld);
1078 
1079 	if (i > 0)
1080 		tty_update_time(&inode->i_atime);
1081 
1082 	return i;
1083 }
1084 
1085 static void tty_write_unlock(struct tty_struct *tty)
1086 {
1087 	mutex_unlock(&tty->atomic_write_lock);
1088 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1089 }
1090 
1091 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1092 {
1093 	if (!mutex_trylock(&tty->atomic_write_lock)) {
1094 		if (ndelay)
1095 			return -EAGAIN;
1096 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1097 			return -ERESTARTSYS;
1098 	}
1099 	return 0;
1100 }
1101 
1102 /*
1103  * Split writes up in sane blocksizes to avoid
1104  * denial-of-service type attacks
1105  */
1106 static inline ssize_t do_tty_write(
1107 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1108 	struct tty_struct *tty,
1109 	struct file *file,
1110 	const char __user *buf,
1111 	size_t count)
1112 {
1113 	ssize_t ret, written = 0;
1114 	unsigned int chunk;
1115 
1116 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1117 	if (ret < 0)
1118 		return ret;
1119 
1120 	/*
1121 	 * We chunk up writes into a temporary buffer. This
1122 	 * simplifies low-level drivers immensely, since they
1123 	 * don't have locking issues and user mode accesses.
1124 	 *
1125 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1126 	 * big chunk-size..
1127 	 *
1128 	 * The default chunk-size is 2kB, because the NTTY
1129 	 * layer has problems with bigger chunks. It will
1130 	 * claim to be able to handle more characters than
1131 	 * it actually does.
1132 	 *
1133 	 * FIXME: This can probably go away now except that 64K chunks
1134 	 * are too likely to fail unless switched to vmalloc...
1135 	 */
1136 	chunk = 2048;
1137 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1138 		chunk = 65536;
1139 	if (count < chunk)
1140 		chunk = count;
1141 
1142 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1143 	if (tty->write_cnt < chunk) {
1144 		unsigned char *buf_chunk;
1145 
1146 		if (chunk < 1024)
1147 			chunk = 1024;
1148 
1149 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1150 		if (!buf_chunk) {
1151 			ret = -ENOMEM;
1152 			goto out;
1153 		}
1154 		kfree(tty->write_buf);
1155 		tty->write_cnt = chunk;
1156 		tty->write_buf = buf_chunk;
1157 	}
1158 
1159 	/* Do the write .. */
1160 	for (;;) {
1161 		size_t size = count;
1162 		if (size > chunk)
1163 			size = chunk;
1164 		ret = -EFAULT;
1165 		if (copy_from_user(tty->write_buf, buf, size))
1166 			break;
1167 		ret = write(tty, file, tty->write_buf, size);
1168 		if (ret <= 0)
1169 			break;
1170 		written += ret;
1171 		buf += ret;
1172 		count -= ret;
1173 		if (!count)
1174 			break;
1175 		ret = -ERESTARTSYS;
1176 		if (signal_pending(current))
1177 			break;
1178 		cond_resched();
1179 	}
1180 	if (written) {
1181 		tty_update_time(&file_inode(file)->i_mtime);
1182 		ret = written;
1183 	}
1184 out:
1185 	tty_write_unlock(tty);
1186 	return ret;
1187 }
1188 
1189 /**
1190  * tty_write_message - write a message to a certain tty, not just the console.
1191  * @tty: the destination tty_struct
1192  * @msg: the message to write
1193  *
1194  * This is used for messages that need to be redirected to a specific tty.
1195  * We don't put it into the syslog queue right now maybe in the future if
1196  * really needed.
1197  *
1198  * We must still hold the BTM and test the CLOSING flag for the moment.
1199  */
1200 
1201 void tty_write_message(struct tty_struct *tty, char *msg)
1202 {
1203 	if (tty) {
1204 		mutex_lock(&tty->atomic_write_lock);
1205 		tty_lock(tty);
1206 		if (tty->ops->write && tty->count > 0) {
1207 			tty_unlock(tty);
1208 			tty->ops->write(tty, msg, strlen(msg));
1209 		} else
1210 			tty_unlock(tty);
1211 		tty_write_unlock(tty);
1212 	}
1213 	return;
1214 }
1215 
1216 
1217 /**
1218  *	tty_write		-	write method for tty device file
1219  *	@file: tty file pointer
1220  *	@buf: user data to write
1221  *	@count: bytes to write
1222  *	@ppos: unused
1223  *
1224  *	Write data to a tty device via the line discipline.
1225  *
1226  *	Locking:
1227  *		Locks the line discipline as required
1228  *		Writes to the tty driver are serialized by the atomic_write_lock
1229  *	and are then processed in chunks to the device. The line discipline
1230  *	write method will not be invoked in parallel for each device.
1231  */
1232 
1233 static ssize_t tty_write(struct file *file, const char __user *buf,
1234 						size_t count, loff_t *ppos)
1235 {
1236 	struct tty_struct *tty = file_tty(file);
1237  	struct tty_ldisc *ld;
1238 	ssize_t ret;
1239 
1240 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1241 		return -EIO;
1242 	if (!tty || !tty->ops->write ||
1243 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1244 			return -EIO;
1245 	/* Short term debug to catch buggy drivers */
1246 	if (tty->ops->write_room == NULL)
1247 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1248 			tty->driver->name);
1249 	ld = tty_ldisc_ref_wait(tty);
1250 	if (!ld->ops->write)
1251 		ret = -EIO;
1252 	else
1253 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1254 	tty_ldisc_deref(ld);
1255 	return ret;
1256 }
1257 
1258 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1259 						size_t count, loff_t *ppos)
1260 {
1261 	struct file *p = NULL;
1262 
1263 	spin_lock(&redirect_lock);
1264 	if (redirect)
1265 		p = get_file(redirect);
1266 	spin_unlock(&redirect_lock);
1267 
1268 	if (p) {
1269 		ssize_t res;
1270 		res = vfs_write(p, buf, count, &p->f_pos);
1271 		fput(p);
1272 		return res;
1273 	}
1274 	return tty_write(file, buf, count, ppos);
1275 }
1276 
1277 /**
1278  *	tty_send_xchar	-	send priority character
1279  *
1280  *	Send a high priority character to the tty even if stopped
1281  *
1282  *	Locking: none for xchar method, write ordering for write method.
1283  */
1284 
1285 int tty_send_xchar(struct tty_struct *tty, char ch)
1286 {
1287 	int	was_stopped = tty->stopped;
1288 
1289 	if (tty->ops->send_xchar) {
1290 		tty->ops->send_xchar(tty, ch);
1291 		return 0;
1292 	}
1293 
1294 	if (tty_write_lock(tty, 0) < 0)
1295 		return -ERESTARTSYS;
1296 
1297 	if (was_stopped)
1298 		start_tty(tty);
1299 	tty->ops->write(tty, &ch, 1);
1300 	if (was_stopped)
1301 		stop_tty(tty);
1302 	tty_write_unlock(tty);
1303 	return 0;
1304 }
1305 
1306 static char ptychar[] = "pqrstuvwxyzabcde";
1307 
1308 /**
1309  *	pty_line_name	-	generate name for a pty
1310  *	@driver: the tty driver in use
1311  *	@index: the minor number
1312  *	@p: output buffer of at least 6 bytes
1313  *
1314  *	Generate a name from a driver reference and write it to the output
1315  *	buffer.
1316  *
1317  *	Locking: None
1318  */
1319 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1320 {
1321 	int i = index + driver->name_base;
1322 	/* ->name is initialized to "ttyp", but "tty" is expected */
1323 	sprintf(p, "%s%c%x",
1324 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1325 		ptychar[i >> 4 & 0xf], i & 0xf);
1326 }
1327 
1328 /**
1329  *	tty_line_name	-	generate name for a tty
1330  *	@driver: the tty driver in use
1331  *	@index: the minor number
1332  *	@p: output buffer of at least 7 bytes
1333  *
1334  *	Generate a name from a driver reference and write it to the output
1335  *	buffer.
1336  *
1337  *	Locking: None
1338  */
1339 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1340 {
1341 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1342 		return sprintf(p, "%s", driver->name);
1343 	else
1344 		return sprintf(p, "%s%d", driver->name,
1345 			       index + driver->name_base);
1346 }
1347 
1348 /**
1349  *	tty_driver_lookup_tty() - find an existing tty, if any
1350  *	@driver: the driver for the tty
1351  *	@idx:	 the minor number
1352  *
1353  *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1354  *	driver lookup() method returns an error.
1355  *
1356  *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1357  */
1358 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1359 		struct inode *inode, int idx)
1360 {
1361 	struct tty_struct *tty;
1362 
1363 	if (driver->ops->lookup)
1364 		tty = driver->ops->lookup(driver, inode, idx);
1365 	else
1366 		tty = driver->ttys[idx];
1367 
1368 	if (!IS_ERR(tty))
1369 		tty_kref_get(tty);
1370 	return tty;
1371 }
1372 
1373 /**
1374  *	tty_init_termios	-  helper for termios setup
1375  *	@tty: the tty to set up
1376  *
1377  *	Initialise the termios structures for this tty. Thus runs under
1378  *	the tty_mutex currently so we can be relaxed about ordering.
1379  */
1380 
1381 int tty_init_termios(struct tty_struct *tty)
1382 {
1383 	struct ktermios *tp;
1384 	int idx = tty->index;
1385 
1386 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1387 		tty->termios = tty->driver->init_termios;
1388 	else {
1389 		/* Check for lazy saved data */
1390 		tp = tty->driver->termios[idx];
1391 		if (tp != NULL)
1392 			tty->termios = *tp;
1393 		else
1394 			tty->termios = tty->driver->init_termios;
1395 	}
1396 	/* Compatibility until drivers always set this */
1397 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1398 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1399 	return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(tty_init_termios);
1402 
1403 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1404 {
1405 	int ret = tty_init_termios(tty);
1406 	if (ret)
1407 		return ret;
1408 
1409 	tty_driver_kref_get(driver);
1410 	tty->count++;
1411 	driver->ttys[tty->index] = tty;
1412 	return 0;
1413 }
1414 EXPORT_SYMBOL_GPL(tty_standard_install);
1415 
1416 /**
1417  *	tty_driver_install_tty() - install a tty entry in the driver
1418  *	@driver: the driver for the tty
1419  *	@tty: the tty
1420  *
1421  *	Install a tty object into the driver tables. The tty->index field
1422  *	will be set by the time this is called. This method is responsible
1423  *	for ensuring any need additional structures are allocated and
1424  *	configured.
