xref: /openbmc/linux/drivers/tty/tty_io.c (revision ecc23d0a422a3118fcf6e4f0a46e17a6c2047b02)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  Copyright (C) 1991, 1992  Linus Torvalds
4   */
5  
6  /*
7   * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8   * or rs-channels. It also implements echoing, cooked mode etc.
9   *
10   * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11   *
12   * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13   * tty_struct and tty_queue structures.  Previously there was an array
14   * of 256 tty_struct's which was statically allocated, and the
15   * tty_queue structures were allocated at boot time.  Both are now
16   * dynamically allocated only when the tty is open.
17   *
18   * Also restructured routines so that there is more of a separation
19   * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20   * the low-level tty routines (serial.c, pty.c, console.c).  This
21   * makes for cleaner and more compact code.  -TYT, 9/17/92
22   *
23   * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24   * which can be dynamically activated and de-activated by the line
25   * discipline handling modules (like SLIP).
26   *
27   * NOTE: pay no attention to the line discipline code (yet); its
28   * interface is still subject to change in this version...
29   * -- TYT, 1/31/92
30   *
31   * Added functionality to the OPOST tty handling.  No delays, but all
32   * other bits should be there.
33   *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34   *
35   * Rewrote canonical mode and added more termios flags.
36   *	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37   *
38   * Reorganized FASYNC support so mouse code can share it.
39   *	-- ctm@ardi.com, 9Sep95
40   *
41   * New TIOCLINUX variants added.
42   *	-- mj@k332.feld.cvut.cz, 19-Nov-95
43   *
44   * Restrict vt switching via ioctl()
45   *      -- grif@cs.ucr.edu, 5-Dec-95
46   *
47   * Move console and virtual terminal code to more appropriate files,
48   * implement CONFIG_VT and generalize console device interface.
49   *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50   *
51   * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52   *	-- Bill Hawes <whawes@star.net>, June 97
53   *
54   * Added devfs support.
55   *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56   *
57   * Added support for a Unix98-style ptmx device.
58   *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59   *
60   * Reduced memory usage for older ARM systems
61   *      -- Russell King <rmk@arm.linux.org.uk>
62   *
63   * Move do_SAK() into process context.  Less stack use in devfs functions.
64   * alloc_tty_struct() always uses kmalloc()
65   *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66   */
67  
68  #include <linux/types.h>
69  #include <linux/major.h>
70  #include <linux/errno.h>
71  #include <linux/signal.h>
72  #include <linux/fcntl.h>
73  #include <linux/sched/signal.h>
74  #include <linux/sched/task.h>
75  #include <linux/interrupt.h>
76  #include <linux/tty.h>
77  #include <linux/tty_driver.h>
78  #include <linux/tty_flip.h>
79  #include <linux/devpts_fs.h>
80  #include <linux/file.h>
81  #include <linux/fdtable.h>
82  #include <linux/console.h>
83  #include <linux/timer.h>
84  #include <linux/ctype.h>
85  #include <linux/kd.h>
86  #include <linux/mm.h>
87  #include <linux/string.h>
88  #include <linux/slab.h>
89  #include <linux/poll.h>
90  #include <linux/ppp-ioctl.h>
91  #include <linux/proc_fs.h>
92  #include <linux/init.h>
93  #include <linux/module.h>
94  #include <linux/device.h>
95  #include <linux/wait.h>
96  #include <linux/bitops.h>
97  #include <linux/delay.h>
98  #include <linux/seq_file.h>
99  #include <linux/serial.h>
100  #include <linux/ratelimit.h>
101  #include <linux/compat.h>
102  #include <linux/uaccess.h>
103  #include <linux/termios_internal.h>
104  #include <linux/fs.h>
105  
106  #include <linux/kbd_kern.h>
107  #include <linux/vt_kern.h>
108  #include <linux/selection.h>
109  
110  #include <linux/kmod.h>
111  #include <linux/nsproxy.h>
112  #include "tty.h"
113  
114  #undef TTY_DEBUG_HANGUP
115  #ifdef TTY_DEBUG_HANGUP
116  # define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
117  #else
118  # define tty_debug_hangup(tty, f, args...)	do { } while (0)
119  #endif
120  
121  #define TTY_PARANOIA_CHECK 1
122  #define CHECK_TTY_COUNT 1
123  
124  struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
125  	.c_iflag = ICRNL | IXON,
126  	.c_oflag = OPOST | ONLCR,
127  	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
128  	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
129  		   ECHOCTL | ECHOKE | IEXTEN,
130  	.c_cc = INIT_C_CC,
131  	.c_ispeed = 38400,
132  	.c_ospeed = 38400,
133  	/* .c_line = N_TTY, */
134  };
135  EXPORT_SYMBOL(tty_std_termios);
136  
137  /* This list gets poked at by procfs and various bits of boot up code. This
138   * could do with some rationalisation such as pulling the tty proc function
139   * into this file.
140   */
141  
142  LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
143  
144  /* Mutex to protect creating and releasing a tty */
145  DEFINE_MUTEX(tty_mutex);
146  
147  static ssize_t tty_read(struct kiocb *, struct iov_iter *);
148  static ssize_t tty_write(struct kiocb *, struct iov_iter *);
149  static __poll_t tty_poll(struct file *, poll_table *);
150  static int tty_open(struct inode *, struct file *);
151  #ifdef CONFIG_COMPAT
152  static long tty_compat_ioctl(struct file *file, unsigned int cmd,
153  				unsigned long arg);
154  #else
155  #define tty_compat_ioctl NULL
156  #endif
157  static int __tty_fasync(int fd, struct file *filp, int on);
158  static int tty_fasync(int fd, struct file *filp, int on);
159  static void release_tty(struct tty_struct *tty, int idx);
160  
161  /**
162   * free_tty_struct	-	free a disused tty
163   * @tty: tty struct to free
164   *
165   * Free the write buffers, tty queue and tty memory itself.
166   *
167   * Locking: none. Must be called after tty is definitely unused
168   */
free_tty_struct(struct tty_struct * tty)169  static void free_tty_struct(struct tty_struct *tty)
170  {
171  	tty_ldisc_deinit(tty);
172  	put_device(tty->dev);
173  	kvfree(tty->write_buf);
174  	kfree(tty);
175  }
176  
file_tty(struct file * file)177  static inline struct tty_struct *file_tty(struct file *file)
178  {
179  	return ((struct tty_file_private *)file->private_data)->tty;
180  }
181  
tty_alloc_file(struct file * file)182  int tty_alloc_file(struct file *file)
183  {
184  	struct tty_file_private *priv;
185  
186  	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
187  	if (!priv)
188  		return -ENOMEM;
189  
190  	file->private_data = priv;
191  
192  	return 0;
193  }
194  
195  /* Associate a new file with the tty structure */
tty_add_file(struct tty_struct * tty,struct file * file)196  void tty_add_file(struct tty_struct *tty, struct file *file)
197  {
198  	struct tty_file_private *priv = file->private_data;
199  
200  	priv->tty = tty;
201  	priv->file = file;
202  
203  	spin_lock(&tty->files_lock);
204  	list_add(&priv->list, &tty->tty_files);
205  	spin_unlock(&tty->files_lock);
206  }
207  
208  /**
209   * tty_free_file - free file->private_data
210   * @file: to free private_data of
211   *
212   * This shall be used only for fail path handling when tty_add_file was not
213   * called yet.
214   */
tty_free_file(struct file * file)215  void tty_free_file(struct file *file)
216  {
217  	struct tty_file_private *priv = file->private_data;
218  
219  	file->private_data = NULL;
220  	kfree(priv);
221  }
222  
223  /* Delete file from its tty */
tty_del_file(struct file * file)224  static void tty_del_file(struct file *file)
225  {
226  	struct tty_file_private *priv = file->private_data;
227  	struct tty_struct *tty = priv->tty;
228  
229  	spin_lock(&tty->files_lock);
230  	list_del(&priv->list);
231  	spin_unlock(&tty->files_lock);
232  	tty_free_file(file);
233  }
234  
235  /**
236   * tty_name	-	return tty naming
237   * @tty: tty structure
238   *
239   * Convert a tty structure into a name. The name reflects the kernel naming
240   * policy and if udev is in use may not reflect user space
241   *
242   * Locking: none
243   */
tty_name(const struct tty_struct * tty)244  const char *tty_name(const struct tty_struct *tty)
245  {
246  	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
247  		return "NULL tty";
248  	return tty->name;
249  }
250  EXPORT_SYMBOL(tty_name);
251  
tty_driver_name(const struct tty_struct * tty)252  const char *tty_driver_name(const struct tty_struct *tty)
253  {
254  	if (!tty || !tty->driver)
255  		return "";
256  	return tty->driver->name;
257  }
258  
tty_paranoia_check(struct tty_struct * tty,struct inode * inode,const char * routine)259  static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
260  			      const char *routine)
261  {
262  #ifdef TTY_PARANOIA_CHECK
263  	if (!tty) {
264  		pr_warn("(%d:%d): %s: NULL tty\n",
265  			imajor(inode), iminor(inode), routine);
266  		return 1;
267  	}
268  #endif
269  	return 0;
270  }
271  
272  /* Caller must hold tty_lock */
check_tty_count(struct tty_struct * tty,const char * routine)273  static void check_tty_count(struct tty_struct *tty, const char *routine)
274  {
275  #ifdef CHECK_TTY_COUNT
276  	struct list_head *p;
277  	int count = 0, kopen_count = 0;
278  
279  	spin_lock(&tty->files_lock);
280  	list_for_each(p, &tty->tty_files) {
281  		count++;
282  	}
283  	spin_unlock(&tty->files_lock);
284  	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
285  	    tty->driver->subtype == PTY_TYPE_SLAVE &&
286  	    tty->link && tty->link->count)
287  		count++;
288  	if (tty_port_kopened(tty->port))
289  		kopen_count++;
290  	if (tty->count != (count + kopen_count)) {
291  		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
292  			 routine, tty->count, count, kopen_count);
293  	}
294  #endif
295  }
296  
297  /**
298   * get_tty_driver		-	find device of a tty
299   * @device: device identifier
300   * @index: returns the index of the tty
301   *
302   * This routine returns a tty driver structure, given a device number and also
303   * passes back the index number.
304   *
305   * Locking: caller must hold tty_mutex
306   */
get_tty_driver(dev_t device,int * index)307  static struct tty_driver *get_tty_driver(dev_t device, int *index)
308  {
309  	struct tty_driver *p;
310  
311  	list_for_each_entry(p, &tty_drivers, tty_drivers) {
312  		dev_t base = MKDEV(p->major, p->minor_start);
313  
314  		if (device < base || device >= base + p->num)
315  			continue;
316  		*index = device - base;
317  		return tty_driver_kref_get(p);
318  	}
319  	return NULL;
320  }
321  
322  /**
323   * tty_dev_name_to_number	-	return dev_t for device name
324   * @name: user space name of device under /dev
325   * @number: pointer to dev_t that this function will populate
326   *
327   * This function converts device names like ttyS0 or ttyUSB1 into dev_t like
328   * (4, 64) or (188, 1). If no corresponding driver is registered then the
329   * function returns -%ENODEV.
330   *
331   * Locking: this acquires tty_mutex to protect the tty_drivers list from
332   *	being modified while we are traversing it, and makes sure to
333   *	release it before exiting.
334   */
tty_dev_name_to_number(const char * name,dev_t * number)335  int tty_dev_name_to_number(const char *name, dev_t *number)
336  {
337  	struct tty_driver *p;
338  	int ret;
339  	int index, prefix_length = 0;
340  	const char *str;
341  
342  	for (str = name; *str && !isdigit(*str); str++)
343  		;
344  
345  	if (!*str)
346  		return -EINVAL;
347  
348  	ret = kstrtoint(str, 10, &index);
349  	if (ret)
350  		return ret;
351  
352  	prefix_length = str - name;
353  	mutex_lock(&tty_mutex);
354  
355  	list_for_each_entry(p, &tty_drivers, tty_drivers)
356  		if (prefix_length == strlen(p->name) && strncmp(name,
357  					p->name, prefix_length) == 0) {
358  			if (index < p->num) {
359  				*number = MKDEV(p->major, p->minor_start + index);
360  				goto out;
361  			}
362  		}
363  
364  	/* if here then driver wasn't found */
365  	ret = -ENODEV;
366  out:
367  	mutex_unlock(&tty_mutex);
368  	return ret;
369  }
370  EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
371  
372  #ifdef CONFIG_CONSOLE_POLL
373  
374  /**
375   * tty_find_polling_driver	-	find device of a polled tty
376   * @name: name string to match
377   * @line: pointer to resulting tty line nr
378   *
379   * This routine returns a tty driver structure, given a name and the condition
380   * that the tty driver is capable of polled operation.
381   */
tty_find_polling_driver(char * name,int * line)382  struct tty_driver *tty_find_polling_driver(char *name, int *line)
383  {
384  	struct tty_driver *p, *res = NULL;
385  	int tty_line = 0;
386  	int len;
387  	char *str, *stp;
388  
389  	for (str = name; *str; str++)
390  		if ((*str >= '0' && *str <= '9') || *str == ',')
391  			break;
392  	if (!*str)
393  		return NULL;
394  
395  	len = str - name;
396  	tty_line = simple_strtoul(str, &str, 10);
397  
398  	mutex_lock(&tty_mutex);
399  	/* Search through the tty devices to look for a match */
400  	list_for_each_entry(p, &tty_drivers, tty_drivers) {
401  		if (!len || strncmp(name, p->name, len) != 0)
402  			continue;
403  		stp = str;
404  		if (*stp == ',')
405  			stp++;
406  		if (*stp == '\0')
407  			stp = NULL;
408  
409  		if (tty_line >= 0 && tty_line < p->num && p->ops &&
410  		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
411  			res = tty_driver_kref_get(p);
412  			*line = tty_line;
413  			break;
414  		}
415  	}
416  	mutex_unlock(&tty_mutex);
417  
418  	return res;
419  }
420  EXPORT_SYMBOL_GPL(tty_find_polling_driver);
421  #endif
422  
hung_up_tty_read(struct kiocb * iocb,struct iov_iter * to)423  static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
424  {
425  	return 0;
426  }
427  
hung_up_tty_write(struct kiocb * iocb,struct iov_iter * from)428  static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
429  {
430  	return -EIO;
431  }
432  
433  /* No kernel lock held - none needed ;) */
hung_up_tty_poll(struct file * filp,poll_table * wait)434  static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
435  {
436  	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
437  }
438  
hung_up_tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)439  static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
440  		unsigned long arg)
441  {
442  	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
443  }
444  
hung_up_tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)445  static long hung_up_tty_compat_ioctl(struct file *file,
446  				     unsigned int cmd, unsigned long arg)
447  {
448  	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
449  }
450  
hung_up_tty_fasync(int fd,struct file * file,int on)451  static int hung_up_tty_fasync(int fd, struct file *file, int on)
452  {
453  	return -ENOTTY;
454  }
455  
tty_show_fdinfo(struct seq_file * m,struct file * file)456  static void tty_show_fdinfo(struct seq_file *m, struct file *file)
457  {
458  	struct tty_struct *tty = file_tty(file);
459  
460  	if (tty && tty->ops && tty->ops->show_fdinfo)
461  		tty->ops->show_fdinfo(tty, m);
462  }
463  
464  static const struct file_operations tty_fops = {
465  	.llseek		= no_llseek,
466  	.read_iter	= tty_read,
467  	.write_iter	= tty_write,
468  	.splice_read	= copy_splice_read,
469  	.splice_write	= iter_file_splice_write,
470  	.poll		= tty_poll,
471  	.unlocked_ioctl	= tty_ioctl,
472  	.compat_ioctl	= tty_compat_ioctl,
473  	.open		= tty_open,
474  	.release	= tty_release,
475  	.fasync		= tty_fasync,
476  	.show_fdinfo	= tty_show_fdinfo,
477  };
478  
479  static const struct file_operations console_fops = {
480  	.llseek		= no_llseek,
481  	.read_iter	= tty_read,
482  	.write_iter	= redirected_tty_write,
483  	.splice_read	= copy_splice_read,
484  	.splice_write	= iter_file_splice_write,
485  	.poll		= tty_poll,
486  	.unlocked_ioctl	= tty_ioctl,
487  	.compat_ioctl	= tty_compat_ioctl,
488  	.open		= tty_open,
489  	.release	= tty_release,
490  	.fasync		= tty_fasync,
491  };
492  
493  static const struct file_operations hung_up_tty_fops = {
494  	.llseek		= no_llseek,
495  	.read_iter	= hung_up_tty_read,
496  	.write_iter	= hung_up_tty_write,
497  	.poll		= hung_up_tty_poll,
498  	.unlocked_ioctl	= hung_up_tty_ioctl,
499  	.compat_ioctl	= hung_up_tty_compat_ioctl,
500  	.release	= tty_release,
501  	.fasync		= hung_up_tty_fasync,
502  };
503  
504  static DEFINE_SPINLOCK(redirect_lock);
505  static struct file *redirect;
506  
507  /**
508   * tty_wakeup	-	request more data
509   * @tty: terminal
510   *
511   * Internal and external helper for wakeups of tty. This function informs the
512   * line discipline if present that the driver is ready to receive more output
513   * data.
