xref: /openbmc/linux/drivers/tty/tty_io.c (revision 09bae3b6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992  Linus Torvalds
4  */
5 
6 /*
7  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8  * or rs-channels. It also implements echoing, cooked mode etc.
9  *
10  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11  *
12  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13  * tty_struct and tty_queue structures.  Previously there was an array
14  * of 256 tty_struct's which was statically allocated, and the
15  * tty_queue structures were allocated at boot time.  Both are now
16  * dynamically allocated only when the tty is open.
17  *
18  * Also restructured routines so that there is more of a separation
19  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20  * the low-level tty routines (serial.c, pty.c, console.c).  This
21  * makes for cleaner and more compact code.  -TYT, 9/17/92
22  *
23  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24  * which can be dynamically activated and de-activated by the line
25  * discipline handling modules (like SLIP).
26  *
27  * NOTE: pay no attention to the line discipline code (yet); its
28  * interface is still subject to change in this version...
29  * -- TYT, 1/31/92
30  *
31  * Added functionality to the OPOST tty handling.  No delays, but all
32  * other bits should be there.
33  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34  *
35  * Rewrote canonical mode and added more termios flags.
36  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37  *
38  * Reorganized FASYNC support so mouse code can share it.
39  *	-- ctm@ardi.com, 9Sep95
40  *
41  * New TIOCLINUX variants added.
42  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
43  *
44  * Restrict vt switching via ioctl()
45  *      -- grif@cs.ucr.edu, 5-Dec-95
46  *
47  * Move console and virtual terminal code to more appropriate files,
48  * implement CONFIG_VT and generalize console device interface.
49  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50  *
51  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52  *	-- Bill Hawes <whawes@star.net>, June 97
53  *
54  * Added devfs support.
55  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56  *
57  * Added support for a Unix98-style ptmx device.
58  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59  *
60  * Reduced memory usage for older ARM systems
61  *      -- Russell King <rmk@arm.linux.org.uk>
62  *
63  * Move do_SAK() into process context.  Less stack use in devfs functions.
64  * alloc_tty_struct() always uses kmalloc()
65  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66  */
67 
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched/signal.h>
74 #include <linux/sched/task.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/device.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
97 #include <linux/seq_file.h>
98 #include <linux/serial.h>
99 #include <linux/ratelimit.h>
100 
101 #include <linux/uaccess.h>
102 
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106 
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109 
110 #undef TTY_DEBUG_HANGUP
111 #ifdef TTY_DEBUG_HANGUP
112 # define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
113 #else
114 # define tty_debug_hangup(tty, f, args...)	do { } while (0)
115 #endif
116 
117 #define TTY_PARANOIA_CHECK 1
118 #define CHECK_TTY_COUNT 1
119 
120 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
121 	.c_iflag = ICRNL | IXON,
122 	.c_oflag = OPOST | ONLCR,
123 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
124 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
125 		   ECHOCTL | ECHOKE | IEXTEN,
126 	.c_cc = INIT_C_CC,
127 	.c_ispeed = 38400,
128 	.c_ospeed = 38400,
129 	/* .c_line = N_TTY, */
130 };
131 
132 EXPORT_SYMBOL(tty_std_termios);
133 
134 /* This list gets poked at by procfs and various bits of boot up code. This
135    could do with some rationalisation such as pulling the tty proc function
136    into this file */
137 
138 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
139 
140 /* Mutex to protect creating and releasing a tty */
141 DEFINE_MUTEX(tty_mutex);
142 
143 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
144 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
145 ssize_t redirected_tty_write(struct file *, const char __user *,
146 							size_t, loff_t *);
147 static __poll_t tty_poll(struct file *, poll_table *);
148 static int tty_open(struct inode *, struct file *);
149 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
150 #ifdef CONFIG_COMPAT
151 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
152 				unsigned long arg);
153 #else
154 #define tty_compat_ioctl NULL
155 #endif
156 static int __tty_fasync(int fd, struct file *filp, int on);
157 static int tty_fasync(int fd, struct file *filp, int on);
158 static void release_tty(struct tty_struct *tty, int idx);
159 
160 /**
161  *	free_tty_struct		-	free a disused tty
162  *	@tty: tty struct to free
163  *
164  *	Free the write buffers, tty queue and tty memory itself.
165  *
166  *	Locking: none. Must be called after tty is definitely unused
167  */
168 
169 static void free_tty_struct(struct tty_struct *tty)
170 {
171 	tty_ldisc_deinit(tty);
172 	put_device(tty->dev);
173 	kfree(tty->write_buf);
174 	tty->magic = 0xDEADDEAD;
175 	kfree(tty);
176 }
177 
178 static inline struct tty_struct *file_tty(struct file *file)
179 {
180 	return ((struct tty_file_private *)file->private_data)->tty;
181 }
182 
183 int tty_alloc_file(struct file *file)
184 {
185 	struct tty_file_private *priv;
186 
187 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
188 	if (!priv)
189 		return -ENOMEM;
190 
191 	file->private_data = priv;
192 
193 	return 0;
194 }
195 
196 /* Associate a new file with the tty structure */
197 void tty_add_file(struct tty_struct *tty, struct file *file)
198 {
199 	struct tty_file_private *priv = file->private_data;
200 
201 	priv->tty = tty;
202 	priv->file = file;
203 
204 	spin_lock(&tty->files_lock);
205 	list_add(&priv->list, &tty->tty_files);
206 	spin_unlock(&tty->files_lock);
207 }
208 
209 /**
210  * tty_free_file - free file->private_data
211  *
212  * This shall be used only for fail path handling when tty_add_file was not
213  * called yet.
214  */
215 void tty_free_file(struct file *file)
216 {
217 	struct tty_file_private *priv = file->private_data;
218 
219 	file->private_data = NULL;
220 	kfree(priv);
221 }
222 
223 /* Delete file from its tty */
224 static void tty_del_file(struct file *file)
225 {
226 	struct tty_file_private *priv = file->private_data;
227 	struct tty_struct *tty = priv->tty;
228 
229 	spin_lock(&tty->files_lock);
230 	list_del(&priv->list);
231 	spin_unlock(&tty->files_lock);
232 	tty_free_file(file);
233 }
234 
235 /**
236  *	tty_name	-	return tty naming
237  *	@tty: tty structure
238  *
239  *	Convert a tty structure into a name. The name reflects the kernel
240  *	naming policy and if udev is in use may not reflect user space
241  *
242  *	Locking: none
243  */
244 
245 const char *tty_name(const struct tty_struct *tty)
246 {
247 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
248 		return "NULL tty";
249 	return tty->name;
250 }
251 
252 EXPORT_SYMBOL(tty_name);
253 
254 const char *tty_driver_name(const struct tty_struct *tty)
255 {
256 	if (!tty || !tty->driver)
257 		return "";
258 	return tty->driver->name;
259 }
260 
261 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
262 			      const char *routine)
263 {
264 #ifdef TTY_PARANOIA_CHECK
265 	if (!tty) {
266 		pr_warn("(%d:%d): %s: NULL tty\n",
267 			imajor(inode), iminor(inode), routine);
268 		return 1;
269 	}
270 	if (tty->magic != TTY_MAGIC) {
271 		pr_warn("(%d:%d): %s: bad magic number\n",
272 			imajor(inode), iminor(inode), routine);
273 		return 1;
274 	}
275 #endif
276 	return 0;
277 }
278 
279 /* Caller must hold tty_lock */
280 static int check_tty_count(struct tty_struct *tty, const char *routine)
281 {
282 #ifdef CHECK_TTY_COUNT
283 	struct list_head *p;
284 	int count = 0, kopen_count = 0;
285 
286 	spin_lock(&tty->files_lock);
287 	list_for_each(p, &tty->tty_files) {
288 		count++;
289 	}
290 	spin_unlock(&tty->files_lock);
291 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
293 	    tty->link && tty->link->count)
294 		count++;
295 	if (tty_port_kopened(tty->port))
296 		kopen_count++;
297 	if (tty->count != (count + kopen_count)) {
298 		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
299 			 routine, tty->count, count, kopen_count);
300 		return (count + kopen_count);
301 	}
302 #endif
303 	return 0;
304 }
305 
306 /**
307  *	get_tty_driver		-	find device of a tty
308  *	@dev_t: device identifier
309  *	@index: returns the index of the tty
310  *
311  *	This routine returns a tty driver structure, given a device number
312  *	and also passes back the index number.
313  *
314  *	Locking: caller must hold tty_mutex
315  */
316 
317 static struct tty_driver *get_tty_driver(dev_t device, int *index)
318 {
319 	struct tty_driver *p;
320 
321 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
322 		dev_t base = MKDEV(p->major, p->minor_start);
323 		if (device < base || device >= base + p->num)
324 			continue;
325 		*index = device - base;
326 		return tty_driver_kref_get(p);
327 	}
328 	return NULL;
329 }
330 
331 /**
332  *	tty_dev_name_to_number	-	return dev_t for device name
333  *	@name: user space name of device under /dev
334  *	@number: pointer to dev_t that this function will populate
335  *
336  *	This function converts device names like ttyS0 or ttyUSB1 into dev_t
337  *	like (4, 64) or (188, 1). If no corresponding driver is registered then
338  *	the function returns -ENODEV.
339  *
340  *	Locking: this acquires tty_mutex to protect the tty_drivers list from
341  *		being modified while we are traversing it, and makes sure to
342  *		release it before exiting.
343  */
344 int tty_dev_name_to_number(const char *name, dev_t *number)
345 {
346 	struct tty_driver *p;
347 	int ret;
348 	int index, prefix_length = 0;
349 	const char *str;
350 
351 	for (str = name; *str && !isdigit(*str); str++)
352 		;
353 
354 	if (!*str)
355 		return -EINVAL;
356 
357 	ret = kstrtoint(str, 10, &index);
358 	if (ret)
359 		return ret;
360 
361 	prefix_length = str - name;
362 	mutex_lock(&tty_mutex);
363 
364 	list_for_each_entry(p, &tty_drivers, tty_drivers)
365 		if (prefix_length == strlen(p->name) && strncmp(name,
366 					p->name, prefix_length) == 0) {
367 			if (index < p->num) {
368 				*number = MKDEV(p->major, p->minor_start + index);
369 				goto out;
370 			}
371 		}
372 
373 	/* if here then driver wasn't found */
374 	ret = -ENODEV;
375 out:
376 	mutex_unlock(&tty_mutex);
377 	return ret;
378 }
379 EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
380 
381 #ifdef CONFIG_CONSOLE_POLL
382 
383 /**
384  *	tty_find_polling_driver	-	find device of a polled tty
385  *	@name: name string to match
386  *	@line: pointer to resulting tty line nr
387  *
388  *	This routine returns a tty driver structure, given a name
389  *	and the condition that the tty driver is capable of polled
390  *	operation.
391  */
392 struct tty_driver *tty_find_polling_driver(char *name, int *line)
393 {
394 	struct tty_driver *p, *res = NULL;
395 	int tty_line = 0;
396 	int len;
397 	char *str, *stp;
398 
399 	for (str = name; *str; str++)
400 		if ((*str >= '0' && *str <= '9') || *str == ',')
401 			break;
402 	if (!*str)
403 		return NULL;
404 
405 	len = str - name;
406 	tty_line = simple_strtoul(str, &str, 10);
407 
408 	mutex_lock(&tty_mutex);
409 	/* Search through the tty devices to look for a match */
410 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
411 		if (strncmp(name, p->name, len) != 0)
412 			continue;
413 		stp = str;
414 		if (*stp == ',')
415 			stp++;
416 		if (*stp == '\0')
417 			stp = NULL;
418 
419 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
420 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
421 			res = tty_driver_kref_get(p);
422 			*line = tty_line;
423 			break;
424 		}
425 	}
426 	mutex_unlock(&tty_mutex);
427 
428 	return res;
429 }
430 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
431 #endif
432 
433 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
434 				size_t count, loff_t *ppos)
435 {
436 	return 0;
437 }
438 
439 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
440 				 size_t count, loff_t *ppos)
441 {
442 	return -EIO;
443 }
444 
445 /* No kernel lock held - none needed ;) */
446 static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
447 {
448 	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
449 }
450 
451 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
452 		unsigned long arg)
453 {
454 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
455 }
456 
457 static long hung_up_tty_compat_ioctl(struct file *file,
458 				     unsigned int cmd, unsigned long arg)
459 {
460 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
461 }
462 
463 static int hung_up_tty_fasync(int fd, struct file *file, int on)
464 {
465 	return -ENOTTY;
466 }
467 
468 static void tty_show_fdinfo(struct seq_file *m, struct file *file)
469 {
470 	struct tty_struct *tty = file_tty(file);
471 
472 	if (tty && tty->ops && tty->ops->show_fdinfo)
473 		tty->ops->show_fdinfo(tty, m);
474 }
475 
476 static const struct file_operations tty_fops = {
477 	.llseek		= no_llseek,
478 	.read		= tty_read,
479 	.write		= tty_write,
480 	.poll		= tty_poll,
481 	.unlocked_ioctl	= tty_ioctl,
482 	.compat_ioctl	= tty_compat_ioctl,
483 	.open		= tty_open,
484 	.release	= tty_release,
485 	.fasync		= tty_fasync,
486 	.show_fdinfo	= tty_show_fdinfo,
487 };
488 
489 static const struct file_operations console_fops = {
490 	.llseek		= no_llseek,
491 	.read		= tty_read,
492 	.write		= redirected_tty_write,
493 	.poll		= tty_poll,
494 	.unlocked_ioctl	= tty_ioctl,
495 	.compat_ioctl	= tty_compat_ioctl,
496 	.open		= tty_open,
497 	.release	= tty_release,
498 	.fasync		= tty_fasync,
499 };
500 
501 static const struct file_operations hung_up_tty_fops = {
502 	.llseek		= no_llseek,
503 	.read		= hung_up_tty_read,
504 	.write		= hung_up_tty_write,
505 	.poll		= hung_up_tty_poll,
506 	.unlocked_ioctl	= hung_up_tty_ioctl,
507 	.compat_ioctl	= hung_up_tty_compat_ioctl,
508 	.release	= tty_release,
509 	.fasync		= hung_up_tty_fasync,
510 };
511 
512 static DEFINE_SPINLOCK(redirect_lock);
513 static struct file *redirect;
514 
515 /**
516  *	tty_wakeup	-	request more data
517  *	@tty: terminal
518  *
519  *	Internal and external helper for wakeups of tty. This function
520  *	informs the line discipline if present that the driver is ready
521  *	to receive more output data.