1425  *
1426  *	Locking: tty_mutex for now
1427  */
1428 static int tty_driver_install_tty(struct tty_driver *driver,
1429 						struct tty_struct *tty)
1430 {
1431 	return driver->ops->install ? driver->ops->install(driver, tty) :
1432 		tty_standard_install(driver, tty);
1433 }
1434 
1435 /**
1436  *	tty_driver_remove_tty() - remove a tty from the driver tables
1437  *	@driver: the driver for the tty
1438  *	@idx:	 the minor number
1439  *
1440  *	Remvoe a tty object from the driver tables. The tty->index field
1441  *	will be set by the time this is called.
1442  *
1443  *	Locking: tty_mutex for now
1444  */
1445 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1446 {
1447 	if (driver->ops->remove)
1448 		driver->ops->remove(driver, tty);
1449 	else
1450 		driver->ttys[tty->index] = NULL;
1451 }
1452 
1453 /*
1454  * 	tty_reopen()	- fast re-open of an open tty
1455  * 	@tty	- the tty to open
1456  *
1457  *	Return 0 on success, -errno on error.
1458  *	Re-opens on master ptys are not allowed and return -EIO.
1459  *
1460  *	Locking: Caller must hold tty_lock
1461  */
1462 static int tty_reopen(struct tty_struct *tty)
1463 {
1464 	struct tty_driver *driver = tty->driver;
1465 
1466 	if (!tty->count)
1467 		return -EIO;
1468 
1469 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1470 	    driver->subtype == PTY_TYPE_MASTER)
1471 		return -EIO;
1472 
1473 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1474 		return -EBUSY;
1475 
1476 	tty->count++;
1477 
1478 	WARN_ON(!tty->ldisc);
1479 
1480 	return 0;
1481 }
1482 
1483 /**
1484  *	tty_init_dev		-	initialise a tty device
1485  *	@driver: tty driver we are opening a device on
1486  *	@idx: device index
1487  *	@ret_tty: returned tty structure
1488  *
1489  *	Prepare a tty device. This may not be a "new" clean device but
1490  *	could also be an active device. The pty drivers require special
1491  *	handling because of this.
1492  *
1493  *	Locking:
1494  *		The function is called under the tty_mutex, which
1495  *	protects us from the tty struct or driver itself going away.
1496  *
1497  *	On exit the tty device has the line discipline attached and
1498  *	a reference count of 1. If a pair was created for pty/tty use
1499  *	and the other was a pty master then it too has a reference count of 1.
1500  *
1501  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1502  * failed open.  The new code protects the open with a mutex, so it's
1503  * really quite straightforward.  The mutex locking can probably be
1504  * relaxed for the (most common) case of reopening a tty.
1505  */
1506 
1507 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1508 {
1509 	struct tty_struct *tty;
1510 	int retval;
1511 
1512 	/*
1513 	 * First time open is complex, especially for PTY devices.
1514 	 * This code guarantees that either everything succeeds and the
1515 	 * TTY is ready for operation, or else the table slots are vacated
1516 	 * and the allocated memory released.  (Except that the termios
1517 	 * and locked termios may be retained.)
1518 	 */
1519 
1520 	if (!try_module_get(driver->owner))
1521 		return ERR_PTR(-ENODEV);
1522 
1523 	tty = alloc_tty_struct(driver, idx);
1524 	if (!tty) {
1525 		retval = -ENOMEM;
1526 		goto err_module_put;
1527 	}
1528 
1529 	tty_lock(tty);
1530 	retval = tty_driver_install_tty(driver, tty);
1531 	if (retval < 0)
1532 		goto err_deinit_tty;
1533 
1534 	if (!tty->port)
1535 		tty->port = driver->ports[idx];
1536 
1537 	WARN_RATELIMIT(!tty->port,
1538 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1539 			__func__, tty->driver->name);
1540 
1541 	tty->port->itty = tty;
1542 
1543 	/*
1544 	 * Structures all installed ... call the ldisc open routines.
1545 	 * If we fail here just call release_tty to clean up.  No need
1546 	 * to decrement the use counts, as release_tty doesn't care.
1547 	 */
1548 	retval = tty_ldisc_setup(tty, tty->link);
1549 	if (retval)
1550 		goto err_release_tty;
1551 	/* Return the tty locked so that it cannot vanish under the caller */
1552 	return tty;
1553 
1554 err_deinit_tty:
1555 	tty_unlock(tty);
1556 	deinitialize_tty_struct(tty);
1557 	free_tty_struct(tty);
1558 err_module_put:
1559 	module_put(driver->owner);
1560 	return ERR_PTR(retval);
1561 
1562 	/* call the tty release_tty routine to clean out this slot */
1563 err_release_tty:
1564 	tty_unlock(tty);
1565 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1566 				 "clearing slot %d\n", idx);
1567 	release_tty(tty, idx);
1568 	return ERR_PTR(retval);
1569 }
1570 
1571 void tty_free_termios(struct tty_struct *tty)
1572 {
1573 	struct ktermios *tp;
1574 	int idx = tty->index;
1575 
1576 	/* If the port is going to reset then it has no termios to save */
1577 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1578 		return;
1579 
1580 	/* Stash the termios data */
1581 	tp = tty->driver->termios[idx];
1582 	if (tp == NULL) {
1583 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1584 		if (tp == NULL) {
1585 			pr_warn("tty: no memory to save termios state.\n");
1586 			return;
1587 		}
1588 		tty->driver->termios[idx] = tp;
1589 	}
1590 	*tp = tty->termios;
1591 }
1592 EXPORT_SYMBOL(tty_free_termios);
1593 
1594 /**
1595  *	tty_flush_works		-	flush all works of a tty/pty pair
1596  *	@tty: tty device to flush works for (or either end of a pty pair)
1597  *
1598  *	Sync flush all works belonging to @tty (and the 'other' tty).
1599  */
1600 static void tty_flush_works(struct tty_struct *tty)
1601 {
1602 	flush_work(&tty->SAK_work);
1603 	flush_work(&tty->hangup_work);
1604 	if (tty->link) {
1605 		flush_work(&tty->link->SAK_work);
1606 		flush_work(&tty->link->hangup_work);
1607 	}
1608 }
1609 
1610 /**
1611  *	release_one_tty		-	release tty structure memory
1612  *	@kref: kref of tty we are obliterating
1613  *
1614  *	Releases memory associated with a tty structure, and clears out the
1615  *	driver table slots. This function is called when a device is no longer
1616  *	in use. It also gets called when setup of a device fails.
1617  *
1618  *	Locking:
1619  *		takes the file list lock internally when working on the list
1620  *	of ttys that the driver keeps.
1621  *
1622  *	This method gets called from a work queue so that the driver private
1623  *	cleanup ops can sleep (needed for USB at least)
1624  */
1625 static void release_one_tty(struct work_struct *work)
1626 {
1627 	struct tty_struct *tty =
1628 		container_of(work, struct tty_struct, hangup_work);
1629 	struct tty_driver *driver = tty->driver;
1630 	struct module *owner = driver->owner;
1631 
1632 	if (tty->ops->cleanup)
1633 		tty->ops->cleanup(tty);
1634 
1635 	tty->magic = 0;
1636 	tty_driver_kref_put(driver);
1637 	module_put(owner);
1638 
1639 	spin_lock(&tty_files_lock);
1640 	list_del_init(&tty->tty_files);
1641 	spin_unlock(&tty_files_lock);
1642 
1643 	put_pid(tty->pgrp);
1644 	put_pid(tty->session);
1645 	free_tty_struct(tty);
1646 }
1647 
1648 static void queue_release_one_tty(struct kref *kref)
1649 {
1650 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1651 
1652 	/* The hangup queue is now free so we can reuse it rather than
1653 	   waste a chunk of memory for each port */
1654 	INIT_WORK(&tty->hangup_work, release_one_tty);
1655 	schedule_work(&tty->hangup_work);
1656 }
1657 
1658 /**
1659  *	tty_kref_put		-	release a tty kref
1660  *	@tty: tty device
1661  *
1662  *	Release a reference to a tty device and if need be let the kref
1663  *	layer destruct the object for us
1664  */
1665 
1666 void tty_kref_put(struct tty_struct *tty)
1667 {
1668 	if (tty)
1669 		kref_put(&tty->kref, queue_release_one_tty);
1670 }
1671 EXPORT_SYMBOL(tty_kref_put);
1672 
1673 /**
1674  *	release_tty		-	release tty structure memory
1675  *
1676  *	Release both @tty and a possible linked partner (think pty pair),
1677  *	and decrement the refcount of the backing module.
1678  *
1679  *	Locking:
1680  *		tty_mutex
1681  *		takes the file list lock internally when working on the list
1682  *	of ttys that the driver keeps.
1683  *
1684  */
1685 static void release_tty(struct tty_struct *tty, int idx)
1686 {
1687 	/* This should always be true but check for the moment */
1688 	WARN_ON(tty->index != idx);
1689 	WARN_ON(!mutex_is_locked(&tty_mutex));
1690 	if (tty->ops->shutdown)
1691 		tty->ops->shutdown(tty);
1692 	tty_free_termios(tty);
1693 	tty_driver_remove_tty(tty->driver, tty);
1694 	tty->port->itty = NULL;
1695 	if (tty->link)
1696 		tty->link->port->itty = NULL;
1697 	cancel_work_sync(&tty->port->buf.work);
1698 
1699 	tty_kref_put(tty->link);
1700 	tty_kref_put(tty);
1701 }
1702 
1703 /**
1704  *	tty_release_checks - check a tty before real release
1705  *	@tty: tty to check
1706  *	@o_tty: link of @tty (if any)
1707  *	@idx: index of the tty
1708  *
1709  *	Performs some paranoid checking before true release of the @tty.