514   */
tty_wakeup(struct tty_struct * tty)515  void tty_wakeup(struct tty_struct *tty)
516  {
517  	struct tty_ldisc *ld;
518  
519  	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
520  		ld = tty_ldisc_ref(tty);
521  		if (ld) {
522  			if (ld->ops->write_wakeup)
523  				ld->ops->write_wakeup(tty);
524  			tty_ldisc_deref(ld);
525  		}
526  	}
527  	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
528  }
529  EXPORT_SYMBOL_GPL(tty_wakeup);
530  
531  /**
532   * tty_release_redirect	-	Release a redirect on a pty if present
533   * @tty: tty device
534   *
535   * This is available to the pty code so if the master closes, if the slave is a
536   * redirect it can release the redirect.
537   */
tty_release_redirect(struct tty_struct * tty)538  static struct file *tty_release_redirect(struct tty_struct *tty)
539  {
540  	struct file *f = NULL;
541  
542  	spin_lock(&redirect_lock);
543  	if (redirect && file_tty(redirect) == tty) {
544  		f = redirect;
545  		redirect = NULL;
546  	}
547  	spin_unlock(&redirect_lock);
548  
549  	return f;
550  }
551  
552  /**
553   * __tty_hangup		-	actual handler for hangup events
554   * @tty: tty device
555   * @exit_session: if non-zero, signal all foreground group processes
556   *
557   * This can be called by a "kworker" kernel thread. That is process synchronous
558   * but doesn't hold any locks, so we need to make sure we have the appropriate
559   * locks for what we're doing.
560   *
561   * The hangup event clears any pending redirections onto the hung up device. It
562   * ensures future writes will error and it does the needed line discipline
563   * hangup and signal delivery. The tty object itself remains intact.
564   *
565   * Locking:
566   *  * BTM
567   *
568   *   * redirect lock for undoing redirection
569   *   * file list lock for manipulating list of ttys
570   *   * tty_ldiscs_lock from called functions
571   *   * termios_rwsem resetting termios data
572   *   * tasklist_lock to walk task list for hangup event
573   *
574   *    * ->siglock to protect ->signal/->sighand
575   *
576   */
__tty_hangup(struct tty_struct * tty,int exit_session)577  static void __tty_hangup(struct tty_struct *tty, int exit_session)
578  {
579  	struct file *cons_filp = NULL;
580  	struct file *filp, *f;
581  	struct tty_file_private *priv;
582  	int    closecount = 0, n;
583  	int refs;
584  
585  	if (!tty)
586  		return;
587  
588  	f = tty_release_redirect(tty);
589  
590  	tty_lock(tty);
591  
592  	if (test_bit(TTY_HUPPED, &tty->flags)) {
593  		tty_unlock(tty);
594  		return;
595  	}
596  
597  	/*
598  	 * Some console devices aren't actually hung up for technical and
599  	 * historical reasons, which can lead to indefinite interruptible
600  	 * sleep in n_tty_read().  The following explicitly tells
601  	 * n_tty_read() to abort readers.
602  	 */
603  	set_bit(TTY_HUPPING, &tty->flags);
604  
605  	/* inuse_filps is protected by the single tty lock,
606  	 * this really needs to change if we want to flush the
607  	 * workqueue with the lock held.
608  	 */
609  	check_tty_count(tty, "tty_hangup");
610  
611  	spin_lock(&tty->files_lock);
612  	/* This breaks for file handles being sent over AF_UNIX sockets ? */
613  	list_for_each_entry(priv, &tty->tty_files, list) {
614  		filp = priv->file;
615  		if (filp->f_op->write_iter == redirected_tty_write)
616  			cons_filp = filp;
617  		if (filp->f_op->write_iter != tty_write)
618  			continue;
619  		closecount++;
620  		__tty_fasync(-1, filp, 0);	/* can't block */
621  		filp->f_op = &hung_up_tty_fops;
622  	}
623  	spin_unlock(&tty->files_lock);
624  
625  	refs = tty_signal_session_leader(tty, exit_session);
626  	/* Account for the p->signal references we killed */
627  	while (refs--)
628  		tty_kref_put(tty);
629  
630  	tty_ldisc_hangup(tty, cons_filp != NULL);
631  
632  	spin_lock_irq(&tty->ctrl.lock);
633  	clear_bit(TTY_THROTTLED, &tty->flags);
634  	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
635  	put_pid(tty->ctrl.session);
636  	put_pid(tty->ctrl.pgrp);
637  	tty->ctrl.session = NULL;
638  	tty->ctrl.pgrp = NULL;
639  	tty->ctrl.pktstatus = 0;
640  	spin_unlock_irq(&tty->ctrl.lock);
641  
642  	/*
643  	 * If one of the devices matches a console pointer, we
644  	 * cannot just call hangup() because that will cause
645  	 * tty->count and state->count to go out of sync.
646  	 * So we just call close() the right number of times.
647  	 */
648  	if (cons_filp) {
649  		if (tty->ops->close)
650  			for (n = 0; n < closecount; n++)
651  				tty->ops->close(tty, cons_filp);
652  	} else if (tty->ops->hangup)
653  		tty->ops->hangup(tty);
654  	/*
655  	 * We don't want to have driver/ldisc interactions beyond the ones
656  	 * we did here. The driver layer expects no calls after ->hangup()
657  	 * from the ldisc side, which is now guaranteed.
658  	 */
659  	set_bit(TTY_HUPPED, &tty->flags);
660  	clear_bit(TTY_HUPPING, &tty->flags);
661  	tty_unlock(tty);
662  
663  	if (f)
664  		fput(f);
665  }
666  
do_tty_hangup(struct work_struct * work)667  static void do_tty_hangup(struct work_struct *work)
668  {
669  	struct tty_struct *tty =
670  		container_of(work, struct tty_struct, hangup_work);
671  
672  	__tty_hangup(tty, 0);
673  }
674  
675  /**
676   * tty_hangup		-	trigger a hangup event
677   * @tty: tty to hangup
678   *
679   * A carrier loss (virtual or otherwise) has occurred on @tty. Schedule a
680   * hangup sequence to run after this event.
681   */
tty_hangup(struct tty_struct * tty)682  void tty_hangup(struct tty_struct *tty)
683  {
684  	tty_debug_hangup(tty, "hangup\n");
685  	schedule_work(&tty->hangup_work);
686  }
687  EXPORT_SYMBOL(tty_hangup);
688  
689  /**
690   * tty_vhangup		-	process vhangup
691   * @tty: tty to hangup
692   *
693   * The user has asked via system call for the terminal to be hung up. We do
694   * this synchronously so that when the syscall returns the process is complete.
695   * That guarantee is necessary for security reasons.
696   */
tty_vhangup(struct tty_struct * tty)697  void tty_vhangup(struct tty_struct *tty)
698  {
699  	tty_debug_hangup(tty, "vhangup\n");
700  	__tty_hangup(tty, 0);
701  }
702  EXPORT_SYMBOL(tty_vhangup);
703  
704  
705  /**
706   * tty_vhangup_self	-	process vhangup for own ctty
707   *
708   * Perform a vhangup on the current controlling tty
709   */
tty_vhangup_self(void)710  void tty_vhangup_self(void)
711  {
712  	struct tty_struct *tty;
713  
714  	tty = get_current_tty();
715  	if (tty) {
716  		tty_vhangup(tty);
717  		tty_kref_put(tty);
718  	}
719  }
720  
721  /**
722   * tty_vhangup_session	-	hangup session leader exit
723   * @tty: tty to hangup
724   *
725   * The session leader is exiting and hanging up its controlling terminal.
726   * Every process in the foreground process group is signalled %SIGHUP.
727   *
728   * We do this synchronously so that when the syscall returns the process is
729   * complete. That guarantee is necessary for security reasons.
730   */
tty_vhangup_session(struct tty_struct * tty)731  void tty_vhangup_session(struct tty_struct *tty)
732  {
733  	tty_debug_hangup(tty, "session hangup\n");
734  	__tty_hangup(tty, 1);
735  }
736  
737  /**
738   * tty_hung_up_p	-	was tty hung up
739   * @filp: file pointer of tty
740   *
741   * Return: true if the tty has been subject to a vhangup or a carrier loss
742   */
tty_hung_up_p(struct file * filp)743  int tty_hung_up_p(struct file *filp)
744  {
745  	return (filp && filp->f_op == &hung_up_tty_fops);
746  }
747  EXPORT_SYMBOL(tty_hung_up_p);
748  
__stop_tty(struct tty_struct * tty)749  void __stop_tty(struct tty_struct *tty)
750  {
751  	if (tty->flow.stopped)
752  		return;
753  	tty->flow.stopped = true;
754  	if (tty->ops->stop)
755  		tty->ops->stop(tty);
756  }
757  
758  /**
759   * stop_tty	-	propagate flow control
760   * @tty: tty to stop
761   *
762   * Perform flow control to the driver. May be called on an already stopped
763   * device and will not re-call the &tty_driver->stop() method.
764   *
765   * This functionality is used by both the line disciplines for halting incoming
766   * flow and by the driver. It may therefore be called from any context, may be
767   * under the tty %atomic_write_lock but not always.
768   *
769   * Locking:
770   *	flow.lock
771   */
stop_tty(struct tty_struct * tty)772  void stop_tty(struct tty_struct *tty)
773  {
774  	unsigned long flags;
775  
776  	spin_lock_irqsave(&tty->flow.lock, flags);
777  	__stop_tty(tty);
778  	spin_unlock_irqrestore(&tty->flow.lock, flags);
779  }
780  EXPORT_SYMBOL(stop_tty);
781  
__start_tty(struct tty_struct * tty)782  void __start_tty(struct tty_struct *tty)
783  {
784  	if (!tty->flow.stopped || tty->flow.tco_stopped)
785  		return;
786  	tty->flow.stopped = false;
787  	if (tty->ops->start)
788  		tty->ops->start(tty);
789  	tty_wakeup(tty);
790  }
791  
792  /**
793   * start_tty	-	propagate flow control
794   * @tty: tty to start
795   *
796   * Start a tty that has been stopped if at all possible. If @tty was previously
797   * stopped and is now being started, the &tty_driver->start() method is invoked
798   * and the line discipline woken.
799   *
800   * Locking:
801   *	flow.lock
802   */
start_tty(struct tty_struct * tty)803  void start_tty(struct tty_struct *tty)
804  {
805  	unsigned long flags;
806  
807  	spin_lock_irqsave(&tty->flow.lock, flags);
808  	__start_tty(tty);
809  	spin_unlock_irqrestore(&tty->flow.lock, flags);
810  }
811  EXPORT_SYMBOL(start_tty);
812  
tty_update_time(struct tty_struct * tty,bool mtime)813  static void tty_update_time(struct tty_struct *tty, bool mtime)
814  {
815  	time64_t sec = ktime_get_real_seconds();
816  	struct tty_file_private *priv;
817  
818  	spin_lock(&tty->files_lock);
819  	list_for_each_entry(priv, &tty->tty_files, list) {
820  		struct inode *inode = file_inode(priv->file);
821  		struct timespec64 *time = mtime ? &inode->i_mtime : &inode->i_atime;
822  
823  		/*
824  		 * We only care if the two values differ in anything other than the
825  		 * lower three bits (i.e every 8 seconds).  If so, then we can update
826  		 * the time of the tty device, otherwise it could be construded as a
827  		 * security leak to let userspace know the exact timing of the tty.
828  		 */
829  		if ((sec ^ time->tv_sec) & ~7)
830  			time->tv_sec = sec;
831  	}
832  	spin_unlock(&tty->files_lock);
833  }
834  
835  /*
836   * Iterate on the ldisc ->read() function until we've gotten all
837   * the data the ldisc has for us.
838   *
839   * The "cookie" is something that the ldisc read function can fill
840   * in to let us know that there is more data to be had.
841   *
842   * We promise to continue to call the ldisc until it stops returning
843   * data or clears the cookie. The cookie may be something that the
844   * ldisc maintains state for and needs to free.
845   */
iterate_tty_read(struct tty_ldisc * ld,struct tty_struct * tty,struct file * file,struct iov_iter * to)846  static ssize_t iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
847  				struct file *file, struct iov_iter *to)
848  {
849  	void *cookie = NULL;
850  	unsigned long offset = 0;
851  	char kernel_buf[64];
852  	ssize_t retval = 0;
853  	size_t copied, count = iov_iter_count(to);
854  
855  	do {
856  		ssize_t size = min(count, sizeof(kernel_buf));
857  
858  		size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
859  		if (!size)
860  			break;
861  
862  		if (size < 0) {
863  			/* Did we have an earlier error (ie -EFAULT)? */
864  			if (retval)
865  				break;
866  			retval = size;
867  
868  			/*
869  			 * -EOVERFLOW means we didn't have enough space
870  			 * for a whole packet, and we shouldn't return
871  			 * a partial result.
872  			 */
873  			if (retval == -EOVERFLOW)
874  				offset = 0;
875  			break;
876  		}
877  
878  		copied = copy_to_iter(kernel_buf, size, to);
879  		offset += copied;
880  		count -= copied;
881  
882  		/*
883  		 * If the user copy failed, we still need to do another ->read()
884  		 * call if we had a cookie to let the ldisc clear up.
885  		 *
886  		 * But make sure size is zeroed.
887  		 */
888  		if (unlikely(copied != size)) {
889  			count = 0;
890  			retval = -EFAULT;
891  		}
892  	} while (cookie);
893  
894  	/* We always clear tty buffer in case they contained passwords */
895  	memzero_explicit(kernel_buf, sizeof(kernel_buf));
896  	return offset ? offset : retval;
897  }
898  
899  
900  /**
901   * tty_read	-	read method for tty device files
902   * @iocb: kernel I/O control block
903   * @to: destination for the data read
904   *
905   * Perform the read system call function on this terminal device. Checks
906   * for hung up devices before calling the line discipline method.
907   *
908   * Locking:
909   *	Locks the line discipline internally while needed. Multiple read calls
910   *	may be outstanding in parallel.
911   */
tty_read(struct kiocb * iocb,struct iov_iter * to)912  static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
913  {
914  	struct file *file = iocb->ki_filp;
915  	struct inode *inode = file_inode(file);
916  	struct tty_struct *tty = file_tty(file);
917  	struct tty_ldisc *ld;
918  	ssize_t ret;
919  
920  	if (tty_paranoia_check(tty, inode, "tty_read"))
921  		return -EIO;
922  	if (!tty || tty_io_error(tty))
923  		return -EIO;
924  
925  	/* We want to wait for the line discipline to sort out in this
926  	 * situation.