522  */
523 
524 void tty_wakeup(struct tty_struct *tty)
525 {
526 	struct tty_ldisc *ld;
527 
528 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
529 		ld = tty_ldisc_ref(tty);
530 		if (ld) {
531 			if (ld->ops->write_wakeup)
532 				ld->ops->write_wakeup(tty);
533 			tty_ldisc_deref(ld);
534 		}
535 	}
536 	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
537 }
538 
539 EXPORT_SYMBOL_GPL(tty_wakeup);
540 
541 /**
542  *	__tty_hangup		-	actual handler for hangup events
543  *	@work: tty device
544  *
545  *	This can be called by a "kworker" kernel thread.  That is process
546  *	synchronous but doesn't hold any locks, so we need to make sure we
547  *	have the appropriate locks for what we're doing.
548  *
549  *	The hangup event clears any pending redirections onto the hung up
550  *	device. It ensures future writes will error and it does the needed
551  *	line discipline hangup and signal delivery. The tty object itself
552  *	remains intact.
553  *
554  *	Locking:
555  *		BTM
556  *		  redirect lock for undoing redirection
557  *		  file list lock for manipulating list of ttys
558  *		  tty_ldiscs_lock from called functions
559  *		  termios_rwsem resetting termios data
560  *		  tasklist_lock to walk task list for hangup event
561  *		    ->siglock to protect ->signal/->sighand
562  */
563 static void __tty_hangup(struct tty_struct *tty, int exit_session)
564 {
565 	struct file *cons_filp = NULL;
566 	struct file *filp, *f = NULL;
567 	struct tty_file_private *priv;
568 	int    closecount = 0, n;
569 	int refs;
570 
571 	if (!tty)
572 		return;
573 
574 
575 	spin_lock(&redirect_lock);
576 	if (redirect && file_tty(redirect) == tty) {
577 		f = redirect;
578 		redirect = NULL;
579 	}
580 	spin_unlock(&redirect_lock);
581 
582 	tty_lock(tty);
583 
584 	if (test_bit(TTY_HUPPED, &tty->flags)) {
585 		tty_unlock(tty);
586 		return;
587 	}
588 
589 	/*
590 	 * Some console devices aren't actually hung up for technical and
591 	 * historical reasons, which can lead to indefinite interruptible
592 	 * sleep in n_tty_read().  The following explicitly tells
593 	 * n_tty_read() to abort readers.
594 	 */
595 	set_bit(TTY_HUPPING, &tty->flags);
596 
597 	/* inuse_filps is protected by the single tty lock,
598 	   this really needs to change if we want to flush the
599 	   workqueue with the lock held */
600 	check_tty_count(tty, "tty_hangup");
601 
602 	spin_lock(&tty->files_lock);
603 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
604 	list_for_each_entry(priv, &tty->tty_files, list) {
605 		filp = priv->file;
606 		if (filp->f_op->write == redirected_tty_write)
607 			cons_filp = filp;
608 		if (filp->f_op->write != tty_write)
609 			continue;
610 		closecount++;
611 		__tty_fasync(-1, filp, 0);	/* can't block */
612 		filp->f_op = &hung_up_tty_fops;
613 	}
614 	spin_unlock(&tty->files_lock);
615 
616 	refs = tty_signal_session_leader(tty, exit_session);
617 	/* Account for the p->signal references we killed */
618 	while (refs--)
619 		tty_kref_put(tty);
620 
621 	tty_ldisc_hangup(tty, cons_filp != NULL);
622 
623 	spin_lock_irq(&tty->ctrl_lock);
624 	clear_bit(TTY_THROTTLED, &tty->flags);
625 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
626 	put_pid(tty->session);
627 	put_pid(tty->pgrp);
628 	tty->session = NULL;
629 	tty->pgrp = NULL;
630 	tty->ctrl_status = 0;
631 	spin_unlock_irq(&tty->ctrl_lock);
632 
633 	/*
634 	 * If one of the devices matches a console pointer, we
635 	 * cannot just call hangup() because that will cause
636 	 * tty->count and state->count to go out of sync.
637 	 * So we just call close() the right number of times.
638 	 */
639 	if (cons_filp) {
640 		if (tty->ops->close)
641 			for (n = 0; n < closecount; n++)
642 				tty->ops->close(tty, cons_filp);
643 	} else if (tty->ops->hangup)
644 		tty->ops->hangup(tty);
645 	/*
646 	 * We don't want to have driver/ldisc interactions beyond the ones
647 	 * we did here. The driver layer expects no calls after ->hangup()
648 	 * from the ldisc side, which is now guaranteed.
649 	 */
650 	set_bit(TTY_HUPPED, &tty->flags);
651 	clear_bit(TTY_HUPPING, &tty->flags);
652 	tty_unlock(tty);
653 
654 	if (f)
655 		fput(f);
656 }
657 
658 static void do_tty_hangup(struct work_struct *work)
659 {
660 	struct tty_struct *tty =
661 		container_of(work, struct tty_struct, hangup_work);
662 
663 	__tty_hangup(tty, 0);
664 }
665 
666 /**
667  *	tty_hangup		-	trigger a hangup event
668  *	@tty: tty to hangup
669  *
670  *	A carrier loss (virtual or otherwise) has occurred on this like
671  *	schedule a hangup sequence to run after this event.
672  */
673 
674 void tty_hangup(struct tty_struct *tty)
675 {
676 	tty_debug_hangup(tty, "hangup\n");
677 	schedule_work(&tty->hangup_work);
678 }
679 
680 EXPORT_SYMBOL(tty_hangup);
681 
682 /**
683  *	tty_vhangup		-	process vhangup
684  *	@tty: tty to hangup
685  *
686  *	The user has asked via system call for the terminal to be hung up.
687  *	We do this synchronously so that when the syscall returns the process
688  *	is complete. That guarantee is necessary for security reasons.
689  */
690 
691 void tty_vhangup(struct tty_struct *tty)
692 {
693 	tty_debug_hangup(tty, "vhangup\n");
694 	__tty_hangup(tty, 0);
695 }
696 
697 EXPORT_SYMBOL(tty_vhangup);
698 
699 
700 /**
701  *	tty_vhangup_self	-	process vhangup for own ctty
702  *
703  *	Perform a vhangup on the current controlling tty
704  */
705 
706 void tty_vhangup_self(void)
707 {
708 	struct tty_struct *tty;
709 
710 	tty = get_current_tty();
711 	if (tty) {
712 		tty_vhangup(tty);
713 		tty_kref_put(tty);
714 	}
715 }
716 
717 /**
718  *	tty_vhangup_session		-	hangup session leader exit
719  *	@tty: tty to hangup
720  *
721  *	The session leader is exiting and hanging up its controlling terminal.
722  *	Every process in the foreground process group is signalled SIGHUP.
723  *
724  *	We do this synchronously so that when the syscall returns the process
725  *	is complete. That guarantee is necessary for security reasons.
726  */
727 
728 void tty_vhangup_session(struct tty_struct *tty)
729 {
730 	tty_debug_hangup(tty, "session hangup\n");
731 	__tty_hangup(tty, 1);
732 }
733 
734 /**
735  *	tty_hung_up_p		-	was tty hung up
736  *	@filp: file pointer of tty
737  *
738  *	Return true if the tty has been subject to a vhangup or a carrier
739  *	loss
740  */
741 
742 int tty_hung_up_p(struct file *filp)
743 {
744 	return (filp && filp->f_op == &hung_up_tty_fops);
745 }
746 
747 EXPORT_SYMBOL(tty_hung_up_p);
748 
749 /**
750  *	stop_tty	-	propagate flow control
751  *	@tty: tty to stop
752  *
753  *	Perform flow control to the driver. May be called
754  *	on an already stopped device and will not re-call the driver
755  *	method.
756  *
757  *	This functionality is used by both the line disciplines for
758  *	halting incoming flow and by the driver. It may therefore be
759  *	called from any context, may be under the tty atomic_write_lock
760  *	but not always.
761  *
762  *	Locking:
763  *		flow_lock
764  */
765 
766 void __stop_tty(struct tty_struct *tty)
767 {
768 	if (tty->stopped)
769 		return;
770 	tty->stopped = 1;
771 	if (tty->ops->stop)
772 		tty->ops->stop(tty);
773 }
774 
775 void stop_tty(struct tty_struct *tty)
776 {
777 	unsigned long flags;
778 
779 	spin_lock_irqsave(&tty->flow_lock, flags);
780 	__stop_tty(tty);
781 	spin_unlock_irqrestore(&tty->flow_lock, flags);
782 }
783 EXPORT_SYMBOL(stop_tty);
784 
785 /**
786  *	start_tty	-	propagate flow control
787  *	@tty: tty to start
788  *
789  *	Start a tty that has been stopped if at all possible. If this
790  *	tty was previous stopped and is now being started, the driver
791  *	start method is invoked and the line discipline woken.
792  *
793  *	Locking:
794  *		flow_lock
795  */
796 
797 void __start_tty(struct tty_struct *tty)
798 {
799 	if (!tty->stopped || tty->flow_stopped)
800 		return;
801 	tty->stopped = 0;
802 	if (tty->ops->start)
803 		tty->ops->start(tty);
804 	tty_wakeup(tty);
805 }
806 
807 void start_tty(struct tty_struct *tty)
808 {
809 	unsigned long flags;
810 
811 	spin_lock_irqsave(&tty->flow_lock, flags);
812 	__start_tty(tty);
813 	spin_unlock_irqrestore(&tty->flow_lock, flags);
814 }
815 EXPORT_SYMBOL(start_tty);
816 
817 static void tty_update_time(struct timespec64 *time)
818 {
819 	time64_t sec = ktime_get_real_seconds();
820 
821 	/*
822 	 * We only care if the two values differ in anything other than the
823 	 * lower three bits (i.e every 8 seconds).  If so, then we can update
824 	 * the time of the tty device, otherwise it could be construded as a
825 	 * security leak to let userspace know the exact timing of the tty.
826 	 */
827 	if ((sec ^ time->tv_sec) & ~7)
828 		time->tv_sec = sec;
829 }
830 
831 /**
832  *	tty_read	-	read method for tty device files
833  *	@file: pointer to tty file
834  *	@buf: user buffer
835  *	@count: size of user buffer
836  *	@ppos: unused
837  *
838  *	Perform the read system call function on this terminal device. Checks
839  *	for hung up devices before calling the line discipline method.
840  *
841  *	Locking:
842  *		Locks the line discipline internally while needed. Multiple
843  *	read calls may be outstanding in parallel.
844  */
845 
846 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
847 			loff_t *ppos)
848 {
849 	int i;
850 	struct inode *inode = file_inode(file);
851 	struct tty_struct *tty = file_tty(file);
852 	struct tty_ldisc *ld;
853 
854 	if (tty_paranoia_check(tty, inode, "tty_read"))
855 		return -EIO;
856 	if (!tty || tty_io_error(tty))
857 		return -EIO;
858 
859 	/* We want to wait for the line discipline to sort out in this
860 	   situation */
861 	ld = tty_ldisc_ref_wait(tty);
862 	if (!ld)
863 		return hung_up_tty_read(file, buf, count, ppos);
864 	if (ld->ops->read)
865 		i = ld->ops->read(tty, file, buf, count);
866 	else
867 		i = -EIO;
868 	tty_ldisc_deref(ld);
869 
870 	if (i > 0)
871 		tty_update_time(&inode->i_atime);
872 
873 	return i;
874 }
875 
876 static void tty_write_unlock(struct tty_struct *tty)
877 {
878 	mutex_unlock(&tty->atomic_write_lock);
879 	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
880 }
881 
882 static int tty_write_lock(struct tty_struct *tty, int ndelay)
883 {
884 	if (!mutex_trylock(&tty->atomic_write_lock)) {
885 		if (ndelay)
886 			return -EAGAIN;
887 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
888 			return -ERESTARTSYS;
889 	}
890 	return 0;
891 }
892 
893 /*
894  * Split writes up in sane blocksizes to avoid
895  * denial-of-service type attacks
896  */
897 static inline ssize_t do_tty_write(
898 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
899 	struct tty_struct *tty,
900 	struct file *file,
901 	const char __user *buf,
902 	size_t count)
903 {
904 	ssize_t ret, written = 0;
905 	unsigned int chunk;
906 
907 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
908 	if (ret < 0)
909 		return ret;
910 
911 	/*
912 	 * We chunk up writes into a temporary buffer. This
913 	 * simplifies low-level drivers immensely, since they
914 	 * don't have locking issues and user mode accesses.