1710  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1711  */
1712 static int tty_release_checks(struct tty_struct *tty, int idx)
1713 {
1714 #ifdef TTY_PARANOIA_CHECK
1715 	if (idx < 0 || idx >= tty->driver->num) {
1716 		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1717 				__func__, tty->name);
1718 		return -1;
1719 	}
1720 
1721 	/* not much to check for devpts */
1722 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1723 		return 0;
1724 
1725 	if (tty != tty->driver->ttys[idx]) {
1726 		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1727 				__func__, idx, tty->name);
1728 		return -1;
1729 	}
1730 	if (tty->driver->other) {
1731 		struct tty_struct *o_tty = tty->link;
1732 
1733 		if (o_tty != tty->driver->other->ttys[idx]) {
1734 			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1735 					__func__, idx, tty->name);
1736 			return -1;
1737 		}
1738 		if (o_tty->link != tty) {
1739 			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1740 			return -1;
1741 		}
1742 	}
1743 #endif
1744 	return 0;
1745 }
1746 
1747 /**
1748  *	tty_release		-	vfs callback for close
1749  *	@inode: inode of tty
1750  *	@filp: file pointer for handle to tty
1751  *
1752  *	Called the last time each file handle is closed that references
1753  *	this tty. There may however be several such references.
1754  *
1755  *	Locking:
1756  *		Takes bkl. See tty_release_dev
1757  *
1758  * Even releasing the tty structures is a tricky business.. We have
1759  * to be very careful that the structures are all released at the
1760  * same time, as interrupts might otherwise get the wrong pointers.
1761  *
1762  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1763  * lead to double frees or releasing memory still in use.
1764  */
1765 
1766 int tty_release(struct inode *inode, struct file *filp)
1767 {
1768 	struct tty_struct *tty = file_tty(filp);
1769 	struct tty_struct *o_tty = NULL;
1770 	int	do_sleep, final;
1771 	int	idx;
1772 	char	buf[64];
1773 	long	timeout = 0;
1774 	int	once = 1;
1775 
1776 	if (tty_paranoia_check(tty, inode, __func__))
1777 		return 0;
1778 
1779 	tty_lock(tty);
1780 	check_tty_count(tty, __func__);
1781 
1782 	__tty_fasync(-1, filp, 0);
1783 
1784 	idx = tty->index;
1785 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1786 	    tty->driver->subtype == PTY_TYPE_MASTER)
1787 		o_tty = tty->link;
1788 
1789 	if (tty_release_checks(tty, idx)) {
1790 		tty_unlock(tty);
1791 		return 0;
1792 	}
1793 
1794 #ifdef TTY_DEBUG_HANGUP
1795 	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1796 			tty_name(tty, buf), tty->count);
1797 #endif
1798 
1799 	if (tty->ops->close)
1800 		tty->ops->close(tty, filp);
1801 
1802 	/* If tty is pty master, lock the slave pty (stable lock order) */
1803 	tty_lock_slave(o_tty);
1804 
1805 	/*
1806 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1807 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1808 	 * wait queues and kick everyone out _before_ actually starting to
1809 	 * close.  This ensures that we won't block while releasing the tty
1810 	 * structure.
1811 	 *
1812 	 * The test for the o_tty closing is necessary, since the master and
1813 	 * slave sides may close in any order.  If the slave side closes out
1814 	 * first, its count will be one, since the master side holds an open.
1815 	 * Thus this test wouldn't be triggered at the time the slave closed,
1816 	 * so we do it now.
1817 	 */
1818 	while (1) {
1819 		do_sleep = 0;
1820 
1821 		if (tty->count <= 1) {
1822 			if (waitqueue_active(&tty->read_wait)) {
1823 				wake_up_poll(&tty->read_wait, POLLIN);
1824 				do_sleep++;
1825 			}
1826 			if (waitqueue_active(&tty->write_wait)) {
1827 				wake_up_poll(&tty->write_wait, POLLOUT);
1828 				do_sleep++;
1829 			}
1830 		}
1831 		if (o_tty && o_tty->count <= 1) {
1832 			if (waitqueue_active(&o_tty->read_wait)) {
1833 				wake_up_poll(&o_tty->read_wait, POLLIN);
1834 				do_sleep++;
1835 			}
1836 			if (waitqueue_active(&o_tty->write_wait)) {
1837 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1838 				do_sleep++;
1839 			}
1840 		}
1841 		if (!do_sleep)
1842 			break;
1843 
1844 		if (once) {
1845 			once = 0;
1846 			printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1847 			       __func__, tty_name(tty, buf));
1848 		}
1849 		schedule_timeout_killable(timeout);
1850 		if (timeout < 120 * HZ)
1851 			timeout = 2 * timeout + 1;
1852 		else
1853 			timeout = MAX_SCHEDULE_TIMEOUT;
1854 	}
1855 
1856 	if (o_tty) {
1857 		if (--o_tty->count < 0) {
1858 			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1859 				__func__, o_tty->count, tty_name(o_tty, buf));
1860 			o_tty->count = 0;
1861 		}
1862 	}
1863 	if (--tty->count < 0) {
1864 		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1865 				__func__, tty->count, tty_name(tty, buf));
1866 		tty->count = 0;
1867 	}
1868 
1869 	/*
1870 	 * We've decremented tty->count, so we need to remove this file
1871 	 * descriptor off the tty->tty_files list; this serves two
1872 	 * purposes:
1873 	 *  - check_tty_count sees the correct number of file descriptors
1874 	 *    associated with this tty.
1875 	 *  - do_tty_hangup no longer sees this file descriptor as
1876 	 *    something that needs to be handled for hangups.
1877 	 */
1878 	tty_del_file(filp);
1879 
1880 	/*
1881 	 * Perform some housekeeping before deciding whether to return.
1882 	 *
1883 	 * If _either_ side is closing, make sure there aren't any
1884 	 * processes that still think tty or o_tty is their controlling
1885 	 * tty.
1886 	 */
1887 	if (!tty->count) {
1888 		read_lock(&tasklist_lock);
1889 		session_clear_tty(tty->session);
1890 		if (o_tty)
1891 			session_clear_tty(o_tty->session);
1892 		read_unlock(&tasklist_lock);
1893 	}
1894 
1895 	/* check whether both sides are closing ... */
1896 	final = !tty->count && !(o_tty && o_tty->count);
1897 
1898 	tty_unlock_slave(o_tty);
1899 	tty_unlock(tty);
1900 
1901 	/* At this point, the tty->count == 0 should ensure a dead tty
1902 	   cannot be re-opened by a racing opener */
1903 
1904 	if (!final)
1905 		return 0;
1906 
1907 #ifdef TTY_DEBUG_HANGUP
1908 	printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1909 #endif
1910 	/*
1911 	 * Ask the line discipline code to release its structures
1912 	 */
1913 	tty_ldisc_release(tty);
1914 
1915 	/* Wait for pending work before tty destruction commmences */
1916 	tty_flush_works(tty);
1917 
1918 #ifdef TTY_DEBUG_HANGUP
1919 	printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1920 #endif
1921 	/*
1922 	 * The release_tty function takes care of the details of clearing
1923 	 * the slots and preserving the termios structure. The tty_unlock_pair
1924 	 * should be safe as we keep a kref while the tty is locked (so the
1925 	 * unlock never unlocks a freed tty).
1926 	 */
1927 	mutex_lock(&tty_mutex);
1928 	release_tty(tty, idx);
1929 	mutex_unlock(&tty_mutex);
1930 
1931 	return 0;
1932 }
1933 
1934 /**
1935  *	tty_open_current_tty - get locked tty of current task
1936  *	@device: device number
1937  *	@filp: file pointer to tty
1938  *	@return: locked tty of the current task iff @device is /dev/tty
1939  *
1940  *	Performs a re-open of the current task's controlling tty.
1941  *
1942  *	We cannot return driver and index like for the other nodes because
1943  *	devpts will not work then. It expects inodes to be from devpts FS.
1944  */
1945 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1946 {
1947 	struct tty_struct *tty;
1948 	int retval;
1949 
1950 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1951 		return NULL;
1952 
1953 	tty = get_current_tty();
1954 	if (!tty)
1955 		return ERR_PTR(-ENXIO);
1956 
1957 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1958 	/* noctty = 1; */
1959 	tty_lock(tty);
1960 	tty_kref_put(tty);	/* safe to drop the kref now */
1961 
1962 	retval = tty_reopen(tty);
1963 	if (retval < 0) {
1964 		tty_unlock(tty);
1965 		tty = ERR_PTR(retval);
1966 	}
1967 	return tty;
1968 }
1969 
1970 /**
1971  *	tty_lookup_driver - lookup a tty driver for a given device file
1972  *	@device: device number
1973  *	@filp: file pointer to tty
1974  *	@noctty: set if the device should not become a controlling tty
1975  *	@index: index for the device in the @return driver
1976  *	@return: driver for this inode (with increased refcount)
1977  *
1978  * 	If @return is not erroneous, the caller is responsible to decrement the
1979  * 	refcount by tty_driver_kref_put.
1980  *
1981  *	Locking: tty_mutex protects get_tty_driver
1982  */
1983 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1984 		int *noctty, int *index)
1985 {
1986 	struct tty_driver *driver;
1987 
1988 	switch (device) {
1989 #ifdef CONFIG_VT
1990 	case MKDEV(TTY_MAJOR, 0): {
1991 		extern struct tty_driver *console_driver;
1992 		driver = tty_driver_kref_get(console_driver);
1993 		*index = fg_console;
1994 		*noctty = 1;
1995 		break;
1996 	}
1997 #endif
1998 	case MKDEV(TTYAUX_MAJOR, 1): {
1999 		struct tty_driver *console_driver = console_device(index);
2000 		if (console_driver) {
2001 			driver = tty_driver_kref_get(console_driver);
2002 			if (driver) {
2003 				/* Don't let /dev/console block */
2004 				filp->f_flags |= O_NONBLOCK;
2005 				*noctty = 1;
2006 				break;
2007 			}
2008 		}
2009 		return ERR_PTR(-ENODEV);
2010 	}
2011 	default:
2012 		driver = get_tty_driver(device, index);
2013 		if (!driver)
2014 			return ERR_PTR(-ENODEV);
2015 		break;
2016 	}
2017 	return driver;
2018 }
2019 
2020 /**
2021  *	tty_open		-	open a tty device
2022  *	@inode: inode of device file
2023  *	@filp: file pointer to tty
2024  *
2025  *	tty_open and tty_release keep up the tty count that contains the
2026  *	number of opens done on a tty. We cannot use the inode-count, as
2027  *	different inodes might point to the same tty.