927  	 */
928  	ld = tty_ldisc_ref_wait(tty);
929  	if (!ld)
930  		return hung_up_tty_read(iocb, to);
931  	ret = -EIO;
932  	if (ld->ops->read)
933  		ret = iterate_tty_read(ld, tty, file, to);
934  	tty_ldisc_deref(ld);
935  
936  	if (ret > 0)
937  		tty_update_time(tty, false);
938  
939  	return ret;
940  }
941  
tty_write_unlock(struct tty_struct * tty)942  void tty_write_unlock(struct tty_struct *tty)
943  {
944  	mutex_unlock(&tty->atomic_write_lock);
945  	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
946  }
947  
tty_write_lock(struct tty_struct * tty,bool ndelay)948  int tty_write_lock(struct tty_struct *tty, bool ndelay)
949  {
950  	if (!mutex_trylock(&tty->atomic_write_lock)) {
951  		if (ndelay)
952  			return -EAGAIN;
953  		if (mutex_lock_interruptible(&tty->atomic_write_lock))
954  			return -ERESTARTSYS;
955  	}
956  	return 0;
957  }
958  
959  /*
960   * Split writes up in sane blocksizes to avoid
961   * denial-of-service type attacks
962   */
iterate_tty_write(struct tty_ldisc * ld,struct tty_struct * tty,struct file * file,struct iov_iter * from)963  static ssize_t iterate_tty_write(struct tty_ldisc *ld, struct tty_struct *tty,
964  				 struct file *file, struct iov_iter *from)
965  {
966  	size_t chunk, count = iov_iter_count(from);
967  	ssize_t ret, written = 0;
968  
969  	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
970  	if (ret < 0)
971  		return ret;
972  
973  	/*
974  	 * We chunk up writes into a temporary buffer. This
975  	 * simplifies low-level drivers immensely, since they
976  	 * don't have locking issues and user mode accesses.
977  	 *
978  	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
979  	 * big chunk-size..
980  	 *
981  	 * The default chunk-size is 2kB, because the NTTY
982  	 * layer has problems with bigger chunks. It will
983  	 * claim to be able to handle more characters than
984  	 * it actually does.
985  	 */
986  	chunk = 2048;
987  	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
988  		chunk = 65536;
989  	if (count < chunk)
990  		chunk = count;
991  
992  	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
993  	if (tty->write_cnt < chunk) {
994  		unsigned char *buf_chunk;
995  
996  		if (chunk < 1024)
997  			chunk = 1024;
998  
999  		buf_chunk = kvmalloc(chunk, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1000  		if (!buf_chunk) {
1001  			ret = -ENOMEM;
1002  			goto out;
1003  		}
1004  		kvfree(tty->write_buf);
1005  		tty->write_cnt = chunk;
1006  		tty->write_buf = buf_chunk;
1007  	}
1008  
1009  	/* Do the write .. */
1010  	for (;;) {
1011  		size_t size = min(chunk, count);
1012  
1013  		ret = -EFAULT;
1014  		if (copy_from_iter(tty->write_buf, size, from) != size)
1015  			break;
1016  
1017  		ret = ld->ops->write(tty, file, tty->write_buf, size);
1018  		if (ret <= 0)
1019  			break;
1020  
1021  		written += ret;
1022  		if (ret > size)
1023  			break;
1024  
1025  		/* FIXME! Have Al check this! */
1026  		if (ret != size)
1027  			iov_iter_revert(from, size-ret);
1028  
1029  		count -= ret;
1030  		if (!count)
1031  			break;
1032  		ret = -ERESTARTSYS;
1033  		if (signal_pending(current))
1034  			break;
1035  		cond_resched();
1036  	}
1037  	if (written) {
1038  		tty_update_time(tty, true);
1039  		ret = written;
1040  	}
1041  out:
1042  	tty_write_unlock(tty);
1043  	return ret;
1044  }
1045  
1046  /**
1047   * tty_write_message - write a message to a certain tty, not just the console.
1048   * @tty: the destination tty_struct
1049   * @msg: the message to write
1050   *
1051   * This is used for messages that need to be redirected to a specific tty. We
1052   * don't put it into the syslog queue right now maybe in the future if really
1053   * needed.
1054   *
1055   * We must still hold the BTM and test the CLOSING flag for the moment.
1056   */
tty_write_message(struct tty_struct * tty,char * msg)1057  void tty_write_message(struct tty_struct *tty, char *msg)
1058  {
1059  	if (tty) {
1060  		mutex_lock(&tty->atomic_write_lock);
1061  		tty_lock(tty);
1062  		if (tty->ops->write && tty->count > 0)
1063  			tty->ops->write(tty, msg, strlen(msg));
1064  		tty_unlock(tty);
1065  		tty_write_unlock(tty);
1066  	}
1067  }
1068  
file_tty_write(struct file * file,struct kiocb * iocb,struct iov_iter * from)1069  static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
1070  {
1071  	struct tty_struct *tty = file_tty(file);
1072  	struct tty_ldisc *ld;
1073  	ssize_t ret;
1074  
1075  	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1076  		return -EIO;
1077  	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1078  		return -EIO;
1079  	/* Short term debug to catch buggy drivers */
1080  	if (tty->ops->write_room == NULL)
1081  		tty_err(tty, "missing write_room method\n");
1082  	ld = tty_ldisc_ref_wait(tty);
1083  	if (!ld)
1084  		return hung_up_tty_write(iocb, from);
1085  	if (!ld->ops->write)
1086  		ret = -EIO;
1087  	else
1088  		ret = iterate_tty_write(ld, tty, file, from);
1089  	tty_ldisc_deref(ld);
1090  	return ret;
1091  }
1092  
1093  /**
1094   * tty_write		-	write method for tty device file
1095   * @iocb: kernel I/O control block
1096   * @from: iov_iter with data to write
1097   *
1098   * Write data to a tty device via the line discipline.
1099   *
1100   * Locking:
1101   *	Locks the line discipline as required
1102   *	Writes to the tty driver are serialized by the atomic_write_lock
1103   *	and are then processed in chunks to the device. The line
1104   *	discipline write method will not be invoked in parallel for
1105   *	each device.
1106   */
tty_write(struct kiocb * iocb,struct iov_iter * from)1107  static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1108  {
1109  	return file_tty_write(iocb->ki_filp, iocb, from);
1110  }
1111  
redirected_tty_write(struct kiocb * iocb,struct iov_iter * iter)1112  ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1113  {
1114  	struct file *p = NULL;
1115  
1116  	spin_lock(&redirect_lock);
1117  	if (redirect)
1118  		p = get_file(redirect);
1119  	spin_unlock(&redirect_lock);
1120  
1121  	/*
1122  	 * We know the redirected tty is just another tty, we can
1123  	 * call file_tty_write() directly with that file pointer.
1124  	 */
1125  	if (p) {
1126  		ssize_t res;
1127  
1128  		res = file_tty_write(p, iocb, iter);
1129  		fput(p);
1130  		return res;
1131  	}
1132  	return tty_write(iocb, iter);
1133  }
1134  
1135  /**
1136   * tty_send_xchar	-	send priority character
1137   * @tty: the tty to send to
1138   * @ch: xchar to send
1139   *
1140   * Send a high priority character to the tty even if stopped.
1141   *
1142   * Locking: none for xchar method, write ordering for write method.
1143   */
tty_send_xchar(struct tty_struct * tty,char ch)1144  int tty_send_xchar(struct tty_struct *tty, char ch)
1145  {
1146  	bool was_stopped = tty->flow.stopped;
1147  
1148  	if (tty->ops->send_xchar) {
1149  		down_read(&tty->termios_rwsem);
1150  		tty->ops->send_xchar(tty, ch);
1151  		up_read(&tty->termios_rwsem);
1152  		return 0;
1153  	}
1154  
1155  	if (tty_write_lock(tty, false) < 0)
1156  		return -ERESTARTSYS;
1157  
1158  	down_read(&tty->termios_rwsem);
1159  	if (was_stopped)
1160  		start_tty(tty);
1161  	tty->ops->write(tty, &ch, 1);
1162  	if (was_stopped)
1163  		stop_tty(tty);
1164  	up_read(&tty->termios_rwsem);
1165  	tty_write_unlock(tty);
1166  	return 0;
1167  }
1168  
1169  /**
1170   * pty_line_name	-	generate name for a pty
1171   * @driver: the tty driver in use
1172   * @index: the minor number
1173   * @p: output buffer of at least 6 bytes
1174   *
1175   * Generate a name from a @driver reference and write it to the output buffer
1176   * @p.
1177   *
1178   * Locking: None
1179   */
pty_line_name(struct tty_driver * driver,int index,char * p)1180  static void pty_line_name(struct tty_driver *driver, int index, char *p)
1181  {
1182  	static const char ptychar[] = "pqrstuvwxyzabcde";
1183  	int i = index + driver->name_base;
1184  	/* ->name is initialized to "ttyp", but "tty" is expected */
1185  	sprintf(p, "%s%c%x",
1186  		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1187  		ptychar[i >> 4 & 0xf], i & 0xf);
1188  }
1189  
1190  /**
1191   * tty_line_name	-	generate name for a tty
1192   * @driver: the tty driver in use
1193   * @index: the minor number
1194   * @p: output buffer of at least 7 bytes
1195   *
1196   * Generate a name from a @driver reference and write it to the output buffer
1197   * @p.
1198   *
1199   * Locking: None
1200   */
tty_line_name(struct tty_driver * driver,int index,char * p)1201  static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1202  {
1203  	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1204  		return sprintf(p, "%s", driver->name);
1205  	else
1206  		return sprintf(p, "%s%d", driver->name,
1207  			       index + driver->name_base);
1208  }
1209  
1210  /**
1211   * tty_driver_lookup_tty() - find an existing tty, if any
1212   * @driver: the driver for the tty
1213   * @file: file object
1214   * @idx: the minor number
1215   *
1216   * Return: the tty, if found. If not found, return %NULL or ERR_PTR() if the
1217   * driver lookup() method returns an error.
1218   *
1219   * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1220   */
tty_driver_lookup_tty(struct tty_driver * driver,struct file * file,int idx)1221  static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1222  		struct file *file, int idx)
1223  {
1224  	struct tty_struct *tty;
1225  
1226  	if (driver->ops->lookup) {
1227  		if (!file)
1228  			tty = ERR_PTR(-EIO);
1229  		else
1230  			tty = driver->ops->lookup(driver, file, idx);
1231  	} else {
1232  		if (idx >= driver->num)
1233  			return ERR_PTR(-EINVAL);
1234  		tty = driver->ttys[idx];
1235  	}
1236  	if (!IS_ERR(tty))
1237  		tty_kref_get(tty);
1238  	return tty;
1239  }
1240  
1241  /**
1242   * tty_init_termios	-  helper for termios setup
1243   * @tty: the tty to set up
1244   *
1245   * Initialise the termios structure for this tty. This runs under the
1246   * %tty_mutex currently so we can be relaxed about ordering.
1247   */
tty_init_termios(struct tty_struct * tty)1248  void tty_init_termios(struct tty_struct *tty)
1249  {
1250  	struct ktermios *tp;
1251  	int idx = tty->index;
1252  
1253  	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1254  		tty->termios = tty->driver->init_termios;
1255  	else {
1256  		/* Check for lazy saved data */
1257  		tp = tty->driver->termios[idx];
1258  		if (tp != NULL) {
1259  			tty->termios = *tp;
1260  			tty->termios.c_line  = tty->driver->init_termios.c_line;
1261  		} else
1262  			tty->termios = tty->driver->init_termios;
1263  	}
1264  	/* Compatibility until drivers always set this */
1265  	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1266  	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1267  }
1268  EXPORT_SYMBOL_GPL(tty_init_termios);
1269  
1270  /**
1271   * tty_standard_install - usual tty->ops->install
1272   * @driver: the driver for the tty
1273   * @tty: the tty
1274   *
1275   * If the @driver overrides @tty->ops->install, it still can call this function
1276   * to perform the standard install operations.
1277   */
tty_standard_install(struct tty_driver * driver,struct tty_struct * tty)1278  int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1279  {
1280  	tty_init_termios(tty);
1281  	tty_driver_kref_get(driver);
1282  	tty->count++;
1283  	driver->ttys[tty->index] = tty;
1284  	return 0;
1285  }
1286  EXPORT_SYMBOL_GPL(tty_standard_install);
1287  
1288  /**
1289   * tty_driver_install_tty() - install a tty entry in the driver
1290   * @driver: the driver for the tty
1291   * @tty: the tty
1292   *
1293   * Install a tty object into the driver tables. The @tty->index field will be
1294   * set by the time this is called. This method is responsible for ensuring any
1295   * need additional structures are allocated and configured.
1296   *
1297   * Locking: tty_mutex for now
1298   */
tty_driver_install_tty(struct tty_driver * driver,struct tty_struct * tty)1299  static int tty_driver_install_tty(struct tty_driver *driver,
1300  						struct tty_struct *tty)
1301  {
1302  	return driver->ops->install ? driver->ops->install(driver, tty) :
1303  		tty_standard_install(driver, tty);
1304  }
1305  
1306  /**
1307   * tty_driver_remove_tty() - remove a tty from the driver tables
1308   * @driver: the driver for the tty
1309   * @tty: tty to remove
1310   *
1311   * Remove a tty object from the driver tables. The tty->index field will be set
1312   * by the time this is called.
1313   *
1314   * Locking: tty_mutex for now
1315   */
tty_driver_remove_tty(struct tty_driver * driver,struct tty_struct * tty)1316  static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1317  {
1318  	if (driver->ops->remove)
1319  		driver->ops->remove(driver, tty);
1320  	else
1321  		driver->ttys[tty->index] = NULL;
1322  }
1323  
1324  /**
1325   * tty_reopen()	- fast re-open of an open tty
1326   * @tty: the tty to open
1327   *
1328   * Re-opens on master ptys are not allowed and return -%EIO.
1329   *
1330   * Locking: Caller must hold tty_lock
1331   * Return: 0 on success, -errno on error.
1332   */
tty_reopen(struct tty_struct * tty)1333  static int tty_reopen(struct tty_struct *tty)
1334  {
1335  	struct tty_driver *driver = tty->driver;
1336  	struct tty_ldisc *ld;
1337  	int retval = 0;
1338  
1339  	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1340  	    driver->subtype == PTY_TYPE_MASTER)
1341  		return -EIO;
1342  
1343  	if (!tty->count)
1344  		return -EAGAIN;
1345  
1346  	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1347  		return -EBUSY;
1348  
1349  	ld = tty_ldisc_ref_wait(tty);
1350  	if (ld) {
1351  		tty_ldisc_deref(ld);
1352  	} else {
1353  		retval = tty_ldisc_lock(tty, 5 * HZ);
1354  		if (retval)
1355  			return retval;
1356  
1357  		if (!tty->ldisc)
1358  			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1359  		tty_ldisc_unlock(tty);
1360  	}
1361  
1362  	if (retval == 0)
1363  		tty->count++;
1364  
1365  	return retval;
1366  }
1367  
1368  /**
1369   * tty_init_dev		-	initialise a tty device
1370   * @driver: tty driver we are opening a device on
1371   * @idx: device index
1372   *
1373   * Prepare a tty device. This may not be a "new" clean device but could also be
1374   * an active device. The pty drivers require special handling because of this.
1375   *
1376   * Locking:
1377   *	The function is called under the tty_mutex, which protects us from the
1378   *	tty struct or driver itself going away.
1379   *
1380   * On exit the tty device has the line discipline attached and a reference
1381   * count of 1. If a pair was created for pty/tty use and the other was a pty
1382   * master then it too has a reference count of 1.
1383   *
1384   * WSH 06/09/97: Rewritten to remove races and properly clean up after a failed
1385   * open. The new code protects the open with a mutex, so it's really quite
1386   * straightforward. The mutex locking can probably be relaxed for the (most
1387   * common) case of reopening a tty.