915 	 *
916 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
917 	 * big chunk-size..
918 	 *
919 	 * The default chunk-size is 2kB, because the NTTY
920 	 * layer has problems with bigger chunks. It will
921 	 * claim to be able to handle more characters than
922 	 * it actually does.
923 	 *
924 	 * FIXME: This can probably go away now except that 64K chunks
925 	 * are too likely to fail unless switched to vmalloc...
926 	 */
927 	chunk = 2048;
928 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
929 		chunk = 65536;
930 	if (count < chunk)
931 		chunk = count;
932 
933 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
934 	if (tty->write_cnt < chunk) {
935 		unsigned char *buf_chunk;
936 
937 		if (chunk < 1024)
938 			chunk = 1024;
939 
940 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
941 		if (!buf_chunk) {
942 			ret = -ENOMEM;
943 			goto out;
944 		}
945 		kfree(tty->write_buf);
946 		tty->write_cnt = chunk;
947 		tty->write_buf = buf_chunk;
948 	}
949 
950 	/* Do the write .. */
951 	for (;;) {
952 		size_t size = count;
953 		if (size > chunk)
954 			size = chunk;
955 		ret = -EFAULT;
956 		if (copy_from_user(tty->write_buf, buf, size))
957 			break;
958 		ret = write(tty, file, tty->write_buf, size);
959 		if (ret <= 0)
960 			break;
961 		written += ret;
962 		buf += ret;
963 		count -= ret;
964 		if (!count)
965 			break;
966 		ret = -ERESTARTSYS;
967 		if (signal_pending(current))
968 			break;
969 		cond_resched();
970 	}
971 	if (written) {
972 		tty_update_time(&file_inode(file)->i_mtime);
973 		ret = written;
974 	}
975 out:
976 	tty_write_unlock(tty);
977 	return ret;
978 }
979 
980 /**
981  * tty_write_message - write a message to a certain tty, not just the console.
982  * @tty: the destination tty_struct
983  * @msg: the message to write
984  *
985  * This is used for messages that need to be redirected to a specific tty.
986  * We don't put it into the syslog queue right now maybe in the future if
987  * really needed.
988  *
989  * We must still hold the BTM and test the CLOSING flag for the moment.
990  */
991 
992 void tty_write_message(struct tty_struct *tty, char *msg)
993 {
994 	if (tty) {
995 		mutex_lock(&tty->atomic_write_lock);
996 		tty_lock(tty);
997 		if (tty->ops->write && tty->count > 0)
998 			tty->ops->write(tty, msg, strlen(msg));
999 		tty_unlock(tty);
1000 		tty_write_unlock(tty);
1001 	}
1002 	return;
1003 }
1004 
1005 
1006 /**
1007  *	tty_write		-	write method for tty device file
1008  *	@file: tty file pointer
1009  *	@buf: user data to write
1010  *	@count: bytes to write
1011  *	@ppos: unused
1012  *
1013  *	Write data to a tty device via the line discipline.
1014  *
1015  *	Locking:
1016  *		Locks the line discipline as required
1017  *		Writes to the tty driver are serialized by the atomic_write_lock
1018  *	and are then processed in chunks to the device. The line discipline
1019  *	write method will not be invoked in parallel for each device.
1020  */
1021 
1022 static ssize_t tty_write(struct file *file, const char __user *buf,
1023 						size_t count, loff_t *ppos)
1024 {
1025 	struct tty_struct *tty = file_tty(file);
1026  	struct tty_ldisc *ld;
1027 	ssize_t ret;
1028 
1029 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1030 		return -EIO;
1031 	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1032 			return -EIO;
1033 	/* Short term debug to catch buggy drivers */
1034 	if (tty->ops->write_room == NULL)
1035 		tty_err(tty, "missing write_room method\n");
1036 	ld = tty_ldisc_ref_wait(tty);
1037 	if (!ld)
1038 		return hung_up_tty_write(file, buf, count, ppos);
1039 	if (!ld->ops->write)
1040 		ret = -EIO;
1041 	else
1042 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1043 	tty_ldisc_deref(ld);
1044 	return ret;
1045 }
1046 
1047 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1048 						size_t count, loff_t *ppos)
1049 {
1050 	struct file *p = NULL;
1051 
1052 	spin_lock(&redirect_lock);
1053 	if (redirect)
1054 		p = get_file(redirect);
1055 	spin_unlock(&redirect_lock);
1056 
1057 	if (p) {
1058 		ssize_t res;
1059 		res = vfs_write(p, buf, count, &p->f_pos);
1060 		fput(p);
1061 		return res;
1062 	}
1063 	return tty_write(file, buf, count, ppos);
1064 }
1065 
1066 /**
1067  *	tty_send_xchar	-	send priority character
1068  *
1069  *	Send a high priority character to the tty even if stopped
1070  *
1071  *	Locking: none for xchar method, write ordering for write method.
1072  */
1073 
1074 int tty_send_xchar(struct tty_struct *tty, char ch)
1075 {
1076 	int	was_stopped = tty->stopped;
1077 
1078 	if (tty->ops->send_xchar) {
1079 		down_read(&tty->termios_rwsem);
1080 		tty->ops->send_xchar(tty, ch);
1081 		up_read(&tty->termios_rwsem);
1082 		return 0;
1083 	}
1084 
1085 	if (tty_write_lock(tty, 0) < 0)
1086 		return -ERESTARTSYS;
1087 
1088 	down_read(&tty->termios_rwsem);
1089 	if (was_stopped)
1090 		start_tty(tty);
1091 	tty->ops->write(tty, &ch, 1);
1092 	if (was_stopped)
1093 		stop_tty(tty);
1094 	up_read(&tty->termios_rwsem);
1095 	tty_write_unlock(tty);
1096 	return 0;
1097 }
1098 
1099 static char ptychar[] = "pqrstuvwxyzabcde";
1100 
1101 /**
1102  *	pty_line_name	-	generate name for a pty
1103  *	@driver: the tty driver in use
1104  *	@index: the minor number
1105  *	@p: output buffer of at least 6 bytes
1106  *
1107  *	Generate a name from a driver reference and write it to the output
1108  *	buffer.
1109  *
1110  *	Locking: None
1111  */
1112 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1113 {
1114 	int i = index + driver->name_base;
1115 	/* ->name is initialized to "ttyp", but "tty" is expected */
1116 	sprintf(p, "%s%c%x",
1117 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1118 		ptychar[i >> 4 & 0xf], i & 0xf);
1119 }
1120 
1121 /**
1122  *	tty_line_name	-	generate name for a tty
1123  *	@driver: the tty driver in use
1124  *	@index: the minor number
1125  *	@p: output buffer of at least 7 bytes
1126  *
1127  *	Generate a name from a driver reference and write it to the output
1128  *	buffer.
1129  *
1130  *	Locking: None
1131  */
1132 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1133 {
1134 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1135 		return sprintf(p, "%s", driver->name);
1136 	else
1137 		return sprintf(p, "%s%d", driver->name,
1138 			       index + driver->name_base);
1139 }
1140 
1141 /**
1142  *	tty_driver_lookup_tty() - find an existing tty, if any
1143  *	@driver: the driver for the tty
1144  *	@idx:	 the minor number
1145  *
1146  *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1147  *	driver lookup() method returns an error.
1148  *
1149  *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1150  */
1151 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1152 		struct file *file, int idx)
1153 {
1154 	struct tty_struct *tty;
1155 
1156 	if (driver->ops->lookup)
1157 		if (!file)
1158 			tty = ERR_PTR(-EIO);
1159 		else
1160 			tty = driver->ops->lookup(driver, file, idx);
1161 	else
1162 		tty = driver->ttys[idx];
1163 
1164 	if (!IS_ERR(tty))
1165 		tty_kref_get(tty);
1166 	return tty;
1167 }
1168 
1169 /**
1170  *	tty_init_termios	-  helper for termios setup
1171  *	@tty: the tty to set up
1172  *
1173  *	Initialise the termios structures for this tty. Thus runs under
1174  *	the tty_mutex currently so we can be relaxed about ordering.
1175  */
1176 
1177 void tty_init_termios(struct tty_struct *tty)
1178 {
1179 	struct ktermios *tp;
1180 	int idx = tty->index;
1181 
1182 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1183 		tty->termios = tty->driver->init_termios;
1184 	else {
1185 		/* Check for lazy saved data */
1186 		tp = tty->driver->termios[idx];
1187 		if (tp != NULL) {
1188 			tty->termios = *tp;
1189 			tty->termios.c_line  = tty->driver->init_termios.c_line;
1190 		} else
1191 			tty->termios = tty->driver->init_termios;
1192 	}
1193 	/* Compatibility until drivers always set this */
1194 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1195 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1196 }
1197 EXPORT_SYMBOL_GPL(tty_init_termios);
1198 
1199 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1200 {
1201 	tty_init_termios(tty);
1202 	tty_driver_kref_get(driver);
1203 	tty->count++;
1204 	driver->ttys[tty->index] = tty;
1205 	return 0;
1206 }
1207 EXPORT_SYMBOL_GPL(tty_standard_install);
1208 
1209 /**
1210  *	tty_driver_install_tty() - install a tty entry in the driver
1211  *	@driver: the driver for the tty
1212  *	@tty: the tty
1213  *
1214  *	Install a tty object into the driver tables. The tty->index field
1215  *	will be set by the time this is called. This method is responsible
1216  *	for ensuring any need additional structures are allocated and
1217  *	configured.
1218  *
1219  *	Locking: tty_mutex for now
1220  */
1221 static int tty_driver_install_tty(struct tty_driver *driver,
1222 						struct tty_struct *tty)
1223 {
1224 	return driver->ops->install ? driver->ops->install(driver, tty) :
1225 		tty_standard_install(driver, tty);
1226 }
1227 
1228 /**
1229  *	tty_driver_remove_tty() - remove a tty from the driver tables
1230  *	@driver: the driver for the tty
1231  *	@idx:	 the minor number
1232  *
1233  *	Remvoe a tty object from the driver tables. The tty->index field
1234  *	will be set by the time this is called.
1235  *
1236  *	Locking: tty_mutex for now
1237  */
1238 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1239 {
1240 	if (driver->ops->remove)
1241 		driver->ops->remove(driver, tty);
1242 	else
1243 		driver->ttys[tty->index] = NULL;
1244 }
1245 
1246 /*
1247  * 	tty_reopen()	- fast re-open of an open tty
1248  * 	@tty	- the tty to open
1249  *
1250  *	Return 0 on success, -errno on error.
1251  *	Re-opens on master ptys are not allowed and return -EIO.
1252  *
1253  *	Locking: Caller must hold tty_lock
1254  */
1255 static int tty_reopen(struct tty_struct *tty)
1256 {
1257 	struct tty_driver *driver = tty->driver;
1258 
1259 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1260 	    driver->subtype == PTY_TYPE_MASTER)
1261 		return -EIO;
1262 
1263 	if (!tty->count)
1264 		return -EAGAIN;
1265 
1266 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1267 		return -EBUSY;
1268 
1269 	tty->count++;
1270 
1271 	if (!tty->ldisc)
1272 		return tty_ldisc_reinit(tty, tty->termios.c_line);
1273 
1274 	return 0;
1275 }
1276 
1277 /**
1278  *	tty_init_dev		-	initialise a tty device
1279  *	@driver: tty driver we are opening a device on
1280  *	@idx: device index
1281  *	@ret_tty: returned tty structure
1282  *
1283  *	Prepare a tty device. This may not be a "new" clean device but
1284  *	could also be an active device. The pty drivers require special
1285  *	handling because of this.
1286  *
1287  *	Locking:
1288  *		The function is called under the tty_mutex, which
1289  *	protects us from the tty struct or driver itself going away.
1290  *
1291  *	On exit the tty device has the line discipline attached and
1292  *	a reference count of 1. If a pair was created for pty/tty use
1293  *	and the other was a pty master then it too has a reference count of 1.
1294  *
1295  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1296  * failed open.  The new code protects the open with a mutex, so it's
1297  * really quite straightforward.  The mutex locking can probably be
1298  * relaxed for the (most common) case of reopening a tty.
1299  */
1300 
1301 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1302 {
1303 	struct tty_struct *tty;
1304 	int retval;
1305 
1306 	/*
1307 	 * First time open is complex, especially for PTY devices.
1308 	 * This code guarantees that either everything succeeds and the
1309 	 * TTY is ready for operation, or else the table slots are vacated
1310 	 * and the allocated memory released.  (Except that the termios
1311 	 * may be retained.)