2028  *
2029  *	Open-counting is needed for pty masters, as well as for keeping
2030  *	track of serial lines: DTR is dropped when the last close happens.
2031  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2032  *
2033  *	The termios state of a pty is reset on first open so that
2034  *	settings don't persist across reuse.
2035  *
2036  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2037  *		 tty->count should protect the rest.
2038  *		 ->siglock protects ->signal/->sighand
2039  *
2040  *	Note: the tty_unlock/lock cases without a ref are only safe due to
2041  *	tty_mutex
2042  */
2043 
2044 static int tty_open(struct inode *inode, struct file *filp)
2045 {
2046 	struct tty_struct *tty;
2047 	int noctty, retval;
2048 	struct tty_driver *driver = NULL;
2049 	int index;
2050 	dev_t device = inode->i_rdev;
2051 	unsigned saved_flags = filp->f_flags;
2052 
2053 	nonseekable_open(inode, filp);
2054 
2055 retry_open:
2056 	retval = tty_alloc_file(filp);
2057 	if (retval)
2058 		return -ENOMEM;
2059 
2060 	noctty = filp->f_flags & O_NOCTTY;
2061 	index  = -1;
2062 	retval = 0;
2063 
2064 	tty = tty_open_current_tty(device, filp);
2065 	if (!tty) {
2066 		mutex_lock(&tty_mutex);
2067 		driver = tty_lookup_driver(device, filp, &noctty, &index);
2068 		if (IS_ERR(driver)) {
2069 			retval = PTR_ERR(driver);
2070 			goto err_unlock;
2071 		}
2072 
2073 		/* check whether we're reopening an existing tty */
2074 		tty = tty_driver_lookup_tty(driver, inode, index);
2075 		if (IS_ERR(tty)) {
2076 			retval = PTR_ERR(tty);
2077 			goto err_unlock;
2078 		}
2079 
2080 		if (tty) {
2081 			mutex_unlock(&tty_mutex);
2082 			tty_lock(tty);
2083 			/* safe to drop the kref from tty_driver_lookup_tty() */
2084 			tty_kref_put(tty);
2085 			retval = tty_reopen(tty);
2086 			if (retval < 0) {
2087 				tty_unlock(tty);
2088 				tty = ERR_PTR(retval);
2089 			}
2090 		} else { /* Returns with the tty_lock held for now */
2091 			tty = tty_init_dev(driver, index);
2092 			mutex_unlock(&tty_mutex);
2093 		}
2094 
2095 		tty_driver_kref_put(driver);
2096 	}
2097 
2098 	if (IS_ERR(tty)) {
2099 		retval = PTR_ERR(tty);
2100 		goto err_file;
2101 	}
2102 
2103 	tty_add_file(tty, filp);
2104 
2105 	check_tty_count(tty, __func__);
2106 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2107 	    tty->driver->subtype == PTY_TYPE_MASTER)
2108 		noctty = 1;
2109 #ifdef TTY_DEBUG_HANGUP
2110 	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2111 #endif
2112 	if (tty->ops->open)
2113 		retval = tty->ops->open(tty, filp);
2114 	else
2115 		retval = -ENODEV;
2116 	filp->f_flags = saved_flags;
2117 
2118 	if (retval) {
2119 #ifdef TTY_DEBUG_HANGUP
2120 		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2121 				retval, tty->name);
2122 #endif
2123 		tty_unlock(tty); /* need to call tty_release without BTM */
2124 		tty_release(inode, filp);
2125 		if (retval != -ERESTARTSYS)
2126 			return retval;
2127 
2128 		if (signal_pending(current))
2129 			return retval;
2130 
2131 		schedule();
2132 		/*
2133 		 * Need to reset f_op in case a hangup happened.
2134 		 */
2135 		if (tty_hung_up_p(filp))
2136 			filp->f_op = &tty_fops;
2137 		goto retry_open;
2138 	}
2139 	clear_bit(TTY_HUPPED, &tty->flags);
2140 
2141 
2142 	read_lock(&tasklist_lock);
2143 	spin_lock_irq(&current->sighand->siglock);
2144 	if (!noctty &&
2145 	    current->signal->leader &&
2146 	    !current->signal->tty &&
2147 	    tty->session == NULL)
2148 		__proc_set_tty(tty);
2149 	spin_unlock_irq(&current->sighand->siglock);
2150 	read_unlock(&tasklist_lock);
2151 	tty_unlock(tty);
2152 	return 0;
2153 err_unlock:
2154 	mutex_unlock(&tty_mutex);
2155 	/* after locks to avoid deadlock */
2156 	if (!IS_ERR_OR_NULL(driver))
2157 		tty_driver_kref_put(driver);
2158 err_file:
2159 	tty_free_file(filp);
2160 	return retval;
2161 }
2162 
2163 
2164 
2165 /**
2166  *	tty_poll	-	check tty status
2167  *	@filp: file being polled
2168  *	@wait: poll wait structures to update
2169  *
2170  *	Call the line discipline polling method to obtain the poll
2171  *	status of the device.
2172  *
2173  *	Locking: locks called line discipline but ldisc poll method
2174  *	may be re-entered freely by other callers.
2175  */
2176 
2177 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2178 {
2179 	struct tty_struct *tty = file_tty(filp);
2180 	struct tty_ldisc *ld;
2181 	int ret = 0;
2182 
2183 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2184 		return 0;
2185 
2186 	ld = tty_ldisc_ref_wait(tty);
2187 	if (ld->ops->poll)
2188 		ret = ld->ops->poll(tty, filp, wait);
2189 	tty_ldisc_deref(ld);
2190 	return ret;
2191 }
2192 
2193 static int __tty_fasync(int fd, struct file *filp, int on)
2194 {
2195 	struct tty_struct *tty = file_tty(filp);
2196 	struct tty_ldisc *ldisc;
2197 	unsigned long flags;
2198 	int retval = 0;
2199 
2200 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2201 		goto out;
2202 
2203 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2204 	if (retval <= 0)
2205 		goto out;
2206 
2207 	ldisc = tty_ldisc_ref(tty);
2208 	if (ldisc) {
2209 		if (ldisc->ops->fasync)
2210 			ldisc->ops->fasync(tty, on);
2211 		tty_ldisc_deref(ldisc);
2212 	}
2213 
2214 	if (on) {
2215 		enum pid_type type;
2216 		struct pid *pid;
2217 
2218 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2219 		if (tty->pgrp) {
2220 			pid = tty->pgrp;
2221 			type = PIDTYPE_PGID;
2222 		} else {
2223 			pid = task_pid(current);
2224 			type = PIDTYPE_PID;
2225 		}
2226 		get_pid(pid);
2227 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2228 		__f_setown(filp, pid, type, 0);
2229 		put_pid(pid);
2230 		retval = 0;
2231 	}
2232 out:
2233 	return retval;
2234 }
2235 
2236 static int tty_fasync(int fd, struct file *filp, int on)
2237 {
2238 	struct tty_struct *tty = file_tty(filp);
2239 	int retval;
2240 
2241 	tty_lock(tty);
2242 	retval = __tty_fasync(fd, filp, on);
2243 	tty_unlock(tty);
2244 
2245 	return retval;
2246 }
2247 
2248 /**
2249  *	tiocsti			-	fake input character
2250  *	@tty: tty to fake input into
2251  *	@p: pointer to character
2252  *
2253  *	Fake input to a tty device. Does the necessary locking and
2254  *	input management.
2255  *
2256  *	FIXME: does not honour flow control ??
2257  *
2258  *	Locking:
2259  *		Called functions take tty_ldiscs_lock
2260  *		current->signal->tty check is safe without locks
2261  *
2262  *	FIXME: may race normal receive processing
2263  */
2264 
2265 static int tiocsti(struct tty_struct *tty, char __user *p)
2266 {
2267 	char ch, mbz = 0;
2268 	struct tty_ldisc *ld;
2269 
2270 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2271 		return -EPERM;
2272 	if (get_user(ch, p))
2273 		return -EFAULT;
2274 	tty_audit_tiocsti(tty, ch);
2275 	ld = tty_ldisc_ref_wait(tty);
2276 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2277 	tty_ldisc_deref(ld);
2278 	return 0;
2279 }
2280 
2281 /**
2282  *	tiocgwinsz		-	implement window query ioctl
2283  *	@tty; tty
2284  *	@arg: user buffer for result
2285  *
2286  *	Copies the kernel idea of the window size into the user buffer.
2287  *
2288  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2289  *		is consistent.
2290  */
2291 
2292 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2293 {
2294 	int err;
2295 
2296 	mutex_lock(&tty->winsize_mutex);
2297 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2298 	mutex_unlock(&tty->winsize_mutex);
2299 
2300 	return err ? -EFAULT: 0;
2301 }
2302 
2303 /**
2304  *	tty_do_resize		-	resize event
2305  *	@tty: tty being resized
2306  *	@rows: rows (character)
2307  *	@cols: cols (character)
2308  *
2309  *	Update the termios variables and send the necessary signals to
2310  *	peform a terminal resize correctly
2311  */
2312 
2313 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2314 {
2315 	struct pid *pgrp;
2316 
2317 	/* Lock the tty */
2318 	mutex_lock(&tty->winsize_mutex);
2319 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2320 		goto done;
2321 
2322 	/* Signal the foreground process group */
2323 	pgrp = tty_get_pgrp(tty);
2324 	if (pgrp)
2325 		kill_pgrp(pgrp, SIGWINCH, 1);
2326 	put_pid(pgrp);
2327 
2328 	tty->winsize = *ws;
2329 done:
2330 	mutex_unlock(&tty->winsize_mutex);
2331 	return 0;
2332 }
2333 EXPORT_SYMBOL(tty_do_resize);
2334 
2335 /**
2336  *	tiocswinsz		-	implement window size set ioctl
2337  *	@tty; tty side of tty
2338  *	@arg: user buffer for result
2339  *
2340  *	Copies the user idea of the window size to the kernel. Traditionally
2341  *	this is just advisory information but for the Linux console it
2342  *	actually has driver level meaning and triggers a VC resize.
2343  *
2344  *	Locking:
2345  *		Driver dependent. The default do_resize method takes the
2346  *	tty termios mutex and ctrl_lock. The console takes its own lock
2347  *	then calls into the default method.