1388   *
1389   * Return: new tty structure
1390   */
tty_init_dev(struct tty_driver * driver,int idx)1391  struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1392  {
1393  	struct tty_struct *tty;
1394  	int retval;
1395  
1396  	/*
1397  	 * First time open is complex, especially for PTY devices.
1398  	 * This code guarantees that either everything succeeds and the
1399  	 * TTY is ready for operation, or else the table slots are vacated
1400  	 * and the allocated memory released.  (Except that the termios
1401  	 * may be retained.)
1402  	 */
1403  
1404  	if (!try_module_get(driver->owner))
1405  		return ERR_PTR(-ENODEV);
1406  
1407  	tty = alloc_tty_struct(driver, idx);
1408  	if (!tty) {
1409  		retval = -ENOMEM;
1410  		goto err_module_put;
1411  	}
1412  
1413  	tty_lock(tty);
1414  	retval = tty_driver_install_tty(driver, tty);
1415  	if (retval < 0)
1416  		goto err_free_tty;
1417  
1418  	if (!tty->port)
1419  		tty->port = driver->ports[idx];
1420  
1421  	if (WARN_RATELIMIT(!tty->port,
1422  			"%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1423  			__func__, tty->driver->name)) {
1424  		retval = -EINVAL;
1425  		goto err_release_lock;
1426  	}
1427  
1428  	retval = tty_ldisc_lock(tty, 5 * HZ);
1429  	if (retval)
1430  		goto err_release_lock;
1431  	tty->port->itty = tty;
1432  
1433  	/*
1434  	 * Structures all installed ... call the ldisc open routines.
1435  	 * If we fail here just call release_tty to clean up.  No need
1436  	 * to decrement the use counts, as release_tty doesn't care.
1437  	 */
1438  	retval = tty_ldisc_setup(tty, tty->link);
1439  	if (retval)
1440  		goto err_release_tty;
1441  	tty_ldisc_unlock(tty);
1442  	/* Return the tty locked so that it cannot vanish under the caller */
1443  	return tty;
1444  
1445  err_free_tty:
1446  	tty_unlock(tty);
1447  	free_tty_struct(tty);
1448  err_module_put:
1449  	module_put(driver->owner);
1450  	return ERR_PTR(retval);
1451  
1452  	/* call the tty release_tty routine to clean out this slot */
1453  err_release_tty:
1454  	tty_ldisc_unlock(tty);
1455  	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1456  			     retval, idx);
1457  err_release_lock:
1458  	tty_unlock(tty);
1459  	release_tty(tty, idx);
1460  	return ERR_PTR(retval);
1461  }
1462  
1463  /**
1464   * tty_save_termios() - save tty termios data in driver table
1465   * @tty: tty whose termios data to save
1466   *
1467   * Locking: Caller guarantees serialisation with tty_init_termios().
1468   */
tty_save_termios(struct tty_struct * tty)1469  void tty_save_termios(struct tty_struct *tty)
1470  {
1471  	struct ktermios *tp;
1472  	int idx = tty->index;
1473  
1474  	/* If the port is going to reset then it has no termios to save */
1475  	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1476  		return;
1477  
1478  	/* Stash the termios data */
1479  	tp = tty->driver->termios[idx];
1480  	if (tp == NULL) {
1481  		tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1482  		if (tp == NULL)
1483  			return;
1484  		tty->driver->termios[idx] = tp;
1485  	}
1486  	*tp = tty->termios;
1487  }
1488  EXPORT_SYMBOL_GPL(tty_save_termios);
1489  
1490  /**
1491   * tty_flush_works	-	flush all works of a tty/pty pair
1492   * @tty: tty device to flush works for (or either end of a pty pair)
1493   *
1494   * Sync flush all works belonging to @tty (and the 'other' tty).
1495   */
tty_flush_works(struct tty_struct * tty)1496  static void tty_flush_works(struct tty_struct *tty)
1497  {
1498  	flush_work(&tty->SAK_work);
1499  	flush_work(&tty->hangup_work);
1500  	if (tty->link) {
1501  		flush_work(&tty->link->SAK_work);
1502  		flush_work(&tty->link->hangup_work);
1503  	}
1504  }
1505  
1506  /**
1507   * release_one_tty	-	release tty structure memory
1508   * @work: work of tty we are obliterating
1509   *
1510   * Releases memory associated with a tty structure, and clears out the
1511   * driver table slots. This function is called when a device is no longer
1512   * in use. It also gets called when setup of a device fails.
1513   *
1514   * Locking:
1515   *	takes the file list lock internally when working on the list of ttys
1516   *	that the driver keeps.
1517   *
1518   * This method gets called from a work queue so that the driver private
1519   * cleanup ops can sleep (needed for USB at least)
1520   */
release_one_tty(struct work_struct * work)1521  static void release_one_tty(struct work_struct *work)
1522  {
1523  	struct tty_struct *tty =
1524  		container_of(work, struct tty_struct, hangup_work);
1525  	struct tty_driver *driver = tty->driver;
1526  	struct module *owner = driver->owner;
1527  
1528  	if (tty->ops->cleanup)
1529  		tty->ops->cleanup(tty);
1530  
1531  	tty_driver_kref_put(driver);
1532  	module_put(owner);
1533  
1534  	spin_lock(&tty->files_lock);
1535  	list_del_init(&tty->tty_files);
1536  	spin_unlock(&tty->files_lock);
1537  
1538  	put_pid(tty->ctrl.pgrp);
1539  	put_pid(tty->ctrl.session);
1540  	free_tty_struct(tty);
1541  }
1542  
queue_release_one_tty(struct kref * kref)1543  static void queue_release_one_tty(struct kref *kref)
1544  {
1545  	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1546  
1547  	/* The hangup queue is now free so we can reuse it rather than
1548  	 *  waste a chunk of memory for each port.
1549  	 */
1550  	INIT_WORK(&tty->hangup_work, release_one_tty);
1551  	schedule_work(&tty->hangup_work);
1552  }
1553  
1554  /**
1555   * tty_kref_put		-	release a tty kref
1556   * @tty: tty device
1557   *
1558   * Release a reference to the @tty device and if need be let the kref layer
1559   * destruct the object for us.
1560   */
tty_kref_put(struct tty_struct * tty)1561  void tty_kref_put(struct tty_struct *tty)
1562  {
1563  	if (tty)
1564  		kref_put(&tty->kref, queue_release_one_tty);
1565  }
1566  EXPORT_SYMBOL(tty_kref_put);
1567  
1568  /**
1569   * release_tty		-	release tty structure memory
1570   * @tty: tty device release
1571   * @idx: index of the tty device release
1572   *
1573   * Release both @tty and a possible linked partner (think pty pair),
1574   * and decrement the refcount of the backing module.
1575   *
1576   * Locking:
1577   *	tty_mutex
1578   *	takes the file list lock internally when working on the list of ttys
1579   *	that the driver keeps.
1580   */
release_tty(struct tty_struct * tty,int idx)1581  static void release_tty(struct tty_struct *tty, int idx)
1582  {
1583  	/* This should always be true but check for the moment */
1584  	WARN_ON(tty->index != idx);
1585  	WARN_ON(!mutex_is_locked(&tty_mutex));
1586  	if (tty->ops->shutdown)
1587  		tty->ops->shutdown(tty);
1588  	tty_save_termios(tty);
1589  	tty_driver_remove_tty(tty->driver, tty);
1590  	if (tty->port)
1591  		tty->port->itty = NULL;
1592  	if (tty->link)
1593  		tty->link->port->itty = NULL;
1594  	if (tty->port)
1595  		tty_buffer_cancel_work(tty->port);
1596  	if (tty->link)
1597  		tty_buffer_cancel_work(tty->link->port);
1598  
1599  	tty_kref_put(tty->link);
1600  	tty_kref_put(tty);
1601  }
1602  
1603  /**
1604   * tty_release_checks - check a tty before real release
1605   * @tty: tty to check
1606   * @idx: index of the tty
1607   *
1608   * Performs some paranoid checking before true release of the @tty. This is a
1609   * no-op unless %TTY_PARANOIA_CHECK is defined.
1610   */
tty_release_checks(struct tty_struct * tty,int idx)1611  static int tty_release_checks(struct tty_struct *tty, int idx)
1612  {
1613  #ifdef TTY_PARANOIA_CHECK
1614  	if (idx < 0 || idx >= tty->driver->num) {
1615  		tty_debug(tty, "bad idx %d\n", idx);
1616  		return -1;
1617  	}
1618  
1619  	/* not much to check for devpts */
1620  	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1621  		return 0;
1622  
1623  	if (tty != tty->driver->ttys[idx]) {
1624  		tty_debug(tty, "bad driver table[%d] = %p\n",
1625  			  idx, tty->driver->ttys[idx]);
1626  		return -1;
1627  	}
1628  	if (tty->driver->other) {
1629  		struct tty_struct *o_tty = tty->link;
1630  
1631  		if (o_tty != tty->driver->other->ttys[idx]) {
1632  			tty_debug(tty, "bad other table[%d] = %p\n",
1633  				  idx, tty->driver->other->ttys[idx]);
1634  			return -1;
1635  		}
1636  		if (o_tty->link != tty) {
1637  			tty_debug(tty, "bad link = %p\n", o_tty->link);
1638  			return -1;
1639  		}
1640  	}
1641  #endif
1642  	return 0;
1643  }
1644  
1645  /**
1646   * tty_kclose      -       closes tty opened by tty_kopen
1647   * @tty: tty device
1648   *
1649   * Performs the final steps to release and free a tty device. It is the same as
1650   * tty_release_struct() except that it also resets %TTY_PORT_KOPENED flag on
1651   * @tty->port.
1652   */
tty_kclose(struct tty_struct * tty)1653  void tty_kclose(struct tty_struct *tty)
1654  {
1655  	/*
1656  	 * Ask the line discipline code to release its structures
1657  	 */
1658  	tty_ldisc_release(tty);
1659  
1660  	/* Wait for pending work before tty destruction commences */
1661  	tty_flush_works(tty);
1662  
1663  	tty_debug_hangup(tty, "freeing structure\n");
1664  	/*
1665  	 * The release_tty function takes care of the details of clearing
1666  	 * the slots and preserving the termios structure.
1667  	 */
1668  	mutex_lock(&tty_mutex);
1669  	tty_port_set_kopened(tty->port, 0);
1670  	release_tty(tty, tty->index);
1671  	mutex_unlock(&tty_mutex);
1672  }
1673  EXPORT_SYMBOL_GPL(tty_kclose);
1674  
1675  /**
1676   * tty_release_struct	-	release a tty struct
1677   * @tty: tty device
1678   * @idx: index of the tty
1679   *
1680   * Performs the final steps to release and free a tty device. It is roughly the
1681   * reverse of tty_init_dev().
1682   */
tty_release_struct(struct tty_struct * tty,int idx)1683  void tty_release_struct(struct tty_struct *tty, int idx)
1684  {
1685  	/*
1686  	 * Ask the line discipline code to release its structures
1687  	 */
1688  	tty_ldisc_release(tty);
1689  
1690  	/* Wait for pending work before tty destruction commmences */
1691  	tty_flush_works(tty);
1692  
1693  	tty_debug_hangup(tty, "freeing structure\n");
1694  	/*
1695  	 * The release_tty function takes care of the details of clearing
1696  	 * the slots and preserving the termios structure.
1697  	 */
1698  	mutex_lock(&tty_mutex);
1699  	release_tty(tty, idx);
1700  	mutex_unlock(&tty_mutex);
1701  }
1702  EXPORT_SYMBOL_GPL(tty_release_struct);
1703  
1704  /**
1705   * tty_release		-	vfs callback for close
1706   * @inode: inode of tty
1707   * @filp: file pointer for handle to tty
1708   *
1709   * Called the last time each file handle is closed that references this tty.
1710   * There may however be several such references.
1711   *
1712   * Locking:
1713   *	Takes BKL. See tty_release_dev().
1714   *
1715   * Even releasing the tty structures is a tricky business. We have to be very
1716   * careful that the structures are all released at the same time, as interrupts
1717   * might otherwise get the wrong pointers.
1718   *
1719   * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1720   * lead to double frees or releasing memory still in use.
1721   */
tty_release(struct inode * inode,struct file * filp)1722  int tty_release(struct inode *inode, struct file *filp)
1723  {
1724  	struct tty_struct *tty = file_tty(filp);
1725  	struct tty_struct *o_tty = NULL;
1726  	int	do_sleep, final;
1727  	int	idx;
1728  	long	timeout = 0;
1729  	int	once = 1;
1730  
1731  	if (tty_paranoia_check(tty, inode, __func__))
1732  		return 0;
1733  
1734  	tty_lock(tty);
1735  	check_tty_count(tty, __func__);
1736  
1737  	__tty_fasync(-1, filp, 0);
1738  
1739  	idx = tty->index;
1740  	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1741  	    tty->driver->subtype == PTY_TYPE_MASTER)
1742  		o_tty = tty->link;
1743  
1744  	if (tty_release_checks(tty, idx)) {
1745  		tty_unlock(tty);
1746  		return 0;
1747  	}
1748  
1749  	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1750  
1751  	if (tty->ops->close)
1752  		tty->ops->close(tty, filp);
1753  
1754  	/* If tty is pty master, lock the slave pty (stable lock order) */
1755  	tty_lock_slave(o_tty);
1756  
1757  	/*
1758  	 * Sanity check: if tty->count is going to zero, there shouldn't be
1759  	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1760  	 * wait queues and kick everyone out _before_ actually starting to
1761  	 * close.  This ensures that we won't block while releasing the tty
1762  	 * structure.
1763  	 *
1764  	 * The test for the o_tty closing is necessary, since the master and
1765  	 * slave sides may close in any order.  If the slave side closes out
1766  	 * first, its count will be one, since the master side holds an open.
1767  	 * Thus this test wouldn't be triggered at the time the slave closed,
1768  	 * so we do it now.
1769  	 */
1770  	while (1) {
1771  		do_sleep = 0;
1772  
1773  		if (tty->count <= 1) {
1774  			if (waitqueue_active(&tty->read_wait)) {
1775  				wake_up_poll(&tty->read_wait, EPOLLIN);
1776  				do_sleep++;
1777  			}
1778  			if (waitqueue_active(&tty->write_wait)) {
1779  				wake_up_poll(&tty->write_wait, EPOLLOUT);
1780  				do_sleep++;
1781  			}
1782  		}
1783  		if (o_tty && o_tty->count <= 1) {
1784  			if (waitqueue_active(&o_tty->read_wait)) {
1785  				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1786  				do_sleep++;
1787  			}
1788  			if (waitqueue_active(&o_tty->write_wait)) {
1789  				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1790  				do_sleep++;
1791  			}
1792  		}
1793  		if (!do_sleep)
1794  			break;
1795  
1796  		if (once) {
1797  			once = 0;
1798  			tty_warn(tty, "read/write wait queue active!\n");
1799  		}
1800  		schedule_timeout_killable(timeout);
1801  		if (timeout < 120 * HZ)
1802  			timeout = 2 * timeout + 1;
1803  		else
1804  			timeout = MAX_SCHEDULE_TIMEOUT;
1805  	}
1806  
1807  	if (o_tty) {
1808  		if (--o_tty->count < 0) {
1809  			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1810  			o_tty->count = 0;
1811  		}
1812  	}
1813  	if (--tty->count < 0) {
1814  		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1815  		tty->count = 0;
1816  	}
1817  
1818  	/*
1819  	 * We've decremented tty->count, so we need to remove this file
1820  	 * descriptor off the tty->tty_files list; this serves two
1821  	 * purposes:
1822  	 *  - check_tty_count sees the correct number of file descriptors
1823  	 *    associated with this tty.
1824  	 *  - do_tty_hangup no longer sees this file descriptor as
1825  	 *    something that needs to be handled for hangups.