1312 	 */
1313 
1314 	if (!try_module_get(driver->owner))
1315 		return ERR_PTR(-ENODEV);
1316 
1317 	tty = alloc_tty_struct(driver, idx);
1318 	if (!tty) {
1319 		retval = -ENOMEM;
1320 		goto err_module_put;
1321 	}
1322 
1323 	tty_lock(tty);
1324 	retval = tty_driver_install_tty(driver, tty);
1325 	if (retval < 0)
1326 		goto err_free_tty;
1327 
1328 	if (!tty->port)
1329 		tty->port = driver->ports[idx];
1330 
1331 	WARN_RATELIMIT(!tty->port,
1332 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1333 			__func__, tty->driver->name);
1334 
1335 	retval = tty_ldisc_lock(tty, 5 * HZ);
1336 	if (retval)
1337 		goto err_release_lock;
1338 	tty->port->itty = tty;
1339 
1340 	/*
1341 	 * Structures all installed ... call the ldisc open routines.
1342 	 * If we fail here just call release_tty to clean up.  No need
1343 	 * to decrement the use counts, as release_tty doesn't care.
1344 	 */
1345 	retval = tty_ldisc_setup(tty, tty->link);
1346 	if (retval)
1347 		goto err_release_tty;
1348 	tty_ldisc_unlock(tty);
1349 	/* Return the tty locked so that it cannot vanish under the caller */
1350 	return tty;
1351 
1352 err_free_tty:
1353 	tty_unlock(tty);
1354 	free_tty_struct(tty);
1355 err_module_put:
1356 	module_put(driver->owner);
1357 	return ERR_PTR(retval);
1358 
1359 	/* call the tty release_tty routine to clean out this slot */
1360 err_release_tty:
1361 	tty_ldisc_unlock(tty);
1362 	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1363 			     retval, idx);
1364 err_release_lock:
1365 	tty_unlock(tty);
1366 	release_tty(tty, idx);
1367 	return ERR_PTR(retval);
1368 }
1369 
1370 static void tty_free_termios(struct tty_struct *tty)
1371 {
1372 	struct ktermios *tp;
1373 	int idx = tty->index;
1374 
1375 	/* If the port is going to reset then it has no termios to save */
1376 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1377 		return;
1378 
1379 	/* Stash the termios data */
1380 	tp = tty->driver->termios[idx];
1381 	if (tp == NULL) {
1382 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1383 		if (tp == NULL)
1384 			return;
1385 		tty->driver->termios[idx] = tp;
1386 	}
1387 	*tp = tty->termios;
1388 }
1389 
1390 /**
1391  *	tty_flush_works		-	flush all works of a tty/pty pair
1392  *	@tty: tty device to flush works for (or either end of a pty pair)
1393  *
1394  *	Sync flush all works belonging to @tty (and the 'other' tty).
1395  */
1396 static void tty_flush_works(struct tty_struct *tty)
1397 {
1398 	flush_work(&tty->SAK_work);
1399 	flush_work(&tty->hangup_work);
1400 	if (tty->link) {
1401 		flush_work(&tty->link->SAK_work);
1402 		flush_work(&tty->link->hangup_work);
1403 	}
1404 }
1405 
1406 /**
1407  *	release_one_tty		-	release tty structure memory
1408  *	@kref: kref of tty we are obliterating
1409  *
1410  *	Releases memory associated with a tty structure, and clears out the
1411  *	driver table slots. This function is called when a device is no longer
1412  *	in use. It also gets called when setup of a device fails.
1413  *
1414  *	Locking:
1415  *		takes the file list lock internally when working on the list
1416  *	of ttys that the driver keeps.
1417  *
1418  *	This method gets called from a work queue so that the driver private
1419  *	cleanup ops can sleep (needed for USB at least)
1420  */
1421 static void release_one_tty(struct work_struct *work)
1422 {
1423 	struct tty_struct *tty =
1424 		container_of(work, struct tty_struct, hangup_work);
1425 	struct tty_driver *driver = tty->driver;
1426 	struct module *owner = driver->owner;
1427 
1428 	if (tty->ops->cleanup)
1429 		tty->ops->cleanup(tty);
1430 
1431 	tty->magic = 0;
1432 	tty_driver_kref_put(driver);
1433 	module_put(owner);
1434 
1435 	spin_lock(&tty->files_lock);
1436 	list_del_init(&tty->tty_files);
1437 	spin_unlock(&tty->files_lock);
1438 
1439 	put_pid(tty->pgrp);
1440 	put_pid(tty->session);
1441 	free_tty_struct(tty);
1442 }
1443 
1444 static void queue_release_one_tty(struct kref *kref)
1445 {
1446 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1447 
1448 	/* The hangup queue is now free so we can reuse it rather than
1449 	   waste a chunk of memory for each port */
1450 	INIT_WORK(&tty->hangup_work, release_one_tty);
1451 	schedule_work(&tty->hangup_work);
1452 }
1453 
1454 /**
1455  *	tty_kref_put		-	release a tty kref
1456  *	@tty: tty device
1457  *
1458  *	Release a reference to a tty device and if need be let the kref
1459  *	layer destruct the object for us
1460  */
1461 
1462 void tty_kref_put(struct tty_struct *tty)
1463 {
1464 	if (tty)
1465 		kref_put(&tty->kref, queue_release_one_tty);
1466 }
1467 EXPORT_SYMBOL(tty_kref_put);
1468 
1469 /**
1470  *	release_tty		-	release tty structure memory
1471  *
1472  *	Release both @tty and a possible linked partner (think pty pair),
1473  *	and decrement the refcount of the backing module.
1474  *
1475  *	Locking:
1476  *		tty_mutex
1477  *		takes the file list lock internally when working on the list
1478  *	of ttys that the driver keeps.
1479  *
1480  */
1481 static void release_tty(struct tty_struct *tty, int idx)
1482 {
1483 	/* This should always be true but check for the moment */
1484 	WARN_ON(tty->index != idx);
1485 	WARN_ON(!mutex_is_locked(&tty_mutex));
1486 	if (tty->ops->shutdown)
1487 		tty->ops->shutdown(tty);
1488 	tty_free_termios(tty);
1489 	tty_driver_remove_tty(tty->driver, tty);
1490 	tty->port->itty = NULL;
1491 	if (tty->link)
1492 		tty->link->port->itty = NULL;
1493 	tty_buffer_cancel_work(tty->port);
1494 	if (tty->link)
1495 		tty_buffer_cancel_work(tty->link->port);
1496 
1497 	tty_kref_put(tty->link);
1498 	tty_kref_put(tty);
1499 }
1500 
1501 /**
1502  *	tty_release_checks - check a tty before real release
1503  *	@tty: tty to check
1504  *	@o_tty: link of @tty (if any)
1505  *	@idx: index of the tty
1506  *
1507  *	Performs some paranoid checking before true release of the @tty.
1508  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1509  */
1510 static int tty_release_checks(struct tty_struct *tty, int idx)
1511 {
1512 #ifdef TTY_PARANOIA_CHECK
1513 	if (idx < 0 || idx >= tty->driver->num) {
1514 		tty_debug(tty, "bad idx %d\n", idx);
1515 		return -1;
1516 	}
1517 
1518 	/* not much to check for devpts */
1519 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1520 		return 0;
1521 
1522 	if (tty != tty->driver->ttys[idx]) {
1523 		tty_debug(tty, "bad driver table[%d] = %p\n",
1524 			  idx, tty->driver->ttys[idx]);
1525 		return -1;
1526 	}
1527 	if (tty->driver->other) {
1528 		struct tty_struct *o_tty = tty->link;
1529 
1530 		if (o_tty != tty->driver->other->ttys[idx]) {
1531 			tty_debug(tty, "bad other table[%d] = %p\n",
1532 				  idx, tty->driver->other->ttys[idx]);
1533 			return -1;
1534 		}
1535 		if (o_tty->link != tty) {
1536 			tty_debug(tty, "bad link = %p\n", o_tty->link);
1537 			return -1;
1538 		}
1539 	}
1540 #endif
1541 	return 0;
1542 }
1543 
1544 /**
1545  *      tty_kclose      -       closes tty opened by tty_kopen
1546  *      @tty: tty device
1547  *
1548  *      Performs the final steps to release and free a tty device. It is the
1549  *      same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1550  *      flag on tty->port.
1551  */
1552 void tty_kclose(struct tty_struct *tty)
1553 {
1554 	/*
1555 	 * Ask the line discipline code to release its structures
1556 	 */
1557 	tty_ldisc_release(tty);
1558 
1559 	/* Wait for pending work before tty destruction commmences */
1560 	tty_flush_works(tty);
1561 
1562 	tty_debug_hangup(tty, "freeing structure\n");
1563 	/*
1564 	 * The release_tty function takes care of the details of clearing
1565 	 * the slots and preserving the termios structure. The tty_unlock_pair
1566 	 * should be safe as we keep a kref while the tty is locked (so the
1567 	 * unlock never unlocks a freed tty).
1568 	 */
1569 	mutex_lock(&tty_mutex);
1570 	tty_port_set_kopened(tty->port, 0);
1571 	release_tty(tty, tty->index);
1572 	mutex_unlock(&tty_mutex);
1573 }
1574 EXPORT_SYMBOL_GPL(tty_kclose);
1575 
1576 /**
1577  *	tty_release_struct	-	release a tty struct
1578  *	@tty: tty device
1579  *	@idx: index of the tty
1580  *
1581  *	Performs the final steps to release and free a tty device. It is
1582  *	roughly the reverse of tty_init_dev.
1583  */
1584 void tty_release_struct(struct tty_struct *tty, int idx)
1585 {
1586 	/*
1587 	 * Ask the line discipline code to release its structures
1588 	 */
1589 	tty_ldisc_release(tty);
1590 
1591 	/* Wait for pending work before tty destruction commmences */
1592 	tty_flush_works(tty);
1593 
1594 	tty_debug_hangup(tty, "freeing structure\n");
1595 	/*
1596 	 * The release_tty function takes care of the details of clearing
1597 	 * the slots and preserving the termios structure. The tty_unlock_pair
1598 	 * should be safe as we keep a kref while the tty is locked (so the
1599 	 * unlock never unlocks a freed tty).
1600 	 */
1601 	mutex_lock(&tty_mutex);
1602 	release_tty(tty, idx);
1603 	mutex_unlock(&tty_mutex);
1604 }
1605 EXPORT_SYMBOL_GPL(tty_release_struct);
1606 
1607 /**
1608  *	tty_release		-	vfs callback for close
1609  *	@inode: inode of tty
1610  *	@filp: file pointer for handle to tty
1611  *
1612  *	Called the last time each file handle is closed that references
1613  *	this tty. There may however be several such references.
1614  *
1615  *	Locking:
1616  *		Takes bkl. See tty_release_dev
1617  *
1618  * Even releasing the tty structures is a tricky business.. We have
1619  * to be very careful that the structures are all released at the
1620  * same time, as interrupts might otherwise get the wrong pointers.
1621  *
1622  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1623  * lead to double frees or releasing memory still in use.
1624  */
1625 
1626 int tty_release(struct inode *inode, struct file *filp)
1627 {
1628 	struct tty_struct *tty = file_tty(filp);
1629 	struct tty_struct *o_tty = NULL;
1630 	int	do_sleep, final;
1631 	int	idx;
1632 	long	timeout = 0;
1633 	int	once = 1;
1634 
1635 	if (tty_paranoia_check(tty, inode, __func__))
1636 		return 0;
1637 
1638 	tty_lock(tty);
1639 	check_tty_count(tty, __func__);
1640 
1641 	__tty_fasync(-1, filp, 0);
1642 
1643 	idx = tty->index;
1644 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1645 	    tty->driver->subtype == PTY_TYPE_MASTER)
1646 		o_tty = tty->link;
1647 
1648 	if (tty_release_checks(tty, idx)) {
1649 		tty_unlock(tty);
1650 		return 0;
1651 	}
1652 
1653 	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1654 
1655 	if (tty->ops->close)
1656 		tty->ops->close(tty, filp);
1657 
1658 	/* If tty is pty master, lock the slave pty (stable lock order) */
1659 	tty_lock_slave(o_tty);
1660 
1661 	/*
1662 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1663 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1664 	 * wait queues and kick everyone out _before_ actually starting to
1665 	 * close.  This ensures that we won't block while releasing the tty
1666 	 * structure.
1667 	 *
1668 	 * The test for the o_tty closing is necessary, since the master and
1669 	 * slave sides may close in any order.  If the slave side closes out
1670 	 * first, its count will be one, since the master side holds an open.
1671 	 * Thus this test wouldn't be triggered at the time the slave closed,
1672 	 * so we do it now.