2348  */
2349 
2350 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2351 {
2352 	struct winsize tmp_ws;
2353 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2354 		return -EFAULT;
2355 
2356 	if (tty->ops->resize)
2357 		return tty->ops->resize(tty, &tmp_ws);
2358 	else
2359 		return tty_do_resize(tty, &tmp_ws);
2360 }
2361 
2362 /**
2363  *	tioccons	-	allow admin to move logical console
2364  *	@file: the file to become console
2365  *
2366  *	Allow the administrator to move the redirected console device
2367  *
2368  *	Locking: uses redirect_lock to guard the redirect information
2369  */
2370 
2371 static int tioccons(struct file *file)
2372 {
2373 	if (!capable(CAP_SYS_ADMIN))
2374 		return -EPERM;
2375 	if (file->f_op->write == redirected_tty_write) {
2376 		struct file *f;
2377 		spin_lock(&redirect_lock);
2378 		f = redirect;
2379 		redirect = NULL;
2380 		spin_unlock(&redirect_lock);
2381 		if (f)
2382 			fput(f);
2383 		return 0;
2384 	}
2385 	spin_lock(&redirect_lock);
2386 	if (redirect) {
2387 		spin_unlock(&redirect_lock);
2388 		return -EBUSY;
2389 	}
2390 	redirect = get_file(file);
2391 	spin_unlock(&redirect_lock);
2392 	return 0;
2393 }
2394 
2395 /**
2396  *	fionbio		-	non blocking ioctl
2397  *	@file: file to set blocking value
2398  *	@p: user parameter
2399  *
2400  *	Historical tty interfaces had a blocking control ioctl before
2401  *	the generic functionality existed. This piece of history is preserved
2402  *	in the expected tty API of posix OS's.
2403  *
2404  *	Locking: none, the open file handle ensures it won't go away.
2405  */
2406 
2407 static int fionbio(struct file *file, int __user *p)
2408 {
2409 	int nonblock;
2410 
2411 	if (get_user(nonblock, p))
2412 		return -EFAULT;
2413 
2414 	spin_lock(&file->f_lock);
2415 	if (nonblock)
2416 		file->f_flags |= O_NONBLOCK;
2417 	else
2418 		file->f_flags &= ~O_NONBLOCK;
2419 	spin_unlock(&file->f_lock);
2420 	return 0;
2421 }
2422 
2423 /**
2424  *	tiocsctty	-	set controlling tty
2425  *	@tty: tty structure
2426  *	@arg: user argument
2427  *
2428  *	This ioctl is used to manage job control. It permits a session
2429  *	leader to set this tty as the controlling tty for the session.
2430  *
2431  *	Locking:
2432  *		Takes tty_lock() to serialize proc_set_tty() for this tty
2433  *		Takes tasklist_lock internally to walk sessions
2434  *		Takes ->siglock() when updating signal->tty
2435  */
2436 
2437 static int tiocsctty(struct tty_struct *tty, int arg)
2438 {
2439 	int ret = 0;
2440 
2441 	tty_lock(tty);
2442 	read_lock(&tasklist_lock);
2443 
2444 	if (current->signal->leader && (task_session(current) == tty->session))
2445 		goto unlock;
2446 
2447 	/*
2448 	 * The process must be a session leader and
2449 	 * not have a controlling tty already.
2450 	 */
2451 	if (!current->signal->leader || current->signal->tty) {
2452 		ret = -EPERM;
2453 		goto unlock;
2454 	}
2455 
2456 	if (tty->session) {
2457 		/*
2458 		 * This tty is already the controlling
2459 		 * tty for another session group!
2460 		 */
2461 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2462 			/*
2463 			 * Steal it away
2464 			 */
2465 			session_clear_tty(tty->session);
2466 		} else {
2467 			ret = -EPERM;
2468 			goto unlock;
2469 		}
2470 	}
2471 	proc_set_tty(tty);
2472 unlock:
2473 	read_unlock(&tasklist_lock);
2474 	tty_unlock(tty);
2475 	return ret;
2476 }
2477 
2478 /**
2479  *	tty_get_pgrp	-	return a ref counted pgrp pid
2480  *	@tty: tty to read
2481  *
2482  *	Returns a refcounted instance of the pid struct for the process
2483  *	group controlling the tty.
2484  */
2485 
2486 struct pid *tty_get_pgrp(struct tty_struct *tty)
2487 {
2488 	unsigned long flags;
2489 	struct pid *pgrp;
2490 
2491 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2492 	pgrp = get_pid(tty->pgrp);
2493 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2494 
2495 	return pgrp;
2496 }
2497 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2498 
2499 /*
2500  * This checks not only the pgrp, but falls back on the pid if no
2501  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2502  * without this...
2503  *
2504  * The caller must hold rcu lock or the tasklist lock.
2505  */
2506 static struct pid *session_of_pgrp(struct pid *pgrp)
2507 {
2508 	struct task_struct *p;
2509 	struct pid *sid = NULL;
2510 
2511 	p = pid_task(pgrp, PIDTYPE_PGID);
2512 	if (p == NULL)
2513 		p = pid_task(pgrp, PIDTYPE_PID);
2514 	if (p != NULL)
2515 		sid = task_session(p);
2516 
2517 	return sid;
2518 }
2519 
2520 /**
2521  *	tiocgpgrp		-	get process group
2522  *	@tty: tty passed by user
2523  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2524  *	@p: returned pid
2525  *
2526  *	Obtain the process group of the tty. If there is no process group
2527  *	return an error.
2528  *
2529  *	Locking: none. Reference to current->signal->tty is safe.
2530  */
2531 
2532 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2533 {
2534 	struct pid *pid;
2535 	int ret;
2536 	/*
2537 	 * (tty == real_tty) is a cheap way of
2538 	 * testing if the tty is NOT a master pty.
2539 	 */
2540 	if (tty == real_tty && current->signal->tty != real_tty)
2541 		return -ENOTTY;
2542 	pid = tty_get_pgrp(real_tty);
2543 	ret =  put_user(pid_vnr(pid), p);
2544 	put_pid(pid);
2545 	return ret;
2546 }
2547 
2548 /**
2549  *	tiocspgrp		-	attempt to set process group
2550  *	@tty: tty passed by user
2551  *	@real_tty: tty side device matching tty passed by user
2552  *	@p: pid pointer
2553  *
2554  *	Set the process group of the tty to the session passed. Only
2555  *	permitted where the tty session is our session.
2556  *
2557  *	Locking: RCU, ctrl lock
2558  */
2559 
2560 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2561 {
2562 	struct pid *pgrp;
2563 	pid_t pgrp_nr;
2564 	int retval = tty_check_change(real_tty);
2565 	unsigned long flags;
2566 
2567 	if (retval == -EIO)
2568 		return -ENOTTY;
2569 	if (retval)
2570 		return retval;
2571 	if (!current->signal->tty ||
2572 	    (current->signal->tty != real_tty) ||
2573 	    (real_tty->session != task_session(current)))
2574 		return -ENOTTY;
2575 	if (get_user(pgrp_nr, p))
2576 		return -EFAULT;
2577 	if (pgrp_nr < 0)
2578 		return -EINVAL;
2579 	rcu_read_lock();
2580 	pgrp = find_vpid(pgrp_nr);
2581 	retval = -ESRCH;
2582 	if (!pgrp)
2583 		goto out_unlock;
2584 	retval = -EPERM;
2585 	if (session_of_pgrp(pgrp) != task_session(current))
2586 		goto out_unlock;
2587 	retval = 0;
2588 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2589 	put_pid(real_tty->pgrp);
2590 	real_tty->pgrp = get_pid(pgrp);
2591 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2592 out_unlock:
2593 	rcu_read_unlock();
2594 	return retval;
2595 }
2596 
2597 /**
2598  *	tiocgsid		-	get session id
2599  *	@tty: tty passed by user
2600  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2601  *	@p: pointer to returned session id
2602  *
2603  *	Obtain the session id of the tty. If there is no session
2604  *	return an error.
2605  *
2606  *	Locking: none. Reference to current->signal->tty is safe.
2607  */
2608 
2609 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2610 {
2611 	/*
2612 	 * (tty == real_tty) is a cheap way of
2613 	 * testing if the tty is NOT a master pty.
2614 	*/
2615 	if (tty == real_tty && current->signal->tty != real_tty)
2616 		return -ENOTTY;
2617 	if (!real_tty->session)
2618 		return -ENOTTY;
2619 	return put_user(pid_vnr(real_tty->session), p);
2620 }
2621 
2622 /**
2623  *	tiocsetd	-	set line discipline
2624  *	@tty: tty device
2625  *	@p: pointer to user data
2626  *
2627  *	Set the line discipline according to user request.
2628  *
2629  *	Locking: see tty_set_ldisc, this function is just a helper
2630  */
2631 
2632 static int tiocsetd(struct tty_struct *tty, int __user *p)
2633 {
2634 	int ldisc;
2635 	int ret;
2636 
2637 	if (get_user(ldisc, p))
2638 		return -EFAULT;
2639 
2640 	ret = tty_set_ldisc(tty, ldisc);
2641 
2642 	return ret;
2643 }
2644 
2645 /**
2646  *	send_break	-	performed time break
2647  *	@tty: device to break on
2648  *	@duration: timeout in mS
2649  *
2650  *	Perform a timed break on hardware that lacks its own driver level
2651  *	timed break functionality.
2652  *
2653  *	Locking:
2654  *		atomic_write_lock serializes
2655  *
2656  */
2657 
2658 static int send_break(struct tty_struct *tty, unsigned int duration)
2659 {
2660 	int retval;
2661 
2662 	if (tty->ops->break_ctl == NULL)
2663 		return 0;
2664 
2665 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2666 		retval = tty->ops->break_ctl(tty, duration);
2667 	else {
2668 		/* Do the work ourselves */
2669 		if (tty_write_lock(tty, 0) < 0)
2670 			return -EINTR;
2671 		retval = tty->ops->break_ctl(tty, -1);
2672 		if (retval)
2673 			goto out;
2674 		if (!signal_pending(current))
2675 			msleep_interruptible(duration);
2676 		retval = tty->ops->break_ctl(tty, 0);
2677 out:
2678 		tty_write_unlock(tty);
2679 		if (signal_pending(current))
2680 			retval = -EINTR;
2681 	}
2682 	return retval;
2683 }
2684 
2685 /**
2686  *	tty_tiocmget		-	get modem status
2687  *	@tty: tty device
2688  *	@file: user file pointer
2689  *	@p: pointer to result
2690  *
2691  *	Obtain the modem status bits from the tty driver if the feature
2692  *	is supported. Return -EINVAL if it is not available.