1826  	 */
1827  	tty_del_file(filp);
1828  
1829  	/*
1830  	 * Perform some housekeeping before deciding whether to return.
1831  	 *
1832  	 * If _either_ side is closing, make sure there aren't any
1833  	 * processes that still think tty or o_tty is their controlling
1834  	 * tty.
1835  	 */
1836  	if (!tty->count) {
1837  		read_lock(&tasklist_lock);
1838  		session_clear_tty(tty->ctrl.session);
1839  		if (o_tty)
1840  			session_clear_tty(o_tty->ctrl.session);
1841  		read_unlock(&tasklist_lock);
1842  	}
1843  
1844  	/* check whether both sides are closing ... */
1845  	final = !tty->count && !(o_tty && o_tty->count);
1846  
1847  	tty_unlock_slave(o_tty);
1848  	tty_unlock(tty);
1849  
1850  	/* At this point, the tty->count == 0 should ensure a dead tty
1851  	 * cannot be re-opened by a racing opener.
1852  	 */
1853  
1854  	if (!final)
1855  		return 0;
1856  
1857  	tty_debug_hangup(tty, "final close\n");
1858  
1859  	tty_release_struct(tty, idx);
1860  	return 0;
1861  }
1862  
1863  /**
1864   * tty_open_current_tty - get locked tty of current task
1865   * @device: device number
1866   * @filp: file pointer to tty
1867   * @return: locked tty of the current task iff @device is /dev/tty
1868   *
1869   * Performs a re-open of the current task's controlling tty.
1870   *
1871   * We cannot return driver and index like for the other nodes because devpts
1872   * will not work then. It expects inodes to be from devpts FS.
1873   */
tty_open_current_tty(dev_t device,struct file * filp)1874  static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1875  {
1876  	struct tty_struct *tty;
1877  	int retval;
1878  
1879  	if (device != MKDEV(TTYAUX_MAJOR, 0))
1880  		return NULL;
1881  
1882  	tty = get_current_tty();
1883  	if (!tty)
1884  		return ERR_PTR(-ENXIO);
1885  
1886  	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1887  	/* noctty = 1; */
1888  	tty_lock(tty);
1889  	tty_kref_put(tty);	/* safe to drop the kref now */
1890  
1891  	retval = tty_reopen(tty);
1892  	if (retval < 0) {
1893  		tty_unlock(tty);
1894  		tty = ERR_PTR(retval);
1895  	}
1896  	return tty;
1897  }
1898  
1899  /**
1900   * tty_lookup_driver - lookup a tty driver for a given device file
1901   * @device: device number
1902   * @filp: file pointer to tty
1903   * @index: index for the device in the @return driver
1904   *
1905   * If returned value is not erroneous, the caller is responsible to decrement
1906   * the refcount by tty_driver_kref_put().
1907   *
1908   * Locking: %tty_mutex protects get_tty_driver()
1909   *
1910   * Return: driver for this inode (with increased refcount)
1911   */
tty_lookup_driver(dev_t device,struct file * filp,int * index)1912  static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1913  		int *index)
1914  {
1915  	struct tty_driver *driver = NULL;
1916  
1917  	switch (device) {
1918  #ifdef CONFIG_VT
1919  	case MKDEV(TTY_MAJOR, 0): {
1920  		extern struct tty_driver *console_driver;
1921  
1922  		driver = tty_driver_kref_get(console_driver);
1923  		*index = fg_console;
1924  		break;
1925  	}
1926  #endif
1927  	case MKDEV(TTYAUX_MAJOR, 1): {
1928  		struct tty_driver *console_driver = console_device(index);
1929  
1930  		if (console_driver) {
1931  			driver = tty_driver_kref_get(console_driver);
1932  			if (driver && filp) {
1933  				/* Don't let /dev/console block */
1934  				filp->f_flags |= O_NONBLOCK;
1935  				break;
1936  			}
1937  		}
1938  		if (driver)
1939  			tty_driver_kref_put(driver);
1940  		return ERR_PTR(-ENODEV);
1941  	}
1942  	default:
1943  		driver = get_tty_driver(device, index);
1944  		if (!driver)
1945  			return ERR_PTR(-ENODEV);
1946  		break;
1947  	}
1948  	return driver;
1949  }
1950  
tty_kopen(dev_t device,int shared)1951  static struct tty_struct *tty_kopen(dev_t device, int shared)
1952  {
1953  	struct tty_struct *tty;
1954  	struct tty_driver *driver;
1955  	int index = -1;
1956  
1957  	mutex_lock(&tty_mutex);
1958  	driver = tty_lookup_driver(device, NULL, &index);
1959  	if (IS_ERR(driver)) {
1960  		mutex_unlock(&tty_mutex);
1961  		return ERR_CAST(driver);
1962  	}
1963  
1964  	/* check whether we're reopening an existing tty */
1965  	tty = tty_driver_lookup_tty(driver, NULL, index);
1966  	if (IS_ERR(tty) || shared)
1967  		goto out;
1968  
1969  	if (tty) {
1970  		/* drop kref from tty_driver_lookup_tty() */
1971  		tty_kref_put(tty);
1972  		tty = ERR_PTR(-EBUSY);
1973  	} else { /* tty_init_dev returns tty with the tty_lock held */
1974  		tty = tty_init_dev(driver, index);
1975  		if (IS_ERR(tty))
1976  			goto out;
1977  		tty_port_set_kopened(tty->port, 1);
1978  	}
1979  out:
1980  	mutex_unlock(&tty_mutex);
1981  	tty_driver_kref_put(driver);
1982  	return tty;
1983  }
1984  
1985  /**
1986   * tty_kopen_exclusive	-	open a tty device for kernel
1987   * @device: dev_t of device to open
1988   *
1989   * Opens tty exclusively for kernel. Performs the driver lookup, makes sure
1990   * it's not already opened and performs the first-time tty initialization.
1991   *
1992   * Claims the global %tty_mutex to serialize:
1993   *  * concurrent first-time tty initialization
1994   *  * concurrent tty driver removal w/ lookup
1995   *  * concurrent tty removal from driver table
1996   *
1997   * Return: the locked initialized &tty_struct
1998   */
tty_kopen_exclusive(dev_t device)1999  struct tty_struct *tty_kopen_exclusive(dev_t device)
2000  {
2001  	return tty_kopen(device, 0);
2002  }
2003  EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2004  
2005  /**
2006   * tty_kopen_shared	-	open a tty device for shared in-kernel use
2007   * @device: dev_t of device to open
2008   *
2009   * Opens an already existing tty for in-kernel use. Compared to
2010   * tty_kopen_exclusive() above it doesn't ensure to be the only user.
2011   *
2012   * Locking: identical to tty_kopen() above.
2013   */
tty_kopen_shared(dev_t device)2014  struct tty_struct *tty_kopen_shared(dev_t device)
2015  {
2016  	return tty_kopen(device, 1);
2017  }
2018  EXPORT_SYMBOL_GPL(tty_kopen_shared);
2019  
2020  /**
2021   * tty_open_by_driver	-	open a tty device
2022   * @device: dev_t of device to open
2023   * @filp: file pointer to tty
2024   *
2025   * Performs the driver lookup, checks for a reopen, or otherwise performs the
2026   * first-time tty initialization.
2027   *
2028   *
2029   * Claims the global tty_mutex to serialize:
2030   *  * concurrent first-time tty initialization
2031   *  * concurrent tty driver removal w/ lookup
2032   *  * concurrent tty removal from driver table
2033   *
2034   * Return: the locked initialized or re-opened &tty_struct
2035   */
tty_open_by_driver(dev_t device,struct file * filp)2036  static struct tty_struct *tty_open_by_driver(dev_t device,
2037  					     struct file *filp)
2038  {
2039  	struct tty_struct *tty;
2040  	struct tty_driver *driver = NULL;
2041  	int index = -1;
2042  	int retval;
2043  
2044  	mutex_lock(&tty_mutex);
2045  	driver = tty_lookup_driver(device, filp, &index);
2046  	if (IS_ERR(driver)) {
2047  		mutex_unlock(&tty_mutex);
2048  		return ERR_CAST(driver);
2049  	}
2050  
2051  	/* check whether we're reopening an existing tty */
2052  	tty = tty_driver_lookup_tty(driver, filp, index);
2053  	if (IS_ERR(tty)) {
2054  		mutex_unlock(&tty_mutex);
2055  		goto out;
2056  	}
2057  
2058  	if (tty) {
2059  		if (tty_port_kopened(tty->port)) {
2060  			tty_kref_put(tty);
2061  			mutex_unlock(&tty_mutex);
2062  			tty = ERR_PTR(-EBUSY);
2063  			goto out;
2064  		}
2065  		mutex_unlock(&tty_mutex);
2066  		retval = tty_lock_interruptible(tty);
2067  		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2068  		if (retval) {
2069  			if (retval == -EINTR)
2070  				retval = -ERESTARTSYS;
2071  			tty = ERR_PTR(retval);
2072  			goto out;
2073  		}
2074  		retval = tty_reopen(tty);
2075  		if (retval < 0) {
2076  			tty_unlock(tty);
2077  			tty = ERR_PTR(retval);
2078  		}
2079  	} else { /* Returns with the tty_lock held for now */
2080  		tty = tty_init_dev(driver, index);
2081  		mutex_unlock(&tty_mutex);
2082  	}
2083  out:
2084  	tty_driver_kref_put(driver);
2085  	return tty;
2086  }
2087  
2088  /**
2089   * tty_open	-	open a tty device
2090   * @inode: inode of device file
2091   * @filp: file pointer to tty
2092   *
2093   * tty_open() and tty_release() keep up the tty count that contains the number
2094   * of opens done on a tty. We cannot use the inode-count, as different inodes
2095   * might point to the same tty.
2096   *
2097   * Open-counting is needed for pty masters, as well as for keeping track of
2098   * serial lines: DTR is dropped when the last close happens.
2099   * (This is not done solely through tty->count, now.  - Ted 1/27/92)
2100   *
2101   * The termios state of a pty is reset on the first open so that settings don't
2102   * persist across reuse.
2103   *
2104   * Locking:
2105   *  * %tty_mutex protects tty, tty_lookup_driver() and tty_init_dev().
2106   *  * @tty->count should protect the rest.
2107   *  * ->siglock protects ->signal/->sighand
2108   *
2109   * Note: the tty_unlock/lock cases without a ref are only safe due to %tty_mutex
2110   */
tty_open(struct inode * inode,struct file * filp)2111  static int tty_open(struct inode *inode, struct file *filp)
2112  {
2113  	struct tty_struct *tty;
2114  	int noctty, retval;
2115  	dev_t device = inode->i_rdev;
2116  	unsigned saved_flags = filp->f_flags;
2117  
2118  	nonseekable_open(inode, filp);
2119  
2120  retry_open:
2121  	retval = tty_alloc_file(filp);
2122  	if (retval)
2123  		return -ENOMEM;
2124  
2125  	tty = tty_open_current_tty(device, filp);
2126  	if (!tty)
2127  		tty = tty_open_by_driver(device, filp);
2128  
2129  	if (IS_ERR(tty)) {
2130  		tty_free_file(filp);
2131  		retval = PTR_ERR(tty);
2132  		if (retval != -EAGAIN || signal_pending(current))
2133  			return retval;
2134  		schedule();
2135  		goto retry_open;
2136  	}
2137  
2138  	tty_add_file(tty, filp);
2139  
2140  	check_tty_count(tty, __func__);
2141  	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2142  
2143  	if (tty->ops->open)
2144  		retval = tty->ops->open(tty, filp);
2145  	else
2146  		retval = -ENODEV;
2147  	filp->f_flags = saved_flags;
2148  
2149  	if (retval) {
2150  		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2151  
2152  		tty_unlock(tty); /* need to call tty_release without BTM */
2153  		tty_release(inode, filp);
2154  		if (retval != -ERESTARTSYS)
2155  			return retval;
2156  
2157  		if (signal_pending(current))
2158  			return retval;
2159  
2160  		schedule();
2161  		/*
2162  		 * Need to reset f_op in case a hangup happened.
2163  		 */
2164  		if (tty_hung_up_p(filp))
2165  			filp->f_op = &tty_fops;
2166  		goto retry_open;
2167  	}
2168  	clear_bit(TTY_HUPPED, &tty->flags);
2169  
2170  	noctty = (filp->f_flags & O_NOCTTY) ||
2171  		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2172  		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2173  		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2174  		  tty->driver->subtype == PTY_TYPE_MASTER);
2175  	if (!noctty)
2176  		tty_open_proc_set_tty(filp, tty);
2177  	tty_unlock(tty);
2178  	return 0;
2179  }
2180  
2181  
2182  /**
2183   * tty_poll	-	check tty status
2184   * @filp: file being polled
2185   * @wait: poll wait structures to update
2186   *
2187   * Call the line discipline polling method to obtain the poll status of the
2188   * device.
2189   *
2190   * Locking: locks called line discipline but ldisc poll method may be
2191   * re-entered freely by other callers.
2192   */
tty_poll(struct file * filp,poll_table * wait)2193  static __poll_t tty_poll(struct file *filp, poll_table *wait)
2194  {
2195  	struct tty_struct *tty = file_tty(filp);
2196  	struct tty_ldisc *ld;
2197  	__poll_t ret = 0;
2198  
2199  	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2200  		return 0;
2201  
2202  	ld = tty_ldisc_ref_wait(tty);
2203  	if (!ld)
2204  		return hung_up_tty_poll(filp, wait);
2205  	if (ld->ops->poll)
2206  		ret = ld->ops->poll(tty, filp, wait);
2207  	tty_ldisc_deref(ld);
2208  	return ret;
2209  }
2210  
__tty_fasync(int fd,struct file * filp,int on)2211  static int __tty_fasync(int fd, struct file *filp, int on)
2212  {
2213  	struct tty_struct *tty = file_tty(filp);
2214  	unsigned long flags;
2215  	int retval = 0;
2216  
2217  	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2218  		goto out;
2219  
2220  	retval = fasync_helper(fd, filp, on, &tty->fasync);
2221  	if (retval <= 0)
2222  		goto out;
2223  
2224  	if (on) {
2225  		enum pid_type type;
2226  		struct pid *pid;
2227  
2228  		spin_lock_irqsave(&tty->ctrl.lock, flags);
2229  		if (tty->ctrl.pgrp) {
2230  			pid = tty->ctrl.pgrp;
2231  			type = PIDTYPE_PGID;
2232  		} else {
2233  			pid = task_pid(current);
2234  			type = PIDTYPE_TGID;
2235  		}
2236  		get_pid(pid);
2237  		spin_unlock_irqrestore(&tty->ctrl.lock, flags);
2238  		__f_setown(filp, pid, type, 0);
2239  		put_pid(pid);
2240  		retval = 0;
2241  	}
2242  out:
2243  	return retval;
2244  }
2245  
tty_fasync(int fd,struct file * filp,int on)2246  static int tty_fasync(int fd, struct file *filp, int on)
2247  {
2248  	struct tty_struct *tty = file_tty(filp);
2249  	int retval = -ENOTTY;
2250  
2251  	tty_lock(tty);
2252  	if (!tty_hung_up_p(filp))
2253  		retval = __tty_fasync(fd, filp, on);
2254  	tty_unlock(tty);
2255  
2256  	return retval;
2257  }
2258  
2259  static bool tty_legacy_tiocsti __read_mostly = IS_ENABLED(CONFIG_LEGACY_TIOCSTI);
2260  /**
2261   * tiocsti		-	fake input character
2262   * @tty: tty to fake input into
2263   * @p: pointer to character
2264   *
2265   * Fake input to a tty device. Does the necessary locking and input management.
2266   *
2267   * FIXME: does not honour flow control ??