1673 	 */
1674 	while (1) {
1675 		do_sleep = 0;
1676 
1677 		if (tty->count <= 1) {
1678 			if (waitqueue_active(&tty->read_wait)) {
1679 				wake_up_poll(&tty->read_wait, EPOLLIN);
1680 				do_sleep++;
1681 			}
1682 			if (waitqueue_active(&tty->write_wait)) {
1683 				wake_up_poll(&tty->write_wait, EPOLLOUT);
1684 				do_sleep++;
1685 			}
1686 		}
1687 		if (o_tty && o_tty->count <= 1) {
1688 			if (waitqueue_active(&o_tty->read_wait)) {
1689 				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1690 				do_sleep++;
1691 			}
1692 			if (waitqueue_active(&o_tty->write_wait)) {
1693 				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1694 				do_sleep++;
1695 			}
1696 		}
1697 		if (!do_sleep)
1698 			break;
1699 
1700 		if (once) {
1701 			once = 0;
1702 			tty_warn(tty, "read/write wait queue active!\n");
1703 		}
1704 		schedule_timeout_killable(timeout);
1705 		if (timeout < 120 * HZ)
1706 			timeout = 2 * timeout + 1;
1707 		else
1708 			timeout = MAX_SCHEDULE_TIMEOUT;
1709 	}
1710 
1711 	if (o_tty) {
1712 		if (--o_tty->count < 0) {
1713 			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1714 			o_tty->count = 0;
1715 		}
1716 	}
1717 	if (--tty->count < 0) {
1718 		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1719 		tty->count = 0;
1720 	}
1721 
1722 	/*
1723 	 * We've decremented tty->count, so we need to remove this file
1724 	 * descriptor off the tty->tty_files list; this serves two
1725 	 * purposes:
1726 	 *  - check_tty_count sees the correct number of file descriptors
1727 	 *    associated with this tty.
1728 	 *  - do_tty_hangup no longer sees this file descriptor as
1729 	 *    something that needs to be handled for hangups.
1730 	 */
1731 	tty_del_file(filp);
1732 
1733 	/*
1734 	 * Perform some housekeeping before deciding whether to return.
1735 	 *
1736 	 * If _either_ side is closing, make sure there aren't any
1737 	 * processes that still think tty or o_tty is their controlling
1738 	 * tty.
1739 	 */
1740 	if (!tty->count) {
1741 		read_lock(&tasklist_lock);
1742 		session_clear_tty(tty->session);
1743 		if (o_tty)
1744 			session_clear_tty(o_tty->session);
1745 		read_unlock(&tasklist_lock);
1746 	}
1747 
1748 	/* check whether both sides are closing ... */
1749 	final = !tty->count && !(o_tty && o_tty->count);
1750 
1751 	tty_unlock_slave(o_tty);
1752 	tty_unlock(tty);
1753 
1754 	/* At this point, the tty->count == 0 should ensure a dead tty
1755 	   cannot be re-opened by a racing opener */
1756 
1757 	if (!final)
1758 		return 0;
1759 
1760 	tty_debug_hangup(tty, "final close\n");
1761 
1762 	tty_release_struct(tty, idx);
1763 	return 0;
1764 }
1765 
1766 /**
1767  *	tty_open_current_tty - get locked tty of current task
1768  *	@device: device number
1769  *	@filp: file pointer to tty
1770  *	@return: locked tty of the current task iff @device is /dev/tty
1771  *
1772  *	Performs a re-open of the current task's controlling tty.
1773  *
1774  *	We cannot return driver and index like for the other nodes because
1775  *	devpts will not work then. It expects inodes to be from devpts FS.
1776  */
1777 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1778 {
1779 	struct tty_struct *tty;
1780 	int retval;
1781 
1782 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1783 		return NULL;
1784 
1785 	tty = get_current_tty();
1786 	if (!tty)
1787 		return ERR_PTR(-ENXIO);
1788 
1789 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1790 	/* noctty = 1; */
1791 	tty_lock(tty);
1792 	tty_kref_put(tty);	/* safe to drop the kref now */
1793 
1794 	retval = tty_reopen(tty);
1795 	if (retval < 0) {
1796 		tty_unlock(tty);
1797 		tty = ERR_PTR(retval);
1798 	}
1799 	return tty;
1800 }
1801 
1802 /**
1803  *	tty_lookup_driver - lookup a tty driver for a given device file
1804  *	@device: device number
1805  *	@filp: file pointer to tty
1806  *	@index: index for the device in the @return driver
1807  *	@return: driver for this inode (with increased refcount)
1808  *
1809  * 	If @return is not erroneous, the caller is responsible to decrement the
1810  * 	refcount by tty_driver_kref_put.
1811  *
1812  *	Locking: tty_mutex protects get_tty_driver
1813  */
1814 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1815 		int *index)
1816 {
1817 	struct tty_driver *driver;
1818 
1819 	switch (device) {
1820 #ifdef CONFIG_VT
1821 	case MKDEV(TTY_MAJOR, 0): {
1822 		extern struct tty_driver *console_driver;
1823 		driver = tty_driver_kref_get(console_driver);
1824 		*index = fg_console;
1825 		break;
1826 	}
1827 #endif
1828 	case MKDEV(TTYAUX_MAJOR, 1): {
1829 		struct tty_driver *console_driver = console_device(index);
1830 		if (console_driver) {
1831 			driver = tty_driver_kref_get(console_driver);
1832 			if (driver && filp) {
1833 				/* Don't let /dev/console block */
1834 				filp->f_flags |= O_NONBLOCK;
1835 				break;
1836 			}
1837 		}
1838 		return ERR_PTR(-ENODEV);
1839 	}
1840 	default:
1841 		driver = get_tty_driver(device, index);
1842 		if (!driver)
1843 			return ERR_PTR(-ENODEV);
1844 		break;
1845 	}
1846 	return driver;
1847 }
1848 
1849 /**
1850  *	tty_kopen	-	open a tty device for kernel
1851  *	@device: dev_t of device to open
1852  *
1853  *	Opens tty exclusively for kernel. Performs the driver lookup,
1854  *	makes sure it's not already opened and performs the first-time
1855  *	tty initialization.
1856  *
1857  *	Returns the locked initialized &tty_struct
1858  *
1859  *	Claims the global tty_mutex to serialize:
1860  *	  - concurrent first-time tty initialization
1861  *	  - concurrent tty driver removal w/ lookup
1862  *	  - concurrent tty removal from driver table
1863  */
1864 struct tty_struct *tty_kopen(dev_t device)
1865 {
1866 	struct tty_struct *tty;
1867 	struct tty_driver *driver = NULL;
1868 	int index = -1;
1869 
1870 	mutex_lock(&tty_mutex);
1871 	driver = tty_lookup_driver(device, NULL, &index);
1872 	if (IS_ERR(driver)) {
1873 		mutex_unlock(&tty_mutex);
1874 		return ERR_CAST(driver);
1875 	}
1876 
1877 	/* check whether we're reopening an existing tty */
1878 	tty = tty_driver_lookup_tty(driver, NULL, index);
1879 	if (IS_ERR(tty))
1880 		goto out;
1881 
1882 	if (tty) {
1883 		/* drop kref from tty_driver_lookup_tty() */
1884 		tty_kref_put(tty);
1885 		tty = ERR_PTR(-EBUSY);
1886 	} else { /* tty_init_dev returns tty with the tty_lock held */
1887 		tty = tty_init_dev(driver, index);
1888 		if (IS_ERR(tty))
1889 			goto out;
1890 		tty_port_set_kopened(tty->port, 1);
1891 	}
1892 out:
1893 	mutex_unlock(&tty_mutex);
1894 	tty_driver_kref_put(driver);
1895 	return tty;
1896 }
1897 EXPORT_SYMBOL_GPL(tty_kopen);
1898 
1899 /**
1900  *	tty_open_by_driver	-	open a tty device
1901  *	@device: dev_t of device to open
1902  *	@inode: inode of device file
1903  *	@filp: file pointer to tty
1904  *
1905  *	Performs the driver lookup, checks for a reopen, or otherwise
1906  *	performs the first-time tty initialization.
1907  *
1908  *	Returns the locked initialized or re-opened &tty_struct
1909  *
1910  *	Claims the global tty_mutex to serialize:
1911  *	  - concurrent first-time tty initialization
1912  *	  - concurrent tty driver removal w/ lookup
1913  *	  - concurrent tty removal from driver table
1914  */
1915 static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
1916 					     struct file *filp)
1917 {
1918 	struct tty_struct *tty;
1919 	struct tty_driver *driver = NULL;
1920 	int index = -1;
1921 	int retval;
1922 
1923 	mutex_lock(&tty_mutex);
1924 	driver = tty_lookup_driver(device, filp, &index);
1925 	if (IS_ERR(driver)) {
1926 		mutex_unlock(&tty_mutex);
1927 		return ERR_CAST(driver);
1928 	}
1929 
1930 	/* check whether we're reopening an existing tty */
1931 	tty = tty_driver_lookup_tty(driver, filp, index);
1932 	if (IS_ERR(tty)) {
1933 		mutex_unlock(&tty_mutex);
1934 		goto out;
1935 	}
1936 
1937 	if (tty) {
1938 		if (tty_port_kopened(tty->port)) {
1939 			tty_kref_put(tty);
1940 			mutex_unlock(&tty_mutex);
1941 			tty = ERR_PTR(-EBUSY);
1942 			goto out;
1943 		}
1944 		mutex_unlock(&tty_mutex);
1945 		retval = tty_lock_interruptible(tty);
1946 		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
1947 		if (retval) {
1948 			if (retval == -EINTR)
1949 				retval = -ERESTARTSYS;
1950 			tty = ERR_PTR(retval);
1951 			goto out;
1952 		}
1953 		retval = tty_reopen(tty);
1954 		if (retval < 0) {
1955 			tty_unlock(tty);
1956 			tty = ERR_PTR(retval);
1957 		}
1958 	} else { /* Returns with the tty_lock held for now */
1959 		tty = tty_init_dev(driver, index);
1960 		mutex_unlock(&tty_mutex);
1961 	}
1962 out:
1963 	tty_driver_kref_put(driver);
1964 	return tty;
1965 }
1966 
1967 /**
1968  *	tty_open		-	open a tty device
1969  *	@inode: inode of device file
1970  *	@filp: file pointer to tty
1971  *
1972  *	tty_open and tty_release keep up the tty count that contains the
1973  *	number of opens done on a tty. We cannot use the inode-count, as
1974  *	different inodes might point to the same tty.
1975  *
1976  *	Open-counting is needed for pty masters, as well as for keeping
1977  *	track of serial lines: DTR is dropped when the last close happens.
1978  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1979  *
1980  *	The termios state of a pty is reset on first open so that
1981  *	settings don't persist across reuse.
1982  *
1983  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1984  *		 tty->count should protect the rest.
1985  *		 ->siglock protects ->signal/->sighand
1986  *
1987  *	Note: the tty_unlock/lock cases without a ref are only safe due to
1988  *	tty_mutex
1989  */
1990 
1991 static int tty_open(struct inode *inode, struct file *filp)
1992 {
1993 	struct tty_struct *tty;
1994 	int noctty, retval;
1995 	dev_t device = inode->i_rdev;
1996 	unsigned saved_flags = filp->f_flags;
1997 
1998 	nonseekable_open(inode, filp);
1999 
2000 retry_open:
2001 	retval = tty_alloc_file(filp);
2002 	if (retval)
2003 		return -ENOMEM;
2004 
2005 	tty = tty_open_current_tty(device, filp);
2006 	if (!tty)
2007 		tty = tty_open_by_driver(device, inode, filp);
2008 
2009 	if (IS_ERR(tty)) {
2010 		tty_free_file(filp);
2011 		retval = PTR_ERR(tty);
2012 		if (retval != -EAGAIN || signal_pending(current))
2013 			return retval;
2014 		schedule();
2015 		goto retry_open;
2016 	}
2017 
2018 	tty_add_file(tty, filp);
2019 
2020 	check_tty_count(tty, __func__);
2021 	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2022 
2023 	if (tty->ops->open)
2024 		retval = tty->ops->open(tty, filp);
2025 	else
2026 		retval = -ENODEV;
2027 	filp->f_flags = saved_flags;
2028 
2029 	if (retval) {
2030 		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2031 
2032 		tty_unlock(tty); /* need to call tty_release without BTM */
2033 		tty_release(inode, filp);
2034 		if (retval != -ERESTARTSYS)
2035 			return retval;
2036 
2037 		if (signal_pending(current))
2038 			return retval;
2039 
2040 		schedule();
2041 		/*
2042 		 * Need to reset f_op in case a hangup happened.
2043 		 */
2044 		if (tty_hung_up_p(filp))
2045 			filp->f_op = &tty_fops;
2046 		goto retry_open;
2047 	}
2048 	clear_bit(TTY_HUPPED, &tty->flags);
2049 
2050 	noctty = (filp->f_flags & O_NOCTTY) ||
2051 		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2052 		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2053 		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2054 		  tty->driver->subtype == PTY_TYPE_MASTER);
2055 	if (!noctty)
2056 		tty_open_proc_set_tty(filp, tty);
2057 	tty_unlock(tty);
2058 	return 0;
2059 }
2060 
2061 
2062 
2063 /**
2064  *	tty_poll	-	check tty status
2065  *	@filp: file being polled
2066  *	@wait: poll wait structures to update
2067  *
2068  *	Call the line discipline polling method to obtain the poll
2069  *	status of the device.
2070  *
2071  *	Locking: locks called line discipline but ldisc poll method
2072  *	may be re-entered freely by other callers.