2693  *
2694  *	Locking: none (up to the driver)
2695  */
2696 
2697 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2698 {
2699 	int retval = -EINVAL;
2700 
2701 	if (tty->ops->tiocmget) {
2702 		retval = tty->ops->tiocmget(tty);
2703 
2704 		if (retval >= 0)
2705 			retval = put_user(retval, p);
2706 	}
2707 	return retval;
2708 }
2709 
2710 /**
2711  *	tty_tiocmset		-	set modem status
2712  *	@tty: tty device
2713  *	@cmd: command - clear bits, set bits or set all
2714  *	@p: pointer to desired bits
2715  *
2716  *	Set the modem status bits from the tty driver if the feature
2717  *	is supported. Return -EINVAL if it is not available.
2718  *
2719  *	Locking: none (up to the driver)
2720  */
2721 
2722 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2723 	     unsigned __user *p)
2724 {
2725 	int retval;
2726 	unsigned int set, clear, val;
2727 
2728 	if (tty->ops->tiocmset == NULL)
2729 		return -EINVAL;
2730 
2731 	retval = get_user(val, p);
2732 	if (retval)
2733 		return retval;
2734 	set = clear = 0;
2735 	switch (cmd) {
2736 	case TIOCMBIS:
2737 		set = val;
2738 		break;
2739 	case TIOCMBIC:
2740 		clear = val;
2741 		break;
2742 	case TIOCMSET:
2743 		set = val;
2744 		clear = ~val;
2745 		break;
2746 	}
2747 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2748 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2749 	return tty->ops->tiocmset(tty, set, clear);
2750 }
2751 
2752 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2753 {
2754 	int retval = -EINVAL;
2755 	struct serial_icounter_struct icount;
2756 	memset(&icount, 0, sizeof(icount));
2757 	if (tty->ops->get_icount)
2758 		retval = tty->ops->get_icount(tty, &icount);
2759 	if (retval != 0)
2760 		return retval;
2761 	if (copy_to_user(arg, &icount, sizeof(icount)))
2762 		return -EFAULT;
2763 	return 0;
2764 }
2765 
2766 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2767 {
2768 	static DEFINE_RATELIMIT_STATE(depr_flags,
2769 			DEFAULT_RATELIMIT_INTERVAL,
2770 			DEFAULT_RATELIMIT_BURST);
2771 	char comm[TASK_COMM_LEN];
2772 	int flags;
2773 
2774 	if (get_user(flags, &ss->flags))
2775 		return;
2776 
2777 	flags &= ASYNC_DEPRECATED;
2778 
2779 	if (flags && __ratelimit(&depr_flags))
2780 		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2781 				__func__, get_task_comm(comm, current), flags);
2782 }
2783 
2784 /*
2785  * if pty, return the slave side (real_tty)
2786  * otherwise, return self
2787  */
2788 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2789 {
2790 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2791 	    tty->driver->subtype == PTY_TYPE_MASTER)
2792 		tty = tty->link;
2793 	return tty;
2794 }
2795 
2796 /*
2797  * Split this up, as gcc can choke on it otherwise..
2798  */
2799 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2800 {
2801 	struct tty_struct *tty = file_tty(file);
2802 	struct tty_struct *real_tty;
2803 	void __user *p = (void __user *)arg;
2804 	int retval;
2805 	struct tty_ldisc *ld;
2806 
2807 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2808 		return -EINVAL;
2809 
2810 	real_tty = tty_pair_get_tty(tty);
2811 
2812 	/*
2813 	 * Factor out some common prep work
2814 	 */
2815 	switch (cmd) {
2816 	case TIOCSETD:
2817 	case TIOCSBRK:
2818 	case TIOCCBRK:
2819 	case TCSBRK:
2820 	case TCSBRKP:
2821 		retval = tty_check_change(tty);
2822 		if (retval)
2823 			return retval;
2824 		if (cmd != TIOCCBRK) {
2825 			tty_wait_until_sent(tty, 0);
2826 			if (signal_pending(current))
2827 				return -EINTR;
2828 		}
2829 		break;
2830 	}
2831 
2832 	/*
2833 	 *	Now do the stuff.
2834 	 */
2835 	switch (cmd) {
2836 	case TIOCSTI:
2837 		return tiocsti(tty, p);
2838 	case TIOCGWINSZ:
2839 		return tiocgwinsz(real_tty, p);
2840 	case TIOCSWINSZ:
2841 		return tiocswinsz(real_tty, p);
2842 	case TIOCCONS:
2843 		return real_tty != tty ? -EINVAL : tioccons(file);
2844 	case FIONBIO:
2845 		return fionbio(file, p);
2846 	case TIOCEXCL:
2847 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2848 		return 0;
2849 	case TIOCNXCL:
2850 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2851 		return 0;
2852 	case TIOCGEXCL:
2853 	{
2854 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2855 		return put_user(excl, (int __user *)p);
2856 	}
2857 	case TIOCNOTTY:
2858 		if (current->signal->tty != tty)
2859 			return -ENOTTY;
2860 		no_tty();
2861 		return 0;
2862 	case TIOCSCTTY:
2863 		return tiocsctty(tty, arg);
2864 	case TIOCGPGRP:
2865 		return tiocgpgrp(tty, real_tty, p);
2866 	case TIOCSPGRP:
2867 		return tiocspgrp(tty, real_tty, p);
2868 	case TIOCGSID:
2869 		return tiocgsid(tty, real_tty, p);
2870 	case TIOCGETD:
2871 		return put_user(tty->ldisc->ops->num, (int __user *)p);
2872 	case TIOCSETD:
2873 		return tiocsetd(tty, p);
2874 	case TIOCVHANGUP:
2875 		if (!capable(CAP_SYS_ADMIN))
2876 			return -EPERM;
2877 		tty_vhangup(tty);
2878 		return 0;
2879 	case TIOCGDEV:
2880 	{
2881 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2882 		return put_user(ret, (unsigned int __user *)p);
2883 	}
2884 	/*
2885 	 * Break handling
2886 	 */
2887 	case TIOCSBRK:	/* Turn break on, unconditionally */
2888 		if (tty->ops->break_ctl)
2889 			return tty->ops->break_ctl(tty, -1);
2890 		return 0;
2891 	case TIOCCBRK:	/* Turn break off, unconditionally */
2892 		if (tty->ops->break_ctl)
2893 			return tty->ops->break_ctl(tty, 0);
2894 		return 0;
2895 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2896 		/* non-zero arg means wait for all output data
2897 		 * to be sent (performed above) but don't send break.
2898 		 * This is used by the tcdrain() termios function.
2899 		 */
2900 		if (!arg)
2901 			return send_break(tty, 250);
2902 		return 0;
2903 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2904 		return send_break(tty, arg ? arg*100 : 250);
2905 
2906 	case TIOCMGET:
2907 		return tty_tiocmget(tty, p);
2908 	case TIOCMSET:
2909 	case TIOCMBIC:
2910 	case TIOCMBIS:
2911 		return tty_tiocmset(tty, cmd, p);
2912 	case TIOCGICOUNT:
2913 		retval = tty_tiocgicount(tty, p);
2914 		/* For the moment allow fall through to the old method */
2915         	if (retval != -EINVAL)
2916 			return retval;
2917 		break;
2918 	case TCFLSH:
2919 		switch (arg) {
2920 		case TCIFLUSH:
2921 		case TCIOFLUSH:
2922 		/* flush tty buffer and allow ldisc to process ioctl */
2923 			tty_buffer_flush(tty, NULL);
2924 			break;
2925 		}
2926 		break;
2927 	case TIOCSSERIAL:
2928 		tty_warn_deprecated_flags(p);
2929 		break;
2930 	}
2931 	if (tty->ops->ioctl) {
2932 		retval = tty->ops->ioctl(tty, cmd, arg);
2933 		if (retval != -ENOIOCTLCMD)
2934 			return retval;
2935 	}
2936 	ld = tty_ldisc_ref_wait(tty);
2937 	retval = -EINVAL;
2938 	if (ld->ops->ioctl) {
2939 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2940 		if (retval == -ENOIOCTLCMD)
2941 			retval = -ENOTTY;
2942 	}
2943 	tty_ldisc_deref(ld);
2944 	return retval;
2945 }
2946 
2947 #ifdef CONFIG_COMPAT
2948 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2949 				unsigned long arg)
2950 {
2951 	struct tty_struct *tty = file_tty(file);
2952 	struct tty_ldisc *ld;
2953 	int retval = -ENOIOCTLCMD;
2954 
2955 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2956 		return -EINVAL;
2957 
2958 	if (tty->ops->compat_ioctl) {
2959 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2960 		if (retval != -ENOIOCTLCMD)
2961 			return retval;
2962 	}
2963 
2964 	ld = tty_ldisc_ref_wait(tty);
2965 	if (ld->ops->compat_ioctl)
2966 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2967 	else
2968 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2969 	tty_ldisc_deref(ld);
2970 
2971 	return retval;
2972 }
2973 #endif
2974 
2975 static int this_tty(const void *t, struct file *file, unsigned fd)
2976 {
2977 	if (likely(file->f_op->read != tty_read))
2978 		return 0;
2979 	return file_tty(file) != t ? 0 : fd + 1;
2980 }
2981 
2982 /*
2983  * This implements the "Secure Attention Key" ---  the idea is to
2984  * prevent trojan horses by killing all processes associated with this
2985  * tty when the user hits the "Secure Attention Key".  Required for
2986  * super-paranoid applications --- see the Orange Book for more details.
2987  *
2988  * This code could be nicer; ideally it should send a HUP, wait a few
2989  * seconds, then send a INT, and then a KILL signal.  But you then
2990  * have to coordinate with the init process, since all processes associated
2991  * with the current tty must be dead before the new getty is allowed
2992  * to spawn.