2268   *
2269   * Locking:
2270   *  * Called functions take tty_ldiscs_lock
2271   *  * current->signal->tty check is safe without locks
2272   */
tiocsti(struct tty_struct * tty,char __user * p)2273  static int tiocsti(struct tty_struct *tty, char __user *p)
2274  {
2275  	char ch, mbz = 0;
2276  	struct tty_ldisc *ld;
2277  
2278  	if (!tty_legacy_tiocsti && !capable(CAP_SYS_ADMIN))
2279  		return -EIO;
2280  
2281  	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2282  		return -EPERM;
2283  	if (get_user(ch, p))
2284  		return -EFAULT;
2285  	tty_audit_tiocsti(tty, ch);
2286  	ld = tty_ldisc_ref_wait(tty);
2287  	if (!ld)
2288  		return -EIO;
2289  	tty_buffer_lock_exclusive(tty->port);
2290  	if (ld->ops->receive_buf)
2291  		ld->ops->receive_buf(tty, &ch, &mbz, 1);
2292  	tty_buffer_unlock_exclusive(tty->port);
2293  	tty_ldisc_deref(ld);
2294  	return 0;
2295  }
2296  
2297  /**
2298   * tiocgwinsz		-	implement window query ioctl
2299   * @tty: tty
2300   * @arg: user buffer for result
2301   *
2302   * Copies the kernel idea of the window size into the user buffer.
2303   *
2304   * Locking: @tty->winsize_mutex is taken to ensure the winsize data is
2305   * consistent.
2306   */
tiocgwinsz(struct tty_struct * tty,struct winsize __user * arg)2307  static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2308  {
2309  	int err;
2310  
2311  	mutex_lock(&tty->winsize_mutex);
2312  	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2313  	mutex_unlock(&tty->winsize_mutex);
2314  
2315  	return err ? -EFAULT : 0;
2316  }
2317  
2318  /**
2319   * tty_do_resize	-	resize event
2320   * @tty: tty being resized
2321   * @ws: new dimensions
2322   *
2323   * Update the termios variables and send the necessary signals to peform a
2324   * terminal resize correctly.
2325   */
tty_do_resize(struct tty_struct * tty,struct winsize * ws)2326  int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2327  {
2328  	struct pid *pgrp;
2329  
2330  	/* Lock the tty */
2331  	mutex_lock(&tty->winsize_mutex);
2332  	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2333  		goto done;
2334  
2335  	/* Signal the foreground process group */
2336  	pgrp = tty_get_pgrp(tty);
2337  	if (pgrp)
2338  		kill_pgrp(pgrp, SIGWINCH, 1);
2339  	put_pid(pgrp);
2340  
2341  	tty->winsize = *ws;
2342  done:
2343  	mutex_unlock(&tty->winsize_mutex);
2344  	return 0;
2345  }
2346  EXPORT_SYMBOL(tty_do_resize);
2347  
2348  /**
2349   * tiocswinsz		-	implement window size set ioctl
2350   * @tty: tty side of tty
2351   * @arg: user buffer for result
2352   *
2353   * Copies the user idea of the window size to the kernel. Traditionally this is
2354   * just advisory information but for the Linux console it actually has driver
2355   * level meaning and triggers a VC resize.
2356   *
2357   * Locking:
2358   *	Driver dependent. The default do_resize method takes the tty termios
2359   *	mutex and ctrl.lock. The console takes its own lock then calls into the
2360   *	default method.
2361   */
tiocswinsz(struct tty_struct * tty,struct winsize __user * arg)2362  static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2363  {
2364  	struct winsize tmp_ws;
2365  
2366  	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2367  		return -EFAULT;
2368  
2369  	if (tty->ops->resize)
2370  		return tty->ops->resize(tty, &tmp_ws);
2371  	else
2372  		return tty_do_resize(tty, &tmp_ws);
2373  }
2374  
2375  /**
2376   * tioccons	-	allow admin to move logical console
2377   * @file: the file to become console
2378   *
2379   * Allow the administrator to move the redirected console device.
2380   *
2381   * Locking: uses redirect_lock to guard the redirect information
2382   */
tioccons(struct file * file)2383  static int tioccons(struct file *file)
2384  {
2385  	if (!capable(CAP_SYS_ADMIN))
2386  		return -EPERM;
2387  	if (file->f_op->write_iter == redirected_tty_write) {
2388  		struct file *f;
2389  
2390  		spin_lock(&redirect_lock);
2391  		f = redirect;
2392  		redirect = NULL;
2393  		spin_unlock(&redirect_lock);
2394  		if (f)
2395  			fput(f);
2396  		return 0;
2397  	}
2398  	if (file->f_op->write_iter != tty_write)
2399  		return -ENOTTY;
2400  	if (!(file->f_mode & FMODE_WRITE))
2401  		return -EBADF;
2402  	if (!(file->f_mode & FMODE_CAN_WRITE))
2403  		return -EINVAL;
2404  	spin_lock(&redirect_lock);
2405  	if (redirect) {
2406  		spin_unlock(&redirect_lock);
2407  		return -EBUSY;
2408  	}
2409  	redirect = get_file(file);
2410  	spin_unlock(&redirect_lock);
2411  	return 0;
2412  }
2413  
2414  /**
2415   * tiocsetd	-	set line discipline
2416   * @tty: tty device
2417   * @p: pointer to user data
2418   *
2419   * Set the line discipline according to user request.
2420   *
2421   * Locking: see tty_set_ldisc(), this function is just a helper
2422   */
tiocsetd(struct tty_struct * tty,int __user * p)2423  static int tiocsetd(struct tty_struct *tty, int __user *p)
2424  {
2425  	int disc;
2426  	int ret;
2427  
2428  	if (get_user(disc, p))
2429  		return -EFAULT;
2430  
2431  	ret = tty_set_ldisc(tty, disc);
2432  
2433  	return ret;
2434  }
2435  
2436  /**
2437   * tiocgetd	-	get line discipline
2438   * @tty: tty device
2439   * @p: pointer to user data
2440   *
2441   * Retrieves the line discipline id directly from the ldisc.
2442   *
2443   * Locking: waits for ldisc reference (in case the line discipline is changing
2444   * or the @tty is being hungup)
2445   */
tiocgetd(struct tty_struct * tty,int __user * p)2446  static int tiocgetd(struct tty_struct *tty, int __user *p)
2447  {
2448  	struct tty_ldisc *ld;
2449  	int ret;
2450  
2451  	ld = tty_ldisc_ref_wait(tty);
2452  	if (!ld)
2453  		return -EIO;
2454  	ret = put_user(ld->ops->num, p);
2455  	tty_ldisc_deref(ld);
2456  	return ret;
2457  }
2458  
2459  /**
2460   * send_break	-	performed time break
2461   * @tty: device to break on
2462   * @duration: timeout in mS
2463   *
2464   * Perform a timed break on hardware that lacks its own driver level timed
2465   * break functionality.
2466   *
2467   * Locking:
2468   *	@tty->atomic_write_lock serializes
2469   */
send_break(struct tty_struct * tty,unsigned int duration)2470  static int send_break(struct tty_struct *tty, unsigned int duration)
2471  {
2472  	int retval;
2473  
2474  	if (tty->ops->break_ctl == NULL)
2475  		return 0;
2476  
2477  	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2478  		return tty->ops->break_ctl(tty, duration);
2479  
2480  	/* Do the work ourselves */
2481  	if (tty_write_lock(tty, false) < 0)
2482  		return -EINTR;
2483  
2484  	retval = tty->ops->break_ctl(tty, -1);
2485  	if (!retval) {
2486  		msleep_interruptible(duration);
2487  		retval = tty->ops->break_ctl(tty, 0);
2488  	} else if (retval == -EOPNOTSUPP) {
2489  		/* some drivers can tell only dynamically */
2490  		retval = 0;
2491  	}
2492  	tty_write_unlock(tty);
2493  
2494  	if (signal_pending(current))
2495  		retval = -EINTR;
2496  
2497  	return retval;
2498  }
2499  
2500  /**
2501   * tty_tiocmget		-	get modem status
2502   * @tty: tty device
2503   * @p: pointer to result
2504   *
2505   * Obtain the modem status bits from the tty driver if the feature is
2506   * supported. Return -%ENOTTY if it is not available.
2507   *
2508   * Locking: none (up to the driver)
2509   */
tty_tiocmget(struct tty_struct * tty,int __user * p)2510  static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2511  {
2512  	int retval = -ENOTTY;
2513  
2514  	if (tty->ops->tiocmget) {
2515  		retval = tty->ops->tiocmget(tty);
2516  
2517  		if (retval >= 0)
2518  			retval = put_user(retval, p);
2519  	}
2520  	return retval;
2521  }
2522  
2523  /**
2524   * tty_tiocmset		-	set modem status
2525   * @tty: tty device
2526   * @cmd: command - clear bits, set bits or set all
2527   * @p: pointer to desired bits
2528   *
2529   * Set the modem status bits from the tty driver if the feature
2530   * is supported. Return -%ENOTTY if it is not available.
2531   *
2532   * Locking: none (up to the driver)
2533   */
tty_tiocmset(struct tty_struct * tty,unsigned int cmd,unsigned __user * p)2534  static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2535  	     unsigned __user *p)
2536  {
2537  	int retval;
2538  	unsigned int set, clear, val;
2539  
2540  	if (tty->ops->tiocmset == NULL)
2541  		return -ENOTTY;
2542  
2543  	retval = get_user(val, p);
2544  	if (retval)
2545  		return retval;
2546  	set = clear = 0;
2547  	switch (cmd) {
2548  	case TIOCMBIS:
2549  		set = val;
2550  		break;
2551  	case TIOCMBIC:
2552  		clear = val;
2553  		break;
2554  	case TIOCMSET:
2555  		set = val;
2556  		clear = ~val;
2557  		break;
2558  	}
2559  	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2560  	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2561  	return tty->ops->tiocmset(tty, set, clear);
2562  }
2563  
2564  /**
2565   * tty_get_icount	-	get tty statistics
2566   * @tty: tty device
2567   * @icount: output parameter
2568   *
2569   * Gets a copy of the @tty's icount statistics.
2570   *
2571   * Locking: none (up to the driver)
2572   */
tty_get_icount(struct tty_struct * tty,struct serial_icounter_struct * icount)2573  int tty_get_icount(struct tty_struct *tty,
2574  		   struct serial_icounter_struct *icount)
2575  {
2576  	memset(icount, 0, sizeof(*icount));
2577  
2578  	if (tty->ops->get_icount)
2579  		return tty->ops->get_icount(tty, icount);
2580  	else
2581  		return -ENOTTY;
2582  }
2583  EXPORT_SYMBOL_GPL(tty_get_icount);
2584  
tty_tiocgicount(struct tty_struct * tty,void __user * arg)2585  static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2586  {
2587  	struct serial_icounter_struct icount;
2588  	int retval;
2589  
2590  	retval = tty_get_icount(tty, &icount);
2591  	if (retval != 0)
2592  		return retval;
2593  
2594  	if (copy_to_user(arg, &icount, sizeof(icount)))
2595  		return -EFAULT;
2596  	return 0;
2597  }
2598  
tty_set_serial(struct tty_struct * tty,struct serial_struct * ss)2599  static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss)
2600  {
2601  	char comm[TASK_COMM_LEN];
2602  	int flags;
2603  
2604  	flags = ss->flags & ASYNC_DEPRECATED;
2605  
2606  	if (flags)
2607  		pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2608  				__func__, get_task_comm(comm, current), flags);
2609  
2610  	if (!tty->ops->set_serial)
2611  		return -ENOTTY;
2612  
2613  	return tty->ops->set_serial(tty, ss);
2614  }
2615  
tty_tiocsserial(struct tty_struct * tty,struct serial_struct __user * ss)2616  static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2617  {
2618  	struct serial_struct v;
2619  
2620  	if (copy_from_user(&v, ss, sizeof(*ss)))
2621  		return -EFAULT;
2622  
2623  	return tty_set_serial(tty, &v);
2624  }
2625  
tty_tiocgserial(struct tty_struct * tty,struct serial_struct __user * ss)2626  static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2627  {
2628  	struct serial_struct v;
2629  	int err;
2630  
2631  	memset(&v, 0, sizeof(v));
2632  	if (!tty->ops->get_serial)
2633  		return -ENOTTY;
2634  	err = tty->ops->get_serial(tty, &v);
2635  	if (!err && copy_to_user(ss, &v, sizeof(v)))
2636  		err = -EFAULT;
2637  	return err;
2638  }
2639  
2640  /*
2641   * if pty, return the slave side (real_tty)
2642   * otherwise, return self
2643   */
tty_pair_get_tty(struct tty_struct * tty)2644  static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2645  {
2646  	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2647  	    tty->driver->subtype == PTY_TYPE_MASTER)
2648  		tty = tty->link;
2649  	return tty;
2650  }
2651  
2652  /*
2653   * Split this up, as gcc can choke on it otherwise..
2654   */
tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2655  long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2656  {
2657  	struct tty_struct *tty = file_tty(file);
2658  	struct tty_struct *real_tty;
2659  	void __user *p = (void __user *)arg;
2660  	int retval;
2661  	struct tty_ldisc *ld;
2662  
2663  	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2664  		return -EINVAL;
2665  
2666  	real_tty = tty_pair_get_tty(tty);
2667  
2668  	/*
2669  	 * Factor out some common prep work
2670  	 */
2671  	switch (cmd) {
2672  	case TIOCSETD:
2673  	case TIOCSBRK:
2674  	case TIOCCBRK:
2675  	case TCSBRK:
2676  	case TCSBRKP:
2677  		retval = tty_check_change(tty);
2678  		if (retval)
2679  			return retval;
2680  		if (cmd != TIOCCBRK) {
2681  			tty_wait_until_sent(tty, 0);
2682  			if (signal_pending(current))
2683  				return -EINTR;
2684  		}
2685  		break;
2686  	}
2687  
2688  	/*
2689  	 *	Now do the stuff.
2690  	 */
2691  	switch (cmd) {
2692  	case TIOCSTI:
2693  		return tiocsti(tty, p);
2694  	case TIOCGWINSZ:
2695  		return tiocgwinsz(real_tty, p);
2696  	case TIOCSWINSZ:
2697  		return tiocswinsz(real_tty, p);
2698  	case TIOCCONS:
2699  		return real_tty != tty ? -EINVAL : tioccons(file);
2700  	case TIOCEXCL:
2701  		set_bit(TTY_EXCLUSIVE, &tty->flags);
2702  		return 0;
2703  	case TIOCNXCL:
2704  		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2705  		return 0;
2706  	case TIOCGEXCL:
2707  	{
2708  		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2709  
2710  		return put_user(excl, (int __user *)p);
2711  	}
2712  	case TIOCGETD:
2713  		return tiocgetd(tty, p);
2714  	case TIOCSETD:
2715  		return tiocsetd(tty, p);
2716  	case TIOCVHANGUP:
2717  		if (!capable(CAP_SYS_ADMIN))
2718  			return -EPERM;
2719  		tty_vhangup(tty);
2720  		return 0;
2721  	case TIOCGDEV:
2722  	{
2723  		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2724  
2725  		return put_user(ret, (unsigned int __user *)p);
2726  	}
2727  	/*
2728  	 * Break handling
2729  	 */
2730  	case TIOCSBRK:	/* Turn break on, unconditionally */
2731  		if (tty->ops->break_ctl)
2732  			return tty->ops->break_ctl(tty, -1);
2733  		return 0;
2734  	case TIOCCBRK:	/* Turn break off, unconditionally */
2735  		if (tty->ops->break_ctl)
2736  			return tty->ops->break_ctl(tty, 0);
2737  		return 0;
2738  	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2739  		/* non-zero arg means wait for all output data
2740  		 * to be sent (performed above) but don't send break.
2741  		 * This is used by the tcdrain() termios function.