2073  */
2074 
2075 static __poll_t tty_poll(struct file *filp, poll_table *wait)
2076 {
2077 	struct tty_struct *tty = file_tty(filp);
2078 	struct tty_ldisc *ld;
2079 	__poll_t ret = 0;
2080 
2081 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2082 		return 0;
2083 
2084 	ld = tty_ldisc_ref_wait(tty);
2085 	if (!ld)
2086 		return hung_up_tty_poll(filp, wait);
2087 	if (ld->ops->poll)
2088 		ret = ld->ops->poll(tty, filp, wait);
2089 	tty_ldisc_deref(ld);
2090 	return ret;
2091 }
2092 
2093 static int __tty_fasync(int fd, struct file *filp, int on)
2094 {
2095 	struct tty_struct *tty = file_tty(filp);
2096 	unsigned long flags;
2097 	int retval = 0;
2098 
2099 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2100 		goto out;
2101 
2102 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2103 	if (retval <= 0)
2104 		goto out;
2105 
2106 	if (on) {
2107 		enum pid_type type;
2108 		struct pid *pid;
2109 
2110 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2111 		if (tty->pgrp) {
2112 			pid = tty->pgrp;
2113 			type = PIDTYPE_PGID;
2114 		} else {
2115 			pid = task_pid(current);
2116 			type = PIDTYPE_TGID;
2117 		}
2118 		get_pid(pid);
2119 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2120 		__f_setown(filp, pid, type, 0);
2121 		put_pid(pid);
2122 		retval = 0;
2123 	}
2124 out:
2125 	return retval;
2126 }
2127 
2128 static int tty_fasync(int fd, struct file *filp, int on)
2129 {
2130 	struct tty_struct *tty = file_tty(filp);
2131 	int retval = -ENOTTY;
2132 
2133 	tty_lock(tty);
2134 	if (!tty_hung_up_p(filp))
2135 		retval = __tty_fasync(fd, filp, on);
2136 	tty_unlock(tty);
2137 
2138 	return retval;
2139 }
2140 
2141 /**
2142  *	tiocsti			-	fake input character
2143  *	@tty: tty to fake input into
2144  *	@p: pointer to character
2145  *
2146  *	Fake input to a tty device. Does the necessary locking and
2147  *	input management.
2148  *
2149  *	FIXME: does not honour flow control ??
2150  *
2151  *	Locking:
2152  *		Called functions take tty_ldiscs_lock
2153  *		current->signal->tty check is safe without locks
2154  *
2155  *	FIXME: may race normal receive processing
2156  */
2157 
2158 static int tiocsti(struct tty_struct *tty, char __user *p)
2159 {
2160 	char ch, mbz = 0;
2161 	struct tty_ldisc *ld;
2162 
2163 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2164 		return -EPERM;
2165 	if (get_user(ch, p))
2166 		return -EFAULT;
2167 	tty_audit_tiocsti(tty, ch);
2168 	ld = tty_ldisc_ref_wait(tty);
2169 	if (!ld)
2170 		return -EIO;
2171 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2172 	tty_ldisc_deref(ld);
2173 	return 0;
2174 }
2175 
2176 /**
2177  *	tiocgwinsz		-	implement window query ioctl
2178  *	@tty; tty
2179  *	@arg: user buffer for result
2180  *
2181  *	Copies the kernel idea of the window size into the user buffer.
2182  *
2183  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2184  *		is consistent.
2185  */
2186 
2187 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2188 {
2189 	int err;
2190 
2191 	mutex_lock(&tty->winsize_mutex);
2192 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2193 	mutex_unlock(&tty->winsize_mutex);
2194 
2195 	return err ? -EFAULT: 0;
2196 }
2197 
2198 /**
2199  *	tty_do_resize		-	resize event
2200  *	@tty: tty being resized
2201  *	@rows: rows (character)
2202  *	@cols: cols (character)
2203  *
2204  *	Update the termios variables and send the necessary signals to
2205  *	peform a terminal resize correctly
2206  */
2207 
2208 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2209 {
2210 	struct pid *pgrp;
2211 
2212 	/* Lock the tty */
2213 	mutex_lock(&tty->winsize_mutex);
2214 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2215 		goto done;
2216 
2217 	/* Signal the foreground process group */
2218 	pgrp = tty_get_pgrp(tty);
2219 	if (pgrp)
2220 		kill_pgrp(pgrp, SIGWINCH, 1);
2221 	put_pid(pgrp);
2222 
2223 	tty->winsize = *ws;
2224 done:
2225 	mutex_unlock(&tty->winsize_mutex);
2226 	return 0;
2227 }
2228 EXPORT_SYMBOL(tty_do_resize);
2229 
2230 /**
2231  *	tiocswinsz		-	implement window size set ioctl
2232  *	@tty; tty side of tty
2233  *	@arg: user buffer for result
2234  *
2235  *	Copies the user idea of the window size to the kernel. Traditionally
2236  *	this is just advisory information but for the Linux console it
2237  *	actually has driver level meaning and triggers a VC resize.
2238  *
2239  *	Locking:
2240  *		Driver dependent. The default do_resize method takes the
2241  *	tty termios mutex and ctrl_lock. The console takes its own lock
2242  *	then calls into the default method.
2243  */
2244 
2245 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2246 {
2247 	struct winsize tmp_ws;
2248 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2249 		return -EFAULT;
2250 
2251 	if (tty->ops->resize)
2252 		return tty->ops->resize(tty, &tmp_ws);
2253 	else
2254 		return tty_do_resize(tty, &tmp_ws);
2255 }
2256 
2257 /**
2258  *	tioccons	-	allow admin to move logical console
2259  *	@file: the file to become console
2260  *
2261  *	Allow the administrator to move the redirected console device
2262  *
2263  *	Locking: uses redirect_lock to guard the redirect information
2264  */
2265 
2266 static int tioccons(struct file *file)
2267 {
2268 	if (!capable(CAP_SYS_ADMIN))
2269 		return -EPERM;
2270 	if (file->f_op->write == redirected_tty_write) {
2271 		struct file *f;
2272 		spin_lock(&redirect_lock);
2273 		f = redirect;
2274 		redirect = NULL;
2275 		spin_unlock(&redirect_lock);
2276 		if (f)
2277 			fput(f);
2278 		return 0;
2279 	}
2280 	spin_lock(&redirect_lock);
2281 	if (redirect) {
2282 		spin_unlock(&redirect_lock);
2283 		return -EBUSY;
2284 	}
2285 	redirect = get_file(file);
2286 	spin_unlock(&redirect_lock);
2287 	return 0;
2288 }
2289 
2290 /**
2291  *	fionbio		-	non blocking ioctl
2292  *	@file: file to set blocking value
2293  *	@p: user parameter
2294  *
2295  *	Historical tty interfaces had a blocking control ioctl before
2296  *	the generic functionality existed. This piece of history is preserved
2297  *	in the expected tty API of posix OS's.
2298  *
2299  *	Locking: none, the open file handle ensures it won't go away.
2300  */
2301 
2302 static int fionbio(struct file *file, int __user *p)
2303 {
2304 	int nonblock;
2305 
2306 	if (get_user(nonblock, p))
2307 		return -EFAULT;
2308 
2309 	spin_lock(&file->f_lock);
2310 	if (nonblock)
2311 		file->f_flags |= O_NONBLOCK;
2312 	else
2313 		file->f_flags &= ~O_NONBLOCK;
2314 	spin_unlock(&file->f_lock);
2315 	return 0;
2316 }
2317 
2318 /**
2319  *	tiocsetd	-	set line discipline
2320  *	@tty: tty device
2321  *	@p: pointer to user data
2322  *
2323  *	Set the line discipline according to user request.
2324  *
2325  *	Locking: see tty_set_ldisc, this function is just a helper
2326  */
2327 
2328 static int tiocsetd(struct tty_struct *tty, int __user *p)
2329 {
2330 	int disc;
2331 	int ret;
2332 
2333 	if (get_user(disc, p))
2334 		return -EFAULT;
2335 
2336 	ret = tty_set_ldisc(tty, disc);
2337 
2338 	return ret;
2339 }
2340 
2341 /**
2342  *	tiocgetd	-	get line discipline
2343  *	@tty: tty device
2344  *	@p: pointer to user data
2345  *
2346  *	Retrieves the line discipline id directly from the ldisc.
2347  *
2348  *	Locking: waits for ldisc reference (in case the line discipline
2349  *		is changing or the tty is being hungup)
2350  */
2351 
2352 static int tiocgetd(struct tty_struct *tty, int __user *p)
2353 {
2354 	struct tty_ldisc *ld;
2355 	int ret;
2356 
2357 	ld = tty_ldisc_ref_wait(tty);
2358 	if (!ld)
2359 		return -EIO;
2360 	ret = put_user(ld->ops->num, p);
2361 	tty_ldisc_deref(ld);
2362 	return ret;
2363 }
2364 
2365 /**
2366  *	send_break	-	performed time break
2367  *	@tty: device to break on
2368  *	@duration: timeout in mS
2369  *
2370  *	Perform a timed break on hardware that lacks its own driver level
2371  *	timed break functionality.
2372  *
2373  *	Locking:
2374  *		atomic_write_lock serializes
2375  *
2376  */
2377 
2378 static int send_break(struct tty_struct *tty, unsigned int duration)
2379 {
2380 	int retval;
2381 
2382 	if (tty->ops->break_ctl == NULL)
2383 		return 0;
2384 
2385 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2386 		retval = tty->ops->break_ctl(tty, duration);
2387 	else {
2388 		/* Do the work ourselves */
2389 		if (tty_write_lock(tty, 0) < 0)
2390 			return -EINTR;
2391 		retval = tty->ops->break_ctl(tty, -1);
2392 		if (retval)
2393 			goto out;
2394 		if (!signal_pending(current))
2395 			msleep_interruptible(duration);
2396 		retval = tty->ops->break_ctl(tty, 0);
2397 out:
2398 		tty_write_unlock(tty);
2399 		if (signal_pending(current))
2400 			retval = -EINTR;
2401 	}
2402 	return retval;
2403 }
2404 
2405 /**
2406  *	tty_tiocmget		-	get modem status
2407  *	@tty: tty device
2408  *	@file: user file pointer
2409  *	@p: pointer to result
2410  *
2411  *	Obtain the modem status bits from the tty driver if the feature
2412  *	is supported. Return -EINVAL if it is not available.
2413  *
2414  *	Locking: none (up to the driver)
2415  */
2416 
2417 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2418 {
2419 	int retval = -EINVAL;
2420 
2421 	if (tty->ops->tiocmget) {
2422 		retval = tty->ops->tiocmget(tty);
2423 
2424 		if (retval >= 0)
2425 			retval = put_user(retval, p);
2426 	}
2427 	return retval;
2428 }
2429 
2430 /**
2431  *	tty_tiocmset		-	set modem status
2432  *	@tty: tty device
2433  *	@cmd: command - clear bits, set bits or set all
2434  *	@p: pointer to desired bits
2435  *
2436  *	Set the modem status bits from the tty driver if the feature
2437  *	is supported. Return -EINVAL if it is not available.
2438  *
2439  *	Locking: none (up to the driver)
2440  */
2441 
2442 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2443 	     unsigned __user *p)
2444 {
2445 	int retval;
2446 	unsigned int set, clear, val;
2447 
2448 	if (tty->ops->tiocmset == NULL)
2449 		return -EINVAL;
2450 
2451 	retval = get_user(val, p);
2452 	if (retval)
2453 		return retval;
2454 	set = clear = 0;
2455 	switch (cmd) {
2456 	case TIOCMBIS:
2457 		set = val;
2458 		break;
2459 	case TIOCMBIC:
2460 		clear = val;
2461 		break;
2462 	case TIOCMSET:
2463 		set = val;
2464 		clear = ~val;
2465 		break;
2466 	}
2467 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2468 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2469 	return tty->ops->tiocmset(tty, set, clear);
2470 }
2471 
2472 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2473 {
2474 	int retval = -EINVAL;
2475 	struct serial_icounter_struct icount;
2476 	memset(&icount, 0, sizeof(icount));
2477 	if (tty->ops->get_icount)
2478 		retval = tty->ops->get_icount(tty, &icount);
2479 	if (retval != 0)
2480 		return retval;
2481 	if (copy_to_user(arg, &icount, sizeof(icount)))
2482 		return -EFAULT;
2483 	return 0;
2484 }
2485 
2486 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2487 {
2488 	static DEFINE_RATELIMIT_STATE(depr_flags,
2489 			DEFAULT_RATELIMIT_INTERVAL,
2490 			DEFAULT_RATELIMIT_BURST);
2491 	char comm[TASK_COMM_LEN];
2492 	int flags;
2493 
2494 	if (get_user(flags, &ss->flags))
2495 		return;
2496 
2497 	flags &= ASYNC_DEPRECATED;
2498 
2499 	if (flags && __ratelimit(&depr_flags))
2500 		pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2501 			__func__, get_task_comm(comm, current), flags);
2502 }
2503 
2504 /*
2505  * if pty, return the slave side (real_tty)
2506  * otherwise, return self
2507  */
2508 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2509 {
2510 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2511 	    tty->driver->subtype == PTY_TYPE_MASTER)
2512 		tty = tty->link;
2513 	return tty;
2514 }
2515 
2516 /*
2517  * Split this up, as gcc can choke on it otherwise..