2993  *
2994  * Now, if it would be correct ;-/ The current code has a nasty hole -
2995  * it doesn't catch files in flight. We may send the descriptor to ourselves
2996  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2997  *
2998  * Nasty bug: do_SAK is being called in interrupt context.  This can
2999  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3000  */
3001 void __do_SAK(struct tty_struct *tty)
3002 {
3003 #ifdef TTY_SOFT_SAK
3004 	tty_hangup(tty);
3005 #else
3006 	struct task_struct *g, *p;
3007 	struct pid *session;
3008 	int		i;
3009 
3010 	if (!tty)
3011 		return;
3012 	session = tty->session;
3013 
3014 	tty_ldisc_flush(tty);
3015 
3016 	tty_driver_flush_buffer(tty);
3017 
3018 	read_lock(&tasklist_lock);
3019 	/* Kill the entire session */
3020 	do_each_pid_task(session, PIDTYPE_SID, p) {
3021 		printk(KERN_NOTICE "SAK: killed process %d"
3022 			" (%s): task_session(p)==tty->session\n",
3023 			task_pid_nr(p), p->comm);
3024 		send_sig(SIGKILL, p, 1);
3025 	} while_each_pid_task(session, PIDTYPE_SID, p);
3026 	/* Now kill any processes that happen to have the
3027 	 * tty open.
3028 	 */
3029 	do_each_thread(g, p) {
3030 		if (p->signal->tty == tty) {
3031 			printk(KERN_NOTICE "SAK: killed process %d"
3032 			    " (%s): task_session(p)==tty->session\n",
3033 			    task_pid_nr(p), p->comm);
3034 			send_sig(SIGKILL, p, 1);
3035 			continue;
3036 		}
3037 		task_lock(p);
3038 		i = iterate_fd(p->files, 0, this_tty, tty);
3039 		if (i != 0) {
3040 			printk(KERN_NOTICE "SAK: killed process %d"
3041 			    " (%s): fd#%d opened to the tty\n",
3042 				    task_pid_nr(p), p->comm, i - 1);
3043 			force_sig(SIGKILL, p);
3044 		}
3045 		task_unlock(p);
3046 	} while_each_thread(g, p);
3047 	read_unlock(&tasklist_lock);
3048 #endif
3049 }
3050 
3051 static void do_SAK_work(struct work_struct *work)
3052 {
3053 	struct tty_struct *tty =
3054 		container_of(work, struct tty_struct, SAK_work);
3055 	__do_SAK(tty);
3056 }
3057 
3058 /*
3059  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3060  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3061  * the values which we write to it will be identical to the values which it
3062  * already has. --akpm
3063  */
3064 void do_SAK(struct tty_struct *tty)
3065 {
3066 	if (!tty)
3067 		return;
3068 	schedule_work(&tty->SAK_work);
3069 }
3070 
3071 EXPORT_SYMBOL(do_SAK);
3072 
3073 static int dev_match_devt(struct device *dev, const void *data)
3074 {
3075 	const dev_t *devt = data;
3076 	return dev->devt == *devt;
3077 }
3078 
3079 /* Must put_device() after it's unused! */
3080 static struct device *tty_get_device(struct tty_struct *tty)
3081 {
3082 	dev_t devt = tty_devnum(tty);
3083 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3084 }
3085 
3086 
3087 /**
3088  *	alloc_tty_struct
3089  *
3090  *	This subroutine allocates and initializes a tty structure.
3091  *
3092  *	Locking: none - tty in question is not exposed at this point
3093  */
3094 
3095 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3096 {
3097 	struct tty_struct *tty;
3098 
3099 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3100 	if (!tty)
3101 		return NULL;
3102 
3103 	kref_init(&tty->kref);
3104 	tty->magic = TTY_MAGIC;
3105 	tty_ldisc_init(tty);
3106 	tty->session = NULL;
3107 	tty->pgrp = NULL;
3108 	mutex_init(&tty->legacy_mutex);
3109 	mutex_init(&tty->throttle_mutex);
3110 	init_rwsem(&tty->termios_rwsem);
3111 	mutex_init(&tty->winsize_mutex);
3112 	init_ldsem(&tty->ldisc_sem);
3113 	init_waitqueue_head(&tty->write_wait);
3114 	init_waitqueue_head(&tty->read_wait);
3115 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3116 	mutex_init(&tty->atomic_write_lock);
3117 	spin_lock_init(&tty->ctrl_lock);
3118 	spin_lock_init(&tty->flow_lock);
3119 	INIT_LIST_HEAD(&tty->tty_files);
3120 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3121 
3122 	tty->driver = driver;
3123 	tty->ops = driver->ops;
3124 	tty->index = idx;
3125 	tty_line_name(driver, idx, tty->name);
3126 	tty->dev = tty_get_device(tty);
3127 
3128 	return tty;
3129 }
3130 
3131 /**
3132  *	deinitialize_tty_struct
3133  *	@tty: tty to deinitialize
3134  *
3135  *	This subroutine deinitializes a tty structure that has been newly
3136  *	allocated but tty_release cannot be called on that yet.
3137  *
3138  *	Locking: none - tty in question must not be exposed at this point
3139  */
3140 void deinitialize_tty_struct(struct tty_struct *tty)
3141 {
3142 	tty_ldisc_deinit(tty);
3143 }
3144 
3145 /**
3146  *	tty_put_char	-	write one character to a tty
3147  *	@tty: tty
3148  *	@ch: character
3149  *
3150  *	Write one byte to the tty using the provided put_char method
3151  *	if present. Returns the number of characters successfully output.
3152  *
3153  *	Note: the specific put_char operation in the driver layer may go
3154  *	away soon. Don't call it directly, use this method
3155  */
3156 
3157 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3158 {
3159 	if (tty->ops->put_char)
3160 		return tty->ops->put_char(tty, ch);
3161 	return tty->ops->write(tty, &ch, 1);
3162 }
3163 EXPORT_SYMBOL_GPL(tty_put_char);
3164 
3165 struct class *tty_class;
3166 
3167 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3168 		unsigned int index, unsigned int count)
3169 {
3170 	/* init here, since reused cdevs cause crashes */
3171 	cdev_init(&driver->cdevs[index], &tty_fops);
3172 	driver->cdevs[index].owner = driver->owner;
3173 	return cdev_add(&driver->cdevs[index], dev, count);
3174 }
3175 
3176 /**
3177  *	tty_register_device - register a tty device
3178  *	@driver: the tty driver that describes the tty device
3179  *	@index: the index in the tty driver for this tty device
3180  *	@device: a struct device that is associated with this tty device.
3181  *		This field is optional, if there is no known struct device
3182  *		for this tty device it can be set to NULL safely.
3183  *
3184  *	Returns a pointer to the struct device for this tty device
3185  *	(or ERR_PTR(-EFOO) on error).
3186  *
3187  *	This call is required to be made to register an individual tty device
3188  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3189  *	that bit is not set, this function should not be called by a tty
3190  *	driver.
3191  *
3192  *	Locking: ??
3193  */
3194 
3195 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3196 				   struct device *device)
3197 {
3198 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3199 }
3200 EXPORT_SYMBOL(tty_register_device);
3201 
3202 static void tty_device_create_release(struct device *dev)
3203 {
3204 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3205 	kfree(dev);
3206 }
3207 
3208 /**
3209  *	tty_register_device_attr - register a tty device
3210  *	@driver: the tty driver that describes the tty device
3211  *	@index: the index in the tty driver for this tty device
3212  *	@device: a struct device that is associated with this tty device.
3213  *		This field is optional, if there is no known struct device
3214  *		for this tty device it can be set to NULL safely.
3215  *	@drvdata: Driver data to be set to device.
3216  *	@attr_grp: Attribute group to be set on device.
3217  *
3218  *	Returns a pointer to the struct device for this tty device
3219  *	(or ERR_PTR(-EFOO) on error).
3220  *
3221  *	This call is required to be made to register an individual tty device
3222  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3223  *	that bit is not set, this function should not be called by a tty
3224  *	driver.
3225  *
3226  *	Locking: ??
3227  */
3228 struct device *tty_register_device_attr(struct tty_driver *driver,
3229 				   unsigned index, struct device *device,
3230 				   void *drvdata,
3231 				   const struct attribute_group **attr_grp)
3232 {
3233 	char name[64];
3234 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3235 	struct device *dev = NULL;
3236 	int retval = -ENODEV;
3237 	bool cdev = false;
3238 
3239 	if (index >= driver->num) {
3240 		printk(KERN_ERR "Attempt to register invalid tty line number "
3241 		       " (%d).\n", index);
3242 		return ERR_PTR(-EINVAL);
3243 	}
3244 
3245 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3246 		pty_line_name(driver, index, name);
3247 	else
3248 		tty_line_name(driver, index, name);
3249 
3250 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3251 		retval = tty_cdev_add(driver, devt, index, 1);
3252 		if (retval)
3253 			goto error;
3254 		cdev = true;
3255 	}
3256 
3257 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3258 	if (!dev) {
3259 		retval = -ENOMEM;
3260 		goto error;
3261 	}
3262 
3263 	dev->devt = devt;
3264 	dev->class = tty_class;
3265 	dev->parent = device;
3266 	dev->release = tty_device_create_release;
3267 	dev_set_name(dev, "%s", name);
3268 	dev->groups = attr_grp;
3269 	dev_set_drvdata(dev, drvdata);
3270 
3271 	retval = device_register(dev);
3272 	if (retval)
3273 		goto error;
3274 
3275 	return dev;
3276 
3277 error:
3278 	put_device(dev);
3279 	if (cdev)
3280 		cdev_del(&driver->cdevs[index]);
3281 	return ERR_PTR(retval);
3282 }
3283 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3284 
3285 /**
3286  * 	tty_unregister_device - unregister a tty device
3287  * 	@driver: the tty driver that describes the tty device
3288  * 	@index: the index in the tty driver for this tty device
3289  *
3290  * 	If a tty device is registered with a call to tty_register_device() then
3291  *	this function must be called when the tty device is gone.
3292  *
3293  *	Locking: ??