2742  		 */
2743  		if (!arg)
2744  			return send_break(tty, 250);
2745  		return 0;
2746  	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2747  		return send_break(tty, arg ? arg*100 : 250);
2748  
2749  	case TIOCMGET:
2750  		return tty_tiocmget(tty, p);
2751  	case TIOCMSET:
2752  	case TIOCMBIC:
2753  	case TIOCMBIS:
2754  		return tty_tiocmset(tty, cmd, p);
2755  	case TIOCGICOUNT:
2756  		return tty_tiocgicount(tty, p);
2757  	case TCFLSH:
2758  		switch (arg) {
2759  		case TCIFLUSH:
2760  		case TCIOFLUSH:
2761  		/* flush tty buffer and allow ldisc to process ioctl */
2762  			tty_buffer_flush(tty, NULL);
2763  			break;
2764  		}
2765  		break;
2766  	case TIOCSSERIAL:
2767  		return tty_tiocsserial(tty, p);
2768  	case TIOCGSERIAL:
2769  		return tty_tiocgserial(tty, p);
2770  	case TIOCGPTPEER:
2771  		/* Special because the struct file is needed */
2772  		return ptm_open_peer(file, tty, (int)arg);
2773  	default:
2774  		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2775  		if (retval != -ENOIOCTLCMD)
2776  			return retval;
2777  	}
2778  	if (tty->ops->ioctl) {
2779  		retval = tty->ops->ioctl(tty, cmd, arg);
2780  		if (retval != -ENOIOCTLCMD)
2781  			return retval;
2782  	}
2783  	ld = tty_ldisc_ref_wait(tty);
2784  	if (!ld)
2785  		return hung_up_tty_ioctl(file, cmd, arg);
2786  	retval = -EINVAL;
2787  	if (ld->ops->ioctl) {
2788  		retval = ld->ops->ioctl(tty, cmd, arg);
2789  		if (retval == -ENOIOCTLCMD)
2790  			retval = -ENOTTY;
2791  	}
2792  	tty_ldisc_deref(ld);
2793  	return retval;
2794  }
2795  
2796  #ifdef CONFIG_COMPAT
2797  
2798  struct serial_struct32 {
2799  	compat_int_t    type;
2800  	compat_int_t    line;
2801  	compat_uint_t   port;
2802  	compat_int_t    irq;
2803  	compat_int_t    flags;
2804  	compat_int_t    xmit_fifo_size;
2805  	compat_int_t    custom_divisor;
2806  	compat_int_t    baud_base;
2807  	unsigned short  close_delay;
2808  	char    io_type;
2809  	char    reserved_char;
2810  	compat_int_t    hub6;
2811  	unsigned short  closing_wait; /* time to wait before closing */
2812  	unsigned short  closing_wait2; /* no longer used... */
2813  	compat_uint_t   iomem_base;
2814  	unsigned short  iomem_reg_shift;
2815  	unsigned int    port_high;
2816  	/* compat_ulong_t  iomap_base FIXME */
2817  	compat_int_t    reserved;
2818  };
2819  
compat_tty_tiocsserial(struct tty_struct * tty,struct serial_struct32 __user * ss)2820  static int compat_tty_tiocsserial(struct tty_struct *tty,
2821  		struct serial_struct32 __user *ss)
2822  {
2823  	struct serial_struct32 v32;
2824  	struct serial_struct v;
2825  
2826  	if (copy_from_user(&v32, ss, sizeof(*ss)))
2827  		return -EFAULT;
2828  
2829  	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2830  	v.iomem_base = compat_ptr(v32.iomem_base);
2831  	v.iomem_reg_shift = v32.iomem_reg_shift;
2832  	v.port_high = v32.port_high;
2833  	v.iomap_base = 0;
2834  
2835  	return tty_set_serial(tty, &v);
2836  }
2837  
compat_tty_tiocgserial(struct tty_struct * tty,struct serial_struct32 __user * ss)2838  static int compat_tty_tiocgserial(struct tty_struct *tty,
2839  			struct serial_struct32 __user *ss)
2840  {
2841  	struct serial_struct32 v32;
2842  	struct serial_struct v;
2843  	int err;
2844  
2845  	memset(&v, 0, sizeof(v));
2846  	memset(&v32, 0, sizeof(v32));
2847  
2848  	if (!tty->ops->get_serial)
2849  		return -ENOTTY;
2850  	err = tty->ops->get_serial(tty, &v);
2851  	if (!err) {
2852  		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2853  		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2854  			0xfffffff : ptr_to_compat(v.iomem_base);
2855  		v32.iomem_reg_shift = v.iomem_reg_shift;
2856  		v32.port_high = v.port_high;
2857  		if (copy_to_user(ss, &v32, sizeof(v32)))
2858  			err = -EFAULT;
2859  	}
2860  	return err;
2861  }
tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2862  static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2863  				unsigned long arg)
2864  {
2865  	struct tty_struct *tty = file_tty(file);
2866  	struct tty_ldisc *ld;
2867  	int retval = -ENOIOCTLCMD;
2868  
2869  	switch (cmd) {
2870  	case TIOCOUTQ:
2871  	case TIOCSTI:
2872  	case TIOCGWINSZ:
2873  	case TIOCSWINSZ:
2874  	case TIOCGEXCL:
2875  	case TIOCGETD:
2876  	case TIOCSETD:
2877  	case TIOCGDEV:
2878  	case TIOCMGET:
2879  	case TIOCMSET:
2880  	case TIOCMBIC:
2881  	case TIOCMBIS:
2882  	case TIOCGICOUNT:
2883  	case TIOCGPGRP:
2884  	case TIOCSPGRP:
2885  	case TIOCGSID:
2886  	case TIOCSERGETLSR:
2887  	case TIOCGRS485:
2888  	case TIOCSRS485:
2889  #ifdef TIOCGETP
2890  	case TIOCGETP:
2891  	case TIOCSETP:
2892  	case TIOCSETN:
2893  #endif
2894  #ifdef TIOCGETC
2895  	case TIOCGETC:
2896  	case TIOCSETC:
2897  #endif
2898  #ifdef TIOCGLTC
2899  	case TIOCGLTC:
2900  	case TIOCSLTC:
2901  #endif
2902  	case TCSETSF:
2903  	case TCSETSW:
2904  	case TCSETS:
2905  	case TCGETS:
2906  #ifdef TCGETS2
2907  	case TCGETS2:
2908  	case TCSETSF2:
2909  	case TCSETSW2:
2910  	case TCSETS2:
2911  #endif
2912  	case TCGETA:
2913  	case TCSETAF:
2914  	case TCSETAW:
2915  	case TCSETA:
2916  	case TIOCGLCKTRMIOS:
2917  	case TIOCSLCKTRMIOS:
2918  #ifdef TCGETX
2919  	case TCGETX:
2920  	case TCSETX:
2921  	case TCSETXW:
2922  	case TCSETXF:
2923  #endif
2924  	case TIOCGSOFTCAR:
2925  	case TIOCSSOFTCAR:
2926  
2927  	case PPPIOCGCHAN:
2928  	case PPPIOCGUNIT:
2929  		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2930  	case TIOCCONS:
2931  	case TIOCEXCL:
2932  	case TIOCNXCL:
2933  	case TIOCVHANGUP:
2934  	case TIOCSBRK:
2935  	case TIOCCBRK:
2936  	case TCSBRK:
2937  	case TCSBRKP:
2938  	case TCFLSH:
2939  	case TIOCGPTPEER:
2940  	case TIOCNOTTY:
2941  	case TIOCSCTTY:
2942  	case TCXONC:
2943  	case TIOCMIWAIT:
2944  	case TIOCSERCONFIG:
2945  		return tty_ioctl(file, cmd, arg);
2946  	}
2947  
2948  	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2949  		return -EINVAL;
2950  
2951  	switch (cmd) {
2952  	case TIOCSSERIAL:
2953  		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2954  	case TIOCGSERIAL:
2955  		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2956  	}
2957  	if (tty->ops->compat_ioctl) {
2958  		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2959  		if (retval != -ENOIOCTLCMD)
2960  			return retval;
2961  	}
2962  
2963  	ld = tty_ldisc_ref_wait(tty);
2964  	if (!ld)
2965  		return hung_up_tty_compat_ioctl(file, cmd, arg);
2966  	if (ld->ops->compat_ioctl)
2967  		retval = ld->ops->compat_ioctl(tty, cmd, arg);
2968  	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2969  		retval = ld->ops->ioctl(tty, (unsigned long)compat_ptr(cmd),
2970  				arg);
2971  	tty_ldisc_deref(ld);
2972  
2973  	return retval;
2974  }
2975  #endif
2976  
this_tty(const void * t,struct file * file,unsigned fd)2977  static int this_tty(const void *t, struct file *file, unsigned fd)
2978  {
2979  	if (likely(file->f_op->read_iter != tty_read))
2980  		return 0;
2981  	return file_tty(file) != t ? 0 : fd + 1;
2982  }
2983  
2984  /*
2985   * This implements the "Secure Attention Key" ---  the idea is to
2986   * prevent trojan horses by killing all processes associated with this
2987   * tty when the user hits the "Secure Attention Key".  Required for
2988   * super-paranoid applications --- see the Orange Book for more details.
2989   *
2990   * This code could be nicer; ideally it should send a HUP, wait a few
2991   * seconds, then send a INT, and then a KILL signal.  But you then
2992   * have to coordinate with the init process, since all processes associated
2993   * with the current tty must be dead before the new getty is allowed
2994   * to spawn.
2995   *
2996   * Now, if it would be correct ;-/ The current code has a nasty hole -
2997   * it doesn't catch files in flight. We may send the descriptor to ourselves
2998   * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2999   *
3000   * Nasty bug: do_SAK is being called in interrupt context.  This can
3001   * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3002   */
__do_SAK(struct tty_struct * tty)3003  void __do_SAK(struct tty_struct *tty)
3004  {
3005  	struct task_struct *g, *p;
3006  	struct pid *session;
3007  	int i;
3008  	unsigned long flags;
3009  
3010  	spin_lock_irqsave(&tty->ctrl.lock, flags);
3011  	session = get_pid(tty->ctrl.session);
3012  	spin_unlock_irqrestore(&tty->ctrl.lock, flags);
3013  
3014  	tty_ldisc_flush(tty);
3015  
3016  	tty_driver_flush_buffer(tty);
3017  
3018  	read_lock(&tasklist_lock);
3019  	/* Kill the entire session */
3020  	do_each_pid_task(session, PIDTYPE_SID, p) {
3021  		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3022  			   task_pid_nr(p), p->comm);
3023  		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3024  	} while_each_pid_task(session, PIDTYPE_SID, p);
3025  
3026  	/* Now kill any processes that happen to have the tty open */
3027  	for_each_process_thread(g, p) {
3028  		if (p->signal->tty == tty) {
3029  			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3030  				   task_pid_nr(p), p->comm);
3031  			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3032  					PIDTYPE_SID);
3033  			continue;
3034  		}
3035  		task_lock(p);
3036  		i = iterate_fd(p->files, 0, this_tty, tty);
3037  		if (i != 0) {
3038  			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3039  				   task_pid_nr(p), p->comm, i - 1);
3040  			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3041  					PIDTYPE_SID);
3042  		}
3043  		task_unlock(p);
3044  	}
3045  	read_unlock(&tasklist_lock);
3046  	put_pid(session);
3047  }
3048  
do_SAK_work(struct work_struct * work)3049  static void do_SAK_work(struct work_struct *work)
3050  {
3051  	struct tty_struct *tty =
3052  		container_of(work, struct tty_struct, SAK_work);
3053  	__do_SAK(tty);
3054  }
3055  
3056  /*
3057   * The tq handling here is a little racy - tty->SAK_work may already be queued.
3058   * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3059   * the values which we write to it will be identical to the values which it
3060   * already has. --akpm
3061   */
do_SAK(struct tty_struct * tty)3062  void do_SAK(struct tty_struct *tty)
3063  {
3064  	if (!tty)
3065  		return;
3066  	schedule_work(&tty->SAK_work);
3067  }
3068  EXPORT_SYMBOL(do_SAK);
3069  
3070  /* Must put_device() after it's unused! */
tty_get_device(struct tty_struct * tty)3071  static struct device *tty_get_device(struct tty_struct *tty)
3072  {
3073  	dev_t devt = tty_devnum(tty);
3074  
3075  	return class_find_device_by_devt(&tty_class, devt);
3076  }
3077  
3078  
3079  /**
3080   * alloc_tty_struct - allocate a new tty
3081   * @driver: driver which will handle the returned tty
3082   * @idx: minor of the tty
3083   *
3084   * This subroutine allocates and initializes a tty structure.
3085   *
3086   * Locking: none - @tty in question is not exposed at this point
3087   */
alloc_tty_struct(struct tty_driver * driver,int idx)3088  struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3089  {
3090  	struct tty_struct *tty;
3091  
3092  	tty = kzalloc(sizeof(*tty), GFP_KERNEL_ACCOUNT);
3093  	if (!tty)
3094  		return NULL;
3095  
3096  	kref_init(&tty->kref);
3097  	if (tty_ldisc_init(tty)) {
3098  		kfree(tty);
3099  		return NULL;
3100  	}
3101  	tty->ctrl.session = NULL;
3102  	tty->ctrl.pgrp = NULL;
3103  	mutex_init(&tty->legacy_mutex);
3104  	mutex_init(&tty->throttle_mutex);
3105  	init_rwsem(&tty->termios_rwsem);
3106  	mutex_init(&tty->winsize_mutex);
3107  	init_ldsem(&tty->ldisc_sem);
3108  	init_waitqueue_head(&tty->write_wait);
3109  	init_waitqueue_head(&tty->read_wait);
3110  	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3111  	mutex_init(&tty->atomic_write_lock);
3112  	spin_lock_init(&tty->ctrl.lock);
3113  	spin_lock_init(&tty->flow.lock);
3114  	spin_lock_init(&tty->files_lock);
3115  	INIT_LIST_HEAD(&tty->tty_files);
3116  	INIT_WORK(&tty->SAK_work, do_SAK_work);
3117  
3118  	tty->driver = driver;
3119  	tty->ops = driver->ops;
3120  	tty->index = idx;
3121  	tty_line_name(driver, idx, tty->name);
3122  	tty->dev = tty_get_device(tty);
3123  
3124  	return tty;
3125  }
3126  
3127  /**
3128   * tty_put_char	- write one character to a tty
3129   * @tty: tty
3130   * @ch: character to write
3131   *
3132   * Write one byte to the @tty using the provided @tty->ops->put_char() method
3133   * if present.
3134   *
3135   * Note: the specific put_char operation in the driver layer may go
3136   * away soon. Don't call it directly, use this method
3137   *
3138   * Return: the number of characters successfully output.
3139   */
tty_put_char(struct tty_struct * tty,unsigned char ch)3140  int tty_put_char(struct tty_struct *tty, unsigned char ch)
3141  {
3142  	if (tty->ops->put_char)
3143  		return tty->ops->put_char(tty, ch);
3144  	return tty->ops->write(tty, &ch, 1);
3145  }
3146  EXPORT_SYMBOL_GPL(tty_put_char);
3147  
tty_cdev_add(struct tty_driver * driver,dev_t dev,unsigned int index,unsigned int count)3148  static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3149  		unsigned int index, unsigned int count)
3150  {
3151  	int err;
3152  
3153  	/* init here, since reused cdevs cause crashes */
3154  	driver->cdevs[index] = cdev_alloc();
3155  	if (!driver->cdevs[index])
3156  		return -ENOMEM;
3157  	driver->cdevs[index]->ops = &tty_fops;
3158  	driver->cdevs[index]->owner = driver->owner;
3159  	err = cdev_add(driver->cdevs[index], dev, count);
3160  	if (err)
3161  		kobject_put(&driver->cdevs[index]->kobj);
3162  	return err;
3163  }
3164  
3165  /**
3166   * tty_register_device - register a tty device
3167   * @driver: the tty driver that describes the tty device
3168   * @index: the index in the tty driver for this tty device
3169   * @device: a struct device that is associated with this tty device.
3170   *	This field is optional, if there is no known struct device
3171   *	for this tty device it can be set to NULL safely.