2518  */
2519 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2520 {
2521 	struct tty_struct *tty = file_tty(file);
2522 	struct tty_struct *real_tty;
2523 	void __user *p = (void __user *)arg;
2524 	int retval;
2525 	struct tty_ldisc *ld;
2526 
2527 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2528 		return -EINVAL;
2529 
2530 	real_tty = tty_pair_get_tty(tty);
2531 
2532 	/*
2533 	 * Factor out some common prep work
2534 	 */
2535 	switch (cmd) {
2536 	case TIOCSETD:
2537 	case TIOCSBRK:
2538 	case TIOCCBRK:
2539 	case TCSBRK:
2540 	case TCSBRKP:
2541 		retval = tty_check_change(tty);
2542 		if (retval)
2543 			return retval;
2544 		if (cmd != TIOCCBRK) {
2545 			tty_wait_until_sent(tty, 0);
2546 			if (signal_pending(current))
2547 				return -EINTR;
2548 		}
2549 		break;
2550 	}
2551 
2552 	/*
2553 	 *	Now do the stuff.
2554 	 */
2555 	switch (cmd) {
2556 	case TIOCSTI:
2557 		return tiocsti(tty, p);
2558 	case TIOCGWINSZ:
2559 		return tiocgwinsz(real_tty, p);
2560 	case TIOCSWINSZ:
2561 		return tiocswinsz(real_tty, p);
2562 	case TIOCCONS:
2563 		return real_tty != tty ? -EINVAL : tioccons(file);
2564 	case FIONBIO:
2565 		return fionbio(file, p);
2566 	case TIOCEXCL:
2567 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2568 		return 0;
2569 	case TIOCNXCL:
2570 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2571 		return 0;
2572 	case TIOCGEXCL:
2573 	{
2574 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2575 		return put_user(excl, (int __user *)p);
2576 	}
2577 	case TIOCGETD:
2578 		return tiocgetd(tty, p);
2579 	case TIOCSETD:
2580 		return tiocsetd(tty, p);
2581 	case TIOCVHANGUP:
2582 		if (!capable(CAP_SYS_ADMIN))
2583 			return -EPERM;
2584 		tty_vhangup(tty);
2585 		return 0;
2586 	case TIOCGDEV:
2587 	{
2588 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2589 		return put_user(ret, (unsigned int __user *)p);
2590 	}
2591 	/*
2592 	 * Break handling
2593 	 */
2594 	case TIOCSBRK:	/* Turn break on, unconditionally */
2595 		if (tty->ops->break_ctl)
2596 			return tty->ops->break_ctl(tty, -1);
2597 		return 0;
2598 	case TIOCCBRK:	/* Turn break off, unconditionally */
2599 		if (tty->ops->break_ctl)
2600 			return tty->ops->break_ctl(tty, 0);
2601 		return 0;
2602 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2603 		/* non-zero arg means wait for all output data
2604 		 * to be sent (performed above) but don't send break.
2605 		 * This is used by the tcdrain() termios function.
2606 		 */
2607 		if (!arg)
2608 			return send_break(tty, 250);
2609 		return 0;
2610 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2611 		return send_break(tty, arg ? arg*100 : 250);
2612 
2613 	case TIOCMGET:
2614 		return tty_tiocmget(tty, p);
2615 	case TIOCMSET:
2616 	case TIOCMBIC:
2617 	case TIOCMBIS:
2618 		return tty_tiocmset(tty, cmd, p);
2619 	case TIOCGICOUNT:
2620 		retval = tty_tiocgicount(tty, p);
2621 		/* For the moment allow fall through to the old method */
2622         	if (retval != -EINVAL)
2623 			return retval;
2624 		break;
2625 	case TCFLSH:
2626 		switch (arg) {
2627 		case TCIFLUSH:
2628 		case TCIOFLUSH:
2629 		/* flush tty buffer and allow ldisc to process ioctl */
2630 			tty_buffer_flush(tty, NULL);
2631 			break;
2632 		}
2633 		break;
2634 	case TIOCSSERIAL:
2635 		tty_warn_deprecated_flags(p);
2636 		break;
2637 	case TIOCGPTPEER:
2638 		/* Special because the struct file is needed */
2639 		return ptm_open_peer(file, tty, (int)arg);
2640 	default:
2641 		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2642 		if (retval != -ENOIOCTLCMD)
2643 			return retval;
2644 	}
2645 	if (tty->ops->ioctl) {
2646 		retval = tty->ops->ioctl(tty, cmd, arg);
2647 		if (retval != -ENOIOCTLCMD)
2648 			return retval;
2649 	}
2650 	ld = tty_ldisc_ref_wait(tty);
2651 	if (!ld)
2652 		return hung_up_tty_ioctl(file, cmd, arg);
2653 	retval = -EINVAL;
2654 	if (ld->ops->ioctl) {
2655 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2656 		if (retval == -ENOIOCTLCMD)
2657 			retval = -ENOTTY;
2658 	}
2659 	tty_ldisc_deref(ld);
2660 	return retval;
2661 }
2662 
2663 #ifdef CONFIG_COMPAT
2664 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2665 				unsigned long arg)
2666 {
2667 	struct tty_struct *tty = file_tty(file);
2668 	struct tty_ldisc *ld;
2669 	int retval = -ENOIOCTLCMD;
2670 
2671 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2672 		return -EINVAL;
2673 
2674 	if (tty->ops->compat_ioctl) {
2675 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2676 		if (retval != -ENOIOCTLCMD)
2677 			return retval;
2678 	}
2679 
2680 	ld = tty_ldisc_ref_wait(tty);
2681 	if (!ld)
2682 		return hung_up_tty_compat_ioctl(file, cmd, arg);
2683 	if (ld->ops->compat_ioctl)
2684 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2685 	else
2686 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2687 	tty_ldisc_deref(ld);
2688 
2689 	return retval;
2690 }
2691 #endif
2692 
2693 static int this_tty(const void *t, struct file *file, unsigned fd)
2694 {
2695 	if (likely(file->f_op->read != tty_read))
2696 		return 0;
2697 	return file_tty(file) != t ? 0 : fd + 1;
2698 }
2699 
2700 /*
2701  * This implements the "Secure Attention Key" ---  the idea is to
2702  * prevent trojan horses by killing all processes associated with this
2703  * tty when the user hits the "Secure Attention Key".  Required for
2704  * super-paranoid applications --- see the Orange Book for more details.
2705  *
2706  * This code could be nicer; ideally it should send a HUP, wait a few
2707  * seconds, then send a INT, and then a KILL signal.  But you then
2708  * have to coordinate with the init process, since all processes associated
2709  * with the current tty must be dead before the new getty is allowed
2710  * to spawn.
2711  *
2712  * Now, if it would be correct ;-/ The current code has a nasty hole -
2713  * it doesn't catch files in flight. We may send the descriptor to ourselves
2714  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2715  *
2716  * Nasty bug: do_SAK is being called in interrupt context.  This can
2717  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2718  */
2719 void __do_SAK(struct tty_struct *tty)
2720 {
2721 #ifdef TTY_SOFT_SAK
2722 	tty_hangup(tty);
2723 #else
2724 	struct task_struct *g, *p;
2725 	struct pid *session;
2726 	int		i;
2727 
2728 	if (!tty)
2729 		return;
2730 	session = tty->session;
2731 
2732 	tty_ldisc_flush(tty);
2733 
2734 	tty_driver_flush_buffer(tty);
2735 
2736 	read_lock(&tasklist_lock);
2737 	/* Kill the entire session */
2738 	do_each_pid_task(session, PIDTYPE_SID, p) {
2739 		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
2740 			   task_pid_nr(p), p->comm);
2741 		send_sig(SIGKILL, p, 1);
2742 	} while_each_pid_task(session, PIDTYPE_SID, p);
2743 
2744 	/* Now kill any processes that happen to have the tty open */
2745 	do_each_thread(g, p) {
2746 		if (p->signal->tty == tty) {
2747 			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
2748 				   task_pid_nr(p), p->comm);
2749 			send_sig(SIGKILL, p, 1);
2750 			continue;
2751 		}
2752 		task_lock(p);
2753 		i = iterate_fd(p->files, 0, this_tty, tty);
2754 		if (i != 0) {
2755 			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
2756 				   task_pid_nr(p), p->comm, i - 1);
2757 			force_sig(SIGKILL, p);
2758 		}
2759 		task_unlock(p);
2760 	} while_each_thread(g, p);
2761 	read_unlock(&tasklist_lock);
2762 #endif
2763 }
2764 
2765 static void do_SAK_work(struct work_struct *work)
2766 {
2767 	struct tty_struct *tty =
2768 		container_of(work, struct tty_struct, SAK_work);
2769 	__do_SAK(tty);
2770 }
2771 
2772 /*
2773  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2774  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2775  * the values which we write to it will be identical to the values which it
2776  * already has. --akpm
2777  */
2778 void do_SAK(struct tty_struct *tty)
2779 {
2780 	if (!tty)
2781 		return;
2782 	schedule_work(&tty->SAK_work);
2783 }
2784 
2785 EXPORT_SYMBOL(do_SAK);
2786 
2787 static int dev_match_devt(struct device *dev, const void *data)
2788 {
2789 	const dev_t *devt = data;
2790 	return dev->devt == *devt;
2791 }
2792 
2793 /* Must put_device() after it's unused! */
2794 static struct device *tty_get_device(struct tty_struct *tty)
2795 {
2796 	dev_t devt = tty_devnum(tty);
2797 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2798 }
2799 
2800 
2801 /**
2802  *	alloc_tty_struct
2803  *
2804  *	This subroutine allocates and initializes a tty structure.
2805  *
2806  *	Locking: none - tty in question is not exposed at this point
2807  */
2808 
2809 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
2810 {
2811 	struct tty_struct *tty;
2812 
2813 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
2814 	if (!tty)
2815 		return NULL;
2816 
2817 	kref_init(&tty->kref);
2818 	tty->magic = TTY_MAGIC;
2819 	if (tty_ldisc_init(tty)) {
2820 		kfree(tty);
2821 		return NULL;
2822 	}
2823 	tty->session = NULL;
2824 	tty->pgrp = NULL;
2825 	mutex_init(&tty->legacy_mutex);
2826 	mutex_init(&tty->throttle_mutex);
2827 	init_rwsem(&tty->termios_rwsem);
2828 	mutex_init(&tty->winsize_mutex);
2829 	init_ldsem(&tty->ldisc_sem);
2830 	init_waitqueue_head(&tty->write_wait);
2831 	init_waitqueue_head(&tty->read_wait);
2832 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2833 	mutex_init(&tty->atomic_write_lock);
2834 	spin_lock_init(&tty->ctrl_lock);
2835 	spin_lock_init(&tty->flow_lock);
2836 	spin_lock_init(&tty->files_lock);
2837 	INIT_LIST_HEAD(&tty->tty_files);
2838 	INIT_WORK(&tty->SAK_work, do_SAK_work);
2839 
2840 	tty->driver = driver;
2841 	tty->ops = driver->ops;
2842 	tty->index = idx;
2843 	tty_line_name(driver, idx, tty->name);
2844 	tty->dev = tty_get_device(tty);
2845 
2846 	return tty;
2847 }
2848 
2849 /**
2850  *	tty_put_char	-	write one character to a tty
2851  *	@tty: tty
2852  *	@ch: character
2853  *
2854  *	Write one byte to the tty using the provided put_char method
2855  *	if present. Returns the number of characters successfully output.
2856  *
2857  *	Note: the specific put_char operation in the driver layer may go
2858  *	away soon. Don't call it directly, use this method
2859  */
2860 
2861 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2862 {
2863 	if (tty->ops->put_char)
2864 		return tty->ops->put_char(tty, ch);
2865 	return tty->ops->write(tty, &ch, 1);
2866 }
2867 EXPORT_SYMBOL_GPL(tty_put_char);
2868 
2869 struct class *tty_class;
2870 
2871 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
2872 		unsigned int index, unsigned int count)
2873 {
2874 	int err;
2875 
2876 	/* init here, since reused cdevs cause crashes */
2877 	driver->cdevs[index] = cdev_alloc();
2878 	if (!driver->cdevs[index])
2879 		return -ENOMEM;
2880 	driver->cdevs[index]->ops = &tty_fops;
2881 	driver->cdevs[index]->owner = driver->owner;
2882 	err = cdev_add(driver->cdevs[index], dev, count);
2883 	if (err)
2884 		kobject_put(&driver->cdevs[index]->kobj);
2885 	return err;
2886 }
2887 
2888 /**
2889  *	tty_register_device - register a tty device
2890  *	@driver: the tty driver that describes the tty device
2891  *	@index: the index in the tty driver for this tty device
2892  *	@device: a struct device that is associated with this tty device.
2893  *		This field is optional, if there is no known struct device
2894  *		for this tty device it can be set to NULL safely.
2895  *
2896  *	Returns a pointer to the struct device for this tty device
2897  *	(or ERR_PTR(-EFOO) on error).
2898  *
2899  *	This call is required to be made to register an individual tty device
2900  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2901  *	that bit is not set, this function should not be called by a tty
2902  *	driver.
2903  *
2904  *	Locking: ??