3294  */
3295 
3296 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3297 {
3298 	device_destroy(tty_class,
3299 		MKDEV(driver->major, driver->minor_start) + index);
3300 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3301 		cdev_del(&driver->cdevs[index]);
3302 }
3303 EXPORT_SYMBOL(tty_unregister_device);
3304 
3305 /**
3306  * __tty_alloc_driver -- allocate tty driver
3307  * @lines: count of lines this driver can handle at most
3308  * @owner: module which is repsonsible for this driver
3309  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3310  *
3311  * This should not be called directly, some of the provided macros should be
3312  * used instead. Use IS_ERR and friends on @retval.
3313  */
3314 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3315 		unsigned long flags)
3316 {
3317 	struct tty_driver *driver;
3318 	unsigned int cdevs = 1;
3319 	int err;
3320 
3321 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3322 		return ERR_PTR(-EINVAL);
3323 
3324 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3325 	if (!driver)
3326 		return ERR_PTR(-ENOMEM);
3327 
3328 	kref_init(&driver->kref);
3329 	driver->magic = TTY_DRIVER_MAGIC;
3330 	driver->num = lines;
3331 	driver->owner = owner;
3332 	driver->flags = flags;
3333 
3334 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3335 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3336 				GFP_KERNEL);
3337 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3338 				GFP_KERNEL);
3339 		if (!driver->ttys || !driver->termios) {
3340 			err = -ENOMEM;
3341 			goto err_free_all;
3342 		}
3343 	}
3344 
3345 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3346 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3347 				GFP_KERNEL);
3348 		if (!driver->ports) {
3349 			err = -ENOMEM;
3350 			goto err_free_all;
3351 		}
3352 		cdevs = lines;
3353 	}
3354 
3355 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3356 	if (!driver->cdevs) {
3357 		err = -ENOMEM;
3358 		goto err_free_all;
3359 	}
3360 
3361 	return driver;
3362 err_free_all:
3363 	kfree(driver->ports);
3364 	kfree(driver->ttys);
3365 	kfree(driver->termios);
3366 	kfree(driver);
3367 	return ERR_PTR(err);
3368 }
3369 EXPORT_SYMBOL(__tty_alloc_driver);
3370 
3371 static void destruct_tty_driver(struct kref *kref)
3372 {
3373 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3374 	int i;
3375 	struct ktermios *tp;
3376 
3377 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3378 		/*
3379 		 * Free the termios and termios_locked structures because
3380 		 * we don't want to get memory leaks when modular tty
3381 		 * drivers are removed from the kernel.
3382 		 */
3383 		for (i = 0; i < driver->num; i++) {
3384 			tp = driver->termios[i];
3385 			if (tp) {
3386 				driver->termios[i] = NULL;
3387 				kfree(tp);
3388 			}
3389 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3390 				tty_unregister_device(driver, i);
3391 		}
3392 		proc_tty_unregister_driver(driver);
3393 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3394 			cdev_del(&driver->cdevs[0]);
3395 	}
3396 	kfree(driver->cdevs);
3397 	kfree(driver->ports);
3398 	kfree(driver->termios);
3399 	kfree(driver->ttys);
3400 	kfree(driver);
3401 }
3402 
3403 void tty_driver_kref_put(struct tty_driver *driver)
3404 {
3405 	kref_put(&driver->kref, destruct_tty_driver);
3406 }
3407 EXPORT_SYMBOL(tty_driver_kref_put);
3408 
3409 void tty_set_operations(struct tty_driver *driver,
3410 			const struct tty_operations *op)
3411 {
3412 	driver->ops = op;
3413 };
3414 EXPORT_SYMBOL(tty_set_operations);
3415 
3416 void put_tty_driver(struct tty_driver *d)
3417 {
3418 	tty_driver_kref_put(d);
3419 }
3420 EXPORT_SYMBOL(put_tty_driver);
3421 
3422 /*
3423  * Called by a tty driver to register itself.
3424  */
3425 int tty_register_driver(struct tty_driver *driver)
3426 {
3427 	int error;
3428 	int i;
3429 	dev_t dev;
3430 	struct device *d;
3431 
3432 	if (!driver->major) {
3433 		error = alloc_chrdev_region(&dev, driver->minor_start,
3434 						driver->num, driver->name);
3435 		if (!error) {
3436 			driver->major = MAJOR(dev);
3437 			driver->minor_start = MINOR(dev);
3438 		}
3439 	} else {
3440 		dev = MKDEV(driver->major, driver->minor_start);
3441 		error = register_chrdev_region(dev, driver->num, driver->name);
3442 	}
3443 	if (error < 0)
3444 		goto err;
3445 
3446 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3447 		error = tty_cdev_add(driver, dev, 0, driver->num);
3448 		if (error)
3449 			goto err_unreg_char;
3450 	}
3451 
3452 	mutex_lock(&tty_mutex);
3453 	list_add(&driver->tty_drivers, &tty_drivers);
3454 	mutex_unlock(&tty_mutex);
3455 
3456 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3457 		for (i = 0; i < driver->num; i++) {
3458 			d = tty_register_device(driver, i, NULL);
3459 			if (IS_ERR(d)) {
3460 				error = PTR_ERR(d);
3461 				goto err_unreg_devs;
3462 			}
3463 		}
3464 	}
3465 	proc_tty_register_driver(driver);
3466 	driver->flags |= TTY_DRIVER_INSTALLED;
3467 	return 0;
3468 
3469 err_unreg_devs:
3470 	for (i--; i >= 0; i--)
3471 		tty_unregister_device(driver, i);
3472 
3473 	mutex_lock(&tty_mutex);
3474 	list_del(&driver->tty_drivers);
3475 	mutex_unlock(&tty_mutex);
3476 
3477 err_unreg_char:
3478 	unregister_chrdev_region(dev, driver->num);
3479 err:
3480 	return error;
3481 }
3482 EXPORT_SYMBOL(tty_register_driver);
3483 
3484 /*
3485  * Called by a tty driver to unregister itself.
3486  */
3487 int tty_unregister_driver(struct tty_driver *driver)
3488 {
3489 #if 0
3490 	/* FIXME */
3491 	if (driver->refcount)
3492 		return -EBUSY;
3493 #endif
3494 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3495 				driver->num);
3496 	mutex_lock(&tty_mutex);
3497 	list_del(&driver->tty_drivers);
3498 	mutex_unlock(&tty_mutex);
3499 	return 0;
3500 }
3501 
3502 EXPORT_SYMBOL(tty_unregister_driver);
3503 
3504 dev_t tty_devnum(struct tty_struct *tty)
3505 {
3506 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3507 }
3508 EXPORT_SYMBOL(tty_devnum);
3509 
3510 void tty_default_fops(struct file_operations *fops)
3511 {
3512 	*fops = tty_fops;
3513 }
3514 
3515 /*
3516  * Initialize the console device. This is called *early*, so
3517  * we can't necessarily depend on lots of kernel help here.
3518  * Just do some early initializations, and do the complex setup
3519  * later.
3520  */
3521 void __init console_init(void)
3522 {
3523 	initcall_t *call;
3524 
3525 	/* Setup the default TTY line discipline. */
3526 	tty_ldisc_begin();
3527 
3528 	/*
3529 	 * set up the console device so that later boot sequences can
3530 	 * inform about problems etc..
3531 	 */
3532 	call = __con_initcall_start;
3533 	while (call < __con_initcall_end) {
3534 		(*call)();
3535 		call++;
3536 	}
3537 }
3538 
3539 static char *tty_devnode(struct device *dev, umode_t *mode)
3540 {
3541 	if (!mode)
3542 		return NULL;
3543 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3544 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3545 		*mode = 0666;
3546 	return NULL;
3547 }
3548 
3549 static int __init tty_class_init(void)
3550 {
3551 	tty_class = class_create(THIS_MODULE, "tty");
3552 	if (IS_ERR(tty_class))
3553 		return PTR_ERR(tty_class);
3554 	tty_class->devnode = tty_devnode;
3555 	return 0;
3556 }
3557 
3558 postcore_initcall(tty_class_init);
3559 
3560 /* 3/2004 jmc: why do these devices exist? */
3561 static struct cdev tty_cdev, console_cdev;
3562 
3563 static ssize_t show_cons_active(struct device *dev,
3564 				struct device_attribute *attr, char *buf)
3565 {
3566 	struct console *cs[16];
3567 	int i = 0;
3568 	struct console *c;
3569 	ssize_t count = 0;
3570 
3571 	console_lock();
3572 	for_each_console(c) {
3573 		if (!c->device)
3574 			continue;
3575 		if (!c->write)
3576 			continue;
3577 		if ((c->flags & CON_ENABLED) == 0)
3578 			continue;
3579 		cs[i++] = c;
3580 		if (i >= ARRAY_SIZE(cs))
3581 			break;
3582 	}
3583 	while (i--) {
3584 		int index = cs[i]->index;
3585 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3586 
3587 		/* don't resolve tty0 as some programs depend on it */
3588 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3589 			count += tty_line_name(drv, index, buf + count);
3590 		else
3591 			count += sprintf(buf + count, "%s%d",
3592 					 cs[i]->name, cs[i]->index);
3593 
3594 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3595 	}
3596 	console_unlock();
3597 
3598 	return count;
3599 }
3600 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3601 
3602 static struct attribute *cons_dev_attrs[] = {
3603 	&dev_attr_active.attr,
3604 	NULL
3605 };
3606 
3607 ATTRIBUTE_GROUPS(cons_dev);
3608 
3609 static struct device *consdev;
3610 
3611 void console_sysfs_notify(void)
3612 {
3613 	if (consdev)
3614 		sysfs_notify(&consdev->kobj, NULL, "active");
3615 }
3616 
3617 /*
3618  * Ok, now we can initialize the rest of the tty devices and can count
3619  * on memory allocations, interrupts etc..
3620  */
3621 int __init tty_init(void)
3622 {
3623 	cdev_init(&tty_cdev, &tty_fops);
3624 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3625 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3626 		panic("Couldn't register /dev/tty driver\n");
3627 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3628 
3629 	cdev_init(&console_cdev, &console_fops);
3630 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3631 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3632 		panic("Couldn't register /dev/console driver\n");
3633 	consdev = device_create_with_groups(tty_class, NULL,
3634 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3635 					    cons_dev_groups, "console");
3636 	if (IS_ERR(consdev))
3637 		consdev = NULL;
3638 
3639 #ifdef CONFIG_VT
3640 	vty_init(&console_fops);
3641 #endif
3642 	return 0;
3643 }
3644 
3645