3172   *
3173   * This call is required to be made to register an individual tty device
3174   * if the tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set.  If
3175   * that bit is not set, this function should not be called by a tty
3176   * driver.
3177   *
3178   * Locking: ??
3179   *
3180   * Return: A pointer to the struct device for this tty device (or
3181   * ERR_PTR(-EFOO) on error).
3182   */
tty_register_device(struct tty_driver * driver,unsigned index,struct device * device)3183  struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3184  				   struct device *device)
3185  {
3186  	return tty_register_device_attr(driver, index, device, NULL, NULL);
3187  }
3188  EXPORT_SYMBOL(tty_register_device);
3189  
tty_device_create_release(struct device * dev)3190  static void tty_device_create_release(struct device *dev)
3191  {
3192  	dev_dbg(dev, "releasing...\n");
3193  	kfree(dev);
3194  }
3195  
3196  /**
3197   * tty_register_device_attr - register a tty device
3198   * @driver: the tty driver that describes the tty device
3199   * @index: the index in the tty driver for this tty device
3200   * @device: a struct device that is associated with this tty device.
3201   *	This field is optional, if there is no known struct device
3202   *	for this tty device it can be set to %NULL safely.
3203   * @drvdata: Driver data to be set to device.
3204   * @attr_grp: Attribute group to be set on device.
3205   *
3206   * This call is required to be made to register an individual tty device if the
3207   * tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If that bit is
3208   * not set, this function should not be called by a tty driver.
3209   *
3210   * Locking: ??
3211   *
3212   * Return: A pointer to the struct device for this tty device (or
3213   * ERR_PTR(-EFOO) on error).
3214   */
tty_register_device_attr(struct tty_driver * driver,unsigned index,struct device * device,void * drvdata,const struct attribute_group ** attr_grp)3215  struct device *tty_register_device_attr(struct tty_driver *driver,
3216  				   unsigned index, struct device *device,
3217  				   void *drvdata,
3218  				   const struct attribute_group **attr_grp)
3219  {
3220  	char name[64];
3221  	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3222  	struct ktermios *tp;
3223  	struct device *dev;
3224  	int retval;
3225  
3226  	if (index >= driver->num) {
3227  		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3228  		       driver->name, index);
3229  		return ERR_PTR(-EINVAL);
3230  	}
3231  
3232  	if (driver->type == TTY_DRIVER_TYPE_PTY)
3233  		pty_line_name(driver, index, name);
3234  	else
3235  		tty_line_name(driver, index, name);
3236  
3237  	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3238  	if (!dev)
3239  		return ERR_PTR(-ENOMEM);
3240  
3241  	dev->devt = devt;
3242  	dev->class = &tty_class;
3243  	dev->parent = device;
3244  	dev->release = tty_device_create_release;
3245  	dev_set_name(dev, "%s", name);
3246  	dev->groups = attr_grp;
3247  	dev_set_drvdata(dev, drvdata);
3248  
3249  	dev_set_uevent_suppress(dev, 1);
3250  
3251  	retval = device_register(dev);
3252  	if (retval)
3253  		goto err_put;
3254  
3255  	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3256  		/*
3257  		 * Free any saved termios data so that the termios state is
3258  		 * reset when reusing a minor number.
3259  		 */
3260  		tp = driver->termios[index];
3261  		if (tp) {
3262  			driver->termios[index] = NULL;
3263  			kfree(tp);
3264  		}
3265  
3266  		retval = tty_cdev_add(driver, devt, index, 1);
3267  		if (retval)
3268  			goto err_del;
3269  	}
3270  
3271  	dev_set_uevent_suppress(dev, 0);
3272  	kobject_uevent(&dev->kobj, KOBJ_ADD);
3273  
3274  	return dev;
3275  
3276  err_del:
3277  	device_del(dev);
3278  err_put:
3279  	put_device(dev);
3280  
3281  	return ERR_PTR(retval);
3282  }
3283  EXPORT_SYMBOL_GPL(tty_register_device_attr);
3284  
3285  /**
3286   * tty_unregister_device - unregister a tty device
3287   * @driver: the tty driver that describes the tty device
3288   * @index: the index in the tty driver for this tty device
3289   *
3290   * If a tty device is registered with a call to tty_register_device() then
3291   * this function must be called when the tty device is gone.
3292   *
3293   * Locking: ??
3294   */
tty_unregister_device(struct tty_driver * driver,unsigned index)3295  void tty_unregister_device(struct tty_driver *driver, unsigned index)
3296  {
3297  	device_destroy(&tty_class, MKDEV(driver->major, driver->minor_start) + index);
3298  	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3299  		cdev_del(driver->cdevs[index]);
3300  		driver->cdevs[index] = NULL;
3301  	}
3302  }
3303  EXPORT_SYMBOL(tty_unregister_device);
3304  
3305  /**
3306   * __tty_alloc_driver -- allocate tty driver
3307   * @lines: count of lines this driver can handle at most
3308   * @owner: module which is responsible for this driver
3309   * @flags: some of %TTY_DRIVER_ flags, will be set in driver->flags
3310   *
3311   * This should not be called directly, some of the provided macros should be
3312   * used instead. Use IS_ERR() and friends on @retval.
3313   */
__tty_alloc_driver(unsigned int lines,struct module * owner,unsigned long flags)3314  struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3315  		unsigned long flags)
3316  {
3317  	struct tty_driver *driver;
3318  	unsigned int cdevs = 1;
3319  	int err;
3320  
3321  	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3322  		return ERR_PTR(-EINVAL);
3323  
3324  	driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3325  	if (!driver)
3326  		return ERR_PTR(-ENOMEM);
3327  
3328  	kref_init(&driver->kref);
3329  	driver->num = lines;
3330  	driver->owner = owner;
3331  	driver->flags = flags;
3332  
3333  	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3334  		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3335  				GFP_KERNEL);
3336  		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3337  				GFP_KERNEL);
3338  		if (!driver->ttys || !driver->termios) {
3339  			err = -ENOMEM;
3340  			goto err_free_all;
3341  		}
3342  	}
3343  
3344  	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3345  		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3346  				GFP_KERNEL);
3347  		if (!driver->ports) {
3348  			err = -ENOMEM;
3349  			goto err_free_all;
3350  		}
3351  		cdevs = lines;
3352  	}
3353  
3354  	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3355  	if (!driver->cdevs) {
3356  		err = -ENOMEM;
3357  		goto err_free_all;
3358  	}
3359  
3360  	return driver;
3361  err_free_all:
3362  	kfree(driver->ports);
3363  	kfree(driver->ttys);
3364  	kfree(driver->termios);
3365  	kfree(driver->cdevs);
3366  	kfree(driver);
3367  	return ERR_PTR(err);
3368  }
3369  EXPORT_SYMBOL(__tty_alloc_driver);
3370  
destruct_tty_driver(struct kref * kref)3371  static void destruct_tty_driver(struct kref *kref)
3372  {
3373  	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3374  	int i;
3375  	struct ktermios *tp;
3376  
3377  	if (driver->flags & TTY_DRIVER_INSTALLED) {
3378  		for (i = 0; i < driver->num; i++) {
3379  			tp = driver->termios[i];
3380  			if (tp) {
3381  				driver->termios[i] = NULL;
3382  				kfree(tp);
3383  			}
3384  			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3385  				tty_unregister_device(driver, i);
3386  		}
3387  		proc_tty_unregister_driver(driver);
3388  		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3389  			cdev_del(driver->cdevs[0]);
3390  	}
3391  	kfree(driver->cdevs);
3392  	kfree(driver->ports);
3393  	kfree(driver->termios);
3394  	kfree(driver->ttys);
3395  	kfree(driver);
3396  }
3397  
3398  /**
3399   * tty_driver_kref_put -- drop a reference to a tty driver
3400   * @driver: driver of which to drop the reference
3401   *
3402   * The final put will destroy and free up the driver.
3403   */
tty_driver_kref_put(struct tty_driver * driver)3404  void tty_driver_kref_put(struct tty_driver *driver)
3405  {
3406  	kref_put(&driver->kref, destruct_tty_driver);
3407  }
3408  EXPORT_SYMBOL(tty_driver_kref_put);
3409  
3410  /**
3411   * tty_register_driver -- register a tty driver
3412   * @driver: driver to register
3413   *
3414   * Called by a tty driver to register itself.
3415   */
tty_register_driver(struct tty_driver * driver)3416  int tty_register_driver(struct tty_driver *driver)
3417  {
3418  	int error;
3419  	int i;
3420  	dev_t dev;
3421  	struct device *d;
3422  
3423  	if (!driver->major) {
3424  		error = alloc_chrdev_region(&dev, driver->minor_start,
3425  						driver->num, driver->name);
3426  		if (!error) {
3427  			driver->major = MAJOR(dev);
3428  			driver->minor_start = MINOR(dev);
3429  		}
3430  	} else {
3431  		dev = MKDEV(driver->major, driver->minor_start);
3432  		error = register_chrdev_region(dev, driver->num, driver->name);
3433  	}
3434  	if (error < 0)
3435  		goto err;
3436  
3437  	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3438  		error = tty_cdev_add(driver, dev, 0, driver->num);
3439  		if (error)
3440  			goto err_unreg_char;
3441  	}
3442  
3443  	mutex_lock(&tty_mutex);
3444  	list_add(&driver->tty_drivers, &tty_drivers);
3445  	mutex_unlock(&tty_mutex);
3446  
3447  	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3448  		for (i = 0; i < driver->num; i++) {
3449  			d = tty_register_device(driver, i, NULL);
3450  			if (IS_ERR(d)) {
3451  				error = PTR_ERR(d);
3452  				goto err_unreg_devs;
3453  			}
3454  		}
3455  	}
3456  	proc_tty_register_driver(driver);
3457  	driver->flags |= TTY_DRIVER_INSTALLED;
3458  	return 0;
3459  
3460  err_unreg_devs:
3461  	for (i--; i >= 0; i--)
3462  		tty_unregister_device(driver, i);
3463  
3464  	mutex_lock(&tty_mutex);
3465  	list_del(&driver->tty_drivers);
3466  	mutex_unlock(&tty_mutex);
3467  
3468  err_unreg_char:
3469  	unregister_chrdev_region(dev, driver->num);
3470  err:
3471  	return error;
3472  }
3473  EXPORT_SYMBOL(tty_register_driver);
3474  
3475  /**
3476   * tty_unregister_driver -- unregister a tty driver
3477   * @driver: driver to unregister
3478   *
3479   * Called by a tty driver to unregister itself.
3480   */
tty_unregister_driver(struct tty_driver * driver)3481  void tty_unregister_driver(struct tty_driver *driver)
3482  {
3483  	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3484  				driver->num);
3485  	mutex_lock(&tty_mutex);
3486  	list_del(&driver->tty_drivers);
3487  	mutex_unlock(&tty_mutex);
3488  }
3489  EXPORT_SYMBOL(tty_unregister_driver);
3490  
tty_devnum(struct tty_struct * tty)3491  dev_t tty_devnum(struct tty_struct *tty)
3492  {
3493  	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3494  }
3495  EXPORT_SYMBOL(tty_devnum);
3496  
tty_default_fops(struct file_operations * fops)3497  void tty_default_fops(struct file_operations *fops)
3498  {
3499  	*fops = tty_fops;
3500  }
3501  
tty_devnode(const struct device * dev,umode_t * mode)3502  static char *tty_devnode(const struct device *dev, umode_t *mode)
3503  {
3504  	if (!mode)
3505  		return NULL;
3506  	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3507  	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3508  		*mode = 0666;
3509  	return NULL;
3510  }
3511  
3512  const struct class tty_class = {
3513  	.name		= "tty",
3514  	.devnode	= tty_devnode,
3515  };
3516  
tty_class_init(void)3517  static int __init tty_class_init(void)
3518  {
3519  	return class_register(&tty_class);
3520  }
3521  
3522  postcore_initcall(tty_class_init);
3523  
3524  /* 3/2004 jmc: why do these devices exist? */
3525  static struct cdev tty_cdev, console_cdev;
3526  
show_cons_active(struct device * dev,struct device_attribute * attr,char * buf)3527  static ssize_t show_cons_active(struct device *dev,
3528  				struct device_attribute *attr, char *buf)
3529  {
3530  	struct console *cs[16];
3531  	int i = 0;
3532  	struct console *c;
3533  	ssize_t count = 0;
3534  
3535  	/*
3536  	 * Hold the console_list_lock to guarantee that no consoles are
3537  	 * unregistered until all console processing is complete.
3538  	 * This also allows safe traversal of the console list and
3539  	 * race-free reading of @flags.
3540  	 */
3541  	console_list_lock();
3542  
3543  	for_each_console(c) {
3544  		if (!c->device)
3545  			continue;
3546  		if (!c->write)
3547  			continue;
3548  		if ((c->flags & CON_ENABLED) == 0)
3549  			continue;
3550  		cs[i++] = c;
3551  		if (i >= ARRAY_SIZE(cs))
3552  			break;
3553  	}
3554  
3555  	/*
3556  	 * Take console_lock to serialize device() callback with
3557  	 * other console operations. For example, fg_console is
3558  	 * modified under console_lock when switching vt.
3559  	 */
3560  	console_lock();
3561  	while (i--) {
3562  		int index = cs[i]->index;
3563  		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3564  
3565  		/* don't resolve tty0 as some programs depend on it */
3566  		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3567  			count += tty_line_name(drv, index, buf + count);
3568  		else
3569  			count += sprintf(buf + count, "%s%d",
3570  					 cs[i]->name, cs[i]->index);
3571  
3572  		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3573  	}
3574  	console_unlock();
3575  
3576  	console_list_unlock();
3577  
3578  	return count;
3579  }
3580  static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3581  
3582  static struct attribute *cons_dev_attrs[] = {
3583  	&dev_attr_active.attr,
3584  	NULL
3585  };
3586  
3587  ATTRIBUTE_GROUPS(cons_dev);
3588  
3589  static struct device *consdev;
3590  
console_sysfs_notify(void)3591  void console_sysfs_notify(void)
3592  {
3593  	if (consdev)
3594  		sysfs_notify(&consdev->kobj, NULL, "active");
3595  }
3596  
3597  static struct ctl_table tty_table[] = {
3598  	{
3599  		.procname	= "legacy_tiocsti",
3600  		.data		= &tty_legacy_tiocsti,
3601  		.maxlen		= sizeof(tty_legacy_tiocsti),
3602  		.mode		= 0644,
3603  		.proc_handler	= proc_dobool,
3604  	},
3605  	{
3606  		.procname	= "ldisc_autoload",
3607  		.data		= &tty_ldisc_autoload,
3608  		.maxlen		= sizeof(tty_ldisc_autoload),
3609  		.mode		= 0644,
3610  		.proc_handler	= proc_dointvec_minmax,
3611  		.extra1		= SYSCTL_ZERO,
3612  		.extra2		= SYSCTL_ONE,
3613  	},
3614  	{ }
3615  };
3616  
3617  /*
3618   * Ok, now we can initialize the rest of the tty devices and can count
3619   * on memory allocations, interrupts etc..
3620   */
tty_init(void)3621  int __init tty_init(void)
3622  {
3623  	register_sysctl_init("dev/tty", tty_table);
3624  	cdev_init(&tty_cdev, &tty_fops);
3625  	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3626  	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3627  		panic("Couldn't register /dev/tty driver\n");
3628  	device_create(&tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3629  
3630  	cdev_init(&console_cdev, &console_fops);
3631  	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3632  	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3633  		panic("Couldn't register /dev/console driver\n");
3634  	consdev = device_create_with_groups(&tty_class, NULL,
3635  					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3636  					    cons_dev_groups, "console");
3637  	if (IS_ERR(consdev))
3638  		consdev = NULL;
3639  
3640  #ifdef CONFIG_VT
3641  	vty_init(&console_fops);
3642  #endif
3643  	return 0;
3644  }
3645