2905  */
2906 
2907 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2908 				   struct device *device)
2909 {
2910 	return tty_register_device_attr(driver, index, device, NULL, NULL);
2911 }
2912 EXPORT_SYMBOL(tty_register_device);
2913 
2914 static void tty_device_create_release(struct device *dev)
2915 {
2916 	dev_dbg(dev, "releasing...\n");
2917 	kfree(dev);
2918 }
2919 
2920 /**
2921  *	tty_register_device_attr - register a tty device
2922  *	@driver: the tty driver that describes the tty device
2923  *	@index: the index in the tty driver for this tty device
2924  *	@device: a struct device that is associated with this tty device.
2925  *		This field is optional, if there is no known struct device
2926  *		for this tty device it can be set to NULL safely.
2927  *	@drvdata: Driver data to be set to device.
2928  *	@attr_grp: Attribute group to be set on device.
2929  *
2930  *	Returns a pointer to the struct device for this tty device
2931  *	(or ERR_PTR(-EFOO) on error).
2932  *
2933  *	This call is required to be made to register an individual tty device
2934  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2935  *	that bit is not set, this function should not be called by a tty
2936  *	driver.
2937  *
2938  *	Locking: ??
2939  */
2940 struct device *tty_register_device_attr(struct tty_driver *driver,
2941 				   unsigned index, struct device *device,
2942 				   void *drvdata,
2943 				   const struct attribute_group **attr_grp)
2944 {
2945 	char name[64];
2946 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
2947 	struct ktermios *tp;
2948 	struct device *dev;
2949 	int retval;
2950 
2951 	if (index >= driver->num) {
2952 		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
2953 		       driver->name, index);
2954 		return ERR_PTR(-EINVAL);
2955 	}
2956 
2957 	if (driver->type == TTY_DRIVER_TYPE_PTY)
2958 		pty_line_name(driver, index, name);
2959 	else
2960 		tty_line_name(driver, index, name);
2961 
2962 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2963 	if (!dev)
2964 		return ERR_PTR(-ENOMEM);
2965 
2966 	dev->devt = devt;
2967 	dev->class = tty_class;
2968 	dev->parent = device;
2969 	dev->release = tty_device_create_release;
2970 	dev_set_name(dev, "%s", name);
2971 	dev->groups = attr_grp;
2972 	dev_set_drvdata(dev, drvdata);
2973 
2974 	dev_set_uevent_suppress(dev, 1);
2975 
2976 	retval = device_register(dev);
2977 	if (retval)
2978 		goto err_put;
2979 
2980 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
2981 		/*
2982 		 * Free any saved termios data so that the termios state is
2983 		 * reset when reusing a minor number.
2984 		 */
2985 		tp = driver->termios[index];
2986 		if (tp) {
2987 			driver->termios[index] = NULL;
2988 			kfree(tp);
2989 		}
2990 
2991 		retval = tty_cdev_add(driver, devt, index, 1);
2992 		if (retval)
2993 			goto err_del;
2994 	}
2995 
2996 	dev_set_uevent_suppress(dev, 0);
2997 	kobject_uevent(&dev->kobj, KOBJ_ADD);
2998 
2999 	return dev;
3000 
3001 err_del:
3002 	device_del(dev);
3003 err_put:
3004 	put_device(dev);
3005 
3006 	return ERR_PTR(retval);
3007 }
3008 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3009 
3010 /**
3011  * 	tty_unregister_device - unregister a tty device
3012  * 	@driver: the tty driver that describes the tty device
3013  * 	@index: the index in the tty driver for this tty device
3014  *
3015  * 	If a tty device is registered with a call to tty_register_device() then
3016  *	this function must be called when the tty device is gone.
3017  *
3018  *	Locking: ??
3019  */
3020 
3021 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3022 {
3023 	device_destroy(tty_class,
3024 		MKDEV(driver->major, driver->minor_start) + index);
3025 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3026 		cdev_del(driver->cdevs[index]);
3027 		driver->cdevs[index] = NULL;
3028 	}
3029 }
3030 EXPORT_SYMBOL(tty_unregister_device);
3031 
3032 /**
3033  * __tty_alloc_driver -- allocate tty driver
3034  * @lines: count of lines this driver can handle at most
3035  * @owner: module which is responsible for this driver
3036  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3037  *
3038  * This should not be called directly, some of the provided macros should be
3039  * used instead. Use IS_ERR and friends on @retval.
3040  */
3041 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3042 		unsigned long flags)
3043 {
3044 	struct tty_driver *driver;
3045 	unsigned int cdevs = 1;
3046 	int err;
3047 
3048 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3049 		return ERR_PTR(-EINVAL);
3050 
3051 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3052 	if (!driver)
3053 		return ERR_PTR(-ENOMEM);
3054 
3055 	kref_init(&driver->kref);
3056 	driver->magic = TTY_DRIVER_MAGIC;
3057 	driver->num = lines;
3058 	driver->owner = owner;
3059 	driver->flags = flags;
3060 
3061 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3062 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3063 				GFP_KERNEL);
3064 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3065 				GFP_KERNEL);
3066 		if (!driver->ttys || !driver->termios) {
3067 			err = -ENOMEM;
3068 			goto err_free_all;
3069 		}
3070 	}
3071 
3072 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3073 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3074 				GFP_KERNEL);
3075 		if (!driver->ports) {
3076 			err = -ENOMEM;
3077 			goto err_free_all;
3078 		}
3079 		cdevs = lines;
3080 	}
3081 
3082 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3083 	if (!driver->cdevs) {
3084 		err = -ENOMEM;
3085 		goto err_free_all;
3086 	}
3087 
3088 	return driver;
3089 err_free_all:
3090 	kfree(driver->ports);
3091 	kfree(driver->ttys);
3092 	kfree(driver->termios);
3093 	kfree(driver->cdevs);
3094 	kfree(driver);
3095 	return ERR_PTR(err);
3096 }
3097 EXPORT_SYMBOL(__tty_alloc_driver);
3098 
3099 static void destruct_tty_driver(struct kref *kref)
3100 {
3101 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3102 	int i;
3103 	struct ktermios *tp;
3104 
3105 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3106 		for (i = 0; i < driver->num; i++) {
3107 			tp = driver->termios[i];
3108 			if (tp) {
3109 				driver->termios[i] = NULL;
3110 				kfree(tp);
3111 			}
3112 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3113 				tty_unregister_device(driver, i);
3114 		}
3115 		proc_tty_unregister_driver(driver);
3116 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3117 			cdev_del(driver->cdevs[0]);
3118 	}
3119 	kfree(driver->cdevs);
3120 	kfree(driver->ports);
3121 	kfree(driver->termios);
3122 	kfree(driver->ttys);
3123 	kfree(driver);
3124 }
3125 
3126 void tty_driver_kref_put(struct tty_driver *driver)
3127 {
3128 	kref_put(&driver->kref, destruct_tty_driver);
3129 }
3130 EXPORT_SYMBOL(tty_driver_kref_put);
3131 
3132 void tty_set_operations(struct tty_driver *driver,
3133 			const struct tty_operations *op)
3134 {
3135 	driver->ops = op;
3136 };
3137 EXPORT_SYMBOL(tty_set_operations);
3138 
3139 void put_tty_driver(struct tty_driver *d)
3140 {
3141 	tty_driver_kref_put(d);
3142 }
3143 EXPORT_SYMBOL(put_tty_driver);
3144 
3145 /*
3146  * Called by a tty driver to register itself.
3147  */
3148 int tty_register_driver(struct tty_driver *driver)
3149 {
3150 	int error;
3151 	int i;
3152 	dev_t dev;
3153 	struct device *d;
3154 
3155 	if (!driver->major) {
3156 		error = alloc_chrdev_region(&dev, driver->minor_start,
3157 						driver->num, driver->name);
3158 		if (!error) {
3159 			driver->major = MAJOR(dev);
3160 			driver->minor_start = MINOR(dev);
3161 		}
3162 	} else {
3163 		dev = MKDEV(driver->major, driver->minor_start);
3164 		error = register_chrdev_region(dev, driver->num, driver->name);
3165 	}
3166 	if (error < 0)
3167 		goto err;
3168 
3169 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3170 		error = tty_cdev_add(driver, dev, 0, driver->num);
3171 		if (error)
3172 			goto err_unreg_char;
3173 	}
3174 
3175 	mutex_lock(&tty_mutex);
3176 	list_add(&driver->tty_drivers, &tty_drivers);
3177 	mutex_unlock(&tty_mutex);
3178 
3179 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3180 		for (i = 0; i < driver->num; i++) {
3181 			d = tty_register_device(driver, i, NULL);
3182 			if (IS_ERR(d)) {
3183 				error = PTR_ERR(d);
3184 				goto err_unreg_devs;
3185 			}
3186 		}
3187 	}
3188 	proc_tty_register_driver(driver);
3189 	driver->flags |= TTY_DRIVER_INSTALLED;
3190 	return 0;
3191 
3192 err_unreg_devs:
3193 	for (i--; i >= 0; i--)
3194 		tty_unregister_device(driver, i);
3195 
3196 	mutex_lock(&tty_mutex);
3197 	list_del(&driver->tty_drivers);
3198 	mutex_unlock(&tty_mutex);
3199 
3200 err_unreg_char:
3201 	unregister_chrdev_region(dev, driver->num);
3202 err:
3203 	return error;
3204 }
3205 EXPORT_SYMBOL(tty_register_driver);
3206 
3207 /*
3208  * Called by a tty driver to unregister itself.
3209  */
3210 int tty_unregister_driver(struct tty_driver *driver)
3211 {
3212 #if 0
3213 	/* FIXME */
3214 	if (driver->refcount)
3215 		return -EBUSY;
3216 #endif
3217 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3218 				driver->num);
3219 	mutex_lock(&tty_mutex);
3220 	list_del(&driver->tty_drivers);
3221 	mutex_unlock(&tty_mutex);
3222 	return 0;
3223 }
3224 
3225 EXPORT_SYMBOL(tty_unregister_driver);
3226 
3227 dev_t tty_devnum(struct tty_struct *tty)
3228 {
3229 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3230 }
3231 EXPORT_SYMBOL(tty_devnum);
3232 
3233 void tty_default_fops(struct file_operations *fops)
3234 {
3235 	*fops = tty_fops;
3236 }
3237 
3238 static char *tty_devnode(struct device *dev, umode_t *mode)
3239 {
3240 	if (!mode)
3241 		return NULL;
3242 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3243 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3244 		*mode = 0666;
3245 	return NULL;
3246 }
3247 
3248 static int __init tty_class_init(void)
3249 {
3250 	tty_class = class_create(THIS_MODULE, "tty");
3251 	if (IS_ERR(tty_class))
3252 		return PTR_ERR(tty_class);
3253 	tty_class->devnode = tty_devnode;
3254 	return 0;
3255 }
3256 
3257 postcore_initcall(tty_class_init);
3258 
3259 /* 3/2004 jmc: why do these devices exist? */
3260 static struct cdev tty_cdev, console_cdev;
3261 
3262 static ssize_t show_cons_active(struct device *dev,
3263 				struct device_attribute *attr, char *buf)
3264 {
3265 	struct console *cs[16];
3266 	int i = 0;
3267 	struct console *c;
3268 	ssize_t count = 0;
3269 
3270 	console_lock();
3271 	for_each_console(c) {
3272 		if (!c->device)
3273 			continue;
3274 		if (!c->write)
3275 			continue;
3276 		if ((c->flags & CON_ENABLED) == 0)
3277 			continue;
3278 		cs[i++] = c;
3279 		if (i >= ARRAY_SIZE(cs))
3280 			break;
3281 	}
3282 	while (i--) {
3283 		int index = cs[i]->index;
3284 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3285 
3286 		/* don't resolve tty0 as some programs depend on it */
3287 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3288 			count += tty_line_name(drv, index, buf + count);
3289 		else
3290 			count += sprintf(buf + count, "%s%d",
3291 					 cs[i]->name, cs[i]->index);
3292 
3293 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3294 	}
3295 	console_unlock();
3296 
3297 	return count;
3298 }
3299 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3300 
3301 static struct attribute *cons_dev_attrs[] = {
3302 	&dev_attr_active.attr,
3303 	NULL
3304 };
3305 
3306 ATTRIBUTE_GROUPS(cons_dev);
3307 
3308 static struct device *consdev;
3309 
3310 void console_sysfs_notify(void)
3311 {
3312 	if (consdev)
3313 		sysfs_notify(&consdev->kobj, NULL, "active");
3314 }
3315 
3316 /*
3317  * Ok, now we can initialize the rest of the tty devices and can count
3318  * on memory allocations, interrupts etc..
3319  */
3320 int __init tty_init(void)
3321 {
3322 	cdev_init(&tty_cdev, &tty_fops);
3323 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3324 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3325 		panic("Couldn't register /dev/tty driver\n");
3326 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3327 
3328 	cdev_init(&console_cdev, &console_fops);
3329 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3330 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3331 		panic("Couldn't register /dev/console driver\n");
3332 	consdev = device_create_with_groups(tty_class, NULL,
3333 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3334 					    cons_dev_groups, "console");
3335 	if (IS_ERR(consdev))
3336 		consdev = NULL;
3337 
3338 #ifdef CONFIG_VT
3339 	vty_init(&console_fops);
3340 #endif
3341 	return 0;
3342 }
3343 
3344